National Library of Energy BETA

Sample records for barrels commodity production

  1. Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 267 266 265 292 303 342 372 421 2000's 419 459 451 485 467 409 406 414

  2. Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 3 7 2010's 8 11 11 11 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Production

  3. Master plate production for the tile calorimeter extended barrel modules.

    SciTech Connect (OSTI)

    Guarino, V.J.; Hill, N.; Petereit, E.; Price, L.E.; Proudfoot, J.; Wood, K.

    1999-03-10

    Approximately 41,000 master plates (Fig. 1) are required for the Extended Barrel Hadronic Calorimeter for the ATLAS experiment at the LHC. Early in the R&D program associated with the detector, it was recognized that the fabrication of these steel laminations was a significant issue, both in terms of the cost to produce these high precision formed plates, as well as the length of time required to produce all plates for the calorimeter. Two approaches were given serious consideration: laser cutting and die stamping. The Argonne group was a strong supporter of the latter approach and in late 1995 initiated an R&D program to demonstrate the feasibility and cost effectiveness of die stamping these plates by constructing a die and stamping approximately 2000 plates for use in construction of three full size prototype modules. This was extremely successful and die stamping was selected by the group for production of these plates. When the prototype die was constructed it was matched to the calorimeter envelope at that time. This subsequently changed. However with some minor adjustments in the design envelope and a small compromise in terms of instrumented volume, it became possible to use this same die for the production of all master plates for the Tile Calorimeter. Following an extensive series of discussions and an evaluation of the performance of the stamping presses available to our collaborators in Europe, it was decided to ship the US die to CERN for use in stamping master plates for the barrel section of the calorimeter. This was done under the supervision of CERN and JINR, Dubna, and carried out at the TATRA truck plant at Koprivinice, Czech Republic. It was a great success. Approximately 41,000 plates were stamped and fully met specification. Moreover, the production time was significantly reduced by avoiding the need of constructing and then qualifying a second die for use in Europe. This also precluded small geometrical differences between the barrel and extended barrel plates (and therefore submodules) being an issue, with the result that standard submodules are fully exchangeable between the two types of module.

  4. U.S. crude oil production expected to top 8 million barrels per day, highest output since 1988

    Gasoline and Diesel Fuel Update (EIA)

    U.S. crude oil production expected to top 8 million barrels per day, highest output since 1988 U.S. crude oil production in 2014 is now expected to top 8 million barrels per day for the first time in over a quarter century. The U.S. Energy Information Administration boosted its forecast for daily crude oil production this year by 120,000 barrels to 7.4 million barrels per day. For 2014, EIA's forecast for daily production was revised upward by 310,000 barrels to nearly 8.2 million barrels per

  5. U.S. crude oil production expected to top 9 million barrels per day in December

    Gasoline and Diesel Fuel Update (EIA)

    crude oil production expected to top 9 million barrels per day in December U.S. crude oil production is expected to continue to increase through next year, despite the outlook for lower crude oil prices. In its new short-term forecast, the U.S. Energy Information Administration said monthly average oil production is on track to surpass 9 million barrels per day in December for the first time since 1986 and then rise to an average 9.4 million barrels a day next year. Even though that's down about

  6. EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day

    Gasoline and Diesel Fuel Update (EIA)

    EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day The forecast for U.S. crude oil production keeps going higher. The U.S. Energy Information Administration revised upward its projection for crude oil output in 2013 by 70,000 barrels per day and for next year by 190,000 barrels per day. U.S. oil production is now on track to average 7.5 million barrels per day this year and rise to 8.4 million barrels per day in 2014, according to EIA's latest monthly forecast.

  7. U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Based Production (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 580 1980's 572 580 564 568 597 585 569 585 592 566 1990's 574 601 626 635 634 646 688 690 655 697 2000's 710 675 677 611 645 614 629 650 667 714 2010's 745 784 865 931 1,124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  8. ,"Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  9. ,"New Mexico Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  10. ,"North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  11. ,"Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  12. ,"U.S. Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  13. ,"Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  14. ,"Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2006 ,"Release Date:","11/19/2015" ,"Next Release

  15. ,"West Virginia Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  16. ,"Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  17. ,"Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  18. ,"Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  19. ,"Florida Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  20. ,"Kansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  1. ,"Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  2. ,"Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"Lower 48 States Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 States Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"Michigan Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  6. ,"Miscellaneous States Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    monthly crude oil production highest in nearly 26 year Estimated U.S. crude oil production in May averaged almost 8.4 million barrels per day, the highest output for any month since March 1988. In its new monthly forecast, the U.S. Energy Information Administration expects domestic crude oil production will also average 8.4 million barrels per day this year.....which is 1 million barrels per day higher than last year....and then rise to 9.3 million barrels per day in 2015. That would be highest

  8. U.S. crude oil production expected to top 9 million barrels per day in December

    Gasoline and Diesel Fuel Update (EIA)

    3 2015 Falling crude prices to slow U.S. oil production growth in 2015 U.S. crude oil production is expected to increase again this year, but lower crude prices will slow the growth in output. In its new forecast, the U.S. Energy Information Administration said domestic crude oil production should average 9.3 million barrels per day in 2015. On-shore production in the Lower 48-states is expected to grow in the early part of the year, before declining in the second half. Production for the

  9. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    monthly crude oil production highest in 26 years with bigger oil flows still to come U.S. crude oil production averaged 8.3 million barrels per day in April....the highest monthly level in 26 years....and output is expected to keep growing. In its new monthly forecast, the U.S. Energy Information Administration expects oil production to average 8.5 million barrels per day this year and increase to 9.2 million barrels per day next year. That would be the highest annual output level since 1972.

  10. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    Rising U.S. oil production cuts into petroleum imports Growing U.S. crude oil production is on track to push the amount of petroleum liquid fuels imports needed to meet domestic fuel consumption to the lowest level in more than four decades. U.S. crude oil production is expected to jump from 7.4 million barrels per day in 2013 to 8.5 million barrels per day this year.....and then rise to 9.3 million barrels a day in 2015, according to the new monthly forecast from the U.S. Energy Information

  11. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    oil production tops 8 million barrels per day for the first time since 1988 Estimated U.S. crude oil production in November topped 8 million barrels per day for the first time in 25 years, according to the new monthly energy forecast from the U.S. Energy Information Administration. Rising oil output from tight oil formations in North Dakota and Texas are playing a key role, with annual U.S. oil production expected to increase to an average of 8.5 million barrels per day next year. More oil

  12. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    to account for 91% of the growth in world oil production in 2015 The United States is expected to provide nine out of every 10 barrels of new global oil supplies in 2015. In its new forecast, the U.S. Energy Information Administration said it expects world oil production to rise by 1.3 million barrels per day next year....with U.S. daily oil output alone increasing by 1.2 million barrels. Rising U.S. oil production, along with more fuel-efficient vehicles on America's highways, is expected to

  13. ,"California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  14. ,"California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  15. ,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  16. Table 5.10 Natural Gas Plant Liquids Production, 1949-2011 (Thousand Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Natural Gas Plant Liquids Production, 1949-2011 (Thousand Barrels) Year Finished Petroleum Products 1 Liquefied Petroleum Gases Pentanes Plus 4 Total Ethane 2 Isobutane Normal Butane 3 Propane 2,3 Total 1949 19,210 3,056 4,182 22,283 27,114 56,634 81,241 157,086 1950 23,931 4,253 4,667 25,323 37,018 71,261 86,769 181,961 1951 26,505 5,545 5,509 27,960 45,798 84,812 93,437 204,754 1952 25,488 7,089 6,568 31,349 54,732 99,738 98,289 223,515 1953 25,739 6,151 7,006 35,308 61,544 110,009 102,831

  17. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    U.S. crude oil production expected to hit four-decade high during 2015 U.S. crude oil production over the next two years is expected to grow to its highest level since the early 1970s. Oil output increased by 1 million barrels per day in 2013...and is expected to repeat that growth rate during 2014....according to the new forecast from the U.S. Energy Information Administration. U.S. crude oil production is forecast to average 8.5 million barrels per day this year and then rise to 9.3 million

  18. ,"New Mexico--East Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico--East Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  19. ,"New Mexico--West Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico--West Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  1. ,"Texas--RRC District 1 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 1 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"Texas--RRC District 10 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 10 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  6. ,"Texas--RRC District 5 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 5 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"Texas--RRC District 6 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 6 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"Texas--RRC District 7B Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 7B Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"Texas--RRC District 7C Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 7C Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"Texas--RRC District 8 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 8 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"Texas--RRC District 8A Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 8A Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"Texas--RRC District 9 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 9 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  14. ,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  15. ,"California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  16. ,"Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  17. ,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  18. ,"Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  19. ,"Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  1. ,"Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  2. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    World oil supply more than adequate to meet demand over next 2 years Rising U.S. crude oil production will help non-OPEC supply growth exceed global demand growth for the next two years. Non-OPEC petroleum and other liquids supply is expected to increase 1.9 million barrels per day this year, while oil consumption will grow just 1.3 million barrels per day, according to the U.S. Energy Information Administration's new monthly forecast. Next year....non-OPEC supply is expected to rise another 1.5

  3. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    Snow and cold cut into U.S. crude oil production this winter This winter's harsh weather conditions temporarily slowed U.S. crude oil production. In its new forecast....the U.S. Energy Information Administration said oil production in the Bakken formation in North Dakota and Montana hit 1 million barrels per day last November. However, winter storms caused a drop in the oil output from the Bakken formation during December. Production in the Bakken region is forecast to return to 1 million

  4. U.S. monthly oil production tops 8 million barrels per day for...

    U.S. Energy Information Administration (EIA) Indexed Site

    but U.S. oil and natural gas production in the Gulf of Mexico could still be disrupted. ... That's about 40 percent lower than production expected to be shut-in during a normal ...

  5. Mid America Bio Energy and Commodities LLC | Open Energy Information

    Open Energy Info (EERE)

    Bio Energy and Commodities LLC Jump to: navigation, search Name: Mid America Bio Energy and Commodities, LLC Place: North Platte, Nebraska Zip: 69101 Product: Nebraska based...

  6. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    Record natural gas production for the U.S. in 2014 U.S. natural gas production is expected to increase 5.3% this year. In its new forecast, the U.S. Energy Information Administration said it expects U.S. natural gas production to reach a record 69.8 billion cubic feet per day this year....that's about 3.2 billion cubic feet per day higher than in 2013. Higher U.S. gas production...particularly in Pennsylvania's Marcellus Shale region and the Eagle Ford Shale region in Texas...is supporting the

  7. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    U.S. natural gas inventories strong heading into winter heating season U.S. natural gas inventories have recovered from their big drawdown last winter and are expected to be at strong levels at the start of this year's heating season. In its new winter forecast, the U.S. Energy Information Administration said natural gas stocks should total just over 3.5 trillion cubic feet by November 1 st . Record U.S. natural gas production this year has contributed to the record build in natural gas

  8. The How's and Why's of Replacing the Whole Barrel | Department of Energy

    Energy Savers [EERE]

    The How's and Why's of Replacing the Whole Barrel The How's and Why's of Replacing the Whole Barrel October 19, 2011 - 4:09pm Addthis A 42-U.S. gallon barrel of crude oil yields about 45 gallons of petroleum products. Source: Energy Information Administration, “Oil: Crude Oil and Petroleum Products Explained” and Annual Energy Outlook 2009 (Updated February 2010). A 42-U.S. gallon barrel of crude oil yields about 45 gallons of petroleum products. Source: Energy Information

  9. Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil | Department of

    Energy Savers [EERE]

    Energy Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil Converting domestic biomass into affordable fuels, products, and power supports our national strategy to diversify energy resources and reduce dependence on imported oil. PDF icon replacing_barrel_overview.pdf More Documents & Publications Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Bioenergy Technologies Office Conversion

  10. Global Commodities UK Ltd defunct | Open Energy Information

    Open Energy Info (EERE)

    7LZ Product: UK-based biodiesel producer and developer of driveECO, a biodegradable diesel. Went into liquidation in 2006. References: Global Commodities UK Ltd (defunct)1...

  11. Constllation Enrgy Commodities | Open Energy Information

    Open Energy Info (EERE)

    Constllation Enrgy Commodities Jump to: navigation, search Name: Constllation Enrgy Commodities Place: Maryland Phone Number: 1.877.997.9995 or 1.888.635.0827 Website:...

  12. EA-164-B Constellation Energy Commodities Group, Inc | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B Constellation Energy Commodities Group, Inc EA-164-B Constellation Energy Commodities Group, Inc Order authorizing Constellation Energy Commodities Group, Inc to export electric...

  13. EA-295 Merrill Lynch Commodities, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Merrill Lynch Commodities, Inc. to export electric energy to Canada EA-295 Merrill Lynch Commodities, Inc. More Documents & Publications EA-295-A Merrill Lynch Commodities, Inc....

  14. U.S. Crude Oil + Lease Condensate Estimated Production from Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production from Reserves (Million Barrels) U.S. Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  15. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Interest Lands Conservation Act ANS: Alaskan North Slope ANWR: Arctic National Wildlife Refuge BBbls: billion barrels Bbls: barrels Daily Petroleum Production Rate: The ...

  16. Secretary Bodman Announces Sale of 11 Million Barrels of Crude...

    Office of Environmental Management (EM)

    Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic...

  17. Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquids, Proved Reserves (Million Barrels) Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  18. EA-278 Direct Commodities Trading Inc | Department of Energy

    Energy Savers [EERE]

    Direct Commodities Trading Inc EA-278 Direct Commodities Trading Inc Order authorizing Direct Commodities Trading Inc to export electric energy to Canada. PDF icon OE-278 Direct Commodities Trading Inc More Documents & Publications EA-278-B Direct Commodities Trading Inc - Recission

  19. BARRELING THROUGH THE VACUUM OF SPACE at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1663 October 2015 1663 October 2015 19 BARRELING THROUGH THE VACUUM OF SPACE at over 17,000 miles per hour, Earth's reflection glinting off its solar panels, the satellite is fiercely efficient and mission driven. It has hard edges and cold surfaces. It is brand new and state-of-the-art. It is an engineering masterpiece. And it's roughly the size of an electric pencil sharpener. Satellites are generally thought of as hulking beasts of instrumentation. They are billion-dollar machines capable of

  20. EA-295-A Merrill Lynch Commodities, Inc. | Department of Energy

    Office of Environmental Management (EM)

    -A Merrill Lynch Commodities, Inc. EA-295-A Merrill Lynch Commodities, Inc. Order authorizing Merrill Lynch Commodities, Inc. to export electric energy to Canada PDF icon EA-295-A...

  1. EA-380 Freeport Commodities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    electric energy to Canada. EA-380 Freepoint CN.docx More Documents & Publications EA-379 FreePoint Commodities EA-196-A Minnesota Power, Sales EA-220-A NRG Power Marketing, Inc...

  2. Accelerating semantic graph databases on commodity clusters

    SciTech Connect (OSTI)

    Morari, Alessandro; Castellana, Vito G.; Haglin, David J.; Feo, John T.; Weaver, Jesse R.; Tumeo, Antonino; Villa, Oreste

    2013-10-06

    We are developing a full software system for accelerating semantic graph databases on commodity cluster that scales to hundreds of nodes while maintaining constant query throughput. Our framework comprises a SPARQL to C++ compiler, a library of parallel graph methods and a custom multithreaded runtime layer, which provides a Partitioned Global Address Space (PGAS) programming model with fork/join parallelism and automatic load balancing over a commodity clusters. We present preliminary results for the compiler and for the runtime.

  3. Beam test of the SDC barrel EM calorimeter test module

    SciTech Connect (OSTI)

    Balka, L.; Guarino, V.; Hill, N.

    1994-05-01

    The SDC barrel electromagnetic calorimeter test module was exposed to beams of high energy pions and electrons in the MP9 test beam at Fermilab in the fall of 1991. Data were collected on resolution, light yield, signal timing and hermiticity. These data demonstrated that the design met the specifications for the barrel electromagnetic calorimeter of the Solenoidal Detector collaboration (SDC).

  4. EA-379 FreePoint Commodities | Department of Energy

    Office of Environmental Management (EM)

    9 FreePoint Commodities EA-379 FreePoint Commodities Order authorizing FreePoint Commodities to export electric energy to Mexico. File EA-379 Freepoint MX_Revised.docx More Documents & Publications EA-380 Freeport Commodities EA-314-A BP Energy Co EA-176 Sempra Energy Trading Corporation

  5. Small arms mini-fire control system: fiber-optic barrel deflection sensor

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Small arms mini-fire control system: fiber-optic barrel deflection sensor Citation Details In-Document Search Title: Small arms mini-fire control system: fiber-optic barrel deflection sensor Traditionally the methods to increase firearms accuracy, particularly at distance, have concentrated on barrel isolation (free floating) and substantial barrel wall thickening to gain rigidity. This barrel stiffening technique did not completely eliminate barrel

  6. Net Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, Barge, and Rail Between PAD Districts, January 2014

    Gasoline and Diesel Fuel Update (EIA)

    January 2014 (Thousand Barrels) Commodity PAD District 1 PAD District 2 PAD District 3 Receipts Shipments Net Receipts Receipts Shipments Net Receipts Receipts Shipments Net Receipts Crude Oil 1 ................................................................ 11,209 1,213 9,996 35,554 35,363 190 23,680 28,598 -4,918 Petroleum Products 2 .............................................. 106,990 8,669 107,347 29,831 18,055 -6,599 16,594 124,991 -103,885 Pentanes Plus

  7. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    SciTech Connect (OSTI)

    McFarlane, Joanna; Robinson, Sharon M

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  8. Biomass 2011: Replace the Whole Barrel, Supply the Whole Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: Replace the Whole Barrel, Supply the Whole Market Biomass 2011: Replace the Whole Barrel, Supply the Whole Market The New Horizons of Bioenergy Biomass 2011 July 26-27, 2011 Gaylord National Resort and Convention Center 201 Waterfront Street National Harbor, MD 20745 Thank you to everyone who attended and participated to help make Biomass 2011 a remarkable success. More than 600 speakers, moderators, sponsors, exhibitors, and attendees were able to listen to

  9. Weekly Blender Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Blender Net Production (Thousand Barrels per Day) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & ...

  10. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    from Libya of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Nigeria of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Qatar of...

  11. West Virginia Natural Gas Plant Liquids, Reserves Based Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) West Virginia Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  12. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Republic of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Egypt of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from El Salvador...

  13. Microsoft Word - Information_Commodity5

    Gasoline and Diesel Fuel Update (EIA)

    Futures Prices  Conghui Hu † and Wei Xiong ‡ May 2013 Abstract This paper analyzes information flow between commodity futures prices traded in the United States and stock prices of East Asian economies including China, Japan, Hong Kong, South Korea, and Taiwan. We find significantly positive stock price reactions across all these stock markets and across a broad range of industries to the lagged overnight futures returns of copper and soybeans, albeit not crude oil, after mid-2000s. Our

  14. Security Commodity Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Commodity Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  15. EA-295-B Merrill Lynch Commodities, Inc. | Department of Energy

    Energy Savers [EERE]

    EA-295-B Merrill Lynch Commodities, Inc. EA-295-B Merrill Lynch Commodities, Inc. Order authorizing the Applicant to export electric energy to Canada. PDF icon EA-295-B Merrill...

  16. Sustainable Land Management Through Market-Oriented Commodity...

    Open Energy Info (EERE)

    Commodity Development: Case studies from Ethiopia AgencyCompany Organization: International Livestock Research Institute Sector: Land Focus Area: Agriculture Topics:...

  17. Total Crude Oil and Petroleum Products Imports by Processing Area

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History

  18. Fuel Ethanol Oxygenate Production

    Gasoline and Diesel Fuel Update (EIA)

    Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 30,256 29,621 28,543 30,139 29,594 31,075 1981-2015 East Coast (PADD 1) 876 854 692 664 664

  19. Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 252 2010's 254 245 276 235 241 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as

  20. Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 20 18 18 19 15 12 11 11 12 12 1990's 11 10 9 11 9 8 7 6 8 10 2000's 8 10 8 7 6 7 8 9 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural

  1. Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 343 2010's 369 384 388 413 445 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  2. Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 6 83 2000's 36 43 65 79 104 88 91 90 50 42 2010's 74 59 95 104 155 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing

  3. Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 16 11 18 19 18 21 16 16 11 16 1990's 15 14 12 8 8 8 7 5 5 8 2000's 4 5 6 8 6 9 10 11 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids

  4. Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 10 2010's 14 21 20 18 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec.

  5. New Mexico Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) New Mexico Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 530 1980's 541 560 531 551 511 445 577 771 1,023 933 1990's 990 908 1,066 996 1,011 943 1,059 869 929 954 2000's 896 873 838 875 864 840 861 844 804 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  6. North Dakota Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) North Dakota Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 47 1980's 61 68 71 69 73 74 69 67 52 59 1990's 60 56 64 55 55 53 48 47 48 53 2000's 54 57 47 45 43 49 55 58 55 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  7. Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 583 1980's 604 631 745 829 769 826 857 781 765 654 1990's 657 628 629 643 652 674 684 685 698 749 2000's 734 694 695 686 790 839 892 949 1,034 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  8. Pennsylvania Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Pennsylvania Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Pennsylvania Natural Gas Liquids Proved Reserves Natural

  9. Colorado Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Colorado Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 177 1980's 194 204 186 183 155 173 148 166 181 209 1990's 169 197 226 214 248 273 287 264 260 303 2000's 316 345 396 395 465 484 478 559 716 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  10. Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 2010's 19 22 24 38 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 Florida

  11. Florida Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Florida Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 6 12 2000's 9 7 7 6 6 2 1 12 0 2 2010's 2 4 3 9 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  12. Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 21 1980's 27 17 11 17 17 14 9 16 10 1990's 8 7 8 9 18 17 22 17 18 16 2000's 11 12 14 17 12 7 3 2 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas

  13. Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 66 2010's 64 54 51 42 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  14. Illinois Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Illinois Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 11 2000's 4 15 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil Illinois Proved

  15. Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 8 2010's 8 7 13 8 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  16. Kansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Kansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 264 2010's 302 350 382 390 451 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  17. Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 11 12 2000's 13 21 23 18 11 16 17 9 11 3 2010's 2 4 6 11 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves

  18. Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 402 1980's 389 409 302 443 424 373 440 462 345 329 1990's 313 428 444 380 398 369 338 271 334 358 2000's 306 302 263 248 271 224 209 198 181 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  19. Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 24 2010's 16 22 13 22 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  20. Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 4 4 5 5 0 0 1 3 2010's 0 0 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  1. Kentucky Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Kentucky Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 16 1990's 25 24 32 26 39 43 46 48 54 69 2000's 56 72 66 66 72 70 105 89 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  2. Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 480 2010's 530 525 584 622 649 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as

  3. Louisiana Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Louisiana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 713 524 525 517 522 1990's 538 526 495 421 434 601 543 437 411 457 2000's 436 391 323 295 263 292 280 303 300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  4. Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 52 2010's 55 59 71 67 55 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  5. Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 3 1 2000's 4 6 4 14 10 17 15 2 9 6 2010's 0 0 0 4 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of

  6. Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 112 1980's 112 102 97 105 84 67 88 111 99 97 1990's 81 72 68 57 54 45 53 50 51 48 2000's 35 43 47 48 48 39 42 55 62 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  7. Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 53 2010's 60 65 69 58 79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec.

  8. Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 213 1980's 226 192 193 216 200 182 177 166 166 168 1990's 170 145 171 158 142 120 119 93 81 107 2000's 150 64 57 60 50 61 56 53 106 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  9. Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,566 2010's 3,722 3,852 3,352 2,898 2,857 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved

  10. Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 23 1980's 11 10 9 8 19 383 381 418 401 380 1990's 340 360 347 321 301 306 337 631 320 299 2000's 277 405 405 387 369 352 338 325 312 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  11. Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 29 2010's 42 40 55 41 67 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  12. Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2 5 2000's 7 4 5 2 3 2 1 0 0 0 2010's 1 0 11 10 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  13. Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 17 1980's 16 16 15 11 12 11 16 16 13 9 1990's 9 5 4 4 6 6 4 7 5 5 2000's 5 5 4 3 3 3 4 3 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids

  14. California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2,835 2010's 2,939 3,009 2,976 2,878 2,874 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved

  15. California Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) California Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 111 1980's 120 79 152 134 130 123 113 1990's 105 92 99 104 92 92 92 95 72 98 2000's 101 76 95 101 122 137 132 126 113 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  16. Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 376 2010's 501 555 760 1,171 1,451 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec.

  17. Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 26 30 2000's 49 44 56 61 62 74 102 122 123 42 2010's 180 208 283 607 765 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  18. Utah Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Utah Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 127 277 2000's 108 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Utah Natural Gas Liquids Proved Reserves

  19. Wyoming Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Wyoming Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 285 1980's 341 384 2000's 1,032 1,121 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Wyoming Natural Gas Liquids Proved

  20. Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5,496 2010's 6,356 8,108 11,101 12,004 14,058 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved

  1. New Mexico Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) New Mexico Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 780 2010's 922 960 1,069 1,277 1,558 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of

  2. New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 97 157 2000's 91 161 146 133 142 171 159 147 136 149 2010's 180 185 232 314 489 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  3. North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,058 2010's 1,887 2,658 3,773 5,683 6,045 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves,

  4. Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 50 2010's 54 55 64 87 163 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 Ohio Crude

  5. Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 17 2000's 10 6 8 8 7 7 8 8 7 5 2010's 1 1 2 7 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil

  6. Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 802 2010's 926 1,150 1,280 1,469 1,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of

  7. Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 98 80 2000's 111 109 105 92 92 101 90 118 129 138 2010's 143 244 279 292 444 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  8. Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 2010's 34 44 67 58 87 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  9. Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 855 2010's 823 919 932 955 1,137 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  10. Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 31 52 2000's 63 74 69 61 45 249 258 208 162 144 2010's 152 188 233 219 362 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  11. Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 488 2010's 518 582 700 670 606 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 Utah

  12. Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 36 58 2000's 91 100 91 76 61 52 164 174 140 235 2010's 257 258 368 312 261 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  13. THE SIMPLE ECONOMICS OF COMMODITY PRICE SPECULATION Christopher

    Gasoline and Diesel Fuel Update (EIA)

    THE SIMPLE ECONOMICS OF COMMODITY PRICE SPECULATION Christopher R. Knittel and Robert S. Pindyck Massachusetts Institute of Technology July 2013 Knittel and Pindyck (MIT) PRICE SPECULATION July 2013 1 / 32 Introduction "Commodities have become an investment class: declines in their prices may simply reflect the whims of speculators." The Economist, June 23, 2012. "Federal legislation should bar pure oil speculators entirely from commodity exchanges in the United States."

  14. DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis ...

  15. U.S. Natural Gas Total Liquids Extracted (Thousand Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Liquids Extracted (Thousand Barrels) U.S. Natural Gas Total Liquids Extracted (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 569,968 599,518 584,160 571,256 587,502 594,306 569,913 1990's 573,054 602,734 626,320 634,481 635,983 649,149 689,314 690,999 668,011 686,862 2000's 721,895 682,873 681,646 622,291 657,032 619,884 637,635 658,291 673,677 720,612 2010's 749,095 792,481 873,563 937,591 1,124,416 - = No Data Reported; -- = Not

  16. Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 91 97 98 85 101 140 139 167 2000's 199 192 184 148 155 123 125

  17. EA-278-B Direct Commodities Trading Inc - Recission | Department of Energy

    Energy Savers [EERE]

    -B Direct Commodities Trading Inc - Recission EA-278-B Direct Commodities Trading Inc - Recission Order rescinding the authorization of Direct Commodities Trading Inc to export electric energy to Canada. PDF icon OE-278-B Direct Commodities Trading Inc More Documents & Publications EA-278 Direct Commodities Trading Inc

  18. Relative Movements for Design of Commodities in Nuclear Power Plants

    Broader source: Energy.gov [DOE]

    Relative Movements for Design of Commodities in Nuclear Power Plants Javad Moslemian, Vice President, Nuclear Power Technologies, Sargent & Lundy LLC Nezar Abraham, Senior Associate II, Nuclear Power Technologies, Sargent & Lundy LLC

  19. EA-164-C Constellation Energy Commodities Group, Inc | Department of Energy

    Office of Environmental Management (EM)

    64-C Constellation Energy Commodities Group, Inc EA-164-C Constellation Energy Commodities Group, Inc Order authorizing Constellation Energy Commodities Group, Inc to export electric energy to Canada. PDF icon EA-164-C Constellation Energy Commodities Group, Inc More Documents & Publications Application to Export Electric Energy OE Docket No. EA-164-C Constellation Energy Commodities Group, Inc EA-164-B Constellation Energy Commodities Group, Inc EA-248-C Constellation NewEnergy Inc

  20. Nebraska Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil Nebraska Proved Nonproducing Reserves

  1. Ohio Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Ohio Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec. 31

  2. Indiana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Indiana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil Indiana Proved Nonproducing Reserves

  3. Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil Virginia Proved Nonproducing Reserves

  4. U.S. Oxygenate Production

    Gasoline and Diesel Fuel Update (EIA)

    Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Fuel Ethanol 30,256 29,621 28,543 30,139 29,594 31,075 1981-2015

  5. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    3 December 2015 Table 33. Blender Net Production of Petroleum Products by PAD District, December 2015 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - ...

  6. Modeling of gun barrel surface erosion: Historic perspective

    SciTech Connect (OSTI)

    Buckingham, A.C.

    1996-08-01

    Results and interpretations of numerical simulations of some dominant processes influencing gun barrel propellant combustion and flow-induced erosion are presented. Results include modeled influences of erosion reduction techniques such as solid additives, vapor phase chemical modifications, and alteration of surface solid composition through use of thin coatings. Precedents and historical perspective are provided with predictions from traditional interior ballistics compared to computer simulations. Accelerating reactive combustion flow, multiphase and multicomponent transport, flow-to-surface thermal/momentum/phase change/gas-surface chemical exchanges, surface and micro-depth subsurface heating/stress/composition evolution and their roles in inducing surface cracking, spall, ablation, melting, and vaporization are considered. Recognition is given to cyclic effects of previous firing history on material preconditioning. Current perspective and outlook for future are based on results of a US Army-LLNL erosion research program covering 7 y in late 1970s. This is supplemented by more recent research on hypervelocity electromagnetic projectile launchers.

  7. Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays

    DOE Patents [OSTI]

    Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.

    2005-08-30

    By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.

  8. EA-356 J.P. Morgan Commodities Canada Corporation | Department of Energy

    Energy Savers [EERE]

    J.P. Morgan Commodities Canada Corporation EA-356 J.P. Morgan Commodities Canada Corporation Order authorizing J.P. Morgan Commodities Canada Corporation to export electric energy to Canada PDF icon EA-356 J.P. Morgan Commodities Canada Corporation More Documents & Publications Application to Export Electric Energy OE Docket No. EA-356 J.P. Morgan Commodities Canada Corporation EA-356-A J.P. Morgan Commodities Canada Corporation Application to Export Electric Energy OE Docket No. EA-356-A

  9. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    2 December 2015 Table 32. Blender Net Inputs of Petroleum Products by PAD District, December 2015 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest ...

  10. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    29 November 2015 Table 23. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, November 2015 (Thousand Barrels per Day) Commodity Supply...

  11. Molecular Breeding Algae For Improved Traits For The Conversion Of Waste To Fuels And Commodities.

    SciTech Connect (OSTI)

    Bagwell, C.

    2015-10-14

    This Exploratory LDRD aimed to develop molecular breeding methodology for biofuel algal strain improvement for applications in waste to energy / commodity conversion technologies. Genome shuffling technologies, specifically protoplast fusion, are readily available for the rapid production of genetic hybrids for trait improvement and have been used successfully in bacteria, yeast, plants and animals. However, genome fusion has not been developed for exploiting the remarkable untapped potential of eukaryotic microalgae for large scale integrated bio-conversion and upgrading of waste components to valued commodities, fuel and energy. The proposed molecular breeding technology is effectively sexual reproduction in algae; though compared to traditional breeding, the molecular route is rapid, high-throughput and permits selection / improvement of complex traits which cannot be accomplished by traditional genetics. Genome fusion technologies are the cutting edge of applied biotechnology. The goals of this Exploratory LDRD were to 1) establish reliable methodology for protoplast production among diverse microalgal strains, and 2) demonstrate genome fusion for hybrid strain production using a single gene encoded trait as a proof of the concept.

  12. Feedstock Supply and Logistics: Biomass as a Commodity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficient biomass supply systems supports the national "all-of-the-above" energy strategy-the pursuit of all domestic energy options to increase U.S. competitiveness in the global race for clean energy technology. Photos: AGCO, Auburn University (top); INL (bottom) Feedstock Supply and Logistics: Biomass as a Commodity Providing biomass for conversion into high-quality biofuels, biopower, and bioproducts represents an economic opportunity for communities across the nation. The

  13. Feedstock Supply and Logistics:Biomass as a Commodity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of efficient biomass supply systems supports the national "all-of-the-above" energy strategy-the pursuit of all domestic energy options and increased U.S. competitiveness in the global race for clean energy technology. Photos (clockwise from upper left): AGCO, Auburn University, INL Feedstock Supply and Logistics: Biomass as a Commodity Providing non-food biomass for conversion into biofuels represents an economic opportunity for communities across the United States. The

  14. Small arms mini-fire control system: fiber-optic barrel deflection...

    Office of Scientific and Technical Information (OSTI)

    Conference: Small arms mini-fire control system: fiber-optic barrel deflection sensor Citation Details In-Document Search Title: Small arms mini-fire control system: fiber-optic ...

  15. Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices

    SciTech Connect (OSTI)

    none,

    2008-05-01

    This report discusses the factors that have led to global food commodity price inflaction and addresses the resulting implications.

  16. Replacing a Barrel of Oil with Plants and Microbes (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: Replacing a Barrel of Oil with Plants and Microbes Citation Details In-Document Search Title: Replacing a Barrel of Oil with Plants and Microbes From Berkeley Lab's Science at the Theater event on May 13th, 2013. Authors: Simmons, Blake Publication Date: 2015-06-09 OSTI Identifier: 1191172 Resource Type: Conference Resource Relation: Conference: Berkeley's Science at the Theater Research Org: LBNL (Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United

  17. DOE - Office of Legacy Management -- Queen City Barrel Co - OH 41

    Office of Legacy Management (LM)

    Queen City Barrel Co - OH 41 FUSRAP Considered Sites Site: QUEEN CITY BARREL CO. (OH.41) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cincinnati , Ohio OH.41-1 Evaluation Year: 1987 OH.41-1 Site Operations: Cleaned and reconditioned 30- and 55-gallon drums. OH.41-2 OH.41-3 Site Disposition: Eliminated - Based upon limited scope of operations, potential for residual radioactive contamination from MED or AEC operations considered

  18. Natural Gas Plant Field Production: Natural Gas Liquids

    Gasoline and Diesel Fuel Update (EIA)

    Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 101,809 102,880 100,283 106,269 103,071 104,629 1981-2015 PADD 1

  19. EA-356-A J.P. Morgan Commodities Canada Corporation | Department of Energy

    Energy Savers [EERE]

    -A J.P. Morgan Commodities Canada Corporation EA-356-A J.P. Morgan Commodities Canada Corporation Order authorizing JPMCCC to export electric energy to Canada. PDF icon EA-356-A J.P. Morgan Commodities CN.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-356-A J.P. Morgan Commodities Canada Corporation Application to Export Electric Energy OE Docket No. EA-356-A J.P. Morgan Commodities Canada Corporation: Federal Register Notice, Volume 79, No. 59 -

  20. EA-359-A Castleton Commodities Merchant Trading L.P. | Department of Energy

    Energy Savers [EERE]

    A Castleton Commodities Merchant Trading L.P. EA-359-A Castleton Commodities Merchant Trading L.P. Order authorizing Castleton Commodities Merchant Trading to export electric energy to Canada. Name Change from Louis Dreyfus Energy Services L.P. PDF icon EA-359-A Castleton Commodities (CN) Name Change.pdf More Documents & Publications EA-359-B Castleton Commodities Merchant Trading L.P. EA-359 Louis Dreyfus Energy Services L.P. Application to Export Electric Energy OE Docket No. EA-359 Louis

  1. Comparison of leading parallel NAS file systems on commodity hardware

    SciTech Connect (OSTI)

    Hedges, R; Fitzgerald, K; Gary, M; Stearman, D M

    2010-11-08

    High performance computing has experienced tremendous gains in system performance over the past 20 years. Unfortunately other system capabilities, such as file I/O, have not grown commensurately. In this activity, we present the results of our tests of two leading file systems (GPFS and Lustre) on the same physical hardware. This hardware is the standard commodity storage solution in use at LLNL and, while much smaller in size, is intended to enable us to learn about differences between the two systems in terms of performance, ease of use and resilience. This work represents the first hardware consistent study of the two leading file systems that the authors are aware of.

  2. Commodities_Spector June 2013. - EIA (Gas).pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Natural Gas Markets: Not Quite Out of the Woods June 2013 Katherine Spector - Head of Commodities Strategy CIBC Worlds Markets katherine.spector@cibc.com K. Spector - June 2013 2 North American Natural Gas Marginally Supportive in 2013... But Not Out of the Woods K. Spector - June 2013 3 Not Out Of The Woods Yet... * The US gas balance looks more price supportive in 2013, but in the short-run (12-24 months) both gas supply and gas demand are still very price elastic. That means

  3. Efficient Execution of Recursive Programs on Commodity Vector Hardware

    SciTech Connect (OSTI)

    Ren, Bin; Jo, Youngjoon; Krishnamoorthy, Sriram; Agrawal, Kunal; Kulkarni, Milind

    2015-06-13

    The pursuit of computational efficiency has led to the proliferation of throughput-oriented hardware, from GPUs to increasingly-wide vector units on commodity processors and accelerators. This hardware is designed to efficiently execute data-parallel computations in a vectorized manner. However, many algorithms are more naturally expressed as divide-and-conquer, recursive, task-parallel computations; in the absence of data parallelism, it seems that such algorithms are not well-suited to throughput-oriented architectures. This paper presents a set of novel code transformations that expose the data-parallelism latent in recursive, task-parallel programs. These transformations facilitate straightforward vectorization of task-parallel programs on commodity hardware. We also present scheduling policies that maintain high utilization of vector resources while limiting space usage. Across several task-parallel benchmarks, we demonstrate both efficient vector resource utilization and substantial speedup on chips using Intel's SSE4.2 vector units as well as accelerators using Intel's AVX512 units.

  4. Analysis of International Commodity Shipping Data and the Shipment of NORM to the United States

    SciTech Connect (OSTI)

    Baciak, James E.; Ely, James H.; Schweppe, John E.; Sandness, Gerald A.; Robinson, Sean M.

    2011-10-01

    As part of the Spreader Bar Radiation Detector project, PNNL analyzed US import data shipped through US ports collected over the 12 months of 2006 (over 4.5 million containers). Using these data, we extracted a variety of distributions that are of interest to modelers and developers of active and passive detection systems used to 'scan' IMCCs for potential contraband. This report expands on some of the analysis presented in an earlier report from LLNL, by investigation the foreign port distribution of commodities shipped to the US. The majority of containers shipped to the United States are 40 ft containers ({approx}70%); about 25% are 20 ft; and about 3.6% are 45 ft containers. A small fraction (<1%) of containers are of other more specialized sizes, and very few ports actually ship these unique size containers (a full distribution for all foreign ports is shown in Appendix A below). The primary foreign ports that ship the largest fraction of each container are shown in the table below. Given that 45 ft containers comprise 1 of out every 27 containers shipped to the US, and given the foreign ports from which they are shipped, they should not be ignored in screening; further testing and analysis of radiation measurements for national security with this size container is warranted. While a large amount of NORM is shipped in IMCCs, only a few specific commodities are shipped with enough frequency to present potential issues in screening IMCCs at ports. The majority of containers with NORM will contain fertilizers (5,700 containers), granite (59,000 containers), or ceramic (225,000 containers) materials. Fertilizers were generally shipping in either 20- or 40 ft containers with equal frequency. While granite is mostly shipped in 20 ft containers, ceramic materials can be shipped in either 20- or 40 ft containers. The size of container depended on the specific use of the ceramic or porcelain material. General construction ceramics (such as floor and roofing tiles) tend to be shipped in 20 ft containers. Consumer products made from ceramic materials (e.g., tableware, sinks, and toilets) are generally shipped in 40 ft containers. This distinct discrepancy is due in large part to the packaging of the commodity. Consumer products are generally shipped packed in a box loaded with Styrofoam or other packing material to protect the product from breakage. Construction ceramic materials are generally shipped in less packing material, many times consisting of only a cardboard or wooden box. Granite is almost always shipped in a 20 ft container, given its very high density.

  5. Potential Oil Production from the Coastal Plain of the Arctic National

    U.S. Energy Information Administration (EIA) Indexed Site

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS: Alaskan North Slope ANWR: Arctic National Wildlife Refuge BBbls: billion barrels Bbls: barrels Daily Petroleum Production Rate: The amount of petroleum extracted per day from a well, group of wells, region, etc. (usually expressed in barrels per day) EIA: Energy Information

  6. Quantitative/Statistical Approach to Bullet-to-Firearm Identification with Consecutively Manufactured Barrels

    SciTech Connect (OSTI)

    Peter Striupaitis; R.E. Gaensslen

    2005-01-30

    Efforts to use objective image comparison and bullet scanning technologies to distinguish bullets from consecutively manufactured handgun barrels from two manufacturers gave mixed results. The ability of a technology to reliably distinguish between matching and non-matching bullets, where the non-matching bullets were as close in pattern to the matching ones as is probably possible, would provide evidence that the distinctions could be made ''objectively'', and independently of human eyes. That evidence is identical or very close to what seems to be needed to satisfy Daubert standards. It is fair to say that the FTI IBIS image comparison technology correctly distinguished between all the Springfield barrel bullets, and between most but not all of the HiPoint barrel bullets. In the HiPoint cases that were not distinguished 100% of the time, they would he distinguished correctly at least 83% of the time. These results, although obviously limited to the materials used in the comparisons, provide strong evidence that barrel-to-bullet matching is objectively reliable. The results with SciClops were less compelling. The results do not mean that bullet-to-barrel matching is not objectively reliable--rather, they mean that this version of the particular technology could not quite distinguish between these extremely similar yet different bullets as well as the image comparison technology did. In a number of cases, the numerical results made the correct distinctions, although they were close to one another. It is hard to say from this data that this technology differs in its ability to make distinctions between the manufacturers, because the results are very similar with both. The human examiner results were as expected. We did not expect any misidentifications, and there were not any. It would have been preferable to have a higher return rate, and thus more comparisons in the overall sample. As noted, the ''consecutively manufactured barrel exercise'' has been done before, with the same outcome.

  7. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,835 2,072 2,127 2,518 2,567 2,949 2,793 2,744 2000's 3,174 4,288 4,444 4,554 4,144 4,042 3,655 3,464

  8. U.S. Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Acquisitions (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,051 550 512 433 554 596 1,048 771 332 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Reserves Acquisitions

  9. U.S. Natural Gas Plant Liquids, Reserves Adjustments (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Adjustments (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 64 1980's 153 231 299 849 -123 426 367 231 11 -277 1990's -83 233 225 102 43 192 474 -15 -361 99 2000's -83 -429 62 -338 273 -89 173 -139 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  10. U.S. Natural Gas Plant Liquids, Reserves Extensions (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Extensions (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 364 1980's 418 542 375 321 348 337 263 213 268 259 1990's 299 189 190 245 314 432 451 535 383 313 2000's 645 717 612 629 734 863 924 1,030 956 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  11. ,"Montana Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  12. ,"Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. ,"Nebraska Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  14. ,"New Mexico Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  16. ,"New Mexico Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  17. ,"New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  18. ,"New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  19. ,"New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  20. ,"North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  1. ,"North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  2. ,"Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  3. ,"Ohio Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",1985 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  4. ,"Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  5. ,"Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  6. ,"Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  7. ,"Pennsylvania Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",1985 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  8. ,"Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  9. ,"U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  10. ,"U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  11. ,"U.S. Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  12. ,"U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  13. ,"Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  15. ,"Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  17. U.S. Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) U.S. Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 344 2010's 1,470 1,561 1,234 1,925 2,828 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Acquisitions

  18. U.S. Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) U.S. Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 46 2010's 188 207 137 -595 440 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  19. U.S. Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) U.S. Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,305 2010's 1,766 3,107 5,191 4,973 5,021 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  20. U.S. Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) U.S. Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 249 2010's 803 1,024 819 1,536 2,475 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  1. ,"Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  2. ,"Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  3. ,"Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  4. ,"Arkansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  5. ,"Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  6. ,"California - Coastal Region Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  8. ,"California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"Colorado Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  13. ,"Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  14. ,"Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"Florida Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  16. ,"Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  18. ,"Kansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"Kansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  20. ,"Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  2. ,"Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  3. ,"Louisiana--North Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--North Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  6. ,"Lower 48 States Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 States Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"Michigan Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  9. ,"Miscellaneous States Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  10. ,"Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  11. ,"Miscellaneous States Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  13. ,"Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. Video: SuperTruck Barreling Down the Road of Sustainability | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SuperTruck Barreling Down the Road of Sustainability Video: SuperTruck Barreling Down the Road of Sustainability May 14, 2015 - 4:30pm Addthis New Energy 101 video shows how the Energy Department's SuperTruck initiative is making Class 8 trucks more fuel efficient and less expensive to operate. | Office of Energy Efficiency and Renewable Energy video. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS SuperTruck initiative helping make Class 8

  15. Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200

    Gasoline and Diesel Fuel Update (EIA)

    Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46 46 53 77 90 123 171 228 2000's 234 286 288 336 310 305 318 313

  16. Gulf of Mexico Federal Offshore Crude Oil Production from Less than 200

    Gasoline and Diesel Fuel Update (EIA)

    Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 221 220 212 215 213 219 201 193 2000's 185 173 163 149 157 104 87 101

  17. Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4 6 6 12 13 17 26 51 2000's 84 96 66 55 51 44 50

  18. Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 87 91 92 73 88 123 113 116 2000's 115 96 118 93 104 79 75

  19. Inspection report: the Department of Energy's export licensing process for dual-use and munitions commodities

    SciTech Connect (OSTI)

    Friedman, Gregory H.

    1999-05-01

    Export of commodities, encouraged by both the private sector and the Federal Government, helps to improve our position in the global economy and is in the national interest of the US. However, exports of commodities or technologies, without regard to whether they may significantly contribute to the military potential of individual countries or combination of countries or enhance the proliferation of weapons of mass destruction, may adversely affect the national security of the US. The Federal Government, therefore, implements several laws, Executive Orders, and regulations to control the export of certain commodities and technologies. These commodities and technologies require a license for export. Some of the controlled items are designated as ''dual-use,'' that is, commodities and technologies that have both civilian and military application. Some dual-use commodities are designated as ''nuclear dual-use''--items controlled for nuclear nonproliferation purposes. Another group of controlled commodities is designated as munitions, which are goods and technologies that have solely military uses. The Department of Energy (Energy) conducts reviews of export license applications for nuclear dual-use items and certain munitions. On August 26, 1998, the Chairman of the Senate Committee on Governmental Affairs requested that the Inspectors General from the Departments of Commerce, Defense, Energy, State, and Treasury, and the Central Intelligence Agency (CIA), update and expand on a 1993 interagency review conducted by the Inspectors General of the Departments of Commerce, Defense, Energy, and State of the export licensing processes for dual-use and munitions commodities.

  20. Extrusion of electrode material by liquid injection into extruder barrel

    DOE Patents [OSTI]

    Keller, David Gerard (Baltimore, MD); Giovannoni, Richard Thomas (Reisterstown, MD); MacFadden, Kenneth Orville (Highland, MD)

    1998-01-01

    An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells.

  1. Extrusion of electrode material by liquid injection into extruder barrel

    DOE Patents [OSTI]

    Keller, D.G.; Giovannoni, R.T.; MacFadden, K.O.

    1998-03-10

    An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells. 1 fig.

  2. Utah Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 2010's 3 3 4 3 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Estimated Production Utah

  3. Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 51 58 64 2010's 63 66 71 53 55 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Production

  4. East Coast (PADD 1) Imports of Crude Oil and Petroleum Products for

    Gasoline and Diesel Fuel Update (EIA)

    Processing Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Total 54,019 56,394 49,770 49,022 45,969 51,354

  5. U.S. Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) U.S. Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,615 1980's 6,728 7,068 7,221 7,901 7,643 7,944 8,165 8,147 8,238 7,769 1990's 7,586 7,464 7,451 7,222 7,170 7,399 7,823 7,973 7,524 7,906 2000's 8,345 7,993 7,994 7,459 7,928 8,165 8,472 9,143 9,275 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,474 3,755 4,147 4,206 2000's 4,019 5,195 5,271 5,580 5,143 5,691 5,174 5,455 5,400 6,015 2010's 6,980 9,049 11,884 13,200 14,816 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  7. STEO December 2012 - oil production

    Gasoline and Diesel Fuel Update (EIA)

    Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen topping 7 million bpd U.S. crude oil production is now expected to rise by about 760,000 barrels per day in 2012, the biggest annual increase in oil output since U.S. commercial crude oil production began in 1859. American oil producers are expected to pump a daily average of 6.4 million barrels of crude oil this year, according to the U.S. Energy Information Administrator's new monthly energy forecast. The annual increase

  8. Fact #602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flow Survey | Department of Energy 2: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey Fact #602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey Results from the 2007 Commodity Flow Survey (CFS) show that about 70% of all freight movement in the U.S. is by truck, in terms of the shipment value and tonnage. Rail moves about 15% of freight tons, but moves those tons over great distances, accounting for 37% of ton-miles. Parcel delivery, US

  9. U.S. monthly oil production tops 8 million barrels per day for...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    to rise in non-industrialized countries, led by strong growth in China Nonindustrialized ... to see a decline in their petroleum consumption, led by demand drops in Japan and Europe. ...

  10. U.S. monthly oil production tops 8 million barrels per day for...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    That's the lowest level for inventories at the close of the heating season since 2003. Very cold weather this winter led to large natural gas stock withdrawals to meet demand for ...

  11. U.S. monthly oil production tops 8 million barrels per day for...

    U.S. Energy Information Administration (EIA) Indexed Site

    of U.S. households heat with natural gas, while almost 40 percent of households depend on electricity as their primary heating source. Heating oil and propane each heat about 5% of...

  12. U.S. monthly oil production tops 8 million barrels per day for...

    U.S. Energy Information Administration (EIA) Indexed Site

    summer gasoline price higher due to rising crude oil costs The price U.S. drivers pay for gasoline this summer is expected to average 3.61 per gallon....that's 3 cents more than...

  13. U.S. monthly oil production tops 8 million barrels per day for...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    The U.S. Energy Information Administration expects strong natural gas storage additions over the summer and fall...with storage levels just over 3.4 trillion cubic feet by the end ...

  14. Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - Secretary Samuel W. Bodman announced that the Department of Energy has approved bids for the sale of 11 million barrels of crude oil from the Strategic Petroleum Reserve (SPR)....

  15. EA-359-B Castleton Commodities Merchant Trading L.P. | Department...

    Energy Savers [EERE]

    (CN).pdf More Documents & Publications EA-359-A Castleton Commodities Merchant Trading L.P. EA-365-A Centre Lane Trading Limited EA-339-A Shell Energy North America (US),...

  16. Miscellaneous States Natural Gas Plant Liquids, Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 21 2 1 2 2 3 3 1990's 2 3 6 6 7 7 7 9 8 8 2000's 7 6 8 8 8 9 11 14 14 0 2010's 9 10 12 32 350 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  17. Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 8 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 1 1 1 1 0 2010's 0 0 0 1 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  18. Montana Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 16 11 18 19 18 21 16 16 11 16 1990's 15 14 12 8 8 8 7 5 5 8 2000's 3 5 6 7 6 9 10 11 11 12 2010's 11 10 10 11 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  19. New Mexico Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) New Mexico Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1980's 5 5 4 4 6 4 3 4 4 4 1990's 5 3 4 4 4 3 4 5 5 7 2000's 7 7 7 6 6 7 10 10 7 7 2010's 7 8 10 11 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  20. New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 43 1980's 44 45 42 40 41 38 34 44 43 43 1990's 46 47 53 58 60 59 75 75 74 74 2000's 77 77 75 76 73 70 68 66 64 65 2010's 63 62 58 60 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  1. North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 4 4 5 6 6 5 6 5 5 1990's 5 5 5 5 4 4 4 4 4 4 2000's 5 5 5 4 5 5 6 6 6 8 2010's 9 11 19 26 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  2. Oklahoma Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Oklahoma Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 8 9 10 10 11 11 12 11 11 11 1990's 9 9 8 8 8 8 8 8 10 9 2000's 8 9 11 11 11 13 14 15 17 17 2010's 19 21 24 30 35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  3. Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 62 65 67 70 75 77 76 76 79 73 1990's 75 76 77 77 76 70 74 71 69 70 2000's 69 66 61 59 64 65 67 69 74 77 2010's 82 88 96 99 117 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  4. Colorado Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Colorado Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 2 1 1 1 1990's 1 1 1 2 3 2 2 2 2 3 2000's 3 3 4 5 6 5 6 6 7 7 2010's 7 8 8 16 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  5. Colorado Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 170 1980's 183 195 174 173 142 155 127 142 162 191 1990's 152 181 193 190 210 243 254 244 235 277 2000's 288 298 329 325 362 386 382 452 612 722 2010's 879 925 705 762 813 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  6. Colorado Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 10 11 10 9 8 9 8 8 9 10 1990's 10 12 13 14 15 18 17 21 18 19 2000's 21 22 23 24 26 26 26 27 38 48 2010's 58 63 57 52 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  7. Florida Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Florida Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 21 1980's 27 17 11 17 17 14 9 16 10 1990's 8 7 8 9 18 17 22 17 18 16 2000's 11 12 14 17 12 7 3 2 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  8. Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 1 0 0 2000's 0 0 0 1 0 1 1 1 1 1 2010's 2 1 1 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  9. Kansas Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Kansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 400 1980's 387 407 300 441 422 370 437 459 342 327 1990's 311 426 442 378 396 367 336 263 331 355 2000's 303 300 261 245 267 218 204 194 175 162 2010's 195 192 174 138 186 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  10. Kansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 29 1980's 26 24 14 17 20 20 19 19 18 18 1990's 17 26 27 27 29 29 31 24 28 30 2000's 28 26 25 22 22 19 18 18 18 16 2010's 16 16 15 11 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  11. Kentucky Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 15 1990's 24 24 32 25 39 42 45 47 53 69 2000's 56 72 65 65 71 69 104 88 96 101 2010's 124 88 81 95 108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  12. Louisiana--North Natural Gas Plant Liquids, Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  13. Louisiana--North Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 1980's 6 8 7 6 6 6 5 5 6 5 1990's 6 6 6 5 6 7 8 7 5 4 2000's 4 3 3 4 4 4 5 6 6 6 2010's 5 5 5 6 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  14. Lower 48 States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 579 1980's 572 580 564 568 597 580 566 569 572 549 1990's 556 577 599 608 608 616 655 655 631 649 2000's 688 655 657 593 627 597 615 637 654 701 2010's 734 773 854 920 1,107 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Michigan Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Michigan Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 2 1 1 1 1 1 1 1 1 2 1990's 1 2 2 1 1 1 1 1 1 0 2000's 0 0 1 0 1 0 1 0 0 1 2010's 1 1 1 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  16. Michigan Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Michigan Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 102 1980's 102 93 91 99 77 62 77 90 82 79 1990's 66 54 52 44 43 38 48 45 43 42 2000's 32 41 42 44 44 36 36 50 58 43 2010's 48 38 26 27 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  17. Michigan Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 1980's 12 12 11 10 10 8 9 8 8 8 1990's 6 6 6 5 5 5 5 4 4 4 2000's 4 4 3 3 3 3 2 3 3 2 2010's 3 2 2 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  18. Arkansas Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Arkansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 1 1 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  19. Arkansas Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 15 15 12 9 10 9 15 15 11 8 1990's 7 3 2 2 3 3 2 3 3 3 2000's 3 3 3 2 2 2 2 2 1 2 2010's 2 3 3 4 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  20. Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 14 16 15 18 24 27 27 28 38 35 1990's 35 34 32 32 34 37 44 49 40 45 2000's 55 54 55 52 52 50 49 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  1. Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13 2010's 13 13 13 13 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Estimated

  2. New Mexico Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 465 1980's 478 496 475 495 462 395 514 708 926 863 1990's 915 840 994 925 946 881 998 814 876 896 2000's 804 794 779 824 805 781 804 788 726 715 2010's 764 776 662 679 789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. North Dakota Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 33 1980's 42 52 53 54 57 59 53 53 40 48 1990's 50 47 54 46 46 44 40 40 41 46 2000's 47 50 41 40 39 45 51 54 51 104 2010's 157 193 297 466 540 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  4. Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 511 1980's 537 565 667 740 683 731 768 702 686 586 1990's 592 567 566 575 592 605 615 610 613 667 2000's 639 605 601 582 666 697 732 797 870 985 2010's 1,270 1,445 1,452 1,408 1,752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  5. Wyoming Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 822 887 1,010 2010's 1,001 1,122 1,064 894 881 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids

  6. Utah Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 54 116 2010's 132 196 181 169 206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Proved

  7. Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. West Virginia Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Liquids, Expected Future Production (Million Barrels) West Virginia Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 74 1980's 97 84 78 90 79 86 87 86 92 99 1990's 85 102 96 107 93 61 60 70 71 72 2000's 104 105 98 67 84 84 109 114 97 108 2010's 122 140 199 320 1,229 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  9. Figure 5. Production Schedules at Two Development Rates for the 5 Percent

    U.S. Energy Information Administration (EIA) Indexed Site

    Probability of Recovering 16.0 Billion Barrels 5. Production Schedules at Two Development Rates for the 5 Percent Probability of Recovering 16.0 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska fig5.jpg (3770

  10. igure 4. Production Schedules at Two Development Rates for the Statistical

    U.S. Energy Information Administration (EIA) Indexed Site

    Mean of Recovering 10.3 Billion Barrels 4. Production Schedules at Two Development Rates for the Statistical Mean of Recovering 10.3 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska fig4.jpg (4109

  11. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  12. igure 4. Production Schedules at Two Development Rates for the...

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Production Schedules at Two Development Rates for the Statistical Mean of Recovering 10.3 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska...

  13. Figure 5. Production Schedules at Two Development Rates for the...

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Production Schedules at Two Development Rates for the 5 Percent Probability of Recovering 16.0 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of...

  14. Figure 3. Production Schedules at Two Development Rates

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Production Schedules at Two Development Rates for the 95 Percent Probability of Recovering 5.7 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of...

  15. Figure 3. Production Schedules at Two Development Rates

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Production Schedules at Two Development Rates for the 95 Percent Probability of Recovering 5.7 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska fig3.jpg (32189 bytes)

  16. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,201...

  17. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012...

  18. U.S. Total Weekly Refiner & Blender Net Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Blender Net Production (Thousand Barrels per Day) Area: U.S. PADD 1 New England Central Atlantic Lower Atlantic PADD 2 PADD 3 PADD 4 PADD 5 PADD's 4 & 5 Period: Weekly 4-Week...

  19. STEO September 2012 - oil production

    Gasoline and Diesel Fuel Update (EIA)

    oil production forecast to rise almost 700,000 bpd this year, help cut U.S. petroleum imports U.S. crude oil production is expected to average 6.3 million barrels per day in 2012. That's up nearly 700,000 barrels per day from last year and the highest annual oil output since 1997 says the U.S. Energy Information Administration in its new monthly short-term energy outlook for September. EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted

  20. Feedstock Supply and Logistics:Biomass as a Commodity

    Broader source: Energy.gov [DOE]

    The growing U.S. bioindustry is poised to convert domestic biomass resources into the full range of fuels and products needed to reduce U.S. oil imports and boost economic growth.

  1. Feedstock Supply and Logistics: Biomass as a Commodity

    Broader source: Energy.gov [DOE]

    The growing U.S. bioindustry is poised to convert domestic biomass resources into the full range of fuels and products needed to reduce U.S. oil imports and boost economic growth.

  2. Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

    SciTech Connect (OSTI)

    Chatrchyan, S.; et al.,

    2010-03-01

    The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.

  3. Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacing the Whole Barrel To Reduce U.S. Dependence on Oil July 2013 Biofuels are improving America's energy security and helping to lower prices at the pump. Photo: iStock/ 3295439. Cover photos from iStock/ 13311982, 8047298, 6019274, 16059398, 6439341 If we are going to control our energy future, then we've got to have an all-of-the-above strategy. We've got to develop every source of American energy-not just oil and gas, but wind power and solar power, nuclear power, biofuels. President

  4. Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein

    SciTech Connect (OSTI)

    Wu, Ying; Kondrashkina, Elena; Kayatekin, Can; Matthews, C. Robert; Bilsel, Osman (NWU); (UMASS, Amherst)

    2008-09-29

    The earliest kinetic folding events for ({beta}{alpha}){sub 8} barrels reflect the appearance of off-pathway intermediates. Continuous-flow microchannel mixing methods interfaced to small-angle x-ray scattering (SAXS), circular dichroism (CD), time-resolved Foerster resonant energy transfer (trFRET), and time-resolved fluorescence anisotropy (trFLAN) have been used to directly monitor global and specific dimensional properties of the partially folded state in the microsecond time range for a representative ({beta}{alpha}){sub 8} barrel protein. Within 150 {micro}s, the {alpha}-subunit of Trp synthase ({alpha}TS) experiences a global collapse and the partial formation of secondary structure. The time resolution of the folding reaction was enhanced with trFRET and trFLAN to show that, within 30 {micro}s, a distinct and autonomous partially collapsed structure has already formed in the N-terminal and central regions but not in the C-terminal region. A distance distribution analysis of the trFRET data confirmed the presence of a heterogeneous ensemble that persists for several hundreds of microseconds. Ready access to locally folded, stable substructures may be a hallmark of repeat-module proteins and the source of early kinetic traps in these very common motifs. Their folding free-energy landscapes should be elaborated to capture this source of frustration.

  5. Speakers: Stephen Harvey, EIA Dan M. Berkovitz, U.S. Commodity Futures Trading Commission

    Gasoline and Diesel Fuel Update (EIA)

    6: "Regulating Energy Commodities" Speakers: Stephen Harvey, EIA Dan M. Berkovitz, U.S. Commodity Futures Trading Commission Sean Cota, Cota & Cota R. Skip Horvath, Natural Gas Supply Association Deanna L. Newcomb, McDermott Will & Emery LLP [Note: Recorders did not pick up introduction of panel (see biographies for details on the panelists) or introduction of session.] Steve Harvey: Why don't we start kind taking our seats and give it just a...well, no looks like we're pretty

  6. ,"New Mexico--East Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico--East Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"New Mexico--West Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico--West Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"Texas (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"Calif--Coastal Region Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--Coastal Region Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"Calif--Los Angeles Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--Los Angeles Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  14. ,"Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  15. ,"Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  16. ,"California (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  17. ,"California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  18. ,"California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  19. ,"Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  1. ,"Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  5. Commodity chemicals from natural gas by methane chlorination

    SciTech Connect (OSTI)

    Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

    1987-01-01

    Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

  6. Detailed Surface Analysis Of Incremental Centrifugal Barrel Polishing (CBP) Of Single-Crystal Niobium Samples

    SciTech Connect (OSTI)

    Palczewski, Ari D.; Hui Tian; Trofimova, Olga; Reece, Charles E.

    2011-07-01

    We performed Centrifugal Barrel Polishing (CBP) on single crystal niobium samples/coupons housed in a stainless steel sample holder following the polishing recipe developed at Fermi Lab (FNAL) in 2011 \\cite{C. A. Cooper 2011}. Post CBP, the sample coupons were analyzed for surface roughness, crystal composition and structure, and particle contamination. Following the initial analysis each coupon was high pressure rinsed (HRP) and analyzed for the effectiveness of contamination removal. We were able to obtain the mirror like surface finish after the final stage of tumbling, although some defects and embedded particles remained. In addition, standard HPR appears to have little effect on removing embedded particles which remain after each tumbling step, although final polishing media removal was partially affected by standard/extended HPR.

  7. Table 5.18 Crude Oil Domestic First Purchase Prices, 1949-2011 (Dollars per Barrel)

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Crude Oil Domestic First Purchase Prices, 1949-2011 (Dollars per Barrel) Year Alaska North Slope California Texas U.S. Average Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 1949 – – – – NA NA NA NA 2.54 17.52 [R] 1950 – – – – NA NA NA NA 2.51 17.13 [R] 1951 – – – – NA NA NA NA 2.53 16.10 [R] 1952 – – – – NA NA NA NA 2.53 15.83 [R] 1953 – – – – NA NA NA NA 2.68 16.57 [R] 1954 – – – – NA NA NA NA 2.78 17.03 [R] 1955 – – – – NA NA NA NA 2.77 16.69

  8. Table 5.6 Petroleum Exports by Country of Destination, 1960-2011 (Thousand Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Exports by Country of Destination, 1960-2011 (Thousand Barrels) Year Belgium 1 Brazil Canada France Italy Japan Mexico Nether- lands South Korea Spain United Kingdom U.S. Virgin Islands and Puerto Rico Other Total 1960 1,128 1,547 12,622 1,591 2,184 22,681 6,428 2,057 NA NA 4,273 487 18,908 73,906 1961 1,418 1,337 8,401 1,442 1,706 21,473 4,548 1,496 NA NA 3,705 400 17,637 63,563 1962 1,182 1,649 7,714 969 1,994 19,687 4,981 1,671 NA NA 3,044 344 18,155 61,390 1963 3,191 1,335 7,987

  9. OPTIMIZING CENTRIFUGAL BARREL POLISHING FOR MIRROR FINISH SRF CAVITY AND RF TESTS AT JEFFERSON LAB

    SciTech Connect (OSTI)

    Ari Palczewski, Rongli Geng, Hui Tian

    2012-07-01

    We performed Centrifugal Barrel Polishing (CBP) on a 1.3 GHz fine grain TESLA single cell cavity and 1.5 GHz fine grain CEBAF high gradient superconducting radio frequency (SRF) single cell cavity following a modified recipe originally developed at Fermi National Accelerator Lab (FNAL). We were able to obtain a mirror like surface similar to that obtained at FNAL, while reducing the number of CBP steps and total processing time. This paper will discuss the change in surface and subsequent cavity performance post CBP, after a 800 C bake (no pre-bake chemistry) and minimal controlled electro-polishing (10 micron). In addition to Q vs. E{sub ACC} thermometry mapping with preheating characteristics and optical inspection of the cavity after CBP will also be shown.

  10. New Mexico--East Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 28 1980's 28 29 28 28 28 27 24 23 24 23 1990's 24 25 28 32 34 34 44 40 39 37 2000's 38 38 38 38 35 33 32 32 30 32 2010's 32 30 29 32 35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  11. New Mexico--West Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 15 1980's 16 16 14 12 13 11 10 21 19 20 1990's 22 22 25 26 26 25 31 35 35 37 2000's 39 39 37 38 38 37 36 34 34 33 2010's 31 32 29 28 26 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  12. Texas--State Offshore Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 1 1 1 1 1 1 0 1 1990's 1 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  13. U.S. Natural Gas Plant Liquids Reserves, Estimated Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Liquids Reserves, Estimated Production (Million Barrels) U.S. Natural Gas Plant Liquids Reserves, Estimated Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 727 1980's 731 741 721 725 776 753 738 747 754 731 1990's 732 754 773 788 791 791 850 864 833 896 2000's 921 884 802 827 788 811 831 840 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  14. U.S. Natural Gas Liquids Lease Condensate, Reserves Based Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Based Production (Million Barrels) U.S. Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 147 1980's 159 161 157 157 179 168 169 162 162 165 1990's 158 153 147 153 157 145 162 174 178 199 2000's 208 215 207 191 182 174 182 181 173 178 2010's 224 231 274 311 326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. Texas--RRC District 1 Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 1 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 18 20 24 35 33 33 30 22 23 15 1990's 20 23 24 23 23 23 44 46 32 161 2000's 49 35 34 24 31 31 32 43 44 87 2010's 163 158 197 233 343 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  16. Texas--RRC District 5 Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 5 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 1980's 32 42 44 61 61 62 73 76 72 65 1990's 61 53 55 50 50 47 48 31 31 24 2000's 24 43 39 40 44 40 42 50 126 192 2010's 225 237 214 183 193 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  17. Texas--RRC District 6 Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 6 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 228 1980's 268 259 232 280 253 247 224 213 210 212 1990's 195 195 205 202 218 223 242 221 235 182 2000's 182 215 213 195 233 264 279 324 318 330 2010's 369 360 269 376 387 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  18. Texas--RRC District 8 Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 8 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 452 1980's 452 498 554 650 662 646 697 623 530 542 1990's 545 466 426 430 398 432 417 447 479 479 2000's 479 504 488 484 487 559 547 525 524 536 2010's 618 689 802 830 1,240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. Texas--RRC District 9 Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 9 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 75 1980's 81 81 111 115 113 106 112 107 102 90 1990's 100 96 89 88 94 90 116 96 91 156 2000's 156 182 229 228 228 276 372 347 348 419 2010's 488 552 542 578 662 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  20. Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 5 4 3 5 5 5 2 3 1990's 2 1 1 1 0 0 0 1 1 1 2000's 1 1 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  1. New Mexico--East Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 192 1980's 192 197 193 216 206 192 200 176 193 179 1990's 200 187 204 215 222 236 287 253 243 230 2000's 302 259 266 251 245 237 264 274 261 289 2010's 342 350 310 329 443 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  2. New Mexico--West Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 273 1980's 286 299 282 279 256 203 314 532 733 684 1990's 715 653 790 710 724 645 711 561 633 666 2000's 502 535 513 573 560 544 540 514 465 426 2010's 422 426 352 350 346 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. EIS-0012: Petroleum Production at Maximum Efficient Rate, Naval Petroleum Reserve #1, Elk Hills, Kern County, California (also see EA-0261, EA-0334, and EIS-0158-S)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to evaluate the environmental impacts of increasing petroleum production, and of additional or expanded operational facilities, at Elk Hills from 160,000 barrels per day up to 240,000 barrels per day.

  4. U.S. crude oil production in July was the highest in more than...

    U.S. Energy Information Administration (EIA) Indexed Site

    day....about 800,000 barrels per day higher than this year. Drilling for oil in tight rock formations is expected to account for most of the growth in U.S. oil production over ...

  5. U.S. oil production expected to decline over next year, rebounding...

    U.S. Energy Information Administration (EIA) Indexed Site

    decline over next year, rebounding in late 2016 U.S. monthly crude oil production is ... of this year is expected to decline through August 2016 to 8.6 million barrels per day. ...

  6. Higher U.S. oil production in 2013 and 2014 means lower oil imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Higher crude oil production means America will need less imported oil. U.S. net imports of crude oil and liquid fuels are forecast to drop to 6.0 million barrels per day in 2014, ...

  7. Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from the open burning of household waste in barrels

    SciTech Connect (OSTI)

    Lemieux, P.M.; Lutes, C.C.; Abbott, J.A.; Aldous, K.M.

    2000-02-01

    Backyard burning of household waste in barrels is a common waste disposal practice for which pollutant emissions have not been well characterized. This study measured the emissions of several pollutants, including polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), from burning mixtures designed to simulate waste generated by a recycling and a nonrecycling family in a 208-L (55-gal) burn barrel at the EPA's Open Burning Test Facility. This paper focuses on the PCDD/PCDF emissions and discusses the factors influencing PCDD/PCDF formation for different test burns. Four test burns were made in which the amount of waste placed in the barrel varied from 6.4 to 13.6 kg and the amount actually burned varied from 46.6% to 68.1%. Emissions of total PCDDs/PCDFs ranged between 0.0046 and 0.48 mg/kg of waste burned. Emissions are also presented in terms of 2,3,7,8-TCDD toxic equivalents. Emissions of PCDDs/PCDFs appear to correlate with both copper and hydrochloric acid emissions. The results of this study indicate that backyard burning emits more PCDDs/PCDFs on a mass of refuse burned basis than various types of municipal waste combustors (MWCs). Comparison of burn barrel emissions to emissions from a hypothetical modern MWC equipped with high-efficiency flue gas cleaning technology indicates that about 2--40 households burning their trash daily in barrels can produce average PCDD/PCDF emissions comparable to a 182,000 kg/day (200 ton/day) MWC facility. This study provides important data on a potentially significant source of emissions of PCDDs/PCDFs.

  8. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 34. Stocks of Crude Oil and Petroleum Products by PAD District, January 2014 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Crude Oil ......

  9. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 31. Exports of Crude Oil and Petroleum Products by PAD District, January 2014 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1 ...

  10. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil and Petroleum Products by PAD District, January 2014 (Thousand Barrels, Except Where Noted) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1,2 ...

  11. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil and Petroleum Products by Pipeline Between PAD Districts, January 2014 (Thousand Barrels) Commodity From 1 to From 2 to From 3 to 2 3 1 3 4 1 2 4 5 Crude Oil ...

  12. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    of Crude Oil and Petroleum Products by Tanker and Barge Between PAD Districts, January 2014 (Thousand Barrels) Commodity From 1 to From 2 to 2 3 5 1 3 5 Crude Oil ...

  13. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, Barge, and Rail Between PAD Districts, 2014 (Thousand Barrels) Commodity From 1 to From 2 to From 3 to 2 3 5 1 3...

  14. untitled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Movements of Crude Oil and Petroleum Products by Tanker and Barge Between PAD Districts, 2014 (Thousand Barrels) Commodity From 1 to From 2 to 2 3 5 1 3 5 Crude Oil...

  15. Prompt-Month Energy Futures

    Gasoline and Diesel Fuel Update (EIA)

    Prompt-Month Energy Futures Prices and trading activity shown are for prompt-month (see definition below) futures contracts for the energy commodities listed in the table below. Note that trading for prompt-month futures contracts ends on different dates at the end of the month for the various commodities; therefore, some commodity prices may reference delivery for the next month sooner than other commodity prices. Product Description Listed With Crude Oil ($/barrel) West Texas Intermediate

  16. Estimation and validation of mode distances for the 1993 Commodity Flow Survey

    SciTech Connect (OSTI)

    Middendorf, D.P.; Bronzini, M. S.; Peterson, B.; Liu, Cheng; Chin, Shih-Miao

    1995-09-01

    The 1993 Commodity Flow Survey (CFS) collected shipment data from a sample of approximately 200,000 domestic business establishments. Each selected establishment provided information on origin, destination, commodity, shipment weight and value, and modes of transport for a sample of its outbound shipments. One data item not reported by CFS participants was shipment distance. This important piece of information was estimated by simulating probable routes using computer models of the highway, rail, air, waterway, and pipeline networks and their interconnections. This paper describes the nature of the shipment distance estimation problem, the procedures used to estimate mode-specific distances between origin and destination ZIP codes, and the techniques used to validate the results.

  17. NBER WORKING PAPER SERIES THE SIMPLE ECONOMICS OF COMMODITY PRICE SPECULATION

    Gasoline and Diesel Fuel Update (EIA)

    NBER WORKING PAPER SERIES THE SIMPLE ECONOMICS OF COMMODITY PRICE SPECULATION Christopher R. Knittel Robert S. Pindyck Working Paper 18951 http://www.nber.org/papers/w18951 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 April 2013 Robert S. Pindyck hereby declares that he has no relevant material financial interests that relate to the research described in this paper. Christopher R. Knittel hereby declares that he has no direct relevant material financial

  18. Implications of changing correlations between WTI and other commodities, asset classes, and implied volatility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implications of changing correlations between WTI and other commodities, asset classes, and implied volatility James Preciado October 2012 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES October 2012 James

  19. Microsoft PowerPoint - Regulating Energy Commodities.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulating Energy Commodities - Where does compliance fit in? Where does compliance fit in? Deanna Newcomb, MWE Regulatory & Compliance Analyst g y p y April 6, 2010 Where do you begin? Compliance is a Key Compliance Program  Management Support  Policies and Procedures  Training  Monitoring and Surveillance  Risk Assessment / Review Key Factor - Knowledge  Know your business  Read the headlines  Keep up with Regulatory updates/changes  Keep up with Exchange

  20. Table 5.21 Crude Oil Refiner Acquisition Costs, 1968-2011 (Dollars per Barrel)

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Crude Oil Refiner Acquisition Costs, 1968-2011 (Dollars per Barrel) Year Domestic Imported Composite Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 1968E 3.21 14.57 [R] 2.90 13.16 [R] 3.17 14.39 [R] 1969E 3.37 14.58 [R] 2.80 12.11 [R] 3.29 14.23 [R] 1970E 3.46 14.22 [R] 2.96 12.16 [R] 3.40 13.97 [R] 1971E 3.68 14.40 [R] 3.17 12.41 [R] 3.60 14.09 [R] 1972E 3.67 13.77 [R] 3.22 12.08 [R] 3.58 13.43 [R] 1973E 4.17 14.82 [R] 4.08 14.50 [R] 4.15 14.75 [R] 1974 7.18 23.40 [R] 12.52 40.80 [R] 9.07

  1. Fact #652: December 6, 2010 U.S. Crude Oil Production Rises | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2: December 6, 2010 U.S. Crude Oil Production Rises Fact #652: December 6, 2010 U.S. Crude Oil Production Rises The production of crude oil in the U.S., including lease condensates, rose in 2009 for the first time since 1991. The general trend of declining oil production began in 1986 after a slight peak in 1985 of 8.97 million barrels per day. In 2008, the lowest point in the series, oil production was only 4.95 million barrels per day. The highest U.S. crude oil production was forty

  2. Technical documentation for the 1990 Nationwide Truck Activity and Commodity Survey Public Use File

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Nationwide Truck Activity and Commodity Survey (NTACS) provides detailed activity data for a sample of trucks covered in the 1987 Truck Inventory and Use Survey (TIUS) for days selected at random over a 12-month period ending in 1990. The NTACS was conducted by the US Bureau of the Census for the US Department of Transportation (DOT). A Public Use File for the NTACS was developed by Oak Ridge National Laboratory (ORNL) under a reimbursable agreement with the DOT. The content of the Public Use File and the design of the NTACS are described in this document.

  3. Fact #662: February 14, 2011 World Biodiesel Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2: February 14, 2011 World Biodiesel Production Fact #662: February 14, 2011 World Biodiesel Production Europe has been the dominant region for biodiesel production with increased production each year since 2005. North America has been a distant second led by the United States until 2009. In 2009, U.S. biodiesel production fell by over 10 thousand barrels per day while continued growth in Central & South America and Asia & Oceania surpassed North America in production of

  4. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    residential summer power bills to be higher than last year The average household power bill this summer is expected to be 4.9 percent higher than last year. In its new monthly forecast, the U.S. Energy Information Administration said residential electricity expenses will be higher during the June through August period because of rising electricity prices and higher power use. Household power expenses will vary by region....with increases in electricity bills ranging from 2.1% for the Mountain

  5. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    gasoline prices in december expected to be lowest in nearly 4 years Falling crude oil prices are expected to push U.S. retail gasoline prices in December to their lowest level in nearly 4 years. Since late June, the national average pump price of regular gasoline has fallen from $3.70 per gallon to $3.46 per gallon....and it's expected to drop through the rest of this year to a monthly average of $3.18 per gallon in December......according to the new forecast from the U.S. Energy Information

  6. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    U.S. drivers expected to pay slightly lower average gasoline price this summer U.S. drivers pulling up to the pump this summer are expected to pay an average of $3.57 for a gallon of gasoline. That's down about a penny from last year and the lowest average summer gasoline price in four years, according to the U.S. Energy Information Administration's new summer fuel outlook. The average monthly price for gasoline is expected to peak at $3.66 per gallon in May and then steadily decline to $3.46 in

  7. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    U.S. gasoline prices expected to fall over next few months U.S. drivers should see lower gasoline prices over the next few months. In its new forecast, the U.S. Energy Information Administration said the monthly national average price should fall to $3.61 per gallon in September from the $3.69 per gallon average in June. For the summer driving season as a whole, which runs from April through September, gasoline is expected to average $3.66 a gallon....about 8 cents higher than last year. Pump

  8. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    EIA forecasts record 2.6 trillion cubic feet build in U.S. natural gas inventories With the winter heating season over, U.S. natural gas producers now turn to ramping up output to replenish natural gas inventories that fell to an 11-year low at the end of March. In its new short-term energy forecast, the U.S. Energy Information Administration expects a record 2.6 trillion cubic feet of natural gas to be injected into underground storage between now and November 1, when demand for gas for heating

  9. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    Natural gas in storage expected to end heating season at lowest level since 2008 season U.S. natural gas inventories are on track to be at their lowest level in six years by the end of the current heating season, as the nation's natural gas stocks are drawn down to deal with some of the coldest temperatures in several decades. The U.S. Energy Information Administration's new monthly forecast expects natural gas stocks to decline to about 1.3 trillion cubic feet by the end of March, the lowest

  10. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    U.S. natural gas inventories increasing at a record pace The United States is increasing its natural gas inventories at a record pace after they were drawn down sharply during the winter. More than 1 trillion cubic feet of natural gas has been injected into underground storage since mid-April...the shortest time for that much natural gas to be added to inventories in 11 years, according to the U.S. Energy Information Administration. In its new monthly energy forecast, EIA said it expects

  11. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    Residential electricity consumption this summer expected to be higher than last year Electricity use among U.S. households is expected to be about 1 percent higher this summer compared to last year. In its new short-term energy forecast, the U.S. Energy Information Administration says a nearly 6% increase in cooling degree days expected this summer will be slightly offset by more efficient air conditioning, lighting, and other appliances that use less electricity. The 1 percent rise in summer

  12. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    Midwest households expected to see a 33% drop in propane heating bills this winter Midwest households that paid record-high prices for propane last winter to stay warm are expected to see a big drop in their heating bills this winter, according to the forecast for winter heating expenditures from the U.S. Energy Information Administration. The new forecast, which incorporates the latest weather outlook from forecasters at the National Oceanic and Atmospheric Administration, says the average

  13. Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era

    SciTech Connect (OSTI)

    Edwards, J.D.

    1997-08-01

    Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

  14. Apparatus and method for quantitative assay of samples of transuranic waste contained in barrels in the presence of matrix material

    DOE Patents [OSTI]

    Caldwell, J.T.; Herrera, G.C.; Hastings, R.D.; Shunk, E.R.; Kunz, W.E.

    1987-08-28

    Apparatus and method for performing corrections for matrix material effects on the neutron measurements generated from analysis of transuranic waste drums using the differential-dieaway technique. By measuring the absorption index and the moderator index for a particular drum, correction factors can be determined for the effects of matrix materials on the ''observed'' quantity of fissile and fertile material present therein in order to determine the actual assays thereof. A barrel flux monitor is introduced into the measurement chamber to accomplish these measurements as a new contribution to the differential-dieaway technology. 9 figs.

  15. Montana Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 1 1990's 1 1 1 1 1 0 0 0 0 0 2000's 0 0 1 1 1 1 1 1 1 1 2010's 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  16. Florida Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Florida Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 10 5 4 3 2 2 1 1 1 1990's 1 1 1 1 1 1 1 1 1 1 2000's 1 1 1 1 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  17. Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 3 2 3 2 2 2 2 1 2 1 1990's 1 2 2 2 3 3 3 3 3 3 2000's 2 3 3 3 3 3 3 3 3 4 2010's 5 4 5 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  18. Lower 48 States Natural Gas Plant Liquids, Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,191 1980's 5,187 5,478 5,611 6,280 6,121 6,109 6,348 6,327 6,448 6,000 1990's 5,944 5,860 5,878 5,709 5,722 5,896 6,179 6,001 5,868 6,112 2000's 6,596 6,190 6,243 5,857 6,338 6,551 6,795 7,323 7,530 8,258 2010's 9,521 10,537 10,489 11,655 14,788 - = No Data

  19. Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 1 1990's 1 0 0 0 0 0 0 0 0 0 2000's 0 1 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  20. U.S. oil production forecast update reflects lower rig count

    Gasoline and Diesel Fuel Update (EIA)

    U.S. oil production forecast update reflects lower rig count Lower oil prices and fewer rigs drilling for crude oil are expected to slow U.S. oil production growth this year and in 2016. U.S. crude oil production is still expected to average 9.2 million barrels per day this year. That's up half a million barrels per day from last year and the highest output level in more than four decades. A substantial part of the year-over-year increase reflects rapid production growth throughout 2014.

  1. Inspection of the Department`s export licensing process for dual-use and munitions commodities

    SciTech Connect (OSTI)

    Not Available

    1993-08-10

    The purpose of our inspection was to review the Department of Energy`s (Energy) export licensing process for dual-use and military (munitions) commodities subject to nuclear nonproliferation controls. Specifically, we reviewed Energy`s authorities, procedures, and policies pertaining to the export licensing process and examined procedures for safeguarding data transmitted between Energy and other agencies involved in the export licensing process. We also reviewed Energy`s role as a member of the Subgroup on Nuclear Export Coordination. Our review of the sample of 60 export cases did not find evidence to lead us to believe that Energy`s recommendations for these cases were inappropriate or incorrect. We identified, however, problems regarding management systems associated with the export license review process. We found that without documentation supporting export licensing decisions by the Export Control Operations Division (ECOD), we could not determine whether ECOD analysts considered all required criteria in their review of export cases referred to Energy. For example, we found that the ECOD did not retain records documenting the bases for its advice, recommendations, or decisions regarding its reviews of export license cases or revisions to lists of controlled commodities and, therefore, was not in compliance with certain provisions of the Export Administration Act, as amended, and Energy records management directives. Additionally, we found that the degree of compliance by Energy with the export licensing review criteria contained in the Export Administration Regulations and the Nuclear Non-Proliferation Act of 1978 could not be determined because ECOD did not retain records documenting the bases for its advice and recommendations on export cases.

  2. Lease Condensate Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Condensate Production (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 178 224 231 274 311 326 1979-2014 Alabama 2 2 2 2 2 1 1979-2014 Alaska 0 0 20 20 16 0 1979-2014 Arkansas 0 0 0 0 0 0 1979-2014 California 0 0 0 0 0 1 1979-2014 Coastal Region Onshore 0 0 0 0 0 0 1979-2014 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2014 San Joaquin Basin Onshore 0 0

  3. Non-OPEC oil production set to decline for the first time since 2008

    Gasoline and Diesel Fuel Update (EIA)

    Non-OPEC oil production set to decline for the first time since 2008 Total oil production from countries outside of OPEC, the Organization of the Petroleum Exporting Countries, is expected to decline next year for the first time since 2008. In its new monthly forecast, the U.S. Energy Information Administration said it expects non- OPEC oil production to grow by 1.1 million barrels per day this year....and then decline by 300,000 barrels per day next year. As a result, the rate of growth in

  4. Benefits of Biofuel Production and Use in Nebraska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nebraska can leverage its extensive biomass resources and existing bioenergy infrastructure to become a leader in the production of advanced biofuels. The Bioenergy Technologies Office (BETO) enables the development of novel technologies that can benefit Nebraska. Nebraska In 2012, Nebraskans consumed 34.5 million barrels of petroleum for transportation-11 times the state's production. Investing in biofuel production can create new jobs, improve energy security, and reduce harmful emissions.

  5. U.S. net oil and petroleum product imports expected to fall to just 29 percent of demand in 2014

    Gasoline and Diesel Fuel Update (EIA)

    net oil and petroleum product imports expected to fall to just 29 percent of demand in 2014 With rising domestic crude oil production, the United States will rely less on imports of crude oil and petroleum products to meet domestic demand next year. In its new monthly forecast, the U.S. Energy Information Administration expects total net imports to average 5.4 million barrels per day in 2014. That's down 2 million barrels per day from last year. As a result, the share of U.S. consumption met by

  6. Changing Global Petroleum Product Trade Flows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changing Global Petroleum Product Trade Flows For U.S. Energy Information Administration Conference July 14, 2014 | Washington, D.C. By Susan Grissom, U.S. Energy Information Administration In 2011, the U.S. became a net exporter of petroleum products Changing Global Petroleum Product Trade Flows, EIA Conference 2014 2 U.S. petroleum product imports and exports million barrels per day Source: EIA, Annual Energy Outlook 2014 Early Release -4 -3 -2 -1 0 1 2 3 4 1950 1960 1970 1980 1990 2000 2010

  7. U.S. Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) U.S. Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,204 1980's 5,198 5,488 5,620 6,288 6,121 6,491 6,729 6,745 6,849 6,380 1990's 6,284 6,220 6,225 6,030 6,023 6,202 6,516 6,632 6,188 6,503 2000's 6,873 6,595 6,648 6,244 6,707 6,903 7,133 7,648 7,842 8,557 2010's 9,809 10,825 10,777 11,943 15,029 - = No Data Reported; --

  8. R&D progress in SRF surface preparation with centrifugal barrel polishing (cbp) for both Nb and Cu

    SciTech Connect (OSTI)

    Palczewski, Ari

    2013-09-01

    Centrifugal Barrel polishing (CBP) is becoming a common R&D tool for SRF cavity preparation around the world. During the CBP process a cylindrically symmetric SRF cavity is filled with relatively cheap and environmentally friendly abrasive and sealed. The cavity is then spun around a cylindrically symmetric axis at high speeds uniformly conditioning the inner surface. This uniformity is especially relevant for SRF application because many times a single manufacturing defects limits cavity?s performance well below it?s theoretical limit. In addition CBP has created surfaces with roughness?s on the order of 10?s of nm which create a unique surface for wet chemistry or thin film deposition. CBP is now being utilized at Jefferson Laboratory, Fermi Laboratory and Cornell University in the US, Deutsches Elektronen-Synchrotron in Germany, Laboratori Nazionali di Legnaro in Italy, and Raja Ramanna Centre for Advanced Technology in India. In this talk we will present current CBP research from each lab including equipment, baseline recipes, cavity removal rates and subsequent cryogenic cavity tests on niobium as well as copper cavities where available.

  9. Weekly Refiner Net Production

    Gasoline and Diesel Fuel Update (EIA)

    Net Production (Thousand Barrels per Day) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product/Region 02/05/16 02/12/16 02/19/16 02/26/16 03/04/16 03/11/16 View History Finished Motor Gasoline 1,708 1,811 1,620 1,497 1,512 1,554 2010-2016 East Coast (PADD 1) 64 59 65 68 71 64 2010-2016 Midwest (PADD 2) 350 361 354 363 367 347 2010-2016 Gulf Coast (PADD 3) 1,050 1,097 909 778 795 808 2010-2016 Rocky

  10. Weekly Ethanol Production

    Gasoline and Diesel Fuel Update (EIA)

    Ethanol Plant Production (Thousand Barrels per Day) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product/Region 02/05/16 02/12/16 02/19/16 02/26/16 03/04/16 03/11/16 View History Fuel Ethanol 969 975 994 987 978 999 2010-2016 East Coast (PADD 1) W W W W W W 2010-2016 Midwest (PADD 2) 889 892 913 904 897 917 2010-2016 Gulf Coast (PADD 3) W W W W W W 2010-2016 Rocky Mountain (PADD 4) W W W W W W

  11. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel ?-barrel consisting of two Greek-key motifs

    SciTech Connect (OSTI)

    Geerds, Christina; Wohlmann, Jens; Haas, Albert; Niemann, Hartmut H.

    2014-06-18

    The structure of VapB, a member of the Vap protein family that is involved in virulence of the bacterial pathogen R. equi, was determined by SAD phasing and reveals an eight-stranded antiparallel ?-barrel similar to avidin, suggestive of a binding function. Made up of two Greek-key motifs, the topology of VapB is unusual or even unique. Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel ?-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded ?-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology.

  12. Natural Gas Plant Liquids Production

    Gasoline and Diesel Fuel Update (EIA)

    Liquids Production (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 714 745 784 865 931 1,124 1979-2014 Alabama 5 6 6 5 6 5 1979-2014 Alaska 13 11 11 11 11 17 1979-2014 Arkansas 0 0 0 0 0 0 1979-2014 California 11 10 10 10 11 10 1979-2014 Coastal Region Onshore 1 1 1 1 1 1 1979-2014 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2014 San Joaquin Basin

  13. Table 7. Crude oil proved reserves, reserves changes, and production, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude oil proved reserves, reserves changes, and production, 2014" "million barrels" ,,"Changes in Reserves During 2014" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved"

  14. Table 8. Lease condensate proved reserves, reserves changes, and production, 201

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease condensate proved reserves, reserves changes, and production, 2014" "million barrels" ,,"Changes in Reserves During 2014" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved"

  15. Montana Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Montana Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease

  16. Florida Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Florida Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease

  17. Kentucky Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate

  18. Exploration of material removal rate of srf elliptical cavities as a function of media type and cavity shape on niobium and copper using centrifugal barrel polishing (cbp)

    SciTech Connect (OSTI)

    Palczewski, Ari; Ciovati, Gianluigi; Li, Yongming; Geng, Rongli

    2013-09-01

    Centrifugal barrel polishing (cbp) for SRF application is becoming more wide spread as the technique for cavity surface preparation. CBP is now being used in some form at SRF laboratories around the world including in the US, Europe and Asia. Before the process can become as mature as wet chemistry like eletro-polishing (EP) and buffered chemical polishing (BCP) there are many questions which remain unanswered. One of these topics includes the uniformity of removal as a function of cavity shape and material type. In this presentation we show CBP removal rates for various media types on 1.3 GHz TESLA and 1.5 GHz CEBAF large/fine grain niobium cavities, and 1.3GHz low surface field copper cavity. The data will also include calculated RF frequency shift modeling non-uniform removal as a function of cavity position and comparing them with CBP results.

  19. COMMODITIES USED BY WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ? Architect & other Professional Designs ? Automotive Parts & Accessories, RepairMaintenance Items ? Automotive Shop Equipment & Supplies ? Badges, Emblems, & Lanyards ? Bags,...

  20. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    December 2015 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2015 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 287,133 - - - - 244,915 -6,209 -6,054

  1. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    6 December 2015 Table 10. PAD District 2 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-December 2015 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  2. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    7 December 2015 Table 11. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2015 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,802

  3. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    8 December 2015 Table 12. PAD District 2 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-December 2015 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  4. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    19 December 2015 Table 13. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2015 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  5. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    20 December 2015 Table 14. PAD District 3 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-December 2015 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  6. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    1 December 2015 Table 15. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2015 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................

  7. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    2 December 2015 Table 16. PAD District 3 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-December 2015 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  8. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    3 December 2015 Table 17. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2015 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  9. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    5 December 2015 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2015 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 715 -

  10. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    6 December 2015 Table 20. PAD District 4 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-December 2015 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  11. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    7 December 2015 Table 21. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2015 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  12. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    8 December 2015 Table 22. PAD District 5 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-December 2015 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  13. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    30 December 2015 Table 24. PAD District 5 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-December 2015 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  14. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    December 2015 Table 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2015 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 9,262 - - - - 7,900 -200 -195 16,765 392 0 Natural

  15. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    December 2015 Table 5. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2015 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  16. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    December 2015 Table 6. PAD District 1 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-December 2015 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  17. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    4 December 2015 Table 8. PAD District 1 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-December 2015 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil

  18. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    5 December 2015 Table 9. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2015 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6

  19. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 661 - - - - 300 -309 -59 1 581 11 0

  20. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 404,548 - - - - 401,772 58,943

  1. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 19,144 - - - - 218,698 150,437

  2. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 52 - - - - 599 412 89 13 1,087 52 0

  3. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,691 - - - - 2,069 -299 156 1 3,523 94

  4. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 1,900,521 - - - - 1,195,569

  5. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 5,207 - - - - 3,276 34 -2 69 8,255 192

  6. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 241,254 - - - - 109,363

  7. Federal offshore statistics: leasing, exploration, production, revenue

    SciTech Connect (OSTI)

    Essertier, E.P.

    1984-09-01

    This publication is a numerical record of what has happened since Congress gave authority to the Secretary of the Interior in 1953 to lease the federal portion of the Continental Shelf for oil and gas. The publication updates and augments the first Federal Offshore Statistics, published in December 1983. It also extends a statistical series published annually from 1969 until 1981 by the US Geological Survey (USGS) under the title Outer Continental Shelf Statistics. The USGS collected royalties and supervised operation and production of minerals on the Outer Continental Shelf (OCS) until the Minerals Management Service (MMS) took over these functions in 1982. Some of the highlights are: of the 329.5 million acres offered for leasing, 37.1 million acres were actually leased; total revenues for the 1954 to 1983 period were $68,173,112,563 and for 1983 $9,161,435,540; a total of 22,095 wells were drilled in federal waters and 10,145 wells were drilled in state waters; from 1954 through 1983, federal offshore areas produced 6.4 billion barrels of oil and condensate, and 62.1 trillion cubic feet of natural gas; in 1983 alone production was 340.7 million barrels of oil and condensate, and 3.9 trillion cubic feet of gas; and for the second straight year, no oil was lost in 1983 as a result of blowouts in federal waters. 8 figures, 66 tables.

  8. Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Zan; Millan, Robyn M.; Hudson, Mary K.; Woodger, Leslie A.; Smith, David M.; Chen, Yue; Friedel, Reiner; Rodriguez, Juan V.; Engebretson, Mark J.; Goldstein, Jerry; et al

    2014-12-23

    Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution,more » and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.« less

  9. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    SciTech Connect (OSTI)

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  10. Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations

    SciTech Connect (OSTI)

    Li, Zan; Millan, Robyn M.; Hudson, Mary K.; Woodger, Leslie A.; Smith, David M.; Chen, Yue; Friedel, Reiner; Rodriguez, Juan V.; Engebretson, Mark J.; Goldstein, Jerry; Fennell, Joseph F.; Spence, Harlan E.

    2014-12-23

    Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution, and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.

  11. TABLE15.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining PAD District I PAD District II Commodity East Appalachian Minn., Wis., Okla., Kans., Coast No. 1 Total Ind., Ill., Ky. N. Dak., S. Dak. Mo. Total Net Production Net Production Stocks Stocks Districts, (Thousand Barrels) PAD District III PAD Dist. PAD Dist. Commodity IV V Texas La. Texas Gulf Gulf N. La., New U.S. Inland Coast Coast Ark. Mexico Total Rocky Mt. West Coast Total January 1998 Natural Gas Liquids

  12. U.S. Weekly Product Supplied

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Product Supplied (Thousand Barrels per Day) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product 02/05/16 02/12/16 02/19/16 02/26/16 03/04/16 03/11/16 View History Total 19,022 19,742 20,668 19,199 19,864 19,260 1990-2016 Finished Motor Gasoline 9,122 9,203 9,576 9,121 9,411 9,458 1991-2016 Kerosene-Type Jet Fuel 1,616 1,537 1,490 1,634 1,581 1,364 1991-2016 Distillate Fuel Oil 3,162 3,482

  13. Table 2. U.S. tight oil plays: production and proved reserves, 2013-14

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. tight oil plays: production and proved reserves, 2013-14" "million barrels" ,,,2013,2013,"2014 Production","2014 Reserves","Change 2013-14 Reserves" "Basin","Play","State(s)","Production","Reserves" "Williston","Bakken","ND, MT, SD",270,4844,387,5972,1128 "Western Gulf","Eagle Ford","TX",351,4177,497,5172,995

  14. H.R.3688: A bill to amend the Internal Revenue Code of 1986 to provide a tax credit for marginal oil and natural gas well production, introduced in the House of Representatives, One Hundred Fifth Congress, Second Session, April 1, 1998

    SciTech Connect (OSTI)

    1998-12-31

    This bill proposes a new section to be added to the Internal Revenue Code of 1986. The credit proposed is $3 per barrel of qualified crude oil production and 50 cents per 1,000 cubic feet of qualified natural gas production. In this case qualified production means domestic crude oil or natural gas which is produced from a marginal well. Marginal production is defined within the Internal Revenue Code Section 613A(c)(6).

  15. S. 2779: a bill to amend the Internal Revenue Code of 1954 to impose a fee on the importation of crude oil and refined petroleum products to protect the national and energy security interests of the United States. Introduced in the Senate of the United States, Ninety-Ninth Congress, Second Session, August 15, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The Energy Security Act of 1986 amends the Internal Revenue Code of 1954 to impose a fee on petroleum and petroleum product imports. The purpose is to protect the US national and energy security interests. The general tax rate shall be $4 per barrel, with a formula for reduction when the price is $18 or more. Exemptions include petroleum intended for export.

  16. Changing Global Petroleum Product Trade Flows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 © OECD/IEA 2014 Antoine Halff 2014 EIA Energy Conference Changing Global Petroleum Product Trade Flows Washington, DC July 14, 2014 © OECD/IEA 2014 Crude trade shifts further east  Asia imports increase by 2.6 mb/d to 22.1 mb, or 65% of the international crude market Crude Exports in 2019 and Growth in 2013-19 for Key Trade Routes 1 (million barrels per day) 0.2 0.3 (0) 2.0 (0.2) (-0.6) 4.1 (-0.6) 0.1 (-0.7) 3.1 1.2 (0.3) 1.0 (+0.1) -0.6 2.2 1.8 (+0.8) (-0.6) 1.1 (+0.3) Red number in

  17. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    5 December 2015 Table 58. Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, December 2015 (Thousand Barrels) Commodity From 1 to From 2 to From 3 to 2 3 1 3 4 1 2 4 5 Crude Oil ................................................................. 126 31 202 24,369 7,128 204 23,472 0 - Petroleum Products ............................................... 11,701 0 2,669 17,257 5,511 84,592 19,330 0 5,289 Pentanes Plus ......................................................

  18. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    7 December 2015 Table 59. Movements of Crude Oil and Petroleum Products by Tanker, and Barge Between PAD Districts, December 2015 (Thousand Barrels) Commodity From 1 to From 2 to 2 3 5 1 3 5 Crude Oil ................................................................. 0 531 - 320 1,091 - Petroleum Products ............................................... 236 88 0 1,087 3,884 0 Liquefied Petroleum Gases .................................. - 0 0 - 0 0 Unfinished Oils

  19. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    0 December 2015 Table 61. Net Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, Barge and Rail Between PAD Districts, December 2015 (Thousand Barrels) Commodity PAD District 1 PAD District 2 PAD District 3 Receipts Shipments Net Receipts Receipts Shipments Net Receipts Receipts Shipments Net Receipts Crude Oil 1 ................................................................ 12,687 688 11,999 40,762 48,836 -8,074 29,694 25,654 4,040 Petroleum Products 2

  20. Fact #758: December 17, 2012 U.S. Production of Crude Oil by State, 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8: December 17, 2012 U.S. Production of Crude Oil by State, 2011 Fact #758: December 17, 2012 U.S. Production of Crude Oil by State, 2011 Texas is by far the State that produces the most crude oil in the U.S., but 30 other States also produced oil in 2011. Alaska, California, North Dakota, and Oklahoma were next in the top five crude oil producing States. Eighteen States generated less than 20 million barrels, but altogether, those 18 States produced nearly 57 million

  1. Annual Energy Outlook 2014 projects reduced need for U.S. oil imports due to tight oil production growth

    Gasoline and Diesel Fuel Update (EIA)

    7, 2014 Annual Energy Outlook 2014 projects reduced need for U.S. oil imports due to tight oil production growth U.S. production of tight crude oil is expected to make up a larger share of total U.S. oil output in the years ahead, and help lower imports share of total U.S. oil consumption. In its annual long-term projections, the U.S. Energy Information Administration (EIA) expects total U.S. crude oil production to reach a record 9.6 million barrels per day (bbl/d) in 2019, under its baseline

  2. Production of Succinic Acid for Lignocellulosic Hydrolysates

    SciTech Connect (OSTI)

    Davison, B.H.; Nghiem, J.

    2002-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) is to add and test new metabolic activities to existing microbial catalysts for the production of succinic acid from renewables. In particular, they seek to add to the existing organism the ability to utilize xylose efficiently and simultaneously with glucose in mixtures of sugars or to add succinic acid production to another strain and to test the value of this new capability for production of succinic acid from industrial lignocellulosic hydrolyasates. The Contractors and Participant are hereinafter jointly referred to as the 'Parties'. Research to date in succinic acid fermentation, separation and genetic engineering has resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on repliminary laboratory findings and predicted catalytic parameters. The initial target markets include succinic acid itself, succinate salts, esters and other derivatives for use as deicers, solvents and acidulants. The other commodity products from the succinic acid platform include 1,4-butanediol, {gamma}-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Current economic analyses indicate that this platform is competitive with existing petrochemical routes, especially for the succinic acid and derivatives. The report presents the planned CRADA objectives followed by the results. The results section has a combined biocatalysis and fermentation section and a commercialization section. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  3. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect (OSTI)

    Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

    2009-12-31

    This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

  4. CHOS in Production - Multiple Linux Environments on PDSF at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHOS in Production Multiple Linux Environments on PDSF at NERSC Larry Pezzaglia National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory April 2012 A commodity Linux cluster at NERSC serving HEP and NS projects 1GbE and 10GbE interconnect In continuous operation since 1996 ~1500 compute cores on ~200 nodes Over 750 TB shared GPFS storage in 17 filesystems Over 650 TB of XRootD storage Supports SL5 and SL6 environments Projects "buy in" to PDSF and the

  5. Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOE Patents [OSTI]

    Detering, Brent A.; Kong, Peter C.

    2006-08-29

    A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  6. Rerouting Carbon Flux To Enhance Photosynthetic Productivity

    SciTech Connect (OSTI)

    Ducat, DC; Avelar-Rivas, JA; Way, JC; Silver, PA

    2012-03-23

    The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose-or sucrose-consuming reactions can further improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter(-1) h illumination(-1). This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to similar to 80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane.

  7. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenuemore » from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.« less

  8. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    SciTech Connect (OSTI)

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.

  9. Selectively reducing offshore royalty rates in the Gulf of Mexico could increase oil production and federal government revenue

    SciTech Connect (OSTI)

    Bowsher, C.A.

    1985-05-10

    The US government leases large areas in the Outer Continental Shelf in the Gulf of Mexico for the development of oil resources and receives royalties on the oil produced. Conventional methods of oil recovery have recovered or are expected to recover about half of the 16 billion barrels of oil discovered in this area. Other oil recovery methods, collectively known as enhanced oil recovery (EOR), could potentially increase production by about 1 billion barrels of oil. EOR in the Gulf is expensive and does not appear to be economically justified in most cases. Under existing economic conditions and federal policies, GAO's review indicates that utilizing EOR methods will probably produce only about 10 percent of the additional recoverable oil. However, financial incentives in the form of royalty reductions could increase both oil production and federal government revenue if applied on a project-by-project basis. Universal applications of royalty reduction for EOR, however, while achieving increased oil production, would not increase federal government revenue. GAO recommends that the Department of the Interior's Minerals Management Service initiate action that would allow for selective royalty reductions for EOR projects in the Gulf in instances where both total oil production and federal government revenue will increase. 6 figs., 1 tab.

  10. World Oil Prices and Production Trends in AEO2008 (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Annual Energy Outlook 2008 (AEO) defines the world oil price as the price of light, low-sulfur crude oil delivered in Cushing, Oklahoma. Since 2003, both "above ground" and "below ground" factors have contributed to a sustained rise in nominal world oil prices, from $31 per barrel in 2003 to $69 per barrel in 2007. The AEO2008 reference case outlook for world oil prices is higher than in the AEO2007 reference case. The main reasons for the adoption of a higher reference case price outlook include continued significant expansion of world demand for liquids, particularly in non-OECD (Organization for Economic Cooperation and Development) countries, which include China and India; the rising costs of conventional non-OPEC (Organization of the Petroleum Exporting Countries) supply and unconventional liquids production; limited growth in non-OPEC supplies despite higher oil prices; and the inability or unwillingness of OPEC member countries to increase conventional crude oil production to levels that would be required for maintaining price stability. The Energy Information Administration will continue to monitor world oil price trends and may need to make further adjustments in future AEOs.

  11. Hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

    2002-01-01

    Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Products (Thousand Barrels)","Midwest (PADD 2) Imports by PADD of Processing from Nigeria of Crude Oil and Petroleum Products (Thousand Barrels)","Midwest (PADD 2) Imports by...

  13. Texas (with State Offshore) Natural Gas Plant Liquids, Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  14. West Virginia Natural Gas Liquids Lease Condensate, Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) West Virginia Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Products (Thousand Barrels)","Midwest (PADD 2) Imports by PADD of Processing from Egypt of Crude Oil and Petroleum Products (Thousand Barrels)","Midwest (PADD 2) Imports by...

  16. Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD

    Gasoline and Diesel Fuel Update (EIA)

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  17. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives of the project were (1) to determine the prevalence of biosurfactant producers in oil reservoirs, and (2) to develop a nutrient regime that would stimulate biosurfactant production in the oil reservoir.

  18. Baseballs and Barrels: World Statistics Day

    Broader source: Energy.gov [DOE]

    Statistics don’t just help us answer trivia questions – they also help us make intelligent decisions. For example, if I heat my home with natural gas, I’m probably interested in what natural gas prices are likely to be this winter.

  19. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  20. Table 4.2 Crude Oil and Natural Gas Cumulative Production and Proved Reserves, 1977-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil and Natural Gas Cumulative Production and Proved Reserves, 1977-2010 Year Crude Oil and Lease Condensate 1 Natural Gas (Dry) Cumulative Production Proved Reserves 2 Cumulative Production Proved Reserves 3 Million Barrels Billion Cubic Feet 1977 118,091 31,780 514,439 207,413 1978 121,269 31,355 533,561 208,033 1979 124,390 31,221 553,224 200,997 1980 127,537 31,335 572,627 199,021 1981 130,665 31,006 591,808 201,730 1982 133,822 29,459 609,628 201,512 1983 136,993 29,348 625,722

  1. An Overview of Process Monitoring Related to the Production of Uranium Ore Concentrate

    SciTech Connect (OSTI)

    McGinnis, Brent

    2014-04-01

    Uranium ore concentrate (UOC) in various chemical forms, is a high-value commodity in the commercial nuclear market, is a potential target for illicit acquisition, by both State and non-State actors. With the global expansion of uranium production capacity, control of UOC is emerging as a potentially weak link in the nuclear supply chain. Its protection, control and management thus pose a key challenge for the international community, including States, regulatory authorities and industry. This report evaluates current process monitoring practice and makes recommendations for utilization of existing or new techniques for managing the inventory and tracking this material.

  2. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes Products Isotopes Products Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Products stress and rest Stress and rest Rb-82 PET images in a patient with dipyridamole stress-inducible lateral wall and apical ischemia. (http://www.fac.org.ar/scvc/llave/image/machac/machaci.htm#f2,3,4) Strontium-82 is supplied to our customers for use in Sr-82/Rb-82 generator technologies. The generators in turn are supplied to

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (Thousand Barrels)","Rocky Mountain (PADD 4) Imports by PADD of Processing from Nigeria of Crude Oil and Petroleum Products (Thousand Barrels)","Rocky Mountain (PADD 4)...

  4. Crude Oil Movements of Crude of by Rail between PAD Districts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Product: Crude Oil Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources &...

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (Thousand Barrels)","Rocky Mountain (PADD 4) Imports by PADD of Processing from Egypt of Crude Oil and Petroleum Products (Thousand Barrels)","Rocky Mountain (PADD 4)...

  6. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are saving lives, advancing cutting-edge research and keeping the U.S. safe. Products stress and rest Stress and rest Rb-82 PET images in a patient with dipyridamole...

  7. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  8. Saudi Aramco | Open Energy Information

    Open Energy Info (EERE)

    Operations R & D 2009 Statistics Crude oil reserves: 260.2 billion barrels Crude oil production: 2.9 billion barrels in 2009 Crude oil exports: 2.1 billion barrels in 2009...

  9. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  10. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    3 December 2015 Table 57. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, Barge, and Rail Between PAD Districts, December 2015 (Thousand Barrels) Commodity From 1 to From 2 to From 3 to 2 3 5 1 3 4 5 1 2 Crude Oil 1 ................................................................ 126 562 0 10,197 26,647 7,128 4,864 2,074 23,472 Petroleum Products 2 .............................................. 11,937 88 0 3,756 21,141 5,511 0 105,189 20,590 Pentanes Plus

  11. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, 2014 (Thousand Barrels) Commodity From 1 to From 2 to From 3 to 2 3 1 3 4 1 2 4 5 Crude Oil ................................................................. 2,423 3,400 2,377 223,035 40,502 2,932 327,545 0 - Petroleum Products ............................................... 133,929 0 20,516 117,922 46,624 981,144 238,124 0 55,171 Pentanes Plus ...................................................... 30 0 0 8,462

  12. Bottom production

    SciTech Connect (OSTI)

    Baines, J.; Baranov, S.P.; Bartalini, P.; Bay, A.; Bouhova, E.; Cacciari, M.; Caner, A.; Coadou, Y.; Corti, G.; Damet, J.; Dell-Orso, R.; De Mello Neto, J.R.T.; Domenech, J.L.; Drollinger, V.; Eerola, P.; Ellis, N.; Epp, B.; Frixione, S.; Gadomski, S.; Gavrilenko, I.; Gennai, S.; George, S.; Ghete, V.M.; Guy, L.; Hasegawa, Y.; Iengo, P.; Jacholkowska, A.; Jones, R.; Kharchilava, A.; Kneringer, E.; Koppenburg, P.; Korsmo, H.; Kramer, M.; Labanca, N.; Lehto, M.; Maltoni, F.; Mangano, M.L.; Mele, S.; Nairz, A.M.; Nakada, T.; Nikitin, N.; Nisati, A.; Norrbin, E.; Palla, F.; Rizatdinova, F.; Robins, S.; Rousseau, D.; Sanchis-Lozano, M.A.; Shapiro, M.; Sherwood, P.; Smirnova, L.; Smizanska, M.; Starodumov, A.; Stepanov, N.; Vogt, R.

    2000-03-15

    In the context of the LHC experiments, the physics of bottom flavoured hadrons enters in different contexts. It can be used for QCD tests, it affects the possibilities of B decays studies, and it is an important source of background for several processes of interest. The physics of b production at hadron colliders has a rather long story, dating back to its first observation in the UA1 experiment. Subsequently, b production has been studied at the Tevatron. Besides the transverse momentum spectrum of a single b, it has also become possible, in recent time, to study correlations in the production characteristics of the b and the b. At the LHC new opportunities will be offered by the high statistics and the high energy reach. One expects to be able to study the transverse momentum spectrum at higher transverse momenta, and also to exploit the large statistics to perform more accurate studies of correlations.

  13. US production of natural gas from tight reservoirs

    SciTech Connect (OSTI)

    Not Available

    1993-10-18

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  14. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  15. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  16. Oil Production

    Energy Science and Technology Software Center (OSTI)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  17. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen is an energy carrier, not an energy source-hydrogen stores and delivers energy in a usable form, but it must be produced from hydrogen- containing compounds. Hydrogen can be produced using diverse, domestic resources including fossil fuels, such as natural gas and coal (preferentially with carbon capture, utilization, and storage); biomass grown from renewable, non-food crops; or using nuclear energy and renewable energy sources, such as wind, solar, geothermal, and

  18. Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 10.4 Biodiesel Overview, 2001-2011 Year Feedstock 1 Losses and Co-products 2 Production Trade Stocks, End of Year Stock Change 4 Balancing Item 5 Consumption Imports Exports Net Imports 3 Trillion Btu Trillion Btu Thousand Barrels Million Gallons Trillion Btu Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Million Gallons Trillion Btu 2001 1 (s) 204 9 1 78 39 39 NA NA NA 243 10 1 2002 1 (s) 250 10 1 191 56 135 NA NA

  20. Oil products distribution in Iran: a planning approach

    SciTech Connect (OSTI)

    Abrishami, H.

    1986-01-01

    The significance of this study is that it examines the functions of the most important element in the public sector of the economy of Iran - the Ministry of Oil. Oil is the main source of Iran's foreign earnings and the commodity most crucial to the country's economy as its prime export. Furthermore, it plays a vital role in meeting domestic energy demands. The distribution of oil products affects, on the one hand, households, small businesses, and larger industries while, on the other, it affects the allocation, in general of other national resources. Accordingly, the effects of the Ministry of Oil's policies with regard to its production-distribution system cannot be overemphasized. The research entailed has elicited certain factors: The Ministry of Oil's present system suffers from a number of weaknesses in its production-distribution design. These deficiencies involved, among others, terminal location, number of terminals, assignment of terminals to customers, substitution of other major sources of energy for major oil products, the middle distillates problem, and an outmoded distribution method and techniques. This dissertation addresses alternatives that will eliminate faults in the present system. The approach and conclusions of this research have the potential of application to any type of industry in Iran - oil or otherwise, whether in the private or public sector - that has a similar intricate distribution-system design subject to similar variables.