National Library of Energy BETA

Sample records for base forecast natural

  1. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01

    to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  2. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01

    to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from the AEO

  3. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  4. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01

    approach to evaluating price risk would be to use suchthe base-case natural gas price forecast, but to alsorange of different plausible price projections, using either

  5. Assessment of the possibility of forecasting future natural gas curtailments

    SciTech Connect (OSTI)

    Lemont, S.

    1980-01-01

    This study provides a preliminary assessment of the potential for determining probabilities of future natural-gas-supply interruptions by combining long-range weather forecasts and natural-gas supply/demand projections. An illustrative example which measures the probability of occurrence of heating-season natural-gas curtailments for industrial users in the southeastern US is analyzed. Based on the information on existing long-range weather forecasting techniques and natural gas supply/demand projections enumerated above, especially the high uncertainties involved in weather forecasting and the unavailability of adequate, reliable natural-gas projections that take account of seasonal weather variations and uncertainties in the nation's energy-economic system, it must be concluded that there is little possibility, at the present time, of combining the two to yield useful, believable probabilities of heating-season gas curtailments in a form useful for corporate and government decision makers and planners. Possible remedial actions are suggested that might render such data more useful for the desired purpose in the future. The task may simply require the adequate incorporation of uncertainty and seasonal weather trends into modeling systems and the courage to report projected data, so that realistic natural gas supply/demand scenarios and the probabilities of their occurrence will be available to decision makers during a time when such information is greatly needed.

  6. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

  7. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    Comparison of AEO 2008 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

  8. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01

    Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

  9. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

  10. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01

    revisions to the EIA’s natural gas price forecasts in AEOsolely on the AEO 2005 natural gas price forecasts willComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

  11. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01

    revisions to the EIA’s natural gas price forecasts in AEOon the AEO 2005 natural gas price forecasts will likely onceComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

  12. Stochastic Weather Generator Based Ensemble Streamflow Forecasting

    E-Print Network [OSTI]

    Stochastic Weather Generator Based Ensemble Streamflow Forecasting by Nina Marie Caraway B of Civil Engineering 2012 #12;This thesis entitled: Stochastic Weather Generator Based Ensemble Streamflow mentioned discipline. #12;iii Caraway, Nina Marie (M.S., Civil Engineering) Stochastic Weather Generator

  13. Wind-Wave Probabilistic Forecasting based on Ensemble

    E-Print Network [OSTI]

    Wind-Wave Probabilistic Forecasting based on Ensemble Predictions Maxime FORTIN Kongens Lyngby 2012.imm.dtu.dk IMM-PhD-2012-86 #12;Summary Wind and wave forecasts are of a crucial importance for a number weather forecasts and do not take any possible correlation into ac- count. Since wind and wave forecasts

  14. Generalized Cost Function Based Forecasting for Periodically Measured Nonstationary Traffic

    E-Print Network [OSTI]

    Zeng, Yong - Department of Mathematics and Statistics, University of Missouri

    1 Generalized Cost Function Based Forecasting for Periodically Measured Nonstationary Traffic true value. However, such a forecast- ing function is not directly applicable for applications potentially result in insufficient allocation of bandwidth leading to short term data loss. To facilitate

  15. Weather-based yield forecasts developed for 12 California crops

    E-Print Network [OSTI]

    Lobell, David; Cahill, Kimberly Nicholas; Field, Christopher

    2006-01-01

    RESEARCH ARTICLE Weather-based yield forecasts developed fordepend largely on the weather, measurements from existingpredictions. We developed weather-based models of statewide

  16. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  17. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  18. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01

    Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  19. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    late January 2008, extend its natural gas futures strip anComparison of AEO 2008 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  20. Detrending Daily Natural Gas Consumption Series to Improve Short-Term Forecasts

    E-Print Network [OSTI]

    Povinelli, Richard J.

    Detrending Daily Natural Gas Consumption Series to Improve Short-Term Forecasts Ronald H. Brown1 that allows long-term natural gas demand signals to be used effect- ively to generate high quality short-term natural gas demand forecasting models. Short data sets in natural gas forecasting inadequately represent

  1. Natural Priors, CMSSM Fits and LHC Weather Forecasts

    E-Print Network [OSTI]

    Ben C Allanach; Kyle Cranmer; Christopher G Lester; Arne M Weber

    2007-07-05

    Previous LHC forecasts for the constrained minimal supersymmetric standard model (CMSSM), based on current astrophysical and laboratory measurements, have used priors that are flat in the parameter tan beta, while being constrained to postdict the central experimental value of MZ. We construct a different, new and more natural prior with a measure in mu and B (the more fundamental MSSM parameters from which tan beta and MZ are actually derived). We find that as a consequence this choice leads to a well defined fine-tuning measure in the parameter space. We investigate the effect of such on global CMSSM fits to indirect constraints, providing posterior probability distributions for Large Hadron Collider (LHC) sparticle production cross sections. The change in priors has a significant effect, strongly suppressing the pseudoscalar Higgs boson dark matter annihilation region, and diminishing the probable values of sparticle masses. We also show how to interpret fit information from a Markov Chain Monte Carlo in a frequentist fashion; namely by using the profile likelihood. Bayesian and frequentist interpretations of CMSSM fits are compared and contrasted.

  2. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    Figure 9: Two Alternative Price Forecasts (denoted by openComparison of AEO 2007 Natural Gas Price Forecast toNYMEX Futures Prices Date: December 6, 2006 Introduction On

  3. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  4. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    range of different plausible price projections, using eitherthat renewables can provide price certainty over even longerof AEO 2009 Natural Gas Price Forecast to NYMEX Futures

  5. Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-01-01

    index.html. Appendix A.1 Natural Gas Price Data for FuturesError STEO Error A.1 Natural Gas Price Data for Futuresof forecasts for natural gas prices as reported by the

  6. Weather-based forecasts of California crop yields

    SciTech Connect (OSTI)

    Lobell, D B; Cahill, K N; Field, C B

    2005-09-26

    Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over the 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.

  7. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2006-12-06

    On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

  8. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-12-19

    On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

  9. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2004-12-13

    On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

  10. Journey data based arrival forecasting for bicycle hire schemes

    E-Print Network [OSTI]

    Imperial College, London

    Journey data based arrival forecasting for bicycle hire schemes Marcel C. Guenther and Jeremy T. The global emergence of city bicycle hire schemes has re- cently received a lot of attention of future bicycle migration trends, as these assist service providers to ensure availability of bicycles

  11. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

  12. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  13. Bias reduction in the Sea Surface Temperature (SST) forecasts based on GOES satellite data

    E-Print Network [OSTI]

    Kurapov, Alexander

    Bias reduction in the Sea Surface Temperature (SST) forecasts based on GOES satellite data Based on comparisons with infrared (GOES) and microwave (AMSE-R) satellite data, our coastal ocean forecast model set circulation model and satellite data helps to improve forecasting of ocean conditions (esp. currents and SST

  14. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A.; Wiser, Ryan H.

    2010-01-04

    On December 14, 2009, the reference-case projections from Annual Energy Outlook 2010 were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in itigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings.

  15. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-01-28

    On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

  16. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

    2008-01-07

    On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

  17. How regulators should use natural gas price forecasts

    SciTech Connect (OSTI)

    Costello, Ken

    2010-08-15

    Natural gas prices are critical to a range of regulatory decisions covering both electric and gas utilities. Natural gas prices are often a crucial variable in electric generation capacity planning and in the benefit-cost relationship for energy-efficiency programs. High natural gas prices can make coal generation the most economical new source, while low prices can make natural gas generation the most economical. (author)

  18. Neural network based short-term load forecasting using weather compensation

    SciTech Connect (OSTI)

    Chow, T.W.S.; Leung, C.T. [City Univ. of Hong Kong, Kowloon (Hong Kong). Dept. of Electronic Engineering] [City Univ. of Hong Kong, Kowloon (Hong Kong). Dept. of Electronic Engineering

    1996-11-01

    This paper presents a novel technique for electric load forecasting based on neural weather compensation. The proposed method is a nonlinear generalization of Box and Jenkins approach for nonstationary time-series prediction. A weather compensation neural network is implemented for one-day ahead electric load forecasting. The weather compensation neural network can accurately predict the change of actual electric load consumption from the previous day. The results, based on Hong Kong Island historical load demand, indicate that this methodology is capable of providing a more accurate load forecast with a 0.9% reduction in forecast error.

  19. Log-normal distribution based EMOS models for probabilistic wind speed forecasting

    E-Print Network [OSTI]

    Baran, Sándor

    2014-01-01

    Ensembles of forecasts are obtained from multiple runs of numerical weather forecasting models with different initial conditions and typically employed to account for forecast uncertainties. However, biases and dispersion errors often occur in forecast ensembles, they are usually under-dispersive and uncalibrated and require statistical post-processing. We present an Ensemble Model Output Statistics (EMOS) method for calibration of wind speed forecasts based on the log-normal (LN) distribution, and we also show a regime-switching extension of the model which combines the previously studied truncated normal (TN) distribution with the LN. Both presented models are applied to wind speed forecasts of the eight-member University of Washington mesoscale ensemble, of the fifty-member ECMWF ensemble and of the eleven-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service, and their predictive performances are compared to those of the TN and general extreme value (GEV) distribution based EMOS methods an...

  20. The Potential for Integrating GIS in Activity-Based Forecasting Models

    E-Print Network [OSTI]

    McNally, Michael G.

    1997-01-01

    3" (ENTERTAINMENT) Figure 4. A GIS-based Microsimulation ofDestinations Figure 5. A GIS-based Microsimulation ofPotential for Integrating GIS in Activity Based Forecasting

  1. Ensemble-based air quality forecasts: A multimodel approach applied to ozone

    E-Print Network [OSTI]

    Mallet, Vivien

    Ensemble-based air quality forecasts: A multimodel approach applied to ozone Vivien Mallet1 21 September 2006. [1] The potential of ensemble techniques to improve ozone forecasts ozone-monitoring networks. We found that several linear combinations of models have the potential

  2. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01

    Natural Gas Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Natural Gas Prices . . . . . . . . . . . . . . . . . . . . . . . . . .versus AEO and Henry Hub Natural Gas Prices . . . . . .

  3. Performances of an experimental platform dedicated to European pollution forecast based on the CHIMERE

    E-Print Network [OSTI]

    Menut, Laurent

    Performances of an experimental platform dedicated to European pollution forecast based du Climat et de l'Environnement - LSCE/IPSL The GEMS european project is dedicated to the definition

  4. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01

    1 1.1 History of Natural Gas8 4.1 U.S. Wellhead and AEO Natural Gas8 4.2 U.S. Wellhead and Henry Hub Natural Gas

  5. Appendix A: Fuel Price Forecast Introduction..................................................................................................................................... 1

    E-Print Network [OSTI]

    Appendix A: Fuel Price Forecast Introduction................................................................................................................................. 3 Price Forecasts ............................................................................................................................ 5 U.S. Natural Gas Commodity Prices

  6. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01

    the AEO 2005 reference case oil price forecast and NYMEX oibasis-adjusted NYMEX crude oil futures con tracts fo r 2010more than the reference case oil price forecast for that

  7. Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao

    2015-01-01

    The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.

  8. A simulation-based approach to forecasting the next great San Francisco earthquake

    E-Print Network [OSTI]

    McLeod, Dennis

    A simulation-based approach to forecasting the next great San Francisco earthquake J. B. Rundle In 1906 the great San Francisco earthquake and fire destroyed much of the city. As we approach the 100-year anniversary of that event, a critical concern is the hazard posed by another such earthquake

  9. SHORT-TERM FORECASTING OF SOLAR RADIATION BASED ON SATELLITE DATA WITH STATISTICAL METHODS

    E-Print Network [OSTI]

    Heinemann, Detlev

    for this systems. Depending on the application, prediction of solar irradiance is beneficial on different timeSHORT-TERM FORECASTING OF SOLAR RADIATION BASED ON SATELLITE DATA WITH STATISTICAL METHODS Annette Solar World Congress. This portion of the paper is the abstract. The abstract should not exceed 250

  10. PROBCAST: A Web-Based Portal to Mesoscale Probabilistic Forecasts Clifford Mass1

    E-Print Network [OSTI]

    Mass, Clifford F.

    1 PROBCAST: A Web-Based Portal to Mesoscale Probabilistic Forecasts Clifford Mass1 , Susan Joslyn over the Pacific Northwest. PROBCAST products are derived from the output of a mesoscale ensemble-processing of mesoscale, short-range ensembles. The NAS report also noted current deficiencies in the communication

  11. A Search-based Method for Forecasting Ad Impression in Contextual Advertising

    E-Print Network [OSTI]

    Fontoura, Marcus F.

    A Search-based Method for Forecasting Ad Impression in Contextual Advertising Xuerui Wang Josifovski Yahoo! Research Santa Clara, CA vanjaj@yahoo-inc.com ABSTRACT Contextual advertising (also called newspapers. At the same time it is an important way for advertisers to reach their intended audience

  12. Base Oil Market Segment Forecasts up to 2020,Research Reports...

    Open Energy Info (EERE)

    Market Research Home > Groups > Future of Condition Monitoring for Wind Turbines Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 11 June, 2015 - 03:19 Base Oil...

  13. Tradeoff between Investments in Infrastructure and Forecasting when Facing Natural Disaster Risk 

    E-Print Network [OSTI]

    Kim, Seong D.

    2010-07-14

    Hurricane Katrina of 2005 was responsible for at least 81 billion dollars of property damage. In planning for such emergencies, society must decide whether to invest in the ability to evacuate more speedily or in improved forecasting technology...

  14. Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-01-01

    Update on Petroleum, Natural Gas, Heating Oil and Gasoline.of the Market for Natural Gas Futures. Energy Journal 16 (Modeling Forum. 2003. Natural Gas, Fuel Diversity and North

  15. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  16. 13.2 A REPORT AND FEATURE-BASED VERIFICATION STUDY OF THE CAPS 2008 STORM-SCALE ENSEMBLE FORECASTS FOR SEVERE CONVECTIVE WEATHER

    E-Print Network [OSTI]

    of computing power, innovative numerical systems, and assimilation of observations at high spatial and temporal system as a means by which model error and uncertainty can be quantified in the forecast. Employing13.2 A REPORT AND FEATURE-BASED VERIFICATION STUDY OF THE CAPS 2008 STORM-SCALE ENSEMBLE FORECASTS

  17. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    market-based forward price projections argues for furtherAEO 2008 and NYMEX price projections. Nominal ¢/kWh (at 7000that exceed the AEO price projection) described above. If

  18. Optimal combined wind power forecasts using exogeneous variables

    E-Print Network [OSTI]

    Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens to the Klim wind farm using three WPPT forecasts based on different weather forecasting systems. It is shown of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

  19. Downscaling Extended Weather Forecasts for Hydrologic Prediction

    SciTech Connect (OSTI)

    Leung, Lai-Yung R.; Qian, Yun

    2005-03-01

    Weather and climate forecasts are critical inputs to hydrologic forecasting systems. The National Center for Environmental Prediction (NCEP) issues 8-15 days outlook daily for the U.S. based on the Medium Range Forecast (MRF) model, which is a global model applied at about 2? spatial resolution. Because of the relatively coarse spatial resolution, weather forecasts produced by the MRF model cannot be applied directly to hydrologic forecasting models that require high spatial resolution to represent land surface hydrology. A mesoscale atmospheric model was used to dynamically downscale the 1-8 day extended global weather forecasts to test the feasibility of hydrologic forecasting through this model nesting approach. Atmospheric conditions of each 8-day forecast during the period 1990-2000 were used to provide initial and boundary conditions for the mesoscale model to produce an 8-day atmospheric forecast for the western U.S. at 30 km spatial resolution. To examine the impact of initialization of the land surface state on forecast skill, two sets of simulations were performed with the land surface state initialized based on the global forecasts versus land surface conditions from a continuous mesoscale simulation driven by the NCEP reanalysis. Comparison of the skill of the global and downscaled precipitation forecasts in the western U.S. showed higher skill for the downscaled forecasts at all precipitation thresholds and increasingly larger differences at the larger thresholds. Analyses of the surface temperature forecasts show that the mesoscale forecasts generally reduced the root-mean-square error by about 1.5 C compared to the global forecasts, because of the much better resolved topography at 30 km spatial resolution. In addition, initialization of the land surface states has large impacts on the temperature forecasts, but not the precipitation forecasts. The improvements in forecast skill using downscaling could be potentially significant for improving hydrologic forecasts for managing river basins.

  20. Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications

    E-Print Network [OSTI]

    Niyogi, Dev

    (GEM) for Mesoscale Weather Forecasting Applications DEV NIYOGI Department of Agronomy, and Department form 13 May 2008) ABSTRACT Current land surface schemes used for mesoscale weather forecast models use model (GEM) as a land surface scheme for mesoscale weather forecasting model applications. The GEM

  1. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  2. Standardized Software for Wind Load Forecast Error Analyses and Predictions Based on Wavelet-ARIMA Models - Applications at Multiple Geographically Distributed Wind Farms

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.

    2013-03-19

    Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (‘stochastic’) model with the weather forecast model (‘deterministic’) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.

  3. Community-Based Forest (Natural) Resource Management: A Path...

    Open Energy Info (EERE)

    Community-Based Forest (Natural) Resource Management: A Path to Sustainable Environment and Development Jump to: navigation, search Name Community-Based Forest (Natural) Resource...

  4. 2004 Pollock Year-Class Prediction: Average Recruitment This forecast is based on five data sources: three physical properties and two biological data sets.

    E-Print Network [OSTI]

    1 2004 Pollock Year-Class Prediction: Average Recruitment DATA This forecast is based on five data sources: three physical properties and two biological data sets. The sources are: 1) Observed 2004 Kodiak precipitation totals (inches) from hourly observations. Data for 2004 were obtained from the NOAA National

  5. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-01-01

    Associates, citing NYMEX natural gas bid-offer spreadAnalysis of the Market for Natural Gas Futures. ” The Energyas a Physical Hedge Against Natural Gas Price Movements. ”

  6. Sixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast Introduction................................................................................................................................. 3 Price Forecasts ............................................................................................................................ 5 U.S. Natural Gas Commodity Prices

  7. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural networks, Neural networks, Modeling, Forecasting, Energy demand, Time series forecasting, Power system demand time series based only on data for six years to forecast the demand for the seventh year. Both

  8. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-01-01

    Associates, citing NYMEX natural gas bid-offer spreadAnalysis of the Market for Natural Gas Futures. ” The EnergyProfiles of Renewable and Natural Gas Electricity Contracts:

  9. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-01-01

    Theis. 2001. “Which way the natural gas price: an attempt toHedge Against Natural Gas Price Movements. ” http://Downward Pressure on Natural Gas Prices: The Impact of

  10. Research on Short-term Load Forecasting of the Thermoelectric Boiler Based on a Dynamic RBF Neural Network 

    E-Print Network [OSTI]

    Dai, W.; Zou, P.; Yan, C.

    2006-01-01

    As thermal inertia is the key factor for the lag of thermoelectric utility regulation, it becomes very important to forecast its short-term load according to running parameters. In this paper, dynamic radial basis function ...

  11. Estimation and Inference under Weak Identification and Persistence: An Application to Forecast-Based Monetary Policy Reaction Function 

    E-Print Network [OSTI]

    Yang, Jui-Chung

    2014-08-05

    function for 1987:3{2007:4 are not accurate sufficiently to rule out the possibility of indeterminacy. However, for the model with forecast horizon one, the possibility of indeterminacy may be ruled out....

  12. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  13. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-01-01

    biomass, solar, and hydro power are often sold on a fixed-biomass, solar, and hydro power, which by their nature are

  14. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01

    114 Solar Irradiance And Power Output Variabilityand L. Bangyin. Online 24-h solar power forecasting based onNielsen. Online short-term solar power forecasting. Solar

  15. Motivation Methods Model configuration Results Forecasting Summary & Outlook Retrieving direct and diffuse radiation with the

    E-Print Network [OSTI]

    Heinemann, Detlev

    Motivation Methods Model configuration Results Forecasting Summary & Outlook 1/ 14 Retrieving. 17, 2015 #12;Motivation Methods Model configuration Results Forecasting Summary & Outlook 2/ 14 Motivation Sky Imager based shortest-term solar irradiance forecasts for local solar energy applications

  16. ECMWF analyses and forecasts of 500 mb synoptic-scale activity during wintertime blocking 

    E-Print Network [OSTI]

    Matson, David Michael

    1993-01-01

    An observational study of 500 mb atmospheric blocking is conducted based on an European Centre for Medium-Range Weather Forecasts (ECMWF) wintertime analysis and forecast dataset during dynamic extended range forecasting ...

  17. LOAD FORECASTING Eugene A. Feinberg

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    , regression, artificial intelligence. 1. Introduction Accurate models for electric power load forecasting to make important decisions including decisions on pur- chasing and generating electric power, load for different operations within a utility company. The natures 269 #12;270 APPLIED MATHEMATICS FOR POWER SYSTEMS

  18. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand Bill Junker Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS

  19. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P

  20. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    /demographic growth, relatively low electricity and natural gas rates, and relatively low efficiency program CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity Manager Bill Junker Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY

  1. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    incorporates relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  2. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    high economic/demographic growth, relatively low electricity and natural gas rates, and relatively low CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION

  3. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    incorporates relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P

  4. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand Gough Office Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS

  5. The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    2005-01-01

    function. The forecasts of oil, coal and gas prices as wellforecasts for natural gas consumption, electricity sales, coal and electricity prices,

  6. INTELLIGENT HANDLING OF WEATHER FORECASTS Stephan Kerpedjiev

    E-Print Network [OSTI]

    , discourse and semantic. They are based on a conceptual model underlying weather forecasts as well situations represented in the form of texts in NL, weather maps, data tables or combined information objectsINTELLIGENT HANDLING OF WEATHER FORECASTS Stephan Kerpedjiev I n s t i t u t e of Mathematics Acad

  7. Choosing Words in Computer-Generated Weather Forecasts

    E-Print Network [OSTI]

    Reiter, Ehud

    to communicate numeric weather data. A corpus-based analysis of how humans write forecasts showed that there wereTime- Mousam weather-forecast generator to use consistent data-to-word rules, which avoided words which were weather forecast texts from numerical weather pre- diction data (SumTime-Mousam in fact is used

  8. Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging J. MCLEAN 2011, in final form 26 May 2012) ABSTRACT Probabilistic forecasts of wind vectors are becoming critical with univariate quantities, statistical approaches to wind vector forecasting must be based on bivariate

  9. SYNTHESIZING WEATHER FORECASTS FROM FORMATFED DATA R.Kittredge and A.Polgu~re

    E-Print Network [OSTI]

    of several types of weather bulletin based on the same basic weather data, each type emphasizingSYNTHESIZING WEATHER FORECASTS FROM FORMATFED DATA R.Kittredge and A.Polgu~re D6partement de formatted weather data. Such synthesis appem~ feasible in certain natural sublanguages with stereo- typed

  10. Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.

    2014-10-27

    In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of forecasts. We use automatically coupled wavelet transform and autoregressive integrated moving-average (ARIMA) forecasting to reflect multi-scale variability of forecast errors. The proposed analysis reveals slow-changing “quasi-deterministic” components of forecast errors. This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals.

  11. A Distributed Modeling System for Short-Term to Seasonal Ensemble Streamflow Forecasting in Snowmelt Dominated Basins

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Gill, Muhammad K.; Coleman, Andre M.; Prasad, Rajiv; Vail, Lance W.

    2007-12-01

    This paper describes a distributed modeling system for short-term to seasonal water supply forecasts with the ability to utilize remotely-sensed snow cover products and real-time streamflow measurements. Spatial variability in basin characteristics and meteorology is represented using a raster-based computational grid. Canopy interception, snow accumulation and melt, and simplified soil water movement are simulated in each computational unit. The model is run at a daily time step with surface runoff and subsurface flow aggregated at the basin scale. This approach allows the model to be updated with spatial snow cover and measured streamflow using an Ensemble Kalman-based data assimilation strategy that accounts for uncertainty in weather forecasts, model parameters, and observations used for updating. Model inflow forecasts for the Dworshak Reservoir in northern Idaho are compared to observations and to April-July volumetric forecasts issued by the Natural Resource Conservation Service (NRCS) for Water Years 2000 – 2006. October 1 volumetric forecasts are superior to those issued by the NRCS, while March 1 forecasts are comparable. The ensemble spread brackets the observed April-July volumetric inflows in all years. Short-term (one and three day) forecasts also show excellent agreement with observations.

  12. Natural Language Access to Data Bases" Interpreting Update Requests 1

    E-Print Network [OSTI]

    Natural Language Access to Data Bases" Interpreting Update Requests 1 James Davidson and S. Jerrold of the domain, which may be a considerable simplification of the actual underlying data base structure. Updates to the underlying data base. Update requests may be impossible (cannot be performed in any way), ambiguous (can

  13. Classification of Commodity Price Forecast With Random Forests and Bayesian

    E-Print Network [OSTI]

    Freitas, Nando de

    on the sentiment of price39 forecasts and reports for commodities such as gold, natural gas or most commonly oil or natural gas can impact everything from the21 critical business decisions made within nationsClassification of Commodity Price Forecast Sentiment With Random Forests and Bayesian Optimization

  14. Combinatorial Evolution and Forecasting of Communication Protocol ZigBee

    E-Print Network [OSTI]

    Levin, Mark Sh; Kistler, Rolf; Klapproth, Alexander

    2012-01-01

    The article addresses combinatorial evolution and forecasting of communication protocol for wireless sensor networks (ZigBee). Morphological tree structure (a version of and-or tree) is used as a hierarchical model for the protocol. Three generations of ZigBee protocol are examined. A set of protocol change operations is generated and described. The change operations are used as items for forecasting based on combinatorial problems (e.g., clustering, knapsack problem, multiple choice knapsack problem). Two kinds of preliminary forecasts for the examined communication protocol are considered: (i) direct expert (expert judgment) based forecast, (ii) computation of the forecast(s) (usage of multicriteria decision making and combinatorial optimization problems). Finally, aggregation of the obtained preliminary forecasts is considered (two aggregation strategies are used).

  15. Agent-based model forecasts aging of the population of people who inject drugs in metropolitan Chicago and changing prevalence of hepatitis C infections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.; Kaderali, Lars

    2015-09-30

    People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID tomore »build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our research highlight the importance of analyzing sub-populations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.« less

  16. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  17. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

  18. Forecasting Water Quality & Biodiversity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability Platform Review Principle Investigator: Dr. Henriette I. Jager Organization: Oak Ridge National...

  19. Forecasting Random Walks Under Drift Instability

    E-Print Network [OSTI]

    Pesaran, M Hashem; Pick, Andreas

    will yield a biased forecast but will continue to have the least variance. On the other hand a forecast based on the sub-sample {yTi , yTi+1, . . . , yT }, where Ti > 1 is likely to have a lower bias but could be inefficient due to a higher variance... approach considered in Pesaran and Timmermann (2007) is to use different sub-windows to forecast and then average the outcomes, either by means of cross-validated weights or by simply using equal weights. To this end consider the sample {yTi , yTi+1...

  20. Electric Grid - Forecasting system licensed | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Grid - Forecasting system licensed Location Based Technologies has signed an agreement to integrate and market an Oak Ridge National Laboratory technology that provides...

  1. Fuel Price Forecasts INTRODUCTION

    E-Print Network [OSTI]

    Fuel Price Forecasts INTRODUCTION Fuel prices affect electricity planning in two primary ways and water heating, and other end-uses as well. Fuel prices also influence electricity supply and price turbines. This second effect is the primary use of the fuel price forecast for the Council's Fifth Power

  2. Weather Forecasting Spring 2014

    E-Print Network [OSTI]

    Hennon, Christopher C.

    ATMS 350 Weather Forecasting Spring 2014 Professor : Dr. Chris Hennon Office : RRO 236C Phone : 232 of atmospheric physics and the ability to include this understanding into modern numerical weather prediction agencies, forecast tools, numerical weather prediction models, model output statistics, ensemble

  3. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    ....................................................................................................1-16 Energy Consumption Data...............................................1-15 Data Sources for Energy Demand Forecasting ModelsCALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report

  4. Solar Forecasting System and Irradiance Variability Characterization

    E-Print Network [OSTI]

    solar forecasting system based on numerical weather prediction plus satellite and ground-based data.1 Photovoltaic Systems: Report 3 Development of data base allowing managed access to statewide PV and insolation Based Data 13 Summary 14 References 14 #12;List of Figures Figure Number and Title Page # 1. Topography

  5. Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2005-01-01

    17. Parker, N. , Using Natural Gas Transmission PipelineANALYZING NATURAL GAS BASED HYDROGEN INFRASTRUCTURE –distribution infrastructure (natural gas and electricity)

  6. Essays on Forecasting and Hedging Models in the Oil Market and Causality Analysis in the Korean Stock Market 

    E-Print Network [OSTI]

    Choi, Hankyeung

    2012-10-19

    , the nature of forecasting crude oil prices based on financial data for the oil and oil product market is examined. As crack spread and oil-related Exchange-Traded Funds (ETFs) have enabled more consumers and investors to gain access to the crude oil...

  7. 2006 Nature Publishing Group Graphene-based composite materials

    E-Print Network [OSTI]

    for the preparation of graphene-polymer composites via complete exfoliation of graphite9 and molecular© 2006 Nature Publishing Group Graphene-based composite materials Sasha Stankovich1 *, Dmitriy A. Piner1 , SonBinh T. Nguyen2 & Rodney S. Ruoff1 Graphene sheets--one-atom-thick two-dimensional layers

  8. Forecasting wind speed financial return

    E-Print Network [OSTI]

    D'Amico, Guglielmo; Prattico, Flavio

    2013-01-01

    The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

  9. A Deep Hybrid Model for Weather Forecasting Aditya Grover

    E-Print Network [OSTI]

    Horvitz, Eric

    @microsoft.com ABSTRACT Weather forecasting is a canonical predictive challenge that has depended primarily on model-based methods. We ex- plore new directions with forecasting weather as a data- intensive challenge that involves the joint statistics of a set of weather-related vari- ables. We show how the base model can be enhanced

  10. Hydrological Forecasting Improvements Primary Investigator: Thomas Croley -NOAA GLERL (Emeritus)

    E-Print Network [OSTI]

    multiple data streams in a near-real-time manner and incorporate them into the AHPS data base, run for matching weather forecasts with historical data, and prepare extensive forecasts of hydrology probabilities maximum use of all available information and be based on efficient and true hydrological process models

  11. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  12. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  13. Value of Probabilistic Weather Forecasts: Assessment by Real-Time Optimization of Irrigation Scheduling

    SciTech Connect (OSTI)

    Cai, Ximing; Hejazi, Mohamad I.; Wang, Dingbao

    2011-09-29

    This paper presents a modeling framework for real-time decision support for irrigation scheduling using the National Oceanic and Atmospheric Administration's (NOAA's) probabilistic rainfall forecasts. The forecasts and their probability distributions are incorporated into a simulation-optimization modeling framework. In this study, modeling irrigation is determined by a stochastic optimization program based on the simulated soil moisture and crop water-stress status and the forecasted rainfall for the next 1-7 days. The modeling framework is applied to irrigated corn in Mason County, Illinois. It is found that there is ample potential to improve current farmers practices by simply using the proposed simulation-optimization framework, which uses the present soil moisture and crop evapotranspiration information even without any forecasts. It is found that the values of the forecasts vary across dry, normal, and wet years. More significant economic gains are found in normal and wet years than in dry years under the various forecast horizons. To mitigate drought effect on crop yield through irrigation, medium- or long-term climate predictions likely play a more important role than short-term forecasts. NOAA's imperfect 1-week forecast is still valuable in terms of both profit gain and water saving. Compared with the no-rain forecast case, the short-term imperfect forecasts could lead to additional 2.4-8.5% gain in profit and 11.0-26.9% water saving. However, the performance of the imperfect forecast is only slightly better than the ensemble weather forecast based on historical data and slightly inferior to the perfect forecast. It seems that the 1-week forecast horizon is too limited to evaluate the role of the various forecast scenarios for irrigation scheduling, which is actually a seasonal decision issue. For irrigation scheduling, both the forecast quality and the length of forecast time horizon matter. Thus, longer forecasts might be necessary to evaluate the role of forecasts for irrigation scheduling in a more effective way.

  14. Flood management in a complex river basin with a real-time decision support system based on hydrological forecasts

    E-Print Network [OSTI]

    Lenstra, Arjen K.

    ENAC/ Flood management in a complex river basin with a real-time decision support system based System MINDS proposes the optimal hydropower plants management for flood peak reduction PREDICTING FLOODS for population safety and! Computational program: Routing System MINERVE Run-off model Infiltration model

  15. ESTIMATING POTENTIAL SEVERE WEATHER SOCIETAL IMPACTS USING PROBABILISTIC FORECASTS ISSUED BY THE NWS STORM PREDICTION CENTER

    E-Print Network [OSTI]

    effort to estimate potential severe weather societal impacts based on a combination of probabilistic forecasts and high resolution population data. For equal severe weather threat, events that occur over1 ESTIMATING POTENTIAL SEVERE WEATHER SOCIETAL IMPACTS USING PROBABILISTIC FORECASTS ISSUED

  16. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  17. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  18. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    low electricity and natural gas rates, and relatively low efficiency program and self Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert Oglesby Executive Director DISCLAIMER Staff for electric vehicles. #12;ii #12;iii ABSTRACT The Preliminary California Energy Demand Forecast 2012

  19. Impact of PV forecasts uncertainty in batteries management in microgrids

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Impact of PV forecasts uncertainty in batteries management in microgrids Andrea Michiorri Arthur-based battery schedule optimisation in microgrids in presence of network constraints. We examine a specific case production forecast algorithm is used in combination with a battery schedule optimisation algorithm. The size

  20. DEEP COMPREHENSION, GENERATION AND TRANSLATION OF WEATHER FORECASTS (WEATHRA)

    E-Print Network [OSTI]

    in a data base and graphic representation with tile standard meteorological icons on a map, e.g. iconsDEEP COMPREHENSION, GENERATION AND TRANSLATION OF WEATHER FORECASTS (WEATHRA) by BENGT SIGURD, Sweden E-mail: linglund@gemini.ldc.lu.se FAX:46-(0)46 104210 Introduction and abstract Weather forecasts

  1. Human Trajectory Forecasting In Indoor Environments Using Geometric Context

    E-Print Network [OSTI]

    . In addressing this problem, we have built a model to estimate the occupancy behavior of humans based enhancement in the accuracy of trajectory forecasting by incorporating the occupancy behavior model. Keywords Trajectory forecasting, human occupancy behavior, 3D ge- ometric context 1. INTRODUCTION Given a human

  2. Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (Million CubicBased ProductionProduction (Million

  3. Colorado Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) GasBarrels) Reserves Based

  4. North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4Barrels) Reserves Based Production

  5. Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009Reserves Based Production (Million

  6. Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009Reserves Based38

  7. Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009Reserves Based38(Million

  8. Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1ExpectedBarrels) Reserves Based

  9. Improving automotive battery sales forecast

    E-Print Network [OSTI]

    Bulusu, Vinod

    2015-01-01

    Improvement in sales forecasting allows firms not only to respond quickly to customers' needs but also to reduce inventory costs, ultimately increasing their profits. Sales forecasts have been studied extensively to improve ...

  10. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping of any forecast of electricity demand and developing ways to reduce the risk of planning errors

  11. Consensus Coal Production Forecast for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

  12. METEOROLOGICAL Weather and Forecasting

    E-Print Network [OSTI]

    Rutledge, Steven

    AMERICAN METEOROLOGICAL SOCIETY Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary microbursts than in many previously documented microbursts. Alignment of Doppler radar data to reports of wind-related damage to electrical power infrastructure in Phoenix allowed a comparison of microburst wind damage

  13. METEOROLOGICAL Weather and Forecasting

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    AMERICAN METEOROLOGICAL SOCIETY Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary and interpretation of information from National Weather Service watches and warnings by10 decision makers such an outlier to the regional severe weather climatology. An analysis of the synoptic and13 mesoscale

  14. GOES Aviation Products Aviation Weather Forecasting

    E-Print Network [OSTI]

    Kuligowski, Bob

    GOES Aviation Products · The GOES aviation forecast products are based on energy measured in different characteristics #12;GOES Aviation Products Quiz · What is a geostationary satellite? · What generates energy received by the satellite in the visible band? · What generates energy received by the satellite

  15. Segmenting Time Series for Weather Forecasting

    E-Print Network [OSTI]

    Reiter, Ehud

    summarisation. We found three alternative ways in which we could model data summarisation. One approach is based turbines. In the domain of meteorology, time series data produced by numerical weather prediction (NWP) models is summarised as weather forecast texts. In the domain of gas turbines, sensor data from

  16. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.

  17. Forecasting hotspots using predictive visual analytics approach

    DOE Patents [OSTI]

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  18. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  19. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect (OSTI)

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  20. EIA lowers forecast for summer gasoline prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers forecast for summer gasoline prices

  1. Forecasting and strategic inventory placement for gas turbine aftermarket spares

    E-Print Network [OSTI]

    Simmons, Joshua T. (Joshua Thomas)

    2007-01-01

    This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

  2. UWIG Forecasting Workshop -- Albany (Presentation)

    SciTech Connect (OSTI)

    Lew, D.

    2011-04-01

    This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

  3. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement BuoyForecasting Sign

  4. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    SciTech Connect (OSTI)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.

  5. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01

    s economy. Demand Forecasts The three energy futures wereto meet the forecast demand in each energy futurE2. e e1£~energy saved through improved appliance efficiencies. Also icit in our demand forecasts

  6. Price forecasting for notebook computers 

    E-Print Network [OSTI]

    Rutherford, Derek Paul

    1997-01-01

    of individual features are estimated. A time series analysis is used to forecast and can be used, for example, to forecast (1) notebook computer price at introduction, and (2) rate of price erosion for a notebook's life cycle. Results indicate that this approach...

  7. Multivariate Forecast Evaluation And Rationality Testing

    E-Print Network [OSTI]

    Komunjer, Ivana; OWYANG, MICHAEL

    2007-01-01

    Economy, 95(5), 1062—1088. MULTIVARIATE FORECASTS Chaudhuri,Notion of Quantiles for Multivariate Data,” Journal of thePress, United Kingdom. MULTIVARIATE FORECASTS Kirchgässner,

  8. Control method for mixed refrigerant based natural gas liquefier

    DOE Patents [OSTI]

    Kountz, Kenneth J. (Palatine, IL); Bishop, Patrick M. (Chicago, IL)

    2003-01-01

    In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

  9. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-12-06

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  10. Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of Elements) Kentucky Natural

  11. Arkansas Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear JanYearBarrels)

  12. Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYearElements)

  13. Natural Language Database Interface for the Community Based Monitoring System*

    E-Print Network [OSTI]

    database interface, SQL, CBMS, natural language query 1. Introduction CBMS is a poverty monitoring system that is now used in Pasay City. It tracks poverty by surveying the people living in a certain area. Once statistically monitor poverty. Since STATA needs technical skills to be used effectively, the data is very hard

  14. Hawaii Natural Energy Institute Equation-Based, Object-Oriented

    E-Print Network [OSTI]

    is not widely shared 2 #12;Hawaii Natural Energy Institute Research gap PEMFC models are limited by: Range-source PEMFC model library suitable for many applications 1. Fidelity and flexibility: How can we model all the relevant physical phenomena of FCs to support the analysis and design of PEMFC systems, inclusive

  15. Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA

    E-Print Network [OSTI]

    Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA Submitted to Dr. Bi By Bernard Chan Pellets for UBC Boilers Replacing Natural Gas" By Bernard Chan, Brian Chan, and Christopher Young Abstract This report studies the feasibility of replacing natural gas with wood pellets for UBC boilers. A gasification

  16. Solar Wind Forecasting with Coronal Holes

    E-Print Network [OSTI]

    S. Robbins; C. J. Henney; J. W. Harvey

    2007-01-09

    An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

  17. Global disease monitoring and forecasting with Wikipedia

    SciTech Connect (OSTI)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  18. Global disease monitoring and forecasting with Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore »logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  19. AVLIS: a technical and economic forecast

    SciTech Connect (OSTI)

    Davis, J.I.; Spaeth, M.L.

    1986-01-01

    The AVLIS process has intrinsically large isotopic selectivity and hence high separative capacity per module. The critical components essential to achieving the high production rates represent a small fraction (approx.10%) of the total capital cost of a production facility, and the reference production designs are based on frequent replacement of these components. The specifications for replacement frequencies in a plant are conservative with respect to our expectations; it is reasonable to expect that, as the plant is operated, the specifications will be exceeded and production costs will continue to fall. Major improvements in separator production rates and laser system efficiencies (approx.power) are expected to occur as a natural evolution in component improvements. With respect to the reference design, such improvements have only marginal economic value, but given the exigencies of moving from engineering demonstration to production operations, we continue to pursue these improvements in order to offset any unforeseen cost increases. Thus, our technical and economic forecasts for the AVLIS process remain very positive. The near-term challenge is to obtain stable funding and a commitment to bring the process to full production conditions within the next five years. If the funding and commitment are not maintained, the team will disperse and the know-how will be lost before it can be translated into production operations. The motivation to preserve the option for low-cost AVLIS SWU production is integrally tied to the motivation to maintain a competitive nuclear option. The US industry can certainly survive without AVLIS, but our tradition as technology leader in the industry will certainly be lost.

  20. FORECASTING EMPLOYMENT & POPULATION IN TEXAS: An Investigation on TELUM Requirements, Assumptions, and Results, including a Study

    E-Print Network [OSTI]

    Kockelman, Kara M.

    -convex, non-linear optimization problem, which maximizes the entropy and thus the likelihood of the data and then compared with the district-based forecasts. The comparison showed some stark differences. For example distribution of low income households in Austin was completely different for district- and TAZ-based forecasts

  1. Federal Offshore--California Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReportingElectricitybaselineProduction (Million

  2. Florida Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved ReservesYear Jan Feb Mar(Million

  3. Florida Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved ReservesYear Jan FebYear

  4. Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReserves (BillionYear Jan Feb Mar Apr

  5. Kansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReserves (BillionYear JanBarrels)

  6. Kentucky Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReservesReservesFoot)(Million

  7. Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33 2,297 809Proved

  8. Louisiana--North Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number(Million Barrels) Proved

  9. Louisiana--North Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number(Million Barrels)

  10. Louisiana--South Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number(Million(Million Barrels)Production

  11. Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential ConsumersProduction (Million Barrels) Expected

  12. Lower 48 Federal Offshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential ConsumersProduction (MillionReserves

  13. Lower 48 States Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential ConsumersProductionBarrels) Reserves

  14. Lower 48 States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential ConsumersProductionBarrels) Reserves(Million(Million

  15. Michigan Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProved ReservesDecade Year-0Year(Million

  16. Michigan Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProved ReservesDecadeYear JanBarrels)

  17. Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, AugustProduction

  18. Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32 4.46Production (Million

  19. California (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona -Production (Million Barrels) Reserves

  20. California--State Offshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4

  1. Colorado Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas WellsFoot)Year Jan(Million

  2. New Mexico Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNetperProductionNet Withdrawals(Million

  3. New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNetperProductionNetYear JanBarrels)

  4. North Dakota Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5Net+Production (Million

  5. Oklahoma Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ LeaseWellhead% of TotalDecade(Million

  6. Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ LeaseWellhead% ofElements)

  7. Other States Natural Gas Coalbed Methane, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+Elements) Gas and(Billion Cubic Feet)

  8. Miscellaneous States Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet)YearProduction (Million

  9. Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet)YearProduction(Million

  10. Mississippi (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved Reserves (Billion CubicFuture

  11. Montana Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved ReservesFoot)YearFoot)Year(Million

  12. Montana Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb Mar Apr May Jun JulBarrels)

  13. Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1Plant ProcessingProduction (Million Barrels) Reserves

  14. Underground Base Natural Gas in Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010Feet) Oil Wells (Million

  15. Utah Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010Feet)2.Decade Year-0Year

  16. West Virginia Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2Year Jan% ofProduction (Million

  17. West Virginia Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2Year Jan%

  18. Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1Expected FutureDecade(Million Barrels)

  19. California Natural Gas in Underground Storage (Base Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuelMay-15

  20. Louisiana Natural Gas in Underground Storage (Base Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear JanTotalYear Jan FebFeet)

  1. Minnesota Natural Gas in Underground Storage (Base Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 (MillionYear Jan Feb MarFeet)

  2. Mississippi Natural Gas in Underground Storage (Base Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522Decade Year-0 Year-1

  3. Mountain Region Natural Gas in Underground Storage (Base Gas) (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2Cubic Feet)

  4. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  5. Forecasting stock prices using Genetic Programming and Chance Discovery

    E-Print Network [OSTI]

    Fernandez, Thomas

    finance. GAs are algorithms that emulate evolution and natural selection to solve a problem. A populationForecasting stock prices using Genetic Programming and Chance Discovery Alma Lilia Garcia to financial problems. In particular, the use of Genetic Algorithms (GAs), for financial purposes, has

  6. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    /Individuals Providing Comments California Natural Gas Vehicle Coalition/ Mike Eaves League of Women VotersCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B. B. Blevins Executive Director DISCLAIMER This report was prepared by a California

  7. Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting

    E-Print Network [OSTI]

    Goto, Susumu

    2007-01-01

    This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

  8. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    SciTech Connect (OSTI)

    Qian, Yun; Gustafson, William I.; Leung, Lai-Yung R.; Ghan, Steven J.

    2009-02-14

    Radiative forcing induced by soot on snow is a major anthropogenic forcing affecting the global climate. However, it is uncertain how the soot-induced snow albedo perturbation affects regional snowpack and the hydrological cycle. In this study we simulated the deposition of soot aerosol on snow and investigated the resulting impact on snowpack and the surface water budget in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine an annual budget of soot deposition, followed by two regional climate simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the net solar radiation flux at the surface during late winter to early spring, increase the surface air temperature, reduce snow water equivalent amount, and lead to reduced snow accumulation and less spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. Our simulations indicate that the change of maximum snow albedo induced by soot on snow contributes to 60% of the net albedo reduction over the central Rockies. Snowpack reduction accounts for the additional 40%.

  9. Value of medium range weather forecasts in the improvement of seasonal hydrologic prediction skill

    SciTech Connect (OSTI)

    Shukla, Shraddhanand; Voisin, Nathalie; Lettenmaier, D. P.

    2012-08-15

    We investigated the contribution of medium range weather forecasts with lead times up to 14 days to seasonal hydrologic prediction skill over the Conterminous United States (CONUS). Three different Ensemble Streamflow Prediction (ESP)-based experiments were performed for the period 1980-2003 using the Variable Infiltration Capacity (VIC) hydrology model to generate forecasts of monthly runoff and soil moisture (SM) at lead-1 (first month of the forecast period) to lead-3. The first experiment (ESP) used a resampling from the retrospective period 1980-2003 and represented full climatological uncertainty for the entire forecast period. In the second and third experiments, the first 14 days of each ESP ensemble member were replaced by either observations (perfect 14-day forecast) or by a deterministic 14-day weather forecast. We used Spearman rank correlations of forecasts and observations as the forecast skill score. We estimated the potential and actual improvement in baseline skill as the difference between the skill of experiments 2 and 3 relative to ESP, respectively. We found that useful runoff and SM forecast skill at lead-1 to -3 months can be obtained by exploiting medium range weather forecast skill in conjunction with the skill derived by the knowledge of initial hydrologic conditions. Potential improvement in baseline skill by using medium range weather forecasts, for runoff (SM) forecasts generally varies from 0 to 0.8 (0 to 0.5) as measured by differences in correlations, with actual improvement generally from 0 to 0.8 of the potential improvement. With some exceptions, most of the improvement in runoff is for lead-1 forecasts, although some improvement in SM was achieved at lead-2.

  10. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study...

  11. Tennessee Natural Gas in Underground Storage (Base Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060Year JanFeet) Base Gas)

  12. Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick James

    2013-01-01

    weather prediction solar irradiance forecasts in the US.2013: Review of solar irradiance forecasting methods and asatellite-derived irradiances: Description and validation.

  13. SWASH-BASED WAVE ENERGY REFLECTION ON NATURAL Rafael Almar1

    E-Print Network [OSTI]

    SWASH-BASED WAVE ENERGY REFLECTION ON NATURAL BEACHES Rafael Almar1 , Raimundo Ibaceta2 and the nature of reflected waves is crucial for various aspects of coastal science including energy balance others), have underlined the key role played by swash zone dynamics in controling the phase and energy

  14. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore »larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  15. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Broader source: Energy.gov (indexed) [DOE]

    the spatial and temporal resolution of SolarAnywhere, an online satellite-based irradiance dataset, and adding output variability and PV performance forecasts to the Web-based...

  16. Massachusetts state airport system plan forecasts.

    E-Print Network [OSTI]

    Mathaisel, Dennis F. X.

    This report is a first step toward updating the forecasts contained in the 1973 Massachusetts State System Plan. It begins with a presentation of the forecasting techniques currently available; it surveys and appraises the ...

  17. Management Forecast Quality and Capital Investment Decisions

    E-Print Network [OSTI]

    Goodman, Theodore H.

    Corporate investment decisions require managers to forecast expected future cash flows from potential investments. Although these forecasts are a critical component of successful investing, they are not directly observable ...

  18. Forecasting consumer products using prediction markets

    E-Print Network [OSTI]

    Trepte, Kai

    2009-01-01

    Prediction Markets hold the promise of improving the forecasting process. Research has shown that Prediction Markets can develop more accurate forecasts than polls or experts. Our research concentrated on analyzing Prediction ...

  19. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01

    FORECASTING THE ROLE OF RENEWABLES IN HAWAII Jayant SathayeFORECASTING THE ROLF OF RENEWABLES IN HAWAII J Sa and Henrythe Conservation Role of Renewables November 18, 1980 Page 2

  20. NATIONAL AND GLOBAL FORECASTS WEST VIRGINIA PROFILES AND FORECASTS

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    income 7 Figure 1.14: United States inflation Rate 8 Figure 1.15: Select United States interest Rates 8 2014 TABLE OF CONTENTS EXECUTiVE SUMMARY 1 CHAPTER 1: THE UNiTED STATES ECONOMY 3 Recent Trends Forecast Summary 2 CHAPTER 1: THE UNiTED STATES ECONOMY Figure 1.1: United States Real GDP Growth 3 Figure

  1. Laser-based localization of vehicles and robots in natural and unstructured environments

    E-Print Network [OSTI]

    Hellström, Thomas

    Laser-based localization of vehicles and robots in natural and unstructured environments Arsalan 26, 2005 #12;Laser-based localization of vehicles and robots Arsalan Siddiqui & Thomas Hellström 2 Abstract The use of Laser Range Finder or LADAR for localization of mobile robots has been increasing

  2. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and M. Cony, “Prediction of global solar irradiance based onand C. K. Chan, “Prediction of hourly solar radiation usingand K. C. Chee, “Prediction of hourly solar radiation using

  3. Modeling and Forecasting Electric Daily Peak Loads

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    for the same data. Two methods are described for forecasting daily peak loads up to one week ahead through, including generator unit commitment, hydro-thermal coordination, short-term maintenance, fuel allocation forecasting accuracies. STLF forecasting covers the daily peak load, total daily energy, and daily load curve

  4. Consensus Coal Production And Price Forecast For

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

  5. Forecasting phenology under global warming

    E-Print Network [OSTI]

    Silander Jr., John A.

    Forecasting phenology under global warming Ine´s Iba´n~ez1,*, Richard B. Primack2, Abraham J in phenology. Keywords: climate change; East Asia, global warming; growing season, hierarchical Bayes; plant is shifting, and these shifts have been linked to recent global warming (Parmesan & Yohe 2003; Root et al

  6. MET 416: TROPICAL ANALYSIS AND FORECASTING Spring Semester 2013

    E-Print Network [OSTI]

    current (nowcasting) and expected weather, using all available real-time operational weather data Exam 4/9 Summer trade-wind weather based on HaRP 4/11-16 Large-scale influences, Diurnal cycle to the development of tropical storm systems and mesoscale weather. Lectures will include a forecasting perspective

  7. A Hierarchical Pattern Learning Framework for Forecasting Extreme Weather Events

    E-Print Network [OSTI]

    Ding, Wei

    . Frequent pattern-based data representations have been used in various studies for abstracting climaticA Hierarchical Pattern Learning Framework for Forecasting Extreme Weather Events Dawei Wang, Wei@cs.umb.edu Abstract--Extreme weather events, like extreme rainfalls, are severe weather hazards and also the triggers

  8. FORECASTING SOLAR RADIATION PRELIMINARY EVALUATION OF AN APPROACH

    E-Print Network [OSTI]

    Perez, Richard R.

    a limited evaluation of its performance against ground-measured and satellite-derived irradiances in AlbanyFORECASTING SOLAR RADIATION -- PRELIMINARY EVALUATION OF AN APPROACH BASED UPON THE NATIONAL NREL, 1617 Cole Blvd. Golden, CO 80841 stephen_wilcox@nrel.gov Antoine Zelenka Meteosuisse

  9. Short-Term Solar Energy Forecasting Using Wireless Sensor Networks

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

  10. Estimation of lateral inflows using data assimilation in the context of real-time flood forecasting for the

    E-Print Network [OSTI]

    efficient implementation. I. INTRODUTION In 2006, 9% of the French population was exposed to flood risk, one of the greatest natural risks causing damage and human loss [21]. The French flood forecasting service (SCHAPIEstimation of lateral inflows using data assimilation in the context of real-time flood forecasting

  11. Assessing forecast uncertainties in a VECX model for Switzerland: an exercise in forecast combination across models and observation windows

    E-Print Network [OSTI]

    Assenmacher-Wesche, Katrin; Pesaran, M. Hashem

    horizons of up to eight quarters ahead since this is the rele- vant time horizon for central banks when setting interest rates. Table 6 shows the RMSFE, the bias and the hit rate of forecasts based on the VECX*(2,2) model for the longest estimation window...

  12. Energy consumption and expenditure projections by population group on the basis of the annual energy outlook 1999 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Balsley, J.H.

    2000-01-07

    This report presents an analysis of the relative impact of the base-case scenario used in Annual Energy Outlook 1999 on different population groups. Projections of energy consumption and expenditures, as well as energy expenditure as a share of income, from 1996 to 2020 are given. The projected consumption of electricty, natural gas, distillate fuel, and liquefied petroleum gas during this period is also reported for each population group. In addition, this report compares the findings of the Annual Energy Outlook 1999 report with the 1998 report. Changes in certain indicators and information affect energy use forecasts, and these effects are analyzed and discussed.

  13. Quantifying the value that energy efficiency and renewable energy provide as a hedge against volatile natural gas prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Bachrach, Devra; Golove, William

    2002-01-01

    Against Volatile Natural Gas Prices Mark Bolinger, Ryanwake of unprecedented natural gas price volatility duringyears) to a 10-year natural gas price forecast (i.e. , what

  14. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  15. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  16. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

    2014-11-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

  17. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  18. Weather Forecast Data an Important Input into Building Management Systems 

    E-Print Network [OSTI]

    Poulin, L.

    2013-01-01

    Implementation and Operational Services Section Canadian Meteorological Centre, Dorval, Qc National Prediction Operations Division ICEBO 2013, Montreal, Qc October 10 2013 Version 2013-09-27 Weather Forecast Data An Important Input into Building..., Martin Fradette Environment Canada RPN ? Recherche en Pr?vision num?rique Dr. Wei Yu, Dr. Paul Vaillancourt, Dr. Sylvie Leroyer Natural Resources Canada ? Canmet Energy Dr. Jos? A. Candanedo Overview ? Building management and weather information...

  19. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01

    and validation.   Solar Energy.   73:5, 307? Perez, R. , irradiance forecasts for solar energy applications based on using satellite data.   Solar Energy 67:1?3, 139?150.  

  20. An adaptive nonlinear MOS scheme for precipitation forecasts using neural networks

    E-Print Network [OSTI]

    Hsieh, William

    An adaptive nonlinear MOS scheme for precipitation forecasts using neural networks Yuval, William W A novel neural network (NN) based scheme performs nonlinear Model Output Statistics (MOS) for generating

  1. Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate. 

    E-Print Network [OSTI]

    Balaban, Ercan

    2002-01-01

    The relative out-of-sample forecasting quality of symmetric and asymmetric conditional volatility models of an exchange rate differs according to the symmetric and asymmetric evaluation criteria as well as a regression-based ...

  2. Improving Inventory Control Using Forecasting

    E-Print Network [OSTI]

    Balandran, Juan

    2005-12-16

    and encouragement. I am very grateful to Lucille and Michael Hobbs for their friendship, understanding and financial support. Finally, thank you to Tom Decker, Pat Jackson and Brian Zellar for all their contributions and hard work on this project... below: 1. Na?ve 2. Linear Regression 3. Moving Average 4. Exponential 5. Double exponential The na?ve forecasting method assumes that more recent data values are the best predictors of future values. The model is ? t+1 = Y t . Where ? t...

  3. MOUNTAIN: A Translation-based Approach to Natural Language Generation for Dialog

    E-Print Network [OSTI]

    Black, Alan W

    MOUNTAIN: A Translation-based Approach to Natural Language Generation for Dialog Systems Brian, USA {blangner,awb}@cs.cmu.edu Abstract. This paper describes the Mountain language generation system a corpus of in-domain human responses, and show typical output of the Mountain system. The results of our

  4. Web Based Information System for Natural Hazard Analysis in an Alpine Valley

    E-Print Network [OSTI]

    Jenny, Bernhard

    Web Based Information System for Natural Hazard Analysis in an Alpine Valley Constantin R. Gogu}@karto.baug.ethz.ch Abstract A platform for geospatial hazard and risk information system, comprising graphical and numerical in the Swiss region. The final product will be a geospatial hazard information system. Three main steps

  5. 47 Natural Gas Market Trends NATURAL GAS MARKET TRENDS

    E-Print Network [OSTI]

    of the chapter addresses the forecast of coal prices to specific coal-fired power plants in the northwest;Natural Gas Market Trends 48 percent was produced within the state. Another 17 percent came from Canada

  6. Weather Forecasts are for Wimps: Why Water Resource Managers Do Not Use Climate Forecasts

    E-Print Network [OSTI]

    Rayner, Steve; Lach, Denise; Ingram, Helen

    2005-01-01

    and Winter, S. G. : 1960, Weather Information and EconomicThe ENSO Signal 7, 4–6. WEATHER FORECASTS ARE FOR WIMPSWEATHER FORECASTS ARE FOR WIMPS ? : WHY WATER RESOURCE

  7. The Preservation of Physical Fashion Forecasts

    E-Print Network [OSTI]

    Kosztowny, Alexander John

    2015-01-01

    schools and their libraries, which use trend forecastingin archives and libraries would be that the trend forecastsin a library or archive, not exclusively to trend forecasts.

  8. Project Profile: Forecasting and Influencing Technological Progress...

    Energy Savers [EERE]

    R&D translates into improved performance and reduced costs for energy technologies. Motivation Technological forecasts, which plot the anticipated performance and costs of...

  9. Promotional forecasting in the grocery retail business

    E-Print Network [OSTI]

    Koottatep, Pakawkul

    2006-01-01

    Predicting customer demand in the highly competitive grocery retail business has become extremely difficult, especially for promotional items. The difficulty in promotional forecasting has resulted from numerous internal ...

  10. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that take place in complex terrain, this funding opportunity will improve foundational weather models by developing short-term wind forecasts for use by industry professionals,...

  11. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    processes that take place in complex terrain, this funding would improve foundational weather models by developing short-term wind forecasts for use by industry professionals,...

  12. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect (OSTI)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  13. Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price forecast of the Fifth Northwest Power

    E-Print Network [OSTI]

    to the electricity price forecast. This resource mix is used to forecast the fuel consumption and carbon dioxide (CO2Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price forecast of the Fifth Northwest Power Plan. This forecast is an estimate of the future price of electricity

  14. 1Bureau of Meteorology | Water Information > INFORMATION SHEET 6 > Flood Forecasting and Warning Services Flood Forecasting

    E-Print Network [OSTI]

    Greenslade, Diana

    SHEET 6 1Bureau of Meteorology | Water Information > INFORMATION SHEET 6 > Flood Forecasting and Warning Services Flood Forecasting and Warning Services The Bureau of Meteorology (the Bureau) is responsible for providing an effective flood forecasting and warning service in each Australian state

  15. Incorporating Wind Generation Forecast Uncertainty into Power System Operation, Dispatch, and Unit Commitment Procedures

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Subbarao, Krishnappa

    2010-10-19

    In this paper, an approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the "flying-brick" technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through integration with an EMS system illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems from other vendors.

  16. On-line economic optimization of energy systems using weather forecast information.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-01-01

    We establish an on-line optimization framework to exploit weather forecast information in the operation of energy systems. We argue that anticipating the weather conditions can lead to more proactive and cost-effective operations. The framework is based on the solution of a stochastic dynamic real-time optimization (D-RTO) problem incorporating forecasts generated from a state-of-the-art weather prediction model. The necessary uncertainty information is extracted from the weather model using an ensemble approach. The accuracy of the forecast trends and uncertainty bounds are validated using real meteorological data. We present a numerical simulation study in a building system to demonstrate the developments.

  17. Holographic imaging based on time-domain data of natural-fiber-containing materials

    DOE Patents [OSTI]

    Bunch, Kyle J.; McMakin, Douglas L.

    2012-09-04

    Methods and apparatuses for imaging material properties in natural-fiber-containing materials can utilize time-domain data. In particular, images can be constructed that provide quantified measures of localized moisture content. For example, one or more antennas and at least one transceiver can be configured to collect time-domain data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz, according to a time-domain impulse function. A computing device is configured to transform the time-domain data to frequency-domain data, to apply a synthetic imaging algorithm for constructing a three-dimensional image of the natural-fiber-containing materials, and to provide a quantified measure of localized moisture content based on a pre-determined correlation of moisture content to frequency-domain data.

  18. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -BeingFuture forForecasting NREL researchers

  19. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex Fuels Energy JumpVyncke Jump to:Forecast

  20. Forecasting Market Demand for New Telecommunications Services: An Introduction

    E-Print Network [OSTI]

    Parsons, Simon

    Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc in demand forecasting for new communication services. Acknowledgments: The writing of this paper commenced employers or consultancy clients. KEYWORDS: Demand Forecasting, New Product Marketing, Telecommunica- tions

  1. Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting

    E-Print Network [OSTI]

    Plale, Beth

    Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting Nithya N. Vijayakumar {rramachandran, xli}@itsc.uah.edu Abstract-- Mesoscale meteorology forecasting as a data driven application Triggers, Data Mining, Stream Processing, Meteorology Forecasting I. INTRODUCTION Mesoscale meteorologists

  2. Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts

    E-Print Network [OSTI]

    Raftery, Adrian

    Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts VERONICA ensembles that generates calibrated probabilistic forecast products for weather quantities at indi- vidual perturbation (GOP) method, and extends BMA to generate calibrated probabilistic forecasts of whole weather

  3. Natural language processing-based COTS software and related technologies survey.

    SciTech Connect (OSTI)

    Stickland, Michael G.; Conrad, Gregory N.; Eaton, Shelley M.

    2003-09-01

    Natural language processing-based knowledge management software, traditionally developed for security organizations, is now becoming commercially available. An informal survey was conducted to discover and examine current NLP and related technologies and potential applications for information retrieval, information extraction, summarization, categorization, terminology management, link analysis, and visualization for possible implementation at Sandia National Laboratories. This report documents our current understanding of the technologies, lists software vendors and their products, and identifies potential applications of these technologies.

  4. Nonparametric models for electricity load forecasting

    E-Print Network [OSTI]

    Genève, Université de

    Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

  5. Smooth Calibration, Leaky Forecasts, and Finite Recall

    E-Print Network [OSTI]

    Hart, Sergiu

    Smooth Calibration, Leaky Forecasts, and Finite Recall Sergiu Hart October 2015 SERGIU HART c 2015 ­ p. #12;Smooth Calibration, Leaky Forecasts, and Finite Recall Sergiu Hart Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem hart@huji.ac.il http://www.ma.huji.ac.il/hart

  6. Multivariate Time Series Forecasting in Incomplete Environments

    E-Print Network [OSTI]

    Roberts, Stephen

    Multivariate Time Series Forecasting in Incomplete Environments Technical Report PARG 08-03 Seung of Oxford December 2008 #12;Seung Min Lee and Stephen J. Roberts Technical Report PARG 08-03 Multivariate missing observations and forecasting future values in incomplete multivariate time series data. We study

  7. Weather and Forecasting EARLY ONLINE RELEASE

    E-Print Network [OSTI]

    Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary PDF of the author, Guangzhou 510301, China9 2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological10, China20 21 22 23 24 Submitted to Weather and Forecasting25 2014. 12. 2826 27 Corresponding author: Dr

  8. Weather and Forecasting EARLY ONLINE RELEASE

    E-Print Network [OSTI]

    Johnson, Richard H.

    Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary PDF of the author Fort Collins, Colorado7 October 20128 (submitted to Weather and Forecasting)9 1 Corresponding author address: Rebecca D. Adams-Selin, HQ Air Force Weather Agency 16th Weather Squadron, 101 Nelson Dr., Offutt

  9. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Office of Environmental Management (EM)

    The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The...

  10. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2014-01-01

    in Natural Gas Cooking Burners, LBNL Page 16 Palmes, E. D. ,from Natural Gas Cooking Burners: A Simulation- Basedin Natural Gas Cooking Burners, LBNL Page 1 Disclaimer This

  11. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2014-01-01

    P. Sullivan (2009). Natural Gas Variability in California:Singer (2012). Impact of Natural Gas Appliances on PollutantPollutant Exposures in Natural Gas Cooking Burners, LBNL

  12. Earthquake Forecast via Neutrino Tomography

    E-Print Network [OSTI]

    Bin Wang; Ya-Zheng Chen; Xue-Qian Li

    2011-03-29

    We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. Antineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomography of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for $\\bar \

  13. Texas--RRC District 8 Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic(Million Barrels) Reserves Based

  14. Alaska Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304ExportsTotal(MillionDecadeBase

  15. Arkansas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570MonthThousand8DecadeYear JanBase Gas)

  16. Indiana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecade Year-0 Year-1YearYear JanBase

  17. Iowa Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecade Year-0 Year-1 Year-2Base Gas)

  18. Kansas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecadeFuelTotal ConsumptionYearBase Gas)

  19. Maryland Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0Year Jan Feb5.79DecadeBase Gas)

  20. Michigan Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 152009 2010DecadeDecadeBase

  1. Missouri Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19FuelYear Jan Feb MarBase Gas)

  2. U.S. Natural Gas Non-Salt Underground Storage - Base Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan Feb Mar AprYearFeet) - Base

  3. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  4. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  5. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  6. STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director

  7. Text-Alternative Version LED Lighting Forecast

    Broader source: Energy.gov [DOE]

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  8. Load Forecast For use in Resource Adequacy

    E-Print Network [OSTI]

    forecast of 4) Calculate Hourly Load Allocation Factor s for each day for 2019 For use in RA analysis as a function ofthe load for electricity in the region as a function of cyclical, weather and economic variables

  9. Wind Speed Forecasting for Power System Operation 

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  10. Testing Competing High-Resolution Precipitation Forecasts

    E-Print Network [OSTI]

    Gilleland, Eric

    Testing Competing High-Resolution Precipitation Forecasts Eric Gilleland Research Prediction Comparison Test D1 D2 D = D1 ­ D2 copyright NCAR 2013 Loss Differential Field #12;Spatial Prediction Comparison Test Introduced by Hering and Genton

  11. New product forecasting in volatile markets

    E-Print Network [OSTI]

    Baldwin, Alexander (Alexander Lee)

    2014-01-01

    Forecasting demand for limited-life cycle products is essentially projecting an arc trend of demand growth and decline over a relatively short time horizon. When planning for a new limited-life product, many marketing and ...

  12. Potential Economic Value of Seasonal Hurricane Forecasts

    E-Print Network [OSTI]

    Emanuel, Kerry Andrew

    This paper explores the potential utility of seasonal Atlantic hurricane forecasts to a hypothetical property insurance firm whose insured properties are broadly distributed along the U.S. Gulf and East Coasts. Using a ...

  13. Intra-hour Direct Normal Irradiance solar forecasting using genetic programming

    E-Print Network [OSTI]

    Queener, Benjamin Daniel

    2012-01-01

    guideline for Solar Power Forecasting Performance . . 46 viof forecasting techniques for solar power production with noand A. Pavlovski, “Solar power forecasting performance

  14. A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

    2013-01-01

    of the WRF model solar irradiance forecasts in Andalusia (Beyer, H. , 2009.    Irradiance forecasting for the power dependent probabilistic irradiance  forecasts for coastal 

  15. Mathematics Of Ice To Aid Global Warming Forecasts Mathematics Of Ice To Aid Global Warming Forecasts

    E-Print Network [OSTI]

    Golden, Kenneth M.

    Mathematics Of Ice To Aid Global Warming Forecasts Mathematics Of Ice To Aid Global Warming forecasts of how global warming will affect polar icepacks. See also: Earth & Climate q Global Warming q the effects of climate warming, and its presence greatly reduces solar heating of the polar oceans." "Sea ice

  16. Forecasting Prices andForecasting Prices and Congestion forCongestion for

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Goal: Design nodal price and grid congestion forecasting tools for market operators and market Traders To facilitate scenario-conditioned planning Price forecasting for Market Participants (MPs) To manage short for portfolio management by power market participants Conclusion #12;Project OverviewProject Overview Project

  17. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  18. Study on systems based on coal and natural gas for producing dimethyl ether

    SciTech Connect (OSTI)

    Zhou, L.; Hu, S.Y.; Chen, D.J.; Li, Y.R.; Zhu, B.; Jin, Y.

    2009-04-15

    China is a coal-dependent country and will remain so for a long time. Dimethyl ether (DME), a potential substitute for liquid fuel, is a kind of clean diesel motor fuel. The production of DME from coal is meaningful and is studied in this article. Considering the C/H ratios of coal and natural gas (NG), the cofeed (coal and NG) system (CFS), which does not contain the water gas shift process, is studied. It can reduce CO{sub 2} emission and increase the conversion rate of carbon, producing more DME. The CFS is simulated and compared with the coal-based and NG-based systems with different recycling ratios. The part of the exhaust gas that is not recycled is burned, producing electricity. On the basis of the simulation results, the thermal efficiency, economic index, and CO{sub 2} emission ratio are calculated separately. The CFS with a 100% recycling ratio has the best comprehensive evaluation index, while the energy, economy, and environment were considered at the same time.

  19. Quantile Forecasting of Commodity Futures' Returns: Are Implied Volatility Factors Informative? 

    E-Print Network [OSTI]

    Dorta, Miguel

    2012-07-16

    - returns has excess kurtosis or skewness, Gaussian based forecast could overexpose investors to financial risk. GARCH-class models, extensively used for log-returns density forecasting, have a somewhat limited ability to allow higher moments to be time... pricing model, which is based on the assumption of a log- normal density and risk-neutrality, would coincide with the true only if the underlying price process is a Brownian motion. Hence, differences between BS-derived put-IVs versus BS-derived call...

  20. Streamline-based simulation of water injection in naturally fractured reservoirs 

    E-Print Network [OSTI]

    Al-Huthali, Ahmed

    2004-09-30

    The current streamline formulation is limited to single-porosity systems and is then not suitable for application to naturally fractured reservoirs. Describing the fluid transport in naturally fractured reservoirs has been ...

  1. Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-07-17

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

  2. STATE OF CALIFORNIA --NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    is the price of the natural gas at a price hub (Henry Hub, for example). The transportation component. Forecasted annual natural gas commodity prices from the World Gas Trade Model, and transportation rates from developed an approach to converting annual natural gas price forecasts to monthly burner tip price estimates

  3. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  4. Continuous Model Updating and Forecasting for a Naturally Fractured Reservoir 

    E-Print Network [OSTI]

    Almohammadi, Hisham

    2013-07-26

    . Such capabilities allow for a paradigm change in which reservoir management can be looked at as a strategy that enables a semi-continuous process of model updates and decision optimizations instead of being periodic or reactive. This is referred to as closed...

  5. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output Perturbation

    E-Print Network [OSTI]

    Raftery, Adrian

    Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output. This is typically not feasible for mesoscale weather prediction carried out locally by organizations without by simulating realizations of the geostatistical model. The method is applied to 48-hour mesoscale forecasts

  6. New directions for forecasting air travel passenger demand

    E-Print Network [OSTI]

    Garvett, Donald Stephen

    1974-01-01

    While few will disagree that sound forecasts are an essential prerequisite to rational transportation planning and analysis, the making of these forecasts has become a complex problem with the broadening of the scope and ...

  7. The effect of multinationality on management earnings forecasts 

    E-Print Network [OSTI]

    Runyan, Bruce Wayne

    2005-08-29

    This study examines the relationship between a firm??s degree of multinationality and its managers?? earnings forecasts. Firms with a high degree of multinationality are subject to greater uncertainty regarding earnings forecasts due...

  8. Market perceptions of efficiency and news in analyst forecast errors 

    E-Print Network [OSTI]

    Chevis, Gia Marie

    2004-11-15

    Financial analysts are considered inefficient when they do not fully incorporate relevant information into their forecasts. In this dissertation, I investigate differences in the observable efficiency of analysts' earnings forecasts between firms...

  9. DOE Releases Latest Report on Energy Savings Forecast of Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Latest Report on Energy Savings Forecast of Solid-State Lighting DOE Releases Latest Report on Energy Savings Forecast of Solid-State Lighting September 12, 2014 - 2:06pm Addthis...

  10. U.S. Regional Demand Forecasts Using NEMS and GIS

    E-Print Network [OSTI]

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-01-01

    Forecasts Using NEMS and GIS National Climatic Data Center.with Changing Boundaries." Use of GIS to Understand Socio-Forecasts Using NEMS and GIS Appendix A. Map Results Gallery

  11. OPERATIONAL EARTHQUAKE FORECASTING State of Knowledge and Guidelines for Utilization

    E-Print Network [OSTI]

    .................................................................................................................................... 323 II. SCIENCE OF EARTHQUAKE FORECASTING AND PREDICTION 325 A. Definitions and Concepts....................................................................................................................................... 325 B. Research on Earthquake PredictabilityOPERATIONAL EARTHQUAKE FORECASTING State of Knowledge and Guidelines for Utilization Report

  12. Wind power forecasting in U.S. electricity markets.

    SciTech Connect (OSTI)

    Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

    2010-04-01

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

  13. Wind power forecasting in U.S. Electricity markets

    SciTech Connect (OSTI)

    Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

    2010-04-15

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

  14. Managerial Career Concerns and Earnings Forecasts SARAH SHAIKH

    E-Print Network [OSTI]

    Tipple, Brett

    's aversion to risk, I find that a CEO is less likely to issue an earnings forecast in periods of stricter non is more pronounced for a CEO who has greater concern for his reputation, faces more risk in forecasting the provision of earnings forecasts. Literature has long recognized that the labor market provides distinct

  15. Forecasting Market Demand for New Telecommunications Services: An Introduction

    E-Print Network [OSTI]

    McBurney, Peter

    Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc to redress this situation by presenting a discussion of the issues involved in demand forecasting for new or consultancy clients. KEYWORDS: Demand Forecasting, New Product Marketing, Telecommunica­ tions Services. 1 #12

  16. Neural Network forecasts of the tropical Pacific sea surface temperatures

    E-Print Network [OSTI]

    Hsieh, William

    Neural Network forecasts of the tropical Pacific sea surface temperatures Aiming Wu, William W Tang Jet Propulsion Laboratory, Pasadena, CA, USA Neural Networks (in press) December 11, 2005 title: Forecast of sea surface temperature 1 #12;Neural Network forecasts of the tropical Pacific sea

  17. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    i Managing Wind Power Forecast Uncertainty in Electric Grids Brandon Keith Mauch Co Paulina Jaramillo Doctor Paul Fischbeck 2012 #12;ii #12;iii Managing Wind Power Forecast Uncertainty generated from wind power is both variable and uncertain. Wind forecasts provide valuable information

  18. Forecasting Uncertainty Related to Ramps of Wind Power Production

    E-Print Network [OSTI]

    Boyer, Edmond

    Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power. This paper presents two methods focusing on forecasting large and sharp variations in power output of a wind

  19. SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg in irradiance forecasting have been presented more than twenty years ago (Jensenius and Cotton, 1981), when or progress with respect to the development of solar irradiance forecasting methods. Heck and Takle (1987

  20. Accuracy of near real time updates in wind power forecasting

    E-Print Network [OSTI]

    Heinemann, Detlev

    Accuracy of near real time updates in wind power forecasting with regard to different weather October 2007 #12;EMS/ECAM 2007 ­ Nadja Saleck Outline · Study site · Wind power forecasting - method #12;EMS/ECAM 2007 ­ Nadja Saleck Wind power forecast data observed wind power input (2004 ­ 2006

  1. Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc in the context of wind power, where under- forecasting and overforecasting carry different financial penal- ties, calibrated and sharp probabilistic forecasts can help to make wind power a more financially competitive alter

  2. Forecasting Building Occupancy Using Sensor Network James Howard

    E-Print Network [OSTI]

    Hoff, William A.

    Forecasting Building Occupancy Using Sensor Network Data James Howard Colorado School of Mines@mines.edu ABSTRACT Forecasting the occupancy of buildings can lead to signif- icant improvement of smart heating throughout a building, we perform data mining to forecast occupancy a short time (i.e., up to 60 minutes

  3. Weather Forecasting -Predicting Performance for Streaming Video over Wireless LANs

    E-Print Network [OSTI]

    Claypool, Mark

    Weather Forecasting - Predicting Performance for Streaming Video over Wireless LANs Mingzhe Li, "weather forecasts" are created such that selected wireless LAN performance indicators might be used to evaluate the effec- tiveness of individual weather forecasts. The paper evaluates six distinct weather

  4. Weather Forecasting Predicting Performance for Streaming Video over Wireless LANs

    E-Print Network [OSTI]

    Claypool, Mark

    Weather Forecasting ­ Predicting Performance for Streaming Video over Wireless LANs Mingzhe Li, ``weather forecasts'' are created such that selected wireless LAN performance indicators might be used to evaluate the e#ec­ tiveness of individual weather forecasts. The paper evaluates six distinct weather

  5. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  6. Preprints, 15th AMS Conference on Weather Analysis and Forecasting

    E-Print Network [OSTI]

    Doswell III, Charles A.

    ) models have substantially improved forecast skill. Recent and planned changes along these lines (e to delivering two kinds of weather products. The first is a day-to-day forecast of weather elements, e by the private sector. Improvements in automated techniques for the forecasting of basic weather elements

  7. Influences of soil moisture and vegetation on convective precipitation forecasts

    E-Print Network [OSTI]

    Robock, Alan

    Influences of soil moisture and vegetation on convective precipitation forecasts over the United and vegetation on 30 h convective precipitation forecasts using the Weather Research and Forecasting model over, the complete removal of vegetation produced substantially less precipitation, while conversion to forest led

  8. Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines

    Broader source: Energy.gov [DOE]

    Natural gas and other liquid feedstocks for transportation fuels are compared for use in a dual-fuel engine. Benefits include economic stability, national security, environment, and cost.

  9. Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2005-01-01

    focus is on modeling of hydrogen production and distributionto centralized hydrogen production. One key question thatCalifornia, Davis Hydrogen Production via Natural Gas Steam

  10. Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick James

    2013-01-01

    of Solar 2011, American Solar Energy Society, Raleigh, NC.Description and validation. Solar Energy, 73 (5), 307-317.forecast database. Solar Energy, Perez, R. , S. Kivalov, J.

  11. Online short-term solar power forecasting

    SciTech Connect (OSTI)

    Bacher, Peder; Madsen, Henrik [Informatics and Mathematical Modelling, Richard Pedersens Plads, Technical University of Denmark, Building 321, DK-2800 Lyngby (Denmark); Nielsen, Henrik Aalborg [ENFOR A/S, Lyngsoe Alle 3, DK-2970 Hoersholm (Denmark)

    2009-10-15

    This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of around 35% is achieved by the ARX model compared to a proposed reference model. (author)

  12. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    1998-07-01

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  13. Issues in midterm analysis and forecasting, 1996

    SciTech Connect (OSTI)

    1996-08-01

    This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

  14. Forecasting Hot Water Consumption in Residential Houses

    E-Print Network [OSTI]

    MacDonald, Mark

    and technological advancement in energy-intensive applications are causing fast electric energy consumption growth and consumption of electricity [8], as long as there is no significant correlation between intermittent energyArticle Forecasting Hot Water Consumption in Residential Houses Linas Gelazanskas * and Kelum A

  15. GENETIC ALGORITHM FORECASTING FOR TELECOMMUNICATIONS PRODUCTS

    E-Print Network [OSTI]

    Havlicek, Joebob

    available economic indicators such as Disposable Personal Income and New Housing Starts as independent exhibiting maximal fitness achieved RMS forecast errors below the the average two-week sales figure. 1 (Holland, 1975), (Packard, 1990), (Koza, 1992), (Bäck, et al., 1997), (Mitchell, 1998). For example, Meyer

  16. "FLIGHT PLAN" FORECASTS SEATTLE/TACOMA AND

    E-Print Network [OSTI]

    ASSESSMENT OF THE "FLIGHT PLAN" FORECASTS FOR SEATTLE/TACOMA AND REGIONAL AIRPORTS TOGETHER 1. Introduction 5 2. Airport Planning Process 7 Traditional Master Planning Application to Seattle/Tacoma. Uncertainty about Capacity 27 A Fuzzy Concept Assessment Factors Application to Seattle/Tacoma 7. Assessment

  17. Forecast Technical Document Felling and Removals

    E-Print Network [OSTI]

    of local investment and business planning. Timber volume production will be estimated at sub. Planning of operations. Control of the growing stock. Wider reporting (under UKWAS). The calculation fellings and removals are handled in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan

  18. Forecasting Turbulent Modes with Nonparametric Diffusion Models

    E-Print Network [OSTI]

    Tyrus Berry; John Harlim

    2015-01-27

    This paper presents a nonparametric diffusion modeling approach for forecasting partially observed noisy turbulent modes. The proposed forecast model uses a basis of smooth functions (constructed with the diffusion maps algorithm) to represent probability densities, so that the forecast model becomes a linear map in this basis. We estimate this linear map by exploiting a previously established rigorous connection between the discrete time shift map and the semi-group solution associated to the backward Kolmogorov equation. In order to smooth the noisy data, we apply diffusion maps to a delay embedding of the noisy data, which also helps to account for the interactions between the observed and unobserved modes. We show that this delay embedding biases the geometry of the data in a way which extracts the most predictable component of the dynamics. The resulting model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and in the observation noise limit. We will show numerical examples on a wide-range of well-studied turbulent modes, including the Fourier modes of the energy conserving Truncated Burgers-Hopf (TBH) model, the Lorenz-96 model in weakly chaotic to fully turbulent regimes, and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. In these examples, forecasting skills of the nonparametric diffusion model are compared to a wide-range of stochastic parametric modeling approaches, which account for the nonlinear interactions between the observed and unobserved modes with white and colored noises.

  19. DEVELOPMENT OF ADVANCED ALGORITHMS TO DETECT, CHARACTERIZE AND FORECAST SOLAR ACTIVITIES

    E-Print Network [OSTI]

    . This is critical for determining the non-potentiality of active regions. Solar flares are generated by the sudden earth space environment (so called space weather). In this dissertation, an automated solar flare machine) to forecast the occurrences of solar flares based on photospheric magnetic features. Logistic

  20. Ensemble Tropical Rainfall Potential (eTRaP) Forecasts ELIZABETH E. EBERT

    E-Print Network [OSTI]

    Ebert, Beth

    for more than 300 deaths in the United States during the period 1970­99, including 50 deaths related landfall in the United States between 2004 and 2008 shows that the eTRaP rain amounts are more accurate-h rain forecast based on estimated rain rates from microwave sensors aboard polar

  1. ENVIRONMENTAL INFORMATION SYSTEM FOR ANALYSIS AND FORECAST OF AIR POLLUTION (APPLICATION TO SANTIAGO DE CHILE)

    E-Print Network [OSTI]

    Bertossi, Leopoldo

    Chile and other cities in Chile, air pollution is a dramatic problem. An Environmental InformationENVIRONMENTAL INFORMATION SYSTEM FOR ANALYSIS AND FORECAST OF AIR POLLUTION (APPLICATION planning. Using a model-based EIS for air pollution it is possible (i) to study complex source

  2. A 110-Day Ensemble Forecasting Scheme for the Major River Basins of Bangladesh: Forecasting Severe Floods of 200307*

    E-Print Network [OSTI]

    Webster, Peter J.

    A 1­10-Day Ensemble Forecasting Scheme for the Major River Basins of Bangladesh: Forecasting Severe of the Brahmaputra and Ganges Rivers as they flow into Bangladesh; it has been operational since 2003. The Bangladesh points of the Ganges and Brahmaputra into Bangladesh. Forecasts with 1­10-day horizons are presented

  3. Traffic congestion forecasting model for the INFORM System. Final report

    SciTech Connect (OSTI)

    Azarm, A.; Mughabghab, S.; Stock, D.

    1995-05-01

    This report describes a computerized traffic forecasting model, developed by Brookhaven National Laboratory (BNL) for a portion of the Long Island INFORM Traffic Corridor. The model has gone through a testing phase, and currently is able to make accurate traffic predictions up to one hour forward in time. The model will eventually take on-line traffic data from the INFORM system roadway sensors and make projections as to future traffic patterns, thus allowing operators at the New York State Department of Transportation (D.O.T.) INFORM Traffic Management Center to more optimally manage traffic. It can also form the basis of a travel information system. The BNL computer model developed for this project is called ATOP for Advanced Traffic Occupancy Prediction. The various modules of the ATOP computer code are currently written in Fortran and run on PC computers (pentium machine) faster than real time for the section of the INFORM corridor under study. The following summarizes the various routines currently contained in the ATOP code: Statistical forecasting of traffic flow and occupancy using historical data for similar days and time (long term knowledge), and the recent information from the past hour (short term knowledge). Estimation of the empirical relationships between traffic flow and occupancy using long and short term information. Mechanistic interpolation using macroscopic traffic models and based on the traffic flow and occupancy forecasted (item-1), and the empirical relationships (item-2) for the specific highway configuration at the time of simulation (construction, lane closure, etc.). Statistical routine for detection and classification of anomalies and their impact on the highway capacity which are fed back to previous items.

  4. nAture methods | VOL.12 NO.1 | JANUARY2015 | 71 high-throughput methods based on chromosome conformation

    E-Print Network [OSTI]

    Cai, Long

    that of hi-c. coupling this method with dnA-capture technology provides a high-throughput approachArticles nAture methods | VOL.12 NO.1 | JANUARY2015 | 71 high-throughput methods based for targeted mapping of fine-scale chromatin architecture. We applied targeted dnase hi-c to characterize the 3

  5. Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken?

    Reports and Publications (EIA)

    2006-01-01

    This report presents information about the Bakken Formation of the Williston Basin: its location, production, geology, resources, proved reserves, and the technology being used for development. This is the first in a series intending to share information about technology-based oil and natural gas plays.

  6. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  7. The Feasibility of Natural Gas as a Fuel Source for Modern Land-Based Drilling Rigs 

    E-Print Network [OSTI]

    Nunn, Andrew Howard

    2012-02-14

    The purpose of this study is to determine the feasibility of replacing diesel with natural gas as a fuel source for modern drilling rigs. More specifically, this thesis (1) establishes a control baseline by examining operational characteristics...

  8. Using Natural Zeolite Based Sorbents to Remove Contaminants during Groundwater Recharge with Reclaimed Municipal Wastewater

    E-Print Network [OSTI]

    Wolberg, George

    injection via wells. However, the presence of pathogenic microbes and toxic metals and organics in reclaimed to achieve desired hydraulic conductivities at very low cost. Modification of natural zeolites with cationic

  9. The impact of forecasted energy price increases on low-income consumers

    SciTech Connect (OSTI)

    Eisenberg, Joel F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2005-10-31

    The Department of Energy’s Energy Information Administration (EIA) recently released its short term forecast for residential energy prices for the winter of 2005-2006. The forecast indicates significant increases in fuel costs, particularly for natural gas, propane, and home heating oil, for the year ahead. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation’s low-income households by primary heating fuel type, nationally and by Census Region. The statistics are intended for the use of policymakers in the Department of Energy’s Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2006 fiscal year.

  10. Natural gas transmission and distribution model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  11. Depositional sequences and integrated recovery efficiency forecast models for San Andres and Clearfork Units in the Central Basin Platform and the Northern Shelf, west Texas 

    E-Print Network [OSTI]

    Shao, Hongbin

    1994-01-01

    This paper develops depositional sequences of the carbonate ramp and the carbonate shelf models for an idealized cycle and multiple cycles of depositions. Based on the developed depositional sequences, the integrated recovery efficiency forecast...

  12. Two techniques for forecasting clear air turbulence 

    E-Print Network [OSTI]

    Arbeiter, Randolph George

    1977-01-01

    result in only mild annoyance or discomfort (air sickness) to crew and passengers. As it becomes moderate, difficulty may be experienced in moving about inside the airplane and the crew may momentarily lose control. Severe CAT can result in injury... successfully used by the Air Force Clobal Heather Central (Barnett, 1970) for oper" tional forecasting on a day-to-day basis. Furthermore, its usefulness 1' or supersonic aircraft in the stratosphere v;as successfully demonstrated by Scoggins et H. (1975...

  13. Calif--Coastal Region Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1 U.S.End-UseReservesProduction

  14. Calif--Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1Proved ReservesProduction

  15. Calif--San Joaquin Basin Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear1ProvedProved

  16. Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYearDecadeYearYear Jan

  17. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  18. The Los Alamos dynamic radiation environment assimilation model (DREAM) for space weather specification and forecasting

    SciTech Connect (OSTI)

    Reeves, Geoffrey D [Los Alamos National Laboratory; Friedel, Reiner H W [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory

    2008-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) was developed at Los Alamos National Laboratory to assess, quantify, and predict the hazards from the natural space environment and the anthropogenic environment produced by high altitude nuclear explosions (HANE). DREAM was initially developed as a basic research activity to understand and predict the dynamics of the Earth's Van Allen radiation belts. It uses Kalman filter techniques to assimilate data from space environment instruments with a physics-based model of the radiation belts. DREAM can assimilate data from a variety of types of instruments and data with various levels of resolution and fidelity by assigning appropriate uncertainties to the observations. Data from any spacecraft orbit can be assimilated but DREAM was designed to function with as few as two spacecraft inputs: one from geosynchronous orbit and one from GPS orbit. With those inputs, DREAM can be used to predict the environment at any satellite in any orbit whether space environment data are available in those orbits or not. Even with very limited data input and relatively simple physics models, DREAM specifies the space environment in the radiation belts to a high level of accuracy. DREAM has been extensively tested and evaluated as we transition from research to operations. We report here on one set of test results in which we predict the environment in a highly-elliptical polar orbit. We also discuss long-duration reanalysis for spacecraft design, using DREAM for real-time operations, and prospects for 1-week forecasts of the radiation belt environment.

  19. 1 Forecasting Greenhouse Gas Emissions from Urban Regions: 2 Microsimulation of Land Use and Transport Patterns in Austin, Texas

    E-Print Network [OSTI]

    Kockelman, Kara M.

    use electricity, natural gas and other energy sources regularly52 for space conditioning and powering1 Forecasting Greenhouse Gas Emissions from Urban Regions: 2 Microsimulation of Land Use 2030 household energy 26 demands and GHG emissions estimates are compared under five different land use

  20. Characterization and Simulation of ECBM: History Matching of Forecasting CO2 Sequestration in Marshal County, West Virginia.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    that is capable of matching the methane production history and forecast field potential capacity for CO2 injection characterization and simulation process focused on natural gas production and subsequent CO2 injection) are the subject of this pilot CO2 sequestration project. Methane is produced from both coal seams; however CO2

  1. LANL JOWOG 31 2012 Forecast

    SciTech Connect (OSTI)

    Vidlak, Anton J. II [Los Alamos National Laboratory

    2012-08-08

    Joint Working Group (JOWOG) 31, Nuclear Weapons Engineering, has a particularly broad scope of activities within its charter which emphasizes systems engineering. JOWOG 31 brings together experts from AWE and the national laboratories to address engineering issues associated with warhead design and certification. Some of the key areas of interaction, as addressed by the HOCWOGs are: (1) Engineering Analysis, (2) Hydrodynamic Testing, (3) Environmental Testing, and (4) Model Based Integrated Toolkit (MBIT). Gas Transfer Systems and Condition Monitoring interaction has been moved back to JOWOG 31. The regularly scheduled JOWOG 31 activities are the General Sessions, Executive Sessions, Focused Exchanges and HOCWOGs. General Sessions are scheduled every 12-18 months and are supported by the four design laboratories (AWE, LANL, LLNL, and SNL). Beneficial in educating the next generation of weapons engineers and establishing contacts between AWE and the US laboratory personnel. General Sessions are based on a blend of presentations and workshops centered on various themed subjects directly related to Stockpile Stewardship. HOCWOG meetings are more narrowly focused than the General Sessions. They feature presentations by experts in the field with a greater emphasis on round table discussions. Typically about 20 people attend. Focused exchanges are generally the result of interactions within JOWOG general sessions or HOCWOG meetings. They generally span a very specific topic of current interest within the US and UK.

  2. THE GALACTIC CENTER WEATHER FORECAST

    SciTech Connect (OSTI)

    Moscibrodzka, M. [Department of Physics and Astronomy, University of Nevada, 4505 South Maryland Parkway, Las Vegas, NV 89154 (United States); Shiokawa, H.; Gammie, C. F. [Astronomy Department, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Dolence, J. C., E-mail: monikam@physics.unlv.edu [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States)

    2012-06-10

    In accretion-based models for Sgr A*, the X-ray, infrared, and millimeter emission arise in a hot, geometrically thick accretion flow close to the black hole. The spectrum and size of the source depend on the black hole mass accretion rate M-dot . Since Gillessen et al. have recently discovered a cloud moving toward Sgr A* that will arrive in summer 2013, M-dot may increase from its present value M-dot{sub 0}. We therefore reconsider the 'best-bet' accretion model of Moscibrodzka et al., which is based on a general relativistic MHD flow model and fully relativistic radiative transfer, for a range of M-dot . We find that for modest increases in M-dot the characteristic ring of emission due to the photon orbit becomes brighter, more extended, and easier to detect by the planned Event Horizon Telescope submillimeter Very Long Baseline Interferometry experiment. If M-dot {approx}>8 M-dot{sub 0}, this 'silhouette' of the black hole will be hidden beneath the synchrotron photosphere at 230 GHz, and for M-dot {approx}>16 M-dot{sub 0} the silhouette is hidden at 345 GHz. We also find that for M-dot > 2 M-dot{sub 0} the near-horizon accretion flow becomes a persistent X-ray and mid-infrared source, and in the near-infrared Sgr A* will acquire a persistent component that is brighter than currently observed flares.

  3. Combinatorial Chemistry & High Throughput Screening, 2001, 4, 661-673 661 AnEvolutionaryApproachfor Structure-based Design of Natural and Non-

    E-Print Network [OSTI]

    Caflisch, Amedeo

    EvolutionaryApproachfor Structure-based Design of Natural and Non- natural Peptidic Ligands Nicolas Budin, Shaheen Ahmed, Nicolas- throughput homology modelling [4] are providing a large amount of targets for structure-based drug design-8057 Zürich, Switzerland Abstract: A new computational approach (PEP) is presented for the structure

  4. The Commission Forecast 1992 Report: Important Resource Planning Issues 

    E-Print Network [OSTI]

    Adib, P.

    1992-01-01

    FORECAST 1992 REPORT: IMPORTANT RESOURCE PLANNING ISSUES PARVIZ ADIB MANAGER, ECONOMIC ANALYSIS SECTION ELECTRIC DIVISION PUBLIC UTILITY COMMISSION OF TEXAS ABSTRACT There is a general agreement among experts in the electric utility industry... there are many important issues in the preparation of a utility's electric resource plan, the Commission staff will address a few important ones in the next Commission Forecast Report (Forecast '92). In particular, the Commission staff will insure...

  5. Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures

    E-Print Network [OSTI]

    Richard A. Berk; Brian Kriegler; Jong-Ho Baek

    2011-01-01

    Forecasting Dangerous Inmate Misconduct: An Applications ofof Term Length more dangerous than other inmates servingIV beds or moving less dangerous Level IV inmates to Level

  6. Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures

    E-Print Network [OSTI]

    Berk, Richard; Kriegler, Brian; Baek, Jong-Ho

    2005-01-01

    Forecasting Dangerous Inmate Misconduct: An Applications ofof Term Length more dangerous than other inmates servingIV beds or moving less dangerous Level IV inmates to Level

  7. Ramping Effect on Forecast Use: Integrated Ramping (Presentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the shift from ramping. * the benefits - better use of forecast values (load or net load) - reduce the amount of variability that the regulation reserve must accommodate...

  8. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    SciTech Connect (OSTI)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Sun, Qian; Lehman, Brad

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance, cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.

  9. Nuclear Theory Helps Forecast Neutron Star Temperatures | U.S...

    Office of Science (SC) Website

    Nuclear Theory Helps Forecast Neutron Star Temperatures Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear...

  10. Rights-based evaluation of government responses to a given 'natural' disaster : Katrina as case study

    E-Print Network [OSTI]

    Haeffner, Melissa (Melissa Ann)

    2010-01-01

    Disaster impacts human mobility and a rights-based approach to disaster response is needed to protect the human rights of those who seek migration as an adaptation strategy. This paper deals with returning to a place after ...

  11. Natural gas strategic plan and program crosscut plans

    SciTech Connect (OSTI)

    NONE

    1995-06-01

    The natural gas strategic plan recognizes the challenges and opportunities facing increased U.S. natural gas use. Focus areas of research include natural gas supply, delivery, and storage, power generation, industrial, residential and commercial, natural gas vehicles, and the environment. Historical aspects, mission, situation analysis, technology trends, strategic issues, performance indicators, technology program overviews, and forecasting in the above areas are described.

  12. New Mexico--East Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226Underground Storage(Million Barrels)

  13. New Mexico--East Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226Underground Storage(Million(Million

  14. New Mexico--West Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226UndergroundProduction (Billion

  15. New Mexico--West Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226UndergroundProduction (Billion(Million(Million

  16. Texas--RRC District 1 Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,% of TotalOklahomaProved(Million

  17. Texas--RRC District 1 Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,% of

  18. Texas--RRC District 10 Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,% ofShale Production

  19. Texas--RRC District 10 Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,% ofShale ProductionProduction

  20. Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,% ofShaleCubic Feet)Production (Million

  1. Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,% ofShaleCubicCubic

  2. Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,%Production (Million Barrels) Reserves

  3. Texas--RRC District 5 Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,%Production (Million(MillionProduction

  4. Texas--RRC District 5 Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,%Production(Million Barrels) Reserves

  5. Texas--RRC District 6 Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,%Production(MillionProved

  6. Texas--RRC District 6 Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,%Production(MillionProved(Million(Million

  7. Texas--RRC District 7B Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic Feet) Texas--RRC

  8. Texas--RRC District 7B Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic Feet) Texas--RRCProduction

  9. Texas--RRC District 7C Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic Feet)Proved Reserves

  10. Texas--RRC District 7C Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic Feet)Proved

  11. Texas--RRC District 8 Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic Feet)ProvedShale(MillionProduction

  12. Texas--RRC District 8A Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic(Million

  13. Texas--RRC District 8A Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic(MillionProduction (Million(Million

  14. Texas--RRC District 9 Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (BillionProduction (Million Barrels) Reserves

  15. Texas--RRC District 9 Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (BillionProduction (Million Barrels)(Million

  16. Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (BillionProduction (MillionProvedGrossProduction

  17. Texas--State Offshore Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (BillionProduction(Million Barrels)

  18. U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData2009 2010Year Jan Feb Mar2009Adjustments

  19. AGA Eastern Consuming Region Natural Gas in Underground Storage (Base Gas)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic MonthlyTechnicalRetail(Million Cubic

  20. AGA Producing Region Natural Gas in Underground Storage (Base Gas) (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic(Million Cubic Feet) Total(Million

  1. AGA Western Consuming Region Natural Gas in Underground Storage (Base Gas)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic(Million Cubic Feet)Gas(Million(Million

  2. Alabama Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304 1,670 2,121DecadeVehicle

  3. Colorado Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovCubicYearYear Jan Feb

  4. East Region Natural Gas in Underground Storage (Base Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998, and 20021,237Feet)

  5. Illinois Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan Feb MarMay-15Vented and

  6. Kentucky Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand CubicYear Jan FebYear

  7. Lower 48 States Total Natural Gas in Underground Storage (Base Gas)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020CubicCubic Feet)(Million

  8. Midwest Region Natural Gas in Underground Storage (Base Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 20118)TheCubic

  9. Montana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear Jan FebYear Jan

  10. U.S. Natural Gas Salt - Underground Storage - Base Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan Feb MarCubic2009Year Jan Feb

  11. U.S. Total Natural Gas in Underground Storage (Base Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSales Type: Sales toFeet)

  12. KAPAO: a MEMS-based natural guide star adaptive optics system

    E-Print Network [OSTI]

    Severson, Scott A; Contreras, Daniel S; Gilbreth, Blaine N; Littleton, Erik; McGonigle, Lorcan P; Morrison, William A; Rudy, Alex R; Wong, Jonathan R; Xue, Andrew; Spjut, Erik; Baranec, Christoph; Riddle, Reed; 10.1117/12.2005959

    2013-01-01

    We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. We use a commercially available 140-actuator BMC MEMS deformable mirror and a version of the Robo-AO control software developed by Caltech and IUCAA. We have structured our development around the rapid building and testing of a prototype system, KAPAO-Alpha, while simultaneously designing our more capable final system, KAPAO-Prime. The main differences between these systems are the prototype's reliance on off-the-shelf optics and a single visible-light science camera versus the final design's improved throughput and capabilities due to the use of custom optics and dual-band, visible and near-infrared imaging. In this paper, we present the instrument design and on-sky closed-loop testing of KAPAO-Alpha as well as our plans for KAPAO-Prime. The primarily undergraduate-education nature of our partner institutions,...

  13. Waste generation forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1995-FY 2002, September 1994 revision

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    A comprehensive waste-forecasting task was initiated in FY 1991 to provide a consistent, documented estimate of the volumes of waste expected to be generated as a result of U.S. Department of Energy-Oak Ridge Operations (DOE-ORO) Environmental Restoration (ER) OR-1 Project activities. Continual changes in the scope and schedules for remedial action (RA) and decontamination and decommissioning (D&D) activities have required that an integrated data base system be developed that can be easily revised to keep pace with changes and provide appropriate tabular and graphical output. The output can then be analyzed and used to drive planning assumptions for treatment, storage, and disposal (TSD) facilities. The results of this forecasting effort and a description of the data base developed to support it are provided herein. The initial waste-generation forecast results were compiled in November 1991. Since the initial forecast report, the forecast data have been revised annually. This report reflects revisions as of September 1994.

  14. Air pollution forecasting by coupled atmosphere-fire model WRF and SFIRE with WRF-Chem

    E-Print Network [OSTI]

    Kochanski, Adam K; Mandel, Jan; Clements, Craig B

    2013-01-01

    Atmospheric pollution regulations have emerged as a dominant obstacle to prescribed burns. Thus, forecasting the pollution caused by wildland fires has acquired high importance. WRF and SFIRE model wildland fire spread in a two-way interaction with the atmosphere. The surface heat flux from the fire causes strong updrafts, which in turn change the winds and affect the fire spread. Fire emissions, estimated from the burning organic matter, are inserted in every time step into WRF-Chem tracers at the lowest atmospheric layer. The buoyancy caused by the fire then naturally simulates plume dynamics, and the chemical transport in WRF-Chem provides a forecast of the pollution spread. We discuss the choice of wood burning models and compatible chemical transport models in WRF-Chem, and demonstrate the results on case studies.

  15. Reducing the demand forecast error due to the bullwhip effect in the computer processor industry

    E-Print Network [OSTI]

    Smith, Emily (Emily C.)

    2010-01-01

    Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

  16. HOW ACCURATE ARE WEATHER MODELS IN ASSISTING AVALANCHE FORECASTERS? M. Schirmer, B. Jamieson

    E-Print Network [OSTI]

    Jamieson, Bruce

    HOW ACCURATE ARE WEATHER MODELS IN ASSISTING AVALANCHE FORECASTERS? M. Schirmer, B. Jamieson and decision makers strongly rely on Numerical Weather Prediction (NWP) models, for example on the forecasted on forecasted precipitation. KEYWORDS: Numerical weather prediction models, validation, precipitation 1

  17. Computers & Geosciences 29 (2003) 351359 A case against Kd-based transport models: natural attenuation

    E-Print Network [OSTI]

    Zhu, Chen

    2003-01-01

    attenuation at a mill tailings site Chen Zhu* Department of Geology and Planetary Science, University)-based transport model. The study site is a contaminated groundwater aquifer underneath a uranium mill tailings pond in the western USA. Advective­dispersive­reactive transport is simulated for a 5-year period

  18. NATURAL LANGUAGE DATA BASE ACCESS WITH PEARL Wendy Lehnert and Steve Shwartz

    E-Print Network [OSTI]

    ) ~XPI~P~R Version 02 9/23/81 E~ADY *I want a map of all wells drilled before May 1, 1980 but asince PILE WELL DRILLING PROBLEM WILDCAT WELL - 168- #12;E~ITT CURRENT OPERATOR PENETRATION OF ~CG WHERE TOP made by geologists to a data base conte/ning inform- ation about oil wells. The geologists in this user

  19. Voluntary Green Power Market Forecast through 2015

    SciTech Connect (OSTI)

    Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

    2010-05-01

    Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

  20. Revised 1997 Retail Electricity Price Forecast Principal Author: Ben Arikawa

    E-Print Network [OSTI]

    Revised 1997 Retail Electricity Price Forecast March 1998 Principal Author: Ben Arikawa Electricity 1997 FORE08.DOC Page 1 CALIFORNIA ENERGY COMMISSION ELECTRICITY ANALYSIS OFFICE REVISED 1997 RETAIL ELECTRICITY PRICE FORECAST Introduction The Electricity Analysis Office of the California Energy Commission

  1. Using Neural Networks to Forecast Stock Market Prices Ramon Lawrence

    E-Print Network [OSTI]

    Lawrence, Ramon

    Using Neural Networks to Forecast Stock Market Prices Ramon Lawrence Department of Computer Science on the application of neural networks in forecasting stock market prices. With their ability to discover patterns in nonlinear and chaotic systems, neural networks offer the ability to predict market directions more

  2. Forecasting Hot Water Consumption in Dwellings Using Artifitial Neural Networks

    E-Print Network [OSTI]

    MacDonald, Mark

    electricity consumption in time. This paper investigates the ability on Artificial Neural Networks to predict shift electric energy. Keywords--Hot Water Consumption; Forecasting; Artifitial Neural Networks; SmartForecasting Hot Water Consumption in Dwellings Using Artifitial Neural Networks Linas Gelazanskas

  3. Draft for Public Comment Appendix A. Demand Forecast

    E-Print Network [OSTI]

    in the forecast of electricity consumption for those years has been less than one half of a percent. Figure A-1 forecast of electricity demand is a required component of the Council's Northwest Regional Conservation and Electric Power Plan.1 Understanding growth in electricity demand is, of course, crucial to determining

  4. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    of transportation fuel and crude oil import requirements. The transportation energy demand forecasts make. The transportation fuel and crude oil import requirement assessments build on assumptions about California crude oil forecasts, transportation energy, gasoline, diesel, jet fuel, crude oil production, fuel imports, crude oil

  5. Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    markets could aid in the design of appropriate price forecasting tools for such markets. Scenario1 Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets Qun Zhou, restructured wholesale power markets, scenario generation, ARMA model, moment-matching method I. INTRODUCTION

  6. Probabilistic forecasting of solar flares from vector magnetogram data

    E-Print Network [OSTI]

    Barnes, Graham

    Probabilistic forecasting of solar flares from vector magnetogram data G. Barnes,1 K. D. Leka,1 E to solar flare forecasting, adapted to provide the probability that a measurement belongs to either group, the groups in this case being solar active regions which produced a flare within 24 hours and those

  7. Viability, Development, and Reliability Assessment of Coupled Coastal Forecasting Systems 

    E-Print Network [OSTI]

    Singhal, Gaurav

    2012-10-19

    Real-time wave forecasts are critical to a variety of coastal and offshore opera- tions. NOAA’s global wave forecasts, at present, do not extend into many coastal regions of interest. Even after more than two decades of the historical Exxon Valdez...

  8. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    . Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data Office. Andrea Gough ran the summary energy model and supervised data preparation. Glen Sharp prepared models. Both the staff revised energy consumption and peak forecasts are slightly higher than

  9. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological forecast regimes at the wind energy site and fits a conditional predictive model for each regime

  10. MAINTENANCE, UPGRADE AND VERIFICATION OF OPERATIONAL FORECASTS OF

    E-Print Network [OSTI]

    MAINTENANCE, UPGRADE AND VERIFICATION OF OPERATIONAL FORECASTS OF CLOUD COVER AND WATER VAPOUR Purchase Order 58311/ODG/99/8362/GWI/LET #12;i PREFACE Starting in August 1998, operational forecasts satellite imagery from the Co-operative Institute for Research in the Atmosphere (CIRA) and upper

  11. Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids

    E-Print Network [OSTI]

    Hwang, Kai

    1 Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids Yogesh Simmhan. One of the characteristic applications of Smart Grids is demand response optimization (DR). The goal of DR is to use the power consumption time series data to reliable forecast the future consumption

  12. THE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD

    E-Print Network [OSTI]

    THE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD ENERGY SERVICES by Steven Groves BASc of Research Project: The Desire to Acquire: Forecasting the Evolution of Household Energy Services Report No, and gasoline. A fixed effects panel model was used to examine the relationship of demand for energy

  13. Airplanes Aloft as a Sensor Network for Wind Forecasting

    E-Print Network [OSTI]

    Horvitz, Eric

    Airplanes Aloft as a Sensor Network for Wind Forecasting Ashish Kapoor, Zachary Horvitz, Spencer for observing weather phenomena at a continental scale. We focus specifically on the problem of wind forecasting with the sensed winds. The experiments show the promise of using airplane in flight as a large-scale sensor

  14. A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

    2013-01-01

    of numerical weather prediction solar irradiance forecasts numerical weather prediction model for solar irradiance weather prediction for intra?day solar  forecasting in the 

  15. Building Electricity Load Forecasting via Stacking Ensemble Learning Method with Moving Horizon Optimization

    E-Print Network [OSTI]

    Burger, Eric M.; Moura, Scott J.

    2015-01-01

    K. W. Yau, “Predicting electricity energy con- sumption: Afor building-level electricity load forecasts,” Energy andannealing algorithms in electricity load forecasting,”

  16. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01

    to  predict daily solar radiation.   Agriculture and Forest and Chuo, S.   2008.  Solar radiation forecasting using Short?term forecasting of solar radiation:   A statistical 

  17. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  18. ,"U.S. Natural Gas Non-Salt Underground Storage - Base Gas (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015" ,"Release Date:","12/31/2015"Monthly","10/2015" - Base Gas (MMcf)"

  19. New York Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr MayDecade Year-0 Year-1Base Gas)

  20. Ohio Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecade Year-0 Year-1Vented andDecadeBase

  1. Oregon Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecadeYear JanElements)YearBase Gas)

  2. South Central Region Natural Gas in Underground Storage (Base Gas) (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawals (Million CubicDecadeCubic Feet) Base

  3. U.S. Natural Gas Liquids Lease Condensate, Reserves Based Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the NationalSalesof(Million Barrels) Based Production

  4. Short-Term Energy Outlook Model Documentation: Macro Bridge Procedure to Update Regional Macroeconomic Forecasts with National Macroeconomic Forecasts

    Reports and Publications (EIA)

    2010-01-01

    The Regional Short-Term Energy Model (RSTEM) uses macroeconomic variables such as income, employment, industrial production and consumer prices at both the national and regional1 levels as explanatory variables in the generation of the Short-Term Energy Outlook (STEO). This documentation explains how national macroeconomic forecasts are used to update regional macroeconomic forecasts through the RSTEM Macro Bridge procedure.

  5. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    SciTech Connect (OSTI)

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  6. Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era

    SciTech Connect (OSTI)

    Edwards, J.D.

    1997-08-01

    Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

  7. Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired

    E-Print Network [OSTI]

    Nair, Sankar

    higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

  8. Space-time forecasting and evaluation of wind speed with statistical tests for comparing accuracy of spatial predictions 

    E-Print Network [OSTI]

    Hering, Amanda S.

    2010-10-12

    High-quality short-term forecasts of wind speed are vital to making wind power a more reliable energy source. Gneiting et al. (2006) have introduced a model for the average wind speed two hours ahead based on both spatial and temporal information...

  9. web page: http://w3.pppl.gov/~ zakharov On Real Time Forecasts (RTF) of Tokamak Discharges1

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    structure (Data Base) . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Communication control of code to "yesterday" weather analysis) or predictive codes ("next month" weather predictions), RTF targets a forecast of the plasma regime, e.g., in 0.1 e (like the "next hour" weather predictions). Three components, crucial

  10. web page: http://w3.pppl.gov/~ zakharov On Real Time Forecasts (RTF) of Tokamak Discharges 1

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    structure (Data Base) . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Communication control of code to "yesterday" weather analysis) or predictive codes ("next month" weather predictions), RTF targets a forecast of the plasma regime, e.g., in 0.1 # e (like the "next hour" weather predictions). Three components, crucial

  11. Forecasting stock market returns over multiple time horizons

    E-Print Network [OSTI]

    Kroujiline, Dimitri; Ushanov, Dmitry; Sharov, Sergey V; Govorkov, Boris

    2015-01-01

    In this paper we seek to demonstrate the predictability of stock market returns and explain the nature of this return predictability. To this end, we further develop the news-driven analytic model of the stock market derived in Gusev et al. (2015). This enables us to capture market dynamics at various timescales and shed light on mechanisms underlying certain market behaviors such as transitions between bull- and bear markets and the self-similar behavior of price changes. We investigate the model and show that the market is nearly efficient on timescales shorter than one day, adjusting quickly to incoming news, but is inefficient on longer timescales, where news may have a long-lasting nonlinear impact on dynamics attributable to a feedback mechanism acting over these horizons. Using the model, we design the prototypes of algorithmic strategies that utilize news flow, quantified and measured, as the only input to trade on market return forecasts over multiple horizons, from days to months. The backtested res...

  12. 2007 Wholesale Power Rate Case Final Proposal : Market Price Forecast Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01

    This study presents BPA's market price forecasts for the Final Proposal, which are based on AURORA modeling. AURORA calculates the variable cost of the marginal resource in a competitively priced energy market. In competitive market pricing, the marginal cost of production is equivalent to the market-clearing price. Market-clearing prices are important factors for informing BPA's power rates. AURORA was used as the primary tool for (a) estimating the forward price for the IOU REP Settlement benefits calculation for fiscal years (FY) 2008 and 2009, (b) estimating the uncertainty surrounding DSI payments and IOU REP Settlements benefits, (c) informing the secondary revenue forecast and (d) providing a price input used for the risk analysis. For information about the calculation of the secondary revenues, uncertainty regarding the IOU REP Settlement benefits and DSI payment uncertainty, and the risk run, see Risk Analysis Study WP-07-FS-BPA-04.

  13. Wind speed forecasting at different time scales: a non parametric approach

    E-Print Network [OSTI]

    D'Amico, Guglielmo; Prattico, Flavio

    2013-01-01

    The prediction of wind speed is one of the most important aspects when dealing with renewable energy. In this paper we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model, that reproduces accurately the statistical behavior of wind speed, to forecast wind speed one step ahead for different time scales and for very long time horizon maintaining the goodness of prediction. In order to check the main features of the model we show, as indicator of goodness, the root mean square error between real data and predicted ones and we compare our forecasting results with those of a persistence model.

  14. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  15. Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices

    E-Print Network [OSTI]

    Kulkarni, Siddhivinayak

    2009-01-01

    This paper presents a model based on multilayer feedforward neural network to forecast crude oil spot price direction in the short-term, up to three days ahead. A great deal of attention was paid on finding the optimal ANN model structure. In addition, several methods of data pre-processing were tested. Our approach is to create a benchmark based on lagged value of pre-processed spot price, then add pre-processed futures prices for 1, 2, 3,and four months to maturity, one by one and also altogether. The results on the benchmark suggest that a dynamic model of 13 lags is the optimal to forecast spot price direction for the short-term. Further, the forecast accuracy of the direction of the market was 78%, 66%, and 53% for one, two, and three days in future conclusively. For all the experiments, that include futures data as an input, the results show that on the short-term, futures prices do hold new information on the spot price direction. The results obtained will generate comprehensive understanding of the cr...

  16. Science and Engineering of an Operational Tsunami Forecasting System

    SciTech Connect (OSTI)

    Gonzalez, Frank

    2009-04-06

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  17. Science and Engineering of an Operational Tsunami Forecasting System

    ScienceCinema (OSTI)

    Gonzalez, Frank

    2010-01-08

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  18. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect (OSTI)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  19. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01

    per year until 2020, while oil demand is expected to groweconomic growth and world oil prices, and four other casesand higher and lower world oil prices. Assumptions for

  20. CloudCast: Cloud Computing for Short-term Mobile Weather Forecasts

    E-Print Network [OSTI]

    Shenoy, Prashant

    of Massachusetts Amherst Abstract--Since today's weather forecasts only cover large regions every few hours algorithm for generating accurate short-term weather forecasts. We study CloudCast's design space, which One useful application is mobile weather forecasting, which provides hour-to-hour forecasts

  1. Smard Grid Software Applications for Distribution Network Load Forecasting Eugene A. Feinberg, Jun Fei

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    of the distribution network. Keywords: load forecasting, feeder, transformer, load pocket, SmartGrid I. INTRODUCTION

  2. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01

    Solar irradiance data . . . . . . . . . . . . .Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Forecasting Solar Irradiance With GOES-West Satellite

  3. Ensemble Kalman Filter Data Assimilation in a 1D Numerical Model Used for Fog Forecasting

    E-Print Network [OSTI]

    Ensemble Kalman Filter Data Assimilation in a 1D Numerical Model Used for Fog Forecasting SAMUEL RE, a need exists for accurate and updated fog and low-cloud forecasts. Couche Brouillard Eau Liquide (COBEL for the very short-term forecast of fog and low clouds. This forecast system assimilates local observations

  4. Bias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction

    E-Print Network [OSTI]

    Raftery, Adrian

    Bias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction LE proposes an effective bias correction technique for wind direction forecasts from numerical weather forecasts. These techniques are applied to 48-h forecasts of surface wind direction over the Pacific

  5. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  6. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01

    Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

  7. USING BOX-JENKINS MODELS TO FORECAST FISHERY DYNAMICS: IDENTIFICATION, ESTIMATION, AND CHECKING

    E-Print Network [OSTI]

    ~ is illustrated by developing a model that makes monthly forecasts of skipjack tuna, Katsuwonus pelamis, catches

  8. Improved forecasts of extreme weather events by future space borne Doppler wind lidar

    E-Print Network [OSTI]

    Marseille, Gert-Jan

    of forecast failures, in particular those with large socio economic impact. Forecast failures of high- impact on their ability to improve meteorological analyses and subsequently reduce the probability of forecast failures true atmospheric state. This was generated by the European Centre for Medium-Range Weather Forecasts

  9. New Forecasting Tools Enhance Wind Energy Integration In Idaho and Oregon

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImportsEnergyForecasting Tools Enhance Wind

  10. EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers forecast for summer gasoline

  11. Solar Trackers Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Forecast Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  12. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    G. Bel; C. P. Connaughton; M. Toots; M. M. Bandi

    2015-03-29

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  13. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  14. Forecasting and Risk Analysis in Supply Chain Management

    E-Print Network [OSTI]

    Hilmola, Olli-Pekka

    Forecasting is an underestimated field of research in supply chain management. Recently advanced methods are coming into use. Initial results are encouraging, but often require changes in policies for collaboration and ...

  15. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  16. Optimally Controlling Hybrid Electric Vehicles using Path Forecasting

    E-Print Network [OSTI]

    Kolmanovsky, Ilya V.

    The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

  17. Multidimensional approaches to performance evaluation of competing forecasting models 

    E-Print Network [OSTI]

    Xu, Bing

    2009-01-01

    The purpose of my research is to contribute to the field of forecasting from a methodological perspective as well as to the field of crude oil as an application area to test the performance of my methodological contributions ...

  18. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    Bel, G; Toots, M; Bandi, M M

    2015-01-01

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  19. Optimally controlling hybrid electric vehicles using path forecasting

    E-Print Network [OSTI]

    Katsargyri, Georgia-Evangelina

    2008-01-01

    Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

  20. Mesoscale predictability and background error convariance estimation through ensemble forecasting 

    E-Print Network [OSTI]

    Ham, Joy L

    2002-01-01

    Over the past decade, ensemble forecasting has emerged as a powerful tool for numerical weather prediction. Not only does it produce the best estimate of the state of the atmosphere, it also could quantify the uncertainties ...

  1. Dispersion in analysts' forecasts: does it make a difference? 

    E-Print Network [OSTI]

    Adut, Davit

    2004-09-30

    Financial analysts are an important group of information intermediaries in the capital markets. Their reports, including both earnings forecasts and stock recommendations, are widely transmitted and have a significant impact on stock prices (Womack...

  2. Radiation fog forecasting using a 1-dimensional model 

    E-Print Network [OSTI]

    Peyraud, Lionel

    2001-01-01

    weather patterns known to be favorable for producing fog and once it has formed, to state that it will persist unless the pattern changes. Unfortunately, while such methods have shown some success, many times they have led weather forecasters astray...

  3. Pressure Normalization of Production Rates Improves Forecasting Results 

    E-Print Network [OSTI]

    Lacayo Ortiz, Juan Manuel

    2013-08-07

    reliable production forecasting technique suited to interpret unconventional wells in specific situations such as unstable operating conditions, limited availability of production data (short production history) and high-pressure, rate-restricted wells...

  4. Forecasting Stock Market Volatility: Evidence from Fourteen Countries. 

    E-Print Network [OSTI]

    Balaban, Ercan; Bayar, Asli; Faff, Robert

    2002-01-01

    This paper evaluates the out-of-sample forecasting accuracy of eleven models for weekly and monthly volatility in fourteen stock markets. Volatility is defined as within-week (within-month) standard deviation of continuously ...

  5. Adaptive sampling and forecasting with mobile sensor networks

    E-Print Network [OSTI]

    Choi, Han-Lim

    2009-01-01

    This thesis addresses planning of mobile sensor networks to extract the best information possible out of the environment to improve the (ensemble) forecast at some verification region in the future. To define the information ...

  6. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  7. Forecasting the probability of forest fires in Northeast Texas 

    E-Print Network [OSTI]

    Wadleigh, Stuart Allen

    1972-01-01

    FORECASTING THE PROBABILITY OF FOREST FIRES IN NORTHEAST TEXAS A Thesis by STUART ALLEN WADLEIGH Submit ted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1972 Major Subject: Meteorology FORECASTING THE PROBABILITY OF FOREST FIRES IN NORTHEAST TEXAS A Thesis by STUART ALLEN WADLEIGH Approved as to style and content by: ( irman of ee) (Head of Depar nt) (Member) (Member) December 1972 c...

  8. Forecasting potential project risks through leading indicators to project outcome 

    E-Print Network [OSTI]

    Choi, Ji Won

    2007-09-17

    for the degree of MASTER OF SCIENCE May 2007 Major Subject: Civil Engineering FORECASTING POTENTIAL PROJECT RISKS THROUGH LEADING INDICATORS TO PROJECT OUTCOME A Thesis by JI WON CHOI... Guikema Head of Department, David Rosowsky May 2007 Major Subject: Civil Engineering iii ABSTRACT Forecasting Potential Project Risks through Leading Indicators to Project Outcome. (May 2007) Ji Won Choi, B.S., Han-Yang University...

  9. SATELLITE BASED SHORT-TERM FORECASTING OF SOLAR IRRADANCE

    E-Print Network [OSTI]

    Heinemann, Detlev

    thermal power plants and the management of electricity grids with high penetration rates from renewable data are a high quality source for information about radiation with excellent temporal and spatial. Examples are the storage management in stand-alone photovoltaic or wind energy systems, control of solar

  10. Short term forecasting of solar radiation based on satellite data

    E-Print Network [OSTI]

    Heinemann, Detlev

    have a significant influence on electric power generation by solar energy systems. An efficient use. Examples are the management of electricity grids with high penetration rates from solar sources are a high quality source for irradiance information because of excellent temporal and spatial resolution

  11. Forecasting Future Food Security through Agent Based Modelling 

    E-Print Network [OSTI]

    Georgie, Paul

    2010-11-24

    Regardless of what recognition human involvement has played, the consequences of our changing climate will have a negative effect on both agriculture and human well-being. This is expected to be most exacerbated for ...

  12. Point-trained models in a grid environment: Transforming a potato late blight risk forecast for use with the National Digital Forecast Database

    E-Print Network [OSTI]

    Douches, David S.

    Point-trained models in a grid environment: Transforming a potato late blight risk forecast for use with the National Digital Forecast Database Kathleen Baker a, , Paul Roehsner a , Thomas Lake b , Douglas Rivet

  13. Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS 

    E-Print Network [OSTI]

    Roop, J. M.; Dahowski, R. T

    2000-01-01

    Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model...

  14. Nonlinear Dynamics, Magnitude-Period Formula and Forecasts on Earthquake

    E-Print Network [OSTI]

    Yi-Fang Chang

    2008-02-02

    Based on the geodynamics, an earthquake does not take place until the momentum-energy excess a faulting threshold value of rock due to the movement of the fluid layer under the rock layer and the transport and accumulation of the momentum. From the nonlinear equations of fluid mechanics, a simplified nonlinear solution of momentum corresponding the accumulation of the energy could be derived. Otherwise, a chaos equation could be obtained, in which chaos corresponds to the earthquake, which shows complexity on seismology, and impossibility of exact prediction of earthquakes. But, combining the Carlson-Langer model and the Gutenberg-Richter relation, the magnitude-period formula of the earthquake may be derived approximately, and some results can be calculated quantitatively. For example, we forecast a series of earthquakes of 2004, 2009 and 2014, especially in 2019 in California. Combining the Lorenz model, we discuss the earthquake migration to and fro. Moreover, many external causes for earthquake are merely the initial conditions of this nonlinear system.

  15. The new Athens Center applied to Space Weather Forecasting

    SciTech Connect (OSTI)

    Mavromichalaki, H.; Sarlanis, C.; Souvatzoglou, G.; Mariatos, G.; Gerontidou, M.; Plainaki, C.; Papaioannou, A.; Tatsis, S. [University of Athens, Physics Department, Section of Nuclear and Particle Physics, Zografos 15771 Athens (Greece); Belov, A.; Eroshenko, E.; Yanke, V. [IZMIRAN, Russian Academy of Science, 1420092 Moscow (Russian Federation)

    2006-08-25

    The Sun provides most of the initial energy driving space weather and modulates the energy input from sources outside the solar system, but this energy undergoes many transformations within the various components of the solar-terrestrial system, which is comprised of the solar wind, magnetosphere and radiation belts, the ionosphere, and the upper and lower atmospheres of Earth. This is the reason why an Earth's based neutron monitor network can be used in order to produce a real time forecasting of space weather phenomena.Since 2004 a fully functioned new data analysis Center in real-time is in operation in Neutron Monitor Station of Athens University (ANMODAP Center) suitable for research applications. It provides a multi sided use of twenty three neutron monitor stations distributing in all world and operating in real-time given crucial information on space weather phenomena. In particular, the ANMODAP Center can give a preliminary alert of ground level enhancements (GLEs) of solar cosmic rays which can be registered around 20 to 30 minutes before the main part of lower energy particles. Therefore these energetic solar cosmic rays provide the advantage of forth warning. Moreover, the monitoring of the precursors of cosmic rays gives a forehand estimate on that kind of events should be expected (geomagnetic storms and/or Forbush decreases)

  16. Results from the Second Forum on the Future Role of the Human in the Forecast Process. Part II: Cognitive Psychological Aspects of Expert Weather Forecasters

    E-Print Network [OSTI]

    Schultz, David

    : Cognitive Psychological Aspects of Expert Weather Forecasters NEIL A. STUART* NOAA/National Weather Service of Applied Research Associates, Fairborn, Ohio In Preparation for Submission to Forecasters Forum, Weather and Forecasting 30 June 2006 Corresponding author address: Neil A. Stuart, National Weather Service, 10009 General

  17. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

  18. Forecasting the 2013–2014 influenza season using Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are appliedmore »to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.« less

  19. Forecasting the 2013–2014 influenza season using Wikipedia

    SciTech Connect (OSTI)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are applied to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.

  20. Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.

    SciTech Connect (OSTI)

    Han, J.; Mintz, M.; Wang, M.

    2011-12-14

    In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.