Powered by Deep Web Technologies
Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Radiative Forcing Due to Reactive Gas Emissions  

Science Conference Proceedings (OSTI)

Reactive gas emissions (CO, NOx, VOC) have indirect radiative forcing effects through their influences on tropospheric ozone and on the lifetimes of methane and hydrogenated halocarbons. These effects are quantified here for the full set of ...

T. M. L. Wigley; S. J. Smith; M. J. Prather

2002-09-01T23:59:59.000Z

2

X-ray Absorption Due to Cold Gas in Cluster Cooling Cores  

E-Print Network (OSTI)

We have calculated the emergent X-ray properties for models of cluster cooling flows including the effects of accumulated cooled material. The opacity of this cooled gas can reduce the overall X-ray luminosity of the cooling flow, and values of Mdot based on these luminosities can underestimate the true value by factors of ~2. We find that accumulated cooled material can produce emergent surface brightness profiles much like those observed even for nearly homogeneous gas distributions. Consequently, much more of the gas may be cooling below X-ray emitting temperatures in the central regions of cooling flows (r cooling flows may have been underestimated. We show that distributed absorption in cooling flows produces a number of observable effects in the spectrum which may allow it to be differentiated from absorption due to gas in our Galaxy. Th...

Wise, M W; Wise, Michael W.; Sarazin, Craig L.

1999-01-01T23:59:59.000Z

3

Alaska Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Date: 9302013 Next Release Date: 10312013 Referring Pages: Underground Base Natural Gas in Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Base...

4

Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,944 46,944...

5

Colorado Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 39,062 39,062...

6

Illinois Natural Gas in Underground Storage (Base Gas) (Million...  

Gasoline and Diesel Fuel Update (EIA)

Base Gas) (Million Cubic Feet) Illinois Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 571,959 571,959...

7

New Mexico Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 20,204 20,204...

8

Texas Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 134,707 134,707...

9

Compressed Gas Cylinder Safety I. Background. Due to the nature  

E-Print Network (OSTI)

of these gases can cause a cylinder to become a missile-like projectile, destroying everything in its path (empty or full) in storage should be separated from fuel-gas cylinders and combustible materials

Suzuki, Masatsugu

10

X-ray Absorption Due to Cold Gas in Cluster Cooling Cores  

E-Print Network (OSTI)

We have calculated the emergent X-ray properties for models of cluster cooling flows including the effects of accumulated cooled material. The opacity of this cooled gas can reduce the overall X-ray luminosity of the cooling flow, and values of Mdot based on these luminosities can underestimate the true value by factors of ~2. We find that accumulated cooled material can produce emergent surface brightness profiles much like those observed even for nearly homogeneous gas distributions. Consequently, much more of the gas may be cooling below X-ray emitting temperatures in the central regions of cooling flows (r cooling flows may have been underestimated. We show that distributed absorption in cooling flows produces a number of observable effects in the spectrum which may allow it to be differentiated from absorption due to gas in our Galaxy. These include a characteristic suppression of the continuum below ~2 keV, absorption features such as a redshifted O K-edge, and diminished intensity of resonance emission lines. Spectra including the effects of intrinsic absorption are not well fit by foreground absorbing models. Attempting to fit such models to the spatially resolved spectra can lead to underestimates of the true absorbing column by factors of 3-20. Fits to integrated spectra of the entire cooling flow region can either underestimate or overestimate the mass of the absorbing gas depending on the specifics of the model. We discuss the potential detection of these effects with AXAF, XMM, and Astro-E.

Michael W. Wise; Craig L. Sarazin

1999-03-09T23:59:59.000Z

11

Deformation of a liquid surface due to an impinging gas jet: A conformal mapping approach  

E-Print Network (OSTI)

Deformation of a liquid surface due to an impinging gas jet: A conformal mapping approach Andong He on it. The problem of a gas jet impinging on a liquid surface arises in several important industrial and Stewart11 observed two types of instabilities of the gas-liquid system: oscillations of the interface

12

Photonics-based Multi-gas Sensor.  

E-Print Network (OSTI)

??The design of a photonics-based multi-gas sensor is presented. Absorption spectroscopy theory has been analyzed to derive key requirements for effective gas concentration measurements. HITRAN… (more)

Matharoo, Inderdeep

2011-01-01T23:59:59.000Z

13

Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs  

E-Print Network (OSTI)

as cushion gas for natural gas storage, Energy & Fuels, 17(super-cushion gas for natural gas storage (Oldenburg, 2003).

Oldenburg, Curtis M.

2006-01-01T23:59:59.000Z

14

Greenhouse Gas Pollution in the Stratosphere Due to Increasing Airplane Traffic, Effects On the Environment  

E-Print Network (OSTI)

Greenhouse Gas Pollution in the Stratosphere Due to Increasing Airplane Traffic, Effects temperatures have increased much more than can be explained by changes in the concentration of greenhouse gases traffic round the clock and around the globe which is contributing to higher concentrations of greenhouse

Murty, Katta G.

15

Oil & Gas Broad Based Solicitation  

NLE Websites -- All DOE Office Websites (Extended Search)

Operator Point of Contact Phone Email Heavy Oil Gas Flooding VSP Reservoir Characterization Iron Creek Energy Group and Nielson & Associates, Inc. Joe Sinner 3075272869...

16

Alleviation of effective permeability reduction of gas-condensate due to condensate buildup near wellbore  

E-Print Network (OSTI)

When the reservoir pressure is decreased below dew point pressure of the gas near the wellbore, gas-condensate wells start to decrease production because condensate is separated from the gas around the wellbore causing a decrease in gas relative permeability. This effect is more dramatic if the permeability of the reservoir is low. The idea proposed for reducing this problem is to eliminate the irreducible water saturation near the wellbore to leave more space for the gas to flow and therefore increase the productivity of the well. In this research a simulation study was performed to determine the range of permeabilities where the cylinder of condensate will seriously affect the wellÂ?s productivity, and the distance the removal of water around the wellbore has to be extended in order to have acceleration of production and an increase in the final reserves. A compositional-radial reservoir was simulated with one well in the center of 109 grids. Three gas-condensate fluids with different heptanes plus compositions ( 4, 8 and 11 mole %), and two irreducible water saturations were used. The fitting of the Equation of State (EOS) was performed using the method proposed by Aguilar and McCain. Several simulations were performed with several permeabilities to determine the permeabilities for which the productivity is not affected by the presence of the cylinder of condensate. At constant permeability, various radii of a region of zero initial water saturation around the wellbore were simulated and comparisons of the effects of removal of irreducible water on productivity were made. Reservoirs with permeabilities lower than 100 mD showed a reduction in the ultimate reserves due to the cylinder of condensate. The optimal radius of water removal depends on the fluid composition and the irreducible water saturation of the reservoir. The expected increase in reserves due to water removal varies from 10 to 80 % for gas production and from 4 to 30% for condensate production.

Carballo Salas, Jose Gilberto

2004-12-01T23:59:59.000Z

17

Oil & Gas Broad Based Solicitation  

NLE Websites -- All DOE Office Websites (Extended Search)

University Point of Contact Phone Email Heavy Oil Gas Flooding VSP Reservoir Characterization UTK Robert D. Hatcher, Jr. 865-974-6565 bobmap@utk.edu X X Stanford Gary Mavko...

18

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

19

Dynamic Response of a Rotor-air Bearing System Due to Base Induced Periodic Motions  

E-Print Network (OSTI)

Oil-free microturbomachinery (MTM) are inevitably subjected to base or foundation excitations: multiple periodic load excitations from internal combustion (IC) engines in turbochargers, for example. Too large base excitations can produce severe damage, even failure, due to hard collision or rubbing contact between a rotor and its bearings. Therefore, it is paramount to evaluate the reliability of rotor-air bearing systems to withstanding base load excitations. In 2008, intermittent shock excitations, up to 30 g (pk-pk), were introduced to a test rig consisting of a rotor (0.825 kg) supported on two hybrid flexure pivot tilting pad gas bearings (FPTPBs). The experiments demonstrated the reliability of the gas bearings to withstanding external transient load excitations. Presently, a shaker delivers periodic load excitations to the base plate supporting the test rig. The whole system, weighing 48 kg, is supported on two soft coil springs and its lowest natural frequency is ~5 Hz. The rod connecting the shaker to the base plate is not affixed rigidly to the test rig base. The rod merely pushes on the base plate and hence the induced based motions are intermittent with multiple impacts and frequencies. As with most practical conditions, the base motion frequencies (5-12 Hz) are low respective to the operating speed of the rotor-bearing system. Rotor speed coast down tests evidence the rotor-bearing system natural frequency when the gas bearings are supplied with feed pressures increasing from 2.36 to 5.08 bar (ab). Shaker excitation induced rotor response, relative to the bearing housings, contains the main input frequency (5-12 Hz) and its super harmonics; and because of the intermittency of the base motions, it also excites the rotor-bearing system natural frequency, with smaller motion amplitudes than synchronous motion components. The excitation of the system natural frequency does not mean rotordynamic instability. With base induced motions, the rotor motion amplitude at the system natural frequency increases as the gas bearing feed pressure decreases, as the rotor speed increases, and as the shaker input excitation frequency increases (5-12 Hz). Hence, the test rotor-air bearing system is highly sensitive to base motions, intermittent in character, in particular when the gas bearings are supplied with a low feed pressure. Predicted rotor motion responses obtained from XLTRC2 and an analytical rigid rotor model, both including the (measured) periodic base motions, show good correlation with the measurements. The research results demonstrate further the applicability of gas bearings into oil-free high speed MTM.

Niu, Yaying

2009-08-01T23:59:59.000Z

20

Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs  

E-Print Network (OSTI)

as cushion gas for natural gas storage, Energy & Fuels, 17(super-cushion gas for natural gas storage (Oldenburg, 2003).storage of carbon dioxide in depleted natural gas reservoirs

Oldenburg, Curtis M.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

California Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) California Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 1991 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 248,389 248,389 248,389 248,389 1992 248,389 248,389 248,389 248,389 248,389 248,389 248,389 248,389 248,389 248,389 248,389 250,206 1993 250,206 250,206 247,228 246,345 247,699 247,950 247,109 248,215 248,944 251,050 247,420 247,425 1994 251,384 251,384 251,384 251,384 251,384 251,384 251,384 251,384 247,435 247,435 247,435 247,435 1995 247,419 247,419 247,419 247,419 247,419 247,419 247,419 247,419 247,419 247,419 247,419 247,419

22

Pennsylvania Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 352,686 352,686 352,686 351,920 352,686 352,686 353,407 353,407 353,407 353,407 359,236 358,860 1991 349,459 348,204 334,029 335,229 353,405 349,188 350,902 352,314 353,617 354,010 353,179 355,754 1992 358,198 353,313 347,361 341,498 344,318 347,751 357,498 358,432 359,300 359,504 359,321 362,275 1993 362,222 358,438 351,469 354,164 360,814 359,349 359,455 359,510 359,530 361,433 360,977 360,971 1994 360,026 357,906 358,611 360,128 361,229 361,294 361,339 361,335 361,335 361,335 361,238 362,038 1995 357,538 357,538 357,538 356,900 357,006 356,909 357,848 357,895 357,967 357,994 357,994 358,094

23

Washington Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,300 21,300 21,300 21,300 0 21,300 21,300 21,300 21,300 21,300 21,300 1991 21,300 21,300 21,300 21,300 21,300 21,300 21,300 21,300 21,300 18,800 18,800 18,800 1992 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 1993 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 1994 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 1995 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 21,123

24

Mississippi Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 1991 47,530 47,483 47,483 47,483 47,483 47,868 48,150 48,150 48,150 48,150 48,150 48,150 1992 48,150 48,150 48,149 48,149 48,149 48,149 48,149 48,149 48,149 48,149 47,851 48,049 1993 48,039 48,049 48,049 48,049 47,792 48,049 48,049 48,049 48,049 49,038 70,555 70,688 1994 71,043 71,801 71,955 71,959 71,959 71,959 71,959 71,959 71,959 72,652 72,671 72,671 1995 74,188 75,551 75,551 75,551 75,551 75,551 75,551 75,551 75,551 75,551 75,551 77,682

25

Louisiana Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 262,136 262,136 262,136 262,136 262,136 262,136 262,136 262,136 262,136 262,136 262,136 1991 264,324 264,324 264,304 264,497 265,121 265,448 265,816 266,390 262,350 266,030 267,245 267,245 1992 267,245 267,245 265,296 262,230 262,454 263,788 266,852 260,660 257,627 258,575 259,879 262,144 1993 261,841 255,035 251,684 252,604 253,390 254,839 253,518 254,115 254,299 254,043 254,646 251,132 1994 263,981 263,749 263,836 264,541 265,702 266,435 266,702 266,702 266,702 266,702 266,702 266,702 1995 266,702 266,702 266,643 266,702 266,702 266,702 266,702 266,702 266,702 266,702 266,702 267,311

26

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

27

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...  

Open Energy Info (EERE)

Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Jump to: navigation, search Name NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005...

28

Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs  

E-Print Network (OSTI)

cannot be produced because gas wells “water out,” a processcan be produced because there is no invading water to killwater flows into the reservoir from surrounding aquifers continuously while gas is produced.

Oldenburg, Curtis M.

2006-01-01T23:59:59.000Z

29

Estimating Gas Concentration of Coal Mines Based on ISGNN  

Science Conference Proceedings (OSTI)

Online detecting failure of gas sensors in mine wells is an important problem. A key step for solution of the problem is estimating sample values of detected gas sensor, according to sample values of other gas sensors. We propose a scheme based on ISGNN ... Keywords: Estimating gas concentration, Gas concentration modeling, Generating Neural Networks, ISGNN

Aiguo Li; Lina Song

2009-11-01T23:59:59.000Z

30

Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs  

E-Print Network (OSTI)

feasibility of carbon sequestration with enhanced gasgas reservoirs for carbon sequestration and enhanced gaspromising target for Carbon Sequestration with Enhanced Gas

Oldenburg, Curtis M.

2006-01-01T23:59:59.000Z

31

Large Diameter 718 Ingots for Land-Based Gas Turbines  

Science Conference Proceedings (OSTI)

h'ew high efficiency land based gas turbines made by General Electric ... Materials used for turbine rotors in land-based gas turbines have typically been CrMoV ...

32

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

33

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

34

Miscellaneous States Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

35

Oklahoma Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Oklahoma Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

36

Colorado Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

37

Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

38

Arkansas Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Arkansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

39

Wyoming Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

40

Michigan Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Michigan Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

New Mexico Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

42

Rayleigh-Taylor Instability within Sediment Layers Due to Gas Retention: Preliminary Theory and Experiments  

SciTech Connect

In Hanford underground waste storage tanks, a typical waste configuration is settled beds of waste particles beneath liquid layers. The settled beds are typically composed of layers, and these layers can have different physical and chemical properties. One postulated configuration within the settled bed is a less-dense layer beneath a more-dense layer. The different densities can be a result of different gas retention in the layers or different degrees of settling and compaction in the layers. This configuration can experience a Rayleigh-Taylor (RT) instability where the less dense lower layer rises into the upper layer. Previous studies of gas retention and release have not considered potential buoyant motion within a settle bed of solids. The purpose of this report is to provide a review of RT instabilities, discuss predictions of RT behavior for sediment layers, and summarize preliminary experimental observations of RT instabilities in simulant experiments.

Gauglitz, Phillip A.; Wells, Beric E.; Buchmiller, William C.; Rassat, Scot D.

2013-03-21T23:59:59.000Z

43

Multisensor fusion-based gas detection module  

Science Conference Proceedings (OSTI)

This article develops a gas detection module for the intelligent home. The module uses eight gas sensors to detect the environment of the home and building. The gas sensors of the module have an NH3 sensor, an air pollution sensor, an alcohol ... Keywords: Intelligent home, Logical filter method, Multisensor fusion algorithms

Jr-Hung Guo; I. -Chao Chien; Kuo-Lan Su; Chia-Ju Wu

2011-06-01T23:59:59.000Z

44

Prediction of Coal /Gas Outbursts Based on Selective Ensemble Learning  

Science Conference Proceedings (OSTI)

For the purpose of achieving accurate and reliable coal /gas outbursts prediction, a coal /gas outbursts prediction algorithm based on selective ensemble learning is presented. The component learners consisted of RS-PNN network, and the redundant component ... Keywords: Coal and gas outburst, selective ensemble learning, RS-PNN classifier, classification

Wang Heng, Shao Liangshan, Liu Shuanhong, Lu Lin

2013-01-01T23:59:59.000Z

45

A Gas Pressure Scale Based on Primary Standard Piston ...  

Science Conference Proceedings (OSTI)

A Gas Pressure Scale Based on Primary Standard Piston Gauges. Summary: ... Distortion is a major contributor to uncertainty at higher pressures. ...

2013-06-07T23:59:59.000Z

46

Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

47

Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

48

New Mexico Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

49

Louisiana--North Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

50

Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

51

Colorado Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

52

Kentucky Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

53

Kansas Natural Gas Plant Liquids, Reserves Based Production ...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

54

Utah Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

55

Florida Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Florida Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

56

Montana Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

57

North Dakota Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

58

Oklahoma Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

59

Michigan Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

60

Utah Natural Gas Liquids Lease Condensate, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Arkansas Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

62

Texas--State Offshore Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

63

Russian gas resource base large, overstated, costly to maintain  

SciTech Connect

The natural gas resources of the Former Soviet Union are immense, with an officially estimated initial recoverable endowment of 250.7 trillion cu m (8,852 trillion cu ft). Of this volume, 85% is located in the Russian Federation, which will be the dominant world supplier of gas through 2015. Although Russia possesses an amazing gas resource base, official figures overstate both the recovery factor for gas in place and appear to systematically overestimate volumes of recoverable gas in undiscovered fields. Production and transportation of gas from the Yamal peninsula and the new discoveries in the Kara and Barents seas will cost many times the current average cost of gas production in Russian. The paper discusses resources and reserves and examines the reliability of Soviet-vintage data.

Grace, J.D. (Troika Energy Services, Dallas, TX (United States))

1995-02-06T23:59:59.000Z

64

Portfolio-Based Planning Process for Greenhouse Gas Mitigation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio-Based Planning Process for Greenhouse Gas Mitigation Portfolio-Based Planning Process for Greenhouse Gas Mitigation Portfolio-Based Planning Process for Greenhouse Gas Mitigation October 7, 2013 - 10:10am Addthis The portfolio-based planning process for greenhouse gas (GHG) mitigation offers an approach to: Evaluating the GHG reduction potential at the site, program, and agency level Identifying strategies for reducing those emissions Prioritizing activities to achieve both GHG reduction and cost objectives. Portfolio-based management for GHG mitigation helps agencies move from "peanut-butter-spreading" obligations for meeting GHG reduction targets evenly across all agency operating units to strategic planning of GHG reduction activities based on each operating unit's potential and cost to reduce emissions. The result of this prioritization will lay the foundation

65

Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems  

SciTech Connect

The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

1990-12-01T23:59:59.000Z

66

An Analytical Model of the Diurnal Oscillation of the Inversion Base Due to the Sea Breeze  

Science Conference Proceedings (OSTI)

The diurnal oscillation of the height of the inversion due to the sea breeze is studied analytically by use of a linear model. The base of the inversion over the sea moved downward during daytime and upward during nighttime. Over the land the ...

Yizhak Feliks

1994-04-01T23:59:59.000Z

67

Florida Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Florida Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0...

68

Kentucky Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Kentucky Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0...

69

Montana Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Montana Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0...

70

,"U.S. Natural Gas Non-Salt Underground Storage - Base Gas (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

- Base Gas (MMcf)" - Base Gas (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Non-Salt Underground Storage - Base Gas (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5500us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5500us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:32 PM"

71

STABILIZATION OF GAS LIFTED WELLS BASED ON STATE ESTIMATION  

E-Print Network (OSTI)

STABILIZATION OF GAS LIFTED WELLS BASED ON STATE ESTIMATION Gisle Otto Eikrem Lars Imsland Bjarne well. Two different controllers are investigated, PI control using the estimated downhole pressure in the well, and nonlinear model based control of the total mass in the system. Both control structures rely

Foss, Bjarne A.

72

Lower 48 States Total Natural Gas in Underground Storage (Base Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 4,302,792 4,302,341 4,302,108 4,303,570 4,304,364 4,301,779 4,300,139 4,300,269 4,301,291 4,301,737 4,299,727 4,301,752 2012 4,309,129 4,309,505 4,321,454 4,325,195 4,332,383 4,338,100 4,342,905 4,347,859 4,351,797 4,365,049 4,372,359 4,372,412 2013 4,365,146 4,365,297 4,363,812 4,363,259 4,367,088 4,370,387 4,351,118 4,348,089 4,348,899 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Underground Base

73

Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 31,205 31,205 31,205 31,205 31,353 31,205 31,501 31,638 31,735 31,754 30,652 30,652 1991 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 34,651 1992 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,130 59,127 59,382 1993 59,382 59,382 59,382 59,382 59,382 59,382 59,382 59,427 59,427 59,427 60,746 60,746 1994 60,746 60,746 60,746 60,746 60,746 60,746 60,746 60,746 60,746 60,746 60,782 60,782 1995 60,782 60,782 60,782 60,782 60,782 60,782 60,782 60,782 60,782 60,782 60,782 60,782

74

Oklahoma Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,385 163,458 167,385 163,458 167,385 167,385 167,385 167,385 167,385 167,385 173,097 172,762 1991 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 1992 172,757 172,757 172,368 172,573 172,757 172,757 172,757 172,757 172,757 172,757 176,765 176,765 1993 228,593 227,252 227,560 226,942 228,574 229,750 229,765 229,765 229,765 229,765 229,765 229,765 1994 229,091 224,523 224,367 224,291 224,533 224,523 224,523 224,523 224,523 224,523 224,523 224,523 1995 224,523 224,523 224,523 224,523 224,523 224,523 224,523 224,523 225,098 225,098 227,652 227,652

75

Michigan Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Michigan Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 395,529 395,529 395,529 395,529 395,529 395,180 396,744 396,491 396,293 396,099 395,934 395,790 1991 394,527 393,885 392,506 394,146 413,930 413,764 413,617 413,530 413,468 413,390 413,242 413,275 1992 413,430 413,426 413,356 413,302 413,258 413,224 413,182 413,226 413,225 413,194 413,136 413,069 1993 413,736 413,707 410,316 411,038 415,626 420,299 420,682 420,660 420,562 420,591 420,609 420,600 1994 420,550 419,736 419,697 419,700 419,661 419,628 419,590 419,634 419,594 419,592 419,547 419,404 1995 419,289 419,190 419,148 419,101 419,044 419,000 419,000 421,522 421,421 421,080 419,859 420,726

76

Montana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 109,573 109,573 109,573 109,573 112,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 1991 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 1992 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 1993 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 168,573 168,573 1994 168,573 167,495 167,495 167,491 167,491 167,491 167,491 167,491 167,491 167,491 167,491 167,491 1995 167,491 167,491 167,491 167,491 167,491 167,491 167,491 167,491 167,491 167,491 167,491 167,491

77

U.S. Total Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,864,000 1974 NA NA NA NA NA NA NA NA NA 3,042,000 NA 2,912,000 1975 NA NA NA NA NA NA NA NA 3,085,000 3,107,000 3,150,000 3,162,000 1976 3,169,000 3,173,000 3,170,000 3,184,000 3,190,000 3,208,000 3,220,000 3,251,000 3,296,000 3,302,000 3,305,000 3,323,000 1977 3,293,000 3,283,000 3,286,000 3,286,000 3,293,000 3,300,000 3,317,000 3,346,000 3,364,000 3,373,000 3,403,000 3,391,000 1978 3,374,000 3,373,000 3,374,000 3,377,000 3,379,000 3,381,000 3,386,000 3,403,000 3,411,000 3,444,000 3,425,000 3,473,000

78

Arkansas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 1991 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 19,202 1992 19,202 19,202 19,112 19,021 19,007 19,007 19,007 19,007 19,007 18,887 18,748 18,615 1993 18,607 18,523 18,484 18,472 18,156 17,897 17,888 17,888 17,888 17,833 17,675 17,528 1994 17,388 17,269 16,711 16,438 16,311 16,225 16,140 16,354 16,350 16,246 15,873 15,289 1995 14,948 14,752 14,578 14,448 14,352 14,280 14,207 14,137 14,066 13,992 13,923 13,856

79

Indiana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 74,572 74,572 74,558 74,558 74,558 74,565 74,572 74,572 74,572 74,572 74,572 74,729 1991 74,588 70,962 70,956 70,856 70,892 70,956 70,957 70,962 70,962 81,536 71,050 71,050 1992 71,050 71,050 71,005 70,920 71,043 71,050 71,050 71,050 71,050 71,139 71,139 71,139 1993 71,407 71,390 71,377 71,255 71,338 71,407 71,407 71,407 71,407 71,453 71,453 71,453 1994 72,222 72,222 72,098 72,077 72,222 72,222 72,222 72,222 72,222 73,641 73,741 73,791 1995 73,929 73,929 73,922 73,825 73,929 73,929 73,929 73,929 74,229 74,429 74,754 74,779

80

Kansas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Kansas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 179,462 179,462 179,462 179,462 179,462 179,462 179,462 179,462 179,462 179,462 191,402 190,669 1991 188,597 191,203 191,198 191,198 191,126 192,733 192,736 192,798 192,798 192,805 192,563 192,563 1992 190,943 190,963 190,914 190,591 190,765 190,714 190,611 190,578 190,606 190,643 189,320 186,399 1993 184,254 180,510 181,152 186,315 189,044 189,057 188,824 186,164 186,181 185,408 181,564 183,536 1994 190,374 187,573 188,582 188,256 190,547 190,296 191,566 191,592 191,834 191,834 191,834 191,834 1995 191,884 191,872 190,411 191,131 191,131 192,555 187,380 187,380 187,380 186,186 181,501 181,501

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Missouri Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 1991 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 1992 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 1993 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 1994 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 1995 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600 21,600

82

Kentucky Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 105,889 105,889 105,889 105,889 105,889 105,889 105,889 105,889 105,889 105,889 105,889 105,889 1991 103,881 103,881 103,881 103,881 103,881 103,881 103,881 103,881 103,881 103,881 103,881 103,881 1992 105,481 105,481 105,481 105,481 105,481 105,481 105,481 105,481 105,481 105,481 105,481 105,481 1993 105,430 105,394 105,392 105,446 105,481 105,481 105,481 105,481 105,481 105,481 105,481 105,481 1994 105,433 105,433 105,383 105,383 105,433 105,433 105,433 105,433 105,433 105,433 105,433 105,433 1995 105,433 105,433 105,433 105,433 105,433 105,433 105,433 105,433 105,433 105,433 105,433 105,987

83

Maryland Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1991 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1992 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1993 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1994 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1995 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677

84

Ohio Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Ohio Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 338,916 338,916 338,916 338,916 338,916 338,916 338,916 338,916 338,916 338,916 336,243 331,979 1991 357,743 357,743 357,743 357,674 351,476 357,598 357,566 357,743 357,743 357,743 357,743 357,743 1992 357,689 357,689 356,333 355,927 356,779 356,747 356,880 357,810 357,808 357,856 357,856 358,966 1993 358,966 357,823 354,044 354,688 357,895 358,113 358,082 358,926 358,924 358,966 358,966 358,966 1994 358,966 358,966 356,018 355,988 355,957 358,034 358,005 358,858 358,965 358,966 358,966 357,046 1995 357,046 357,046 356,210 355,761 355,728 355,718 352,486 353,468 353,824 353,824 353,824 353,824

85

An Equilibrium-Based Model of Gas Reaction and Detonation  

Science Conference Proceedings (OSTI)

During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999.

Trowbridge, L.D.

2000-04-01T23:59:59.000Z

86

EMAT based inspection of natural gas pipelines for SSC cracks  

NLE Websites -- All DOE Office Websites (Extended Search)

EMAT-Based Inspection of Natural Gas EMAT-Based Inspection of Natural Gas Pipelines for Stress Corrosion Cracks FY2004 Report Venugopal K. Varma, Raymond W. Tucker, Jr., and Austin P. Albright Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 1 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

87

West Virginia Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) West Virginia Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 310,640 310,640 310,640 310,640 310,640 310,640 311,765 311,765 311,765 311,765 312,670 309,331 1991 331,618 332,229 331,898 332,278 332,288 332,288 331,275 332,283 332,269 332,264 332,259 332,070 1992 336,854 336,689 335,303 335,602 335,965 336,044 336,309 336,528 336,527 336,526 336,525 305,441 1993 305,478 304,578 302,471 303,053 304,099 304,385 304,701 304,701 304,701 306,270 305,949 305,949 1994 308,278 308,273 310,295 310,293 310,380 308,308 308,321 308,326 308,316 308,316 308,226 309,677 1995 309,677 309,677 309,677 310,207 310,237 310,337 302,437 302,392 302,347 302,320 302,320 302,220

88

AGA Producing Region Natural Gas in Underground Storage (Base Gas) (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,039,864 1,032,160 1,033,297 1,032,517 1,037,294 1,037,338 1,038,940 1,036,193 1,037,422 1,035,931 1,035,050 1,043,103 1995 1,051,669 1,054,584 1,051,120 1,051,697 1,052,949 1,062,613 1,058,260 1,054,218 1,054,870 1,051,687 1,056,704 1,060,588 1996 1,067,220 1,062,343 1,027,692 1,040,511 1,055,164 1,056,516 1,052,009 1,051,395 1,052,015 1,048,151 1,052,057 1,053,173 1997 1,064,968 1,054,977 1,059,316 1,059,050 1,059,706 1,064,515 1,063,554 1,063,029 1,066,254 1,064,123 1,065,557 1,065,151 1998 1,064,741 1,058,297 1,057,927 1,057,506 1,060,241 1,055,941 1,055,660 1,055,056 1,056,417 1,057,591 1,057,539 1,038,925

89

AGA Eastern Consuming Region Natural Gas in Underground Storage (Base Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,700,245 2,697,308 2,696,823 2,698,489 2,699,802 2,699,840 2,700,331 2,701,227 2,701,285 2,702,703 2,702,571 2,703,149 1995 2,699,674 2,699,575 2,696,880 2,695,400 2,726,268 2,726,255 2,668,312 2,671,818 2,672,399 2,672,258 2,671,362 2,672,808 1996 2,670,906 2,670,070 2,646,056 2,654,836 2,659,533 2,667,092 2,667,020 2,665,705 2,668,975 2,669,980 2,670,274 2,670,239 1997 2,665,398 2,669,603 2,668,763 2,665,910 2,662,796 2,675,047 2,675,015 2,676,601 2,676,773 2,677,093 2,676,542 2,667,760 1998 2,666,003 2,666,279 2,666,299 2,664,193 2,663,159 2,660,954 2,703,770 2,665,205 2,664,714 2,662,805 2,664,518 2,664,462

90

Virginia Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 2,345 2,371 2,369 2,366 2,361 2,356 2,353 2,347 2,289 2,382 2,436 2,433 1999 2,485 2,478 2,470 2,467 2,464 2,459 2,437 2,450 2,443 2,434 2,424 2,410 2000 2,400 2,441 2,475 2,394 2,094 2,094 2,094 2,152 2,134 2,192 2,192 2,192 2001 2,192 2,312 2,312 2,312 2,312 2,312 2,312 2,312 2,312 2,362 2,362 2,372 2002 2,372 2,372 2,372 2,372 2,387 2,387 2,387 2,387 2,387 2,387 2,387 2,387 2003 2,387 2,387 2,387 2,387 2,387 2,387 2,387 2,759 2,836 2,754 2,836 2,836 2004 2,754 2,763 2,782 2,782 2,833 2,876 2,933 2,989 3,126 3,108 3,108 3,108

91

U.S. Natural Gas Salt - Underground Storage - Base Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

- Underground Storage - Base Gas (Million Cubic Feet) - Underground Storage - Base Gas (Million Cubic Feet) U.S. Natural Gas Salt - Underground Storage - Base Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 37,195 37,953 38,265 39,605 40,331 40,911 41,345 41,371 41,613 42,615 43,588 43,588 1995 54,076 54,066 54,066 54,312 54,066 54,312 54,312 54,312 54,001 55,000 55,071 59,730 1996 62,988 63,041 62,749 63,041 63,271 63,462 59,890 59,989 60,287 60,350 64,182 64,105 1997 65,372 59,134 65,057 65,341 64,803 65,641 65,476 65,444 65,182 66,477 66,819 67,223 1998 66,915 66,411 67,753 68,264 68,293 65,998 66,057 65,620 67,489 67,451 67,537 66,984 1999 67,311 67,043 67,036 67,055 66,792 65,336 65,291 66,176 67,001 66,993 67,017 68,616

92

Oregon Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 1991 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 1992 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 1993 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 3,291 1994 3,291 3,291 3,291 4,896 4,896 4,896 4,896 4,896 4,896 4,896 4,896 4,896 1995 4,896 4,896 4,896 4,896 4,896 4,896 4,896 4,896 4,896 4,896 4,896 4,896 1996 4,896 4,896 4,896 4,896 4,896 4,896 4,896 4,896 4,896 4,896 4,896 4,896

93

Reactive gas atomization processing for Fe-based ODS alloys  

Science Conference Proceedings (OSTI)

Gas atomization reaction synthesis was employed as a simplified method for processing oxide dispersion forming precursor Fe-based powders (e.g., Fe-Cr-Y-Hf). During this process a reactive atomization gas (i.e., Ar-O{sub 2}) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t dispersion strengthened microstructures were engineered from different powder particle size ranges, illustrating microstructural control as a function of particle solidification rate. Additionally, preliminary thermal-mechanical processing was used to develop a fine scale dislocation substructure for ultimate strengthening of the alloy.

Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Odette, G.R.; Stergarc, E.; Haney, E.

2011-08-08T23:59:59.000Z

94

Lower 48 States Natural Gas Liquids Lease Condensate, Reserves Based  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Reserves Based Production (Million Barrels) Lower 48 States Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 147 1980's 159 161 157 157 179 168 169 162 162 165 1990's 158 153 147 153 157 145 162 174 178 199 2000's 208 215 207 191 182 174 182 181 173 178 2010's 224 211 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Estimated Production Lower 48 States Lease Condensate Proved Reserves, Reserve Changes, and Production Lease Condensate

95

Condition based management of gas turbine engine using neural networks.  

E-Print Network (OSTI)

??This research work is focused on the development of the hybrid neural network model to asses the gas turbine’s compressor health. Effects of various gas… (more)

Muthukumar, Krishnan.

2008-01-01T23:59:59.000Z

96

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation  

E-Print Network (OSTI)

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Bruce A. Mc Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Today society faces important prevalent greenhouse gas (carbon dioxide - CO2), it is important in the total picture. According

McCarl, Bruce A.

97

Reactive gas atomization processing for Fe-based ODS alloys  

SciTech Connect

Gas atomization reaction synthesis was employed as a simplified method for processing oxide dispersion forming precursor Fe-based powders (e.g., Fe–Cr–Y–Hf). During this process a reactive atomization gas (i.e., Ar–O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 50 nm) metastable Cr-enriched oxide shell that was used as a vehicle to transport oxygen into the consolidated microstructure. Subsequent elevated temperature heat treatment promoted thermodynamically driven oxygen exchange reactions between trapped films of Cr-enriched oxide and internal (Y, Hf)-enriched intermetallic precipitates, resulting in highly stable nano-metric mixed oxide dispersoids (i.e., Y–Hf–O) that were identified with X-ray diffraction. Transmission electron microscopy and atom probe tomography results also revealed that the size and distribution of the dispersoids were found to depend strongly on the original rapidly solidified microstructure. To exploit this, several oxide dispersion strengthened microstructures were engineered from different powder particle size ranges, illustrating microstructural control as a function of particle solidification rate. Additionally, preliminary thermal–mechanical processing was used to develop a fine scale dislocation substructure for ultimate strengthening of the alloy.

Rieken, Joel R [Ames Laboratory; Anderson, Iver E [Ames Laboratory; Kramer, Matthew J [Ames Laboratory; Odette, G R [University of California; Stergar, E [University of California; Haney, E [University of California

2011-08-24T23:59:59.000Z

98

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could ...  

U.S. Energy Information Administration (EIA)

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken? Through the use of technology, U.S. oil and natural gas operators are ...

99

A physics-based emissions model for aircraft gas turbine combustors  

E-Print Network (OSTI)

In this thesis, a physics-based model of an aircraft gas turbine combustor is developed for predicting NO. and CO emissions. The objective of the model is to predict the emissions of current and potential future gas turbine ...

Allaire, Douglas L

2006-01-01T23:59:59.000Z

100

The change in permeability spectra due to ion irradiation in the Co-based amorphous ribbon  

SciTech Connect

The Ar ion has been irradiated by an ion implanter with energy of 50, 70, and 100 keV and an ion dosage was set to 1.0x10{sup 17} ion/cm{sup 2} at a beam flux of 3.7 {mu}A/cm{sup 2}. The ion irradiation decreased the initial permeability and increased the relaxation frequency, and the behavior of permeability spectra due to ion irradiation was explained with damped harmonic model of domain wall on the general basis of magnetization mechanism. The ion irradiation gives rise to a significant change on the restoring force of domain wall but minor effect on the spin rotation. The enhancement in the permeability of the amorphous ribbon upon ion irradiation leads to a parallel improvement of giant magneto impedance response of the material, which is of practical use for sensing applications.

Park, D. G.; Song, H.; Cheong, Y. M. [Korea Atomic Energy Research Institute, Yuseong, P.O. Box 105, Daejeon 305-600 (Korea, Republic of); Park, C. Y. [Department of Physics, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, C. G. [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fuzzy probability measures (FPM) based non-symmetric membership function: Engineering examples of ground subsidence due to underground mining  

Science Conference Proceedings (OSTI)

This paper introduces a new FPM method for prediction of surface subsidence due to inclined coal seam mining. Based on the non-symmetric membership function and the definition of the fuzzy probability measure, the mathematical model for the two-dimensional ... Keywords: Fuzzy probability measures, Ground subsidence, Inclined coal seam, Non-symmetric membership function, Underground mining

Wen-Xiu Li; Lin Liu; Lan-Fang Dai

2010-04-01T23:59:59.000Z

102

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005  

Open Energy Info (EERE)

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model [1] NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model This model calculates the 2005 national average life cycle greenhouse gas emissions for petroleum-based fuels sold or distributed in the United

103

Nickel-Based Superalloy Welding Practices for Industrial Gas Turbine Applications M.B. Henderson  

E-Print Network (OSTI)

1 Nickel-Based Superalloy Welding Practices for Industrial Gas Turbine Applications M.B. Henderson and reduced costs for industrial gas turbine engines demands extended use of high strength-high temperature superalloys are used within the industrial gas turbine (IGT) engine manufacturing industry, specifically

Cambridge, University of

104

A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets  

Science Conference Proceedings (OSTI)

We present a new multiseasonal, multiyear, natural gas market equilibrium model based on the concept of a competitive equilibrium involving the market participants: producers, storage reservoir operators, peak gas operators, pipeline operators, marketers, ... Keywords: games/group decisions: noncooperative, industries: petroleum/natural gas, marketing: competitive strategy, natural resources: energy, programming: complementarity

Steven A. Gabriel; Supat Kiet; Jifang Zhuang

2005-09-01T23:59:59.000Z

105

Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA  

E-Print Network (OSTI)

Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA Submitted to Dr. Bi By Bernard Chan Pellets for UBC Boilers Replacing Natural Gas" By Bernard Chan, Brian Chan, and Christopher Young Abstract This report studies the feasibility of replacing natural gas with wood pellets for UBC boilers. A gasification

106

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation  

E-Print Network (OSTI)

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Uwe A. Schneider Words): Use of biofuels diminishes fossil fuel combustion thereby also reducing net greenhouse gas. To explore the economic potential of biofuels in a greenhouse gas mitigation market, we incorporate data

McCarl, Bruce A.

107

Microstructure Evolution of Gas Atomized Iron Based ODS Alloys  

SciTech Connect

In a simplified process to produce precursor powders for oxide dispersion-strength- ened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Anderegg, J.W.; Shechtman, D.

2009-12-01T23:59:59.000Z

108

Microstructure Evolution of Gas Atomized Iron Based ODS Alloys  

SciTech Connect

In a simplified process to produce precursor powders for oxide dispersion-strengthened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

Rieken, J.R.; Anderson, I.E.; Kramer, M.J.

2011-08-09T23:59:59.000Z

109

Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor  

Science Conference Proceedings (OSTI)

Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 {mu}m. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 {mu}m can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif [Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia); Fundamental and Applied Science, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia); Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia)

2012-09-26T23:59:59.000Z

110

Ammonia concentration modeling based on retained gas sampler data  

Science Conference Proceedings (OSTI)

The vertical ammonia concentration distributions determined by the retained gas sampler (RGS) apparatus were modeled for double-shell tanks (DSTs) AW-101, AN-103, AN-104, and AN-105 and single-shell tanks (SSTs) A-101, S-106, and U-103. One the vertical transport of ammonia in the tanks were used for the modeling. Transport in the non-convective settled solids and floating solids layers is assumed to occur primarily via some type of diffusion process, while transport in the convective liquid layers is incorporated into the model via mass transfer coefficients based on empirical correlations. Mass transfer between the top of the waste and the tank headspace and the effects of ventilation of the headspace are also included in the models. The resulting models contain a large number of parameters, but many of them can be determined from known properties of the waste configuration or can be estimated within reasonable bounds from data on the waste samples themselves. The models are used to extract effective diffusion coefficients for transport in the nonconvective layers based on the measured values of ammonia from the RGS apparatus. The modeling indicates that the higher concentrations of ammonia seen in bubbles trapped inside the waste relative to the ammonia concentrations in the tank headspace can be explained by a combination of slow transport of ammonia via diffusion in the nonconvective layers and ventilation of the tank headspace by either passive or active means. Slow transport by diffusion causes a higher concentration of ammonia to build up deep within the waste until the concentration gradients between the interior and top of the waste are sufficient to allow ammonia to escape at the same rate at which it is being generated in the waste.

Terrones, G.; Palmer, B.J.; Cuta, J.M.

1997-09-01T23:59:59.000Z

111

U.S. Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Based Production (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

112

New Mexico--East Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

113

New Mexico--West Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

114

Texas--RRC District 6 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 6 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

115

Texas--RRC District 1 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 1 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

116

Texas--RRC District 5 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 5 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

117

Texas--RRC District 7C Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 7C Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

118

Texas--RRC District 7B Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 7B Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

119

Texas--RRC District 8A Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 8A Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

120

Texas--RRC District 10 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 10 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Texas--RRC District 8 Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 8 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

122

Texas--RRC District 9 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 9 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

123

Control method for mixed refrigerant based natural gas liquefier  

DOE Patents (OSTI)

In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

Kountz, Kenneth J. (Palatine, IL); Bishop, Patrick M. (Chicago, IL)

2003-01-01T23:59:59.000Z

124

An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Emission MitigationGreenhouse Gas Emission Mitigation  

E-Print Network (OSTI)

An Economic Exploration of Biofuel basedAn Economic Exploration of Biofuel based Greenhouse Gas Afforestation, Forest management, Biofuels, Ag soil, Animals, Fertilization, Rice, Grassland expansion, Manure of Biofuel strategies Examine the dynamics of mitigation strategies #12;PolicyPolicy ContextContext U

McCarl, Bruce A.

125

Residential gas heat pump assessment: A market-based approach  

SciTech Connect

There has been considerable activity in recent years to develop technologies that could reduce or levelize residential and light-commercial building space cooling electrical use and heating/cooling energy use. For example, variable or multi-speed electric heat pumps, electric ground-source heat pumps, dual-fuel heat pumps, multi-function heat pumps, and electric cool storage concepts have been developed; and several types of gas heat pumps are emerging. A residential gas heat pump (GHP) benefits assessment is performed to assist gas utility and equipment manufacturer decision making on level of commitment to this technology. The methodology and generic types of results that can be generated are described. National market share is estimated using a market segmentation approach. The assessment design requires dividing the 334 Metropolitan Statistical Areas (MSAS) of the US into 42 market segments of relatively homogeneous weather and gas/electric rates (14 climate groupings by 3 rate groupings). Gas and electric rates for each MSA are evaluated to arrive at population-weighted rates for the market segments. GHPs are competed against 14 conventional equipment options in each homogeneous segment.

Hughes, P.J.

1995-09-01T23:59:59.000Z

126

Gas Sensors Based on Ceramic p-n Heterocontacts  

DOE Green Energy (OSTI)

Ceramic p-n heterocontacts based on CuO/ZnO were successfully synthesized and a systematic study of their hydrogen sensitivity was conducted. The sensitivity and response rates of CuO/ZnO sensors were studied utilizing current-voltage, current-time, and impedance spectroscopy measurements. The heterocontacts showed well-defined rectifying characteristics and were observed to detect hydrogen via both dc and ac measurements. Surface coverage data were derived from current-time measurements which were then fit to a two-site Langmuir adsorption model quite satisfactorily. The fit suggested that there should be two energetically different adsorption sites in the system. The heterocontacts were doped in an attempt to increase the sensitivity and the response rate of the sensor. First, the effects of doping the p-type (CuO) on the sensor characteristics were investigated. Doping the p-type CuO with both acceptor and isovalent dopants greatly improved the hydrogen sensitivity. The sensitivity of pure heterocontact observed via I-V measurements was increased from {approx}2.3 to {approx}9.4 with Ni doping. Dopants also enhanced the rectifying characteristics of the heterocontacts. Small amounts of Li addition were shown to decrease the reverse bias (saturation) current to 0.2 mA at a bias level of -5V. No unambiguous trends were observed between the sensitivity, the conductivity, and the density of the samples. Comparing the two phase microstructure to the single phase microstructure there was no dramatic increase in the sensitivity. Kinetic studies also confirmed the improved sensor characteristics with doping. The dopants decreased the response time of the sensor by decreasing the response time of one of the adsorption sites. The n-type ZnO was doped with both acceptor and donor dopants. Li doping resulted in the degradation of the p-n junction and the response time of the sensor. However, the current-voltage behavior of Ga-doped heterocontacts showed the best rectifying characteristics with very high forward currents. Ga doped heterocontacts showed the highest sensitivity observed during current-time measurements as well, even though the sensor response was rather slow. Finally, a possible synergistic effect of doping both p and n-sides was studied by utilizing current-time measurements for 1.5 mol% Ni-CuO/1.5 mol% Ga-ZnO heterocontact. A sensitivity value of {approx}5.1 was obtained with the fastest response among all the samples. The time needed to reach 90% coverage was lowered by a factor of 4 when compared to the pure heterocontact and the time needed to reach 70% coverage was just over one minute. Heterocontact gas sensors are promising candidates for high temperature sensor applications. Today, Si-based microelectromechanical system (MEMS) technology has shown great promise for developing novel devices such as pressure sensors, chemical sensors, and temperature sensors through complex designs. However, the harsh thermal, vibrational, and corrosive environments common to many aerospace applications impose severe limitations on their use. Sensors based on ceramic p-n heterocontacts are promising alternatives because of their inherent corrosion resistance and environmental stability. The other advantages include their inherent tuning ability to differentiate between different reducing gases and a possible cost efficient production of a wireless sensor. Being a capacitive type sensor, its output can be transformed into a passive wireless device by creating a tuned LC circuit. In this way, the sensor output (the capacitance) can be accessed remotely by measuring the resonant frequency. The relatively simple structure of heterocontacts makes it suitable for thick film fabrication techniques to make sensor packages.

Seymen Murat Aygun

2004-12-19T23:59:59.000Z

127

Development of Ni Base Superalloy for Industrial Gas Turbine  

Science Conference Proceedings (OSTI)

In response to this demand, Ni-base superalloys have been developed by MHI's alloy design system. These Ni-base superalloys have been applied to rotating ...

128

Gas Emission Rate Prediction in Fully-Mechanized Excavated Faces Based on Support Vector Machine  

Science Conference Proceedings (OSTI)

In order to ensure safety in coal production, full assurance is given for fully-mechanized excavated faces. Based on the vector supporting machine for regression (SVR), a model is established for predicting the gas emission in fully-mechanized excavated ... Keywords: SVM, Tracking, emission rate, fully-mechanized excavated faces, gas prediction

Wang Changlong; Fu Weihua

2009-11-01T23:59:59.000Z

129

CERIA-BASED WATER-GAS-SHIFT CATALYSTS S. Swartz, A-M. Azad, M. Seabaugh  

E-Print Network (OSTI)

readings to be taken on humidified (non-reacted) gas, for subsequent conversion calculations. The reactorCERIA-BASED WATER-GAS-SHIFT CATALYSTS S. Swartz, A-M. Azad, M. Seabaugh NexTech Materials, Ltd (motive and/or auxiliary) and stationary (residential) power applications. PEM fuel cells operate either

Azad, Abdul-Majeed

130

Capacitance-based prover for gas flow meters  

E-Print Network (OSTI)

The focus of this research was to examine a novel method for calibrating natural gas flow meters. This new method can accommodate very large flow rates and it avoids common problems associated with current meter proving techniques. In this method, the amount of gas accumulated in a vessel of fixed. volume is determined by measuring the change in capacitance of the vessel with respect to time. Because the accumulator has a fixed volume, the problems inherent with the mechanical motions involved in volumetric provers such as bell provers and piston provers are eliminated. Accurate measurements can also be made in larger vessels than would be feasible for gravimetric provers, especially for in situ calibrations.

Pipkins, Sean Patrick

1995-01-01T23:59:59.000Z

131

Gas separation device based on electrical swing adsorption  

DOE Patents (OSTI)

A method and apparatus for separating one constituent, especially carbon dioxide, from a fluid mixture, such as natural gas. The fluid mixture flows through an adsorbent member having an affinity for molecules of the one constituent, the molecules being adsorbed on the adsorbent member. A voltage is applied to the adsorbent member, the voltage imparting a current flow which causes the molecules of the one constituent to be desorbed from the adsorbent member.

Judkins, Roddie R. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

1999-10-26T23:59:59.000Z

132

Large heavy-duty gas turbines for base-load power generation and heat cogeneration  

SciTech Connect

The predominant role of large gas turbines has shifted from peaking-load duty to midrange and base-load electric power generation, especially within combined-cycle plants. Such applications require heavy-duty industrial gas turbines to ensure the same high reliability and availability for continuous service as the associated steam turbines. It is also important that the gas turbines be designed for low maintenance to minimize the necessary outage times and costs for component repair and replacement. The basic design principles and applications of Model V94 gas turbines are discussed with special reference to highly reliable and economic bulk power generation.

Joyce, J.S.

1985-01-01T23:59:59.000Z

133

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

oil and gas reservoirs, or even to the large (and rapidly increasing) data-base of information on unconventional

Moridis, George J.

2008-01-01T23:59:59.000Z

134

CNT-based MEMS/NEMS gas ionizers for portable mass spectrometry applications  

E-Print Network (OSTI)

We report the fabrication and experimental characterization of a carbon nanotube (CNT)-based MEMS/NEMS electron impact gas ionizer with an integrated extractor gate for portable mass spectrometry. The ionizer achieves ...

Velasquez-Heller, Luis Fernand

135

Cooling an electron gas using quantum dot based electronic refrigeration  

E-Print Network (OSTI)

of the QDR experiment have been published in: • J. R. Prance, C. G. Smith, J. P. Griffiths, S. J. Chorley, D. Anderson, G. A. C. Jones, I. Farrer, and D. A. Ritchie, Electronic refrigeration of a two- dimensional electron gas, Phys. Rev. Lett. 102(14), 146602... for the electrochemical potential of the dot: we define µN :i,j = Ui(N)?Uj(N ? 1), where Ui(N) is the energy of the dot holding N electrons with the last electron in the ith excited state. For example, the previous definition of µN is equivalent to µN :0,0. (The...

Prance, Jonathan Robert

2009-10-13T23:59:59.000Z

136

Indicators of the direct economic impacts due to oil and gas development in the Gulf of Nexico: results of year 1. Volume 2. Narrative  

Science Conference Proceedings (OSTI)

The study investigated the direct employment and salary impacts of oil and gas activities on the Federal Outer Continental Shelf in the Gulf of Mexico during 1984. The study also documented the geographic distribution of these impacts. Primary data for the study was provided by nine major oil and gas operations in the Gulf of Mexico and by several contractors to these companies.

Not Available

1986-01-01T23:59:59.000Z

137

Indicators of the direct economic impacts due to oil and gas development in the Gulf of Mexico: results of year 1. Volume 1. Executive summary  

Science Conference Proceedings (OSTI)

The study investigated the direct employment and salary impacts of oil and gas activities on the Federal Outer Continental Shelf in the Gulf of Mexico during 1984. The study also documented the geographic distribution of these impacts. Primary data for the study were provided by nine major oil and gas operations in the Gulf of Mexico and by several contractors to these companies.

Not Available

1986-01-01T23:59:59.000Z

138

Indicators of the direct economic impacts due to oil and gas development in the Gulf of Mexico: results of year 1. Volume 3. Exhibits and data  

Science Conference Proceedings (OSTI)

The study investigated the direct employment and salary impacts of oil and gas activities on the Federal Outer Continental Shelf in the Gulf of Mexico during 1984. The study also documented the geographic distribution of these impacts. Primary data for this study were provided by nine major oil and gas operations in the Gulf of Mexico and by several contractors to these companies.

Not Available

1986-01-01T23:59:59.000Z

139

GIS-Based Hazardous Gas Dispersion, Simulations and Analysis Debasis Karmakar, Samit Ray Chaudhuri and Eduardo Jose Maguino  

E-Print Network (OSTI)

GIS-Based Hazardous Gas Dispersion, Simulations and Analysis Debasis Karmakar, Samit Ray Chaudhuri of Plant Area Performed scenario-based simulation of hazardous gas dispersion from a continuous area source comparison to be made under other conditions such as Jet fire, explosion, dispersion of heavy dense gas

Shinozuka, Masanobu

140

Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION  

E-Print Network (OSTI)

Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION X. C in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fast Model Based Approximation of the Closed-loop Performance Limits of Gas/Liquid Inline Separators for Accelerated Design  

E-Print Network (OSTI)

trend in the oil and gas (exploration & production) industry is to use compact ­centrifugal forces based.fuenmayor@shell.com, ruud.henkes@shell.com) Abstract: A current trend in the oil and gas industry is to use compact so, oil and gas industry, slug control, model based control, feedforward control 1. INTRODUCTION A current

Van den Hof, Paul

142

SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION  

DOE Green Energy (OSTI)

A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. During Year I, we have successfully fabricated SiC macro porous membranes via extrusion of commercially available SiC powder, which were then deposited with thin, micro-porous (6 to 40{angstrom} in pore size) films via sol-gel technique as intermediate layers. Finally, an SiC hydrogen selective thin film was deposited on this substrate via our CVD/I technique. The composite membrane thus prepared demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers. Building upon the positive progress made in the Year I preliminary study, we will conduct an optimization study in Year II to develop an optimized H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment.

Unknown

2000-12-01T23:59:59.000Z

143

Assessment of RANS-based turbulent combustion models for prediction of gas turbine emissions: turbulence model and reaction mechanism effects  

DOE Green Energy (OSTI)

The goal of this study is to assess current, commonly applied turbulence and combustion models with respect to their performance in gas-turbine combustion (GTC). Reynolds Averaged Navier-Stokes (RANS)-based turbulence and chemistry models are two primary factors influencing the uncertainty in predicting turbulent combustion characteristics, especially for GTC. RANS-based methods are the design tools of choice in the gas turbine industry due to the high computational costs of LES (Large Eddy Simulation). In this study, lean premixed combustion of methane was simulated using two different reduced mechanisms (ARM9 and ARM19) along with the Eddy Dissipation Concept (EDC) turbulent chemistry interaction model to calculate the CO and NOx emissions. The effect of turbulence models was assessed by considering two different models. Both of the models tested performed well in the prediction of temperature and major species profiles. Predicted values of NO emission profiles showed an average difference of ±5 ppm compared to experimental values. Computed intermediate species profiles showed large qualitative and quantitative errors when compared with the experimental data. These discrepancies, especially the intermediate species hydrogen, indicate the challenges these reduced mechanisms and turbulence models can present when modeling pollutant emissions from gas turbine combustors.

Nanduri, J.R.; Celik, I.B.; Strakey, P.A.; Parsons, D.R.

2007-10-01T23:59:59.000Z

144

The Feasibility of Natural Gas as a Fuel Source for Modern Land-Based Drilling Rigs  

E-Print Network (OSTI)

The purpose of this study is to determine the feasibility of replacing diesel with natural gas as a fuel source for modern drilling rigs. More specifically, this thesis (1) establishes a control baseline by examining operational characteristics (response, fuel usage, and cost) of an existing diesel-powered land rig during the drilling of a well in the Haynesville Shale; (2) estimates operational characteristics of a natural gas engine under identical conditions; and (3) draws a comparison between diesel and natural gas engines, determining the advantages and disadvantages of those fuel sources in drilling applications. Results suggest that diesel engines respond to transient loads very effectively because of their inherently higher torque, especially when compared with natural gas engines of a similar power rating. Regarding fuel consumption, the engines running on diesel for this study were more efficient than on natural gas. On a per-Btu basis, the natural gas engines consumed nearly twice as much energy in drilling the same well. However, because of the low price of natural gas, the total cost of fuel to drill the well was lowered by approximately 54%, or 37,000 USD. Based on the results, it is possible to infer that the use of natural gas engines in drilling environments is feasible, and in most cases, an economical and environmental advantage. First, when compared with diesel, natural gas is a cleaner fuel with less negative impact on the environment. Second, fuel cost can be reduced by approximately half with a natural gas engine. On the other hand, natural gas as a fuel becomes less practical because of challenges associated with transporting and storing a gas. In fact, this difficulty is the main obstacle for the use of natural gas in drilling environments. In conclusion, because of its minimal drawback on operations, it is recommended that in situations where natural gas is readily available near current market prices, natural gas engines should be utilized because of the cost savings and reduced environmental impact. In all other cases, particularly where transport and storage costs encroach on the cost benefit, it may still be advantageous to continue powering rigs with diesel because of its ease of use.

Nunn, Andrew Howard

2011-12-01T23:59:59.000Z

145

EIT Based Gas Detector Design by Using Michelson Interferometer  

Science Conference Proceedings (OSTI)

Electromagnetically induced transparency (EIT) is one of the interesting phenomena of light-matter interaction which modifies matter properties for propagation of light. In other words, we can change the absorption and refractive index (RI) in neighborhood of the resonant frequency using EIT. In this paper, we have doped 3-level quantum dots in one of the Michelson Interferometer's mirror and used EIT to change its RI. So, a controllable phase difference between lights in two arms of interferometer is created. Long response time is the main drawback of Michelson interferometer based sensor, which is resolved by this technique.

Abbasian, K.; Rostami, A. [School of Engineering Emerging-Technologies, University of Tabriz, Tabriz 51666 (Iran, Islamic Republic of); Abdollahi, M. H. [Tabriz Oil Refining Company, Tabriz-Azarshahr freeway, Sardorud forked road, Tabriz (Iran, Islamic Republic of)

2011-12-26T23:59:59.000Z

146

SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION  

DOE Green Energy (OSTI)

A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. SiC macro-porous membranes have been successfully fabricated via extrusion of commercially available SiC powder. Also, an SiC hydrogen selective thin film was prepared via our CVD/I technique. This composite membrane demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers and sol-gel techniques. Building upon the positive progress made in the membrane development study, we conducted an optimization study to develop an H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment. In addition, mathematical simulation has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed reactor for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the hydrogen selected membrane have been experimentally demonstrated using a pilot-scale tubular membrane under a simulated WGS environment.

Paul K.T. Liu

2003-12-01T23:59:59.000Z

147

High temperature ultrasonic gas flow sensor based on lead free piezoelectric material  

E-Print Network (OSTI)

are satisfied by flow meters with multiple ultrasonic measurement paths, typically supplied as a spool piece and used in custody transfer applications such as natural gas pipelines. With respect to flow metering in general, a substantial and key body of work... and ?T is the differential temperature. The disadvantages of thermal mass flow meters are discussed at length by Baker [11] and Miller [10]. The response of the instrument to changes in flow velocity is typically slow due to the thermal inertia...

Krsmanovic, Dalibor

2011-11-08T23:59:59.000Z

148

Argonne CNM Highlight: New Gas Sensor Based on Multiwalled Carbon Nanotubes  

NLE Websites -- All DOE Office Websites (Extended Search)

New Gas Sensor Based on Multiwalled Carbon Nanotubes A new gas sensor based on multiwalled carbon nanotubes Hybrid sensor fabrication process: (top) SEM image of a few MWCNTs spanning across two neighboring Au fingers of the interdigitated electrode; (bottom) HRTEM image of a MWCNT uniformly coated with SnO nanocrystals. Argonne Center for Nanoscale Materials staff in the Nanofabrication & Devices Group together with collaborative users from the University of Wisconsin-Milwaukee have fabricated a miniaturized gas sensor using hybrid nanostructures consisting of SnO2 nanocrystals supported on multiwalled carbon nanotubes (MWCNTs). In contrast to the high-temperature operation required for SnO2 nanocrystals alone, and to the insensitivity towards H2

149

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data  

E-Print Network (OSTI)

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data Jin Yu produces textual summaries of archived time- series data from gas turbines. These summaries should help evaluated. 1 Introduction In order to get the most out of gas turbines, TIGER [2] has been developed

Reiter, Ehud

150

DNDC: A process-based model of greenhouse gas fluxes from agricultural soils Donna L. Giltrap a,  

E-Print Network (OSTI)

DNDC: A process-based model of greenhouse gas fluxes from agricultural soils Donna L. Giltrap a complex feedbacks and interactions. Understanding the impacts of human activities on greenhouse gas to feed the Earth's increasing population. As greenhouse gas emissions from soils are the result

151

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network (OSTI)

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

Paris-Sud XI, Université de

152

Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential  

E-Print Network (OSTI)

1 Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential By Bruce biofuel usage. Biofuel feedstocks are a source of raw material that can be transformed into petroleum for coal. In the USA, liquid fuel biofuel production has not proven to be broadly economically feasible

McCarl, Bruce A.

153

Welding of NOREM Iron-Base Hardfacing Alloy Wire Products: Procedures for Gas Tungsten Arc Welding  

Science Conference Proceedings (OSTI)

New wire products have been successfully fabricated and procedures developed for automatic gas tungsten arc welding of wear-resistant NOREM iron-base alloys. Research demonstrated that sound multi-layer welds on carbon and stainless steel substrates can be obtained without the use of preheating. These developments point to the advantages of NOREM alloys for field applications, such as valve refurbishing.

1992-09-01T23:59:59.000Z

154

Interferometeric Fibre Optic Signal Processing Based on Wavelet Transform for Subsea Gas Pipeline Leakage Inspection  

Science Conference Proceedings (OSTI)

A fiber-optic interferometric method for subsea gas pipeline leakage detection simulation test was conducted in underwater waveguide lab. The leakage signal with simultaneous phase variation is interferometrically measured based on Sagnac interferometer ... Keywords: Subsea pipe, Fiber optic, Interferometeric phase, Null frequency, Wavelet transform

Qiang Wang; Xiaowei Wang

2010-03-01T23:59:59.000Z

155

Analytical investigations of the earthquake resistance of the support base of an oil-gas platform  

Science Conference Proceedings (OSTI)

In designing stationary oil-gas recovery platforms on the continental shelf, the need arises to compute the estimated strength of their support base during seismic events. This paper is devoted to this estimation. The paper examines a structure consisting of the superstructure of an oil-gas platform and its gravity-type base. It is possible to install earthquake-insulating supports between them. Calculations performed for the design earthquake indicated that the design of the gravity base can resist a seismic effect without special additional measures. During the maximum design earthquake, moreover, significant stresses may develop in the zone of base where the columns are connected to the upper slab of the caisson. In that case, the earthquake insulation considered for the top of the platform becomes critical.

Glagovskii, V. B.; Kassirova, N. A.; Turchina, O. A.; Finagenov, O. M.; Tsirukhin, N. A. [JSC 'VNIIG im. B. E. Vedeneeva' (Russian Federation)

2012-01-15T23:59:59.000Z

156

Synthesis and Characterization of Thiazolium-Based Room Temperature Ionic Liquids for Gas Separations  

SciTech Connect

A series of novel thiazolium-bis(triflamide) based ionic liquids has been synthesized and characterized. Physicochemical properties of the ionic liquids such as thermal stability, phase transitions, and infrared spectra were analysed and compared to the imidazolium-based congeners. Several unique classes of ancillary substitutions are examined with respect to impacts on overall structure, in addition to their carbon dioxide absorption properties in supported ionic-liquid membranes for gas separation.

Hillesheim, Patrick C [ORNL; Mahurin, Shannon Mark [ORNL; Fulvio, Pasquale F [ORNL; Yeary, Joshua S [ORNL; Oyola, Yatsandra [ORNL; Jiang, Deen [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

157

Profitability Comparison Between Gas Turbines and Gas Engine in Biomass-Based Power Plants Using Binary Particle Swarm Optimization  

Science Conference Proceedings (OSTI)

This paper employs a binary discrete version of the classical Particle Swarm Optimization to compare the maximum net present value achieved by a gas turbines biomass plant and a gas engine biomass plant. The proposed algorithm determines the optimal ...

P. Reche López; M. Gómez González; N. Ruiz Reyes; F. Jurado

2007-06-01T23:59:59.000Z

158

Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes  

DOE Green Energy (OSTI)

Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages.

Dole, L.R.; Friedman, H.A.

1986-01-01T23:59:59.000Z

159

Pollutant exposures from unvented gas cooking burners: A simulation-based  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollutant exposures from unvented gas cooking burners: A simulation-based Pollutant exposures from unvented gas cooking burners: A simulation-based assessment for Southern California Title Pollutant exposures from unvented gas cooking burners: A simulation-based assessment for Southern California Publication Type Journal Article Year of Publication 2013 Authors Logue, Jennifer M., Neil E. Klepeis, Agnes B. Lobscheid, and Brett C. Singer Journal Environmental Health Perspectives Date Published 11/2013 Abstract Background: Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. Objective: Quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. Methods: A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO2), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO2 and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO2 were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%.

160

NETL: Development of a Novel Gas Pressurized Stripping Process-Based  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO2 Capture Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO2 Capture Project No.: DE-FE0007567 Carbon Capture Scientific is developing and testing a novel, proprietary, Gas Pressurized Stripping (GPS) process-based technology for CO2 capture from post-combustion flue gases. GPS process-based technology has many advantages. For the solvent based process it will be able to: Reduce the energy penalty associated with solvent regeneration Increase the CO2 desorption pressure Integrate CO2 capture and compression into one step Reduce CO2 compression needs Reduce solvent degradation These advantages could potentially eliminate CO2 compression entirely, hence reducing the total parasitic power load of a CO2 capture process to about 0.14kWh/kgCO2. This power load is a 60 percent reduction compared to the baseline case of 0.38kWh/kgCO2. The economic impact of this parasitic power reduction is a reduction in the incremental cost of electricity (COE) by about 21 mills/kWh.

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Comparison of coal-based systems: marketability of medium-Btu gas and SNG (substitute natural gas) for industrial applications. Final report, July 1979-March 1982  

Science Conference Proceedings (OSTI)

In assessing the marketability of synthetic fuel gases from coal, this report emphasizes the determination of the relative attractiveness of substitute natural gas (SNG) and medium-Btu gas (MBG) for serving market needs in eight industrial market areas. The crucial issue in predicting the marketability of coal-based synthetic gas is the future price level of competing conventional alternatives, particularly oil. Under a low oil-price scenario, the market outlook for synthetic gases is not promising, but higher oil prices would encourage coal gasification.

Olsen, D.L.; Trexel, C.A.; Teater, N.R.

1982-05-01T23:59:59.000Z

162

A Silicon-Based Micro Gas Turbine Engine for Power Generation  

E-Print Network (OSTI)

This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

2007-01-01T23:59:59.000Z

163

A Comprehensive Overview of Project-Based Mechanisms to Offset Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This EPRI Technical Update provides senior managers and environmental staff of U.S. electric companies with a comprehensive understanding of the role that greenhouse gas (GHG) emissions offsets can play in their own company's future carbon emissions compliance strategy and how offsets offer a key contribution to meet global GHG emissions reduction targets faster and at comparatively low cost. So-called project-based mechanisms use the power of markets to supply cost-efficient GHG emission reductions to e...

2007-12-21T23:59:59.000Z

164

Development and evaluation of aromatic polyamide-imide membranes for H?S and CO? separations from natural gas .  

E-Print Network (OSTI)

??Over the past decade, membrane based gas separations have gained traction in industry as an attractive alternative to traditional thermally based separations due to their… (more)

Vaughn, Justin

2013-01-01T23:59:59.000Z

165

Review of performance-based ratemaking plans for US gas distribution companies  

SciTech Connect

Performance-Based Ratemaking (PBR) is receiving increasing attention by energy utilities and their regulators. PBR is the industry term for forms of regulation that increase financial incentive for performance relative to traditional cost-of-service/rate-of-return (COS/ROR) regulation. In this report, PBR plans filed by US gas local distribution companies (LDCs) are described and reviewed. The rationale behind energy utility PBR is presented and discussed. Using nine plans that have been proposed by eight LDCs as a basis, a framework (typology) to facilitate understanding of gas utility PBR is presented. Plans are categorized according to the range of services covered by the PBR mechanism and the scope of the mechanism`s cost coverage within a service category. Pivotal design issues are identified and, based on the sample of plans, observations are made. Design issues covered include the length of time that the PBR is in effect (term); the relationship between PBR plans and status quo ratemaking; methods for formulating cost or rate indices, earnings sharing mechanisms, and service quality indices; and compatibility with gas utility DSM programs. The report summarizes observations that may be considered supportive of the rationale behind PBR. PBR is, however, not clearly superior to traditional regulation and few PBRs that are broad in scope have been adopted long enough to allow for a empirical analysis. Thus, the report concludes by identifying and describing commonly-cited pitfalls of PBR.

Comnes, G.A. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-11-01T23:59:59.000Z

166

An Approximate Dynamic Programming Approach to Benchmark Practice-based Heuristics for Natural Gas Storage Valuation  

E-Print Network (OSTI)

The valuation of the real option to store natural gas is a practically important problem that entails dynamic optimization of inventory trading decisions with capacity constraints in the face of uncertain natural gas price dynamics. Stochastic dynamic programming is a natural approach to this valuation problem, but it does not seem to be widely used in practice because it is at odds with the high-dimensional naturalgas price evolution models that are widespread among traders. According to the practice-based literature, practitioners typically value natural gas storage heuristically. The effectiveness of the heuristics discussed in this literature is currently unknown, because good upper bounds on the value of storage are not available. We develop a novel and tractable approximate dynamic programming method that coupled with Monte Carlo simulation computes lower and upper bounds on the value of storage, which we use to benchmark these heuristics on a set of realistic instances. We find that these heuristics are extremely fast but significantly suboptimal as compared to our upper bound, which appears to be fairly tight and much tighter than a simpler perfect information upper bound; our lower bound is slower to compute than these heuristics but substantially outperforms them in terms of valuation. Moreover, with periodic reoptimizations embedded in Monte Carlo simulation, the practice-based heuristics become nearly optimal, with one exception, at the expense of higher computational effort. Our lower bound with reoptimization is also nearly optimal, but exhibits a higher computational requirement than these heuristics. Besides natural gas storage, our results are potentially relevant for the valuation of the real option to store other commodities, such as metals, oil, and petroleum products. 1.

Guoming Lai; François Margot; Nicola Secom

2008-01-01T23:59:59.000Z

167

High-performance, non-CFC-based thermal insulation: Gas filled panels  

SciTech Connect

Because of the forthcoming phase-out of CFCs and to comply with the more stringent building and appliance energy-use standards, researchers in industry and in the public sector are pursuing the development of non-CFC-based, high-performance insulation materials. This report describes the results of research and development of one alternative insulation material: highly insulating GFPs. GFPs insulate in two ways: by using a gas barrier envelope to encapsulate a low-thermal-conductivity gas or gas mixture (at atmospheric pressure), and by using low-emissivity baffles to effectively eliminate convective and radiative heat transfer. This approach has been used successfully to produce superinsulated windows. Unlike foams or fibrous insulations, GFPs are not a homogeneous material but rather an assembly of specialized components. The wide range of potential applications of GFPs (appliances, manufactured housing, site-built buildings, refrigerated transport, and so on) leads to several alternative embodiments. While the materials used for prototype GFPs are commercially available, further development of components may be necessary for commercial products. With the exception of a description of the panels that were independently tested, specific information concerning panel designs and materials is omitted for patent reasons; this material is the subject of a patent application by Lawrence Berkeley Laboratory.

Griffith, B.T.; Arasteh, D.; Selkowitz, S.

1992-04-01T23:59:59.000Z

168

SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION  

DOE Green Energy (OSTI)

In the first two years of this project, we focused on the membrane synthesis, characterization and optimization. In the past year, we have concentrated on the product development for improving the efficiency of hydrogen recovery from coal gasifier off-gas via water-gas-shift (WGS) reaction. A mathematical simulation study has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed rector for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the hydrogen selected membrane have been experimentally demonstrated using a pilot-scale tubular membrane under a simulated WGS environment. For the remaining period of this project, we will conduct experimental study using the hydrogen selective membrane to verify the performance projected by the mathematical simulation.

Paul K.T. Liu

2002-10-31T23:59:59.000Z

169

Multichannel blind signal separation in semiconductor-based GAS sensor arrays  

Science Conference Proceedings (OSTI)

Traditional approaches to gas sensing are usually related with gas identification and classification, i.e., recognition of aromas. In this work we propose an innovative approach to determine the concentration of the single species in a gas mixture by ...

Guillermo Bedoya; Sergi Bermejo; Joan Cabestany

2005-06-01T23:59:59.000Z

170

An Enskog based Monte Carlo method for high Knudsen number non-ideal gas flows  

E-Print Network (OSTI)

high Knudsen number non-ideal gas flows References [1] Gad-121: [2] Bird GA. Molecular gas dynamics. Oxford: Clarendon1976. [3] Bird GA. Molecular Gas Dynamics and the Direct

Wang, Moran; Li, Zhixin

2007-01-01T23:59:59.000Z

171

Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production  

E-Print Network (OSTI)

Station Storage Storage Cost $500/kg Natural gas feedstocknatural gas steam methane reforming (SMR) –includes hydrogen production and storagefor storage, distribution or use H 2 Natural gas Figure 3

Yang, Christopher; Ogden, Joan M

2005-01-01T23:59:59.000Z

172

Turbine Nozzles Failure Due to Bird Strike - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Turbine Nozzles Failure Due to Bird Strike ... crystal (SX) nickel-based superalloy with environmental coatings on the flow path ... was caused by clogged cooling holes and film cooling reduction, resulting in ... Analysis of Crack Development Involving a Pressure Vessel in a Synthetic Gas Production Plant.

173

Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems  

Science Conference Proceedings (OSTI)

This report describes work performed during the initial period of the project “Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.” The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

Thoma, Greg; Veil, John; Limp, Fred; Cothren, Jackson; Gorham, Bruce; Williamson, Malcolm; Smith, Peter; Sullivan, Bob

2009-10-27T23:59:59.000Z

174

Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems  

Science Conference Proceedings (OSTI)

This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

2009-05-31T23:59:59.000Z

175

A Parametric Physics Based Creep Life Prediction Approach to Gas Turbine Blade Conceptual Design .  

E-Print Network (OSTI)

??The required useful service lives of gas turbine components and parts are naturally one of the major design constraints limiting the gas turbine design space.… (more)

Smith, Marcus Edward Brockbank

2008-01-01T23:59:59.000Z

176

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

177

Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection  

SciTech Connect

The ability to monitor the integrity of gas volumes is of interest to the stockpile surveillance community. Specifically, the leak detection of noble gases, at relevant concentration ranges and distinguished from other chemical species that may be simultaneously present, is particularly challenging. Aside from the laboratory-based method of gas chromatography-mass spectrometry (GC-MS), where samples may be collected by solid-phase microextraction (SPME) or cryofocusing, the other major approaches for gas-phase detection employ lasers typically operating in the mid-infrared wavelength region. While mass spectrometry can readily detect noble gases - the helium leak detector is an obvious example - laser-based methods such as infrared (IR) or Raman spectroscopy are completely insensitive to them as their monatomic nature precludes a non-zero dipole moment or changes in polarizability upon excitation. Therefore, noble gases can only be detected by one of two methods: (1) atomic emission spectroscopies which require the generation of plasmas through laser-induced breakdown, electrical arcing, or similar means; (2) non-spectroscopic methods which measure one or more physical properties (e.g., mass, thermal conductivity, density). In this report, we present our progress during Fiscal Year 2011 (FY11) in the research and development of a non-spectroscopic method for noble gas detection. During Fiscal Year 2010 (FY10), we demonstrated via proof-of-concept experiments that the combination of thermal conductivity detection (TCD) and coating-free damped resonance detection (CFDRD) using micro-electromechanical systems (MEMS) could provide selective sensing of these inert species. Since the MEMS-based TCD technology was directly adapted from a brassboard prototype commissioned by a previous chemical sensing project, FY11 efforts focused on advancing the state of the newer CFDRD method. This work, guided by observations previously reported in the open literature, has not only resulted in a substantially measureable increase in selectivity but has also revealed a potential method for mitigating or eliminating thermal drift that does not require a secondary reference sensor. The design of an apparatus to test this drift compensation scheme will be described. We will conclude this report with a discussion of planned efforts in Fiscal Year 2012 (FY12).

Loui, A; McCall, S K

2011-10-24T23:59:59.000Z

178

A model-based approach to intelligent control of gas metal arc welding  

SciTech Connect

This paper discusses work on a model-based intelligent process controller for gas metal arc welding. Four sensors input to a neural network, which communicates to a reference model-based adaptive controller that controls process parameters. Reference model derivation and validation are discussed. The state of an arch weld is determined by the composition of the weld and base metal and the weld's thermomechanical history. The composition of the deposited weld metal depends primarily on the amount of filler metal dilution; heat input to the weld, comprising pre-heat and process heat, is the controlling factor in the thermal cycle. Thus, control of the arc welding process should focus on rational specification and in-process control of the heat and mass input to the weld. A control model has been developed in which the governing equations are solved for the process parameters as functions of the desired heat input (in terms of heat input unit weld length) and mass input (in terms of transverse reinforcement area) to the weld. The model includes resistive and arc heating of the electrode wire, characteristics of the welding power supply, and a volumetric heat balance on the electrode material, as well as latent and superheat of the electrode material. Extension of the model to include dynamics of individual droplet transfer events, based on incorporating a nonlinear, lumped parameter droplet analysis, is discussed. A major emphasis has been placed on computational simplicity; model solutions are required at the rate of about 10 Hz during welding. Finally, a process control scheme has been developed for the gas metal arc welding process using the above nonlinear model with a proportional-integral controller with adaptive coefficients to control the weld heat input and reinforcement area independently. Performance of the resulting control method is discussed. 10 refs., 5 figs.

Smartt, H.B.; Johnson, J.A.; Einerson, C.J.; Watkins, A.D.; Carlson, N.M.

1990-01-01T23:59:59.000Z

179

The Comprehensive Evaluation Model of the Development Prospect of Shale Gas Based on Fuzzy Mathematics  

Science Conference Proceedings (OSTI)

As an unconventional gas resource, shale gas is an practically alternative energy. Through the analysis of the current situation of shale gas development at home and abroad, this paper ascertains the influencing factors of the development prospect of ... Keywords: shale gas, fuzzy mathematics, development prospect, influence factors

Yanping Wang; Fanqi Meng

2012-08-01T23:59:59.000Z

180

Numerical Simulation of Flow Field in Diesel Centrifugal Gas-Oil Separator Basing on CFD  

Science Conference Proceedings (OSTI)

Aiming at the low efficiency problem of the traditional gas-oil separator, this paper put forward a centrifugal gas-oil separator. In order to identify out the interior fluid field character of centrifugal gas-oil separator, RANS equation, RNG k-e model ... Keywords: Diesel, Centrifugal Gas-oil Separator, Flow Field, Separation Efficiency

Zhiguo Zhao

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advanced ceramics for land-based gas turbine applications. Final report  

DOE Green Energy (OSTI)

In order to increase the efficiency of land-based gas turbines, inlet gas temperatures have to be increased, and the amount of air which cools the turbine vanes has to be reduced, to the maximum extent possible. Presently, thermal barrier coatings (TBC`s) are the state of the art in achieving these goals. However, since TBC`s are very thin (typically 100 {mu}m), they have clearly limitations. Since all-ceramic turbine vanes would be a very large and risky development step, Westinghouse is considering to protect the leading edges of turbine vanes with high-performance ceramics. This might be done by either replacing the leading edge with a suitably shaped ceramic part, or by modifying the vanes such that they can accommodate ceramic inserts. Among the most important criteria for the success of ceramics in such applications are (a) thermodynamic compatibility with the turbine vane alloy, (b) sufficient thermal shock resistance to survive the thermal cycling during operation and in particular during emergency shut-down, and a design considering the thermal expansion mismatch of the metallic and ceramic components. This paper presents results of work performed on SiC, SiN, and aluminas.

Schneibel, J.H.; Ludeman, E.; Sabol, S.M.

1997-05-23T23:59:59.000Z

182

Thermal barrier coatings issues in advanced land-based gas turbines  

Science Conference Proceedings (OSTI)

The Department of Energy`s Advanced Turbine Systems (ATS) program is aimed at fostering the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS machines will emphasize different criteria in the selection of materials for the critical components. In particular, thermal barrier coatings (TBCS) will be an essential feature of the hot gas path components in these machines. In fact, the goals of the ATS will require significant improvements in TBC technology, since these turbines will be totally reliant on TBCs, which will be required to function on critical components such as the first stage vanes and blades for times considerably in excess of those experienced in current applications. Issues that assume increased importance are the mechanical and chemical stability of the ceramic layer and of the metallic bond coat; the thermal expansion characteristics and compliance of the ceramic layer; and the thermal conductivity across the thickness of the ceramic layer. Obviously, the ATS program provides a very challenging opportunity for TBCs, and involves some significant opportunities to extend this technology. A significant TBC development effort is planned in the ATS program which will address these key issues.

Parks, W.P. [USDOE Office of Industrial Technologies, Washington, DC (United States); Lee, W.Y.; Wright, I.G. [Oak Ridge National Lab., TN (United States)

1995-06-01T23:59:59.000Z

183

Multifunctional Nanowire/Film Composites-Based Bimodular Sensors for In Situ, Real-Time High Temperature Gas Detection  

NLE Websites -- All DOE Office Websites (Extended Search)

Multifunctional Nanowire/Film Multifunctional Nanowire/Film Composites-Based Bimodular Sensors for In Situ, Real-Time High Temperature Gas Detection Background Real time monitoring of combustion gas composition is important for improving the efficiency of combustion processes and reducing the emission of pollutants. However, such measurement usually requires sensors to be operated at high temperatures in harsh environments. Currently, commercially available sensor technology capable of withstanding such harsh environments is extremely

184

An Axial Dispersion Model for Gas - Liquid Reactors Based on the Penetration Theory  

E-Print Network (OSTI)

An axial dispersion reactor model for gas -- liquid reaction systems is proposed in this paper based on the penetration theory. The mass transfer mechanism accompanied by a chemical irreversible first-order reaction is mathematically treated in a new way in order to use its results to develop the model conveniently. Analytical solutions can be obtained for the equation system involving linear differential equations by using of the eigenvalues of the equation system. In addition, an iteration procedure is given to solve the nonlinear differential equation system numerically. The influences of the important model parameters on the concentration profile, the mass transfer and the reactant conversion are also studied. 1997 Elsevier Science S.A.

Jinfu Wang; Shejiao Han; Fei Wei; Zhiqing Yu; Yong Jin

1997-01-01T23:59:59.000Z

185

Improving Model-Based Gas Turbine Fault Diagnosis Using Multi-Operating Point Method  

Science Conference Proceedings (OSTI)

A comprehensive gas turbine fault diagnosis system has been designed using a full nonlinear simulator developed in Turbotec company for the V94.2 industrial gas turbine manufactured by Siemens AG. The methods used for detection and isolation of faulty ... Keywords: monitoring, fault diagnosis, extended Kalman filter, gas turbine, simulator

Amin Salar; Seyed Mehrdad Hosseini; Behnam Rezaei Zangmolk; Ali Khaki Sedigh

2010-11-01T23:59:59.000Z

186

Decision of optimal scheduling scheme for gas field pipeline network based on hybrid genetic algorithm  

Science Conference Proceedings (OSTI)

A mathematical model of optimal scheduling scheme for natural gas pipeline network is established, which takes minimal annual operating cost of compressor stations as objective function after comprehensively considering the resources of gas field, operating ... Keywords: differential evolution algorithm, genetic algorithm, natural gas pipeline network, optimization, scheduling scheme

Wu Liu; Min Li; Yi Liu; Yuan Xu; Xinglan Yang

2009-06-01T23:59:59.000Z

187

An Approximate Dynamic Programming Approach to Benchmark Practice-Based Heuristics for Natural Gas Storage Valuation  

Science Conference Proceedings (OSTI)

The valuation of the real option to store natural gas is a practically important problem that entails dynamic optimization of inventory trading decisions with capacity constraints in the face of uncertain natural gas price dynamics. Stochastic dynamic ... Keywords: Markov, asset pricing, dynamic programming, finance, heuristics, industries, petroleum/natural gas, real options, storage valuation, upper bounds

Guoming Lai; François Margot; Nicola Secomandi

2010-05-01T23:59:59.000Z

188

Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. 38 refs., 11 figs., 5 tabs.

Yunhua Zhu; H. Christopher Frey [Pacific Northwest National Laboratory, Richland, WA (United States)

2006-12-15T23:59:59.000Z

189

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

Mallik Gas Hydrate Production Research Program, Northwestof Depressurization for Gas Production from Gas Hydrate5L-38 Gas Hydrate Thermal Production Test Through Numerical

Moridis, George J.

2008-01-01T23:59:59.000Z

190

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken?  

Gasoline and Diesel Fuel Update (EIA)

Technology-Based Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken? Through the use of technology, U.S. oil and natural gas operators are converting previously uneconomic oil and natural gas resources into proved reserves and production. The Bakken Formation of the Williston Basin is a success story of horizontal drilling, fracturing, and completion technologies. The recent, highly productive oil field discoveries within the Bakken Formation did not come from venturing out into deep uncharted waters heretofore untapped by man, nor from blazing a trail into pristine environs never open to drilling before. Instead, success came from analysis of geologic data on a decades-old producing area, identification of uptapped resources, and application of the new drilling and completion technology necessary to exploit them. In short, it came from using technology

191

DESIGN, SYNTHESIS, AND MECHANISTIC EVALUATION OF IRON-BASED CATALYSIS FOR SYNTHESIS GAS CONVERSION TO FUELS AND CHEMICALS  

DOE Green Energy (OSTI)

This project explores the extension of previously discovered Fe-based catalysts with unprecedented Fischer-Tropsch synthesis rate, selectivity, and ability to convert hydrogen-poor synthesis gas streams typical of those produced from coal and biomass sources. Contract negotiations between the U.S. Department of Energy and the University of California were completed on December 9, 2004. During this first reporting period, we have modified and certified a previously decommissioned microreactor, ordered and installed a budgeted gas chromatograph, developed and reviewed safe operating procedures and data analysis methods, and reproduced successfully previous synthetic protocols and catalytic performance of catalytic materials based on Fe-Zn-Cu-K oxide precursors synthesized using precipitation methods, drying using surface-active agents, and activated in synthesis gas within Fischer-Tropsch synthesis tubular reactors.

Jian Xu; Enrique Iglesia

2004-03-31T23:59:59.000Z

192

Published in `AI Communications 9 journal', pp1-17. Published by IOS Press (1996) TIGERTM: Knowledge Based Gas Turbine Condition Monitoring  

E-Print Network (OSTI)

: Knowledge Based Gas Turbine Condition Monitoring Dr. Robert Milne and Dr. Charlie Nicol Intelligent, 11 Colon, Barcelona, 08222 Terrassa. Spain 1. INTRODUCTION Given the critical nature of gas turbines and increasing the availability of the gas turbine. Routine preventative maintenance techniques have been used

Travé-Massuyès, Louise

193

Developing a PC-Based GIS for the North American Natural Gas Pipeline Network  

Reports and Publications (EIA)

Natural Gas Pipeline Network (September 22-25, 1997)Conference of European StatisticiansBrighton, United KingdomAUTHOR: James Tobin

Information Center

1997-09-01T23:59:59.000Z

194

A New Ni-Base Superalloy for Oil and Gas Applications  

Science Conference Proceedings (OSTI)

mechanical and corrosion properties to obtain the most cost effective solution to the needs of the oil and gas (O&G) industry. Introduction. As older shallow and ...

195

The 2006 Russia-Ukraine Natural Gas Dispute: A mechanisms based approach.  

E-Print Network (OSTI)

??This thesis addresses the factors which lead the Russian government to increase natural gas prices for Ukraine in 2006. Through the use of methodological individualism,… (more)

Daley, Stephen

2009-01-01T23:59:59.000Z

196

A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL APPLICATIONS  

E-Print Network (OSTI)

A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL, consisting of two LEDs wherein one is used as the light source (emitter) and the other is used in reverse bias mode as the light detector. The first configuration uses a green LED as emitter and a red LED

Lee, Hyowon

197

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

198

A sampling-based Bayesian model for gas saturation estimationusing seismic AVA and marine CSEM data  

SciTech Connect

We develop a sampling-based Bayesian model to jointly invertseismic amplitude versus angles (AVA) and marine controlled-sourceelectromagnetic (CSEM) data for layered reservoir models. The porosityand fluid saturation in each layer of the reservoir, the seismic P- andS-wave velocity and density in the layers below and above the reservoir,and the electrical conductivity of the overburden are considered asrandom variables. Pre-stack seismic AVA data in a selected time windowand real and quadrature components of the recorded electrical field areconsidered as data. We use Markov chain Monte Carlo (MCMC) samplingmethods to obtain a large number of samples from the joint posteriordistribution function. Using those samples, we obtain not only estimatesof each unknown variable, but also its uncertainty information. Thedeveloped method is applied to both synthetic and field data to explorethe combined use of seismic AVA and EM data for gas saturationestimation. Results show that the developed method is effective for jointinversion, and the incorporation of CSEM data reduces uncertainty influid saturation estimation, when compared to results from inversion ofAVA data only.

Chen, Jinsong; Hoversten, Michael; Vasco, Don; Rubin, Yoram; Hou,Zhangshuan

2006-04-04T23:59:59.000Z

199

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

200

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Effects of Internet-based multiple-site conferences on greenhouse gas emissions  

Science Conference Proceedings (OSTI)

There is a growing consensus that ICT can contribute to the reduction of anthropogenic greenhouse gas (GHG) emissions, both by increasing the efficiency of existing processes and by enabling substitution effects to usher in more energy efficient patterns ... Keywords: Greenhouse-gas emissions, ICT for energy efficiency, Multiple-site conference, Rebound effect, Substitution effect, Videoconferencing

Vlad C. Coroama; Lorenz M. Hilty; Martin Birtel

2012-11-01T23:59:59.000Z

202

A quadrature-based third-order moment method for dilute gas-particle flows  

Science Conference Proceedings (OSTI)

Dilute gas-particle flows can be described by a kinetic equation containing terms for spatial transport, gravity, fluid drag, and particle-particle collisions. However, the direct numerical solution of the kinetic equation is intractable for most applications ... Keywords: Boltzmann equation, Gas-particle flows, Kinetic equation, Quadrature method of moments, Velocity distribution function

R. O. Fox

2008-06-01T23:59:59.000Z

203

Technical-Economic Calculation of Gas Pipeline Network Based on Value Engineering  

Science Conference Proceedings (OSTI)

By technical-economic calculation of the gas pipeline network, the economic diameter can be determined and the project investment can be saved. According to the principle of value engineering, a mathematical model is constructed for technical-economic ... Keywords: value engineering, gas pipeline network, function analysis, technical-economic calculation

Liu Jiayou; Zhao Yanxin

2009-12-01T23:59:59.000Z

204

Habitat reclamation plan to mitigate for the loss of habitat due to oil and gas production activities under maximum efficient rate, Naval Petroleum Reserve No. 1, Kern County, California  

Science Conference Proceedings (OSTI)

Activities associated with oil and gas development under the Maximum Efficiency Rate (MER) from 1975 to 2025 will disturb approximately 3,354 acres. Based on 1976 aerial photographs and using a dot grid methodology, the amount of land disturbed prior to MER is estimated to be 3,603 acres. Disturbances on Naval Petroleum Reserve No. 1 (NPR-1) were mapped using 1988 aerial photography and a geographical information system. A total of 6,079 acres were classified as disturbed as of June, 1988. The overall objective of this document is to provide specific information relating to the on-site habitat restoration program at NPRC. The specific objectives, which relate to the terms and conditions that must be met by DOE as a means of protecting the San Joaquin kit fox from incidental take are to: (1) determine the amount and location of disturbed lands on NPR-1 and the number of acres disturbed as a result of MER activities, (2) develop a long term (10 year) program to restore an equivalent on-site acres to that lost from prior project-related actions, and (3) examine alternative means to offset kit fox habitat loss.

Anderson, D.C.

1994-11-01T23:59:59.000Z

205

EIA - Natural Gas Pipeline Network - Natural Gas Transmission...  

Annual Energy Outlook 2012 (EIA)

Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural...

206

EIA - Natural Gas Pipeline Network - Generalized Natural Gas...  

Annual Energy Outlook 2012 (EIA)

Gas based on data through 20072008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic...

207

EIA - Natural Gas Pipeline Network - Natural Gas Transportation...  

Gasoline and Diesel Fuel Update (EIA)

Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates...

208

Natural Gas Supply Vulnerability in Europe.  

E-Print Network (OSTI)

??Demand for natural gas has been increasing steadily the past few years. Most European countries depend heavily on natural gas imports due to insufficient gas… (more)

Gungor, Bekir

2013-01-01T23:59:59.000Z

209

Hot coal gas desulfurization with manganese-based sorbents. Quarterly report, October--December 1993  

SciTech Connect

The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Fifth Quarterly Report documents progress in pellet testing via thermogravimetric analysis of pellet formulation FORM4-A of a manganese ore/alumina combination. This formulation, described more fully in the Quarterly Technical Progress Report of October 15, 1993, consists of manganese carbonate combined with alundum. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration; however, a minor problem has arisen during the regeneration cycle in that sulfur tends to form and plug the exit tube during the early stage of regeneration. This problem is about to be overcome by increasing the flow rate of air during the regeneration cycle resulting in more oxidizing conditions and hence less tendency for sulfide sulfur (S{sup =}) to oxidize to the intermediate elemental form (S{sup o}) rather than to 4-valent (S{sup +4}).

Hepworth, M.T.; Slimane, R.B.

1994-01-01T23:59:59.000Z

210

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

211

Study on flow parameters optimisation for marine gas turbine intercooler system based on simulation experiment  

Science Conference Proceedings (OSTI)

The thermodynamic calculation software of Intercooled-Cycle gas turbine was developed to observe the impacts that the environmental parameters and cold degrees of intercooler produce quantitatively on this marine engine performance. And then, the mathematical ...

Yu-long Ying; Yun-peng Cao; Shu-ying Li; Zhi-tao Wang

2013-06-01T23:59:59.000Z

212

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Natural Gas Explained Factors affecting natural gas prices. Natural gas prices are a function of market supply and demand. Due to limited alternatives for natural gas ...

213

The cost of agriculturally based greenhouse gas offsets in the Texas High Plains  

E-Print Network (OSTI)

The broad objective of this thesis involves investigation of the role agriculture might play in a society wide greenhouse gas emissions reduction effort. Specifically, the breakeven price for carbon emission offsets is calculated for agriculturally based emission reducing practices. The practices investigated in the Texas High Plains involve reduced tillage use, reduced fallow use, reduced crop fertilization, cropland conversion to grassland, feedlot enteric fermentation management and digester based dairy manure handling. Costs of emission reductions were calculated at the producer level. The calculated offset prices are classified into four cost categories. They are: negative cost, low cost (less than $20 per ton of carbon saved), moderate cost ($20 through $100 per ton of carbon saved), and high cost (over $100 for tons of carbon saved). Negative cost implies that farmers could make money and reduce emissions by moving to alternative practices even without any carbon payments. Alternatives in the positive cost categories need compensation to induce farmers to switch to practices that sequester more carbon. All fallow dryland crop practices, dryland and irrigated cotton zero tillage, dryland and irrigated wheat zero tillage, irrigated corn zero tillage, cotton irrigated nitrogen use reduction under minimum tillage and dryland pasture for all systems, and anaerobic lagoon complete mix and plug flow systems fall in the negative cost category. Dryland and irrigated wheat under minimum tillage are found to be in the low cost category. Cotton dryland under minimum tillage and cotton irrigated with nitrogen use reduction under zero tillage fell into the moderate cost class. Both corn and cotton irrigated minimum tillage are found to be in the high cost category. This study only considers the producer foregone net income less fixed costs as the only cost incurred in switching to an alternative sequestering practice. More costs such as learning and risk should probably be included. This limitation along with other constraints such as use of short run budget data, lack of availability and reliability of local budgets, overlooking any market effects, and lack of treatment of costs incurred in selling carbon offsets to buyers are limitations and portend future work.

Chandrasena, Rajapakshage Inoka Ilmi

2003-12-01T23:59:59.000Z

214

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

www.netl.doe.gov/technologies/oil-gas/publications/Hydrates/Exploration priorities for marine gas hydrates, Fire In Thewww.netl.doe.gov/technologies/oil-gas/publications/Hydrates/

Moridis, George J.

2008-01-01T23:59:59.000Z

215

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

gas hydrate concentrations previously unseen in shale-gas hydrate, generally found encased in fine-grained muds and shales.

Moridis, George J.

2008-01-01T23:59:59.000Z

216

Preliminary evaluation of a concept using microwave energy to improve an adsorption-based, natural gas clean-up process  

SciTech Connect

This report describes the results of a preliminary evaluation performed to: (1) determine if microwave energy could be used to regenerate a zeolite adsorbent and (2) to evaluate the feasibility of using microwave energy to improve the desorption phase of a pressure swing adsorption process applied to upgrading natural gas (methane) contaminated with nitrogen. Microwave regeneration was evaluated by comparing the adsorption characteristics of a zeolite preconditioned by heating under vacuum to the characteristics of the same zeolite after various lengths of exposure to microwave energy. The applicability of microwave regeneration to natural gas cleanup was evaluated by measuring the rise in adsorbent temperature resulting from the microwave exposure. Microwave energy consumed by heating the adsorbent is not productive and must therefore be minimal for a process to be economically viable. Exposure of the methane-saturated chabazite for 2 minutes to microwave energy effectively regenerated the adsorbent, but resulted in a 75{degrees}F (42{degrees}C) rise in adsorbent temperature. This temperature rise indicates that the concept is unacceptable for natural gas processing due to excessive energy consumption.

Grimes, R.W.

1992-12-01T23:59:59.000Z

217

Analysis and Optimization of the Power Cycle Based on the Cold Energy of Liquefied Natural Gas  

Science Conference Proceedings (OSTI)

Liquid natural gas (LNG) delivered by sea-ships contains considerable cryogenic energy which can be used for power generation before its evaporation and introduction into the system of pipe line. Electric power generation utilizing LNG cold energy is ... Keywords: liquefied natural gast, cold energy recovery, pinch analysis, exergy, optimization

Lu Yuanwei; Yang Hongchang; Ma Chongfang

2011-01-01T23:59:59.000Z

218

Visual-based Intelligent Control System for Robotic Gas Metal Arc Welding  

Science Conference Proceedings (OSTI)

Sensing and control the weld pool is a crucial problem for robotic gas-metal arc welding (GMAW) process. In present research, a special vision sensing system, assisted by a narrow-band filter which could overcome the influence of the strong arc light ...

Shi Yu; Xue Cheng; Fan Ding; Chen Jianhong

2009-05-01T23:59:59.000Z

219

Development of monitoring and control technology based on trace gas monitoring. Final report  

DOE Green Energy (OSTI)

Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

Liebowitz, B.

1997-07-01T23:59:59.000Z

220

Hydrogen Gas Generation Model for Fuel Based Remote Handled TRU Waste Stored at INEEL  

DOE Green Energy (OSTI)

The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

Soli T. Khericha; Rajiv N. Bhatt; Kevin Liekhus

2003-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Ground subsidence due to mining operations. October 1976-November 1989 (Citations from the COMPENDEX data base). Report for October 1976-November 1989  

Science Conference Proceedings (OSTI)

This bibliography contains citations concerning ground subsidence associated with mining operations. Mine subsidence is discussed with reference to mathematical modeling, forecasting extent of cavitation, and rock mechanics and mechanisms of stress relaxation. Damage to above- and below-ground structures as well as agricultural areas, and mining techniques designed to prevent or reduce subsidence are included. Monitoring of subsidence and detection of cavitation for surface, underground, and ocean-floor mining areas are discussed and examples are analyzed. Subsidence due to aquifer water removal is referenced in a related published bibliography. (Contains 213 citations fully indexed and including a title list.)

Not Available

1990-01-01T23:59:59.000Z

222

Degradation of Wellbore Cement Due to CO2 Injection  

NLE Websites -- All DOE Office Websites (Extended Search)

production. This is due to value-added opportunities such as enhanced oil recovery (EOR), enhanced gas recovery (EGR), and enhanced coal bed methane (ECBM) recovery. There...

223

POTENTIAL FOR RENEWABLE HYDROGEN PRODUCTION FROM DAIRY MANURE-BASED BIOGAS IN NEW YORK STATE .  

E-Print Network (OSTI)

??The need for transition to a hydrogen-based economy includes national energy security and the mitigation of likely global changes due to greenhouse gas emissions resulting… (more)

Chandrasekar, Arvind

2008-01-01T23:59:59.000Z

224

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network (OSTI)

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

Li, Mo

225

A New Portable Instrument for In Situ Measurement of Atmospheric Methane Mole Fraction by Applying an Improved Tin Dioxide–Based Gas Sensor  

Science Conference Proceedings (OSTI)

A new portable instrument based on a tin dioxide natural gas leak detector was developed to monitor the atmospheric methane mixing ratio in areas lacking sufficient infrastructure to sustain a conventional measurement system, such as a large ...

Hiroshi Suto; Gen Inoue

2010-07-01T23:59:59.000Z

226

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

Assessment of U.S. Oil and Gas Resources (on CD-ROM) (Petroleum Geology, Atlas of Oil and Gas Fields, Structuraland logging conventional oil and gas wells. The ability to

Moridis, George J.

2008-01-01T23:59:59.000Z

227

A Case Based System for Oil and Gas Well Design with Risk Assessment  

Science Conference Proceedings (OSTI)

A case base system for a complex problem like oil field design needs to be richer than the usual case based reasoning system. Genesis, the system described in this paper contains large heterogeneous cases with metalevel knowledge. A multi-level indexing ... Keywords: case based systems, information extraction, knowledge sharing, oil well design, risk assessment

Simon Kravis; Rosemary Irrgang

2005-07-01T23:59:59.000Z

228

Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.  

SciTech Connect

An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

2007-12-01T23:59:59.000Z

229

Flammable gas project: Criteria for flammable gas watch list tanks  

Science Conference Proceedings (OSTI)

The Flammable Gas Watch List is the listing of tanks that are subject to the provisions of Public Law 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation`` (Appendix A). Tanks on the Flammable Gas Watch List are judged to have a serious potential for release of high-level waste due to the ignition of flammable gases released from the waste in the tank. The purpose of this document is to provide criteria for identifying and categorizing the Hanford Site high4evel waste tanks to be included on the Flammable Gas Watch List. This document also provides criteria on which to base a recommendation to remove tanks from the Flammable Gas Watch List.

Cash, R.J.

1997-01-29T23:59:59.000Z

230

Simulating the daily gasoline price-setting behaviour of gas stations in Cincinnati by agent-based modeling.  

E-Print Network (OSTI)

??In the retail gasoline market, gas stations as independent entities set gas prices according to a number of factors related to global and local economic… (more)

Zhou, Li

2009-01-01T23:59:59.000Z

231

An approximate-reasoning-based method for screening high-level waste tanks for flammable gas  

DOE Green Energy (OSTI)

The in situ retention of flammable gas produced by radiolysis and thermal decomposition in high-level waste can pose a safety problem if the gases are released episodically into the dome space of a storage tank. Screening efforts at Hanford have been directed at identifying tanks in which this situation could exist. Problems encountered in screening motivated an effort to develop an improved screening methodology. Approximate reasoning (AR) is a formalism designed to emulate the kinds of complex judgments made by subject matter experts. It uses inductive logic structures to build a sequence of forward-chaining inferences about a subject. AR models incorporate natural language expressions known as linguistic variables to represent evidence. The use of fuzzy sets to represent these variables mathematically makes it practical to evaluate quantitative and qualitative information consistently. The authors performed a pilot study to investigate the utility of AR for flammable gas screening. They found that the effort to implement such a model was acceptable and that computational requirements were reasonable. The preliminary results showed that important judgments about the validity of observational data and the predictive power of models could be made. These results give new insights into the problems observed in previous screening efforts.

Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

1998-07-01T23:59:59.000Z

232

A model-based approach to measuring denitrification and greenhouse gas production in lakes.  

E-Print Network (OSTI)

??An existing whole-system model based on changes in dissolved N? concentration was modified for lentic systems. Field validations carried out at Christie Lake in Dundas,… (more)

Ajambo-Doherty, Juliet Falco

2009-01-01T23:59:59.000Z

233

Sampling-Window Based Approach for Fire Gas Analysis of Rigid Foams.  

E-Print Network (OSTI)

??A sampling-window based approach was developed to collect and analyze the gases evolved during fire performance testing using the cone calorimeter. For this purpose, a… (more)

Jones, Bryn

2013-01-01T23:59:59.000Z

234

A TECHNICAL, ECONOMIC AND ENVIRONMENTAL ASSESSMENT OF AMINE-BASED CO2 CAPTURE TECHNOLOGY FOR POWER PLANT GREENHOUSE GAS CONTROL  

Science Conference Proceedings (OSTI)

Capture and sequestration of CO{sub 2} from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO{sub 2} absorption system for post-combustion flue gas applications have been developed, and integrated with an existing power plant modeling framework that includes multi-pollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO{sub 2} capture system design, interactions with other pollution control systems, and method of CO{sub 2} storage. The CO{sub 2} avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration, as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO{sub 2} capture cost was afforded by the SO{sub 2} emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multi-pollutant environmental management.

Edward S. Rubin; Anand B. Rao

2002-10-01T23:59:59.000Z

235

2012 SG Peer Review - Recovery Act: NSTAR Automated Mater Reading Based Dynamic Pricing - Douglas Horton, NSTAR Electric & Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Peer Review Meeting Peer Review Meeting AMR Based Dynamic Pricing y g Doug Horton NSTAR Electric & Gas Co. 6/8/2012 AMR Based Dynamic Pricing Objective Provide two-way communication of electricity cost & consumption data utilizing the customers existing meter & Internet. Goal to achieve 5% reduction in peak and Goal to achieve 5% reduction in peak and average load. Life-cycle Funding ($K) Total Budget Total DOE Funding to Technical Scope Use customer's existing AMR meter and broadband Internet to achieve two way Total Budget Total DOE Funding Funding to Date $4,900k $2,362k $1,623k broadband Internet to achieve two way communication and "AMI" functionality Cutting-edge solution to integrate: * Existing meters E i ti I t t December 2008 * Existing Internet * Existing billing & CIS

236

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

history of the Messoyakha field demonstrates that gas hydrates are a readily producible source of natural

Moridis, George J.

2008-01-01T23:59:59.000Z

237

Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals  

SciTech Connect

This project explores the extension of previously discovered Fe-based catalysts with unprecedented Fischer-Tropsch synthesis rate, selectivity, and ability to convert hydrogen-poor synthesis gas streams typical of those produced from coal and biomass sources. Contract negotiations were completed on December 9, 2004. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic performance previously reported. During this second reporting period, we have prepared and tested several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. These studies established modest improvements in rates and selectivities with light hydrocarbon recycle without any observed deleterious effects, opening up the opportunities for using of recycle strategies to control temperature profiles in fixed-bed Fe-based Fischer-Tropsch synthesis reactors without any detectable kinetic detriment. In a parallel study, we examined similar effects of recycle for cobalt-based catalysts; marked selectivity improvements were observed as a result of the removal of significant transport restrictions on these catalysts. Finally, we have re-examined some previously unanalyzed data dealing with the mechanism of the Fischer-Tropsch synthesis, specifically kinetic isotope effects on the rate and selectivity of chain growth reactions on Fe-based catalysts.

Enrique Iglesia

2004-09-30T23:59:59.000Z

238

CNT-based gas ionizers with integrated MEMS gate for portable mass spectrometry applications  

E-Print Network (OSTI)

We report the fabrication and experimental characterization of a novel low-cost carbon nanotube (CNT)-based electron impact ionizer (EII) with integrated gate for portable mass spectrometry applications. The device achieves ...

Velasquez-Garcia, Luis Fernando

239

Incentive-based approaches for mitigating greenhouse gas emissions : issues and prospects for India  

E-Print Network (OSTI)

As a consequence of the flexibility mechanisms incorporated in the Kyoto Protocol, incentive-based policies such as emissions trading and the clean development mechanism are being widely discussed in the context of greenhouse ...

Gupta, Shreekant.

240

THREE-DIMENSIONAL FEATURES OF THE OUTER HELIOSPHERE DUE TO COUPLING BETWEEN THE INTERSTELLAR AND INTERPLANETARY MAGNETIC FIELDS. IV. SOLAR CYCLE MODEL BASED ON ULYSSES OBSERVATIONS  

Science Conference Proceedings (OSTI)

The solar cycle has a profound influence on the solar wind (SW) interaction with the local interstellar medium (LISM) on more than one timescales. Also, there are substantial differences in individual solar cycle lengths and SW behavior within them. The presence of a slow SW belt, with a variable latitudinal extent changing within each solar cycle from rather small angles to 90 Degree-Sign , separated from the fast wind that originates at coronal holes substantially affects plasma in the inner heliosheath (IHS)-the SW region between the termination shock (TS) and the heliopause (HP). The solar cycle may be the reason why the complicated flow structure is observed in the IHS by Voyager 1. In this paper, we show that a substantial decrease in the SW ram pressure observed by Ulysses between the TS crossings by Voyager 1 and 2 contributes significantly to the difference in the heliocentric distances at which these crossings occurred. The Ulysses spacecraft is the source of valuable information about the three-dimensional and time-dependent properties of the SW. Its unique fast latitudinal scans of the SW regions make it possible to create a solar cycle model based on the spacecraft in situ measurements. On the basis of our analysis of the Ulysses data over the entire life of the mission, we generated time-dependent boundary conditions at 10 AU from the Sun and applied our MHD-neutral model to perform a numerical simulation of the SW-LISM interaction. We analyzed the global variations in the interaction pattern, the excursions of the TS and the HP, and the details of the plasma and magnetic field distributions in the IHS. Numerical results are compared with Voyager data as functions of time in the spacecraft frame. We discuss solar cycle effects which may be reasons for the recent decrease in the TS particles (ions accelerated to anomalous cosmic-ray energies) flux observed by Voyager 1.

Pogorelov, N. V.; Zank, G. P. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Suess, S. T. [National Space Science and Technology Center, Huntsville, AL 35805 (United States); Borovikov, S. N. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805 (United States); Ebert, R. W.; McComas, D. J., E-mail: np0002@uah.edu [Southwest Research Institute, San Antonio, TX 78227 (United States)

2013-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Effect of Fuel Fraction on Small Modified CANDLE Burn-up Based Gas Cooled Fast Reactors  

Science Conference Proceedings (OSTI)

A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE Burn-up has been performed. The objective of this research is to get optimal design parameters of such type reactors. The parameters of nuclear design including the critical condition, conversion ratio, and burn-up level were compared. These parameters are calculated by variation in the fuel fraction 47.5% up to 70%. Two dimensional full core multi groups diffusion calculations was performed by CITATION code. Group constant preparations are performed by using SRAC code system with JENDL-3.2 nuclear data library. In this design the reactor cores with cylindrical cell two dimensional R-Z core models are subdivided into several parts with the same volume in the axial directions. The placement of fuel in core arranged so that the result of plutonium from natural uranium can be utilized optimally for 10 years reactor operation. Modified CANDLE burn-up was established successfully in a core radial width 1.4 m. Total thermal power output for reference core is 550 MW. Study on the effect of fuel to coolant ratio shows that effective multiplication factor (k{sub eff}) is in almost linear relations with the change of the fuel volume to coolant ratio.

Ariani, Menik [Departmen of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134 (Indonesia); Physics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan (Indonesia); Su'ud, Zaki; Waris, Abdul; Asiah, Nur [Departmen of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134 (Indonesia); Shafii, M. Ali [Departmen of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134 (Indonesia); Physics Department, Andalas University, Kampus Limau Manis, Padang, Sumatera Barat (Indonesia); Khairurrijal

2010-12-23T23:59:59.000Z

242

Development of a sorbent-based technology for control of mercury in flue gas  

Science Conference Proceedings (OSTI)

This paper presents results of research being, conducted at Argonne National Laboratory on the capture of elemental mercury in simulated flue gases by using dry sorbents. Experimental results from investigation of various sorbents and chemical additives for mercury control are reported. Of the sorbents investigated thus far, an activited-carbon-based sorbent impregnated with about 15% (by weight) of sulfur compound provided the best results. The key parameters affecting mercury control efficiency in a fixed-bed reactor, such as reactor loading, reactor temperature, sorbent size distribution, etc., were also studied, and the results ire presented. In addition to activated-carbon-based sorbents, a non-carbon-based sorbent that uses an inactive substrate treated with active chemicals is being developed. Preliminary, experimental results for mercury removal by this newly developed sorbent are presented.

Wu, Jiann M.; Huang, Hann S.; Livengood, C.D.

1996-03-01T23:59:59.000Z

243

Novel Carbon Nanotube-Based Nanostructures for High-Temperature Gas Sensing  

DOE Green Energy (OSTI)

The primary objective of this research is to examine the feasibility of using vertically aligned multi-wall carbon nanotubes (MWCNTs) as a high temperature sensor material for fossil energy systems where reducing atmospheres are present. In the initial period of research, we fabricated capacitive sensors for hydrogen sensing using vertically aligned MWCNTs. We found that CNT itself is not sensitive to hydrogen. Moreover, with the help of Pd electrodes, hydrogen sensors based on CNTs are very sensitive and fast responsive. However, the Pd-based sensors can not withstand high temperature (T<200 C). In the last year, we successfully fabricated a hydrogen sensor based on an ultra-thin nanoporous titanium oxide (TiO{sub 2}) film supported by an AAO substrate, which can operate at 500 C with hydrogen concentrations in a range from 50 to 500 ppm.

Zhi Chen; Kozo Saito

2008-08-31T23:59:59.000Z

244

Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.  

SciTech Connect

In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.

Han, J.; Mintz, M.; Wang, M. (Energy Systems)

2011-12-14T23:59:59.000Z

245

Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals  

DOE Green Energy (OSTI)

This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rate, selectivity for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During this fifth reporting period, we have studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influences the performance of these materials in the Fischer-Tropsch synthesis. The resulting procedures have been optimized to improve further upon the already unprecedented rates and C{sub 5+} selectivities of the Fe-based catalysts that we have developed as part of this project. During this fifth reporting period, we have also continued our studies of optimal activation procedures, involving reduction and carburization of oxide precursors during the early stages of contact with synthesis gas. We have completed the analysis of the evolution of oxide, carbide, and metal phases of the active iron components during initial contact with synthesis gas using advanced synchrotron techniques based on X-ray absorption spectroscopy. We have confirmed that the Cu or Ru compensates for inhibitory effects of Zn, a surface area promoter. The kinetic behavior of these materials, specifically the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch synthesis reactions has led to a new proposal for the nature of rate-determining steps on Fe and Co Fischer-Tropsch catalysts, and more specifically to the roles of hydrogen-assisted and alkali-assisted dissociation of CO in determining rates and CO{sub 2} selectivities. Finally, we have started an exploratory study of the use of colloidal precipitation methods for the synthesis of small Fe and Co clusters using recently developed methods. During this period, we have had to restrict manpower assigned to this project because some irregularities in reporting and communications have led to the interruption of funding during this period. This has led to less than optimal productivity and to significant disruptions of the technical work. These issues have also led to significant underspending of project funds during this reporting period and to our consequent request for a no-cost extension of one year, which we understand has been granted.

Akio Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

2006-03-31T23:59:59.000Z

246

Room Temperature ppb Level Chlorine Gas Sensor Based on Copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine Films  

SciTech Connect

Spin coating technique has been used to fabricate room temperature chlorine gas sensor based on copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine (CuPc(OBu){sub 8}) films. Gas sensor shows a response of 185% to few parts per billion level of Cl{sub 2} gas with response time of 9.5 minutes at room temperature. The interactions between sensor and analytes followed first order kinetics with rate constant 0.01{<=}k{<=}0.02. The chemiresistive sensor showed very good stability at room temperature over a long period of time.

Bedi, R. K.; Saini, Rajan; Mahajan, Aman [Material Science Laboratory, Department of PhysicsGuru Nanak Dev University, Amritsar-143005 (India)

2010-12-01T23:59:59.000Z

247

Catalytic partial oxidation of methane to synthesis gas over Ni-based catalysts. 1: Catalyst performance characteristics  

SciTech Connect

The catalytic partial oxidation of methane to synthesis gas was studied over various Ni-based catalysts. It was found that, in contrast to conventional Ni catalysts which show continuous deactivation with time on stream, the Ni/La{sub 2}O{sub 3} catalyst exhibits good activity and excellent stability, using the stoichiometric ratio of CH{sub 4}/O{sub 2} (=2). Kinetic results indicate that the reaction over the Ni/La{sub 2}O{sub 3} catalyst follows mainly the sequence of total oxidation to CO{sub 2} and H{sub 2}O, followed by reforming reactions to synthesis gas, while CO formation via the direct route is observed at very low oxygen partial pressures. Chemisorption and FTIR studies show that the enhanced stability of the Ni/La{sub 2}O{sub 3} catalyst is related to decoration of the Ni crystallites with lanthanum species, primarily oxycarbonates, which favor removal of excess carbon deposition and impart the catalyst its stability characteristics.

Tsipouriari, V.A.; Zhang, Z.; Verykios, X.E. [Univ. of Patras (Greece). Dept. of Chemical Engineering

1998-10-01T23:59:59.000Z

248

SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION  

DOE Green Energy (OSTI)

This technical report summarizes our activities conducted in Yr II. In Yr I we successfully demonstrated the feasibility of preparing the hydrogen selective SiC membrane with a chemical vapor deposition (CVD) technique. In addition, a SiC macroporous membrane was fabricated as a substrate candidate for the proposed SiC membrane. In Yr II we have focused on the development of a microporous SiC membrane as an intermediate layer between the substrate and the final membrane layer prepared from CVD. Powders and supported thin silicon carbide films (membranes) were prepared by a sol-gel technique using silica sol precursors as the source of silicon, and phenolic resin as the source of carbon. The powders and films were prepared by the carbothermal reduction reaction between the silica and the carbon source. The XRD analysis indicates that the powders and films consist of SiC, while the surface area measurement indicates that they contain micropores. SEM and AFM studies of the same films also validate this observation. The powders and membranes were also stable under different corrosive and harsh environments. The effects of these different treatments on the internal surface area, pore size distribution, and transport properties, were studied for both the powders and the membranes using the aforementioned techniques and XPS. Finally the SiC membrane materials are shown to have satisfactory hydrothermal stability for the proposed application. In Yr III, we will focus on the demonstration of the potential benefit using the SiC membrane developed from Yr I and II for the water-gas-shift (WGS) reaction.

Paul K.T. Liu

2001-10-16T23:59:59.000Z

249

Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices  

SciTech Connect

This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.; Nesic, Nikola T.; Vasovic, Nikola [Faculty of Electronic Engineering, University of Nis, Aleksandra Medvedeva 14, 18000 Nis (Serbia)

2010-10-15T23:59:59.000Z

250

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Natural Gas Explained Factors affecting natural gas prices. Natural gas prices are a function of market supply and demand. Due to limited alternatives ...

251

A Gas Dynamics Method Based on The Spectral Deferred Corrections (SDC) Time Integration Technique and The Piecewise Parabolic Method (PPM)  

SciTech Connect

We present a computational gas dynamics method based on the Spectral Deferred Corrections (SDC) time integration technique and the Piecewise Parabolic Method (PPM) finite volume method. The PPM framework is used to define edge averaged quantities which are then used to evaluate numerical flux functions. The SDC technique is used to integrate solution in time. This kind of approach was first taken by Anita et al in [17]. However, [17] is problematic when it is implemented to certain shock problems. Here we propose significant improvements to [17]. The method is fourth order (both in space and time) for smooth flows, and provides highly resolved discontinuous solutions. We tested the method by solving variety of problems. Results indicate that the fourth order of accuracy in both space and time has been achieved when the flow is smooth. Results also demonstrate the shock capturing ability of the method.

Samet Y. Kadioglu

2011-12-01T23:59:59.000Z

252

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

Hydrate; V: Vapor (gas phase); I: Ice; Q 1 : Quadruple pointof the solid phases (hydrate and ice) as tantamount to thealong the 3-phase (aqueous + hydrate + gas, or ice + hydrate

Moridis, George J.

2008-01-01T23:59:59.000Z

253

Gas Bubbles and Gas Pancakes at Liquid/Solid Interface: A Continuum Theory Incorporated with Molecular Interactions  

E-Print Network (OSTI)

The states of gas accumulated at the liquid-solid interface are analyzed based on the continuum theory where the Hamaker constant is used to describe the long-range interaction at the microscopic scale. The Hamaker constant is always negative, whereas the gas spreading coefficient can be either sign. Despite the complexity of gas, including that the density profile may not be uniform due to absorption on both solid and liquid surfaces, we predict three possible gas states at the liquid-solid interface, i.e. complete wetting, partial wetting and pseudopartial wetting. These possible gas states correspond respectively to a gas pancake (or film) surrounded by a wet solid, a gas bubble with a finite contact angle, and a gas bubble(s) coexisting with a gas pancake. Typical thickness of the gas pancakes is at the nanoscale within the force range of the long-range interaction, whereas the radius of the gas bubbles can be large. The state of gas bubble(s) coexisting with a gas film is predicted theoretically for the first time. Our theoretical results can contribute to the development of a unified picture of gas nucleation at the liquid-solid interface.

Zhaoxia Li; Xuehua Zhang; Lijuan Zhang; Xiaocheng Zeng; Jun Hu; Haiping Fang

2006-08-04T23:59:59.000Z

254

EIA - Natural Gas Pipeline Network - Depleted Reservoir ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

255

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

Department of Energy, Office of Fossil Energy, July 2006 (Assistant Secretary for Fossil Energy, Office of Natural Gas

Moridis, George J.

2008-01-01T23:59:59.000Z

256

Mapping multiple gas/odor sources in an uncontrolled indoor environment using a Bayesian occupancy grid mapping based method  

Science Conference Proceedings (OSTI)

In this paper we address the problem of autonomously localizing multiple gas/odor sources in an indoor environment without a strong airflow. To do this, a robot iteratively creates an occupancy grid map. The produced map shows the probability each discrete ... Keywords: Gas source localization, Gas source mapping, Indoor monitoring, Occupancy grid mapping

Gabriele Ferri; Michael V. Jakuba; Alessio Mondini; Virgilio Mattoli; Barbara Mazzolai; Dana R. Yoerger; Paolo Dario

2011-11-01T23:59:59.000Z

257

Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals  

DOE Green Energy (OSTI)

This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rate, selectivity for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third reporting period, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During this fourth reporting period, we have determined the effects of different promoters on catalytic performance. More specifically, we have found that the sequence in which promoters are introduced has a marked positive impact on rates and selectivities. Cu or Ru chemical promoters should be impregnated before K to achieve higher Fischer-Tropsch synthesis rates. The catalyst prepared in this way was evaluated for 240 h, showing a high catalytic activity and stability after an initial period of time necessary for the formation of the active phases. Concurrently, we are studying optimal activation procedures, which involve the reduction and carburization of oxide precursors during the early stages of contact with synthesis gas. Activation at low temperatures (523 K), made possible by optimal introduction of Cu or Ru, leads to lower catalyst surface area than higher activation temperatures, but to higher reaction rates, because such low temperatures avoid concurrent deactivation during the reduction-carburization processes. In this reporting period, we have measured the evolution of oxide, carbide, and metal phases of the active iron components using advanced synchrotron techniques based on X-ray absorption spectroscopy. These studies have revealed that Zn inhibits the isothermal reduction and carburization of iron oxide precursors. The concurrent presence of Cu or Ru compensates for these inhibitory effects and lead to the formation of active carbide phases at the low temperatures required to avoid deactivation via carbon deposition or sintering. Finally, we have also examined the kinetic behavior of these materials, specifically the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch synthesis reactions. This has led to a rigorous rate expressions that allows the incorporation of these novel materials into larger scale reactors and to predictions of performance based on the coupling of hydrodynamic and kinetic effects ubiquitous in such reactors.

Akio Ishikawa; Manuel Ojeda; Enrique Iglesia

2005-09-30T23:59:59.000Z

258

Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals  

SciTech Connect

A detailed study of the catalyst composition, preparation and activation protocol of Fe-based catalysts for the Fischer-Tropsch Synthesis (FTS) have been carried out in this project. We have studied the effects of different promoters on the catalytic performance of Fe-based catalysts. Specifically, we have focused on how their sequence of addition dramatically influences the performance of these materials in the Fischer-Tropsch synthesis. The resulting procedures have been optimized to improve further upon the already unprecedented rates and C{sub 5+} selectivities of the Fe-based catalysts that we have developed as part of this project. Selectivity to C{sub 5+} hydrocarbon was close to 90 % (CO{sub 2}-free basis) and CO conversion rate was about 6.7 mol h{sup -1} g-at Fe{sup -1} at 2.14 MPa, 508 K and with substoichiometric synthesis gas; these rates were larger than any reported previously for Fe-based FTS catalysts at these conditions. We also tested the stability of Fe-based catalysts during FTS reaction (10 days); as a result, the high hydrocarbon formation rates were maintained during 10 days, though the gradual deactivation was observed. Our investigation has also focused on the evaluation of Fe-based catalysts with hydrogen-poor synthesis gas streams (H{sub 2}/CO=1). We have observed that the Fe-based catalysts prepared in this project display also a high hydrocarbon synthesis rate with substoichiometric synthesis gas (H{sub 2}/CO=1) stream, which is a less desirable reactant mixture than stoichiometric synthesis gas (H{sub 2}/CO=2). We have improved the catalyst preparation protocols and achieved the highest FTS reaction rates and selectivities so far reported at the low temperatures required for selectivity and stability. Also, we have characterized the catalyst structural change and active phases formed, and their catalytic behavior during the activation process to evaluate their influences on FTS reaction. The efforts of this project led to (i) structural evolution of Fe-Zn oxide promoted with K and Cu, and (ii) evaluation of hydrocarbon and CH{sub 4} formation rates during activation procedures at various temperature and H{sub 2}/CO ratios. On the basis of the obtained results, we suggest that lower reactor temperature can be sufficient to activate catalysts and lead to the high FTS performance. In this project, we have also carried out a detailed kinetic and mechanistic study of the Fischer-Tropsch Synthesis with Fe-based catalysts. We have proposed a reaction mechanism with two CO activation pathways: unassisted and H-assisted. Both routes lead to the formation of the same surface monomers (CH{sub 2}). However, the oxygen removal mechanism is different. In the H-assisted route, oxygen is removed exclusively as water, while oxygen is rejected as carbon dioxide in the unassisted CO dissociation. The validity of the mechanism here proposed has been found to be in agreement with the experimental observation and with theoretical calculations over a Fe(110) surface. Also, we have studied the validity of the mechanism that we propose by analyzing the H{sub 2}/D{sub 2} kinetic isotope effect (r{sub H}/r{sub D}) over a conventional iron-based Fischer-Tropsch catalyst Fe-Zn-K-Cu. We have observed experimentally that the use of D{sub 2} instead of H{sub 2} leads to higher hydrocarbons formation rates (inverse kinetic isotopic effect). On the contrary, primary carbon dioxide formation is not influenced. These experimental observations can be explained by two CO activation pathways. We have also explored the catalytic performance of Co-based catalysts prepared by using inverse micelles techniques. We have studied several methods in order to terminate the silanol groups on SiO{sub 2} support including impregnation, urea homogeneous deposition-precipitation, or zirconium (IV) ethoxide titration. Although hydroxyl groups on the SiO{sub 2} surface are difficult to be stoichiometrically titrated by ZrO{sub 2}, a requirement to prevent the formation of strongly-interacting Co oxide species on SiO{sub 2}, modification of ZrO{

Enrique Iglesia; Akio Ishikawa; Manual Ojeda; Nan Yao

2007-09-30T23:59:59.000Z

259

DESIGN, SYNTHESIS, AND MECHANISTIC EVALUATION OF IRON-BASED CATALYSIS FOR SYNTHESIS GAS CONVERSION TO FUELS AND CHEMICALS  

DOE Green Energy (OSTI)

This project explores the extension of previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have previously shown unprecedented Fischer-Tropsch synthesis rate, selectivity with synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic performance previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During this third reporting period, we have prepared a large number of Fe-based catalyst compositions using precipitation and impregnations methods with both supercritical and subcritical drying and with the systematic use of surface active agents to prevent pore collapse during drying steps required in synthetic protocols. These samples were characterized during this period using X-ray diffraction, surface area, and temperature-programmed reduction measurements. These studies have shown that these synthesis methods lead to even higher surface areas than in our previous studies and confirm the crystalline structures of these materials and their reactivity in both oxide-carbide interconversions and in Fischer-Tropsch synthesis catalysis. Fischer-Tropsch synthesis reaction rates and selectivities with low H{sub 2}/CO ratio feeds (H{sub 2}/CO = 1) were the highest reported in the literature at the low-temperature and relatively low pressure in our measurements. Current studies are exploring the optimization of the sequence of impregnation of Cu, K, and Ru promoters, of the activation and reaction conditions, and of the co-addition of light hydrocarbons to increase diffusion rates of primary olefin products so as to increase the selectivity to unsaturated products. Finally, we are also addressing the detailed kinetic response of optimized catalysts to reaction conditions (temperature, partial pressures of H{sub 2}, CO, H{sub 2}O, CO{sub 2}, olefins) in an effort to further increase rates and olefin and C{sub 5+} selectivities.

Akio Ishikawa; Manuel Ojeda; Enrique Iglesia

2005-03-31T23:59:59.000Z

260

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Maximum Rebate $1,000 Program Info Start Date 01/01/2013 Expiration Date 04/30/2013 State Illinois Program Type Utility Rebate Program Rebate Amount ComEd Rebates Central Air Conditioner Unit 14 SEER or above: $350 Central Air Conditioner Unit Energy Star rated: $500 Nicor Gas, Peoples Gas and North Shore Gas Furnace: $200 - $500 (varies based on gas company and unit installed) Provider ComEd Energy ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals  

Science Conference Proceedings (OSTI)

This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rates and selectivities for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch Synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During the fifth reporting period, we studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influenced the performance of these materials in the Fischer-Tropsch synthesis. We also continued our studies of the kinetic behavior of these materials. Specifically, the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch Synthesis reactions led us to propose a new sequence of elementary steps on Fe and Co Fischer-Tropsch catalysts. More specifically, we were focused on the roles of hydrogen-assisted and alkali-assisted dissociation of CO in determining rates and CO{sub 2} selectivities. During this sixth reporting period, we have studied the validity of the mechanism that we propose by analyzing the H{sub 2}/D{sub 2} kinetic isotope effect (r{sub H}/r{sub D}) over a conventional iron-based Fischer-Tropsch catalyst Fe-Zn-K-Cu. We have observed experimentally that the use of D{sub 2} instead of H{sub 2} leads to higher hydrocarbons formation rates (inverse kinetic isotopic effect). On the contrary, primary carbon dioxide formation is not influenced. These experimental observations can be explained by the two CO activation pathways we propose. During this reporting period, the experimental kinetic study has been also complemented with periodic, self-consistent, DFT-GGA investigations in a parallel collaboration with the group of Manos Mavrikakis at the University of Wisconsin-Madison. These DFT calculations suggest minimal energy paths for proposed elementary steps on Fe(110) and Co(0001) surfaces. These calculations support our novel conclusions about the preferential dissociation of CO dissociation via H-assisted pathways on Fe-based catalysts. Unassisted CO dissociation also occurs and lead to the formation of CO{sub 2} as a primary oxygen scavenging mechanism after CO dissociation on Fe-based catalysts. Simulations and our experimental data show also that unassisted CO dissociation route is much less likely on Co surfaces and that hydrocarbons form exclusively via H-assisted pathways with the formation of H{sub 2}O as the sole oxygen rejection product. We have also started a study of the use of colloidal precipitation methods for the synthesis of small Fe and Co clusters using recently developed methods to explore possible further improvements in Fischer-Tropsch synthesis rates and selectivities. We have found that colloidal synthesis makes possible the preparation of small cobalt particles, although large amount of cobalt silicate species, which are difficult to reduce, are formed. The nature of the cobalt precursor and the modification of the support seem to be critical parameters in order to obtain highly dispersed and reducible Co nanoparticles.

Akio; Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

2006-09-30T23:59:59.000Z

262

Recent Natural Gas Market Data  

Gasoline and Diesel Fuel Update (EIA)

sectors U.S. Natural Gas Imports and Exports - Volumes and prices for pipeline and LNG imports and exports Underground Natural Gas Storage - Stocks of working and base gas...

263

Application of Condition-Based Monitoring Techniques for Remote Monitoring of a Simulated Gas Centrifuge Enrichment Plant  

SciTech Connect

This paper presents research into the adaptation of monitoring techniques from maintainability and reliability (M&R) engineering for remote unattended monitoring of gas centrifuge enrichment plants (GCEPs) for international safeguards. Two categories of techniques are discussed: the sequential probability ratio test (SPRT) for diagnostic monitoring, and sequential Monte Carlo (SMC or, more commonly, particle filtering ) for prognostic monitoring. Development and testing of the application of condition-based monitoring (CBM) techniques was performed on the Oak Ridge Mock Feed and Withdrawal (F&W) facility as a proof of principle. CBM techniques have been extensively developed for M&R assessment of physical processes, such as manufacturing and power plants. These techniques are normally used to locate and diagnose the effects of mechanical degradation of equipment to aid in planning of maintenance and repair cycles. In a safeguards environment, however, the goal is not to identify mechanical deterioration, but to detect and diagnose (and potentially predict) attempts to circumvent normal, declared facility operations, such as through protracted diversion of enriched material. The CBM techniques are first explained from the traditional perspective of maintenance and reliability engineering. The adaptation of CBM techniques to inspector monitoring is then discussed, focusing on the unique challenges of decision-based effects rather than equipment degradation effects. These techniques are then applied to the Oak Ridge Mock F&W facility a water-based physical simulation of a material feed and withdrawal process used at enrichment plants that is used to develop and test online monitoring techniques for fully information-driven safeguards of GCEPs. Advantages and limitations of the CBM approach to online monitoring are discussed, as well as the potential challenges of adapting CBM concepts to safeguards applications.

Hooper, David A [ORNL; Henkel, James J [ORNL; Whitaker, Michael [ORNL

2012-01-01T23:59:59.000Z

264

ISSN 1537-744X; doi:10.1100/2011/756264 Measurement of Mercury in Flue Gas Based on an Aluminum Matrix Sorbent  

E-Print Network (OSTI)

The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7 % recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg 0 on the sorbent media, the analytical bias test on tube 3 spiked with Hg 0 was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field.

Juan Wang; Wei Xu; Xiaohao Wang; Wenhua Wang

2011-01-01T23:59:59.000Z

265

Design, Synthesis and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals  

DOE Green Energy (OSTI)

This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rates and selectivities for synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch Synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based materials with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During the fifth and sixth reporting period, we studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influenced the performance of these materials in the Fischer-Tropsch synthesis. We also continued our studies of the kinetic behavior of these materials during the sixth reporting period. Specifically, the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch Synthesis reactions led us to propose a new sequence of elementary steps on Fe and Co Fischer-Tropsch catalysts. Finally, we also started a study of the use of colloidal precipitation methods for the synthesis small Co clusters using recently developed methods to explore possible further improvements in FTS rates and selectivities. We found that colloidal synthesis makes possible the preparation of small cobalt particles, although large amount of cobalt silicate species, which are difficult to reduce, were formed. During this seventh reporting period, we have explored several methods to modify the silanol groups on SiO{sub 2} by using either a homogeneous deposition-precipitation method or surface titration of Si-OH on SiO{sub 2} with zirconium (IV) ethoxide to prevent the formation of unreducible and unreactive CoO{sub x} species during synthesis and FTS catalysis. We have synthesized monometallic Co/ZrO{sub 2}/SiO{sub 2} catalysts with different Co loadings (11-20 wt%) by incipient wetness impregnation methods and characterized the prepared Co supported catalysts by H{sub 2} temperature-programmed reduction (H{sub 2}-TPR) and H{sub 2}-chemisorption. We have measured the catalytic performance in FTS reactions and shown that although the hydroxyl groups on the SiO{sub 2} surface are difficult to be fully titrated by ZrO{sub 2}, modification of ZrO{sub 2} on SiO{sub 2} surface can improve the Co clusters dispersion and lead to a larger number of exposed Co surface atoms after reduction and during FTS reactions. During this seventh reporting period, we have also advanced our development of the reaction mechanism proposed in the previous reporting period. Specifically, we have shown that our novel proposal for the pathways involved in CO activation on Fe and Co catalysts is consistent with state-of-the-art theoretical calculations carried out in collaboration with Prof. Manos Mavrikakis (University of Wisconsin-Madison). Finally, we have also worked on the preparation of several manuscripts describing our findings about the preparation, activation and mechanism of the FTS with Fe-based catalysts and we have started redacting the final report for this project.

Akio Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

2007-03-31T23:59:59.000Z

266

Nitrogen removal from natural gas  

SciTech Connect

According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

1997-04-01T23:59:59.000Z

267

Understanding landfill gas generation and migration  

DOE Green Energy (OSTI)

Landfill gas research in the US Department of Energy (DOE) from Municipal Waste (EMW) Program is focusing on two major areas of investigation: (1) Landfill gas migration processes; and (2) Landfill gas generation. With regard to gas migration, a field investigation is examining bidirectional gas movement through landfill cover materials by processes of pressure and diffusional flow. The overall purpose of the study is to quantify gas loss from the landfill reservoir by natural venting and air influx due to pumping on recovery wells. Two field sites--a humid site with clay cover and a semiarid site with sand cover--have been instrumented to examine vertical gas movement through cover materials. Results from the humid site indicate that: (1) concentrations of methane, carbon dioxide, oxygen and nitrogen in soil gas vary seasonally with soil moisture; (2) based on average methane gradients in soil gas and a simple diffusion model, up to 10E5 g methane m/sup /minus /2/ yr/sup /minus/1/ are vented through the cover materials at the humid site (area of 17 ht); and (3) during prolonged wet weather, pressure gradients of more than 2 kPa may develop between the cover materials and top of refuse, indicating that pressure flow is periodically an important mechanism for gas transport. The second project is addressing landfill gas generation. The major goal is to develop simple assay techniques to examine the gas production potential of landfilled refuse. Refuse samples extracted from various depths in a landfill are being leached by three different methods to separate microbial mass and substrate. The leachates are being subjected to Biochemical Methane Production (BMP) assays with periodic qualitative examination of microbial populations using fluorescence microscopy of live cultures and scanning electron microscopy (SEM).

Bogner, J.; Rose, C.; Vogt, M.; Gartman, D.

1988-01-01T23:59:59.000Z

268

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Second topical report  

SciTech Connect

The January, 1988 draft topical report, entitled ``An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems`` [Ref.1.1], identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

269

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service  

SciTech Connect

The January, 1988 draft topical report, entitled An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems'' (Ref.1.1), identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

270

Gas-Saving Tips  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gas-Saving Tips Some consumers believe fuel economy ratings are a fixed num- ber, like engine size or cargo volume. However, a vehicle's fuel economy can vary significantly due to...

271

Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

Others wanting to learn more about greenhouse gas emissions and their reduction. About the ... based on ensuring the sustainability of finite natural resources.

272

Technically recoverable Devonian shale gas in Ohio  

SciTech Connect

The technically recoverable gas from Devonian shale (Lower and Middle Huron) in Ohio is estimated to range from 6.2 to 22.5 Tcf, depending on the stimulation method and pattern size selected. This estimate of recovery is based on the integration of the most recent data and research on the Devonian Age gas-bearing shales of Ohio. This includes: (1) a compilation of the latest geologic and reservoir data for the gas in-place; (2) analysis of the key productive mechanisms; and, (3) examination of alternative stimulation and production strategies for most efficiently recovering this gas. Beyond a comprehensive assembly of the data and calculation of the technically recoverable gas, the key findings of this report are as follows: a substantial volume of gas is technically recoverable, although advanced (larger scale) stimulation technology will be required to reach economically attractive gas production rates in much of the state; well spacing in certain of the areas can be reduced by half from the traditional 150 to 160 acres per well without severely impairing per-well gas recovery; and, due to the relatively high degree of permeability anisotropy in the Devonian shales, a rectangular, generally 3 by 1 well pattern leads to optimum recovery. Finally, although a consistent geological interpretation and model have been constructed for the Lower and Middle Huron intervals of the Ohio Devonian shale, this interpretation is founded on limited data currently available, along with numerous technical assumptions that need further verification. 11 references, 21 figures, 32 tables.

Kuushraa, V.A.; Wicks, D.E.; Sawyer, W.K.; Esposito, P.R.

1983-07-01T23:59:59.000Z

273

Fission gas detection system  

DOE Patents (OSTI)

A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

Colburn, Richard P. (Pasco, WA)

1985-01-01T23:59:59.000Z

274

Gas turbine power plant with supersonic gas compressor - Energy ...  

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on ...

275

Advanced gas atomization production of oxide dispersion strengthened (ODS) Ni-base superalloys through process and solidification control.  

E-Print Network (OSTI)

??A novel gas atomization reaction synthesis (GARS) method was utilized to produce precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE)-containing… (more)

Meyer, John

2013-01-01T23:59:59.000Z

276

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential  

SciTech Connect

Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

2008-02-12T23:59:59.000Z

277

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

278

Assessment of General Atomics accelerator transmutation of waste concept based on gas-turbine-modular helium cooled reactor technology.  

Science Conference Proceedings (OSTI)

An assessment has been performed for an Accelerator Transmutation of Waste (ATW) concept based on the use of the high temperature gas reactor technology. The concept has been proposed by General Atomics for the ATW system. The assessment was jointly conducted at Argonne National Laboratory (ANL) and Los Alamos national laboratory to assess and to define the potential candidates for the ATW system. This report represents the assessment work performed at ANL. The concept uses recycled light water reactor (LWR)-discharge-transuranic extracted from irradiated oxide fuel in a critical and sub-critical accelerator driven gas-cooled transmuter. In this concept, the transmuter operates at 600 MWt first in the critical mode for three cycles and then operates in a subcritical accelerator-driven mode for a single cycle. The transmuter contains both thermal and fast spectrum transmutation zones. The thermal zone is fueled with the TRU oxide material in the form of coated particles, which are mixed with graphite powder, packed into cylindrical compacts, and loaded in hexagonal graphite blocks with cylindrical channels; the fast zone is fueled with TRU-oxide material in the form of coated particles without the graphite powder and the graphite blocks that has been burned in the thermal region for three critical cycles and one additional accelerator-driven cycle. The fuel loaded into the fast zone is irradiated for four additional cycles. This fuel management scheme is intended to achieve a high Pu isotopes consumption in the thermal spectrum zone, and to consume the minor actinides in the fast-spectrum zone. Monte Carlo and deterministic codes have been used to assess the system performance and to determine the feasibility of achieving high TRU consumption levels. The studies revealed the potential for high consumption of Pu-239 (97%), total Pu (71%) and total TRU (64%) in the system. The analyses confirmed the need for burnable absorber for both suppressing the initial excess reactivity and ensuring a negative temperature coefficient under all operating conditions. Additionally, current results suggest that it may be preferable to use a double strata thermal critical system and fast subcritical system to achieve nearly complete destruction of the TRU oxide fuel. The report gives a general description of the system proposed by General Atomics. The major design parameters (degrees of freedom), which can be altered to optimize the system design, and the constraints, which guide the design and the optimization studies are described. The deterministic and the Monte Carlo neutronics codes and models used for the neutronics analysis and assessment are presented. The results of fuel block and whole-core parametric studies performed to understand the physics are given including the effect of various fuel management schemes on the system performance. A point design is described including the system performance results for a single-batch and three-batch loading schemes. The major design issues, which need to be addressed during further studies, are discussed.

Gohar, Y.; Taiwo, T. A.; Cahalan, J. E.; Finck, P. J.

2001-05-08T23:59:59.000Z

279

Natural Gas Conveyance and Rates  

Reports and Publications (EIA)

Natural gas transportation market; Competition vs. market power; Rate structures Cost-of-service Performance based rates

Information Center

2001-02-01T23:59:59.000Z

280

Analysis of the Development of Messoyakha Gas Field: A Commercial Gas Hydrate Reservoir  

E-Print Network (OSTI)

Natural gas is an important energy source that contributes up to 25% of the total US energy reserves (DOE 2011). An increase in natural gas demand spurs further development of unconventional resources, including methane hydrate (Rajnauth 2012). Natural gas from methane hydrate has the potential to play a major role in ensuring adequate future energy supplies in the US. The worldwide volume of gas in the hydrate state has been estimated to be approximately 1.5 x 10^16 m^3 (Makogon 1984). More than 230 gas-hydrate deposits have been discovered globally. Several production technologies have been tested; however, the development of the Messoyakha field in the west Siberian basin is the only successful commercial gas-hydrate field to date. Although the presence of gas hydrates in the Messoyakha field was not a certainty, this current study determined the undeniable presence of gas hydrates in the reservoir. This study uses four models of the Messoyakha field structure and reservoir conditions and examines them based on the available geologic and engineering data. CMG STARS and IMEX software packages were used to calculate gas production from a hydrate-bearing formation on a field scale. Results of this analysis confirm the presence of gas hydrates in the Messoyakha field and also determine the volume of hydrates in place. The cumulative production from the field on January 1, 2012 is 12.9 x 10^9 m^3, and it was determined in this study that 5.4 x 10^9 m^3 was obtained from hydrates. The important issue of pressure-support mechanisms in developing a gas hydrate reservoir was also addressed in this study. Pressure-support mechanisms were investigated using different evaluation methods such as the use of gas-injection well patterns and gas/water injection using isothermal and non-isothermal simulators. Several aquifer models were examined. Simulation results showed that pressure support due to aquifer activity was not possible. Furthermore, it was shown that the water obtained from hydrates was not produced and remained in the reservoir. Results obtained from the aquifer models were confirmed by the actual water production from the field. It was shown that water from hydrates is a very strong pressure-support mechanism. Water not only remained in the reservoir, but it formed a thick water-saturated layer between the free-gas and gas-hydrate zone. Finally, thermodynamic behavior of gas hydrate decomposition was studied. Possible areas of hydrate preservation were determined. It was shown that the central top portion of the field preserved most of hydrates due to temperature reduction of hydrate decomposition.

Omelchenko, Roman 1987-

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment  

Gasoline and Diesel Fuel Update (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

282

Biomolecule-assisted synthesis and gas-sensing properties of porous nanosheet-based corundum In{sub 2}O{sub 3} microflowers  

Science Conference Proceedings (OSTI)

Porous nanosheet-based corundum In{sub 2}O{sub 3} microflowers were fabricated by one-pot hydrothermal treatment of D-fructose and In(NO{sub 3}){sub 3} mixture using urea as a precipitating agent followed by calcination. The products were characterized by X-ray diffraction, scanning and transmission electron microscopy. The effects of D-fructose and urea on the fabrication of nanosheet-based corundum In{sub 2}O{sub 3} microflowers were investigated and a possible mechanism is proposed to explain the formation of the hierarchical nanostructures. The gas sensor based on the In{sub 2}O{sub 3} microflowers exhibits excellent sensing properties for the detection of formaldehyde. - Graphical abstract: Nanosheets-based corundum In{sub 2}O{sub 3} microflowers were fabricated by one-pot hydrothermal treatment of D-fructose/In(NO{sub 3}){sub 3} mixture followed by calcination, which show high performance for formaldehyde sensing. Highlights: Black-Right-Pointing-Pointer Preparation of porous nanosheet-based corundum In{sub 2}O{sub 3} microflowers. Black-Right-Pointing-Pointer Morphology and phase control of In{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Gas sensor based on the In{sub 2}O{sub 3} microflowers exhibits excellent sensing properties for the detection of formaldehyde.

Zhang Wenhui [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China); Zhang Weide, E-mail: zhangwd@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China)

2012-02-15T23:59:59.000Z

283

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

284

Advanced Hot-Gas Desulfurization Sorbents  

Science Conference Proceedings (OSTI)

Integrated gasification combined cycle (IGCC) power systems are being advanced worldwide for generating electricity from coal due to their superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. Hot gas cleanup offers the potential for higher plant thermal efficiencies and lower cost. A key subsystem of hot-gas cleanup is hot-gas desulfurization using regenerable sorbents. Sorbents based on zinc oxide are currently the leading candidates and are being developed for moving- and fluidized- bed reactor applications. Zinc oxide sorbents can effectively reduce the H{sub 2}S in coal gas to around 10 ppm levels and can be regenerated for multicycle operation. However, all current first-generation leading sorbents undergo significant loss of reactivity with cycling, as much as 50% or greater loss in only 25-50 cycles. Stability of the hot-gas desulfurization sorbent over 100`s of cycles is essential for improved IGCC economics over conventional power plants. This project aims to develop hot-gas cleanup sorbents for relatively lower temperature applications, 343 to 538{degrees}C with emphasis on the temperature range from 400 to 500{degrees}. Recent economic evaluations have indicated that the thermal efficiency of IGCC systems increases rapidly with the temperature of hot-gas cleanup up to 350{degrees}C and then very slowly as the temperature is increased further. This suggests that the temperature severity of the hot-gas cleanup devices can be reduced without significant loss of thermal efficiency. The objective of this study is to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343{degrees}C (650{degrees}F) to 538{degrees}C(1OOO{degrees}F) and regenerability at lower temperatures than leading first generation sorbents.

Jothimurugesan, K.; Gangwal, S.K.; Gupta, R.; Turk, B.S.

1997-07-01T23:59:59.000Z

285

Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach  

Science Conference Proceedings (OSTI)

Never before has the reduction of oil and gas exploration and production impacts been as important as it is today for operators, regulators, non-governmental organizations and individual landowners. Collectively, these stakeholders are keenly interested in the potential benefits from implementing effective environmental impact reducing technologies and practices. This research project strived to gain input and insight from such a broad array of stakeholders in order to identify approaches with the potential to satisfy their diverse objectives. The research team examined three of the most vital issue categories facing onshore domestic production today: (1) surface damages including development in urbanized areas, (2) impacts to wildlife (specifically greater sage grouse), and (3) air pollution, including its potential contribution to global climate change. The result of the research project is a LINGO (Low Impact Natural Gas and Oil) handbook outlining approaches aimed at avoiding, minimizing, or mitigating environmental impacts. The handbook identifies technical solutions and approaches which can be implemented in a practical and feasible manner to simultaneously achieve a legitimate balance between environmental protection and fluid mineral development. It is anticipated that the results of this research will facilitate informed planning and decision making by management agencies as well as producers of oil and natural gas. In 2008, a supplemental task was added for the researchers to undertake a 'Basin Initiative Study' that examines undeveloped and/or underdeveloped oil and natural gas resources on a regional or geologic basin scope to stimulate more widespread awareness and development of domestic resources. Researchers assessed multi-state basins (or plays), exploring state initiatives, state-industry partnerships and developing strategies to increase U.S. oil and gas supplies while accomplishing regional economic and environmental goals.

Amy Childers

2011-03-30T23:59:59.000Z

286

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

287

FIELD OBSERVATIONS OF GAS-CONDENSATE WELL TESTING  

E-Print Network (OSTI)

, a commercial simulator was used to perform phase- equilibrium and property calculations based on the PengFIELD OBSERVATIONS OF GAS- CONDENSATE WELL TESTING A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY-point pressure is impacted severely due to condensate banking around the wellbore. Condensate banking also

288

Development of novel copper-based sorbents for hot-gas cleanup. [Quarterly] technical report, March 1, 1993--May 31, 1993  

SciTech Connect

The objective of this investigation is to evaluate two novel copper-based sorbents (i.e. copper-chromium and copper-cerium) for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650{degrees} to 850{degrees}C. In this program, structural and kinetic studies are conducted on various compositions of the two selected copper-based sorbents to determine the optimum sorbent composition. The effect of operating conditions on the performance of the sorbents alone with the stability and regenerability of the selected sorbents in successive sulfidation/regeneration operation are determined. Parametric multicycle desulfurization tests were conducted this quarter in a bench-scale (5-cm-diameter) quartz reactor at one atmosphere using the CuCr{sub 2}O{sub 4} and CuO/CeO{sub 2} sorbents. The parameters studied included temperature, space velocity, and feed gas composition. Both sorbents were able to reduce the H{sub 2}S concentration of the reactor feed gas to <10 ppM under all conditions tested. The apparent reactivity of the CuO/CeO{sub 2} sorbent was lower after the first cycle which may be attributed to incomplete regeneration caused by sulfate formation.

Hill, A.H.; Abbasian, J. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Li, Li [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1993-09-01T23:59:59.000Z

289

Mechanism-Based Testing Methodology for Improving the Oxidation, Hot Corrosion and Impact Resistance of High-Temperature Coatings for Advanced Gas Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Pittsburgh Pittsburgh University of Pittsburgh PIs: F. S. Pettit, G. H. Meier Subcontractor: J. L. Beuth SCIES Project 02- 01- SR101 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/02, 36 Month Duration + 6 mo No-Cost Extension) $ 458,420 Total Contract Value ($ 412,695 DOE) Mechanism-Based Testing Methodology For Improving the Oxidation, Hot Corrosion and Impact Resistance of High- Temperature Coatings for Advanced Gas Turbines University of Pittsburgh - Carnegie Mellon University University of Pittsburgh University of Pittsburgh In the next generation gas turbine, resistance to thermal cycling damage may be as important as resistance to long isothermal exposures. Moreover, metallic coatings and Thermal Barrier

290

EIA - Natural Gas Pipeline Network - Regional/State ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

291

EIA - Natural Gas Pipeline Network - Salt Cavern Storage ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

292

EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

293

String Gas Cosmology  

E-Print Network (OSTI)

String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the current standard paradigm of cosmology, the inflationary universe scenario. Here, the current status of string gas cosmology is reviewed.

Brandenberger, Robert H

2009-01-01T23:59:59.000Z

294

Innovative Sediment Remediation Using a Risk-based Mixed Remedy at the Laconia Manufactured Gas Plant Site: Data and Lessons  

Science Conference Proceedings (OSTI)

This report presents a case study of the sediment remediation project at the Messer Street manufactured gas plant in Laconia, New Hampshire. The report describes a strategy developed to achieve the goal of a remedial action satisfactory to stakeholder goals and interests and which met the utility's business objectives of cost control, schedule, and positive community relations. Key elements in the strategy included a focused site characterization resulting in a remedial action plan prescribed to definite...

2001-11-26T23:59:59.000Z

295

Hydrogen Gas Generation Model for Fuel-Based Remote-Handled Transuranic Waste Stored at the INEEL  

DOE Green Energy (OSTI)

The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

Khericha, S.; Bhatt, R.; Liekhus, K.

2003-01-14T23:59:59.000Z

296

Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG  

Science Conference Proceedings (OSTI)

The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr6+) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Crfree catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H2, 10% CO, 37% H2O, 8% CO2, and 3% CH4; R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Febased catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas.

lee, Joon Y.; Lee, Dae-Won; Lee, Kwan Young; Wang, Yong

2009-08-15T23:59:59.000Z

297

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to… (more)

Elkjćr, Jonas Bondegaard

2009-01-01T23:59:59.000Z

298

Polyvinylpyrrolidone/Multiwall Carbon Nanotube Composite Based 36 deg. YX LiTaO{sub 3} Surface Acoustic Wave For Hydrogen Gas Sensing Applications  

Science Conference Proceedings (OSTI)

Poly-vinyl-pyrrolidone (PVP)/Multiwall Carbon Nanotubes (MWNTs) based Surface Acoustic Wave (SAW) sensors are fabricated and characterized, and their performances towards hydrogen gas are investigated. The PVP/MWNTs fibers composite are prepared by electrospinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nanostructure material is observed. From the dynamic response, frequency shifts of 530 Hz (1%H{sub 2}) and 11.322 kHz (0.25%H{sub 2}) are recorded for the sensors contain of 1.525 g and 1.025 g PVP concentrations, respectively.

Chee, Pei Song; Arsat, Rashidah [Faculty of Electrical Eng and Faculty of Education, Universiti Teknologi Malaysia (Malaysia); He Xiuli [State Key laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing (China); Arsat, Mahyuddin [Faculty of Education, Universiti Teknologi Malaysia (Malaysia); Wlodarski, Wojtek [School of Electrical and Computer Eng. RMIT University, Melbourne (Australia); Kalantar-zadeh, Kourosh

2011-05-25T23:59:59.000Z

299

Gas-Phase Diffusion in Porous Media: Comparison of Models Stephen W. Webb  

Office of Scientific and Technical Information (OSTI)

Gas-Phase Diffusion in Porous Media: Comparison of Models Gas-Phase Diffusion in Porous Media: Comparison of Models Stephen W. Webb Sandia National Laboratories Albuquerque, New Mexico 87 185 ABSTRACT Two models are commonly used to analyze gas- phase diffusion in porous media in the presence of advection, the Advective-Dispersive Model (ADM) and the Dusty-gas Model (DGM). The ADM, which is used in TOUGH2, is based on a simple linear addition of advection calculated by Darcy's law and ordinary diffusion using Fick's law with a porosity- tortuosity-gas saturation multiplier to account for the porous medium. Another approach for gas-phase transport in porous media is the Dusty-Gas Model. This model applies the kinetic theory of gases to the gaseous components and the porous media (or "dust") to combine transport due to diffusion and

300

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network (OSTI)

Numerical simulation has been used, as common practice, to estimate the CO2 storage capacity of depleted reservoirs. However, this method is time consuming, expensive and requires detailed input data. This investigation proposes an analytical method to estimate the ultimate CO2 storage in depleted oil and gas reservoirs by implementing a volume constrained thermodynamic equation of state (EOS) using the reservoir?s average pressure and fluid composition. This method was implemented in an algorithm which allows fast and accurate estimations of final storage, which can be used to select target storage reservoirs, and design the injection scheme and surface facilities. Impurities such as nitrogen and carbon monoxide, usually contained in power plant flue gases, are considered in the injection stream and can be handled correctly in the proposed algorithm by using their thermodynamic properties into the EOS. Results from analytical method presented excellent agreement with those from reservoir simulation. Ultimate CO2 storage capacity was predicted with an average difference of 1.3%, molar basis, between analytical and numerical methods; average oil, gas, and water saturations were also matched. Additionally, the analytical algorithm performed several orders of magnitude faster than numerical simulation, with an average of 5 seconds per run.

Valbuena Olivares, Ernesto

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

AMERICA'S NEW NATURAL GAS  

E-Print Network (OSTI)

, both the Bergius and Fisher-Tropsch synthetic fuel processes build up longer chain hydrocarbons from Fischer and Tropsch, low-temperature catalysts were used to promote hydrogen's reaction with coal gas-to-liquids" (GTL) technology based on the Fischer-Tropsch process converts natural gas to liquid fuels. Essentially

Boufadel, Michel

302

Thermionic gas switch  

DOE Patents (OSTI)

A temperature responsive thermionic gas switch having folded electron emitting surfaces. An ionizable gas is located between the emitter and an interior surface of a collector, coaxial with the emitter. In response to the temperature exceeding a predetermined level, sufficient electrons are derived from the emitter to cause the gas in the gap between the emitter and collector to become ionized, whereby a very large increase in current in the gap occurs. Due to the folded emitter surface area of the switch, increasing the "on/off" current ratio and adjusting the "on" current capacity is accomplished.

Hatch, George L. (San Francisco, CA); Brummond, William A. (Livermore, CA); Barrus, Donald M. (San Jose, CA)

1986-01-01T23:59:59.000Z

303

Gas concentration measurement instrument based on the effects of a wave-mixing interference on stimulated emissions  

SciTech Connect

A method and apparatus for measuring partial pressures of gaseous components within a mixture. The apparatus comprises generally at least one tunable laser source, a beam splitter, mirrors, optical filter, an optical spectrometer, and a data recorder. Measured in the forward direction along the path of the laser, the intensity of the emission spectra of the gaseous component, at wavelengths characteristic of the gas component being measured, are suppressed. Measured in the backward direction, the peak intensities characteristic of a given gaseous component will be wavelength shifted. These effects on peak intensity wavelengths are linearly dependent on the partial pressure of the compound being measured, but independent of the partial pressures of other gases which are present within the sample. The method and apparatus allow for efficient measurement of gaseous components.

Garrett, W. Ray (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

304

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

305

‘Non-destructive’ biocomputing security system based on gas-controlled biofuel cell and potentially used for intelligent medical diagnostics  

Science Conference Proceedings (OSTI)

Motivation: Biofuel cells (BFCs) based on enzymes and microbes are the promising future alternative sources of sustainable electrical energy under mild conditions (i.e. ambient temperature and neutral pH). By combining the adaptive behavior of ...

Ming Zhou; Xiliang Zheng; Jin Wang; Shaojun Dong

2011-02-01T23:59:59.000Z

306

Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996  

SciTech Connect

Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

Ortiz, I.; Anthony, R.V.

1996-12-31T23:59:59.000Z

307

Supersonic gas compressor  

Science Conference Proceedings (OSTI)

A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2007-11-13T23:59:59.000Z

308

Natural Gas Processing Plants in the United States: 2010 Update...  

Gasoline and Diesel Fuel Update (EIA)

3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

309

Horizontal drilling boosts Pennsylvania’s natural gas production ...  

U.S. Energy Information Administration (EIA)

Between 2009 and 2011, Pennsylvania's natural gas production more than quadrupled due to expanded horizontal drilling combined with hydraulic fracturing.

310

Catalytic partial oxidation of methane to synthesis gas over Ni-based catalysts. 2: Transient, FTIR, and XRD measurements  

SciTech Connect

Ni/La{sub 2}O{sub 3} and Ni/Al{sub 2}O{sub 3} catalysts were studied under conditions of partial oxidation of methane to synthesis gas. Temperature-programmed oxidation and hydrogenation experiments have shown that carbon accumulation over Ni/La{sub 2}O{sub 3} during CPO remains essentially constant after 2 h time on-stream, while over Ni/Al{sub 2}O{sub 3} it increases during the initial several hours. FTIR spectroscopy of surface species formed over the Ni/La{sub 2}O{sub 3} catalyst under reaction conditions indicates that the carbonate species formed over the support do not decompose under He and O{sub 2} treatment at 600 C. XRD spectra obtained following high ({approximately}90%) or low (<10%) methane conversions show that Ni, La{sub 2}O{sub 3}, La{sub 2}O{sub 2}CO{sub 3}, NiO, and Ni{sub 3}C phases are present in the case of high methane and complete oxygen conversions, while nickel oxide, nickel carbide and, to a small extent, La{sub 2}O{sub 2}CO{sub 3} phases are present in the case of low CH{sub 4} and incomplete oxygen conversions.

Tsipouriari, V.A.; Verykios, X.E. [Univ. of Patras (Greece). Dept. of Chemical Engineering

1998-10-01T23:59:59.000Z

311

Gas Turbine Plant Modeling for Dynamic Simulation.  

E-Print Network (OSTI)

?? Gas turbines have become effective in industrial applications for electric and thermal energy production partly due to their quick response to load variations. A… (more)

Endale Turie, Samson

2012-01-01T23:59:59.000Z

312

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

313

An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.  

DOE Green Energy (OSTI)

This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

314

Gas mass transfer for stratified flows  

SciTech Connect

We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrum integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi}) Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geophysical and chemical engineering literature.

Duffey, R.B. [Brookhaven National Lab., Upton, NY (United States); Hughes, E.D. [CSA Inc., Idaho Falls, ID (United States)

1995-07-01T23:59:59.000Z

315

Gas mass transfer for stratified flows  

SciTech Connect

We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi})Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature.

Duffey, R.B. [Brookhaven National Lab., Upton, NY (United States); Hughes, E.D. [CSA, Inc., Idaho Falls, ID (United States)

1995-06-01T23:59:59.000Z

316

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Projects Exploration and Production Technologies Risk Based Data Management System (RBDMS) and Cost Effective Regulatory Approaches (CERA) Related to Hydraulic...

317

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

318

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

319

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

320

Coherent scattering from a free gas  

E-Print Network (OSTI)

We investigate decoherence in atom interferometry due to scattering from a background gas and show that the supposition that residual coherence is due to near-forward scattering is incorrect. In fact, the coherent part is ...

Sanders, Scott N.

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A hardware-based transient characterization of electrochemical start-up in an SOFC/gas turbine hybrid environment using a 1-D real time SOFC model .  

E-Print Network (OSTI)

??Solid oxide fuel cell/gas turbine (SOFC/GT) hybrid systems harness the capability to operate nearly 15 to 20 percentage points more efficiently than standard natural gas… (more)

Hughes, Dimitri O.

2011-01-01T23:59:59.000Z

322

Gas injection techniques for condensate recovery and remediation of liquid banking in gas-condensate reservoirs.  

E-Print Network (OSTI)

??In gas-condensate reservoirs, gas productivity declines due to the increasing accumulation of liquids in the near wellbore region as the bottom-hole pressure declines below the… (more)

Hwang, Jongsoo

2011-01-01T23:59:59.000Z

323

Using multi-layer models to forecast gas flow rates in tight gas reservoirs  

E-Print Network (OSTI)

The petroleum industry commonly uses single-layer models to characterize and forecast long-term production in tight gas reservoir systems. However, most tight gas reservoirs are layered systems where the permeability and porosity of each layer can vary significantly, often over several orders of magnitude. In addition, the drainage areas of each of the layers can be substantially different. Due to the complexity of such reservoirs, the analysis of pressure and production history using single-layer analyses techniques provide incorrect estimates of permeability, fracture conductivity, drainage area, and fracture half-length. These erroneous values of reservoir properties also provide the reservoir engineer with misleading values of forecasted gas recovery. The main objectives of this research project are: (1) to demonstrate the typical errors that can occur in reservoir properties when single-layer modeling methods are used to history match production data from typical layered tight gas reservoirs, and (2) to use the single-layer match to demonstrate the error that can occur when forecasting long-term gas production for such complex gas reservoirs. A finite-difference reservoir simulator was used to simulate gas production from various layered tight gas reservoirs. These synthetic production data were analyzed using single-layer models to determine reservoir properties. The estimated reservoir properties obtained from the history matches were then used to forecast ten years of cumulative gas production and to find the accuracy of gas reserves estimated for tight gas reservoirs when a single-layer model is used for the analysis. Based on the results obtained in this work, I conclude that the accuracy in reservoir properties and future gas flow rates in layered tight gas reservoirs when analyzed using a single-layer model is a function of the degree of variability in permeability within the layers and the availability of production data to be analyzed. In cases where there is an idea that the reservoir presents a large variability in ��k�, using a multi-layer model to analyze the production data will provide the reservoir engineer with more accurate estimates of long-term production recovery and reservoir properties.

Jerez Vera, Sergio Armando

2006-12-01T23:59:59.000Z

324

Life-cycle analysis of shale gas and natural gas.  

SciTech Connect

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

2012-01-27T23:59:59.000Z

325

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

326

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

327

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

328

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

329

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

330

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

331

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

332

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

333

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

334

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

335

Gas Viscosity at High Pressure and High Temperature  

E-Print Network (OSTI)

Gas viscosity is one of the gas properties that is vital to petroleum engineering. Its role in the oil and gas production and transportation is indicated by its contribution in the resistance to the flow of a fluid both in porous media and pipes. Although viscosity of some pure components such as methane, ethane, propane, butane, nitrogen, carbon dioxide and binary mixtures of these components at low-intermediate pressure and temperature had been studied intensively and been understood thoroughly, very few investigations were performed on viscosity of naturally occurring gases, especially gas condensates at low-intermediate pressure and temperature, even fewer lab data were published. No gas viscosity data at high pressures and high temperatures (HPHT) is available. Therefore this gap in the oil industry still needs to be filled. Gas viscosity at HPHT becomes crucial to modern oil industry as exploration and production move to deep formation or deep water where HPHT is not uncommon. Therefore, any hydrocarbon encountered there is more gas than oil due to the chemical reaction causing oil to transfer to gas as temperature increases. We need gas viscosity to optimize production rate for production system, estimate reserves, model gas injection, design drilling fluid, and monitor gas movement in well control. Current gas viscosity correlations are derived using measured data at low-moderate pressures and temperatures, and then extrapolated to HPHT. No measured gas viscosities at HPHT are available so far. The validities of these correlations for gas viscosity at HPHT are doubted due to lack of experimental data. In this study, four types of viscometers are evaluated and their advantages and disadvantages are listed. The falling body viscometer is used to measure gas viscosity at a pressure range of 3000 to 25000 psi and a temperature range of 100 to 415 oF. Nitrogen viscosity is measured to take into account of the fact that the concentration of nonhydrocarbons increase drastically in HPHT reservoir. More nitrogen is found as we move to HPHT reservoirs. High concentration nitrogen in natural gas affects not only the heat value of natural gas, but also gas viscosity which is critical to petroleum engineering. Nitrogen is also one of common inject gases in gas injection projects, thus an accurate estimation of its viscosity is vital to analyze reservoir performance. Then methane viscosity is measured to honor that hydrocarbon in HPHT which is almost pure methane. From our experiments, we found that while the Lee-Gonzalez-Eakin correlation estimates gas viscosity at a low-moderate pressure and temperature accurately, it cannot give good match of gas viscosity at HPHT. Apparently, current correlations need to be modified to predict gas viscosity at HPHT. New correlations constructed for HPHT conditions based on our experiment data give more confidence on gas viscosity.

Ling, Kegang

2010-12-01T23:59:59.000Z

336

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

337

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

338

North American Natural Gas Markets  

Science Conference Proceedings (OSTI)

This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

Not Available

1989-02-01T23:59:59.000Z

339

Creep performance of candidate SiC and Si{sub 3}N{sub 4} materials for land-based, gas turbine engine components  

DOE Green Energy (OSTI)

Tensile creep-rupture of a commercial gas pressure sintered Si3N4 and a sintered SiC is examined at 1038, 1150, and 1350 C. These 2 ceramics are candidates for nozzles and combustor tiles that are to be retrofitted in land-based gas turbine engines, and there is interest in their high temperature performance over service times {ge} 10,000 h (14 months). For this long lifetime, a static tensile stress of 300 MPa at 1038/1150 C and 125 Mpa at 1350 C cannot be exceeded for Si3N4; for SiC, the corresponding numbers are 300 Mpa at 1038 C, 250 MPa at 1150 C, and 180 MPa at 1350 C. Creep-stress exponents for Si3N4 are 33, 17, and 8 for 1038, 1150, 1350 C; fatigue- stress exponents are equivalent to creep exponents, suggesting that the fatigue mechanism causing fracture is related to the creep mechanism. Little success was obtained in producing failure in SiC after several decades of time through exposure to appropriate tensile stress; if failure did not occur on loading, then the SiC specimens most often did not creep-rupture. Creep-stress exponents for the SiC were determined to be 57, 27, and 11 for 1038, 1150, and 1350 C. For SiC, the fatigue-stress exponents did not correlate as well with creep-stress exponents. Failures that occurred in the SiC were a result of slow crack growth that initiated from the surface.

Wereszczak, A.A.; Kirkland, T.P.

1996-03-01T23:59:59.000Z

340

Effect of molybdenum plus chromium on the corrosion of iron-, nickel-, and cobalt-base alloys in basaltic lava and simulated magmatic gas at 1150/sup 0/C  

DOE Green Energy (OSTI)

The compatibility of several binary and ternary alloys in a magma environment was studied. Binary alloys containing molybdenum and ternary alloys containing chromium and molybdenum were exposed to basaltic lava at 1150/sup 0/C for periods of 24 and 96 hours. A cover gas was used to produce oxygen and sulfur fugacities corresponding to those of the gases dissolved in basaltic melts. Three base metals were used. These included iron, nickel, and cobalt. The primary reactions in binary alloys were found to be sulfidation. Oxide scales with a spinel layer formed on ternary alloys. The synergistic effect of molybdenum and chromium additions in ternary alloys exhibited superior corrosion resistance to binary alloys which formed base-metal sulfides down grain-boundaries. Extensive analyses of the reaction products by scanning electron microscopy, X-ray energy dispersive analysis, electron microprobe analysis, and metallography are presented for each alloys. The products formed are discussed with reference to thermodynamic stability diagrams, and the reaction path concept is used to explain some of the corrosion.

Ehrlich, S.A.; Douglass, D.L.

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report  

DOE Green Energy (OSTI)

The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

Not Available

1994-03-01T23:59:59.000Z

342

The Intense Radiation Gas  

E-Print Network (OSTI)

We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

M. Marklund; P. K. Shukla; B. Eliasson

2004-10-14T23:59:59.000Z

343

Modeling the motion of a hot, turbulent gas  

Science Conference Proceedings (OSTI)

Keywords: animation, convection, gas simulations, gaseous phenomena, physics-based modeling, smoke, steam, turbulent flow

Nick Foster; Dimitris Metaxas

1997-08-01T23:59:59.000Z

344

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

345

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

346

Gas separating  

DOE Patents (OSTI)

Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

Gollan, A.

1988-03-29T23:59:59.000Z

347

Selective leak-detector for natural gas  

SciTech Connect

An improved detector for combustible gases and which is able to discriminate between natural gas (methane and ethane) and other sources of methane (e.g. swamp gas, petrochemical and automotive) or other combustible gases by measuring the characteristic methane/ethane ratio of natural gas, based on infrared absorption of methane and ethane, in combination with another non-specific combustible gas detector.

Bonne, U.

1985-03-26T23:59:59.000Z

348

Development of an assessment methodology for geopressured zones of the upper Gulf Coast based on a study of abnormally pressured gas fields in south Texas  

DOE Green Energy (OSTI)

Detailed study of the producing gas fields in south Texas has identified a total of 47 abnormally pressured fields in a six-county area including Hidalgo, Brooks, Cameron, Willacy, Kenedy, and Live Oak Counties. An assessment methodology for assessing the potential of the deep geopressured zone in south Texas as an energy resource was developed, based on investigation of the reservoir parameters of these fields. This methodology is transferrable to broad areas of the Gulf Coast. The depth of the geopressured zone in the study area ranges from 7000 ft in western Hidalgo to 12,000 ft in central Cameron County. Temperature data from within the fields, corrected to undisturbed reservoir values, yields a 300/sup 0/F isogeothermal surface at depths from 10,500 ft to 17,000 ft over the study area. The question of fluid deliverability was found to be paramount in determining the potential of the geopressure-geothermal resource as a practical source of energy. The critical parameter is the effective reservoir permeability throughout the study region. Individual fields were assessed for their potential to produce large quantities of geothermal fluid based on reservoir study and detailed geological investigation. Five locations within the study region have been selected as potential candidates for further evaluation and possible eventual testing. Based on investigation of permeability and temperature, the upper limit of fluid temperature likely to be produced in the lower south Texas study region is 300/sup 0/F. In Live Oak County, the possibility of producing fluid at higher temperatures is somewhat improved, with a reasonable possibility of producing fluid at 350/sup 0/ to 375/sup 0/F.

Swanson, R K; Oetking, P; Osoba, J S; Hagens, R C

1976-08-01T23:59:59.000Z

349

Permeation: A new competitive process for offshore gas dehydration  

SciTech Connect

Usual process for gas dehydration implement absorption (glycol chemical process) or adsorption (molecular sieves). The new dehydration process as described in this paper will be a strong competitor with these usual processes, especially for offshore applications, due to its simplicity and space and weight saving. This new membrane based process is discussed along major constraints of the application, suitable characteristics of the adapted permeation membranes and gain versus conventional gylcol in offshore application.

Fournie, F.; Agostini, J.P.

1984-05-01T23:59:59.000Z

350

Creep performance of candidate SiC and Si{sub 3}N{sub 4} materials for land-based, gas turbine engine components  

DOE Green Energy (OSTI)

The tensile creep-rupture performance of a commercially available gas pressure sintered silicon nitride (Si{sub 3}N{sub 4}) and a sintered silicon carbide (SiC) is examined at 1038, 1150, and 1350 C. These two ceramic materials are candidates for nozzles and combustor tiles that are to be retrofitted in land-based gas turbine engines, and interest exists to investigate their high-temperature mechanical performance over service times up to, and in excess of, 10,000 hours ({approx}14 months). To achieve lifetimes approaching 10,000 hours for the candidate Si{sub 3}N{sub 4} ceramic, it was found (or it was estimated based on ongoing test data) that a static tensile stress of 300 MPa at 1038 and 1150 C, and a stress of 125 MPa at 1350 C cannot be exceeded. For the SiC ceramic, it was estimated from ongoing test data that a static tensile stress of 300 MPa at 1038 C, 250 MPa at 1150 C, and 180 MPa at 1350 C cannot be exceeded. The creep-stress exponents for this Si{sub 3}N{sub 4} were determined to be 33, 17, and 8 for 1038, 1150, and 1350 C, respectively. The fatigue-stress exponents for the Si{sub 3}N{sub 4} were found to be equivalent to the creep exponents, suggesting that the fatigue mechanism that ultimately causes fracture is controlled and related to the creep mechanisms. Little success was experienced at generating failures in the SiC after several decades of time through exposure to appropriate tensile stress; it was typically observed that if failure did not occur on loading, then the SiC specimens most often did not creep-rupture. However, creep-stress exponents for the SiC were determined to be 57, 27, and 11 for 1038, 1150, and 1350 C, respectively. For SiC, the fatigue-stress exponents did not correlate as well with creep-stress exponents. Failures that occurred in the SiC were a result of slow crack growth that was initiated from the specimen`s surface.

Wereszczak, A.A.; Kirkland, T.P. [Oak Ridge National Lab., TN (United States). High Temperature Materials Lab.

1997-10-01T23:59:59.000Z

351

Gas generation from Tank 241-SY-103 waste  

DOE Green Energy (OSTI)

This report summarizes progress made in evaluating mechanisms by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using actual waste from Tank 241-SY-103. The objective of this work is to establish the identity and stoichiometry of degradation products formed in actual tank wastes by thermal and radiolytic processes as a function of temperature. The focus of the gas generation tests on Tank 241-SY-103 samples is first the effect of temperature on gas generation (volume and composition). Secondly, gas generation from irradiation of Tank 241-SY-103 samples at the corresponding temperatures as the thermal-only treatments will be measured in the presence of an external radiation source (using a {sup 137}Cs capsule). The organic content will be measured on a representative sample prior to gas generation experiments and again at the termination of heating and irradiation. The gas generation will be related to the extent of organic species consumption during heating. Described in this report are experimental methods used for producing and measuring gases generated at various temperatures from highly radioactive actual tank waste, and results of gas generation from Tank 241-SY-103 waste taken from its convective layer. The accurate measurement of gas generation rates from actual waste from highly radioactive waste tanks is needed to assess the potential for producing and storing flammable gases within the waste tanks. This report addresses the gas generation capacity of the waste from the convective layer of Tank 241-SY-103, a waste tank listed on the Flammable Gas Watch List due to its potential for flammable gas accumulation above the flammability limit.

Bryan, S.A.; King, C.M.; Pederson, L.R.; Forbes, S.V.; Sell, R.L.

1996-04-01T23:59:59.000Z

352

Missouri Natural Gas Number of Gas and Gas Condensate ...  

U.S. Energy Information Administration (EIA)

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

353

Hybrid Membranes for Light Gas Separations  

E-Print Network (OSTI)

Membrane separations provide a potentially attractive technology over conventional processes due to their advantages, such as low capital cost and energy consumption. The goal of this thesis is to design hybrid membranes that facilitate specific gas separations, especially olefin/paraffin separations. This thesis focuses on the designing dendrimer-based hybrid membranes on mesoporous alumina for reverse-selective separations, synthesizing Cu(I)-dendrimer hybrid membrane to facilitate olefin/paraffin separations, particularly ethylene/methane separation, and investigating the influence of solvent, stabilizing ligands on facilitated transport membrane. Reverse-selective gas separations have attracted considerable attention in removing the heavier/larger molecules from gas mixtures. In this study, dendrimer-based chemistry was proved to be an effective method by altering dendrimer structures and generations. G6-PIP, G4-AMP and G3-XDA are capable to fill the alumina mesopores and slight selectivity are observed. Facilitated transport membranes were made to increase the olefin/paraffin selectivity based on their chemical interaction with olefin molecules. Two approaches were explored, the first was to combine facilitator Cu(I) with dendrimer hybrid membrane to increase olefin permeance and olefin/paraffin selectivity simultaneously, and second was to facilitate transport membrane functionality by altering solvents and stabilizing ligands. Promising results were found by these two approaches, which were: 1) olefin/paraffin selectivity slightly increased by introducing facilitator Cu(I), 2) the interaction between Cu(I) and dendrimer functional groups are better known.

Liu, Ting

2012-05-01T23:59:59.000Z

354

Oil & Natural Gas Technology DOE Award No.: DE-FC26-04NT15510  

E-Print Network (OSTI)

i Oil & Natural Gas Technology DOE Award No.: DE-FC26-04NT15510 Final Report A Systems Approach has compiled and presented a broad base of information and knowledge needed by independent oil and exploration in the New Albany Shale Group, a Devonian black shale source rock, in Illinois was completed due

355

Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins  

Science Conference Proceedings (OSTI)

Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text briefly discusses the nature of these questions. Section I.2 briefly discusses the objective of the study with respect to the problems reviewed.

Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

2008-06-30T23:59:59.000Z

356

Pore-scale characterization and modeling of two-phase flow in tight gas sandstones.  

E-Print Network (OSTI)

??Unconventional natural gas resources, particularly tight gas sands, constitute a significant percentage of the natural gas resource base and offer abundant potential for future reserves… (more)

Mousavi, Maryam Alsadat

2011-01-01T23:59:59.000Z

357

Lifecycle impacts of natural gas to hydrogen pathways on urban air quality  

E-Print Network (OSTI)

following three natural gas to hydrogen supply pathways areHFCVs. Three natural gas-based hydrogen supply pathways areof the hy- drogen supply pathway: natural gas extraction,

Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

2007-01-01T23:59:59.000Z

358

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

359

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

360

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gas-Saving Tips  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Gas-Saving Tips Gas-Saving Tips Some consumers believe fuel economy ratings are a fixed number, like engine size or cargo volume. However, a vehicle's fuel economy can vary significantly due to several factors, including how the vehicle is driven, the vehicle's mechanical condition, and the environment in which it is driven. That's good news. It means you may be able to improve your vehicle's gas mileage through proper maintenance and driving habits. In fact, studies suggest the average driver can improve his/her fuel economy by roughly 10 percent. Here are a few simple tips to help you get the best possible fuel economy from your vehicle and reduce your fuel costs. Adopt Good Driving Habits Drive Sensibly Aggressive driving (speeding, rapid acceleration and braking)

362

GAS DISCHARGE DEVICES  

DOE Patents (OSTI)

An apparatus utilized in introducing tritium gas into envelope of a gas discharge device for the purpose f maintaining the discharge path in ionized condition is described. ln addition to the cathode and anode, the ischarge device contains a zirconium or tantalum ilament arranged for external excitation and a metallic seed containing tritium, and also arranged to have a current passed through it. Initially, the zirconium or tantalum filament is vaporized to deposit its material adjacent the main discharge region. Then the tritium gas is released and, due to its affinity for the first released material, it deposits in the region of the main discharge where it is most effective in maintaining the discharge path in an ionized condition.

Jefferson, S.

1958-11-11T23:59:59.000Z

363

A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration  

SciTech Connect

A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio [Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Universita Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome (Italy)

2013-02-15T23:59:59.000Z

364

U.S. dry natural gas production growth levels off following ...  

U.S. Energy Information Administration (EIA)

U.S. dry natural gas production has increased since late 2005 due mainly to rapid growth in production from shale gas resources. However, there have ...

365

U.S. natural gas imports fall for third year in a row - Today ...  

U.S. Energy Information Administration (EIA)

U.S. net imports of natural gas have fallen for three consecutive years, due largely to growing domestic production from shale gas formations.

366

MONTHLY UNDERGROUND GAS STORAGE REPORT FORM EIA-191M ...  

U.S. Energy Information Administration (EIA)

Page 2 DEFINITIONS Base (Cushion) Gas: The volume of gas needed as a permanent inventory to maintain adequate storage reservoir pressures and deliverability rates.

367

New natural gas pipeline capacity adds service into Florida ...  

U.S. Energy Information Administration (EIA)

Source: U.S. Energy Information Administration based on BENTEK Energy, LLC Note: Daily natural gas flow data and daily pipeline capacity derived from Florida's Gas ...

368

SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY Based on the finding of a growing potential...

369

The Virtual Gas Turbine System for Alloy Assesment  

Science Conference Proceedings (OSTI)

Key words: Virtual turbine, Alloy design program, Gas turbine design program, Nickel-base ... developed a virtual gas turbine (VT) system as a combination of.

370

EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram  

Annual Energy Outlook 2012 (EIA)

Natural Gas based on data through 20072008 with selected updates Development and Expansion Process For Natural Gas Pipeline Projects Figure showing the expansion process...

371

EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...  

Annual Energy Outlook 2012 (EIA)

Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground...

372

EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...  

Annual Energy Outlook 2012 (EIA)

Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production...

373

Natural gas monthly, April 1998  

Science Conference Proceedings (OSTI)

This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration (EIA). Estimates extend through April 1998 for many data series. The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, feature articles are presented designed to assist readers in using and interpreting natural gas information. This issue contains the special report, ``Natural Gas 1997: A Preliminary Summary.`` This report provides information on natural gas supply and disposition for the year 1997, based on monthly data through December from EIA surveys. 6 figs., 28 tabs.

NONE

1998-04-01T23:59:59.000Z

374

Gasification Evaluation of Gas Turbine Combustion  

DOE Green Energy (OSTI)

This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

Battelle

2003-12-30T23:59:59.000Z

375

2013 Allocation Request Submissions Due September 28  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Allocation Request Submissions Due September 28 2013 Allocation Request Submissions Due September 28 August 1, 2012 by Francesca Verdier (0 Comments) The deadline for submissions...

376

2014 NERSC allocation requests due September 22  

NLE Websites -- All DOE Office Websites (Extended Search)

allocation requests due September 22 2014 NERSC allocation requests due September 22 August 13, 2013 by Francesca Verdier (0 Comments) NERSC's allocation submission system is...

377

Gas turbine sealing apparatus  

SciTech Connect

A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

Marra, John Joseph; Wessell, Brian J.; Liang, George

2013-03-05T23:59:59.000Z

378

Gas releases from salt  

Science Conference Proceedings (OSTI)

The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

Ehgartner, B.; Neal, J.; Hinkebein, T.

1998-06-01T23:59:59.000Z

379

Nuclear stimulation of gas fields  

SciTech Connect

From National Technical Canadian Gas Association; Calgary, Alberta, Canada (17 Oct 1973). The technical bases of the emerging technology of nuclear stimulation of natural gas fields, the potential of this method for increasing the gas supply of the US, and public issues related to this technology are discussed. A technical appendix is provided with information on: reservoir producing characteristics; explosive design, availability, and cost; firing and space of explosives; economic parameters; and tabulated statistics on past and current projects on nuclear stimulation. (LCL)

Randolph, P.L.

1973-09-01T23:59:59.000Z

380

Fuel gas production from animal residue. Dynatech report No. 1551  

DOE Green Energy (OSTI)

A comprehensive mathematical model description of anaerobic digestion of animal residues was developed, taking into account material and energy balances, kinetics, and economics of the process. The model has the flexibility to be applicable to residues from any size or type of animal husbandry operation. A computer program was written for this model and includes a routine for optimization to minimum unit gas cost, with the optimization variables being digester temperature, retention time, and influent volatile solids concentration. The computer program was used to determine the optimum base-line process conditions and economics for fuel gas production via anaerobic digestion of residues from a 10,000 head environmental beef feedlot. This feedlot at the conditions for minimum unit gas cost will produce 300 MCF/day of methane at a cost of $5.17/MCF (CH/sub 4/), with a total capital requirement of $1,165,000, a total capital investment of $694,000, and an annual average net operating cost of $370,000. The major contributions to this unit gas cost are due to labor (37 percent), raw manure (11 percent), power for gas compression (10 percent), and digester cost (13 percent). A conceptual design of an anaerobic digestion process for the baseline conditions is presented. A sensitivity analysis of the unit gas cost to changes in the major contributions to unit gas cost was performed, and the results of this analysis indicate areas in the anaerobic digestion system design where reasonable improvements could be expected so as to produce gas at an economically feasible cost. This sensitivity analysis includes the effects on unit gas cost of feedlot size and type, digester type, digester operating conditions, and economic input data.

Ashare, E.; Wise, D.L.; Wentworth, R.L.

1977-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

382

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

383

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

384

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

385

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

386

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

387

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

388

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

389

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

390

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

391

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

392

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

393

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

394

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

395

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

396

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

397

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

398

Gas well deliquification. 2nd. ed.  

Science Conference Proceedings (OSTI)

Chapter 1: Introduction; Chapter 2: Recognizing Symptoms of Liquid Loading in Gas Wells; Chapter 3: Critical Velocity; Chapter 4: Systems Nodal Analysis; Chapter 5: Sizing Tubing; Chapter 6: Compression; Chapter 7: Plunger Lift; Chapter 8: Use of Foam to Deliquefy Gas Wells; Chapter 9: Hydraulic Pumping; Chapter 10: Use of Beam Pumps to Deliquefy Gas Wells; Chapter 11: Gas Lift; Chapter 12: Electric Submersible Pumps; Chapter 13: Progressing Cavity Pumps; Chapter 14: Coal Bed Methane; Chapter 15: Production Automation. Chapter 14, by David Simpson, based in the San Juan Basin, addresses issues in coal bed methane, low pressure operations, gas compression, gas measurement, oil field construction, gas well deliquification and project management.

James Lea; Henry Nickens; Mike Wells [Texas Technical University, TX (United States). Petroleum Engineering Department

2008-03-15T23:59:59.000Z

399

Unconventional gas outlook: resources, economics, and technologies  

Science Conference Proceedings (OSTI)

The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

Drazga, B. (ed.)

2006-08-15T23:59:59.000Z

400

California's Greenhouse Gas Policies: Local Solutions to a Global Problem?  

E-Print Network (OSTI)

greater than a current combined-cycle natural gas plant. Inemissions level based on a Combined Cycle Gas Turbine (CCGT)profiles worse than the combined cycle gas plants upon which

Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gas turbine diagnostic system  

E-Print Network (OSTI)

In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

Talgat, Shuvatov

2011-01-01T23:59:59.000Z

402

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelinesk > Development & Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years from the time it is first announced until the new pipe is placed in service. The project can take longer if it encounters major environmental obstacles or public opposition. A pipeline development or expansion project involves several steps: Determining demand/market interest

403

Natural Gas Industry and Markets  

Reports and Publications (EIA)

This special report provides an overview of the supply and disposition of natural gas in 2004 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2004 (NGA). Unless otherwise stated, all data and figures in this report are based on summary statistics published in the NGA 2004.

Information Center

2006-03-03T23:59:59.000Z

404

EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Transportation Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow patterns. 5 major routes extend from the producing areas of the Southwest 4 routes enter the United States from Canada 2 originate in the Rocky Mountain area. A summary of the major corridors and links to details about each corridor are provided below. Corridors from the Southwest Region

405

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

406

Multiphase imaging of gas flow in a nanoporous material using remote detection NMR  

E-Print Network (OSTI)

pore structure on gas flow and dispersion with 129 Xe as thedominates the free gas flow, and dispersion is mainly due toinlet data. B. Dispersion of occluded gas in the center of

Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

2005-01-01T23:59:59.000Z

407

Short-term supply chain management in upstream natural gas systems  

E-Print Network (OSTI)

Natural gas supply chain planning and optimization is important to ensure security and reliability of natural gas supply. However, it is challenging due to the distinctive features of natural gas supply chains. These ...

Selot, Ajay

2009-01-01T23:59:59.000Z

408

The potential impact of renewable energy deployment on natural gas prices in New England  

E-Print Network (OSTI)

more sizable impact on gas prices (e.g. , due to short-termEnergy Deployment on Natural Gas Prices in New England Datedirectly hedge natural gas price risk by reducing the need

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

409

Prediction of subsidence: Relationship between lowering of formation pressure and subsidence due to fluid withdrawal  

Science Conference Proceedings (OSTI)

Abnormally low formation pressures develop in petroleum reservoirs during intensive oil and gas production or in aquifers as a result of water extraction. A simple method is presented for calculating (predicting) the amount of compaction (and resulting subsidence) from the pressure drop in formation due to production, i.e., the increase in the effective pressure p{sub e} (p{sub e} = p{sub t} {minus} p{sub p}, where p{sub t} is the total overburden pressure and p{sub p} is the fluid or pore pressure). This work is based on extensive data collected in Russia. For example, large petroliferous areas in Western Siberia became marshlands as a result of fluid withdrawal. One should remember that sophisticated methods, such as FSMT (direct measurement of rock compaction by wireline tools in situ) and GPS (measurement of surface subsidence by satellite microwave Doppler techniques), are not yet available in many areas of the world.

Serebryakov, V.A.; Chilingar, G.V.

2000-06-01T23:59:59.000Z

410

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Due to the observance of Veterans Day on Monday, November 12, the next Natural Gas Weekly Update, will be published on Tuesday, November 13, 2001. Due to the observance of Veterans Day on Monday, November 12, the next Natural Gas Weekly Update, will be published on Tuesday, November 13, 2001. Overview: Monday, November 5, 2001 Spot prices at the Henry Hub began the week up then trended down to end the week 10 cents below the previous Friday at $2.96 per MMBtu. This represents a reversal from the pattern of a week earlier when the Henry Hub price gained more than $0.70 per MMBtu on a Friday-to-Friday basis. Warmer-than-normal temperatures in most parts of the country last week along with forecasts calling for the moderate weather to continue into the weekend contributed to the decline in prices. .(See Temperature Map) (See Deviation Map) Estimates of weekly net additions to storage again were below normal levels for this time of year but the total working gas in storage remained above average and well above volumes at this time last year. The price of West Texas Intermediate (WTI) crude oil moved down $1.95 per barrel for the week to end trading on Friday at $20.20 or $3.48 per MMBtu.

411

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

412

Natural gas monthly, August 1996  

Science Conference Proceedings (OSTI)

This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

NONE

1996-08-01T23:59:59.000Z

413

MIGRATION RATES OF PLANETS DUE TO SCATTERING OF PLANETESIMALS  

SciTech Connect

Planets migrate due to the recoil they experience from scattering solid (planetesimal) bodies. To first order, the torques exerted by the interior and exterior disks will cancel, analogous to the cancellation of the torques from the gravitational interaction with the gas (Type-I migration). Assuming the dispersion-dominated regime and power laws characterized by indices {alpha} and {beta} for the surface density and eccentricity profiles, we calculate the net torque on the planet. We consider both distant encounters and close (orbit-crossing) encounters. We find that the close and distant encounter torques have opposite signs with respect to {alpha} and {beta}; and that the torque is especially sensitive to the eccentricity gradient {beta}. Compared to Type-I migration due to excitation of density waves, the planetesimal-driven migration rate is generally lower due to the lower surface density of solids in gas-rich disk, although this may be partially or fully offset when their eccentricity and inclinaton are small. Allowing for the feedback of the planet on the planetesimal disk through viscous stirring, we find that under certain conditions a self-regulated migration scenario emerges, in which the planet migrates at a steady pace that approaches the rate corresponding to the one-sided torque. If the ratio of the local disk mass in planetesimals to planet mass is low, however, migration will stall. We quantify the boundaries separating the three accretion regimes.

Ormel, C. W. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Ida, S. [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Tanaka, H., E-mail: ormel@astro.berkeley.edu, E-mail: ida@geo.titech.ac.jp, E-mail: hide@lowtem.hokudai.ac.jp [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)

2012-10-20T23:59:59.000Z

414

High potential recovery -- Gas repressurization  

SciTech Connect

The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

Madden, M.P.

1998-05-01T23:59:59.000Z

415

Gas laser  

SciTech Connect

According to the invention, the gas laser comprises a housing which accommodates two electrodes. One of the electrodes is sectional and has a ballast resistor connected to each section. One of the electrodes is so secured in the housing that it is possible to vary the spacing between the electrodes in the direction of the flow of a gas mixture passed through an active zone between the electrodes where the laser effect is produced. The invention provides for a maximum efficiency of the laser under different operating conditions.

Kosyrev, F. K.; Leonov, A. P.; Pekh, A. K.; Timofeev, V. A.

1980-08-12T23:59:59.000Z

416

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach Last Reviewed 2172012 DE-FC26-06NT42937 Goal The primary goal of...

417

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Probabilistic, Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems DE-FC26-06NT42930 Goal The project goal is the development...

418

World Natural Gas, 1978  

Science Conference Proceedings (OSTI)

World marketed production of natural gas in 1978 totaled 51.749 trillion CF (up from 50.1 TCF in 1977); this 3.3% increase, however, was slightly lower than 1977's 3.7% rise. US production, which fell 0.3% dropped to 38.6% of the world total, while the USSR share (13.137 TCF) accounted for 25.4% (for a growth rate of 7.5%). Of the world gross production of 62.032 TCF, 69.7% came from gas wells; the remainder was associated with oil. Thirty-one percent of the 10.282 TCF difference between gross and marketed gas production was used for oil reservoir repressuring, while the balance (7.094 TCF) was vented and flared. Internationally traded gas movements rose to 11.6% of production. The Netherlands, the USSR, and Canada accounted for 30.6%, 20.1% and 14.7%, respectively, of total 1978 exports. At 0.956 TCF, LNG shipments accounted for 15.9% of world trade, a 35.2% higher share than in 1977; most of this growth was due to increased Indonesia-to-Japan volumes.

Not Available

1980-07-01T23:59:59.000Z

419

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 15:

420

Mississippi Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA)

Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modeling Cathode Cooling Due to Power Interruption  

Science Conference Proceedings (OSTI)

Presentation Title, Modeling Cathode Cooling Due to Power Interruption ... Development and Application of SAMI's Low Voltage Energy-Saving Technology.

422

Independent Mineral Processing Project Technical Due Diligence  

Science Conference Proceedings (OSTI)

Presentation Title, Independent Mineral Processing Project Technical Due Diligence ... CRIMM Energy-saving Magnetic Separation Equipment and Industrial ...

423

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

424

GAS STORAGE TECHNOLOGY CONSORTIUM  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

425

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

426

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

427

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

428

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

429

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

430

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

431

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

432

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

433

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

434

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

435

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

436

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

437

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

438

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

439

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

440

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

442

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

443

Gas Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Prices Gasoline Prices for U.S. Cities Click on the map to view gas prices for cities in your state. AK VT ME NH NH MA MA RI CT CT DC NJ DE DE NY WV VA NC SC FL GA AL MS TN KY IN...

444

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

445

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

446

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2010 at 2:00 P.M. 9, 2010 at 2:00 P.M. Next Release: Thursday, September 16, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 8, 2010) Price changes during the week were mixed, but in most areas, these changes were moderate. The Henry Hub price rose slightly from $3.73 per million Btu (MMBtu) on Wednesday, September 1, to $3.81 per MMBtu yesterday. The report week was shortened due to the Labor Day holiday. At the New York Mercantile Exchange, the price of the October 2010 futures contract rose about 5 cents, from $3.762 per MMBtu on September 1 to $3.814 per MMBtu on September 8. Working natural gas in storage as of Friday, September 3, was 3,164 Bcf, following an implied net injection of 58 Bcf, according to EIAÂ’s

447

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, January 20, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 12, 2011) Wholesale natural gas prices at most market locations east of the Mississippi River moved higher this week as a bitter cold moved into the eastern half of the country. West of the Mississippi River, a gradual warming trend resulted in lower prices. During the report week (January 5-12), the Henry Hub spot price increased $0.03 to $4.55 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices increased during the report week, likely in part due to forecasts of continuing cold weather and improving economic conditions. The futures

448

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, October 6, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 28, 2011) Natural gas spot prices at most market locations across the country this past week initially declined and then began to creep upwards as natural gas use for power generation increased. The upward trend was halted yesterday, as prices at nearly all points retreated, possibly due to forecasts for considerably colder weather. After declining from $3.78 per million British thermal units (MMBtu) last Wednesday to $3.72 per MMbtu on Thursday, the Henry Hub spot price increased to $3.92 per MMBtu on Tuesday and closed at $3.88 per MMBtu yesterday. At the New York Mercantile Exchange (NYMEX), the October 2011

449

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network (OSTI)

subsidence above compacting oil and gas reservoirs, 11 Jour.Subsidence of the Wilmington Oil Field, California,~~ R. H.generation. Compared to oil and coal, the energy content of

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

450

Hydrogen leak detection - low cost distributed gas sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

leak detection that can be economically satisfied using our technology. * Due to limited refinery capacity, downtime in the oil and gas refining industry has become of critical...

451

Probabilistic Assessment of Failure Risk in Gas Turbine Discs.  

E-Print Network (OSTI)

?? Gas turbine discs are heavily loaded due to centrifugal and thermal loads and are therefore designed for a service lifetime specified in hours and… (more)

Forsberg, Fredrik

2008-01-01T23:59:59.000Z

452

Top 5 producing states' combined marketed natural gas output rose ...  

U.S. Energy Information Administration (EIA)

Glossary › All Reports ... Due primarily to drilling programs in the Marcellus shale ... Alaska is the country's second leading natural gas producer in terms of ...

453

Natural Gas Stove Emissions and Respiratory Health: Evidence...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Stove Emissions and Respiratory Health: Evidence from NHANES III NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not...

454

Impact of Natural Gas Appliances on Pollutant Levels in California...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Appliances on Pollutant Levels in California Homes NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated...

455

NGL Market Development Example Virtual Workshop on Natural Gas ...  

U.S. Energy Information Administration (EIA)

Ethane in Remote Basins Alberta Ethane Market Vantage Pipeline. EIA Workshop 2012 3 NGL Recovery Decisions “Must-Recover” NGLs due to sales gas specs:

456

Production decline analysis of horizontal well in gas shale reservoirs.  

E-Print Network (OSTI)

??The major factor influencing the increase of natural gas use is the rise in its global demand. Due to the relentlessly increasing demand, there have… (more)

Adekoya, Folarin.

2009-01-01T23:59:59.000Z

457

Consumer Winter Natural Gas Costs - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Household Gas Heating Costs. Since ... percent more by our calculations for a typical ... coming season they spent less for it due to much lower resid ...

458

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies are getting a better grasp of emissions, but there are still problem areas, particularly CO and unburned hydrocarbon emissions. The lag in data has resulted in the imposition of a CO reactor as BACT for the gas turbine. With the renewed concern about the environment, air permits will have a high profile with offsets being the next fix beyond BACT. 'The manner in which technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry....' (1) Therefore, it becomes increasingly important that the proponents of gas turbine-based facilities establish more reliable data on their proposed emissions. This paper addresses the gas turbine emissions experiences of eight cogeneration plants utilizing: 1) steam injection for both NOx control and power augmentation, 2) CO reactors, 3) selective catalytic reduction units. It also looks at possible regulatory actions.

Frederick, J. D.

1990-06-01T23:59:59.000Z

459

ABJM theory as a Fermi gas  

E-Print Network (OSTI)

The partition function on the three-sphere of many supersymmetric Chern-Simons-matter theories reduces, by localization, to a matrix model. We develop a new method to study these models in the M-theory limit, but at all orders in the 1/N expansion. The method is based on reformulating the matrix model as the partition function of an ideal Fermi gas with a non-trivial, one-particle quantum Hamiltonian. This new approach leads to a completely elementary derivation of the N^{3/2} behavior for ABJM theory and N=3 quiver Chern-Simons-matter theories. In addition, the full series of 1/N corrections to the original matrix integral can be simply determined by a next-to-leading calculation in the WKB or semiclassical expansion of the quantum gas, and we show that, for several quiver Chern-Simons-matter theories, it is given by an Airy function. This generalizes a recent result of Fuji, Hirano and Moriyama for ABJM theory. It turns out that the semiclassical expansion of the Fermi gas corresponds to a strong coupling expansion in type IIA theory, and it is dual to the genus expansion. This allows us to calculate explicitly non-perturbative effects due to D2-brane instantons in the AdS background.

Marcos Marino; Pavel Putrov

2011-10-18T23:59:59.000Z

460

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Permeability Gas Low Permeability Gas Design and Implementation of Energized Fracture Treatment in Tight Gas Sands DE-FC26-06NT42955 Goal The goal of this project is to develop methods and tools that can enable operators to design, optimize, and implement energized fracture treatments in a systematic way. The simulator that will result from this work would significantly expand the use and cost-effectiveness of energized fracs and improve their design and implementation in tight gas sands. Performer University of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands account for 58 percent of the total proved natural gas reserves in the United States. As many of these tight gas sand basins mature, an increasing number of wells are being drilled or completed into nearly depleted reservoirs. This includes infill wells, recompletions, and field-extension wells. When these activities are carried out, the reservoir pressures encountered are not as high as the initial reservoir pressures. In these situations, where pressure drawdowns can be less than 2,000 psi, significant reductions in well productivity are observed, often due to water blocking and insufficient clean-up of fracture-fluid residues. In addition, many tight gas sand reservoirs display water sensitivity—owing to high clay content—and readily imbibe water due both to very high capillary pressures and low initial water saturations.

Note: This page contains sample records for the topic "base gas due" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fiscal Year 2007 Greenhouse Gas Inventory  

E-Print Network (OSTI)

Fiscal Year 2007 Greenhouse Gas Inventory Greg Smith Brandon Trelstad OSU Facilities Services June greenhouse gas multiplied by a Global Warming Potential (GWP) factor. (3) "Global Warming Potential factor" (GWP) means the radiative forcing impact of one mass-based unit of a given greenhouse gas relative

Escher, Christine

462

Fiscal Year 2009 Greenhouse Gas Inventory  

E-Print Network (OSTI)

Fiscal Year 2009 Greenhouse Gas Inventory Oregon State University Greg Smith Sustainability Program of oxygen. (2) "Carbon dioxide equivalent" (CO2e) represents the quantity of a greenhouse gas multiplied of one mass-based unit of a given greenhouse gas relative to an equivalent unit of carbon dioxide over

Escher, Christine

463

Thermal and radiolytic gas generation from Tank 241-S-102 waste  

SciTech Connect

This report summarizes progress in evaluating thermal and radiolytic rate parameters for flammable gas generation in Hanford single-shell tank wastes based on the results of laboratory tests using actual waste from Tank 241-S-102 (S-102). Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, whose purpose is to develop information to support Fluor Daniel Hanford (FDH) and its Project Management Hanford Contract (PHMC) subcontractors in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT) under subcontract to PNNL, using simulated wastes, and to studies being performed at Numatec Hanford Corporation (formerly Westinghouse Hanford Company) using actual wastes. The results of gas generation from Tank S-102 waste under thermal and radiolytic conditions are described in this report. The accurate measurement of gas generation rates in actual waste from highly radioactive waste tanks is needed to assess the potential for producing and storing flammable gases within the waste tanks. This report addresses the gas generation capacity of the waste from Tank S-102, a waste tank listed as high priority by the Flammable Gas Safety Program due to its potential for flammable gas accumulation above the flammability limit.

King, C.M.; Pederson, L.R.; Bryan, S.A.

1997-07-01T23:59:59.000Z

464

Rising Sea Levels Due to Global Warming Are Unstoppable  

NLE Websites -- All DOE Office Websites (Extended Search)

Rising Sea Levels Rising Sea Levels Due to Global Warming Are Unstoppable Rising Sea Levels Due to Global Warming Are Unstoppable Mitigation can slow down but not prevent sea level rise for centuries to come August 5, 2013 Contact: Linda Vu, Lvu@lbl.gov, +1 510 495 2402 washington.jpg Because seawater absorbs heat more slowly than the atmosphere above it, our oceans won't feel the full impact of the greenhouse gases already in the air for hundreds of years. Warm water expands, raising sea levels. (Courtesy W. Washington) Select to enlarge. A reduction in greenhouse gas emissions could greatly lessen the impacts of climate change. However, the gases already added to the atmosphere ensure a certain amount of sea level rise to come, even if future emissions are reduced. A study by National Center for Atmospheric Research (NCAR)

465

Dilution-based emissions sampling from stationary sources: part 2 - gas-fired combustors compared with other fuel-fired systems  

SciTech Connect

With the recent focus on fine particle matter (PM2.5), new, self- consistent data are needed to characterize emissions from combustion sources. Emissions data for gas-fired combustors are presented, using dilution sampling as the reference. The sampling and analysis of the collected particles in the presence of precursor gases, SO{sub 2}, nitrogen oxide, volatile organic compound, and NH{sub 3} is discussed; the results include data from eight gas fired units, including a dual- fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of {approximately}10{sup -4} lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with {approximately} 5 x 10{sup -3} lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of {approximately} 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas- fired combustor particles are low in concentration. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon is found on the particle collector and a backup filter. It is likely that measurement artifacts are positively biasing 'true' particulate carbon emissions results. 49 refs., 1 fig., 12 tabs.

England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.C.O.; Loos, K.R.; Hidy. G.M. [GE Energy, Santa Ana, CA (United States)

2007-01-15T23:59:59.000Z

466

Autothermal Reforming of Natural Gas to Synthesis Gas  

DOE Green Energy (OSTI)

This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Süd-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO2 in the burner feed showed that the conditions in the burner allow for the direct participation of CO2 in the oxidation chemistry.

Steven F. Rice; David P. Mann

2007-04-13T23:59:59.000Z

467

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Unconventional Natural Gas Los Alamos scientists are committed to the efficient and environmentally-safe development of major U.S. natural gas and oil resources....

468

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Texas Natural Gas Exports...

469

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

470

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Montana Natural Gas Exports...

471

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Michigan Natural Gas Exports...

472

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

473

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network (OSTI)

by numerical simulation below. pipeline gas shalecushion gas sand shale CH4 working gas CH4 working gas sand