National Library of Energy BETA

Sample records for base case forecast

  1. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  2. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  3. 2007 Wholesale Power Rate Case Final Proposal : Market Price Forecast Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01

    This study presents BPA's market price forecasts for the Final Proposal, which are based on AURORA modeling. AURORA calculates the variable cost of the marginal resource in a competitively priced energy market. In competitive market pricing, the marginal cost of production is equivalent to the market-clearing price. Market-clearing prices are important factors for informing BPA's power rates. AURORA was used as the primary tool for (a) estimating the forward price for the IOU REP Settlement benefits calculation for fiscal years (FY) 2008 and 2009, (b) estimating the uncertainty surrounding DSI payments and IOU REP Settlements benefits, (c) informing the secondary revenue forecast and (d) providing a price input used for the risk analysis. For information about the calculation of the secondary revenues, uncertainty regarding the IOU REP Settlement benefits and DSI payment uncertainty, and the risk run, see Risk Analysis Study WP-07-FS-BPA-04.

  4. Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao

    2015-01-01

    The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.

  5. Base Oil Market Segment Forecasts up to 2020,Research Reports...

    Open Energy Info (EERE)

    Market Research Home > Groups > Future of Condition Monitoring for Wind Turbines Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 11 June, 2015 - 03:19 Base Oil...

  6. Expectations models of electric utilities' forecasts: a case study of econometric estimation with influential data points

    SciTech Connect (OSTI)

    Vellutini, R. de A.S.; Mount, T.D.

    1983-01-01

    This study develops an econometric model for explaining how electric utilities revise their forecasts of future electricity demand each year. The model specification is developed from the adaptive expectations hypothesis and it relates forecasted growth rates to actual lagged growth rates of electricity demand. Unlike other studies of the expectation phenomenon, expectations of future demand levels constitute an observable variable and thus can be incorporated explicitly into the model. The data used for the analysis were derived from the published forecasts of the nine National Electric Reliability Councils in the US for the years 1974 to 1980. Three alternative statistical methods are used for estimation purposes: ordinary least-squares, robust regression and a diagnostic analysis to identify influential observations. The results obtained with the first two methods are very similar, but are both inconsistent with the underlying economic logic of the model. The estimated model obtained from the diagnostics approach after deleting two aberrant observations is consistent with economic logic, and supports the hypothesis that the low growth demand experienced immediately following the oil embargo in 1973 were disregarded by the industry for forecasting purposes. The model includes transitory effects associated with the oil embargo that gradually disappear over time, the estimated coefficients for the lagged values of actual growth approach a structure with declining positive weights. The general shape of this asymptotic structure is similar to the findings in many economic applications using distributed lag models.

  7. 1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-02-01

    This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

  8. Machine Learning Based Multi-Physical-Model Blending for Enhancing Renewable Energy Forecast -- Improvement via Situation Dependent Error Correction

    SciTech Connect (OSTI)

    Lu, Siyuan; Hwang, Youngdeok; Khabibrakhmanov, Ildar; Marianno, Fernando J.; Shao, Xiaoyan; Zhang, Jie; Hodge, Bri-Mathias; Hamann, Hendrik F.

    2015-07-15

    With increasing penetration of solar and wind energy to the total energy supply mix, the pressing need for accurate energy forecasting has become well-recognized. Here we report the development of a machine-learning based model blending approach for statistically combining multiple meteorological models for improving the accuracy of solar/wind power forecast. Importantly, we demonstrate that in addition to parameters to be predicted (such as solar irradiance and power), including additional atmospheric state parameters which collectively define weather situations as machine learning input provides further enhanced accuracy for the blended result. Functional analysis of variance shows that the error of individual model has substantial dependence on the weather situation. The machine-learning approach effectively reduces such situation dependent error thus produces more accurate results compared to conventional multi-model ensemble approaches based on simplistic equally or unequally weighted model averaging. Validation over an extended period of time results show over 30% improvement in solar irradiance/power forecast accuracy compared to forecasts based on the best individual model.

  9. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    SciTech Connect (OSTI)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  10. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  11. Developing an industrial end-use forecast: A case study at the Los Angeles department of water and power

    SciTech Connect (OSTI)

    Mureau, T.H.; Francis, D.M.

    1995-05-01

    The Los Angeles Department of Water and Power (LADWP) uses INFORM 1.0 to forecast industrial sector energy. INFORM 1.0 provides an end-use framework that can be used to forecast electricity, natural gas or other fuels consumption. Included with INFORM 1.0 is a default date set including the input data and equations necessary to solve each model. LADWP has substituted service area specific data for the default data wherever possible. This paper briefly describes the steps LADWP follows in developing those inputs and application in INFORM 1.0.

  12. Science on the Hill: The forecast calls for flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The forecast calls for flu The forecast calls for flu Using mathematics, computer programs, statistics and information about how disease develops and spreads, a research team at Los Alamos National Laboratory found a way to forecast the flu season and even next week's sickness trends. January 15, 2016 Forecasting flu A team from Los Alamos has developed a method to predict flu outbreaks based in part on influenza-related searches of Wikipedia. The forecast calls for flu Beyond the familiar flu,

  13. Forecast Change

    U.S. Energy Information Administration (EIA) Indexed Site

    Forecast Change 2011 2012 2013 2014 2015 2016 from 2015 United States Usage (kWh) 3,444 3,354 3,129 3,037 3,151 3,302 4.8% Price (cents/kWh) 12.06 12.09 12.58 13.04 12.95 12.84 -0.9% Expenditures $415 $405 $393 $396 $408 $424 3.9% New England Usage (kWh) 2,122 2,188 2,173 1,930 1,992 2,082 4.5% Price (cents/kWh) 15.85 15.50 16.04 17.63 18.64 18.37 -1.5% Expenditures $336 $339 $348 $340 $371 $382 3.0% Mid-Atlantic Usage (kWh) 2,531 2,548 2,447 2,234 2,371 2,497 5.3% Price (cents/kWh) 16.39 15.63

  14. 1980 Base case and feasibility analysis

    SciTech Connect (OSTI)

    1993-03-01

    This report describes a task of documenting a ``base case`` and performing a feasibility analysis for a national residential energy efficiency program for new homes, The principal objective of the task wasto estimate the energy consumption of typical homes built in 1980 and then to identify and assess the feasibility of methods to reduce that consumption by 50%. The goal of the program by the year 2000 is to reduce heating and cooling energy use in new homes built under the program to one-half of the energy use in typical new homes built in 1980. The task also calls for determining whether the program goal should be revised, based on the analysis.

  15. 1980 Base case and feasibility analysis

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This report describes a task of documenting a base case'' and performing a feasibility analysis for a national residential energy efficiency program for new homes, The principal objective of the task wasto estimate the energy consumption of typical homes built in 1980 and then to identify and assess the feasibility of methods to reduce that consumption by 50%. The goal of the program by the year 2000 is to reduce heating and cooling energy use in new homes built under the program to one-half of the energy use in typical new homes built in 1980. The task also calls for determining whether the program goal should be revised, based on the analysis.

  16. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s-1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less

  17. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    SciTech Connect (OSTI)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed wind speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s-1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.

  18. probabilistic energy production forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy production forecasts - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary ...

  19. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  20. Forecasting Water Quality & Biodiversity

    Broader source: Energy.gov (indexed) [DOE]

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability ... that measure feedstock production, water quality, water quantity, and biodiversity. ...

  1. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data Presentations BPA Super Forecast Methodology Related Links Near Real-time Wind Animation Meteorological Data Customer Supplied Generation Imbalance Dynamic Transfer Limits...

  2. Intermediate future forecasting system

    SciTech Connect (OSTI)

    Gass, S.I.; Murphy, F.H.; Shaw, S.H.

    1983-12-01

    The purposes of the Symposium on the Department of Energy's Intermediate Future Forecasting System (IFFS) were: (1) to present to the energy community details of DOE's new energy market model IFFS; and (2) to have an open forum in which IFFS and its major elements could be reviewed and critiqued by external experts. DOE speakers discussed the total system, its software design, and the modeling aspects of oil and gas supply, refineries, electric utilities, coal, and the energy economy. Invited experts critiqued each of these topics and offered suggestions for modifications and improvement. This volume documents the proceedings (papers and discussion) of the Symposium. Separate abstracts have been prepared for each presentation for inclusion in the Energy Data Base.

  3. Agent-based model forecasts aging of the population of people who inject drugs in metropolitan Chicago and changing prevalence of hepatitis C infections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.; Kaderali, Lars

    2015-09-30

    People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID tomore » build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our research highlight the importance of analyzing sub-populations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.« less

  4. Agent-based model forecasts aging of the population of people who inject drugs in metropolitan Chicago and changing prevalence of hepatitis C infections

    SciTech Connect (OSTI)

    Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.; Kaderali, Lars

    2015-09-30

    People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID to build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our research highlight the importance of analyzing sub-populations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.

  5. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forecasting NREL researchers use solar and wind resource assessment and forecasting techniques to develop models that better characterize the potential benefits and impacts of ...

  6. FY 2004 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration Power Business Line Generation (PBL) Accumulated Net Revenue Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net...

  7. PBL FY 2003 Third Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2003 Bonneville Power Administration Power Business Line Generation Accumulated Net Revenue Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net...

  8. 2016 Solar Forecasting Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    On August 3, 2016, the SunShot Initiative's systems integration subprogram hosted the Solar Forecasting Workshop to convene experts in the areas of bulk power system operations, distribution system operations, weather and solar irradiance forecasting, and photovoltaic system operation and modeling. The goal was to identify the technical challenges and opportunities in solar forecasting as a capability that can significantly reduce the integration cost of high levels of solar energy into the electricity grid. This will help SunShot to assess current technology and practices in this field and identify the gaps and needs for further research.

  9. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    SciTech Connect (OSTI)

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat; Black, Jon; Tedesco, John

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.

  10. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat; Black, Jon; Tedesco, John

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less

  11. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  12. Today's Forecast: Improved Wind Predictions

    Broader source: Energy.gov [DOE]

    Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable.

  13. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  14. Acquisition Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Forecast Acquisition Forecast Acquisition Forecast It is the policy of the U.S. Department of Energy (DOE) to provide timely information to the public regarding DOE's forecast of future prime contracting opportunities and subcontracting opportunities which are available via the Department's major site and facilities management contractors. This forecast has been expanded to also provide timely status information for ongoing prime contracting actions that are valued in excess of the

  15. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    1998-07-01

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  16. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  17. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  18. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  19. Standardized Software for Wind Load Forecast Error Analyses and Predictions Based on Wavelet-ARIMA Models - Applications at Multiple Geographically Distributed Wind Farms

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.

    2013-03-19

    Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (stochastic) model with the weather forecast model (deterministic) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.

  20. The Wind Forecast Improvement Project (WFIP). A Public-Private Partnership Addressing Wind Energy Forecast Needs

    SciTech Connect (OSTI)

    Wilczak, James M.; Finley, Cathy; Freedman, Jeff; Cline, Joel; Bianco, L.; Olson, J.; Djalaova, I.; Sheridan, L.; Ahlstrom, M.; Manobianco, J.; Zack, J.; Carley, J.; Benjamin, S.; Coulter, R. L.; Berg, Larry K.; Mirocha, Jeff D.; Clawson, K.; Natenberg, E.; Marquis, M.

    2015-10-30

    The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.

  1. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.

  2. Forecasting hotspots using predictive visual analytics approach

    SciTech Connect (OSTI)

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  3. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect (OSTI)

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  4. Baseline and Target Values for PV Forecasts: Toward Improved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting ... Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting Jie ...

  5. Using Wikipedia to forecast diseases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Wikipedia to forecast diseases Using Wikipedia to forecast diseases Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles. November 13, 2014 Del Valle and her team observe findings from their research on disease patterns from analyzing Wikipedia articles. Del Valle and her team observe findings from their research on disease patterns from analyzing Wikipedia articles. Contact Nancy Ambrosiano Communications Office (505)

  6. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94965 Region: Bay Area Sector: Services Product: Intelligent Monitoring and Forecasting Services Year Founded: 2010 Website: www.forecastenergy.net Coordinates:...

  7. UWIG Forecasting Workshop -- Albany (Presentation)

    SciTech Connect (OSTI)

    Lew, D.

    2011-04-01

    This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

  8. The forecast calls for flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on the Hill: The forecast calls for flu Using mathematics, computer programs, ... We're getting close. Using mathematics, computer programs, statistics and information ...

  9. Energy Forecasting Framework and Emissions Consensus Tool (EFFECT...

    Open Energy Info (EERE)

    Tool (EFFECT) EFFECT is an open, Excel-based modeling tool used to forecast greenhouse gas emissions from a range of development scenarios at the regional and national levels....

  10. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2004-12-13

    On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below

  11. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-12-19

    On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO

  12. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am ...

  13. Solar Energy Market Forecast | Open Energy Information

    Open Energy Info (EERE)

    Market Forecast Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Market Forecast AgencyCompany Organization: United States Department of Energy Sector:...

  14. Project Profile: Forecasting and Influencing Technological Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs Project Profile: Forecasting and Influencing Technological Progress in Solar Energy Project Profile: Forecasting and Influencing Technological Progress in Solar ...

  15. National Oceanic and Atmospheric Administration Provides Forecasting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... will share their expertise with CLASIC and CHAPS forecasters and project leaders as they consult on the forecast that will determine the day's operations plan. -- Storm Prediction ...

  16. Definition of the base analysis case of the interim performance assessment

    SciTech Connect (OSTI)

    Mann, F.M.

    1995-12-01

    The base analysis case for the ``Hanford Low-Level Tank Waste Interim Performance Assessment`` is defined. Also given are brief description of the sensitivity cases.

  17. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2006-12-06

    On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we

  18. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    SciTech Connect (OSTI)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the

  19. Science on Tap - Forecasting illness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Forecasting illness Science on Tap - Forecasting illness WHEN: Mar 17, 2016 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544 USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Mark your calendars for this event held every third Thursday from 5:30 to 7 p.m. A short presentation is followed by a lively discussion on a different subject each month. Forecasting the flu (and other

  20. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J.

    2011-12-06

    (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  1. Global disease monitoring and forecasting with Wikipedia

    SciTech Connect (OSTI)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  2. Global disease monitoring and forecasting with Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore » logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  3. Acquisition Forecast Download | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Forecast Download Acquisition Forecast Download Click on the link to download a copy of the DOE HQ Acquisition Forecast. Acquisition-Forecast-2016-07-20.xlsx (72.85 KB) More Documents & Publications Small Business Program Manager Directory EA-1900: Notice of Availability of a Draft Environmental Assessment Assessment Report: OAS-V-15-01

  4. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  5. Chiller condition monitoring using topological case-based modeling

    SciTech Connect (OSTI)

    Tsutsui, Hiroaki; Kamimura, Kazuyuki

    1996-11-01

    To increase energy efficiency and economy, commercial building projects now often utilize centralized, shared sources of heat such as district heating and cooling (DHC) systems. To maintain efficiency, precise monitoring and scheduling of maintenance for chillers and heat pumps is essential. Low-performance operation results in energy loss, while unnecessary maintenance is expensive and wasteful. Plant supervisors are responsible for scheduling and supervising maintenance. Modeling systems that assist in analyzing system deterioration are of great benefit for these tasks. Topological case-based modeling (TCBM) (Tsutsui et al. 1993; Tsutsui 1995) is an effective tool for chiller performance deterioration monitoring. This paper describes TCBM and its application to this task using recorded historical performance data.

  6. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    SciTech Connect (OSTI)

    Qian, Yun; Gustafson, William I.; Leung, Lai-Yung R.; Ghan, Steven J.

    2009-02-14

    Radiative forcing induced by soot on snow is a major anthropogenic forcing affecting the global climate. However, it is uncertain how the soot-induced snow albedo perturbation affects regional snowpack and the hydrological cycle. In this study we simulated the deposition of soot aerosol on snow and investigated the resulting impact on snowpack and the surface water budget in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine an annual budget of soot deposition, followed by two regional climate simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the net solar radiation flux at the surface during late winter to early spring, increase the surface air temperature, reduce snow water equivalent amount, and lead to reduced snow accumulation and less spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. Our simulations indicate that the change of maximum snow albedo induced by soot on snow contributes to 60% of the net albedo reduction over the central Rockies. Snowpack reduction accounts for the additional 40%.

  7. Voluntary Green Power Market Forecast through 2015

    SciTech Connect (OSTI)

    Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

    2010-05-01

    Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

  8. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern ...

  9. Forecasting the 2013–2014 influenza season using Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are appliedmore » to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.« less

  10. Forecasting the 2013–2014 influenza season using Wikipedia

    SciTech Connect (OSTI)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are applied to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.

  11. Picture of the Week: Forecasting Flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Forecasting Flu What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus or Zika were going to spread? March 6, 2016 flu epidemics modellled using social media Watch the video on YouTube. Forecasting Flu What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus or Zika were going to spread? Using real-time data from Wikipedia and social media, Sara del

  12. The Value of Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... day-ahead wind generation forecasts yields an average of 195M savings in annual operating costs. Figure 6 shows how operating cost savings vary with improvements in forecasting. ...

  13. EIA lowers forecast for summer gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA lowers forecast for summer gasoline prices U.S. gasoline prices are expected to be ... according to the new monthly forecast from the U.S. Energy Information Administration. ...

  14. Wind Forecasting Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Improvement Project Wind Forecasting Improvement Project October 3, 2011 - 12:12pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. In July, the Department of Energy launched a $6 million project with the National Oceanic and Atmospheric Administration (NOAA) and private partners to improve wind forecasting. Wind power forecasting allows system operators to anticipate the electrical output of wind plants and adjust the electrical

  15. UPF Forecast | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subcontracting / Subcontracting Forecasts / UPF Forecast UPF Forecast UPF Procurement provides the following forecast of subcontracting opportunities. Keep in mind that these requirements may be revised or cancelled, depending on program budget funding or departmental needs. If you have questions or would like to express an interest in any of the opportunities listed below, contact UPF Procurement. Descriptiona Methodb NAICS Est. Dollar Range RFP release/ Award datec Buyer/ Phone Commodities

  16. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    SciTech Connect (OSTI)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together into larger views, which are then used for solar forecasting. We examine the systems ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.

  17. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    SciTech Connect (OSTI)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together into larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.

  18. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  19. Well casing-based geophysical sensor apparatus, system and method

    DOE Patents [OSTI]

    Daily, William D.

    2010-03-09

    A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.

  20. Forecast of contracting and subcontracting opportunities. Fiscal year 1996

    SciTech Connect (OSTI)

    1996-02-01

    This forecast of prime and subcontracting opportunities with the U.S. Department of Energy and its MAO contractors and environmental restoration and waste management contractors, is the Department`s best estimate of small, small disadvantaged and women-owned small business procurement opportunities for fiscal year 1996. The information contained in the forecast is published in accordance with Public Law 100-656. It is not an invitation for bids, a request for proposals, or a commitment by DOE to purchase products or services. Each procurement opportunity is based on the best information available at the time of publication and may be revised or cancelled.

  1. 1980 annual report to Congress: Volume three, Forecasts: Summary

    SciTech Connect (OSTI)

    Not Available

    1981-05-27

    This report presents an overview of forecasts of domestic energy consumption, production, and prices for the year 1990. These results are selected from more detailed projections prepared and published in Volume 3 of the Energy Information Administration 1980 Annual Report to Congress. This report focuses specifically upon the 1980's and concentrates upon similarities and differences in the domestic energy system, as forecast, compared to the national experience in the years immediately following the 1973--1974 oil embargo. Interest in the 1980's stems not only from its immediacy in time, but also from its importance as a time in which certain adjustments to higher energy prices are expected to take place. The forecasts presented do not attempt to account for all of this wide range of potentially important forces that could conceivably alter the energy situation. Instead, the projections are based on a particular set of assumptions that seems reasonable in light of what is currently known. 9 figs., 25 tabs.

  2. Supply Forecast and Analysis (SFA)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Matthew Langholtz Science Team Leader Oak Ridge National Laboratory DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Supply Forecast and Analysis (SFA) 2 | Bioenergy Technologies Office Goal Statement * Provide timely and credible estimates of feedstock supplies and prices to support - the development of a bioeconomy; feedstock demand analysis of EISA, RFS2, and RPS mandates - the data and analysis of other projects in Analysis and Sustainability, Feedstock Supply and Logistics,

  3. Incorporating Forecast Uncertainty in Utility Control Center

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

    2014-07-09

    Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

  4. Energy consumption and expenditure projections by population group on the basis of the annual energy outlook 1999 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Balsley, J.H.

    2000-01-07

    This report presents an analysis of the relative impact of the base-case scenario used in Annual Energy Outlook 1999 on different population groups. Projections of energy consumption and expenditures, as well as energy expenditure as a share of income, from 1996 to 2020 are given. The projected consumption of electricty, natural gas, distillate fuel, and liquefied petroleum gas during this period is also reported for each population group. In addition, this report compares the findings of the Annual Energy Outlook 1999 report with the 1998 report. Changes in certain indicators and information affect energy use forecasts, and these effects are analyzed and discussed.

  5. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    .g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

  6. ARM - CARES - Tracer Forecast for CARES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CampaignsCarbonaceous Aerosols and Radiative Effects Study (CARES)Tracer Forecast for CARES Related Links CARES Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Field Updates CARES Wiki Campaign Images Experiment Planning Proposal Abstract and Related Campaigns Science Plan Operations Plan Measurements Forecasts News News & Press Backgrounder (PDF, 1.45MB) G-1 Aircraft Fact Sheet (PDF, 1.3MB) Contacts Rahul Zaveri, Lead Scientist Tracer Forecasts for CARES This webpage

  7. LED Lighting Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications » Market Studies » LED Lighting Forecast LED Lighting Forecast The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030. With declining costs and improving performance, LED products have been seeing increased adoption for general illumination applications. This is a positive development in terms of energy consumption, as LEDs use significantly

  8. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  9. NREL: Resource Assessment and Forecasting Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are used to plan and develop renewable energy technologies and support climate change research. Learn more about NREL's resource assessment and forecasting research:...

  10. Development and Demonstration of Advanced Forecasting, Power...

    Broader source: Energy.gov (indexed) [DOE]

    and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices 63wateruseoptimizationprojectanlgasper.ppt (7.72 MB) More ...

  11. Forecast and Funding Arrangements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Waste Forecast and Funding Arrangements About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford...

  12. NREL: Resource Assessment and Forecasting - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    email address: Your message: Send Message Printable Version Resource Assessment & Forecasting Home Capabilities Facilities Working with Us Research Staff Data & Resources Did...

  13. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    There is no cost to participate and all applicants are encouraged to attend. To join the ... Related Articles Upcoming Funding Opportunity for Wind Forecasting Improvement Project in ...

  14. Module 6 - Metrics, Performance Measurements and Forecasting...

    Broader source: Energy.gov (indexed) [DOE]

    This module reviews metrics such as cost and schedule variance along with cost and schedule performance indices. In addition, this module will outline forecasting tools such as ...

  15. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A.; Wiser, Ryan H.

    2010-01-04

    On December 14, 2009, the reference-case projections from Annual Energy Outlook 2010 were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in itigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings.

  16. Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project

    SciTech Connect (OSTI)

    Brent Dixon

    2012-09-01

    Thirteen countries participated in the Collaborative Project GAINS Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle, which was the primary activity within the IAEA/INPRO Program Area B: Global Vision on Sustainable Nuclear Energy for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energy systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.

  17. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  18. Sensing, Measurement, and Forecasting | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensing, Measurement, and Forecasting NREL measures weather resources and power systems, forecasts renewable resources and grid conditions, and converts measurements into operational intelligence to support a modern grid. Photo of solar resource monitoring equipment Modernizing the grid involves assessing its health in real time, predicting its behavior and potential disruptions, and quickly responding to events-which requires understanding vital parameters throughout the electric

  19. Incorporating Uncertainty of Wind Power Generation Forecast into Power System Operation, Dispatch, and Unit Commitment Procedures

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian; Huang, Zhenyu; Subbarao, Krishnappa

    2011-06-23

    An approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. An assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty - both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures). A new method called the 'flying-brick' technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through EMS integration illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems in control rooms.

  20. Incorporating Wind Generation Forecast Uncertainty into Power System Operation, Dispatch, and Unit Commitment Procedures

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Subbarao, Krishnappa

    2010-10-19

    In this paper, an approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the "flying-brick" technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through integration with an EMS system illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems from other vendors.

  1. 915 MHz Wind Profiler for Cloud Forecasting at Brookhaven National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory M Jensen MJ ... Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory M Jensen, ...

  2. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study forecasts disappearance of conifers due to climate change Study forecasts disappearance of conifers due to climate change New results, reported in a paper released today in ...

  3. Data Collection and Comparison with Forecasted Unit Sales of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Collection and Comparison with Forecasted Unit Sales of Five Lamp Types Data Collection and Comparison with Forecasted Unit Sales of Five Lamp Types PDF icon Data Collection ...

  4. Coal Fired Power Generation Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Forecast Home There are currently no posts in this category. Syndicate...

  5. Offshore Lubricants Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Offshore Lubricants Market Forecast Home There are currently no posts in this category. Syndicate...

  6. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  7. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  8. Flood Forecasting in River System Using ANFIS

    SciTech Connect (OSTI)

    Ullah, Nazrin; Choudhury, P.

    2010-10-26

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  9. energy data + forecasting | OpenEI Community

    Open Energy Info (EERE)

    energy data + forecasting Home FRED Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in...

  10. Text-Alternative Version LED Lighting Forecast

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  11. Assessment of the possibility of forecasting future natural gas curtailments

    SciTech Connect (OSTI)

    Lemont, S.

    1980-01-01

    This study provides a preliminary assessment of the potential for determining probabilities of future natural-gas-supply interruptions by combining long-range weather forecasts and natural-gas supply/demand projections. An illustrative example which measures the probability of occurrence of heating-season natural-gas curtailments for industrial users in the southeastern US is analyzed. Based on the information on existing long-range weather forecasting techniques and natural gas supply/demand projections enumerated above, especially the high uncertainties involved in weather forecasting and the unavailability of adequate, reliable natural-gas projections that take account of seasonal weather variations and uncertainties in the nation's energy-economic system, it must be concluded that there is little possibility, at the present time, of combining the two to yield useful, believable probabilities of heating-season gas curtailments in a form useful for corporate and government decision makers and planners. Possible remedial actions are suggested that might render such data more useful for the desired purpose in the future. The task may simply require the adequate incorporation of uncertainty and seasonal weather trends into modeling systems and the courage to report projected data, so that realistic natural gas supply/demand scenarios and the probabilities of their occurrence will be available to decision makers during a time when such information is greatly needed.

  12. Appendix E: Other NEMS-MP results for the base case and scenarios.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Singh, M. K.; Energy Systems

    2009-12-03

    The NEMS-MP model generates numerous results for each run of a scenario. (This model is the integrated National Energy Modeling System [NEMS] version used for the Multi-Path Transportation Futures Study [MP].) This appendix examines additional findings beyond the primary results reported in the Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses (Reference 1). These additional results are provided in order to help further illuminate some of the primary results. Specifically discussed in this appendix are: (1) Energy use results for light vehicles (LVs), including details about the underlying total vehicle miles traveled (VMT), the average vehicle fuel economy, and the volumes of the different fuels used; (2) Resource fuels and their use in the production of ethanol, hydrogen (H{sub 2}), and electricity; (3) Ethanol use in the scenarios (i.e., the ethanol consumption in E85 vs. other blends, the percent of travel by flex fuel vehicles on E85, etc.); (4) Relative availability of E85 and H2 stations; (5) Fuel prices; (6) Vehicle prices; and (7) Consumer savings. These results are discussed as follows: (1) The three scenarios (Mixed, (P)HEV & Ethanol, and H2 Success) when assuming vehicle prices developed through literature review; (2) The three scenarios with vehicle prices that incorporate the achievement of the U.S. Department of Energy (DOE) program vehicle cost goals; (3) The three scenarios with 'literature review' vehicle prices, plus vehicle subsidies; and (4) The three scenarios with 'program goals' vehicle prices, plus vehicle subsidies. The four versions or cases of each scenario are referred to as: Literature Review No Subsidies, Program Goals No Subsidies, Literature Review with Subsidies, and Program Goals with Subsidies. Two additional points must be made here. First, none of the results presented for LVs in this section include Class 2B trucks. Results for this class are included occasionally in Reference 1. They

  13. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  14. A Distributed Modeling System for Short-Term to Seasonal Ensemble Streamflow Forecasting in Snowmelt Dominated Basins

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Gill, Muhammad K.; Coleman, Andre M.; Prasad, Rajiv; Vail, Lance W.

    2007-12-01

    This paper describes a distributed modeling system for short-term to seasonal water supply forecasts with the ability to utilize remotely-sensed snow cover products and real-time streamflow measurements. Spatial variability in basin characteristics and meteorology is represented using a raster-based computational grid. Canopy interception, snow accumulation and melt, and simplified soil water movement are simulated in each computational unit. The model is run at a daily time step with surface runoff and subsurface flow aggregated at the basin scale. This approach allows the model to be updated with spatial snow cover and measured streamflow using an Ensemble Kalman-based data assimilation strategy that accounts for uncertainty in weather forecasts, model parameters, and observations used for updating. Model inflow forecasts for the Dworshak Reservoir in northern Idaho are compared to observations and to April-July volumetric forecasts issued by the Natural Resource Conservation Service (NRCS) for Water Years 2000 2006. October 1 volumetric forecasts are superior to those issued by the NRCS, while March 1 forecasts are comparable. The ensemble spread brackets the observed April-July volumetric inflows in all years. Short-term (one and three day) forecasts also show excellent agreement with observations.

  15. AVLIS: a technical and economic forecast

    SciTech Connect (OSTI)

    Davis, J.I.; Spaeth, M.L.

    1986-01-01

    The AVLIS process has intrinsically large isotopic selectivity and hence high separative capacity per module. The critical components essential to achieving the high production rates represent a small fraction (approx.10%) of the total capital cost of a production facility, and the reference production designs are based on frequent replacement of these components. The specifications for replacement frequencies in a plant are conservative with respect to our expectations; it is reasonable to expect that, as the plant is operated, the specifications will be exceeded and production costs will continue to fall. Major improvements in separator production rates and laser system efficiencies (approx.power) are expected to occur as a natural evolution in component improvements. With respect to the reference design, such improvements have only marginal economic value, but given the exigencies of moving from engineering demonstration to production operations, we continue to pursue these improvements in order to offset any unforeseen cost increases. Thus, our technical and economic forecasts for the AVLIS process remain very positive. The near-term challenge is to obtain stable funding and a commitment to bring the process to full production conditions within the next five years. If the funding and commitment are not maintained, the team will disperse and the know-how will be lost before it can be translated into production operations. The motivation to preserve the option for low-cost AVLIS SWU production is integrally tied to the motivation to maintain a competitive nuclear option. The US industry can certainly survive without AVLIS, but our tradition as technology leader in the industry will certainly be lost.

  16. The Value of Improved Short-Term Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... up-ramp reserves c down cost in MWh of down-ramp reserves R down MW range for ... power forecasting and the increased gas usage that comes with less-accurate forecasting. ...

  17. PBL FY 2003 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the rate period (i.e., FY 2002-2006), a forecast of that end-of-year Accumulated Net Revenue (ANR) will be completed. If the ANR at the end of the forecast year falls below the...

  18. Solar Forecasting Gets a Boost from Watson, Accuracy Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% October 27, 2015 - 11:48am Addthis IBM ...

  19. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  20. DOE Taking Wind Forecasting to New Heights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Taking Wind Forecasting to New Heights DOE Taking Wind Forecasting to New Heights May 18, 2015 - 3:24pm Addthis A 2013 study conducted for the U.S. Department of Energy (DOE) by the National Oceanic and Atmospheric Administration (NOAA), AWS Truepower, and WindLogics in the Great Plains and Western Texas, demonstrated that wind power forecasts can be improved substantially using data collected from tall towers, remote sensors, and other devices, and incorporated into improved forecasting models

  1. Combined Heat And Power Installation Market Forecast | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Forecast Home There are currently no posts in this category. Syndicate...

  2. Wind power forecasting in U.S. electricity markets.

    SciTech Connect (OSTI)

    Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

    2010-04-01

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

  3. Wind power forecasting in U.S. Electricity markets

    SciTech Connect (OSTI)

    Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

    2010-04-15

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

  4. Issues in midterm analysis and forecasting, 1996

    SciTech Connect (OSTI)

    1996-08-01

    This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

  5. Wind Forecast Improvement Project Southern Study Area Final Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report.pdf (15.76 MB) More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 QER - Comment of Canadian Hydropower Association QER - Comment of Edison Electric Institute (EEI) 2

  6. Knowledge representation and the application of case-based reasoning in engineering design

    SciTech Connect (OSTI)

    Bhangal, J.S.; Esat, I.

    1996-12-31

    This paper is an assessment of the requirements in the application of Case-based Reasoning to Engineering Design. The methods in which a CBR system will assist a designer when he/she is presented with a problem specification and the various methods which need to be understood before attempting to build an such expert system are discussed here. The problem is two fold, firstly the methods of utilizing CBR are varied and secondly the method of representing the knowledge in design also needs to be established. How a design represented basically differs for each application and this is a decision which needs to be made when setting up the case memory but the methods used are discussed here. CBR itself can also be utilized in various ways and it has been seen from previous applications that a hybrid approach can produce the best results.

  7. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

    2008-01-07

    On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and

  8. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-01-28

    On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and

  9. Demand forecasting for automotive sector in Malaysia by system dynamics approach

    SciTech Connect (OSTI)

    Zulkepli, Jafri Abidin, Norhaslinda Zainal; Fong, Chan Hwa

    2015-12-11

    In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand from the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars.

  10. Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment

    SciTech Connect (OSTI)

    Zupanski, M. )

    1993-08-01

    Four-dimensional variational data assimilation is applied to a regional forecast model as part of the development of a new data assimilation system at the National Meteorological Center (NMC). The assimilation employs an operational version of the NMC's new regional forecast model defined in eta vertical coordinates, and data used are operationally produced optimal interpolation (OI) analyses (using the first guess from the NMC's global spectral model), available every 3 h. Humidity and parameterized processes are not included in the adjoint model integration. The calculation of gradients by the adjoint model is approximate since the forecast model is used in its full-physics operational form. All experiments are over a 12-h assimilation period with subsequent 48-h forecast. Three different types of assimilation experiments are performed: (a) adjustment of initial conditions only (standard [open quotes]adjoint[close quotes] approach), (b) adjustment of a correction to the model equations only (variational continuous assimilation), and (c) simultaneous or sequential adjustment of both initial conditions and the correction term. Results indicate significantly better results when the correction term is included in the assimilation. It is shown, for a single case, that the new technique [experiment (c)] is able to produce a forecast better than the current conventional OI assimilation. It is very important to note that these results are obtained with an approximate gradient, calculated from a simplified adjoint model. Thus, it may be possible to perform an operational four-dimensional variational data assimilation of realistic forecast models, even before more complex adjoint models are developed. Also, the results suggest that it may be possible to reduce the large computational cost of assimilation by using only a few iterations of the minimization algorithm. This fast convergence is encouraging from the prospective of operational use. 37 refs., 10 figs., 1 tab.

  11. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  12. A self-adaptive case-based reasoning system for dose planning in prostate cancer radiotherapy

    SciTech Connect (OSTI)

    Mishra, Nishikant; Petrovic, Sanja; Sundar, Santhanam

    2011-12-15

    Purpose: Prostate cancer is the most common cancer in the male population. Radiotherapy is often used in the treatment for prostate cancer. In radiotherapy treatment, the oncologist makes a trade-off between the risk and benefit of the radiation, i.e., the task is to deliver a high dose to the prostate cancer cells and minimize side effects of the treatment. The aim of our research is to develop a software system that will assist the oncologist in planning new treatments. Methods: A nonlinear case-based reasoning system is developed to capture the expertise and experience of oncologists in treating previous patients. Importance (weights) of different clinical parameters in the dose planning is determined by the oncologist based on their past experience, and is highly subjective. The weights are usually fixed in the system. In this research, the weights are updated automatically each time after generating a treatment plan for a new patient using a group based simulated annealing approach. Results: The developed approach is analyzed on the real data set collected from the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. Extensive experiments show that the dose plan suggested by the proposed method is coherent with the dose plan prescribed by an experienced oncologist or even better. Conclusions: The developed case-based reasoning system enables the use of knowledge and experience gained by the oncologist in treating new patients. This system may play a vital role to assist the oncologist in making a better decision in less computational time; it utilizes the success rate of the previously treated patients and it can also be used in teaching and training processes.

  13. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    SciTech Connect (OSTI)

    Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Court, Laurence E.

    2014-08-15

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear, and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models

  14. Final Report on California Regional Wind Energy Forecasting Project:Application of NARAC Wind Prediction System

    SciTech Connect (OSTI)

    Chin, H S

    2005-07-26

    Wind power is the fastest growing renewable energy technology and electric power source (AWEA, 2004a). This renewable energy has demonstrated its readiness to become a more significant contributor to the electricity supply in the western U.S. and help ease the power shortage (AWEA, 2000). The practical exercise of this alternative energy supply also showed its function in stabilizing electricity prices and reducing the emissions of pollution and greenhouse gases from other natural gas-fired power plants. According to the U.S. Department of Energy (DOE), the world's winds could theoretically supply the equivalent of 5800 quadrillion BTUs of energy each year, which is 15 times current world energy demand (AWEA, 2004b). Archer and Jacobson (2005) also reported an estimation of the global wind energy potential with the magnitude near half of DOE's quote. Wind energy has been widely used in Europe; it currently supplies 20% and 6% of Denmark's and Germany's electric power, respectively, while less than 1% of U.S. electricity is generated from wind (AWEA, 2004a). The production of wind energy in California ({approx}1.2% of total power) is slightly higher than the national average (CEC & EPRI, 2003). With the recently enacted Renewable Portfolio Standards calling for 20% of renewables in California's power generation mix by 2010, the growth of wind energy would become an important resource on the electricity network. Based on recent wind energy research (Roulston et al., 2003), accurate weather forecasting has been recognized as an important factor to further improve the wind energy forecast for effective power management. To this end, UC-Davis (UCD) and LLNL proposed a joint effort through the use of UCD's wind tunnel facility and LLNL's real-time weather forecasting capability to develop an improved regional wind energy forecasting system. The current effort of UC-Davis is aimed at developing a database of wind turbine power curves as a function of wind speed and

  15. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  16. Upcoming Funding Opportunity for Wind Forecasting Improvement Project in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complex Terrain | Department of Energy Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am Addthis On February 11, 2014 the Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex terrain, this funding would improve

  17. Improving the Accuracy of Solar Forecasting Funding Opportunity...

    Energy Savers [EERE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and ...

  18. NREL: Resource Assessment and Forecasting - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources National Solar Radiation Database NREL resource assessment and forecasting research information is available from the following sources. Renewable Resource Data ...

  19. Roel Neggers European Centre for Medium-range Weather Forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transition from shallow to deep convection using a dual mass flux boundary layer scheme Roel Neggers European Centre for Medium-range Weather Forecasts Introduction " " % % &...

  20. Radar Wind Profiler for Cloud Forecasting at Brookhaven National...

    Office of Scientific and Technical Information (OSTI)

    forecasts for solar-energy applications and 2) to provide vertical profiling capabilities for the study of dynamics (i.e., vertical velocity) and hydrometeors in winter storms. ...

  1. DOE Announces Webinars on Solar Forecasting Metrics, the DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Solar Forecasting Metrics, the DOE ... from adopting the latest energy efficiency and renewable ... to liquids technology, advantages of using natural gas, ...

  2. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    SciTech Connect (OSTI)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Sun, Qian; Lehman, Brad

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance, cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.

  3. DOE Benefits Forecasts: Report of the External Peer Review Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    A report for the FY 2007 GPRA methodology review, highlighting the views of an external expert peer review panel on DOE benefits forecasts.

  4. New Forecasting Tools Enhance Wind Energy Integration In Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... RIT forecasting is saving costs and improving operational practices for IPC and helping integrate wind power more efficiently and cost effectively. Figure 3 shows how the ...

  5. A Review of Variable Generation Forecasting in the West: July...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost Assignment - Only a few respondents partly or fully recover forecasting costs from variable generators. Many simply absorb the costs, possibly viewing them as relatively ...

  6. ANL Software Improves Wind Power Forecasting | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    ... The licensing arrangement helps to facilitate transfer of the statistical learning algorithms developed in the project to industry use. A leading forecast provider in the United ...

  7. Selected papers on fuel forecasting and analysis

    SciTech Connect (OSTI)

    Gordon, R.L.; Prast, W.G.

    1983-05-01

    Of the 19 presentations at this seminar, covering coal, uranium, oil, and gas issues as well as related EPRI research projects, eleven papers are published in this volume. Nine of the papers primarily address coal-market analysis, coal transportation, and uranium supply. Two additional papers provide an evaluation and perspective on the art and use of coal-supply forecasting models and on the relationship between coal and oil prices. The authors are energy analysts and EPRI research contractors from academia, the consulting profession, and the coal industry. A separate abstract was prepared for each of the 11 papers.

  8. An approach to model validation and model-based prediction -- polyurethane foam case study.

    SciTech Connect (OSTI)

    Dowding, Kevin J.; Rutherford, Brian Milne

    2003-07-01

    Enhanced software methodology and improved computing hardware have advanced the state of simulation technology to a point where large physics-based codes can be a major contributor in many systems analyses. This shift toward the use of computational methods has brought with it new research challenges in a number of areas including characterization of uncertainty, model validation, and the analysis of computer output. It is these challenges that have motivated the work described in this report. Approaches to and methods for model validation and (model-based) prediction have been developed recently in the engineering, mathematics and statistical literatures. In this report we have provided a fairly detailed account of one approach to model validation and prediction applied to an analysis investigating thermal decomposition of polyurethane foam. A model simulates the evolution of the foam in a high temperature environment as it transforms from a solid to a gas phase. The available modeling and experimental results serve as data for a case study focusing our model validation and prediction developmental efforts on this specific thermal application. We discuss several elements of the ''philosophy'' behind the validation and prediction approach: (1) We view the validation process as an activity applying to the use of a specific computational model for a specific application. We do acknowledge, however, that an important part of the overall development of a computational simulation initiative is the feedback provided to model developers and analysts associated with the application. (2) We utilize information obtained for the calibration of model parameters to estimate the parameters and quantify uncertainty in the estimates. We rely, however, on validation data (or data from similar analyses) to measure the variability that contributes to the uncertainty in predictions for specific systems or units (unit-to-unit variability). (3) We perform statistical analyses and

  9. Habitat-Lite: A GSC case study based on free text terms for environmental metadata

    SciTech Connect (OSTI)

    Kyrpides, Nikos; Hirschman, Lynette; Clark, Cheryl; Cohen, K. Bretonnel; Mardis, Scott; Luciano, Joanne; Kottmann, Renzo; Cole, James; Markowitz, Victor; Kyrpides, Nikos; Field, Dawn

    2008-04-01

    There is an urgent need to capture metadata on the rapidly growing number of genomic, metagenomic and related sequences, such as 16S ribosomal genes. This need is a major focus within the Genomic Standards Consortium (GSC), and Habitat is a key metadata descriptor in the proposed 'Minimum Information about a Genome Sequence' (MIGS) specification. The goal of the work described here is to provide a light-weight, easy-to-use (small) set of terms ('Habitat-Lite') that captures high-level information about habitat while preserving a mapping to the recently launched Environment Ontology (EnvO). Our motivation for building Habitat-Lite is to meet the needs of multiple users, such as annotators curating these data, database providers hosting the data, and biologists and bioinformaticians alike who need to search and employ such data in comparative analyses. Here, we report a case study based on semi-automated identification of terms from GenBank and GOLD. We estimate that the terms in the initial version of Habitat-Lite would provide useful labels for over 60% of the kinds of information found in the GenBank isolation-source field, and around 85% of the terms in the GOLD habitat field. We present a revised version of Habitat-Lite and invite the community's feedback on its further development in order to provide a minimum list of terms to capture high-level habitat information and to provide classification bins needed for future studies.

  10. Model-based performance monitoring: Review of diagnostic methods and chiller case study

    SciTech Connect (OSTI)

    Haves, Phil; Khalsa, Sat Kartar

    2000-05-01

    The paper commences by reviewing the variety of technical approaches to the problem of detecting and diagnosing faulty operation in order to improve the actual performance of buildings. The review covers manual and automated methods, active testing and passive monitoring, the different classes of models used in fault detection, and methods of diagnosis. The process of model-based fault detection is then illustrated by describing the use of relatively simple empirical models of chiller energy performance to monitor equipment degradation and control problems. The CoolTools(trademark) chiller model identification package is used to fit the DOE-2 chiller model to on-site measurements from a building instrumented with high quality sensors. The need for simple algorithms to reject transient data, detect power surges and identify control problems is discussed, as is the use of energy balance checks to detect sensor problems. The accuracy with which the chiller model can be expected! to predict performance is assessed from the goodness of fit obtained and the implications for fault detection sensitivity and sensor accuracy requirements are discussed. A case study is described in which the model was applied retroactively to high-quality data collected in a San Francisco office building as part of a related project (Piette et al. 1999).

  11. Technical analysis in short-term uranium price forecasting

    SciTech Connect (OSTI)

    Schramm, D.S.

    1990-03-01

    As market participants anticipate the end of the current uranium price decline and its subsequent reversal, increased attention will be focused upon forecasting future price movements. Although uranium is economically similar to other mineral commodities, it is questionable whether methodologies used to forecast price movements of such commodities may be successfully applied to uranium.

  12. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  13. Waste generation forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1995-FY 2002, September 1994 revision

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    A comprehensive waste-forecasting task was initiated in FY 1991 to provide a consistent, documented estimate of the volumes of waste expected to be generated as a result of U.S. Department of Energy-Oak Ridge Operations (DOE-ORO) Environmental Restoration (ER) OR-1 Project activities. Continual changes in the scope and schedules for remedial action (RA) and decontamination and decommissioning (D&D) activities have required that an integrated data base system be developed that can be easily revised to keep pace with changes and provide appropriate tabular and graphical output. The output can then be analyzed and used to drive planning assumptions for treatment, storage, and disposal (TSD) facilities. The results of this forecasting effort and a description of the data base developed to support it are provided herein. The initial waste-generation forecast results were compiled in November 1991. Since the initial forecast report, the forecast data have been revised annually. This report reflects revisions as of September 1994.

  14. 3TIER Environmental Forecast Group Inc 3TIER | Open Energy Information

    Open Energy Info (EERE)

    TIER Environmental Forecast Group Inc 3TIER Jump to: navigation, search Name: 3TIER Environmental Forecast Group Inc (3TIER) Place: Seattle, Washington Zip: 98121 Sector: Renewable...

  15. Short-Term Energy Outlook Model Documentation: Macro Bridge Procedure to Update Regional Macroeconomic Forecasts with National Macroeconomic Forecasts

    Reports and Publications (EIA)

    2010-01-01

    The Regional Short-Term Energy Model (RSTEM) uses macroeconomic variables such as income, employment, industrial production and consumer prices at both the national and regional1 levels as explanatory variables in the generation of the Short-Term Energy Outlook (STEO). This documentation explains how national macroeconomic forecasts are used to update regional macroeconomic forecasts through the RSTEM Macro Bridge procedure.

  16. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling

    SciTech Connect (OSTI)

    Dyson, Brian; Chang, N.-B. . E-mail: nchang@even.tamuk.edu

    2005-07-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach - system dynamics modeling - for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool - Stella[reg]. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues.

  17. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    SciTech Connect (OSTI)

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  18. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  19. Code cases for implementing risk-based inservice testing in the ASME OM code

    SciTech Connect (OSTI)

    Rowley, C.W.

    1996-12-01

    Historically inservice testing has been reasonably effective, but quite costly. Recent applications of plant PRAs to the scope of the IST program have demonstrated that of the 30 pumps and 500 valves in the typical plant IST program, less than half of the pumps and ten percent of the valves are risk significant. The way the ASME plans to tackle this overly-conservative scope for IST components is to use the PRA and plant expert panels to create a two tier IST component categorization scheme. The PRA provides the quantitative risk information and the plant expert panel blends the quantitative and deterministic information to place the IST component into one of two categories: More Safety Significant Component (MSSC) or Less Safety Significant Component (LSSC). With all the pumps and valves in the IST program placed in MSSC or LSSC categories, two different testing strategies will be applied. The testing strategies will be unique for the type of component, such as centrifugal pump, positive displacement pump, MOV, AOV, SOV, SRV, PORV, HOV, CV, and MV. A series of OM Code Cases are being developed to capture this process for a plant to use. One Code Case will be for Component Importance Ranking. The remaining Code Cases will develop the MSSC and LSSC testing strategy for type of component. These Code Cases are planned for publication in early 1997. Later, after some industry application of the Code Cases, the alternative Code Case requirements will gravitate to the ASME OM Code as appendices.

  20. Science and Engineering of an Operational Tsunami Forecasting System

    ScienceCinema (OSTI)

    Gonzalez, Frank

    2010-01-08

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  1. Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era

    SciTech Connect (OSTI)

    Edwards, J.D.

    1997-08-01

    Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

  2. Integration of Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Chakrabarti, Bhujanga B.; Subbarao, Krishnappa; Loutan, Clyde; Guttromson, Ross T.

    2010-04-20

    In this paper, a new approach to evaluate the uncertainty ranges for the required generation performance envelope, including the balancing capacity, ramping capability and ramp duration is presented. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (CAISO) real life data have shown the effectiveness and efficiency of the proposed approach.

  3. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  4. Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.

    2010-05-01

    Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

  5. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect (OSTI)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are

  6. World oil inventories forecast to grow significantly in 2016...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World oil inventories forecast to grow significantly in 2016 and 2017 Global oil inventories are expected to continue strong growth over the next two years which should keep oil ...

  7. PBL FY 2002 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slice true-ups, and actual expense levels. Any variation of these can change the net revenue situation. FY 2002 Forecasted Second Quarter Results 170 (418) FY 2002 Unaudited...

  8. Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels

    Reports and Publications (EIA)

    2003-01-01

    This paper presents a short-term monthly forecasting model of West Texas Intermediate crude oil spot price using Organization for Economic Cooperation and Development (OECD) petroleum inventory levels.

  9. 915 MHz Wind Profiler for Cloud Forecasting at Brookhaven National...

    Office of Scientific and Technical Information (OSTI)

    U.S. DEPARTMENT OF HP IENERGY Office of Science DOESC-ARM-15-024 915-MHz Wind Profiler ... M Jensen et al., March 2016, DOESC-ARM-15-024 915-MHz Wind Profiler for Cloud Forecasting ...

  10. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  11. DOE Publishes New Forecast of Energy Savings from LED Lighting

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has just published the latest edition of its biannual report, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, which models the...

  12. Value of Improved Short-Term Wind Power Forecasting

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Sharp, J.; Margulis, M.; Mcreavy, D.

    2015-02-01

    This report summarizes an assessment of improved short-term wind power forecasting in the California Independent System Operator (CAISO) market and provides a quantification of its potential value.

  13. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  14. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Broader source: Energy.gov (indexed) [DOE]

    The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored research project whose overarching goals are to improve the accuracy of short-term wind ...

  15. Solar Trackers Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Forecast Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  16. Recently released EIA report presents international forecasting data

    SciTech Connect (OSTI)

    1995-05-01

    This report presents information from the Energy Information Administration (EIA). Articles are included on international energy forecasting data, data on the use of home appliances, gasoline prices, household energy use, and EIA information products and dissemination avenues.

  17. New Climate Research Centers Forecast Changes and Challenges | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Climate Research Centers Forecast Changes and Challenges New Climate Research Centers Forecast Changes and Challenges October 25, 2013 - 12:24pm Addthis This artist's rendering illustrates the full site installation, including a new aerosol observing system (far left) and a precipitation radar (far right, with 20-ft tower). The site is located near the Graciosa Island aiport terminal, hidden by the image inset. | Image courtesy of ARM Climate Research Facility. This artist's

  18. Energy Department Forecasts Geothermal Achievements in 2015 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Forecasts Geothermal Achievements in 2015 Energy Department Forecasts Geothermal Achievements in 2015 The 40th annual Stanford Geothermal Workshop in January featured speakers in the geothermal sector, including Jay Nathwani, Acting Director of the Energy Department's Geothermal Technologies Office. Nathwani shared achievements and challenges in the program's technical portfolio. The 40th annual Stanford Geothermal Workshop in January featured speakers in the geothermal sector,

  19. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study forecasts disappearance of conifers due to climate change Study forecasts disappearance of conifers due to climate change New results, reported in a paper released today in the journal Nature Climate Change, suggest that global models may underestimate predictions of forest death. December 21, 2015 Los Alamos scientist Nate McDowell discusses how climate change is killing trees with PBS NewsHour reporter Miles O'Brien. Los Alamos scientist Nate McDowell discusses how climate change is

  20. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models

    SciTech Connect (OSTI)

    Intharathirat, Rotchana; Abdul Salam, P.; Kumar, S.; Untong, Akarapong

    2015-05-15

    Highlights: • Grey model can be used to forecast MSW quantity accurately with the limited data. • Prediction interval overcomes the uncertainty of MSW forecast effectively. • A multivariate model gives accuracy associated with factors affecting MSW quantity. • Population, urbanization, employment and household size play role for MSW quantity. - Abstract: In order to plan, manage and use municipal solid waste (MSW) in a sustainable way, accurate forecasting of MSW generation and composition plays a key role. It is difficult to carry out the reliable estimates using the existing models due to the limited data available in the developing countries. This study aims to forecast MSW collected in Thailand with prediction interval in long term period by using the optimized multivariate grey model which is the mathematical approach. For multivariate models, the representative factors of residential and commercial sectors affecting waste collected are identified, classified and quantified based on statistics and mathematics of grey system theory. Results show that GMC (1, 5), the grey model with convolution integral, is the most accurate with the least error of 1.16% MAPE. MSW collected would increase 1.40% per year from 43,435–44,994 tonnes per day in 2013 to 55,177–56,735 tonnes per day in 2030. This model also illustrates that population density is the most important factor affecting MSW collected, followed by urbanization, proportion employment and household size, respectively. These mean that the representative factors of commercial sector may affect more MSW collected than that of residential sector. Results can help decision makers to develop the measures and policies of waste management in long term period.

  1. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

  2. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; Bierman, Paul R.; Breshears, David D.; Crosby, Benjamin T.; Ellis, Michael; Foufoula-Georgiou, Efi; Heimsath, Arjun M.; Houser, Chris; et al

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we havemore » the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.« less

  3. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    SciTech Connect (OSTI)

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; Bierman, Paul R.; Breshears, David D.; Crosby, Benjamin T.; Ellis, Michael; Foufoula-Georgiou, Efi; Heimsath, Arjun M.; Houser, Chris; Lancaster, Nick; Marani, Marco; Merritts, Dorothy J.; Moore, Laura J.; Pederson, Joel L.; Poulos, Michael J.; Rittenour, Tammy M.; Rowland, Joel C.; Ruggiero, Peter; Ward, Dylan J.; Wickert, Andrew D.; Yager, Elowyn M.

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.

  4. Survey of Variable Generation Forecasting in the West: August 2011 - June 2012

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2012-04-01

    This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

  5. UXO detection and identification based on intrinsic target polarizabilities: A case history

    SciTech Connect (OSTI)

    Gasperikova, E.; Smith, J.T.; Morrison, H.F.; Becker, A.; Kappler, K.

    2008-07-15

    Electromagnetic induction data parameterized in time dependent object intrinsic polarizabilities allow discrimination of unexploded ordnance (UXO) from false targets (scrap metal). Data from a cart-mounted system designed for discrimination of UXO with 20 mm to 155 mm diameters are used. Discrimination of UXO from irregular scrap metal is based on the principal dipole polarizabilities of a target. A near-intact UXO displays a single major polarizability coincident with the long axis of the object and two equal smaller transverse polarizabilities, whereas metal scraps have distinct polarizability signatures that rarely mimic those of elongated symmetric bodies. Based on a training data set of known targets, object identification was made by estimating the probability that an object is a single UXO. Our test survey took place on a military base where both 4.2-inch mortar shells and scrap metal were present. The results show that we detected and discriminated correctly all 4.2-inch mortars, and in that process we added 7%, and 17%, respectively, of dry holes (digging scrap) to the total number of excavations in two different survey modes. We also demonstrated a mode of operation that might be more cost effective than the current practice.

  6. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  7. Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts May 11, 2016 - 6:48pm Addthis Balancing the power grid is an art-or at least a scientific study in chaos-and the Energy Department is hoping wind energy can take a greater role in the act. Yet, the intermittency of wind-sometimes it's blowing, sometimes it's not-makes adding it smoothly to the nation's electrical grid a challenge.

  8. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    2008-01-15

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  9. Aminoindazole PDK1 Inhibitors: A Case Study in Fragment-Based Drug Discovery

    SciTech Connect (OSTI)

    Medina, Jesus R.; Blackledge, Charles W.; Heerding, Dirk A.; Campobasso, Nino; Ward, Paris; Briand, Jacques; Wright, Lois; Axten, Jeffrey M.

    2012-05-29

    Fragment screening of phosphoinositide-dependent kinase-1 (PDK1) in a biochemical kinase assay afforded hits that were characterized and prioritized based on ligand efficiency and binding interactions with PDK1 as determined by NMR. Subsequent crystallography and follow-up screening led to the discovery of aminoindazole 19, a potent leadlike PDK1 inhibitor with high ligand efficiency. Well-defined structure-activity relationships and protein crystallography provide a basis for further elaboration and optimization of 19 as a PDK1 inhibitor.

  10. Final Report - Integration of Behind-the-Meter PV Fleet Forecasts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Final Report - Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System ...

  11. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect (OSTI)

    Piwko, R.; Jordan, G.

    2011-11-01

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  12. DOE Releases Latest Report on Energy Savings Forecast of Solid-State Lighting

    Broader source: Energy.gov [DOE]

    DOE has published a new report forecasting the energy savings of LED white-light sources compared with conventional white-light sources. The sixth iteration of the Energy Savings Forecast of Solid...

  13. Status of Centralized Wind Power Forecasting in North America: May 2009-May 2010

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2010-04-01

    Report surveys grid wind power forecasts for all wind generators, which are administered by utilities or regional transmission organizations (RTOs), typically with the assistance of one or more wind power forecasting companies.

  14. EIA revises up forecast for U.S. 2013 crude oil production by...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day The forecast for U.S. crude oil production keeps going higher. The U.S. Energy Information ...

  15. Lipid-Based Nanodiscs as Models for Studying Mesoscale Coalescence A Transport Limited Case

    SciTech Connect (OSTI)

    Hu, Andrew; Fan, Tai-Hsi; Katsaras, John; Xia, Yan; Li, Ming; Nieh, Mu-Ping

    2014-01-01

    Lipid-based nanodiscs (bicelles) are able to form in mixtures of long- and short-chain lipids. Initially, they are of uniform size but grow upon dilution. Previously, nanodisc growth kinetics have been studied using time-resolved small angle neutron scattering (SANS), a technique which is not well suited for probing their change in size immediately after dilution. To address this, we have used dynamic light scattering (DLS), a technique which permits the collection of useful data in a short span of time after dilution of the system. The DLS data indicate that the negatively charged lipids in nanodiscs play a significant role in disc stability and growth. Specifically, the charged lipids are most likely drawn out from the nanodiscs into solution, thereby reducing interparticle repulsion and enabling the discs to grow. We describe a population balance model, which takes into account Coulombic interactions and adequately predicts the initial growth of nanodiscs with a single parameter i.e., surface potential. The results presented here strongly support the notion that the disc coalescence rate strongly depends on nanoparticle charge density. The present system containing low-polydispersity lipid nanodiscs serves as a good model for understanding how charged discoidal micelles coalesce.

  16. Technology Solutions Case Study: Apartment Compartmentalization with an Aerosol-Based Sealing Process

    SciTech Connect (OSTI)

    2015-07-01

    Air sealing of building enclosures is a difficult and time-consuming process. Current methods in new construction require laborers to physically locate small and sometimes large holes in multiple assemblies and then manually seal each of them. This research study by Building America team Consortium for Advanced Residential Buildings demonstrated the automated air sealing and compartmentalization of buildings through the use of an aerosolized sealant developed by the Western Cooling Efficiency Center at University of California Davis. CARB demonstrated this new technology application in a multifamily building in Queens, NY. The effectiveness of the sealing process was evaluated by three methods: air leakage testing of overall apartment before and after sealing, point-source testing of individual leaks, and pressure measurements in the walls of the target apartment during sealing. Aerosolized sealing was successful by several measures in this study. Many individual leaks that are labor-intensive to address separately were well sealed by the aerosol particles. In addition, many diffuse leaks that are difficult to identify and treat were also sealed. The aerosol-based sealing process resulted in an average reduction of 71% in air leakage across three apartments and an average apartment airtightness of 0.08 CFM50/SF of enclosure area.

  17. Beyond "Partly Sunny": A Better Solar Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Partly Sunny": A Better Solar Forecast Beyond "Partly Sunny": A Better Solar Forecast December 7, 2012 - 10:00am Addthis The Energy Department is investing in better solar forecasting techniques to improve the reliability and stability of solar power plants during periods of cloud coverage. | Photo by Dennis Schroeder/NREL. The Energy Department is investing in better solar forecasting techniques to improve the reliability and stability of solar power plants during periods

  18. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  19. Wind power forecasting : state-of-the-art 2009.

    SciTech Connect (OSTI)

    Monteiro, C.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G.; Decision and Information Sciences; INESC Porto

    2009-11-20

    Many countries and regions are introducing policies aimed at reducing the environmental footprint from the energy sector and increasing the use of renewable energy. In the United States, a number of initiatives have been taken at the state level, from renewable portfolio standards (RPSs) and renewable energy certificates (RECs), to regional greenhouse gas emission control schemes. Within the U.S. Federal government, new energy and environmental policies and goals are also being crafted, and these are likely to increase the use of renewable energy substantially. The European Union is pursuing implementation of its ambitious 20/20/20 targets, which aim (by 2020) to reduce greenhouse gas emissions by 20% (as compared to 1990), increase the amount of renewable energy to 20% of the energy supply, and reduce the overall energy consumption by 20% through energy efficiency. With the current focus on energy and the environment, efficient integration of renewable energy into the electric power system is becoming increasingly important. In a recent report, the U.S. Department of Energy (DOE) describes a model-based scenario, in which wind energy provides 20% of the U.S. electricity demand in 2030. The report discusses a set of technical and economic challenges that have to be overcome for this scenario to unfold. In Europe, several countries already have a high penetration of wind power (i.e., in the range of 7 to 20% of electricity consumption in countries such as Germany, Spain, Portugal, and Denmark). The rapid growth in installed wind power capacity is expected to continue in the United States as well as in Europe. A large-scale introduction of wind power causes a number of challenges for electricity market and power system operators who will have to deal with the variability and uncertainty in wind power generation when making their scheduling and dispatch decisions. Wind power forecasting (WPF) is frequently identified as an important tool to address the variability and

  20. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique

  1. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  2. Weather Research and Forecasting Model with the Immersed Boundary Method

    Energy Science and Technology Software Center (OSTI)

    2012-05-01

    The Weather Research and Forecasting (WRF) Model with the immersed boundary method is an extension of the open-source WRF Model available for wwww.wrf-model.org. The new code modifies the gridding procedure and boundary conditions in the WRF model to improve WRF's ability to simutate the atmosphere in environments with steep terrain and additionally at high-resolutions.

  3. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    SciTech Connect (OSTI)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-15

    Highlights: ► We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ► The model is robust at multiple time scales with the anticipated accuracy. ► At month-scale, the SARIMA model shows good representation for monthly MSW generation. ► At medium-term time scale, grey relational analysis could yield the MSW generation. ► At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to

  4. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V.

    2011-11-29

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help

  5. Final Report- Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California independent system operator’s load forecasts by integrating behind-the-meter photovoltaic forecasts.

  6. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  7. Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000

    SciTech Connect (OSTI)

    Das, S.

    1991-12-01

    The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

  8. USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15

    SciTech Connect (OSTI)

    KETUSKY, EDWARD

    2005-10-31

    This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

  9. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-04-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  10. Climatic Forecasting of Net Infiltration at Yucca Montain Using Analogue Meteororological Data

    SciTech Connect (OSTI)

    B. Faybishenko

    2006-09-11

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes.

  11. Validation of a 20-year forecast of US childhood lead poisoning: Updated prospects for 2010

    SciTech Connect (OSTI)

    Jacobs, David E. . E-mail: dejacobs@starpower.net; Nevin, Rick

    2006-11-15

    We forecast childhood lead poisoning and residential lead paint hazard prevalence for 1990-2010, based on a previously unvalidated model that combines national blood lead data with three different housing data sets. The housing data sets, which describe trends in housing demolition, rehabilitation, window replacement, and lead paint, are the American Housing Survey, the Residential Energy Consumption Survey, and the National Lead Paint Survey. Blood lead data are principally from the National Health and Nutrition Examination Survey. New data now make it possible to validate the midpoint of the forecast time period. For the year 2000, the model predicted 23.3 million pre-1960 housing units with lead paint hazards, compared to an empirical HUD estimate of 20.6 million units. Further, the model predicted 498,000 children with elevated blood lead levels (EBL) in 2000, compared to a CDC empirical estimate of 434,000. The model predictions were well within 95% confidence intervals of empirical estimates for both residential lead paint hazard and blood lead outcome measures. The model shows that window replacement explains a large part of the dramatic reduction in lead poisoning that occurred from 1990 to 2000. Here, the construction of the model is described and updated through 2010 using new data. Further declines in childhood lead poisoning are achievable, but the goal of eliminating children's blood lead levels {>=}10 {mu}g/dL by 2010 is unlikely to be achieved without additional action. A window replacement policy will yield multiple benefits of lead poisoning prevention, increased home energy efficiency, decreased power plant emissions, improved housing affordability, and other previously unrecognized benefits. Finally, combining housing and health data could be applied to forecasting other housing-related diseases and injuries.

  12. Use of Data Denial Experiments to Evaluate ESA Forecast Sensitivity Patterns

    SciTech Connect (OSTI)

    Zack, J; Natenberg, E J; Knowe, G V; Manobianco, J; Waight, K; Hanley, D; Kamath, C

    2011-09-13

    wind speed and vertical temperature difference. Ideally, the data assimilation scheme used in the experiments would have been based upon an ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-Colombia Basin sensitivity patterns in the previous studies. However, the use of an EnKF system at high resolution is impractical because of the very high computational cost. Thus, it was decided to use the three-dimensional variational analysis data assimilation that is less computationally intensive and more economically practical for generating operational forecasts. There are two tasks in the current project effort designed to validate the ESA observational system deployment approach in order to move closer to the overall goal: (1) Perform an Observing System Experiment (OSE) using a data denial approach which is the focus of this task and report; and (2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-Colombia basin region. The results of this task are presented in a separate report. The objective of the OSE task involves validating the ESA-MOOA results from the previous sensitivity studies for the Mid-Columbia Basin by testing the impact of existing meteorological tower measurements on the 0- to 6-hour ahead 80-m wind forecasts at the target locations. The testing of the ESA-MOOA method used a combination of data assimilation techniques and data denial experiments to accomplish the task objective.

  13. Forecast of transportation energy demand through the year 2010

    SciTech Connect (OSTI)

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  14. Microsoft Word - Documentation - Price Forecast Uncertainty.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    October 2009 1 October 2009 Short-Term Energy Outlook Supplement: Energy Price Volatility and Forecast Uncertainty 1 Summary It is often noted that energy prices are quite volatile, reflecting market participants' adjustments to new information from physical energy markets and/or markets in energy- related financial derivatives. Price volatility is an indication of the level of uncertainty, or risk, in the market. This paper describes how markets price risk and how the market- clearing process

  15. Towards a Science of Tumor Forecast for Clinical Oncology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yankeelov, Tom; Quaranta, Vito; Evans, Katherine J; Rericha, Erin

    2015-01-01

    We propose that the quantitative cancer biology community make a concerted effort to apply the methods of weather forecasting to develop an analogous theory for predicting tumor growth and treatment response. Currently, the time course of response is not predicted, but rather assessed post hoc by physical exam or imaging methods. This fundamental limitation of clinical oncology makes it extraordinarily difficult to select an optimal treatment regimen for a particular tumor of an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoplymore » of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. With a successful theory of tumor forecasting, it should be possible to integrate large tumor specific datasets of varied types, and effectively defeat cancer one patient at a time.« less

  16. Toward a science of tumor forecasting for clinical oncology

    SciTech Connect (OSTI)

    Yankeelov, Thomas E.; Quaranta, Vito; Evans, Katherine J.; Rericha, Erin C.

    2015-03-15

    We propose that the quantitative cancer biology community makes a concerted effort to apply lessons from weather forecasting to develop an analogous methodology for predicting and evaluating tumor growth and treatment response. Currently, the time course of tumor response is not predicted; instead, response is only assessed post hoc by physical examination or imaging methods. This fundamental practice within clinical oncology limits optimization of a treatment regimen for an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. Furthermore, with a successful methodology toward tumor forecasting, it should be possible to integrate large tumor-specific datasets of varied types and effectively defeat one cancer patient at a time.

  17. Toward a science of tumor forecasting for clinical oncology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yankeelov, Thomas E.; Quaranta, Vito; Evans, Katherine J.; Rericha, Erin C.

    2015-03-15

    We propose that the quantitative cancer biology community makes a concerted effort to apply lessons from weather forecasting to develop an analogous methodology for predicting and evaluating tumor growth and treatment response. Currently, the time course of tumor response is not predicted; instead, response is only assessed post hoc by physical examination or imaging methods. This fundamental practice within clinical oncology limits optimization of a treatment regimen for an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapiesmore » is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. Furthermore, with a successful methodology toward tumor forecasting, it should be possible to integrate large tumor-specific datasets of varied types and effectively defeat one cancer patient at a time.« less

  18. Towards a Science of Tumor Forecast for Clinical Oncology

    SciTech Connect (OSTI)

    Yankeelov, Tom; Quaranta, Vito; Evans, Katherine J; Rericha, Erin

    2015-01-01

    We propose that the quantitative cancer biology community make a concerted effort to apply the methods of weather forecasting to develop an analogous theory for predicting tumor growth and treatment response. Currently, the time course of response is not predicted, but rather assessed post hoc by physical exam or imaging methods. This fundamental limitation of clinical oncology makes it extraordinarily difficult to select an optimal treatment regimen for a particular tumor of an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. With a successful theory of tumor forecasting, it should be possible to integrate large tumor specific datasets of varied types, and effectively defeat cancer one patient at a time.

  19. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations

    Broader source: Energy.gov [DOE]

    The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored research project whose overarching goals are to improve the accuracy of short-term wind energy forecasts, and to demonstrate the economic value of these improvements.

  20. Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results

    SciTech Connect (OSTI)

    Koomey, J.G.; Brown, R.E.; Richey, R.

    1995-12-01

    This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

  1. Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

    2012-09-01

    Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

  2. Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology IBM logo.png As part of this project, new solar forecasting technology will be developed that leverages big data processing, deep machine learning, and cloud modeling integrated in a universal platform with an open architecture. Similar to the Watson computer system, this proposed technology

  3. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  4. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  5. ARM - PI Product - CCPP-ARM Parameterization Testbed Model Forecast Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCCPP-ARM Parameterization Testbed Model Forecast Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : CCPP-ARM Parameterization Testbed Model Forecast Data Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are

  6. The Value of Improved Wind Power Forecasting in the Western Interconne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of this research will facilitate a better functional understanding of wind forecasting accuracy and power system operations at various spatial and temporal scales.* Of particular ...

  7. Report of the external expert peer review panel: DOE benefits forecasts

    SciTech Connect (OSTI)

    None, None

    2006-12-20

    A report for the FY 2007 GPRA methodology review, highlighting the views of an external expert peer review panel on DOE benefits forecasts.

  8. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting behind-the-meter distributed PV generation power production within a region ... This project is expected to reduce the costs of integrating higher penetrations of PV into ...

  9. Energy Department Announces $2.5 Million to Improve Wind Forecasting...

    Broader source: Energy.gov (indexed) [DOE]

    turbines operate closer to maximum capacity, leading to lower energy costs for consumers. ... for the Weather Research and Forecasting model, a widely used weather prediction system. ...

  10. Value of Improved Wind Power Forecasting in the Western Interconnection (Poster)

    SciTech Connect (OSTI)

    Hodge, B.

    2013-12-01

    Wind power forecasting is a necessary and important technology for incorporating wind power into the unit commitment and dispatch process. It is expected to become increasingly important with higher renewable energy penetration rates and progress toward the smart grid. There is consensus that wind power forecasting can help utility operations with increasing wind power penetration; however, there is far from a consensus about the economic value of improved forecasts. This work explores the value of improved wind power forecasting in the Western Interconnection of the United States.

  11. EERE Success Story-Solar Forecasting Gets a Boost from Watson...

    Broader source: Energy.gov (indexed) [DOE]

    electric system operators, and solar project owners better predict when and how much ... production varies, an accurate solar forecast is needed in order to maintain an ...

  12. Recent Trends in Variable Generation Forecasting and Its Value to the Power System

    SciTech Connect (OSTI)

    Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; Sharp, Justin; Wilczak, James M.; Freedman, Jeffrey; Haupt, Sue Ellen; Cline, Joel; Bartholomy, Obadiah; Hamann, Hendrik F.; Hodge, Bri-Mathias; Finley, Catherine; Nakafuji, Dora; Peterson, Jack L.; Maggio, David; Marquis, Melinda

    2014-12-23

    We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value of adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.

  13. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Miettinen, J.; Holttinen, H.; Gomez-Lozaro, E.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Lovholm, A.; Berge, E.; Dobschinski, J.

    2013-10-01

    This presentation summarizes the work to investigate the uncertainty in wind forecasting at different times of year and compare wind forecast errors in different power systems using large-scale wind power prediction data from six countries: the United States, Finland, Spain, Denmark, Norway, and Germany.

  14. Recent Trends in Variable Generation Forecasting and Its Value to the Power System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; Sharp, Justin; Wilczak, James M.; Freedman, Jeffrey; Haupt, Sue Ellen; Cline, Joel; Bartholomy, Obadiah; Hamann, Hendrik F.; et al

    2014-12-23

    We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value ofmore » adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.« less

  15. Optimized periodic verification testing blended risk and performance-based MOV inservice test program an application of ASME code case OMN-1

    SciTech Connect (OSTI)

    Sellers, C.; Fleming, K.; Bidwell, D.; Forbes, P.

    1996-12-01

    This paper presents an application of ASME Code Case OMN-1 to the GL 89-10 Program at the South Texas Project Electric Generating Station (STPEGS). Code Case OMN-1 provides guidance for a performance-based MOV inservice test program that can be used for periodic verification testing and allows consideration of risk insights. Blended probabilistic and deterministic evaluation techniques were used to establish inservice test strategies including both test methods and test frequency. Described in the paper are the methods and criteria for establishing MOV safety significance based on the STPEGS probabilistic safety assessment, deterministic considerations of MOV performance characteristics and performance margins, the expert panel evaluation process, and the development of inservice test strategies. Test strategies include a mix of dynamic and static testing as well as MOV exercising.

  16. Forecasting the northern African dust outbreak towards Europe in April 2011: A model intercomparison

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huneeus, N.; Basart, S.; Fiedler, S.; Morcrette, J. -J.; Benedetti, A.; Mulcahy, J.; Terradellas, E.; Garcia-Pando, C. Perez; Pejanovic, G.; Nickovic, S.; et al

    2016-04-21

    In the framework of the World Meteorological Organisation's Sand and Dust Storm Warning Advisory and Assessment System, we evaluated the predictions of five state-of-the-art dust forecast models during an intense Saharan dust outbreak affecting western and northern Europe in April 2011. We assessed the capacity of the models to predict the evolution of the dust cloud with lead times of up to 72 h using observations of aerosol optical depth (AOD) from the AErosol RObotic NETwork (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) and dust surface concentrations from a ground-based measurement network. In addition, the predicted vertical dust distributionmore » was evaluated with vertical extinction profiles from the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP). To assess the diversity in forecast capability among the models, the analysis was extended to wind field (both surface and profile), synoptic conditions, emissions and deposition fluxes. Models predict the onset and evolution of the AOD for all analysed lead times. On average, differences among the models are larger than differences among lead times for each individual model. In spite of large differences in emission and deposition, the models present comparable skill for AOD. In general, models are better in predicting AOD than near-surface dust concentration over the Iberian Peninsula. Models tend to underestimate the long-range transport towards northern Europe. In this paper, our analysis suggests that this is partly due to difficulties in simulating the vertical distribution dust and horizontal wind. Differences in the size distribution and wet scavenging efficiency may also account for model diversity in long-range transport.« less

  17. The Milling Assistant, Case-Based Reasoning, and machining strategy: A report on the development of automated numerical control programming systems at New Mexico State University

    SciTech Connect (OSTI)

    Burd, W.; Culler, D.; Eskridge, T.; Cox, L.; Slater, T.

    1993-08-01

    The Milling Assistant (MA) programming system demonstrates the automated development of tool paths for Numerical Control (NC) machine tools. By integrating a Case-Based Reasoning decision processor with a commercial CAD/CAM software, intelligent tool path files for milled and point-to-point features can be created. The operational system is capable of reducing the time required to program a variety of parts and improving product quality by collecting and utilizing ``best of practice`` machining strategies.

  18. Thirty-Year Solid Waste Generation Maximum and Minimum Forecast for SRS

    SciTech Connect (OSTI)

    Thomas, L.C.

    1994-10-01

    This report is the third phase (Phase III) of the Thirty-Year Solid Waste Generation Forecast for Facilities at the Savannah River Site (SRS). Phase I of the forecast, Thirty-Year Solid Waste Generation Forecast for Facilities at SRS, forecasts the yearly quantities of low-level waste (LLW), hazardous waste, mixed waste, and transuranic (TRU) wastes generated over the next 30 years by operations, decontamination and decommissioning and environmental restoration (ER) activities at the Savannah River Site. The Phase II report, Thirty-Year Solid Waste Generation Forecast by Treatability Group (U), provides a 30-year forecast by waste treatability group for operations, decontamination and decommissioning, and ER activities. In addition, a 30-year forecast by waste stream has been provided for operations in Appendix A of the Phase II report. The solid wastes stored or generated at SRS must be treated and disposed of in accordance with federal, state, and local laws and regulations. To evaluate, select, and justify the use of promising treatment technologies and to evaluate the potential impact to the environment, the generic waste categories described in the Phase I report were divided into smaller classifications with similar physical, chemical, and radiological characteristics. These smaller classifications, defined within the Phase II report as treatability groups, can then be used in the Waste Management Environmental Impact Statement process to evaluate treatment options. The waste generation forecasts in the Phase II report includes existing waste inventories. Existing waste inventories, which include waste streams from continuing operations and stored wastes from discontinued operations, were not included in the Phase I report. Maximum and minimum forecasts serve as upper and lower boundaries for waste generation. This report provides the maximum and minimum forecast by waste treatability group for operation, decontamination and decommissioning, and ER activities.

  19. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel; Pavan, Alessandro Massi

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  20. Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

  1. Weather Research and Forecasting Model with Vertical Nesting Capability

    Energy Science and Technology Software Center (OSTI)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improvesmore » WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundary conditions to be provided through the nesting procedure.« less

  2. Prevalence and contribution of BRCA1 mutations in breast cancer and ovarian cancer: Results from three US population-based case-control studies of ovarian cancer

    SciTech Connect (OSTI)

    Whittemore, A.S.; Gong, G.; Itnyre, J.

    1997-03-01

    We investigate the familial risks of cancers of the breast and ovary, using data pooled from three population-based case-control studies of ovarian cancer that were conducted in the United States. We base estimates of the frequency of mutations of BRCA1 (and possibly other genes) on the reported occurrence of breast cancer and ovarian cancer in the mothers and sisters of 922 women with incident ovarian cancer (cases) and in 922 women with no history of ovarian cancer (controls). Segregation analysis and goodness-of-fit testing of genetic models suggest that rare mutations (frequency .0014; 95% confidence interval .0002-.011) account for all the observed aggregation of breast cancer and ovarian cancer in these families. The estimated risk of breast cancer by age 80 years is 73.5% in mutation carriers and 6.8% in noncarriers. The corresponding estimates for ovarian cancer are 27.8% in carriers and 1.8% in noncarriers. For cancer risk in carriers, these estimates are lower than those obtained from families selected for high cancer prevalence. The estimated proportion of all U.S. cancer diagnoses, by age 80 years, that are due to germ-line BRCA1 mutations is 3.0% for breast cancer and 4.4% for ovarian cancer. Aggregation of breast cancer and ovarian cancer was less evident in the families of 169 cases with borderline ovarian cancers than in the families of cases with invasive cancers. Familial aggregation did not differ by the ethnicity of the probands, although the number of non-White and Hispanic cases (N = 99) was sparse. 14 refs., 3 figs., 6 tabs.

  3. An Optimized Autoregressive Forecast Error Generator for Wind and Load Uncertainty Study

    SciTech Connect (OSTI)

    De Mello, Phillip; Lu, Ning; Makarov, Yuri V.

    2011-01-17

    This paper presents a first-order autoregressive algorithm to generate real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast errors. The methodology aims at producing random wind and load forecast time series reflecting the autocorrelation and cross-correlation of historical forecast data sets. Five statistical characteristics are considered: the means, standard deviations, autocorrelations, and cross-correlations. A stochastic optimization routine is developed to minimize the differences between the statistical characteristics of the generated time series and the targeted ones. An optimal set of parameters are obtained and used to produce the RT, HA, and DA forecasts in due order of succession. This method, although implemented as the first-order regressive random forecast error generator, can be extended to higher-order. Results show that the methodology produces random series with desired statistics derived from real data sets provided by the California Independent System Operator (CAISO). The wind and load forecast error generator is currently used in wind integration studies to generate wind and load inputs for stochastic planning processes. Our future studies will focus on reflecting the diurnal and seasonal differences of the wind and load statistics and implementing them in the random forecast generator.

  4. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect (OSTI)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  5. Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maljovec, D.; Liu, S.; Wang, B.; Mandelli, D.; Bremer, P. -T.; Pascucci, V.; Smith, C.

    2015-07-14

    Here, dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated,more » where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other for enhanced structural understanding of the data.« less

  6. Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study

    SciTech Connect (OSTI)

    Maljovec, D.; Liu, S.; Wang, B.; Mandelli, D.; Bremer, P. -T.; Pascucci, V.; Smith, C.

    2015-07-14

    Here, dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated, where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other for enhanced structural understanding of the data.

  7. Review of Variable Generation Forecasting in the West: July 2013 - March 2014

    SciTech Connect (OSTI)

    Widiss, R.; Porter, K.

    2014-03-01

    This report interviews 13 operating entities (OEs) in the Western Interconnection about their implementation of wind and solar forecasting. The report updates and expands upon one issued by NREL in 2012. As in the 2012 report, the OEs interviewed vary in size and character; the group includes independent system operators, balancing authorities, utilities, and other entities. Respondents' advice for other utilities includes starting sooner rather than later as it can take time to plan, prepare, and train a forecast; setting realistic expectations; using multiple forecasts; and incorporating several performance metrics.

  8. A case study for cloud based high throughput analysis of NGS data using the globus genomics system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhuvaneshwar, Krithika; Sulakhe, Dinanath; Gauba, Robinder; Rodriguez, Alex; Madduri, Ravi; Dave, Utpal; Lacinski, Lukasz; Foster, Ian; Gusev, Yuriy; Madhavan, Subha

    2015-01-01

    Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-end NGS analysis requirements. The Globus Genomicsmore » system is built on Amazon's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research.« less

  9. A case study for cloud based high throughput analysis of NGS data using the globus genomics system

    SciTech Connect (OSTI)

    Bhuvaneshwar, Krithika; Sulakhe, Dinanath; Gauba, Robinder; Rodriguez, Alex; Madduri, Ravi; Dave, Utpal; Lacinski, Lukasz; Foster, Ian; Gusev, Yuriy; Madhavan, Subha

    2015-01-01

    Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-end NGS analysis requirements. The Globus Genomics system is built on Amazon's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research.

  10. Material World: Forecasting Household Appliance Ownership in a Growing Global Economy

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2009-03-23

    Over the past years the Lawrence Berkeley National Laboratory (LBNL) has developed an econometric model that predicts appliance ownership at the household level based on macroeconomic variables such as household income (corrected for purchase power parity), electrification, urbanization and climate variables. Hundreds of data points from around the world were collected in order to understand trends in acquisition of new appliances by households, especially in developing countries. The appliances covered by this model are refrigerators, lighting fixtures, air conditioners, washing machines and televisions. The approach followed allows the modeler to construct a bottom-up analysis based at the end use and the household level. It captures the appliance uptake and the saturation effect which will affect the energy demand growth in the residential sector. With this approach, the modeler can also account for stock changes in technology and efficiency as a function of time. This serves two important functions with regard to evaluation of the impact of energy efficiency policies. First, it provides insight into which end uses will be responsible for the largest share of demand growth, and therefore should be policy priorities. Second, it provides a characterization of the rate at which policies affecting new equipment penetrate the appliance stock. Over the past 3 years, this method has been used to support the development of energy demand forecasts at the country, region or global level.

  11. U.S. Crude Oil Production Forecast-Analysis of Crude Types

    U.S. Energy Information Administration (EIA) Indexed Site

    of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil Production Forecast-Analysis of Crude Types i This report was prepared by the U.S....

  12. Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

  13. A Public-Private-Academic Partnership to Advance Solar Power Forecasting

    Broader source: Energy.gov [DOE]

    The University Corporation for Atmospheric  Research (UCAR) will develop a solar power forecasting system that advances the state of the science through cutting-edge research.

  14. Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2013-01-01

    Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

  15. Ramping Effect on Forecast Use: Integrated Ramping as a Mitigation Strategy; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Diakov, Victor; Barrows, Clayton; Brinkman, Gregory; Bloom, Aaron; Denholm, Paul

    2015-06-23

    Power generation ramping between forecasted (net) load set-points shift the generation (MWh) from its scheduled values. The Integrated Ramping is described as a method that mitigates this problem.

  16. Examining Information Entropy Approaches as Wind Power Forecasting Performance Metrics: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Orwig, K.; Milligan, M.

    2012-06-01

    In this paper, we examine the parameters associated with the calculation of the Renyi entropy in order to further the understanding of its application to assessing wind power forecasting errors.

  17. Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain

    Office of Energy Efficiency and Renewable Energy (EERE)

    On April 4, 2014 the U.S. Department of Energy announced a $2.5 million funding opportunity entitled “Wind Forecasting Improvement Project in Complex Terrain.” By researching the physical processes...

  18. Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Steckler, N.; Florita, A.; Zhang, J.; Hodge, B. M.

    2013-11-01

    As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.

  19. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Broader source: Energy.gov [DOE]

    Report forecasting the U.S. energy savings of LED white-light sources compared to conventional white-light sources (i.e., incandescent, halogen, fluorescent, and high-intensity discharge) over the...

  20. U.S. oil production forecast update reflects lower rig count

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. oil production forecast update reflects lower rig count Lower oil prices and fewer rigs drilling for crude oil are expected to slow U.S. oil production growth this year and in ...

  1. Gasoline price forecast to stay below 3 dollar a gallon in 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Gasoline price forecast to stay below 3 a gallon in 2015 The national average pump price of gasoline is expected to stay below 3 per gallon during 2015. In its new monthly ...

  2. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  3. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  4. U.S. Department of Energy Workshop Report: Solar Resources and Forecasting

    SciTech Connect (OSTI)

    Stoffel, T.

    2012-06-01

    This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

  5. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  6. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  7. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    1995-01-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  8. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

    2014-11-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

  9. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid

    SciTech Connect (OSTI)

    Tian; Tian; Chernyakhovskiy, Ilya

    2016-01-01

    This document discusses improving system operations with forecasting and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  10. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  11. Case Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS Case Studies Science DMZ Case Studies Multi-facility Workflow Case Study News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home » Science Engagement » Case Studies Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Multi-facility Workflow Case Study Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638

  12. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  13. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  14. Roof-top solar energy potential under performance-based building energy codes: The case of Spain

    SciTech Connect (OSTI)

    Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar; Fueyo, Norberto

    2011-01-15

    The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality, PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)

  15. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations. The Southern Study Area, Final Report

    SciTech Connect (OSTI)

    Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

    2014-04-30

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.

  16. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    1992-06-18

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

  17. HOW TO DEAL WITH WASTE ACCEPTANCE UNCERTAINTY USING THE WASTE ACCEPTANCE CRITERIA FORECASTING AND ANALYSIS CAPABILITY SYSTEM (WACFACS)

    SciTech Connect (OSTI)

    Redus, K. S.; Hampshire, G. J.; Patterson, J. E.; Perkins, A. B.

    2002-02-25

    The Waste Acceptance Criteria Forecasting and Analysis Capability System (WACFACS) is used to plan for, evaluate, and control the supply of approximately 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous wastes from over 60 environmental restoration projects between FY02 through FY10 to the Oak Ridge Environmental Management Waste Management Facility (EMWMF). WACFACS is a validated decision support tool that propagates uncertainties inherent in site-related contaminant characterization data, disposition volumes during EMWMF operations, and project schedules to quantitatively determine the confidence that risk-based performance standards are met. Trade-offs in schedule, volumes of waste lots, and allowable concentrations of contaminants are performed to optimize project waste disposition, regulatory compliance, and disposal cell management.

  18. Baseline data for the residential sector and development of a residential forecasting database

    SciTech Connect (OSTI)

    Hanford, J.W.; Koomey, J.G.; Stewart, L.E.; Lecar, M.E.; Brown, R.E.; Johnson, F.X.; Hwang, R.J.; Price, L.K.

    1994-05-01

    This report describes the Lawrence Berkeley Laboratory (LBL) residential forecasting database. It provides a description of the methodology used to develop the database and describes the data used for heating and cooling end-uses as well as for typical household appliances. This report provides information on end-use unit energy consumption (UEC) values of appliances and equipment historical and current appliance and equipment market shares, appliance and equipment efficiency and sales trends, cost vs efficiency data for appliances and equipment, product lifetime estimates, thermal shell characteristics of buildings, heating and cooling loads, shell measure cost data for new and retrofit buildings, baseline housing stocks, forecasts of housing starts, and forecasts of energy prices and other economic drivers. Model inputs and outputs, as well as all other information in the database, are fully documented with the source and an explanation of how they were derived.

  19. Case Studies

    Broader source: Energy.gov [DOE]

    The following case studies are examples of integrating renewable energy into Federal new construction and major renovation projects. Additional renewable energy case studies are also available.

  20. ARM - Field Campaign - 915 MHz Wind Profiler for Cloud Forecasting at BNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaigns915 MHz Wind Profiler for Cloud Forecasting at BNL Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 915 MHz Wind Profiler for Cloud Forecasting at BNL 2011.05.31 - 2012.05.31 Lead Scientist : Michael Jensen For data sets, see below. Abstract In support of the installation of a 37 MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study

  1. ARM - Field Campaign - Radar Wind Profiler for Cloud Forecasting at BNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsRadar Wind Profiler for Cloud Forecasting at BNL Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Radar Wind Profiler for Cloud Forecasting at BNL 2013.07.15 - 2015.08.06 Lead Scientist : Michael Jensen For data sets, see below. Abstract In support of recent activities funded by the DOE Energy Efficiency and Renewable Energy (EERE) to produce short-term

  2. EERE Success Story-Solar Forecasting Gets a Boost from Watson, Accuracy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved by 30% | Department of Energy Forecasting Gets a Boost from Watson, Accuracy Improved by 30% EERE Success Story-Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% October 27, 2015 - 11:48am Addthis IBM Youtube Video | Courtesy of IBM Remember when IBM's super computer Watson defeated Jeopardy! champions Ken Jennings and Brad Rutter? With funding from the U.S. Department of Energy SunShot Initiative, IBM researchers are using Watson-like technology to improve solar

  3. Summer gasoline price forecast slightly higher, but drivers still pay less than last year

    U.S. Energy Information Administration (EIA) Indexed Site

    Summer gasoline price forecast slightly higher, but drivers still pay less than last year Rising crude oil prices are likely to be passed on to consumers at the pump, but U.S. drivers are still expected to pay the lowest summer gasoline prices since 2004, and for all of 2016 the average household will spend $900 less on gasoline than it did two years ago." In its new monthly forecast, the U.S. Energy Information Administration said the retail price for regular grade gasoline will average

  4. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  5. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2003 THRU FY2046 VERSION 2003.1 VOLUME 2 [SEC 1 & 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2003-12-01

    This report includes data requested on September 10, 2002 and includes radioactive solid waste forecasting updates through December 31, 2002. The FY2003.0 request is the primary forecast for fiscal year FY 2003.

  6. Enhanced Short-Term Wind Power Forecasting and Value to Grid Operations: Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Clark, C.; Cline, J.; Benjamin, S.; Wilczak, J.; Marquis, M.; Finley, C.; Stern, A.; Freedman, J.

    2012-09-01

    The current state of the art of wind power forecasting in the 0- to 6-hour time frame has levels of uncertainty that are adding increased costs and risk on the U.S. electrical grid. It is widely recognized within the electrical grid community that improvements to these forecasts could greatly reduce the costs and risks associated with integrating higher penetrations of wind energy. The U.S. Department of Energy has sponsored a research campaign in partnership with the National Oceanic and Atmospheric Administration (NOAA) and private industry to foster improvements in wind power forecasting. The research campaign involves a three-pronged approach: 1) a 1-year field measurement campaign within two regions; 2) enhancement of NOAA's experimental 3-km High-Resolution Rapid Refresh (HRRR) model by assimilating the data from the field campaign; and 3) evaluation of the economic and reliability benefits of improved forecasts to grid operators. This paper and presentation provides an overview of the regions selected, instrumentation deployed, data quality and control, assimilation of data into HRRR, and preliminary results of HRRR performance analysis.

  7. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach

    SciTech Connect (OSTI)

    Brown, C. W.; Hood, Raleigh R.; Long, Wen; Jacobs, John M.; Ramers, D. L.; Wazniak, C.; Wiggert, J. D.; Wood, R.; Xu, J.

    2013-09-01

    The Chesapeake Bay Ecological Prediction System (CBEPS) automatically generates daily nowcasts and three-day forecasts of several environmental variables, such as sea-surface temperature and salinity, the concentrations of chlorophyll, nitrate, and dissolved oxygen, and the likelihood of encountering several noxious species, including harmful algal blooms and water-borne pathogens, for the purpose of monitoring the Bay's ecosystem. While the physical and biogeochemical variables are forecast mechanistically using the Regional Ocean Modeling System configured for the Chesapeake Bay, the species predictions are generated using a novel mechanistic empirical approach, whereby real-time output from the coupled physical biogeochemical model drives multivariate empirical habitat models of the target species. The predictions, in the form of digital images, are available via the World Wide Web to interested groups to guide recreational, management, and research activities. Though full validation of the integrated forecasts for all species is still a work in progress, we argue that the mechanisticempirical approach can be used to generate a wide variety of short-term ecological forecasts, and that it can be applied in any marine system where sufficient data exist to develop empirical habitat models. This paper provides an overview of this system, its predictions, and the approach taken.

  8. Industrial end-use forecasting that incorporates DSM and air quality

    SciTech Connect (OSTI)

    Tutt, T.; Flory, J.

    1995-05-01

    The California Energy Commission (CEC) and major enregy utilities in California have generally depended on simple aggregate intensity or economic models to forecast energy use in the process industry sector (which covers large industries employing basic processes to transform raw materials, such as paper mills, glass plants, and cement plants). Two recent trends suggests that the time has come to develop a more disaggregate process industry forecasting model. First, recent efforts to improve air quality, especially by the South Coast Air Quality Management District (SCAQMD), could significantly affect energy use by the process industry by altering the technologies and processes employed in order to reduce emissions. Second, there is a renewed interest in Demand-Side Management (DSM), not only for utility least-cost planning, but also for improving the economic competitiveness and environmental compliance of the pro{minus}cess industries. A disaggregate forecasting model is critical to help the CEC and utilities evaluate both the air quality and DSM impacts on energy use. A crucial obstacle to the development and use of these detailed process industry forecasting models is the lack of good data about disaggregate energy use in the sector. The CEC is nearing completion of a project to begin to overcome this lack of data. The project is testing methds of developing detailed energy use data, collecting an initial database for a large portion of southern California, and providing recommendations and direction for further data collection efforts.

  9. BBRN Factsheet: Case Study: Community Engagement | Department...

    Office of Environmental Management (EM)

    Case Study: Community Engagement, on the Community Home Energy Retrofit Project (CHERP), based in Claremont, California. Case Study: Community Engagement (197.35 KB) More Documents ...

  10. Case Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Case Studies Case Studies The following case studies will be included in the HEP report. Final case studies are due January 7, 2013. Lattice Gauge Theories - Lead: Doug Toussaint Simulations for Cosmic Frontier Experiments - Leads: Peter Nugent & Andrew Connelly Cosmic Microwave Background Data Analysis - Lead: Julian Borrill Cosmological Simulations - Lead: Salman Habib Plasma Accelerator Simulation Using Laser and Particle Beam Drivers - Leads: Cameron Geddes & Frank Tsung Community

  11. Application of Ensemble Sensitivity Analysis to Observation Targeting for Short-term Wind Speed Forecasting

    SciTech Connect (OSTI)

    Zack, J; Natenberg, E; Young, S; Manobianco, J; Kamath, C

    2010-02-21

    The operators of electrical grids, sometimes referred to as Balancing Authorities (BA), typically make critical decisions on how to most reliably and economically balance electrical load and generation in time frames ranging from a few minutes to six hours ahead. At higher levels of wind power generation, there is an increasing need to improve the accuracy of 0- to 6-hour ahead wind power forecasts. Forecasts on this time scale have typically been strongly dependent on short-term trends indicated by the time series of power production and meteorological data from a wind farm. Additional input information is often available from the output of Numerical Weather Prediction (NWP) models and occasionally from off-site meteorological towers in the region surrounding the wind generation facility. A widely proposed approach to improve short-term forecasts is the deployment of off-site meteorological towers at locations upstream from the wind generation facility in order to sense approaching wind perturbations. While conceptually appealing, it turns out that, in practice, it is often very difficult to derive significant benefit in forecast performance from this approach. The difficulty is rooted in the fact that the type, scale, and amplitude of the processes controlling wind variability at a site change from day to day if not from hour to hour. Thus, a location that provides some useful forecast information for one time may not be a useful predictor a few hours later. Indeed, some processes that cause significant changes in wind power production operate predominantly in the vertical direction and thus cannot be monitored by employing a network of sensors at off-site locations. Hence, it is very challenging to determine the type of sensors and deployment locations to get the most benefit for a specific short-term forecast application. Two tools recently developed in the meteorological research community have the potential to help determine the locations and parameters to

  12. Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)

    Reports and Publications (EIA)

    1998-01-01

    The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

  13. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    SciTech Connect (OSTI)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  14. The impact of forecasted energy price increases on low-income consumers

    SciTech Connect (OSTI)

    Eisenberg, Joel F.

    2005-10-31

    The Department of Energy’s Energy Information Administration (EIA) recently released its short term forecast for residential energy prices for the winter of 2005-2006. The forecast indicates significant increases in fuel costs, particularly for natural gas, propane, and home heating oil, for the year ahead. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation’s low-income households by primary heating fuel type, nationally and by Census Region. The statistics are intended for the use of policymakers in the Department of Energy’s Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2006 fiscal year.

  15. Validation of Global Weather Forecast and Climate Models Over the North

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slope of Alaska Validation of Global Weather Forecast and Climate Models Over the North Slope of Alaska Xie, Shaocheng Lawrence Livermore National Laboratory Klein, Stephen Lawrence Livermore National Laboratory Boyle, Jim Lawrence Livermore National Laboratory Fiorino, Michael DOE/Lawrence Livermore National Laboratory Hnilo, Justin DOE/Lawrence Livermore National Laboratory Phillips, Thomas PCMDI/LLNL Potter, Gerald Lawrence Livermore National Laboratory Beljaars, Anton ECMWF Category:

  16. Are there Gains from Pooling Real-Time Oil Price Forecasts?

    U.S. Energy Information Administration (EIA) Indexed Site

    Are there Gains from Pooling Real- Time Oil Price Forecasts? Christiane Baumeister, Bank of Canada Lutz Kilian, University of Michigan Thomas K. Lee, U.S. Energy Information Administration February 12, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy

  17. Forecasting the Magnitude of Sustainable Biofeedstock Supplies: the Challenges and the Rewards

    SciTech Connect (OSTI)

    Graham, Robin Lambert

    2007-01-01

    Forecasting the magnitude of sustainable biofeedstock supplies is challenging because of 1) the myriad of potential feedstock types and their management 2) the need to account for the spatial variation of both the supplies and their environmental and economic consequences, and 3) the inherent challenges of optimizing across economic and environmental considerations. Over the last two decades U.S. biomass forecasts have become increasingly complex and sensitive to environmental and economic considerations. More model development and research is needed however, to capture the landscape and regional tradeoffs of differing biofeedstock supplies especially with regards water quality concerns and wildlife/biodiversity. Forecasts need to be done in the context of the direction of change and what the probable land use and attendant environmental and economic outcomes would be if biofeedstocks were not being produced. To evaluate sustainability, process-oriented models need to be coupled or used to inform sector models and more work needs to be done on developing environmental metrics that are useful for evaluating economic and environmental tradeoffs. These challenges are exciting and worthwhile as they will enable the bioenergy industry to capture environmental and social benefits of biofeedstock production and reduce risks.

  18. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay

    SciTech Connect (OSTI)

    Jacobs, John M.; Rhodes, M.; Brown, C. W.; Hood, Raleigh R.; Leight, A.; Long, Wen; Wood, R.

    2014-11-01

    The aim is to construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Conclusions: Environmental parameters such as temperature, salinity and turbidity are capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions.

  19. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    SciTech Connect (OSTI)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvn waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  20. Evaluation of Forecasted Southeast Pacific Stratocumulus in the NCAR, GFDL and ECMWF Models

    SciTech Connect (OSTI)

    Hannay, C; Williamson, D L; Hack, J J; Kiehl, J T; Olson, J G; Klein, S A; Bretherton, C S; K?hler, M

    2008-01-24

    We examine forecasts of Southeast Pacific stratocumulus at 20S and 85W during the East Pacific Investigation of Climate (EPIC) cruise of October 2001 with the ECMWF model, the Atmospheric Model (AM) from GFDL, the Community Atmosphere Model (CAM) from NCAR, and the CAM with a revised atmospheric boundary layer formulation from the University of Washington (CAM-UW). The forecasts are initialized from ECMWF analyses and each model is run for 3 days to determine the differences with the EPIC field data. Observations during the EPIC cruise show a stable and well-mixed boundary layer under a sharp inversion. The inversion height and the cloud layer have a strong and regular diurnal cycle. A key problem common to the four models is that the forecasted planetary boundary layer (PBL) height is too low when compared to EPIC observations. All the models produce a strong diurnal cycle in the Liquid Water Path (LWP) but there are large differences in the amplitude and the phase compared to the EPIC observations. This, in turn, affects the radiative fluxes at the surface. There is a large spread in the surface energy budget terms amongst the models and large discrepancies with observational estimates. Single Column Model (SCM) experiments with the CAM show that the vertical pressure velocity has a large impact on the PBL height and LWP. Both the amplitude of the vertical pressure velocity field and its vertical structure play a significant role in the collapse or the maintenance of the PBL.

  1. Why Models Don%3CU%2B2019%3Et Forecast.

    SciTech Connect (OSTI)

    McNamara, Laura A.

    2010-08-01

    The title of this paper, Why Models Don't Forecast, has a deceptively simple answer: models don't forecast because people forecast. Yet this statement has significant implications for computational social modeling and simulation in national security decision making. Specifically, it points to the need for robust approaches to the problem of how people and organizations develop, deploy, and use computational modeling and simulation technologies. In the next twenty or so pages, I argue that the challenge of evaluating computational social modeling and simulation technologies extends far beyond verification and validation, and should include the relationship between a simulation technology and the people and organizations using it. This challenge of evaluation is not just one of usability and usefulness for technologies, but extends to the assessment of how new modeling and simulation technologies shape human and organizational judgment. The robust and systematic evaluation of organizational decision making processes, and the role of computational modeling and simulation technologies therein, is a critical problem for the organizations who promote, fund, develop, and seek to use computational social science tools, methods, and techniques in high-consequence decision making.

  2. Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart

    2015-02-14

    Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equationsmore » at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.« less

  3. Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting

    SciTech Connect (OSTI)

    Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart

    2015-02-14

    Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equations at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.

  4. New Tools for Forecasting Old Physics at the LHC

    ScienceCinema (OSTI)

    None

    2011-10-06

    For the LHC to uncover many types of new physics, the "old physics" produced by the Standard Model must be understood very well. For decades, the central theoretical tool for this job was the Feynman diagram expansion. However, Feynman diagrams are just too slow, even on fast computers, to allow adequate precision for complicated LHC events with many jets in the final state. Such events are already visible in the initial LHC data. Over the past few years, alternative methods to Feynman diagrams have come to fruition. These new "on-shell" methods are based on the old principles of unitarity and factorization. They can be much more efficient because they exploit the underlying simplicity of scattering amplitudes, and recycle lower-loop information. I will describe how and why these methods work, and present some of the recent state-of-the-art results that have been obtained with them.

  5. Application Case Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Application Case Studies NERSC staff along with engineers have worked with NESAP applications to prepare for the Cori-Phase 2 system based on the Xeon Phi "Knights Landing" processor. We document the several optimization case studies below. Our presentations at ISC 16 IXPUG Workshop can all be found: https://www.ixpug.org/events/ixpug-isc-2016 Other pages of interest for those wishing to learn optimization strategies of Cori Phase 2 (Knights Landing): Getting Started Measuring

  6. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/01

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985 and 2025. Residential, commercial, and industrial energy demands are forecast as well as the impacts of energy technology implementation and market penetration using a set of energy technology assumptions. (DMC)

  7. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/03

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions.

  8. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/02

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions. (DMC)

  9. Impact of oxygenates on petroleum refining, review and forecast

    SciTech Connect (OSTI)

    Unzelman, G.H.

    1995-09-01

    During the coming decade, oxygenates will continue to impact light oil processing and will steadily change the composition of the US gasoline pool. There are several major driving forces that will sustain the gradual influx of oxygen to US gasoline toward the regulatory limits: (1) the positive environmental characteristics of oxygenated compounds, (2) the high-octane quality of ethers that promote elimination of less desirable hydrocarbons and (3) the competitive need for ultra-clean gasoline to compete with alternatives. From 1995 forward, conventional gasoline will gradually shift to RFG (reformulated gasoline) containing a minimum of 2 wt% oxygen and less aromatics. As a result some processing changes, already in motion in the refining industry, will continue. For example, less severe naphtha reforming and cracking innovations to yield more feed for etherification and alkylation. While alternative fuel and vehicle technology will continue to develop, oxygenates in US gasoline will contribute the major alternative dimension to transportation fuel in the foreseeable future. With RFG, internal-combustion engine emissions will be progressively less toxic and lower in photochemical reactivity. The oxygenate mix will favor methyl ethers in spite of the recent methanol price spike. Ethyl ethers will be used on a more limited basis for specific situations where lower volatility and feedstock economics are an advantage. Downstream blending of ethanol will supplement ethers blended at the refinery in situations where economics are more favorable than refinery ethers. Long-range survival of ethanol, as a direct blending agent or feedstock for refinery ethers, depends on one or more of several factors: future crude oil costs, longevity of subsidies and/or mandates, and new production technology based on cellulose yielding ethanol economically competitive with hydrocarbons.

  10. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    SciTech Connect (OSTI)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, ?, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  11. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    SciTech Connect (OSTI)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  12. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; et al

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  13. DOE BiomassDevelopment and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header RDD Review Template

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header March 25, 2015 Terrestrial Feedstocks Timothy A. Volk SUNY ESF This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement * Develop, test and deploy a single pass cut and chip harvester combined with a handling, transportation and storage system that is effective and efficient in a range of

  14. SU-E-T-129: Dosimetric Evaluation of the Impact of Density Correction On Dose Calculation of Breast Cancer Treatment: A Study Based On RTOG 1005 Cases

    SciTech Connect (OSTI)

    Li, J; Yu, Y

    2014-06-01

    Purpose: RTOG 1005 requires density correction in the dose calculation of breast cancer radiation treatment. The aim of the study was to evaluate the impact of density correction on the dose calculation. Methods: Eight cases were studied, which were planned on an XiO treatment planning system with pixel-by-pixel density correction using a superposition algorithm, following RTOG 1005 protocol requirements. Four were protocol Arm 1 (standard whole breast irradiation with sequential boost) cases and four were Arm 2 (hypofractionated whole breast irradiation with concurrent boost) cases. The plans were recalculated with the same monitor units without density correction. Dose calculations with and without density correction were compared. Results: Results of Arm 1 and Arm 2 cases showed similar trends in the comparison. The average differences between the calculations with and without density correction (difference = Without - With) among all the cases were: -0.82 Gy (range: -2.65??0.18 Gy) in breast PTV Eval D95, ?0.75 Gy (range: ?1.23?0.26 Gy) in breast PTV Eval D90, ?1.00 Gy (range: ?2.46??0.29 Gy) in lumpectomy PTV Eval D95, ?0.78 Gy (range: ?1.30?0.11 Gy) in lumpectomy PTV Eval D90, ?0.43% (range: ?0.95??0.14%) in ipsilateral lung V20, ?0.81% (range: ?1.62??0.26%) in V16, ?1.95% (range: ?4.13??0.84%) in V10, ?2.64% (?5.55??1.04%) in V8, ?4.19% (range: ?6.92??1.81%) in V5, and ?4.95% (range: ?7.49??2.01%) in V4, respectively. The differences in other normal tissues were minimal. Conclusion: The effect of density correction was observed in breast target doses (an average increase of ?1 Gy in D95 and D90, compared to the calculation without density correction) and exposed ipsilateral lung volumes in low dose region (average increases of ?4% and ?5% in V5 and V4, respectively)

  15. Estimating the greenhouse gas benefits of forestry projects: A Costa Rican Case Study

    SciTech Connect (OSTI)

    Busch, Christopher; Sathaye, Jayant; Sanchez Azofeifa, G. Arturo

    2000-09-01

    If the Clean Development Mechanism proposed under the Kyoto Protocol is to serve as an effective means for combating global climate change, it will depend upon reliable estimates of greenhouse gas benefits. This paper sketches the theoretical basis for estimating the greenhouse gas benefits of forestry projects and suggests lessons learned based on a case study of Costa Rica's Protected Areas Project, which is a 500,000 hectare effort to reduce deforestation and enhance reforestation. The Protected Areas Project in many senses advances the state of the art for Clean Development Mechanism-type forestry projects, as does the third-party verification work of SGS International Certification Services on the project. Nonetheless, sensitivity analysis shows that carbon benefit estimates for the project vary widely based on the imputed deforestation rate in the baseline scenario, e.g. the deforestation rate expected if the project were not implemented. This, along with a newly available national dataset that confirms other research showing a slower rate of deforestation in Costa Rica, suggests that the use of the 1979--1992 forest cover data originally as the basis for estimating carbon savings should be reconsidered. When the newly available data is substituted, carbon savings amount to 8.9 Mt (million tones) of carbon, down from the original estimate of 15.7 Mt. The primary general conclusion is that project developers should give more attention to the forecasting land use and land cover change scenarios underlying estimates of greenhouse gas benefits.

  16. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    SciTech Connect (OSTI)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  17. RACORO Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7a. Space Heating by Census Region and Climate Zone, Million U.S. Households, 1993 Space Heating Characteristics RSE Column Factor: Total Census Region Climate Zone RSE Row Factors Northeast Midwest South West Fewer than 2,000 CDD and -- More than 2,000 CDD and Few- er than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Few- er than 4,000 HDD 0.5 0.9 1.1 0.8 0.8 1.6 1.3 1.2 1.2 1.1 Total ................................................. 96.6 19.5 23.3 33.5 20.4 8.7 26.5

  18. Summary of available waste forecast data for the Environmental Restoration Program at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report identifies patterns of Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) waste generation that are predicted by the current ER Waste Generation Forecast data base. It compares the waste volumes to be generated with the waste management capabilities of current and proposed treatment, storage, or disposal (TSD) facilities. The scope of this report is limited to wastes generated during activities funded by the Office of the Deputy Assistant Secretary for Environmental Restoration (EM-40) and excludes wastes from the decontamination and decommissioning of facilities. Significant quantities of these wastes are expected to be generated during ER activities. This report has been developed as a management tool supporting communication and coordination of waste management activities at ORNL. It summarizes the available data for waste that will be generated as a result of remediation activities under the direction of the U.S. Department of Energy Oak Ridge Operations Office and identifies areas requiring continued waste management planning and coordination. Based on the available data, it is evident that most remedial action wastes leaving the area of contamination can be managed adequately with existing and planned ORR waste management facilities if attention is given to waste generation scheduling and the physical limitations of particular TSD facilities. Limited use of off-site commercial TSD facilities is anticipated, provided the affected waste streams can be shown to satisfy the requirements of the performance objective for certification of non-radioactive hazardous waste and the waste acceptance criteria of the off-site facilities. Ongoing waste characterization will be required to determine the most appropriate TSD facility for each waste stream.

  19. Building America Case Study: Field Trial of an Aerosol-Based Enclosure Sealing Technology, Clovis, California (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trial of an Aerosol-Based Enclosure Sealing Technology Clovis, California PROJECT INFORMATION Project Name: Field Trial of an Aerosol- Based Enclosure Sealing Technology Location: Clovis, CA Partners: De Young Properties deyoungproperties.com Building America Team: Alliance for Residential Building Innovation; Western Cooling Efficiency Center, University of California-Davis arbi.davisenergy.com wcec.ucdavis.edu Building Component: Building envelope Application: New, single-family Year Tested:

  20. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    SciTech Connect (OSTI)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  1. Simulations of arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven

    2008-02-27

    [1] Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of themore » boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. Furthermore, this paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.« less

  2. NORASCO Case Engineering Group JV | Open Energy Information

    Open Energy Info (EERE)

    NORASCO Case Engineering Group JV Jump to: navigation, search Name: NORASCO & Case Engineering Group JV Place: India Sector: Solar Product: India-based JV developer of small solar...

  3. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  4. Recirculating industrial air: The impact on air compliance and workers. Safety case study: Hill Air Force Base C-130 painting operations

    SciTech Connect (OSTI)

    LaPuma, P.T.

    1998-06-29

    The 1990 Clean Air Act Amendment resulted in new environmental regulations called the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Industries such as painting facilities may have to treat large volumes of air, which drives the cost of an air control system. Recirculating a portion of the air back into the facility is an option to reduce the amount of air to be treated. A guided computer model written in Microsoft Excel 97% is developed to analyze worker safety and compliance costs with a focus on recirculation. The model has a chemical database containing over 1300 chemicals and requires inputs such as tasks performed, hazardous products used, and chemical make-up of the products. The model will predict indoor air concentrations in relation to occupational exposure limits (OELs). A case study is performed on a C-130 aircraft painting facility at Hill AFB, UT. The Aerospace NESHAP requires air pollution reductions in aircraft painting operations. The model predicts strontium chromate concentrations found in primer paints will reach 1000 times the OEL. Strontium chromate and other solid particulates are nearly unaffected by recirculation because the air is filtered prior to recirculation. The next highest chemical, hexamethylene diisocyanate (HDI), increases from 2.6 to 10.5 times the OEL at 0% and 75% recirculation, respectively. Due to the level of respiratory protection required for the strontium chromate, workers are well protected from the modest increases in concentrations caused by recirculating 75%. The initial cost of a VOC control system with no recirculation is $4.5 million and $1.8 million at 75% recirculation. To decide the best operating conditions for a facility, all options such as product substitution, operational changes or recirculation should be explored. The model is an excellent tool to evaluate these options.

  5. How do A-train Sensors Intercompare in the Retrieval of Above-Cloud Aerosol Optical Depth? A Case Study-based Assessment

    SciTech Connect (OSTI)

    Jethva, Hiren T.; Torres, Omar; Waquet, Fabien; Chand, Duli; Hu, Yong X.

    2014-01-15

    We inter-compare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from different A-train sensors, i.e., MODIS, CALIOP, POLDER, and OMI. These sensors have shown independent capabilities to detect and retrieve aerosol loading above marine boundary layer clouds--a kind of situation often found over the Southeast Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532-nm ACAOD retrieved by CALIOP operational algorithm is largely underestimated; however, it’s 1064-nm AOD when converted to 500 nm shows closer agreement to the passive sensors. Given the different types of sensor measurements processed with different algorithms, the close agreement between them is encouraging. Due to lack of adequate direct measurements above cloud, the validation of satellite-based ACAOD retrievals remains an open challenge. The inter-satellite comparison, however, can be useful for the relative evaluation and consistency check.

  6. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2000-08-31

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  7. Department of Energy award DE-SC0004164 Climate and National Security: Securing Better Forecasts

    SciTech Connect (OSTI)

    Reno Harnish

    2011-08-16

    The Climate and National Security: Securing Better Forecasts symposium was attended by senior policy makers and distinguished scientists. The juxtaposition of these communities was creative and fruitful. They acknowledged they were speaking past each other. Scientists were urged to tell policy makers about even improbable outcomes while articulating clearly the uncertainties around the outcomes. As one policy maker put it, we are accustomed to making these types of decisions. These points were captured clearly in an article that appeared on the New York Times website and can be found with other conference materials most easily on our website, www.scripps.ucsd.edu/cens/. The symposium, generously supported by the NOAA/JIMO, benefitted the public by promoting scientifically informed decision making and by the transmission of objective information regarding climate change and national security.

  8. Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012

    SciTech Connect (OSTI)

    Pennock, K.

    2012-10-01

    AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs. The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.

  9. A comparison of water vapor quantities from model short-range forecasts and ARM observations

    SciTech Connect (OSTI)

    Hnilo, J J

    2006-03-17

    Model evolution and improvement is complicated by the lack of high quality observational data. To address a major limitation of these measurements the Atmospheric Radiation Measurement (ARM) program was formed. For the second quarter ARM metric we will make use of new water vapor data that has become available, and called the 'Merged-sounding' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Darwin Australia (DAR) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both DAR and NSA. The merged-sounding data have been interpolated to 37 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3 hourly data for direct comparison to our model output.

  10. A comparison of model short-range forecasts and the ARM Microbase data

    SciTech Connect (OSTI)

    Hnilo, J J

    2006-09-22

    For the fourth quarter ARM metric we will make use of new liquid water data that has become available, and called the 'Microbase' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Tropical West Pacific (TWP) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both TWP and NSA. The Microbase data have been averaged to 35 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3hourly data for direct comparison to our model output.

  11. A Comparison of Water Vapor Quantities from Model Short-Range Forecasts and ARM Observations

    SciTech Connect (OSTI)

    Hnilo, J.

    2006-03-17

    Model evolution and improvement is complicated by the lack of high quality observational data. To address a major limitation of these measurements the Atmospheric Radiation Measurement (ARM) program was formed. For the second quarter ARM metric we will make use of new water vapor data that has become available, and called the “Mergedsounding” value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Darwin Australia (DAR) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both DAR and NSA. The merged-sounding data have been interpolated to 37 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3 hourly data for direct comparison to our model output.

  12. HONEYWELL - KANSAS CITY PLANT FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST

    National Nuclear Security Administration (NNSA)

    HONEYWELL - KANSAS CITY PLANT FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST CATEGORY Total Procurement Total SB Small Disad. Bus Woman-Owned SB Hub-Zone SB Veteran-Owned SB Service Disabled Vet. SB FY 2009 Dollars Goal (projected) $183,949,920 $82,690,000 $4,550,000 $8,829,596 $3,370,000 $5,025,000 $460,000 FY 2009 Dollars Accomplished $143,846,731 $68,174,398 $9,247,214 $11,333,905 $4,979,858 $6,713,791 $1,612,136 FY 2009 % Goal 45.0% 2.5% 4.8% 1.8% 2.7% 0.25% FY

  13. Electric-utility DSM programs: 1990 data and forecasts to 2000

    SciTech Connect (OSTI)

    Hirst, E.

    1992-06-01

    In April 1992, the Energy Information Administration (EIA) released data on 1989 and 1990 electric-utility demand-site management (DMS) programs. These data represent a census of US utility DSM programs, with reports of utility expenditures, energy savings, and load reductions caused by these programs. In addition, EIA published utility estimates of the costs and effects of these programs from 1991 to 2000. These data provide the first comprehensive picture of what utilities are spending and accomplishing by utility, state, and region. This report presents, summarizes, and interprets the 1990 data and the utility forecasts of their DSM-program expenditures and impacts to the year 2000. Only utilities with annual sales greater than 120 GWh were required to report data on their DSM programs to EIA. Of the 1194 such utilities, 363 reported having a DSM program that year. These 363 electric utilities spent $1.2 billion on their DSM programs in 1990, up from $0.9 billion in 1989. Estimates of energy savings (17,100 GWh in 1990 and 14,800 GWh in 1989) and potential reductions in peak demand (24,400 MW in 1990 and about 19,400 MW in 1989) also showed substantial increases. Overall, utility DSM expenditures accounted for 0.7% of total US electric revenues, while the reductions in energy and demand accounted for 0.6% and 4.9% of their respective 1990 national totals. The investor-owned utilities accounted for 70 to 90% of the totals for DSM costs, energy savings, and demand reductions. The public utilities reported larger percentage reductions in peak demand and energy smaller percentage DSM expenditures. These averages hide tremendous variations across utilities. Utility forecasts of DSM expenditures and effects show substantial growth in both absolute and relative terms.

  14. Designing Auction-Based PV Incentives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Incentive payment, reporting and forecasting alignment - Forecast of future year incentive payments challenged by project in-service dates and actual production 7 Helping Utilities ...

  15. Building America Case Study: Apartment Compartmentalization with an Aerosol-Based Sealing Process - Queens, NY; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-07-01

    Air sealing of building enclosures is a difficult and time-consuming process. Current methods in new construction require laborers to physically locate small and sometimes large holes in multiple assemblies and then manually seal each of them. The innovation demonstrated under this research study was the automated air sealing and compartmentalization of buildings through the use of an aerosolized sealant, developed by the Western Cooling Efficiency Center at University of California Davis.
    CARB sought to demonstrate this new technology application in a multifamily building in Queens, NY. The effectiveness of the sealing process was evaluated by three methods: air leakage testing of overall apartment before and after sealing, point-source testing of individual leaks, and pressure measurements in the walls of the target apartment during sealing. Aerosolized sealing was successful by several measures in this study. Many individual leaks that are labor-intensive to address separately were well sealed by the aerosol particles. In addition, many diffuse leaks that are difficult to identify and treat were also sealed. The aerosol-based sealing process resulted in an average reduction of 71% in air leakage across three apartments and an average apartment airtightness of 0.08 CFM50/SF of enclosure area.

  16. A GIS-based Adaptive Management Decision Support System to Develop a Multi-Objective Framework: A case study utilizing GIS technologies and physically-based models to archieve improved decision making for site management.

    SciTech Connect (OSTI)

    Coleman, Andre M.; Wigmosta, Mark S.; Lane, Leonard J.; Tagestad, Jerry D.; Roberts, Damon

    2008-06-26

    The notion of Adaptive Management (AM) allows for the realization and adjustment of management practices in response to elements of uncertainty. In terms of natural resource management, this will typically integrate monitoring, databases, simulation modeling, decision theory, and expert judgment to evaluate management alternatives and adapt them as necessary to continually improve the natural resource condition as defined by the stakeholders. Natural resource management scenarios can often be expressed, viewed, and understood as a spatial and temporal problem. The integration of Geographic Information System (GIS) technologies and physically-based models provide an effective state-of-the-art solution for deriving, understanding, and applying AM scenarios for land use and remediation. A recently developed GIS-based adaptive management decision support system is presented for the U.S. Department of Defense Yakima Training Center near Yakima, Washington.

  17. Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header

    SciTech Connect (OSTI)

    Eisenbies, Mark; Volk, Timothy

    2014-10-03

    Demand for bioenergy sourced from woody biomass is projected to increase; however, the expansion and rapid deployment of short rotation woody crop systems in the United States has been constrained by high production costs and sluggish market acceptance due to problems with quality and consistency from first-generation harvesting systems. The objective of this study was to evaluate the effect of crop conditions on the performance of a single-pass, cut and chip harvester based on a standard New Holland FR-9000 series forage harvester with a dedicated 130FB short rotation coppice header, and the quality of chipped material. A time motion analysis was conducted to track the movement of machine and chipped material through the system for 153 separate loads over 10 days on a 54-ha harvest. Harvester performance was regulated by either ground conditions, or standing biomass on 153 loads. Material capacities increased linearly with standing biomass up to 40 Mgwet ha-1 and plateaued between 70 and 90 Mgwet hr-1. Moisture contents ranged from 39 to 51% with the majority of samples between 43 and 45%. Loads produced in freezing weather (average temperature over 10 hours preceding load production) had 4% more chips greater than 25.4 mm (P < 0.0119). Over 1.5 Mgdry ha-1 of potentially harvested material (6-9% of a load) was left on site, of which half was commercially undesirable meristematic pieces. The New Holland harvesting system is a reliable and predictable platform for harvesting material over a wide range of standing biomass; performance was consistent overall in 14 willow cultivars.

  18. On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; Ren, Huiying; Liu, Ying; Swiler, Laura

    2016-06-01

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically-average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Lastly, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less

  19. Short-Term Energy Outlook Supplement: Uncertainties in the Short-Term Global Petroleum and Other Liquids Supply Forecast

    Gasoline and Diesel Fuel Update (EIA)

    Summer 2013 Outlook for Residential Electric Bills June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Supplement: Summer 2013 Outlook for Residential Electric Bills i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by

  20. Demand forecasting and revenue requirements, with implications for consideration in British Columbia

    SciTech Connect (OSTI)

    Acton, J.P.

    1983-05-01

    This paper was filed as an exhibit on behalf of The Consumers' Association of Canada (B.C. Branch), The Federated Anti-Poverty Groups of B.C., The Sierra Club of Western Canada, and the B.C. Old Age Pensioners' Organization. It was subjected to cross-examination on October 29, 1982, during Phase I of the hearings. The Utilities Commission had designated Phase I for consideration of (1) demand, (2) assets in service, (3) revenue requirements excluding return, and (4) financing and capital requirements. This paper presents a general discussion of the elements of a rate structure and their relationship to the demand for electricity, a systematic review of some 50 empirical studies of the demand for electricity as a function of price and other factors by the three principal classes of customers, and a discussion of the notion of revenue requirements. The paper should be of interest to utility regulators, rate specialists, and forecasters for its review of demand models and to academics concerned with the study of energy demand.

  1. Forecasting the oil-gasoline price relationship: should we care about the Rockets and the Feathers?

    Gasoline and Diesel Fuel Update (EIA)

    Forecast Change 2011 2012 2013 2014 2015 2016 from 2015 United States Usage (kWh) 3,444 3,354 3,129 3,037 3,153 3,253 3.2% Price (cents/kWh) 12.06 12.09 12.58 13.04 12.95 12.98 0.2% Expenditures $415 $405 $393 $396 $408 $422 3.3% New England Usage (kWh) 2,122 2,188 2,173 1,930 1,993 2,051 2.9% Price (cents/kWh) 15.85 15.50 16.04 17.63 18.64 18.36 -1.5% Expenditures $336 $339 $348 $340 $372 $377 1.3% Mid-Atlantic Usage (kWh) 2,531 2,548 2,447 2,234 2,372 2,431 2.5% Price (cents/kWh) 16.39 15.63

  2. Comparing Price Forecast Accuracy of Natural Gas Models andFutures Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-06-30

    The purpose of this article is to compare the accuracy of forecasts for natural gas prices as reported by the Energy Information Administration's Short-Term Energy Outlook (STEO) and the futures market for the period from 1998 to 2003. The analysis tabulates the existing data and develops a statistical comparison of the error between STEO and U.S. wellhead natural gas prices and between Henry Hub and U.S. wellhead spot prices. The results indicate that, on average, Henry Hub is a better predictor of natural gas prices with an average error of 0.23 and a standard deviation of 1.22 than STEO with an average error of -0.52 and a standard deviation of 1.36. This analysis suggests that as the futures market continues to report longer forward prices (currently out to five years), it may be of interest to economic modelers to compare the accuracy of their models to the futures market. The authors would especially like to thank Doug Hale of the Energy Information Administration for supporting and reviewing this work.

  3. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Wohling, Thomas

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  4. Analysis of Energy Efficiency Program Impacts Based on Program Spending

    U.S. Energy Information Administration (EIA) Indexed Site

    Analysis of Energy Efficiency Program Impacts Based on Program Spending May 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Analysis of Energy Efficiency Program Impacts Based on Program Spending i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are

  5. Industrial market for sulfur dioxide emission-control systems. Final report. [Forecasting to 2000

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Under the postulated EIA medium world oil price scenario, in which oil prices are projected to rise at a real rate of 2.2% per year, coal will represent from 78 to 91% of MFBI fuel consumption by the year 2000, up from the present 16%. This increase would occur even in the absence of FUA, because the cost of coal is substantially lower than the cost of oil or gas. Much of this market will develop in the relatively near to intermediate term (before 1990). Annual installations will be much lower (by about 40%) after that period, reflecting a lower overall steam demand growth rate and the fact that much of the discretionary conversion of gas and oil boilers to coal will have been completed. About 22% of the sales will be for discretionary conversion of oil and gas boilers still having some useful life; the rest will be for nondiscretionary expansion or replacement of worn-out boilers. Under the postulated cost and performance estimates for the competing coal-burning technologies, we expect that AFB combustors and lime spray dryer FGD systems will dominate the market, with 42% of the market in our base case scenario. If the attitudes of the industrial decision-makers are factored into the analyses, particularly their aversion to FGD systems with wet wastes, the AFB and lime spray dryer technologies will capture as much as 73% of the coal-burning market. Costs for the various flue gas desulfurization (FGD) technologies were projected to be sufficiently close that the selection of one over another will depend on site-specific factors such as the availability of waste disposal facilities, the demonstrated reliability of the particular systems, and the vendor's reputation.

  6. Technology Deployment Case Studies

    Broader source: Energy.gov [DOE]

    Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.

  7. Science DMZ Case Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU Science DMZ @ Penn & VTTI Science DMZ @ NOAA Science DMZ @ NERSC Science DMZ @ ALS Multi-facility Workflow Case Study News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home » Science Engagement » Case Studies » Science DMZ Case Studies Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science

  8. BP-12 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  9. BP-16 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  10. Before a Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  11. Rate Case Elements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceeding Rate Information Residential Exchange Program Surplus Power Sales Reports Rate Case Elements BPA's rate cases are decided "on the record." That is, in making a decision...

  12. OSCARS Case Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS & JGI Science DMZ Case Studies Multi-facility Workflow Case Study News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet...

  13. BBRN Factsheet: Case Study: Community Engagement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BBRN Factsheet: Case Study: Community Engagement BBRN Factsheet: Case Study: Community Engagement Case Study: Community Engagement, on the Community Home Energy Retrofit Project (CHERP), based in Claremont, California. Case Study: Community Engagement (197.35 KB) More Documents & Publications Better Buildings Network View | December 2015 Better Buildings Training Toolkit Better Buildings Network View | July-August 2015

  14. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect (OSTI)

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  15. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    SciTech Connect (OSTI)

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2009-03-04

    alternative incentive approaches on utility shareholders and customers if energy efficiency is implemented under various utility operating, cost, and supply conditions.We used and adapted a spreadsheet-based financial model (the Benefits Calculator) which was developed originally as a tool to support the National Action Plan for Energy Efficiency (NAPEE). The major steps in our analysis are displayed graphically in Figure ES- 1. Two main inputs are required: (1) characterization of the utility which includes its initial financial and physical market position, a forecast of the utility?s future sales, peak demand, and resource strategy to meet projected growth; and (2) characterization of the Demand-Side Resource (DSR) portfolio ? projected electricity and demand savings, costs and economic lifetime of a portfolio of energy efficiency (and/or demand response) programs that the utility is planning or considering implementing during the analysis period. The Benefits Calculator also estimates total resource costs and benefits of the DSR portfolio using a forecast of avoided capacity and energy costs. The Benefits Calculator then uses inputs provided in the Utility Characterization to produce a ?business-as usual? base case as well as alternative scenarios that include energy efficiency resources, including the corresponding utility financial budgets required in each case. If a decoupling and/or a shareholder incentive mechanism are instituted, the Benefits Calculator model readjusts the utility?s revenue requirement and retail rates accordingly. Finally, for each scenario, the Benefits Calculator produces several metrics that provides insights on how energy efficiency resources, decoupling and/or a shareholder incentive mechanism impacts utility shareholders (e.g. overall earnings, return on equity), ratepayers (e.g., average customer bills and rates) and society (e.g. net resource benefits).

  16. U.S. diesel fuel price forecast to be 1 penny lower this summer at $3.94 a gallon

    U.S. Energy Information Administration (EIA) Indexed Site

    diesel fuel price forecast to be 1 penny lower this summer at $3.94 a gallon The retail price of diesel fuel is expected to average $3.94 a gallon during the summer driving season that which runs from April through September. That's close to last summer's pump price of $3.95, according to the latest monthly energy outlook from the U.S. Energy Information Administration. Demand for distillate fuel, which includes diesel fuel, is expected to be up less than 1 percent from last summer. Daily

  17. Seismic energy data analysis of Merapi volcano to test the eruption time prediction using materials failure forecast method (FFM)

    SciTech Connect (OSTI)

    Anggraeni, Novia Antika

    2015-04-24

    The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano’s inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration of the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 – 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between −2.86 up to 5.49 days.

  18. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2005-08-17

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is not considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.

  19. DE-EE0006329 Integration of Behind-the-Meter PV Fleet Forecasts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The fractional derivatives, which are based on an integro-differential operator, ... Supplied by Itron, ALFS utilizes an artificial neural network methodology that incorporates ...

  20. Navy Mobility Fuels Forecasting System Phase 6 report: The potential impacts of a worst-case military conflict on world petroleum availability

    SciTech Connect (OSTI)

    Lee, R.; Das, S.; Leiby, P.N.

    1991-01-01

    A major Middle East and European military confrontation would cause an extremely large disruption in the supply of oil worldwide. There would be imbalances between oil supply and demand. These imbalances can only be solved by rationing and by military actions to ensure an adequate flow of crude oil and products. 25 refs., 5 tabs.

  1. Business Case for CNG in Municipal Fleets (Presentation)

    SciTech Connect (OSTI)

    Johnson, C.

    2010-07-27

    Presentation about compressed natural gas in municipal fleets, assessing investment profitability, the VICE model, base-case scenarios, and pressing questions for fleet owners.

  2. Effects of the Financial Crisis on Photovoltaics: An Analysis of Changes in Market Forecasts from 2008 to 2009

    SciTech Connect (OSTI)

    Bartlett, J. E.; Margolis, R. M.; Jennings, C. E.

    2009-09-01

    To examine how the financial crisis has impacted expectations of photovoltaic production, demand and pricing over the next several years, we surveyed the market forecasts of industry analysts that had issued projections in 2008 and 2009. We find that the financial crisis has had a significant impact on the PV industry, primarily through increasing the cost and reducing the availability of investment into the sector. These effects have been more immediately experienced by PV installations than by production facilities, due to the different types and duration of investments, and thus PV demand has been reduced by a greater proportion than PV production. By reducing demand more than production, the financial crisis has accelerated previously expected PV overcapacity and resulting price declines.

  3. A Comparison of Model Short-Range Forecasts and the ARM Microbase Data Fourth Quarter ARM Science Metric

    SciTech Connect (OSTI)

    Hnilo, J.

    2006-09-19

    For the fourth quarter ARM metric we will make use of new liquid water data that has become available, and called the “Microbase” value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Tropical West Pacific (TWP) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both TWP and NSA. The Microbase data have been averaged to 35 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3hourly data for direct comparison to our model output.

  4. Integrating Solar PV in Utility System Operations: Analytical Framework and Arizona Case Study

    SciTech Connect (OSTI)

    Wu, Jing; Botterud, Audun; Mills, Andrew; Zhou, Zhi; Hodge, Bri-Mathias; Mike, Heaney

    2015-06-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with subhourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularly during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. (C) 2015 Elsevier Ltd. All rights reserved.

  5. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    SciTech Connect (OSTI)

    Iacono, Michael J.

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  6. Economic Analysis Case Studies of Battery Energy Storage with SAM

    SciTech Connect (OSTI)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.

  7. EMGEO Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMGEO Case Study EMGEO Case Study June 20, 2016 Background EMGeo is composed of two geophysical imaging applications: one for subsurface imaging using electromagnetic data and another using seismic data. Although the applications model different physics (Maxwell's equations in one case, the elastic wave equation in another) they have much in common. We focus on the more involved part for solving the forward pass of the inverse scattering for the seismic part. The code takes advantage of

  8. Fuel Cell Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Leader, Sustainable Engineering, Maintenance & Energy Management Whole Foods Market, Inc. Fuel Cell Case Study 2 Holistic Approach from Development to Operation WFM Energy ...

  9. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reference case Energy Information Administration Annual Energy Outlook 2014 Table A17. Renewable energy consumption by sector and source (quadrillion Btu) Sector and source...

  10. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration Annual Energy Outlook 2014...

  11. OSCARS Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Network OSCARS How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Read More... OSCARS Case Study...

  12. Five case studies of multifamily weatherization programs

    SciTech Connect (OSTI)

    Kinney, L; Wilson, T.; Lewis, G.; MacDonald, M.

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  13. The Business Case for SEP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Business Case for SEP The Business Case for SEP Superior Energy Performance logo Facilities pursue certification to Superior Energy Performance® (SEP(tm)) to achieve an attractive return on investment while enhancing sustainability. The business case for SEP is based on detailed accounts from facilities that have implemented ISO 50001 and SEP. Gain an insider's view from these pioneers. Read the cost-benefit analysis and case studies, and view videos and presentations. Cost-Benefit Analysis

  14. Regional price targets appropriate for advanced coal extraction. [Forecasting to 1985 and 2000; USA; Regional analysis

    SciTech Connect (OSTI)

    Terasawa, K.L.; Whipple, D.W.

    1980-12-01

    The object of the study is to provide a methodology for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed for the study is a supply and demand model that focuses on underground mining, since the advanced technology is expected to be developed for these reserves by the target years. The supply side of the model is based on coal reserve data generated by Energy and Environmental Analysis, Inc. (EEA). Given this data and the cost of operating a mine (data from US Department of Energy and Bureau of Mines), the Minimum Acceptable Selling Price (MASP) is obtained. The MASP is defined as the smallest price that would induce the producer to bring the mine into production, and is sensitive to the current technology and to assumptions concerning miner productivity. Based on this information, market supply curves can then be generated. On the demand side of the model, demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. This last step is accomplished by allocating the demands among the suppliers so that the combined cost of producing and transporting coal is minimized.

  15. Considerations in forecasting the demand for carbon sequestration and biotic storage technologies

    SciTech Connect (OSTI)

    Trexler, M.C.

    1997-12-31

    The Intergovernmental Panel on Climate Change (IPCC) has identified forestry and other land-use based mitigation measures as possible sources and sinks of greenhouse gases. An overview of sequestration and biotic storage is presented, and the potential impacts of the use of carbon sequestration as a mitigation technology are briefly noted. Carbon sequestration is also compare to other mitigation technologies. Biotic mitigation technologies are concluded to be a legitimate and potentially important part of greenhouse gas mitigation due to their relatively low costs, ancillary benefits, and climate impact. However, not all biotic mitigation techniques perfectly match the idealized definition of a mitigation measure, and policies are becoming increasingly biased against biotic technologies.

  16. Solid waste integrated forecast technical (SWEFT) report: FY1997 to FY 2070 - Document number changed to HNF-0918 at revision 1 - 1/7/97

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-10-03

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed at Hanford`s Solid Waste (SW) Program from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the SW Program; program- level and waste class-specific estimates; background information on waste sources; and Li comparisons with previous forecasts and with other national data sources. The focus of this web site is on low- level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this site is reporting data current as of 9/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program`s life cycle.

  17. Short and Long-Term Perspectives: The Impact on Low-Income Consumers of Forecasted Energy Price Increases in 2008 and A Cap & Trade Carbon Policy in 2030

    SciTech Connect (OSTI)

    Eisenberg, Joel Fred

    2008-01-01

    The Department of Energy's Energy Information Administration (EIA) recently released its short-term forecast for residential energy prices for the winter of 2007-2008. The forecast indicates increases in costs for low-income consumers in the year ahead, particularly for those using fuel oil to heat their homes. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation's low-income households by primary heating fuel type, nationally and by Census Region. The report provides an update of bill estimates provided in a previous study, "The Impact Of Forecasted Energy Price Increases On Low-Income Consumers" (Eisenberg, 2005). The statistics are intended for use by policymakers in the Department of Energy's Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2008 fiscal year. In addition to providing expenditure forecasts for the year immediately ahead, this analysis uses a similar methodology to give policy makers some insight into one of the major policy debates that will impact low-income energy expenditures well into the middle decades of this century and beyond. There is now considerable discussion of employing a cap-and-trade mechanism to first limit and then reduce U.S. emissions of carbon into the atmosphere in order to combat the long-range threat of human-induced climate change. The Energy Information Administration has provided an analysis of projected energy prices in the years 2020 and 2030 for one such cap-and-trade carbon reduction proposal that, when integrated with the RECS 2001 database, provides estimates of how low-income households will be impacted over the long term by such a carbon reduction policy.

  18. Hawaii demand-side management resource assessment. Final report, Reference Volume 5: The DOETRAN user`s manual; The DOE-2/DBEDT DSM forecasting model interface

    SciTech Connect (OSTI)

    1995-04-01

    The DOETRAN model is a DSM database manager, developed to act as an intermediary between the whole building energy simulation model, DOE-2, and the DBEDT DSM Forecasting Model. DOETRAN accepts output data from DOE-2 and TRANslates that into the format required by the forecasting model. DOETRAN operates in the Windows environment and was developed using the relational database management software, Paradox 5.0 for Windows. It is not necessary to have any knowledge of Paradox to use DOETRAN. DOETRAN utilizes the powerful database manager capabilities of Paradox through a series of customized user-friendly windows displaying buttons and menus with simple and clear functions. The DOETRAN model performs three basic functions, with an optional fourth. The first function is to configure the user`s computer for DOETRAN. The second function is to import DOE-2 files with energy and loadshape data for each building type. The third main function is to then process the data into the forecasting model format. As DOETRAN processes the DOE-2 data, graphs of the total electric monthly impacts for each DSM measure appear, providing the user with a visual means of inspecting DOE-2 data, as well as following program execution. DOETRAN provides three tables for each building type for the forecasting model, one for electric measures, gas measures, and basecases. The optional fourth function provided by DOETRAN is to view graphs of total electric annual impacts by measure. This last option allows a comparative view of how one measure rates against another. A section in this manual is devoted to each of the four functions mentioned above, as well as computer requirements and exiting DOETRAN.

  19. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bae, Soo Ya; Hong, Song -You; Lim, Kyo-Sun Sunny

    2016-01-01

    A method to explicitly calculate the effective radius of hydrometeors in the Weather Research Forecasting (WRF) double-moment 6-class (WDM6) microphysics scheme is designed to tackle the physical inconsistency in cloud properties between the microphysics and radiation processes. At each model time step, the calculated effective radii of hydrometeors from the WDM6 scheme are linked to the Rapid Radiative Transfer Model for GCMs (RRTMG) scheme to consider the cloud effects in radiative flux calculation. This coupling effect of cloud properties between the WDM6 and RRTMG algorithms is examined for a heavy rainfall event in Korea during 25–27 July 2011, and itmore » is compared to the results from the control simulation in which the effective radius is prescribed as a constant value. It is found that the derived radii of hydrometeors in the WDM6 scheme are generally larger than the prescribed values in the RRTMG scheme. Consequently, shortwave fluxes reaching the ground (SWDOWN) are increased over less cloudy regions, showing a better agreement with a satellite image. The overall distribution of the 24-hour accumulated rainfall is not affected but its amount is changed. In conclusion, a spurious rainfall peak over the Yellow Sea is alleviated, whereas the local maximum in the central part of the peninsula is increased.« less

  20. EMGeo Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods (QMR in one case, and IDR in the other), both solvers are dominated by memory bandwidth intensive operations like sparse matrix-vector multiply (SpMV), dot...

  1. Better Buildings Case Competition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and Investment Authority, the nation's first green bank, where I'm helping apply insights from our team's case proposals." -John D'Agostino Yale Team, 2013 9 2014 Closing ...

  2. Early application case studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Early application case studies Early application case studies The Babbage test system was used to study representative applications and kernels in various scientific fields to gain experience with the challenges and strategies needed to optimize code performance on the MIC architecture. Below we highlight a few examples: BerkeleyGW The BerkeleyGW package is a materials science application that calculates electronic and optical properties with quantitative accuracy, a critical need in materials

  3. VASP Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VASP Case Study VASP Case Study Code description and computational problem The Vienna Ab-initio Simulation Package (VASP) [1-2] is a widely used materials science application for performing ab-initio electronic structure calculations and quantum-mechanical molecular dynamics (MD) simulations using pseudopotentials or the projector-augmented wave method and a plane wave basis set. VASP computes an approximate solution to the many-body Schrödinger equation, either within the Density Functional

  4. WARP Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WARP Case Study WARP Case Study Background WARP is an accelerator code that is used to conduct detailed simulations of particle accelerators, among other high energy physics applications. It is a so-called Particle-In-Cell (PIC) code that solves for the motion of charged particles acted upon by electric and magnetic forces. The particle motion is computed in a Lagrangian sense, following individual particles. The electric and magnetic fields acting on the particle are considered to be Eulerian

  5. CESM Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CESM Case Study CESM Case Study CESM MG2 Kernel Code Description The Community Earth System Model (CESM) is a coupled multi-physics code which consists of multiple model components: Atmosphere, Ocean, Sea-ice, Land-ice, Land, River Runoff, and Coupler. During the course of a CESM run, the model components integrate forward in time, periodically stopping to exchange information with the coupler. The active (dynamical) components are generally fully prognostic, and they are state-of-the-art

  6. Waste Generation Forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1994--FY 2001. Environmental Restoration Program, September 1993 Revision

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This Waste Generation Forecast for DOE-ORO`s Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993.

  7. Final Report, 2011-2014. Forecasting Carbon Storage as Eastern Forests Age. Joining Experimental and Modeling Approaches at the UMBS AmeriFlux Site

    SciTech Connect (OSTI)

    Curtis, Peter; Bohrer, Gil; Gough, Christopher; Nadelhoffer, Knute

    2015-03-12

    At the University of Michigan Biological Station (UMBS) AmeriFlux sites (US-UMB and US-UMd), long-term C cycling measurements and a novel ecosystem-scale experiment are revealing physical, biological, and ecological mechanisms driving long-term trajectories of C cycling, providing new data for improving modeling forecasts of C storage in eastern forests. Our findings provide support for previously untested hypotheses that stand-level structural and biological properties constrain long-term trajectories of C storage, and that remotely sensed canopy structural parameters can substantially improve model forecasts of forest C storage. Through the Forest Accelerated Succession ExperimenT (FASET), we are directly testing the hypothesis that forest C storage will increase due to increasing structural and biological complexity of the emerging tree communities. Support from this project, 2011-2014, enabled us to incorporate novel physical and ecological mechanisms into ecological, meteorological, and hydrological models to improve forecasts of future forest C storage in response to disturbance, succession, and current and long-term climate variation

  8. Single casing reheat turbine

    SciTech Connect (OSTI)

    Matsushima, Tatsuro; Nishimura, Shigeo

    1999-07-01

    For conventional power plants, regenerative reheat steam turbines have been accepted as the most practical method to meet the demand for efficient and economical power generation. Recently the application of reheat steam turbines for combined cycle power plant began according to the development of large-capacity high temperature gas turbine. The two casing double flow turbine has been applied for this size of reheat steam turbine. The single casing reheat turbine can offer economical and compact power plant. Through development of HP-LP combined rotor and long LP blading series, Mitsubishi Heavy Industries, Ltd. had developed a single casing reheat steam turbine series and began to use it in actual plants. Six units are already in operation and another seven units are under manufacturing. Multiple benefits of single casing reheat turbine are smaller space requirements, shorter construction and erection period, equally good performance, easier operation and maintenance, shorter overhaul period, smaller initial investment, lower transportation expense and so on. Furthermore, single exhaust steam turbine makes possible to apply axial exhaust type, which will lower the height of T/G foundation and T/G housing. The single casing reheat turbine has not only compact and economical configuration itself but also it can reduce the cost of civil construction. In this paper, major developments and design features of the single casing reheat turbine are briefly discussed and operating experience, line-up and technical consideration for performance improvement are presented.

  9. A Case for Climate Neutrality: Case Studies on Moving Towards...

    Open Energy Info (EERE)

    TOOL Name: A Case for Climate Neutrality: Case Studies on Moving Towards a Low Carbon Economy AgencyCompany Organization: United Nations Environment Programme (UNEP) Sector:...

  10. Forecasting the market for SO sub 2 emission allowances under uncertainty

    SciTech Connect (OSTI)

    Hanson, D.; Molburg, J.; Fisher, R.; Boyd, G.; Pandola, G.; Lurie, G.; Taxon, T.

    1991-01-01

    This paper deals with the effects of uncertainty and risk aversion on market outcomes for SO{sub 2} emission allowance prices and on electric utility compliance choices. The 1990 Clean Air Act Amendments (CAAA), which are briefly reviewed here, provide for about twice as many SO{sub 2} allowances to be issued per year in Phase 1 (1995--1999) than in Phase 2. Considering the scrubber incentives in Phase 1, there is likely to be substantial emission banking for use in Phase 2. Allowance prices are expected to increase over time at a rate less than the return on alternative investments, so utilities which are risk neutral, or potential speculators in the allowance market, are not expected to bank allowances. The allowances will be banked by utilities that are risk averse. The Argonne Utility Simulation Model (ARGUS2) is being revised to incorporate the provisions of the CAAA acid rain title and to simulate SO{sub 2} allowance prices, compliance choices, capacity expansion, system dispatch, fuel use, and emissions using a unit level data base and alternative scenario assumptions. 1 fig.

  11. Forecast of Standard Atomic Weights for the Mononuclidic Elements – 2011

    SciTech Connect (OSTI)

    Holden, N.E.; Holden, N.; Holden,N.E.

    2011-07-27

    In this short report, I will provide an early warning about potential changes to the standard atomic weight values for the twenty mononuclidic and the so-called pseudo-mononuclidic ({sup 232}Th and {sup 231}Pa) chemical elements due to the estimated changes in the mass values to be published in the next Atomic Mass Tables within the next two years. There have been many new measurements of atomic masses, since the last published Atomic Mass Table. The Atomic Mass Data Center has released an unpublished version of the present status of the atomic mass values as a private communication. We can not update the Standard Atomic Weight Table at this time based on these unpublished values but we can anticipate how many changes are probably going to be expected in the next few years on the basis of the forthcoming publication of the Atomic Mass Table. I will briefly discuss the procedures that the Atomic Weights Commission used in deriving the recommended Standard Atomic Weight values and their uncertainties from the atomic mass values. I will also discuss some concern raised about a proposed change in the definition of the mole. The definition of the mole is now connected directly to the mass of a {sup 12}C isotope (which is defined as 12 exactly) and to the kilogram. A change in the definition of the mole will probably impact the mass of {sup 12}C.

  12. Annual Energy Outlook 2016 Early Release: Annotated Summary of Two Cases

    U.S. Energy Information Administration (EIA) Indexed Site

    Early Release: Annotated Summary of Two Cases May 17, 2016 The Annual Energy Outlook 2016 (AEO2016) Early Release features two cases: the Reference case and a case excluding implementation of the Clean Power Plan (CPP) Reference case: A business-as-usual trend estimate, given known technology and technological and demographic trends. The Reference case assumes CPP compliance through mass-based standards that establish caps on CO2 emissions from fossil-fired generators covered by the CPP. The

  13. Occupational and traning requirements for expanded coal production (as of October 1980). [Forecasting to 1995

    SciTech Connect (OSTI)

    Not Available

    1982-04-01

    This study was initiated because of the anticipated rapid growth in trained personnel requirements in bituminous coal mining, and because the industry had already experienced significant problems in recruiting skilled manpower in the course of its employment expansion during the 1970's. Employment in bituminous coal mining is projected to nearly double, from 234,000 in 1977 to 456,000 in 1995, as the net result of a projected threefold increase in coal output to nearly 2.0 billion in 1995 and of an expected significant improvement in overall productivity. A large proportion of current coal mining employees are in occupations which require significant amounts of training for effective work performance. Employment growth to 1955 will be most rapid in those occupations requiring the greatest training or educational preparation. The new training infrastructure which has emerged to meet these needs includes both internal, company-operated training programs and those offered by various external providers. Among the latter are: Vocational schools, community colleges, and university extension departments; public agencies, such as MSHA and state mining departments; coal industry trade associations; and vendors or training consultant groups. The Conference Board survey of coal industry training programs, conducted in late 1979, was designed to provide comprehensive data on the scope of the coal industry's own training activities and on related training issues, based on a mail questionnaire survey addressed to all companies producing 300,000 or more tons per year. The training programs are described with emphasis on time changes, regional effects and implications for a coordinated plan.

  14. In Case of Emergency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Case of Emergency In Case of Emergency Print Fire/Police Emergency: ext. 7911 Cell phone or off-site: 510-486-7911 When dialing from off-site, the following numbers need to be proceeded by 486-. the area code for the LBNL is (510). Fire Department (non-emergency): ext. 6015 Police Department (non-emergency): ext. 5472 Non-Emergency Reporting: ext. 6999 Additional information about emergency procedures at Berkeley Lab can be found on the red Emergency Response Guides posted around the lab and

  15. MFDn Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MFDn Case Study MFDn Case Study Description of MFDn Many-Fermion Dynamics---nuclear, or MFDn, is a configuration interaction (CI) code for nuclear structure calculations. It is a platform independent Fortran 90 code using a hybrid MPI/ OpenMP programming model,and is being used on current supercomputers, such as Edison at NERSC, for ab initio calculations of atomic nuclei using realistic nucleon-nucleons and three-nucleon forces. A calculation consists of generating a many-body basis space,

  16. Geothermal Case Studies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Young, Katherine

    2014-09-30

    database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  17. Geothermal Case Studies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Young, Katherine

    database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  18. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect (OSTI)

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  19. Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study

    SciTech Connect (OSTI)

    Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.; Easter, Richard C.; Gustafson, William I.; Liu, Xiaohong; Ghan, Steven J.; Singh, Balwinder

    2014-05-06

    A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 when the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.

  20. Risk Informed Safety Margin Characterization Case Study: Selection of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Equipment To Be Subjected to Environmental Qualification | Department of Energy Case Study: Selection of Electrical Equipment To Be Subjected to Environmental Qualification Risk Informed Safety Margin Characterization Case Study: Selection of Electrical Equipment To Be Subjected to Environmental Qualification Reference 1 discussed key elements of the process for developing a margins-based "safety case" to support safe and efficient operation for an extended period. The

  1. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.

    SciTech Connect (OSTI)

    Martin Wilde, Principal Investigator

    2012-12-31

    ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational

  2. FES Case Study Worksheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Worksheets FES Case Study Worksheets This workshop is closed, and the worksheets can no longer be edited. If you have questions, please report any problems or suggestions for improvement to Richard Gerber (ragerber@lbl.gov). Please choose your worksheet template: Lee Berry, Paul Bonoli, David Green [Read] Jeff Candy [Read] CS Chang [Read] Stephane Ethier [Read] Alex Friedman [Read] Kai Germaschewski [Read] Martin Greenwald [Read] Stephen Jardin [Read] Charlson Kim [Read] Scott Kruger [Read]

  3. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2012-05-18

    We estimate the long-run economic value of variable renewable generation with increasing penetration using a unique investment and dispatch model that captures long-run investment decisions while also incorporating detailed operational constraints and hourly time resolution over a full year. High time resolution and the incorporation of operational constraints are important for estimating the economic value of variable generation, as is the use of a modeling framework that accommodates new investment decisions. The model is herein applied with a case study that is loosely based on California in 2030. Increasing amounts of wind, photovoltaics (PV), and concentrating solar power (CSP) with and without thermal energy storage (TES) are added one at a time. The marginal economic value of these renewable energy sources is estimated and then decomposed into capacity value, energy value, day-ahead forecast error cost, and ancillary services. The marginal economic value, as defined here, is primarily based on the combination of avoided capital investment cost and avoided variable fuel and operations and maintenance costs from other power plants in the power system. Though the model only captures a subset of the benefits and costs of renewable energy, it nonetheless provides unique insights into how the value of that subset changes with technology and penetration level. Specifically, in this case study implementation of the model, the marginal economic value of all three solar options is found to exceed the value of a flat-block of power (as well as wind energy) by \\$20--30/MWh at low penetration levels, largely due to the high capacity value of solar at low penetration. Because the value of CSP per unit of energy is found to be high with or without thermal energy storage at low penetration, we find little apparent incremental value to thermal storage at low solar penetration in the present case study analysis. The marginal economic value of PV and CSP without thermal

  4. DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque, NM Case study of a New Mexico-based home builder who has built more DOE Zero Energy Ready certified homes than ...

  5. DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Albuquerque, NM DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque, NM Case study of a New Mexico-based home builder who has built more DOE Zero Energy Ready ...

  6. SEP CASE STUDY WEBINAR: MEDIMMUNE

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Measurement and Verification Case Study webinar is the first in a series of case study webinars to highlight the successes of facilities that have achieved Superior Energy Performance (SEP)...

  7. An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.

    SciTech Connect (OSTI)

    Not Available

    1993-06-30

    This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

  8. Development of an Immersed Boundary Method to Resolve Complex Terrain in the Weather Research and Forecasting Model

    SciTech Connect (OSTI)

    Lunquist, K A; Chow, F K; Lundquist, J K; Mirocha, J D

    2007-09-04

    simulations, on the other hand, are performed by numerical weather prediction (NWP) codes, which cannot handle the geometry of the urban landscape, but do provide a more complete representation of atmospheric physics. NWP codes typically use structured grids with terrain-following vertical coordinates, include a full suite of atmospheric physics parameterizations, and allow for dynamic synoptic scale lateral forcing through grid nesting. Terrain following grids are unsuitable for urban terrain, as steep terrain gradients cause extreme distortion of the computational cells. In this work, we introduce and develop an immersed boundary method (IBM) to allow the favorable properties of a numerical weather prediction code to be combined with the ability to handle complex terrain. IBM uses a non-conforming structured grid, and allows solid boundaries to pass through the computational cells. As the terrain passes through the mesh in an arbitrary manner, the main goal of the IBM is to apply the boundary condition on the interior of the domain as accurately as possible. With the implementation of the IBM, numerical weather prediction codes can be used to explicitly resolve urban terrain. Heterogeneous urban domains using the IBM can be nested into larger mesoscale domains using a terrain-following coordinate. The larger mesoscale domain provides lateral boundary conditions to the urban domain with the correct forcing, allowing seamless integration between mesoscale and urban scale models. Further discussion of the scope of this project is given by Lundquist et al. [2007]. The current paper describes the implementation of an IBM into the Weather Research and Forecasting (WRF) model, which is an open source numerical weather prediction code. The WRF model solves the non-hydrostatic compressible Navier-Stokes equations, and employs an isobaric terrain-following vertical coordinate. Many types of IB methods have been developed by researchers; a comprehensive review can be found in Mittal

  9. Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model

    SciTech Connect (OSTI)

    Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

    2014-07-25

    We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is delayed and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

  10. Load flow analysis: Base cases, data, diagrams, and results ...

    Office of Scientific and Technical Information (OSTI)

    The report summarizes the load flow model construction, simulation, and validation and describes the general capabilities of an information query system designed to access load ...

  11. 20th International Conference on Case Based Reasoning | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency of Scientific Data Analysis: Scientific ... other traditional Artificial Intelligence (AI) algorithms out there. ... Basically, the big take away is that while most AI ...

  12. The Business Case for Fuel Cells 2014: Powering the Bottom Line...

    Office of Environmental Management (EM)

    These include wastewater treatment plants, government buildings, universities, military bases, hospitals, and other sites. The Business Case for Fuel Cells 2014: Powering the ...

  13. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12.92 12.90 13.09 -0.2% 1 Commercial trucks 8,501 to 10,000 pounds gross vehicle weight rating. 2 CAFE standard based on projected new vehicle sales. 3 Includes CAFE credits for...

  14. Technology Deployment Case Studies | Department of Energy

    Office of Environmental Management (EM)

    Deployment Technology Deployment Case Studies Technology Deployment Case Studies These case studies describe evaluations of energy-efficient technologies being used in federal...

  15. Patrick Case | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blake Case Larry Case Patrick Case Dorothy Coker Gordon Fee Linda Fellers Louis Freels Marie Guy Nathan Henry Agnes Houser John Rice Irwin Harvey Kite Charlie Manning Alice...

  16. Larry Case | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blake Case Larry Case Patrick Case Dorothy Coker Gordon Fee Linda Fellers Louis Freels Marie Guy Nathan Henry Agnes Houser John Rice Irwin Harvey Kite Charlie Manning Alice...

  17. Blake Case | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blake Case Larry Case Patrick Case Dorothy Coker Gordon Fee Linda Fellers Louis Freels Marie Guy Nathan Henry Agnes Houser John Rice Irwin Harvey Kite Charlie Manning Alice...

  18. Water Efficiency Case Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Efficiency Case Studies Water Efficiency Case Studies These case studies offer examples of water efficiency projects implemented by federal agencies. They are organized by ...

  19. Explosively separable casing

    DOE Patents [OSTI]

    Jacobson, Albin K. (Albuquerque, NM); Rychnovsky, Raymond E. (Livermore, CA); Visbeck, Cornelius N. (Livermore, CA)

    1985-01-01

    An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a pocket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

  20. Appendix A - GPRA06 benefits estimates: MARKAL and NEMS model baseline cases

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    NEMS is an integrated energy model of the U.S. energy system developed by the Energy Information Administration (EIA) for forecasting and policy analysis purposes.

  1. FAQ for Case Study Authors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reviews » FAQ for Case Study Authors Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background Materials FAQ for Case Study Authors BER Requirements Review 2015 ASCR Requirements Review 2015 Previous Reviews Requirements Review Reports Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems:

  2. Non-ferromagnetic overburden casing

    DOE Patents [OSTI]

    Vinegar, Harold J.; Harris, Christopher Kelvin; Mason, Stanley Leroy

    2010-09-14

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.

  3. FAQ for Case Study Authors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reviews FAQ for Case Study Authors Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background...

  4. steoxxxx1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Assuming that our crude oil price path holds, we project that retail motor Figure 7. ... Million Barrels Actual Base Case Forecast NOTE: Colored band is normal stock range 5 ...

  5. Documentation and control over economic regulatory adminstration field cases

    SciTech Connect (OSTI)

    Not Available

    1988-08-01

    This review was performed to evaluate the Economic Regulatory Administrations's (ERA) documentation of and control over cases involving alleged petroleum pricing violations. In response to the oil embargo and price increase, the Congress passed the Emergency Petroleum Allocation Act of 1973 (Act). The Government assured compliance by investigating petroleum pricing violations, recovering overcharges, and making restitution to injured parties. Between August 1973 and January 1981, ERA and predecessor Federal agencies established and enforced regulations controlling the allocation and pricing of crude oil and refined petroleum products. The purpose of this review was to determine whether adequate internal controls were in place to assure that overcharge cases were being resolved in accordance with established guidelines. Specific objectives were to determine whether ERA's internal controls assured that (1) the bases for resolving cases were documented, (2) case settlements were approved by more than one person, and (3) cases were tracked until all overcharge issues were resolved.

  6. Elizabeth Case | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case About Us Elizabeth Case - Guest Blogger, Cycle for Science Most Recent Rain or Shine: We Cycle for Science July 2 Mountains, and Teachers, and a Bear, Oh My! June 2 Sol-Cycle: Biking Across America for Science Education May 1

  7. Analysis of Restricted Natural Gas Supply Cases

    Reports and Publications (EIA)

    2004-01-01

    The four cases examined in this study have progressively greater impacts on overall natural gas consumption, prices, and supply. Compared to the Annual Energy Outlook 2004 reference case, the no Alaska pipeline case has the least impact; the low liquefied natural gas case has more impact; the low unconventional gas recovery case has even more impact; and the combined case has the most impact.

  8. Federal Utility Energy Service Contract Case Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Utility Energy Service Contract Case Studies Federal Utility Energy Service Contract Case Studies These case studies feature examples of federal projects made possible by the use of utility energy service contracts (UESCs). Photo of the Coast Guard's Multi-Site UESC project. U.S. Coast Guard: This 12-site project with 21 energy-conservation measures reduced electricity consumption by 19.1%, water consumption by 64.2%, and natural gas consumption by 21.1%. Photo of Patrick Air Force Base.

  9. Interactive savings calculations for RCS measures, six case studies

    SciTech Connect (OSTI)

    Stovall, T.K.

    1983-11-01

    Many Residential Conservation Service (RCS) audits are based, in whole or in part, on the RCS Model Audit. This audit calculates the savings for each measure independently, that is, as if no other conservation actions were taken. This method overestimates the total savings due to a group of measures, and an explanatory warning is given to the customer. Presenting interactive results to consumers would increase the perceived credibility of the audit results by eliminating the need for the warning about uncalculated interactive effects. An increased level of credibility would hopefully lead to an increased level of conservation actions based on the audit results. Because many of the existing RCS audits are based on the RCS Model Audit, six case studies were produced to show that the Model Audit algorithms can be used to produce interactive savings estimates. These six Model Audit case studies, as well as two Computerized Instrumented Residential Audit cases, are presented along with a discussion of the calculation methods used.

  10. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    C Low Economic Growth case projections This page inTenTionally lefT blank 47 U.S. Energy Information Administration | International Energy Outlook 2016 Low Economic Growth case projections Table C1. World total primary energy consumption by region, Low Economic Growth case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 123.3 123.9 124.7 126.3 128.8 0.3 United States a 96.8 94.4 98.7

  11. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    D High Oil Price case projections This page inTenTionally lefT blank 51 U.S. Energy Information Administration | International Energy Outlook 2016 High Oil Price case projections Table D1. World total primary energy consumption by region, High Oil Price case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 125.3 127.9 130.8 135.5 142.1 0.7 United States a 96.8 94.4 100.8 102.2 103.3

  12. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    I Reference case projections for natural gas production This page inTenTionally lefT blank 121 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for natural gas production Table I1. World total natural gas production by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 31.8 35.7 38.6 42.1 44.6 47.3 1.4 United States a 24.0 28.7

  13. Alternative Fuels Data Center: Case Studies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Case Studies Printable Version Share this resource Send a link to Alternative Fuels Data Center: Case Studies to someone by E-mail Share Alternative Fuels Data Center: Case Studies on Facebook Tweet about Alternative Fuels Data Center: Case Studies on Twitter Bookmark Alternative Fuels Data Center: Case Studies on Google Bookmark Alternative Fuels Data Center: Case Studies on Delicious Rank Alternative Fuels Data Center: Case Studies on Digg Find More places to share Alternative Fuels Data

  14. OHA Misc Cases Archive File

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a archive file of our Misc decisions, Please download this file to your local computer and use the build in adobe search feature. Individual cases are listed in the bookmark section of the...

  15. OHA Whistleblower Cases Archive File

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a archive file of our Whistleblower decisions, Please download this file to your local computer and use the build in adobe search feature. Individual cases are listed in the bookmark...

  16. OHA Security Cases Archive File

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a archive file of our Security decisions, Please download this file to your local computer and use the build in adobe search feature. Individual cases are listed in the bookmark section of...

  17. OHA EIA CASES ARCHIVE FILE

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a archive file of our EIA decisions, Please download this file to your local computer and use the build in adobe search feature. Individual cases are listed in the bookmark section of the...

  18. OHA FOIA Cases Archive File

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a archive file of our FOIA decisions, Please download this file to your local computer and use the build in adobe search feature. Individual cases are listed in the bookmark section of the...

  19. Appendix A. Reference case projections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by region and end-use sector, High Oil Price case, 2010-40 (quadrillion Btu) Region History Projections Average annual percent change, 2010-40 2010 2020 2025 2030 2035 2040 OECD...

  20. Appendix A. Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    by region and country, Low Oil Price case, 2009-40 (million barrels per day) Region History Projections Average annual percent change, 2010-40 2009 2010 2011 2020 2025 2030...

  1. EIA Cases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIA Cases EIA Cases RSS February 14, 2011 TEE-0073 - In the Matter of Cole Distributing, Inc. On December 13, 2010, Cole Distributing, Inc. (Cole) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). The firm requests that it be permanently relieved of the requirement to prepare and file the Energy Information Administration (EIA) Form EIA-782B, entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report." As

  2. BerkeleyGW Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BerkeleyGW Case Study BerkeleyGW Case Study Code Description and Science Problem BerkeleyGW is a Materials Science application for calculating the excited state properties of materials such as band gaps, band structures, absoprtion spectroscopy, photoemission spectroscopy and more. It requires as input the Kohn-Sham orbitals and energies from a DFT code like Quantum ESPRESSO, PARATEC, PARSEC etc. Like such DFT codes, it is heavily depedent on FFTs, Dense Linear algebra and tensor contraction

  3. EPICS BASE

    Energy Science and Technology Software Center (OSTI)

    002230MLTPL00 Experimental Physics and Industrial Control System BASE http://www.aps.anl.gov/epics

  4. Comprehensive Energy Program at Patrick Air Force Base Set to...

    Office of Environmental Management (EM)

    Download the Patrick Air Force Base case study. (709.94 KB) More Documents & Publications FPL Energy Services ESCO Qualification Sheet UESC Project Overview: NASA Ames Research ...

  5. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  6. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  7. Implementation and assessment of turbine wake models in the Weather Research and Forecasting model for both mesoscale and large-eddy simulation

    SciTech Connect (OSTI)

    Singer, M; Mirocha, J; Lundquist, J; Cleve, J

    2010-03-03

    Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.

  8. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  9. Annual energy outlook 1995, with projections to 2010

    SciTech Connect (OSTI)

    1995-01-01

    The Annual Energy Outlook 1995 (AEO95) presents the midterm energy forecasts of the Energy Information Administration (EIA). This year`s report presents projections and analyses of energy supply, demand, and prices through 2010, based on results from the National Energy Modeling System (NEMS). Quarterly forecasts of energy supply and demand for 1995 and 1996 are published in the Short-Term Energy Outlook (February 1995). Forecast tables for the five cases examined in the AEO95 are provided in Appendixes A through C. Appendix A gives historical data and forecasts for selected years from 1992 through 2010 for the reference case. Appendix B presents two additional cases, which assume higher and lower economic growth than the reference case. Appendix C presents two cases that assume higher and lower world oil prices. Appendix D presents a summary of the forecasts in units of oil equivalence. Appendix E presents a summary of household energy expenditures. Appendix F provides detailed comparisons of the AEO95 forecasts with those of other organizations. Appendix G briefly describes NEMS and the major AEO95 forecast assumptions. Appendix H presents a stand-alone high electricity demand case. Appendix 1 provides a table of energy conversion factors and a table of metric conversion factors. 89 figs., 23 tabs.

  10. Technology Deployment Case Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Deployment Case Studies Technology Deployment Case Studies Technology Deployment Case Studies Find efficient technologies and products for federal applications on the Federal Energy Management Program website. View All Maps Addthis

  11. Y-12 and the Jack Case Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 21, 2014, Patrick Case, Jack Case's youngest son, called me. He was at the New Hope Center and wanted to visit the Jack Case Center. I explained that it would have to wait...

  12. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    E Low Oil Price case projections This page inTenTionally lefT blank 57 U.S. Energy Information Administration | International Energy Outlook 2016 Low Oil Price case projections Table E1. World total primary energy consumption by region, Low Oil Price case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-s40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 126.5 129.2 131.8 135.0 138.9 0.6 United States a 96.8 94.4 101.2 102.7 103.6 104.6

  13. CASE Design/Remodeling | Open Energy Information

    Open Energy Info (EERE)

    DesignRemodeling Jump to: navigation, search Name: CASE DesignRemodeling Place: Bethesda, MD Website: www.casedesignremodeling.com References: CASE DesignRemodeling1...

  14. Case Western University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name Case Western University Facility Case Western University Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  15. Renewable Energy Case Studies | Open Energy Information

    Open Energy Info (EERE)

    Case Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Case Studies AgencyCompany Organization: National Renewable Energy Laboratory Sector:...

  16. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one year of ...

  17. Better Buildings Residential Network Case Study: Partnerships...

    Energy Savers [EERE]

    Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. Department of Energy's Office of Energy ...

  18. QPhiX Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QPhiX Case Study QPhiX Case Study June 20, 2016 Background QPhiX [1,2,3] is a library optimized for Intel(R) manycore architectures and provides sparse solvers and slash kernels for Lattice QCD calculations. It supports the Wilson dslash operator with and without clover term as well as Conjugate Gradient [4] and BiCGStab [5] solvers. The main task for QPhiX is to solve the sparse linear system dirac equation where the Dslash kernel is defined by wilson dslash Here, U are complex, special

  19. FOIA Cases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOIA Cases FOIA Cases RSS July 28, 2016 FIA-16-0039 - In the Matter of Michael Ravnitzky On July 28, 2016, OHA granted in part a FOIA Appeal filed by Michael Ravinitzky from a determination issued by the Office of Scientific and Technical Information (OSTI) of the Department of Energy. In the Appeal, the Appellant challenged OSTI's decision to withhold responsive records under Exemptions 3 and 4 of the FOIA. Reviewing only the unclassified portion of the responsive records, OHA found that OSTI's

  20. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    5 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G1. World petroleum and other liquids production by region and country, Reference case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC a 36.0 37.4 39.2 41.4 44.6 48.7 52.2 1.2 Middle East 26.2 26.6 29.8

  1. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G3. International other liquid fuels a production by region and country, Reference case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 3.7 3.8 4.3 4.6 4.8 5.2 5.6 1.3 Natural gas plant liquids 3.6 3.7

  2. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G7. World petroleum and other liquids production by region and country, Low Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC a 36.0 37.4 43.2 45.6 49.9 54.7 59.4 1.7 Middle East 26.2 26.6 31.1

  3. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G9. World other liquid fuels a production by region and country, Low Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 3.7 3.8 4.3 4.5 4.5 4.9 4.8 0.8 Natural gas plant liquids 3.6 3.7 4.0

  4. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A14. World population by region, Reference case, 2011-40 (millions) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 484 489 523 544 564 581 597 0.7 United States a 312 315 334 347 359 370 380 0.7 Canada 34 35 38 39 41 43 44 0.8 Mexico and Chile 137 139 151 158 164 169 173 0.8 OECD Europe 548 550 565 571 576 579 581

  5. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A8. World nuclear energy consumption by region, Reference case, 2011-40 (billion kilowatthours) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 888 867 902 891 901 900 924 0.2 United States a 790 769 804 808 808 812 833 0.3 Canada 88 89 86 72 72 67 62 -1.3 Mexico and Chile 9 8 12 12 20 20 29 4.5 OECD Europe 861 837

  6. Whistleblower Cases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whistleblower Cases Whistleblower Cases RSS July 14, 2016 WBU-16-0006 - In the Matter Dr. Shou-Yuan Zhang On July 14, 2016, OHA granted an Appeal involving a Complaint filed by Dr. Shou-Yuan Zhang against Brookhaven Science Associates (BSA) under the DOE's Contractor Employee Protection Program, 10 CFR Part 708. In his Complaint, Dr. Zhang alleged that in an email to a BSA official, he reported research misconduct and that, in response, BSA transferred him to a new position. The DOE's Brookhaven

  7. Market-Based Indian Grid Integration Study Options: Preprint

    SciTech Connect (OSTI)

    Stoltenberg, B.; Clark, K.; Negi, S. K.

    2012-03-01

    The Indian state of Gujarat is forecasting solar and wind generation expansion from 16% to 32% of installed generation capacity by 2015. Some states in India are already experiencing heavy wind power curtailment. Understanding how to integrate variable generation (VG) into the grid is of great interest to local transmission companies and India's Ministry of New and Renewable Energy. This paper describes the nature of a market-based integration study and how this approach, while new to Indian grid operation and planning, is necessary to understand how to operate and expand the grid to best accommodate the expansion of VG. Second, it discusses options in defining a study's scope, such as data granularity, generation modeling, and geographic scope. The paper also explores how Gujarat's method of grid operation and current system reliability will affect how an integration study can be performed.

  8. A critical evaluation of the upper ocean heat budget in the Climate Forecast System Reanalysis data for the south central equatorial Pacific

    SciTech Connect (OSTI)

    Liu H.; Lin W.; Liu, X.; Zhang, M.

    2011-08-26

    Coupled ocean-atmospheric models suffer from the common bias of a spurious rain belt south of the central equatorial Pacific throughout the year. Observational constraints on key processes responsible for this bias are scarce. The recently available reanalysis from a coupled model system for the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data is a potential benchmark for climate models in this region. Its suitability for model evaluation and validation, however, needs to be established. This paper examines the mixed layer heat budget and the ocean surface currents - key factors for the sea surface temperature control in the double Inter-Tropical Convergence Zone in the central Pacific - from 5{sup o}S to 10{sup o}S and 170{sup o}E to 150{sup o}W. Two independent approaches are used. The first approach is through comparison of CFSR data with collocated station observations from field experiments; the second is through the residual analysis of the heat budget of the mixed layer. We show that the CFSR overestimates the net surface flux in this region by 23 W m{sup -2}. The overestimated net surface flux is mainly due to an even larger overestimation of shortwave radiation by 44 W m{sup -2}, which is compensated by a surface latent heat flux overestimated by 14 W m{sup -2}. However, the quality of surface currents and the associated oceanic heat transport in CFSR are not compromised by the surface flux biases, and they agree with the best available estimates. The uncertainties of the observational data from field experiments are also briefly discussed in the present study.

  9. Mercury emissions from municipal solid waste combustors. An assessment of the current situation in the United States and forecast of future emissions

    SciTech Connect (OSTI)

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  10. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    SciTech Connect (OSTI)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming

  11. Better Buildings Case Competition in the News | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Case Competition in the News Better Buildings Case Competition in the News Better Buildings Case Competition in the News Better Buildings Case Competition in the ...

  12. Appendix A: Reference case projections

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A1. World total primary energy consumption by region, Reference case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 125.7 128.1 130.7 133.8 138.1 0.6 United States a 96.8 94.4 100.8 102.0 102.9 103.8 105.7 0.4 Canada 14.5 14.5 15.1 15.6 16.3 17.1 18.1 0.8 Mexico and Chile 9.3

  13. Appendix A: Reference case projections

    U.S. Energy Information Administration (EIA) Indexed Site

    International Energy Outlook 2016 Reference case projections Table A4. World gross domestic product (GDP) by region expressed in market exchange rates, Reference case, 2011-40 (billion 2010 dollars) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 18,006 18,440 22,566 25,585 28,757 32,166 36,120 2.4 United States a 15,021 15,369 18,801 21,295 23,894 26,659 29,898 2.4 Canada 1,662 1,694 2,024 2,240 2,470 2,730 3,012 2.1 Mexico

  14. Appendix A: Reference case projections

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A6. World natural gas consumption by region, Reference case, 2011-40 (trillion cubic feet) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 30.8 31.8 32.8 34.3 36.5 38.2 40.1 0.8 United States a 24.5 25.5 26.1 26.9 28.1 28.8 29.7 0.5 Canada 3.7 3.7 3.9 4.2 4.7 5.2 5.6 1.5 Mexico and Chile 2.6 2.6 2.8 3.2 3.6 4.2 4.8

  15. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Low Oil Price case projections Table E1. World total primary energy consumption by region, Low Oil Price case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-s40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 126.5 129.2 131.8 135.0 138.9 0.6 United States a 96.8 94.4 101.2 102.7 103.6 104.6 106.1 0.4 Canada 14.5 14.5 15.3 15.8 16.5 17.4 18.3 0.8 Mexico and

  16. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Low Oil Price case projections Table E3. World liquids consumption by region, Low Oil Price case, 2011-40 (million barrels per day) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 23.6 23.2 24.9 25.0 25.2 25.5 26.1 0.4 United States a 18.9 18.5 20.0 20.1 20.1 20.2 20.4 0.4 Canada 2.3 2.4 2.4 2.4 2.5 2.6 2.6 0.4 Mexico and Chile 2.4 2.4 2.5 2.5 2.6

  17. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Low Economic Growth case projections Table C1. World total primary energy consumption by region, Low Economic Growth case, 2011-40 (quadrillion Btu) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 120.6 118.1 123.3 123.9 124.7 126.3 128.8 0.3 United States a 96.8 94.4 98.7 98.1 97.5 97.4 98.0 0.1 Canada 14.5 14.5 15.0 15.4 15.9 16.6 17.3 0.6 Mexico

  18. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Projections of petroleum and other liquid fuels production in three cases Table G5. World crude oil a production by region and country, High Oil Price case, 2011-40 (million barrels per day, unless otherwise noted) Region/country History (estimates) Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OPEC b 32.2 33.4 30.7 30.9 32.4 33.4 34.4 0.1 Middle East 22.9 23.2 22.7 23.0 24.4 25.2

  19. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for natural gas production Table I1. World total natural gas production by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 31.8 35.7 38.6 42.1 44.6 47.3 1.4 United States a 24.0 28.7 30.4 32.9 34.0 35.3 1.4 Canada 6.1 5.8 6.6 7.2 7.9 8.6 1.2 Mexico 1.7 1.2 1.5 2.0 2.6 3.3

  20. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for natural gas production Table I3. World other natural gas production by region, Reference case, 2012-40 (trillion cubic feet) Region/country Projections Average annual percent change, 2012-40 2012 2020 2025 2030 2035 2040 OECD OECD Americas 12.0 9.8 9.5 10.7 10.3 10.3 -0.5 United States a 7.5 6.6 6.5 7.8 7.5 7.5 0.0 Canada 2.8 2.0 1.8 1.7 1.6 1.5 -2.2 Mexico 1.7 1.2 1.2 1.2 1.2 1.2 -1.2

  1. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    5 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections Table A10. World carbon dioxide emissions by region, Reference case, 2011-40 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 6,558 6,343 6,569 6,620 6,675 6,769 6,887 0.3 United States a 5,483 5,272 5,499 5,511 5,514 5,521 5,549 0.2 Canada 562 563 557 577 587 621 647 0.5 Mexico and

  2. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    Reference case projections Table A12. World carbon dioxide emissions from natural gas use by region, Reference case, 2011-40 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,666 1,715 1,766 1,849 1,965 2,063 2,167 0.8 United States a 1,305 1,363 1,394 1,432 1,497 1,538 1,586 0.5 Canada 205 205 213 234 261 287 310 1.5 Mexico and Chile 156 147 158 184 207 238 271 2.2 OECD Europe 1,016 970

  3. Orange and Rockland Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 2012 Orange and Rockland Case Study 1 Voltage Control Device A "Model-Centric" Approach to Smarter Electric Distribution Systems Orange and Rockland Utilities (ORU), is an investor-owned utility and a subsidiary of Consolidated Edison Incorporated (Con Edison), and is located in suburban New York, New Jersey, and Pennsylvania, west of New York City. ORU is a key participant in Con Edison's $272 million Smart Grid Investment Grant (SGIG) project to modernize electric distribution

  4. Cell casing and grommet therefore

    SciTech Connect (OSTI)

    Law, G.H.; Meyler-warlow, I.

    1980-11-11

    A grommet has a central opening and a peripheral groove defining spaced first and second peripheral lips, the opening aligned with the first peripheral lip is of increased width so that the lip may flex inwardly to allow insertion over a cell terminal post after assembly. The first peripheral lip has an inclined surface which cooperates with an inclined surface on the cell casing to facilitate insertion of the grommet. An electric cell including such a grommet is also disclosed.

  5. DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque, NM

    Broader source: Energy.gov [DOE]

    Case study of a New Mexico-based home builder who has built more DOE Zero Energy Ready certified homes than any builder in the nation. One example home achieved a HERS score of HERS 55 without PV...

  6. ARM - Field Campaign - CASES Data Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCASES Data Analysis Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : CASES Data Analysis 2004.07.01 - 2009.06.30 Lead Scientist : Margaret LeMone Abstract CASES Data Analysis: Potential Benefits Diurnal variation of the Atmospheric Boundary Layer. Taken together, the two Cooperative Atmosphere Surface Exchange Study (CASES) field programs, CASES-97 (morning and evening) and CASES-99 (evening, night, morning) provide a robust

  7. FINAL SIMULATION RESULTS FOR DEMONSTRATION CASE 1 AND 2

    SciTech Connect (OSTI)

    David Sloan; Woodrow Fiveland

    2003-10-15

    The goal of this DOE Vision-21 project work scope was to develop an integrated suite of software tools that could be used to simulate and visualize advanced plant concepts. Existing process simulation software did not meet the DOE's objective of ''virtual simulation'' which was needed to evaluate complex cycles. The overall intent of the DOE was to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate equipment in the cycle. Advanced component models are available; however, a generic coupling capability that would link the advanced component models to the cycle simulation software remained to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software was based on an existing suite of programs. The challenge was to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{reg_sign} computational fluid dynamics (CFD) code (provided by Fluent Inc). A software interface and controller, based on an open CAPE-OPEN standard, has been developed and extensively tested. Various test runs and demonstration cases have been utilized to confirm the viability and reliability of the software. ALSTOM Power was tasked with the responsibility to select and run two demonstration cases to test the software--(1) a conventional steam cycle (designated as Demonstration Case 1), and (2) a combined cycle test case (designated as Demonstration Case 2). Demonstration Case 1 is a 30 MWe coal-fired power plant for municipal electricity generation, while Demonstration Case 2 is a 270 MWe, natural gas-fired, combined cycle power plant. Sufficient data was available from the operation of both power plants to complete the cycle configurations. Three runs

  8. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Kaya Identity factor projections Table J3. World gross domestic product (GDP) per capita by region expressed in purchasing power parity, Reference case, 2011-40 (2010 dollars per person) Region History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 38,441 39,055 44,716 48,842 53,114 57,747 63,278 1.7 United States a 48,094 48,865 56,285 61,453 66,639 72,107

  9. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H1. World total installed generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,258 1,278 1,330 1,371 1,436 1,517 1,622 0.9 United States a 1,046 1,063 1,079 1,091 1,133 1,187 1,261 0.6 Canada 133 135

  10. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H11. World installed other renewable generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 41 42 45 49 52 57 59 1.2 United States a 36 37 39 39 39 40 41 0.4 Canada 4 4 5 8 12 15 16 4.9 Mexico and Chile 1 1

  11. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H13. World net liquids-fred electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 88 88 66 37 36 35 35 -3.3 United States a 30 23 18 18 18 18 18 -0.9 Canada 6 7 6 6 6 5 5 -1.0 Mexico and

  12. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H15. World net coal-fred electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,857 1,630 1,808 1,820 1,786 1,778 1,769 0.3 United States a 1,733 1,514 1,709 1,724 1,713 1,704 1,702 0.4

  13. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    Reference case projections for electricity capacity and generation by fuel Table H17. World net hydroelectric and other renewable electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 1,004 987 1,278 1,376 1,472 1,598 1,763 2.1 United States a 535 520 704 741 781 848 934 2.1 Canada 398 397 459 491 524 557 606 1.5 Mexico and Chile 71 69 115 144

  14. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    5 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H19. World net wind-powered electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 142 156 295 327 354 404 460 3.9 United States a 120 141 232 235 245 278 319 3.0 Canada 20 11 39 46 53 60 66

  15. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H21. World net solar electricity generation by region and country, 2011-40 (billion kilowatthours) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 6 12 57 65 79 96 120 8.7 United States a 6 11 51 59 71 88 110 8.5 Canada 0 0 3 3 4 5 5 10.3 Mexico and Chile 0 0 3

  16. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H3. World installed natural-gas-fred generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 410 420 455 488 534 584 640 1.5 United States a 358 367 393 409 444 481 525 1.3 Canada 20 20 25 30 36 41 46 3.0

  17. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H5. World installed nuclear generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 115 117 115 113 115 114 118 0.0 United States a 102 102 101 101 102 102 105 0.1 Canada 13 14 12 10 10 10 9 -1.5 Mexico and

  18. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H7. World installed hydroelectric generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 171 171 183 187 192 198 210 0.7 United States a 78 78 80 80 80 80 80 0.1 Canada 75 75 83 85 88 90 99 1.0 Mexico and

  19. Appendix A: Reference case projections

    Gasoline and Diesel Fuel Update (EIA)

    5 U.S. Energy Information Administration | International Energy Outlook 2016 Reference case projections for electricity capacity and generation by fuel Table H9. World installed geothermal generating capacity by region and country, 2011-40 (gigawatts) Region/country History Projections Average annual percent change, 2012-40 2011 2012 2020 2025 2030 2035 2040 OECD OECD Americas 3 3 5 7 9 10 11 4.3 United States a 3 3 4 5 7 8 9 4.6 Canada 0 0 0 0 0 0 0 - Mexico and Chile 1 1 1 1 2 2 2 3.3 OECD

  20. Analysis of design tradeoffs for diplay case evaporators

    SciTech Connect (OSTI)

    Bullard, CLARK

    2004-08-11

    A model for simulating a display case evaporator under frosting conditions has been developed, using a quasi-steady and finite-volume approach and a Newton-Raphson based solution algorithm. It is capable of simulating evaporators with multiple modules having different geometries, e.g. tube and fin thicknesses and pitch. The model was validated against data taken at two-minute intervals from a well-instrumented medium-temperature vertical display case, for two evaporators having very different configurations. The data from these experiments provided both the input data for the model and also the data to compare the modeling results. The validated model has been used to generate some general guidelines for coil design. Effects of various geometrical parameters were quantified, and compressor performance data were used to express the results in terms of total power consumption. Using these general guidelines, a new prototype evaporator was designed for the subject display case, keeping in mind the current packaging restrictions, tube and fin availabilities. It is an optimum coil for the given external load conditions. Subsequently, the validated model was used in a more extensive analysis to design prototype coils with some of the current tube and fin spacing restrictions removed. A new microchannel based suction line heat exchanger was installed in the display case system. The performance of this suction line heat exchanger is reported.