Powered by Deep Web Technologies
Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Production in the Digital Era: Commodity or Strategic Weapon?  

E-Print Network (OSTI)

Commodity or Strategic Weapon? © John Zysman BRIE Workingproduction is a strategic weapon and when a commodity. Forproduction into a strategic weapon liking production to the

Zysman, John

2002-01-01T23:59:59.000Z

2

U.S. crude oil production expected to top 9 million barrels per...  

U.S. Energy Information Administration (EIA) Indexed Site

half of this year, drilling is expected to increase and U.S. production is forecast to rise to an average of 9.5 million barrels per day in 2016. That would be the...

3

U.S. monthly oil production tops 8 million barrels per day for...  

Gasoline and Diesel Fuel Update (EIA)

the U.S. Energy Information Administration said it expects world oil production to rise by 1.3 million barrels per day next year....with U.S. daily oil output alone...

4

Modeling Multiple Ecosystem Services, Biodiversity Conservation, Commodity Production, and Tradeoffs at Landscape Scales  

E-Print Network (OSTI)

Modeling Multiple Ecosystem Services, Biodiversity Conservation, Commodity Production ECOSYSTEM SERVICES_ 4 o Modeling multiple ecosystem services, biodiversity conservation, commodity tradeoff between biodiversity conservation and J?l ecosystem services. Scenarios involving more development

Vermont, University of

5

U.S. monthly oil production tops 8 million barrels per day for the first time since 1988  

Gasoline and Diesel Fuel Update (EIA)

U.S. crude oil production expected to hit four-decade high during 2015 U.S. crude oil production expected to hit four-decade high during 2015 U.S. crude oil production over the next two years is expected to grow to its highest level since the early 1970s. Oil output increased by 1 million barrels per day in 2013...and is expected to repeat that growth rate during 2014....according to the new forecast from the U.S. Energy Information Administration. U.S. crude oil production is forecast to average 8.5 million barrels per day this year and then rise to 9.3 million barrels per day in 2015. That would be the highest yearly oil output since 1972, and just 300,000 barrels per day below the all-time production high of 9.6 million barrels per day set in 1970. Most of the oil production growth will come from increased drilling in the shale formations in

6

Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic  

E-Print Network (OSTI)

, carbohydrate hydrolysis and dehydration, and catalytic upgrading of platform chemicals. The technology centersProduction of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic and subsequently upgrading these two platforms into a mixture of branched, linear, and cyclic alkanes of molecular

California at Riverside, University of

7

Chlor-syngas: Coupling of Electrochemical Technologies for Production of Commodity Chemicals  

Science Journals Connector (OSTI)

This paper describes a novel electrolysis process called chlor-syngas, where synthesis gas is produced at the cathode and chlorine gas is produced at the anode. ... The process described here, chlor-syngas, produces two commodity gas streams, Cl2 and synthesis gas (syngas), using low-value chemicals, CO2 and HCl. ... The chlor-syngas process could replace two existing processes in current use: (1) chlor-alkali for the production of Cl2 and (2) gasification of fossil sources, such as natural gas or coal, to produce syngas. ...

Tedd E. Lister; Eric J. Dufek

2013-01-18T23:59:59.000Z

8

THE SIMPLE ECONOMICS OF COMMODITY PRICE SPECULATION  

E-Print Network (OSTI)

This draft: April 9, 2013 Abstract The price of crude oil in the U.S. never exceeded $40 per barrel until mid price changes? We clarify the effects of speculators on commodity prices. We focus on crude oil, but our approach can be applied to other commodities. We explain the meaning of "oil price speculation," how it can

Rothman, Daniel

9

Impact of catalysis on the production of the top 50 US commodity chemicals  

SciTech Connect

Information on each chemical is stored in an accompanying Excel{trademark} 4.0 spreadsheet (``top5Ochem.xcl``). This analysis tool allows the user to make assumptions about process yield improvements and evaluate the corresponding impact on the process and feedstock energy. Many scenarios have been investigated and are reported in the text. If all of the catalytic processes associated with the top 50 chemicals were raised to their maximum process yields, the corresponding process and feedstock energy savings would exceed 0.47 quads per year. More realistic process yield improvements of 1%, 5%, and 10% where possible, would save 0.03, 0.14, and 0.23 quads per year. Many of the commodity chemicals face limitations from both the current catalyst and process. Catalysis is vital, but catalysis alone is not the answer to maximizing energy savings. Integration of catalysis development with process engineering research can lead to significant energy savings during the production of the top 50 chemicals.

Tonkovich, A.L.Y.

1994-03-01T23:59:59.000Z

10

U.S. monthly oil production tops 8 million barrels per day for...  

NLE Websites -- All DOE Office Websites (Extended Search)

2014 hurricane season could lead to offshore oil, gas production shut-ins The government's weather experts are predicting a relatively mild hurricane season, but U.S. oil and...

11

U.S. monthly oil production tops 8 million barrels per day for...  

U.S. Energy Information Administration (EIA) Indexed Site

total just over 3.5 trillion cubic feet by November 1 st . Record U.S. natural gas production this year has contributed to the record build in natural gas inventories since...

12

PROHIBITED COMMODITIES  

NLE Websites -- All DOE Office Websites (Extended Search)

PROHIBITED PROHIBITED COMMODITIES NOT acceptable for transport The following commodities are NOT acceptable for transport by DHL - UNDER ANY CIRCUMSTANCES, including domestic (USA) moves. * Live Animals, Reptiles, Snakes, Birds, Insects (other than those listed below for domestic transit under restricted commodities) * Bullion * Currency * Firearms (Parts†thereof†including†paintball, pellet†guns, air†rifles, etc.) [Except for Domestic exceptions listed below under restricted commodities] * Pornography * Drugs / Narcotics (illegal) * Human remains (including ashes) * Counterfeit or Pirated goods or material Any item(s), the carriage of which is prohibited by any law, regulation or statute of any federal, state or local government to or through which the shipment may be carried.

13

Inventories and the short-run dynamics of commodity prices  

E-Print Network (OSTI)

I examine the behavior of inventories and their role in the short-run dynamics of commodity production and price. Competitive producers of a storable commodity react to price changes by balancing costs of changing production ...

Pindyck, Robert S.

1990-01-01T23:59:59.000Z

14

Commodity PAD Districts I II III IV V United States  

U.S. Energy Information Administration (EIA) Indexed Site

Commodity Commodity PAD Districts I II III IV V United States Table 10a. Fuel Consumed at Refineries by PAD District, 2012 (Thousand Barrels, Except Where Noted) Crude Oil 0 0 0 0 0 0 Liquefied Petroleum Gases 0 464 490 49 518 1,521 Distillate Fuel Oil 4 89 236 1 209 539 Residual Fuel Oil 26 18 11 16 469 540 Still Gas 13,838 50,328 108,359 8,694 38,875 220,094 Marketable Petroleum Coke 0 0 0 528 166 694 Catalyst Petroleum Coke 9,003 17,611 42,614 2,852 12,416 84,496 Natural Gas (million cubic feet) 38,347 143,702 474,359 26,971 159,849 843,228 Coal (thousand short tons) 30 0 0 0 0 30 Purchased Electricity (million kWh) 2,355 11,892 23,255 2,003 5,130 44,635 Purchased Steam (million pounds) 3,849 12,723 88,922 1,439 14,426 121,359 Other Products 40 47 677 67 1,141 1,972

15

THE SIMPLE ECONOMICS OF COMMODITY PRICE SPECULATION Christopher  

Gasoline and Diesel Fuel Update (EIA)

THE THE SIMPLE ECONOMICS OF COMMODITY PRICE SPECULATION Christopher R. Knittel and Robert S. Pindyck Massachusetts Institute of Technology July 2013 Knittel and Pindyck (MIT) PRICE SPECULATION July 2013 1 / 32 Introduction "Commodities have become an investment class: declines in their prices may simply reflect the whims of speculators." The Economist, June 23, 2012. "Federal legislation should bar pure oil speculators entirely from commodity exchanges in the United States." Joseph Kennedy II, N.Y. Times, April, 10, 2012. Sharp increases in oil prices: $40 per barrel in 2004 to $70 in 2006 to $140 in July 2008. Fell to $38 in early 2009, then increased to $110 in 2011. Are "speculators" to blame? Should futures trading be limited? Confusion over commodity price speculation and how it works. We try to clarify the potential and actual effects of speculators

16

Barrel cortex function  

Science Journals Connector (OSTI)

Neocortex, the neuronal structure at the base of the remarkable cognitive skills of mammals, is a layered sheet of neuronal tissue composed of juxtaposed and interconnected columns. A cortical column is considered the basic module of cortical processing present in all cortical areas. It is believed to contain a characteristic microcircuit composed of a few thousand neurons. The high degree of cortical segmentation into vertical columns and horizontal layers is a boon for scientific investigation because it eases the systematic dissection and functional analysis of intrinsic as well as extrinsic connections of the column. In this review we will argue that in order to understand neocortical function one needs to combine a microscopic view, elucidating the workings of the local columnar microcircuits, with a macroscopic view, which keeps track of the linkage of distant cortical modules in different behavioral contexts. We will exemplify this strategy using the model system of vibrissal touch in mice and rats. On the macroscopic level vibrissal touch is an important sense for the subterranean rodents and has been honed by evolution to serve an array of distinct behaviors. Importantly, the vibrissae are moved actively to touch – requiring intricate sensorimotor interactions. Vibrissal touch, therefore, offers ample opportunities to relate different behavioral contexts to specific interactions of distant columns. On the microscopic level, the cortical modules in primary somatosensory cortex process touch inputs at highest magnification and discreteness – each whisker is represented by its own so-called barrel column. The cellular composition, intrinsic connectivity and functional aspects of the barrel column have been studied in great detail. Building on the versatility of genetic tools available in rodents, new, highly selective and flexible cellular and molecular tools to monitor and manipulate neuronal activity have been devised. Researchers have started to combine these with advanced and highly precise behavioral methods, on par with the precision known from monkey preparations. Therefore, the vibrissal touch model system is exquisitely positioned to combine the microscopic with the macroscopic view and promises to be instrumental in our understanding of neocortical function.

Dirk Feldmeyer; Michael Brecht; Fritjof Helmchen; Carl C.H. Petersen; James F.A. Poulet; Jochen F. Staiger; Heiko J. Luhmann; Cornelius Schwarz

2013-01-01T23:59:59.000Z

17

The How's and Why's of Replacing the Whole Barrel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The How's and Why's of Replacing the Whole Barrel The How's and Why's of Replacing the Whole Barrel The How's and Why's of Replacing the Whole Barrel October 19, 2011 - 4:09pm Addthis A 42-U.S. gallon barrel of crude oil yields about 45 gallons of petroleum products. Source: Energy Information Administration, “Oil: Crude Oil and Petroleum Products Explained” and Annual Energy Outlook 2009 (Updated February 2010). A 42-U.S. gallon barrel of crude oil yields about 45 gallons of petroleum products. Source: Energy Information Administration, "Oil: Crude Oil and Petroleum Products Explained" and Annual Energy Outlook 2009 (Updated February 2010). Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy For many, a barrel of oil is almost synonymous with its most prominent

18

Battle for the Barrel  

Science Journals Connector (OSTI)

...to come from "advanced" biofuels, primarily cellulosic ethanol, with relatively small amounts of biodiesel and biofuels derived from algae, among other sources. This surge in cellulosic ethanol production was originally planned to begin in...

Robert F. Service

2013-03-22T23:59:59.000Z

19

Vibration of Gun-Barrels1  

Science Journals Connector (OSTI)

... THIS research on the vibration of gun-barrels is a continuation of former investigations on the nature of ... of gun-barrels is a continuation of former investigations on the nature of vibrations set up in a gun-barrel when fixed, with a view to discover how ...

F. J.-S

1901-01-17T23:59:59.000Z

20

The dynamics of commodity spot and futures markets  

E-Print Network (OSTI)

I discuss the short-run dynamics of commodity prices, production, and inventories, as well as the sources and effects of market volatility. I explain how prices, rates of production, and inventory levels are interrelated, ...

Pindyck, Robert S.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mississippi Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

22

California Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

23

Pennsylvania Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Pennsylvania Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

24

Colorado Natural Gas Plant Liquids, Expected Future Production...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

25

Oklahoma Natural Gas Plant Liquids, Expected Future Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Liquids, Expected Future Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

26

Louisiana - North Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana - North Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

27

Nebraska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Nebraska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

28

Florida Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Florida Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

29

Alabama Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

30

New Mexico - West Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

31

Utah Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

32

Texas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

33

Wyoming Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

34

Indiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Indiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

35

Arkansas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Arkansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

36

Ohio Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Ohio Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

37

Kansas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Kansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

38

Alaska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

39

New Mexico - East Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

40

Colorado Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Colorado Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Miscellaneous States Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Miscellaneous States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

42

Oklahoma Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Oklahoma Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

43

Texas State Offshore Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

44

Louisiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

45

Michigan Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Michigan Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

46

New Mexico Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

47

Montana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Montana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

48

Illinois Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Illinois Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

49

Lower 48 States Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Lower 48 States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

50

North Dakota Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) North Dakota Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

51

West Virginia Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) West Virginia Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

52

Hedging mean-reverting commodities  

Science Journals Connector (OSTI)

......commodity price risk is not the only...firms. If the investment has an international...exchange rate risk and political risk are also...1997) Valuing political risk. J. Int. Money...S. (1994) Investment under Uncertainty......

Udo Broll; Ephraim Clark; Elmar Lukas

2010-01-01T23:59:59.000Z

53

Fact #676: May 23, 2011 U.S. Refiners Produce about 19 Gallons of Gasoline from a Barrel of Oil  

Energy.gov (U.S. Department of Energy (DOE))

A standard U.S. barrel contains 42 gallons of crude oil which yields about 44 gallons of petroleum products. The additional 2 gallons of petroleum products come from refiner gains which result in...

54

EA-164-B Constellation Energy Commodities Group, Inc | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B Constellation Energy Commodities Group, Inc EA-164-B Constellation Energy Commodities Group, Inc Order authorizing Constellation Energy Commodities Group, Inc to export electric...

55

EA-164-C Constellation Energy Commodities Group, Inc | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

64-C Constellation Energy Commodities Group, Inc EA-164-C Constellation Energy Commodities Group, Inc Order authorizing Constellation Energy Commodities Group, Inc to export...

56

California Natural Gas Total Liquids Extracted (Thousand Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Extracted (Thousand Barrels) California Natural Gas Total Liquids Extracted (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

57

Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

58

Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

59

Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Million Barrels) Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

60

Wyoming Natural Gas Liquids Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) Wyoming Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's...

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

62

Pennsylvania Natural Gas Liquids Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Million Barrels) Pennsylvania Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

63

Utah Natural Gas Liquids Proved Reserves (Million Barrels)  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) Utah Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59...

64

Secretary Bodman Announces Sale of 11 Million Barrels of Crude...  

Energy Savers (EERE)

Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic...

65

Methanol's transformation to commodity status stretches supply  

SciTech Connect

Methanol is undergoing a renaissance. Beginning in the US in the fourth quarter of 1993, methanol has seen a transformation from a low-growth, low-priced, overly abundant commodity chemical into a high-demand, undersupplied, cost-price driven product. As the economic recovery has spread to the rest of the world, methanol demand has dramatically increased. this meteoric rise has been further sparked in the US by increased use of methanol as an ingredient in gasoline oxygenates required by the federal government. Increased demand has led to the consolidation of producers, a scramble to reopen existing capacity, addition of capacity via product conversion, and plans for various future capacity expansions. Methanol fits alongside the other long-standing, major organic commodity chemicals-ethylbenzene, ethylene, ethylene dichloride, formaldehyde, propylene, styrene, terephthalic acid, and vinyl chloride. Methanol also serves both as a building block for many other chemicals--formaldehyde, acetic acid, and terephthalic acid--and as a solvent for many industrial uses.

Peaff, G.

1994-10-24T23:59:59.000Z

66

UNCORRECTED Reliability analysis of hybrid ceramic/steel gun barrels  

E-Print Network (OSTI)

UNCORRECTED PROOF Reliability analysis of hybrid ceramic/steel gun barrels M. GRUJICIC1 , J. R-5069, USA Received in final form 25 February 2002 AB ST R AC T Failure of the ceramic gun-barrel lining probability for the lining is also discussed. Keywords failure; gun-barrel lining; reliability; thermo

Grujicic, Mica

67

Commodity Flow Survey | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Commodity Flow Survey Commodity Flow Survey BusinessUSA Data/Tools Apps Challenges Let's Talk BusinessUSA You are here Data.gov » Communities » BusinessUSA » Data Commodity Flow Survey Dataset Summary Description The Commodity Flow Survey provides information on commodities shipped, their value, weight, and mode of transportation, as well as the origin and destination of shipments of commodities from manufacturing, mining, wholesale, and selected retail and services establishments. It is undertaken through a partnership between the Bureau of the Census, U.S. Department of Commerce, and the Bureau of Transportation Statistics, Research and Innovative Technology Administration. Tags {cfc,commodity,flow," federal",state,local,transportation,facilities,services,energy,safety,environment,Mining,Manufacturing,Wholesale,trade,Retail,Services,auxiliary,establishments,warehouses,industries,export,shipment,distance,tons,weight,hazardous,miles,ton-miles,destination,industry,hazard,ship,intrastate,interstate,"UN number",packaging,"TIH number",u.s.,metropolitan}

68

Supplement: Commodity Index Report | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Supplement: Commodity Index Report Supplement: Commodity Index Report Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Supplement: Commodity Index Report Dataset Summary Description Shows index traders in selected agricultural markets. These traders are drawn from the noncommercial and commercial categories. The noncommercial category includes positions of managed funds, pension funds, and other investors that are generally seeking exposure to a broad index of commodity prices as an asset class in an unleveraged and passively-managed manner. The commercial category includes positions for entities whose trading predominantly reflects hedging of over-the-counter transactions involving commodity indices, for example, a swap dealer holding long futures positions to hedge a short commodity index exposure opposite institutional traders, such as pension funds.

69

Causes, Magnitude and Consequences of Price Variability in Agricultural Commodity Market: An African Perspective  

E-Print Network (OSTI)

­ unbridled population growth, oil price fluctuations, importation policies, water availability and political market, hunger, undernourishment in Africa, food productivity, population growth, oil price, importation1 Causes, Magnitude and Consequences of Price Variability in Agricultural Commodity Market

70

Recent results from the Crystal Barrel experiment  

SciTech Connect

The Crystal Barrel experiment has been constructed and installed at the Low Energy Antiproton Ring (LEAR) at CERN. It has been fully operational since late 1989. In this talk, recent results of meson spectroscopy in p[bar p]-annihilations are presented. The main emphasis is on all-neutral annihilations, the study of the strange quark content of the proton, and the investigation of the decay mode of il particles. A 2[sup ++] resonance decaying into [pi][degrees][pi][degrees]at a mass of 1515 [plus minus] 10 MeV with a width of 120 [plus minus] 10 MeV has been seen in a 3[pi][degrees] final state.

Not Available

1991-10-09T23:59:59.000Z

71

Recent results from the Crystal Barrel experiment  

SciTech Connect

The Crystal Barrel experiment has been constructed and installed at the Low Energy Antiproton Ring (LEAR) at CERN. It has been fully operational since late 1989. In this talk, recent results of meson spectroscopy in p{bar p}-annihilations are presented. The main emphasis is on all-neutral annihilations, the study of the strange quark content of the proton, and the investigation of the decay mode of il particles. A 2{sup ++} resonance decaying into {pi}{degrees}{pi}{degrees}at a mass of 1515 {plus_minus} 10 MeV with a width of 120 {plus_minus} 10 MeV has been seen in a 3{pi}{degrees} final state.

The Crystal Barrel Collaboration

1991-10-09T23:59:59.000Z

72

Simulation and testing of pyramid and barrel vault skylights  

SciTech Connect

The thermal performance of fenestration in commercial buildings can have a significant effect on building loads--yet there is little information on the performance of these products. With this in mind, ASHRAE TC 4.5, Fenestration, commissioned a research project involving test and simulation of commercial fenestration systems. The objectives of ASHRAE Research Project 877 were: to evaluate the thermal performance (U-factors) of commonly used commercial glazed roof and wall assemblies; to obtain a better fundamental understanding of the heat transfer processes that occur in these specialty fenestration products; to develop correlations for natural-convection heat transfer in complex glazing cavities; to develop a methodology for evaluating complex fenestration products, suitable for inclusion in ASHRAE Standard 142P (ASHRAE 1996); and to generate U-factors for common commercial fenestration products, suitable for inclusion in the ASHRAE Handbook--Fundamentals. This paper describes testing and simulation of pyramid and barrel vault skylight specimens and provides guidelines for modeling these systems based on the validated results.

McGowan, A.G. [Enermodal Engineering, Ltd., Kitchener, Ontario (Canada); Desjarlais, A.O. [Oak Ridge National Lab. TN (United States); Wright, J.L. [Univ. of Waterloo, Ontario (Canada)

1998-10-01T23:59:59.000Z

73

Feedstock Supply and Logistics: Biomass as a Commodity | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Feedstock Supply and Logistics: Biomass as a Commodity Feedstock Supply and Logistics: Biomass as a Commodity The growing U.S. bioindustry is poised to convert domestic biomass...

74

E-Print Network 3.0 - alice central barrel Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

barrel robots. This centralized sensing and control can reduce the cost of each barrel robot. In one... - dition for the upper bound on the number of barrel robots that can be...

75

Accelerating semantic graph databases on commodity clusters  

SciTech Connect

We are developing a full software system for accelerating semantic graph databases on commodity cluster that scales to hundreds of nodes while maintaining constant query throughput. Our framework comprises a SPARQL to C++ compiler, a library of parallel graph methods and a custom multithreaded runtime layer, which provides a Partitioned Global Address Space (PGAS) programming model with fork/join parallelism and automatic load balancing over a commodity clusters. We present preliminary results for the compiler and for the runtime.

Morari, Alessandro; Castellana, Vito G.; Haglin, David J.; Feo, John T.; Weaver, Jesse R.; Tumeo, Antonino; Villa, Oreste

2013-10-06T23:59:59.000Z

76

CACI: The Cesium-137 Agricultural Commodities Irradiator  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the [sup 137]Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. This Volume, VI, provides the CACI final design features regarding shielding, mechanical and electrical.

Not Available

1986-12-19T23:59:59.000Z

77

CACI: The Cesium-137 Agricultural Commodities Irradiator  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the [sup 137]Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. The CACI final design is described in eight volumes. This Volume V, describes plans, criteria, and requirements.

Not Available

1986-12-19T23:59:59.000Z

78

CACI: The Cesium-137 Agricultural Commodities Irradiator  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the [sup 137]Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. This Volume, IV, provides specifications as developed for the CACI final design.

Not Available

1986-12-01T23:59:59.000Z

79

CACI: The Cesium-137 Agricultural Commodities Irradiator  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. The CACI final design is described in eight volumes. This volume, Volume VII, describes Safety Analysis, Thermal Analysis, and Thermal Testing.

Not Available

1986-12-19T23:59:59.000Z

80

CACI: The Cesium-137 Agricultural Commodities Irradiator  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. The CACI final design is described in eight volumes. This volume Volume III, describes the Shielding Window.

Not Available

1986-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ohio Natural Gas Liquids Proved Reserves (Million Barrels)  

Annual Energy Outlook 2012 (EIA)

Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 - No Data Reported; -- ...

82

Colorado Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

83

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network (OSTI)

commodity  markets  due  to  bioenergy   production  could  the  market  share  of  bioenergy.  If   comprehensive,  

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

84

Survey of Alternative Feedstocks for Commodity Chemical Manufacturing  

SciTech Connect

The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

2008-02-01T23:59:59.000Z

85

COMMODITY PRICE VOLATILITY ACROSS EXCHANGE RATE REGIMES  

E-Print Network (OSTI)

1 COMMODITY PRICE VOLATILITY ACROSS EXCHANGE RATE REGIMES John T. Cuddington* and Hong Liang** March 10, 2003 ABSTRACT This paper documents a new "stylized fact" regarding the relative price 1880 to 1996, this key relative price among two categories of tradable goods is shown to exhibit

86

Baseballs and Barrels: World Statistics Day | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baseballs and Barrels: World Statistics Day Baseballs and Barrels: World Statistics Day Baseballs and Barrels: World Statistics Day October 20, 2010 - 1:06pm Addthis Dr. Richard Newell Dr. Richard Newell Does the American League hold more baseball World Series titles than the National League? Yes. Does Saudi Arabia produce more crude oil than Russia? No. How do I know? Statistics. The month of October not only marks the beginning of Major League Baseball's World Series and Energy Awareness Month, but also the celebration of the first ever World Statistics Day on October 20th. Statistics don't just help us answer trivia questions - they also help us make intelligent decisions. If I heat my home with natural gas, I'm probably interested in what natural gas prices are likely to be this winter. If my business manufactures solar panels, I would want to know how

87

Feedstock Supply and Logistics:Biomass as a Commodity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feedstock Supply and Logistics:Biomass as a Commodity Feedstock Supply and Logistics:Biomass as a Commodity The growing U.S. bioindustry is poised to convert domestic biomass...

88

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

5.PDF Table 15. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining Districts, January 2013 (Thousand Barrels) Commodity Production PAD District 1...

89

Microsoft Word - Information_Commodity5  

Gasoline and Diesel Fuel Update (EIA)

Futures Prices Futures Prices  Conghui Hu † and Wei Xiong ‡ May 2013 Abstract This paper analyzes information flow between commodity futures prices traded in the United States and stock prices of East Asian economies including China, Japan, Hong Kong, South Korea, and Taiwan. We find significantly positive stock price reactions across all these stock markets and across a broad range of industries to the lagged overnight futures returns of copper and soybeans, albeit not crude oil, after mid-2000s. Our findings highlight significant information flow from daily futures returns of copper and soybeans to Asian stock markets and establish the futures prices of these commodities as barometers of global economic strength.  This paper is prepared for Après le Déluge: Finance and the Common Good after the Crisis, edited by E.

90

Basic Installation Guidelines & Instructions for your SkyJuice Rain Barrel 1. Your rain barrel must be placed on a surface that is flat and level. Use a spade to flatten the area for placement of the barrel.  

E-Print Network (OSTI)

the laundry, or rinsing your hair like some of our grandmothers may have done. 3. To maintain the tight the barrel by the spigot. To maintain the tight connection, open the barrel and tighten the nut on the inside will not harm plants and will actually help the soil soak up the water. B. Adding a few drops of Olive Oil

91

Commodities_Spector June 2013. - EIA (Gas).pmd  

U.S. Energy Information Administration (EIA) Indexed Site

American Natural Gas Markets: American Natural Gas Markets: Not Quite Out of the Woods June 2013 Katherine Spector - Head of Commodities Strategy CIBC Worlds Markets katherine.spector@cibc.com K. Spector - June 2013 2 North American Natural Gas Marginally Supportive in 2013... But Not Out of the Woods K. Spector - June 2013 3 Not Out Of The Woods Yet... * The US gas balance looks more price supportive in 2013, but in the short-run (12-24 months) both gas supply and gas demand are still very price elastic. That means rangebound prices. * In the medium- to long-run, gas production will continue to be price sensitive. It is when gas demand - specifically utility demand for gas - is no longer price elastic that the market will truly turn the corner. The 2015-16 period will be key. * Last summer gave us a taste of what coal-to-gas substitution can do to the market. This year will

92

CACI: Cesium-137 Agricultural Commodities Irradiator: Final design report  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of Irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site.

Subbaraman, G.; Conners, C.C.

1986-12-19T23:59:59.000Z

93

EA-359-A Castleton Commodities Merchant Trading L.P.  

Energy.gov (U.S. Department of Energy (DOE))

Order authorizing Castleton Commodities Merchant Trading to export electric energy to Canada.  Name Change from Louis Dreyfus Energy Services L.P.

94

NNSA, Sultanate of Oman Conduct WMD Terrorism-Related Commodities...  

National Nuclear Security Administration (NNSA)

Sultanate of Oman Conduct WMD Terrorism-Related Commodities Workshop and Counterterrorism Tabletop Exercise | National Nuclear Security Administration Facebook Twitter Youtube...

95

Fuel Ethanol Oxygenate Production  

Gasoline and Diesel Fuel Update (EIA)

Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 27,197 26,722 26,923 26,320 25,564 27,995 1981-2013 East Coast (PADD 1) 628 784 836 842 527 636 2004-2013 Midwest (PADD 2) 25,209 24,689 24,786 24,186 23,810 26,040 2004-2013 Gulf Coast (PADD 3) 523 404 487 460 431 473 2004-2013 Rocky Mountain (PADD 4) 450 432 430 432 415 429 2004-2013 West Coast (PADD 5)

96

Disco: Running Commodity Operating Systems on Scalable Multiprocessors  

E-Print Network (OSTI)

Disco: Running Commodity Operating Systems on Scalable Multiprocessors EDOUARD BUGNION, SCOTT of extending modern operating systems to run efficiently on large-scale shared-memory multiprocessors without monitors. We use virtual machines to run multiple commodity operating systems on a scalable multiproces

Bridges, Patrick

97

Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sale of 11 Million Barrels of Crude Oil Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve September 14, 2005 - 10:21am Addthis WASHINGTON, DC - Secretary Samuel W. Bodman announced that the Department of Energy has approved bids for the sale of 11 million barrels of crude oil from the Strategic Petroleum Reserve (SPR). Combined with the 12.6 million barrels of crude previously approved for loans these SPR releases, in response to the disruptions caused by Hurricane Katrina, will provide 23.6 million barrels of crude for the U.S. market. "The United States is committed to using all of the tools at our disposal to help keep our oil and gasoline markets well supplied," Secretary Bodman

98

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2014 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, October 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field...

99

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 2 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-October 2014 (Thousand Barrels per Day) Commodity Supply...

100

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Table 21. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, October 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks...

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

0.PDF Table 10. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

102

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2.PDF Table 22. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD...

103

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE4.PDF Table 4. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

104

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE8.PDF Table 8. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

105

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE6.PDF Table 6. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

106

Defense Energy Support Center: Installation Energy Commodity Business Unit  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Defense Energy Support Center's (DESC's) Installation Energy Commodity Business Unit (CBU) including its intent, commitment, pilot project, lessons learned, and impending barriers.

107

Relative Movements for Design of Commodities in Nuclear Power Plants  

Energy.gov (U.S. Department of Energy (DOE))

Relative Movements for Design of Commodities in Nuclear Power Plants Javad Moslemian, Vice President, Nuclear Power Technologies, Sargent & Lundy LLC Nezar Abraham, Senior Associate II, Nuclear Power Technologies, Sargent & Lundy LLC

108

The Cesium-137 Agricultural Commodities Irradiator (CACI) final design report  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. Over 100 engineering drawings are included.

Not Available

1986-12-19T23:59:59.000Z

109

The Cesium-137 Agricultural Commodities Irradiator (CACI) final design report  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. Site characterization data and equipment engineering drawings are included.

Not Available

1986-12-19T23:59:59.000Z

110

OPEC Crude Oil Production 1999-2001  

Gasoline and Diesel Fuel Update (EIA)

EIA assumes in its base case that OPEC 10 production averages about EIA assumes in its base case that OPEC 10 production averages about 0.6 million barrels per day less in the 1st quarter of 2001 than was produced in the 4th quarter of 2000. This is based on the assumption that beginning in February 2001, OPEC 10 production is 1 million barrels per day less than the estimate for December 2000. Over the course of the past year, worldwide oil production has increased by about 3.7 million barrels per day to a level of 77.8 million barrels per day in the last months of 2000. After being nearly completely curtailed in December 2000, EIA's base case assumes that Iraqi oil exports only partially return in January. By February, EIA assumes Iraqi crude oil production reaches 3 million barrels per day, roughly the peak levels reached last year.

111

Metabolic Engineering and Synthetic Biology in Strain Development Every year, we consume about 27 billion barrels of fossil oil.  

E-Print Network (OSTI)

billion barrels of fossil oil. This enormous amount of oil is used for fueling our cars and airplanes

112

OPEC Crude Oil Production 1999-2001  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: EIA assumes in its base case that OPEC 10 production averages about 0.6 million barrels per day less in the 1st quarter of 2001 than was produced in the 4th quarter of 2000. This is based on the assumption that beginning in February 2001, OPEC 10 production is 1 million barrels per day less than the estimate for December 2000. From the fourth quarter of 1999 to the 4th quarter of 2000, worldwide oil production increased by about 3.7 million barrels per day to a level of 77.8 million barrels per day. After being sharply curtailed in December 2000, EIA's base case assumes that Iraqi oil exports only partially return in January. By February, EIA assumes Iraqi crude oil production reaches 3 million barrels per day, roughly the peak levels reached last year.

113

OPEC Crude Oil Production 1998-2001  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: EIA assumes in its base case that OPEC 10 production averages about 0.6 million barrels per day less in the 1st quarter of 2001 than was produced in the 4th quarter of 2000. This is based on the assumption that beginning in February 2001, OPEC 10 production is 1 million barrels per day less than the estimate for December 2000. From the fourth quarter of 1999 to the 4th quarter of 2000, worldwide oil production increased by about 3.8 million barrels per day to a level of 77.9 million barrels per day. After being sharply curtailed in December and January, EIA's base case assumes that Iraqi oil exports return closer to more normal levels in February. By the second half of 2001, EIA assumes Iraqi crude oil production reaches 3 million barrels per day, roughly the peak levels

114

Sustainable Land Management Through Market-Oriented Commodity Development:  

Open Energy Info (EERE)

Sustainable Land Management Through Market-Oriented Commodity Development: Sustainable Land Management Through Market-Oriented Commodity Development: Case studies from Ethiopia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Land Management Through Market-Oriented Commodity Development: Case studies from Ethiopia Agency/Company /Organization: International Livestock Research Institute Sector: Land Focus Area: Agriculture Topics: Market analysis, Background analysis Resource Type: Publications, Lessons learned/best practices Website: mahider.ilri.org/bitstream/10568/2372/1/WP_21_final.pdf Country: Ethiopia UN Region: "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

115

DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Sell 35,000 Barrels of Oil from the Northeast Home Heating to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have caused new storage costs to rise to a level that exceeds available funds. Revenue from the sale will be used to supplement funds for the award of new long-term storage contracts that will begin on October 1, 2007. The Department will work with Congress to resolve these funding issues in order

116

DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sell 35,000 Barrels of Oil from the Northeast Home Heating Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have caused new storage costs to rise to a level that exceeds available funds. Revenue from the sale will be used to supplement funds for the award of new long-term storage contracts that will begin on October 1, 2007. The Department will work with Congress to resolve these funding issues in order to restore the inventory of the Reserve to its full authorized size.

117

A 12-barrel deuterium pellet injector for the C-2 field-reversed configuration device  

Science Journals Connector (OSTI)

A compact 12-barrel deuterium pellet injector for plasma studies in the C-2 field-reversed configuration device (USA) is described. As in other multibarrel injectors, pellets are simultaneously formed inside s...

I. V. Vinyar; A. Ya. Lukin; S. V. Skoblikov…

2014-07-01T23:59:59.000Z

118

Oil exploration and production in Scotland  

Science Journals Connector (OSTI)

...the end of 1973 it was obvious...million barrels per day during 1973 at a cost to...Israeli War of 1973 and the resultant OPEC oil embargo...EXPLORATION AND PRODUCTION 559 3 E Area...to $11-65 per barrel. The...Government of the day attempted to...

D. Hallett; G. P. Durant; G. E. Farrow

119

OPEC Crude Oil Production 1999-2001  

Gasoline and Diesel Fuel Update (EIA)

3 of 17 3 of 17 Notes: After declining in 1999 due to a series of announced production cuts, OPEC 10 (OPEC countries excluding Iraq) production has been increasing during 2000. EIA's projected OPEC production levels for fourth quarter 2000 have been lowered by 300,000 barrels per day from the previous Outlook. Most of this decrease is in OPEC 10 production, which is estimated to be 26.5 million barrels per day. EIA still believes that only Saudi Arabia, and to a lesser degree, the United Arab Emirates, will have significant short-term capacity to expand production. EIA's forecast assumes that OPEC 10 crude oil production will decline by 400,000 barrels per day to 26.1 million barrels per day by mid-2001. Iraqi crude oil production is estimated to have increased from 2.3 million

120

Total Crude Oil and Petroleum Products Imports by Processing Area  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History East Coast (PADD 1) 62,196 60,122 54,018 52,671 54,668 52,999 1981-2013 Midwest (PADD 2) 54,439 53,849 53,638 60,984 63,482 56,972 1981-2013 Gulf Coast (PADD 3) 141,142 150,846 138,204 149,059 141,421 138,656 1981-2013

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A decomposition approach for commodity pickup and delivery with time-windows under uncertainty  

Science Journals Connector (OSTI)

We consider a special class of large-scale, network-based, resource allocation problems under uncertainty, namely that of multi-commodity flows with time-windows under uncertainty. In this class, we focus on problems involving commodity pickup and delivery ... Keywords: Decomposition, Multi-commodity routing and scheduling, Robust routing and scheduling, Uncertainty

Lavanya Marla, Cynthia Barnhart, Varun Biyani

2014-10-01T23:59:59.000Z

122

STEO January 2013 - oil production increase  

U.S. Energy Information Administration (EIA) Indexed Site

oil production to increase in 2013 and 2014 oil production to increase in 2013 and 2014 U.S. crude oil production is expected to keep rising over the next two years. America's oil output will jump nearly 900,000 barrels per day in 2013 to an average 7.3 million barrels a day, according to the latest monthly forecast from the U.S. Energy Information Administration. This would mark the biggest one-year increase in output since U.S. commercial crude oil production began in 1859. U.S. daily oil production is expected to rise by another 600,000 barrels in 2014 to nearly 8 million barrels a day, the highest level since 1988. Most of America's oil production growth over the next two years will come from more drilling activity in tight shale rock formations located in North Dakota and Texas

123

UK Energy Statistics: Renewables and Waste, Commodity Balances (2010) |  

Open Energy Info (EERE)

403 403 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288403 Varnish cache server UK Energy Statistics: Renewables and Waste, Commodity Balances (2010) Dataset Summary Description Annual commodity balances (supply, consumption) for renewables and waste in the UK from 1998 to 2009. Published as part of the Digest of UK energy statistics (DUKES), by the UK Department of Energy & Climate Change (DECC). Waste includes: wood waste, farm waste, sewage gas, landfill gas, waste and tyres. Renewables includes: wood, plant-based biomass, geothermal and active solar heat, hydro, wind, wave and tidal, and liquid biofuels. These data were used to produce Tables 7.1 to 7.3 in the Digest of United Kingdom Energy Statistics 2010 (available: http://decc.gov.uk/assets/decc/Statistics/publications/dukes/348-dukes-2...).

124

DOE - Office of Legacy Management -- Queen City Barrel Co - OH 41  

Office of Legacy Management (LM)

Queen City Barrel Co - OH 41 Queen City Barrel Co - OH 41 FUSRAP Considered Sites Site: QUEEN CITY BARREL CO. (OH.41) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cincinnati , Ohio OH.41-1 Evaluation Year: 1987 OH.41-1 Site Operations: Cleaned and reconditioned 30- and 55-gallon drums. OH.41-2 OH.41-3 Site Disposition: Eliminated - Based upon limited scope of operations, potential for residual radioactive contamination from MED or AEC operations considered remote OH.41-1 Radioactive Materials Handled: Yes OH.41-2 Primary Radioactive Materials Handled: Radium Bearing Material OH.41-2 OH.41-3 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see

125

Dynamic spillovers among major energy and cereal commodity prices  

Science Journals Connector (OSTI)

Abstract Over the past decade, the sharp increases in the prices of oil and agricultural commodities have raised serious concerns about the heightened volatility of these markets and the possible negative interactions between them. This article deals with the dynamic return and volatility spillovers across international energy and cereal commodity markets. It also examines the impacts of three types of OPEC news announcements on the volatility spillovers and persistence in these markets. For this purpose, we make use of the VAR-BEKK-GARCH and VAR-DCC-GARCH models for the daily spot prices of eight major commodities including WTI oil, Europe Brent oil, gasoline, heating oil, barley, corn, sorghum, and wheat. Our results provide evidence of significant linkages between these energy and cereal markets. Moreover, the OPEC news announcements are found to exert influence on the oil markets as well as on the oil–cereal relationships. Finally, we show that the persistence of volatility decreases (increases) for the crude oil and heating oil (gasoline) returns after accounting for the OPEC announcements in these multivariate GARCH models. However, the results are more mixed for the cereal markets. Overall, our results can be used to improve the risk-adjusted performance by having more diversified portfolios and also serve to hedge the oil risk more effectively.

Walid Mensi; Shawkat Hammoudeh; Duc Khuong Nguyen; Seong-Min Yoon

2014-01-01T23:59:59.000Z

126

Energy Resources—Cornucopia or Empty Barrel?: Discussion  

Science Journals Connector (OSTI)

...production curves of coal. No matter which hydrocarbon (coal, oil, or natural...costs (drilling and mining costs related to depth...the extensive thick coal accumulations of Alaska...relatively thin coals of Appalachia, for exam-ple...

C. J. Campbell

127

Analysis of International Commodity Shipping Data and the Shipment of NORM to the United States  

SciTech Connect

As part of the Spreader Bar Radiation Detector project, PNNL analyzed US import data shipped through US ports collected over the 12 months of 2006 (over 4.5 million containers). Using these data, we extracted a variety of distributions that are of interest to modelers and developers of active and passive detection systems used to 'scan' IMCCs for potential contraband. This report expands on some of the analysis presented in an earlier report from LLNL, by investigation the foreign port distribution of commodities shipped to the US. The majority of containers shipped to the United States are 40 ft containers ({approx}70%); about 25% are 20 ft; and about 3.6% are 45 ft containers. A small fraction (<1%) of containers are of other more specialized sizes, and very few ports actually ship these unique size containers (a full distribution for all foreign ports is shown in Appendix A below). The primary foreign ports that ship the largest fraction of each container are shown in the table below. Given that 45 ft containers comprise 1 of out every 27 containers shipped to the US, and given the foreign ports from which they are shipped, they should not be ignored in screening; further testing and analysis of radiation measurements for national security with this size container is warranted. While a large amount of NORM is shipped in IMCCs, only a few specific commodities are shipped with enough frequency to present potential issues in screening IMCCs at ports. The majority of containers with NORM will contain fertilizers (5,700 containers), granite (59,000 containers), or ceramic (225,000 containers) materials. Fertilizers were generally shipping in either 20- or 40 ft containers with equal frequency. While granite is mostly shipped in 20 ft containers, ceramic materials can be shipped in either 20- or 40 ft containers. The size of container depended on the specific use of the ceramic or porcelain material. General construction ceramics (such as floor and roofing tiles) tend to be shipped in 20 ft containers. Consumer products made from ceramic materials (e.g., tableware, sinks, and toilets) are generally shipped in 40 ft containers. This distinct discrepancy is due in large part to the packaging of the commodity. Consumer products are generally shipped packed in a box loaded with Styrofoam or other packing material to protect the product from breakage. Construction ceramic materials are generally shipped in less packing material, many times consisting of only a cardboard or wooden box. Granite is almost always shipped in a 20 ft container, given its very high density.

Baciak, James E.; Ely, James H.; Schweppe, John E.; Sandness, Gerald A.; Robinson, Sean M.

2011-10-01T23:59:59.000Z

128

Determination of barreling curve in upsetting process by artificial neural networks  

Science Journals Connector (OSTI)

In this paper, an approach for prediction deformation of upsetting processes is developed. The approach combines the finite element method and Neural Network to view the resultant deformation changes in upsetting. Because real time deformation simulation ... Keywords: FEM, barreling, neural network(NN), prediction, train, upsetting

H. Mohammadi Majd; M. Poursina; K. H. Shirazi

2009-09-01T23:59:59.000Z

129

Extrusion of electrode material by liquid injection into extruder barrel  

DOE Patents (OSTI)

An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells. 1 fig.

Keller, D.G.; Giovannoni, R.T.; MacFadden, K.O.

1998-03-10T23:59:59.000Z

130

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

131

Comparison of leading parallel NAS file systems on commodity hardware  

SciTech Connect

High performance computing has experienced tremendous gains in system performance over the past 20 years. Unfortunately other system capabilities, such as file I/O, have not grown commensurately. In this activity, we present the results of our tests of two leading file systems (GPFS and Lustre) on the same physical hardware. This hardware is the standard commodity storage solution in use at LLNL and, while much smaller in size, is intended to enable us to learn about differences between the two systems in terms of performance, ease of use and resilience. This work represents the first hardware consistent study of the two leading file systems that the authors are aware of.

Hedges, R; Fitzgerald, K; Gary, M; Stearman, D M

2010-11-08T23:59:59.000Z

132

CACI: Cesium-137 Agricultural Commodities Irradiator: Final design report. Volume 1, Project summary  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE`s Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of Irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site.

Subbaraman, G.; Conners, C.C.

1986-12-19T23:59:59.000Z

133

Macrocyclic-, polycyclic-, and nitro musks in cosmetics, household commodities and indoor dusts collected from Japan: Implications for their human exposure  

Science Journals Connector (OSTI)

Abstract This paper reported the occurrence and concentrations of macrocyclic-, polycyclic- and nitro musks in cosmetics and household commodities collected from Japan. The high concentrations and detection frequencies of Musk T, habanolide, and exaltolides were found in commercial products, suggesting their large amounts of production and usage in Japan. Polycyclic musks, HHCB and OTNE, also showed high concentrations in cosmetics and products. The estimated dairy intakes of Musk T and HHCB by the dermal exposure to commercial products were 7.8 and 7.9 ?g/kg/day in human, respectively, and perfume and body lotion are dominant exposure sources. We also analyzed synthetic musks in house dusts. Polycyclic musks, HHCB and OTNE, showed high concentrations in samples, but macrocyclic musks were detected only in a few samples, although these types of musks were highly detected in commercial products. This is probably due to easy-degradation of macrocyclic musks in indoor environment. The dairy intakes of HHCB by dust ingestions were 0.22 ng/kg/day in human, which were approximately five orders of magnitudes lower than those of dermal absorption from commercial household commodities.

Haruhiko Nakata; Mari Hinosaka; Hayato Yanagimoto

2015-01-01T23:59:59.000Z

134

Blender Net Production of Finished Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Special Naphthas Lubricants Asphalt and Road Oil Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

135

EU BIOFUEL USE AND AGRICULTURAL COMMODITY PRICES: A REVIEW OF THE EVIDENCE BASE  

E-Print Network (OSTI)

EU BIOFUEL USE AND AGRICULTURAL COMMODITY PRICES: A REVIEW OF THE EVIDENCE BASE Report prepared: Kretschmer, B, Bowyer, C and Buckwell, A (2012) EU Biofuel Use and Agricultural Commodity Prices: A Review............................................................................................................. 8 2 EU POLICY DRIVING BIOFUELS DEMAND AND OUTLOOK FOR THIS DEMAND TO 2020. 9 2.1 What is the current

136

U.S. crude oil production expected to top 9 million barrels per...  

U.S. Energy Information Administration (EIA) Indexed Site

oil prices should be strong enough to support most drilling in North Dakota's Bakken shale formation and in the tight oil basins of Texas which account for the majority of the...

137

U.S. monthly oil production tops 8 million barrels per day for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Several companies plan to build U.S. terminals to export liquefied natural gas, or LNG, to Europe and Asia. EIA's revised forecast reflects one of those LNG export terminals...

138

U.S. monthly oil production tops 8 million barrels per day for...  

Gasoline and Diesel Fuel Update (EIA)

inventories at the close of the heating season since 2003. Very cold weather this winter led to large natural gas stock withdrawals to meet demand for both heating and electricity...

139

U.S. monthly oil production tops 8 million barrels per day for...  

Gasoline and Diesel Fuel Update (EIA)

4 Oil demand expected to rise in non-industrialized countries, led by strong growth in China Nonindustrialized countries are expected to account for all of the growth in global...

140

U.S. monthly oil production tops 8 million barrels per day for...  

U.S. Energy Information Administration (EIA) Indexed Site

Midwest households expected to see a 33% drop in propane heating bills this winter Midwest households that paid record-high prices for propane last winter to stay warm are expected...

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. monthly oil production tops 8 million barrels per day for...  

Gasoline and Diesel Fuel Update (EIA)

coal and less natural gas will be used to generate electricity this summer compared to last year, while combined power generated by wind, sun, and other renewables will also grow...

142

U.S. monthly oil production tops 8 million barrels per day for...  

Annual Energy Outlook 2012 (EIA)

Oceanic and Atmospheric Administration, says that households using propane and heating oil will see the biggest savings....with propane expenditures down 27% this winter compared...

143

Oil commodity returns and macroeconomic factors: A time-varying approach  

Science Journals Connector (OSTI)

Abstract This paper analyses the dynamic influence of macroeconomic factors on oil commodity returns (crude oil and heating oil) shown in monthly data over the period of 1990–2013. Using a time-varying parameter model via the Kalman filter, we find that macroeconomic factors are relevant for explaining oil commodity returns. We find that multilateral exchange rates have a negative effect on commodity returns. We confirm the existence of a strong linkage between energy and non-energy commodities. More importantly, we find shifts in global demand and SP500 effects that are not identified through the constant parameter model. These variables have had a progressively positive effect on oil commodity returns, especially since 2008.

Christophe Schalck; Régis Chenavaz

2015-01-01T23:59:59.000Z

144

RMOTC - Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production RMOTC Pumpjack in action During the process of the sale of NPR-3, RMOTC will focus on maximizing the value of the NPR-3 site and will continue with its Production Optimization Projects. NPR-3 includes 9,481 acres with more than 400 oil-producing wells. Current oil production is at approximately 240 barrels of oil per day. In July 2013, RMOTC began working on a number of Production Optimization Projects within the NPR-3 field, with the goal to optimize and improve flow and efficiency. Production Optimization Projects include repairing and replacing existing infrastructure with new infrastructure in order to optimize current wells and bring additional wells online. These Production Optimization Projects will continue throughout 2013 and are focused on improving current production and creating revenue for the America tax payer.

145

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS: Alaskan North Slope ANWR: Arctic National Wildlife Refuge BBbls: billion barrels Bbls: barrels Daily Petroleum Production Rate: The amount of petroleum extracted per day from a well, group of wells, region, etc. (usually expressed in barrels per day) EIA: Energy Information Administration MBbls: thousand barrels MMBbls: million barrels NPR-A: National Petroleum Reserve-Alaska Petroleum Play: A set of known or postulated petroleum accumulations sharing similar geologic, geographic, and temporal properties such as source rock, migration, pathway, timing, trapping mechanism, and hydrocarbon type

146

MegaProto: 1 TFlops/10 kW Rack Is Feasible Even with Only Commodity Technology  

E-Print Network (OSTI)

MegaProto: 1 TFlops/10 kW Rack Is Feasible Even with Only Commodity Technology Hiroshi Nakashima cluster build only with commodity components to implement this claim. A one-rack system is composed of 32 as with other racks. Each cluster unit houses 16 low-power dollar- bill-sized commodity PC

147

The design and performance of a twenty barrel hydrogen pellet injector for Alcator C-Mod  

SciTech Connect

A twenty barrel hydrogen pellet injector has been designed, built and tested both in the laboratory and on the Alcator C-Mod Tokamak at MIT. The injector functions by firing pellets of frozen hydrogen or deuterium deep into the plasma discharge for the purpose of fueling the plasma, modifying the density profile and increasing the global energy confinement time. The design goals of the injector are: (1) Operational flexibility, (2) High reliability, (3) Remote operation with minimal maintenance. These requirements have lead to a single stage, pipe gun design with twenty barrels. Pellets are formed by in- situ condensation of the fuel gas, thus avoiding moving parts at cryogenic temperatures. The injector is the first to dispense with the need for cryogenic fluids and instead uses a closed cycle refrigerator to cool the thermal system components. The twenty barrels of the injector produce pellets of four different size groups and allow for a high degree of flexibility in fueling experiments. Operation of the injector is under PLC control allowing for remote operation, interlocked safety features and automated pellet manufacturing. The injector has been extrusively tested and shown to produce pellets reliably with velocities up to 1400 m/sec. During the period from September to November of 1993, the injector was successfully used to fire pellets into over fifty plasma discharges. Experimental results include data on the pellet penetration into the plasma using an advanced pellet tracking diagnostic with improved time and spatial response. Data from the tracker indicates pellet penetrations were between 30 and 86 percent of the plasma minor radius.

Urbahn, J.A.

1994-05-01T23:59:59.000Z

148

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

149

Speakers: Stephen Harvey, EIA Dan M. Berkovitz, U.S. Commodity Futures Trading Commission  

U.S. Energy Information Administration (EIA) Indexed Site

6: "Regulating Energy Commodities" 6: "Regulating Energy Commodities" Speakers: Stephen Harvey, EIA Dan M. Berkovitz, U.S. Commodity Futures Trading Commission Sean Cota, Cota & Cota R. Skip Horvath, Natural Gas Supply Association Deanna L. Newcomb, McDermott Will & Emery LLP [Note: Recorders did not pick up introduction of panel (see biographies for details on the panelists) or introduction of session.] Steve Harvey: Why don't we start kind taking our seats and give it just a...well, no looks like we're pretty close. It's a disadvantage, I guess being last on a beautiful day in Washington after a nasty winter. So, I'm glad that the [inaudible] brave folks are still here with us. This panel is on regulating energy commodities. My name is Steve Harvey. I'm the Director of the Office of Oil and Gas at EIA. I will not go into the details

150

A New Four-Barrel Pellet Injection System for the TJ-II Stellarator  

SciTech Connect

A new pellet injection system for the TJ-II stellarator has been developed/constructed as part of a collaboration between the Oak Ridge National Laboratory (ORNL) and the Centro de Investigaciones Energ ticas, Medioambientales y Tecnol gicas (CIEMAT). ORNL is providing most of the injector hardware and instrumentation, the pellet diagnostics, and the pellet transport tubes; CIEMAT is responsible for the injector stand/interface to the stellarator, cryogenic refrigerator, vacuum pumps/ballast volumes, gas manifolds, remote operations, plasma diagnostics, and data acquisition. The pellet injector design is an upgraded version of that used for the ORNL injector installed on the Madison Symmetric Torus (MST). It is a four-barrel system equipped with a cryogenic refrigerator for in situ hydrogen pellet formation and a combined mechanical punch/propellant valve system for pellet acceleration (speeds ~100 to 1000 m/s). On TJ-II, it will be used as an active diagnostic and for fueling. To accommodate the plasma experiments planned for TJ-II, pellet sizes significantly smaller than those typically used for the MST application are required. The system will initially be equipped with four different pellet sizes, with the gun barrel bores ranging between ~0.5 to 1.0 mm. The new system is almost complete and is described briefly here, highlighting the new features added since the original MST injector was constructed. Also, the future installation on TJ-II is reviewed.

Combs, Stephen Kirk [ORNL] [ORNL; Foust, Charles R [ORNL] [ORNL; McGill, James M [ORNL] [ORNL; Baylor, Larry R [ORNL] [ORNL; Caughman, John B [ORNL] [ORNL; Fehling, Dan T [ORNL] [ORNL; Harris, Jeffrey H [ORNL] [ORNL; Meitner, Steven J [ORNL] [ORNL; Rasmussen, David A [ORNL] [ORNL; McCarthy, K. J. [EURATOM-CIEMAT, Madrid, Spain] [EURATOM-CIEMAT, Madrid, Spain; Chamorro, M. [Laboratory Nacional de Fusion, Madrid, Spain] [Laboratory Nacional de Fusion, Madrid, Spain; Garcia, R. [Laboratory Nacional de Fusion, Madrid, Spain] [Laboratory Nacional de Fusion, Madrid, Spain; Hildago, C. [Laboratory Nacional de Fusion, Madrid, Spain] [Laboratory Nacional de Fusion, Madrid, Spain; Medrano, M. [Laboratory Nacional de Fusion, Madrid, Spain] [Laboratory Nacional de Fusion, Madrid, Spain; Unamuno, R. [Laboratory Nacional de Fusion, Madrid, Spain] [Laboratory Nacional de Fusion, Madrid, Spain

2011-01-01T23:59:59.000Z

151

The Common Cryogenic Test Facility for the ATLAS Barrel and End-Cap Toroid Magnets  

SciTech Connect

The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having a 160 tons cold mass. The integrated system mainly comprises a 1.2 kW at 4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific requirements of the magnets in the various operating scenarios.

Delruelle, N.; Haug, F.; Junker, S.; Passardi, G.; Pengo, R.; Pirotte, O. [CERN, AT division, 1211 Geneva 23 (Switzerland)

2004-06-23T23:59:59.000Z

152

An analysis of bulk agricultural commodity buying behavior in selected developing economies  

E-Print Network (OSTI)

AN ANALYSIS OF BULK AGRICULTURAL COMMODITY BUYING BEHAVIOR IN SELECTED DEVELOPING ECONOMIES A Thesis by Kimberly Renee Moore Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1982 Major Subject: Agricultural Economics AN ANALYSIS OF BULK AGRICULTURAL COMMODITY BUYING BEHAVIOR IN SELECTED DEVELOPING ECONOMIES A Thesis by Kimberly Renee Moore Approved as to style and content by: ( i n o Committee...

Moore, Kimberly Renee

1982-01-01T23:59:59.000Z

153

East Coast (PADD 1) Imports of Crude Oil and Petroleum Products for  

Gasoline and Diesel Fuel Update (EIA)

Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Total 60,122 54,018 52,671 54,668 52,999 47,100 1981-2013 Crude Oil 27,587 25,670 24,699 27,070 27,065 18,146 1981-2013 Total Products 32,535 28,348 27,972 27,598 25,934 28,954 1995-2013 Other Liquids 24,957 20,056 20,754 17,137 16,653 17,339 1981-2013 Unfinished Oils 4,375 2,077 2,253 1,874 1,960 1,500 1981-2013

154

CACI: The Cesium-137 Agricultural Commodities Irradiator. Final design report: Volume 4, Specifications  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE`s Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the {sup 137}Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. This Volume, IV, provides specifications as developed for the CACI final design.

Not Available

1986-12-01T23:59:59.000Z

155

CACI: The Cesium-137 Agricultural Commodities Irradiator. Final design report: Volume 6, Shielding, mechanical, and electrical  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE`s Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the {sup 137}Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. This Volume, VI, provides the CACI final design features regarding shielding, mechanical and electrical.

Not Available

1986-12-19T23:59:59.000Z

156

The Cesium-137 Agricultural Commodities Irradiator (CACI) final design report. Volume 2, Drawings [Engineering Materials  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE`s Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. Over 100 engineering drawings are included.

Not Available

1986-12-19T23:59:59.000Z

157

CACI: The Cesium-137 Agricultural Commodities Irradiator. Final design report: Volume 5, Plans, criteria, and requirements  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE`s Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the {sup 137}Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. The CACI final design is described in eight volumes. This Volume V, describes plans, criteria, and requirements.

Not Available

1986-12-19T23:59:59.000Z

158

CACI: The Cesium-137 Agricultural Commodities Irradiator. Final design report: Volume 8, Shielding window  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE`s Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. The CACI final design is described in eight volumes. This volume Volume III, describes the Shielding Window.

Not Available

1986-12-19T23:59:59.000Z

159

The Cesium-137 Agricultural Commodities Irradiator (CACI) final design report. Volume 3, Supplied data [Engineering Materials  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE`s Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. Site characterization data and equipment engineering drawings are included.

Not Available

1986-12-19T23:59:59.000Z

160

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Petroleum Supply Annual  

Annual Energy Outlook 2012 (EIA)

6.PDF Table 16. Refinery and Blender Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2013 (Thousand Barrels) Commodity PAD District 1 - East...

162

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 October 2014 Table 37. Imports of Crude Oil and Petroleum Products by PAD District, October 2014 (Thousand Barrels, Except Where Noted) Commodity PAD Districts U.S. Total 1 2 3 4...

163

untitled  

Gasoline and Diesel Fuel Update (EIA)

. TABLE48.PDF Table 31. Exports of Crude Oil and Petroleum Products by PAD District, 2013 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude...

164

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, 2013 (Thousand Barrels) Commodity From 1 to From 2 to From 3 to 2 3 1 3 4 1 2 4 5 Crude Oil...

165

Petroleum Supply Monthly  

Annual Energy Outlook 2012 (EIA)

October 2011 Table 55. Stocks of Crude Oil and Petroleum Products by PAD District, October 2011 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Crude Oil...

166

Petroleum Supply Annual  

Gasoline and Diesel Fuel Update (EIA)

7.PDF Table 37. Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, January 2013 (Thousand Barrels) Commodity From 1 to From 2 to From 3 to 2 3 1 3 4 1...

167

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1.PDF Table 31. Exports of Crude Oil and Petroleum Products by PAD District, January 2013 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude...

168

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

barrels/day barrels/day 0 400 800 1,200 1,600 2,000 2007 2008 2009 2010 2011 2012 2013 2014 Oil production thousand barrels/day Haynesville 0.0 0.5 1.0 1.5 2.0 Dec 54 Mbbl/d Production from new wells Legacy production change Net change Jan 54 Mbbl/d thousand barrels/day Haynesville +2 -2 +0 Indicated change in oil production (Jan vs. Dec) -150 -50 50 150 250 350 Dec 6,492 MMcf/d Production from new wells Legacy production change Net change Jan 6,361 MMcf/d Indicated change in natural gas production (Jan vs. Dec) million cubic feet/day Haynesville +239 -370 -131 0 50 100 150 200 250 300 0 200 400 600 800 1,000 2007 2008 2009 2010 2011 2012 2013 2014 new-well oil production per rig rig count New-well oil production per rig barrels/day Haynesville Rig count rigs (3) (2) (1) 0 2007 2008 2009 2010 2011 2012 2013 2014 Legacy oil production change

169

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

170

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

171

Experimental investigation of a cook-off temperature in a hot barrel  

Science Journals Connector (OSTI)

Abstract The experimental investigations of the effect of contact time/temperature on initiating the cook-off using 7.62 mm calibre cartridge cases (CC) were conducted previously. These cartridges were filled with commercial off-the-shelf (COTS) double based (DB) propellant (Bulls Eye) and were loaded in a hot chamber. The thermal explosion temperature is of great significance to both weapon designers and safety inspectors as it provides the operational limit and safe operating temperature. For CC under test, it was found that the cook-off temperatures of this propellant were encountered with the heat transfer profile of the simulated gun barrel between 151.4 °C and 153.4 °C, with a reaction occurring in less than 300 s after the round was chambered. Usefully, each experiment was found to be consistent and repeatable.

Amer Hameed; Mathew Azavedo; Philip Pitcher

2014-01-01T23:59:59.000Z

172

Performance of the prototype module of the GlueX electromagnetic barrel calorimeter  

SciTech Connect

A photon beam test of the 4 m long prototype lead/scintillating-fibre module for the GlueX electromagnetic barrel calorimeter was carried out in Hall B at the Thomas Jefferson National Accelerator Facility with the objective of measuring the energy and timing resolutions of the module as well as the number of photoelectrons generated. Data were collected over an energy range of 150 - â 650 MeV at multiple positions and angles along the module. Details of the analysis at the centre of and perpendicular to the module are shown herein; the results are View the MathML source, View the MathML source ps, and 660 photoelectrons for 1 GeV at each end of the module.

Leverington, Blake; Lolos, George; Papandreou, Zisis; Hakobyan, Rafael; Huber, Garth; Janzen, Kathryn; Semenov, Andrei; Scott, Eric; Shepherd, Matthew; Carman, Daniel; Lawrence, David; Smith, Elton; Taylor, Simon; Wolin, Elliott; Klein, Franz; Santoro, Joseph; Sober, Daniel; Kourkoumeli, Christina

2008-11-01T23:59:59.000Z

173

EIS-0012: Petroleum Production at Maximum Efficient Rate, Naval Petroleum Reserve #1, Elk Hills, Kern County, California (also see EA-0261, EA-0334, and EIS-0158-S)  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy prepared this statement to evaluate the environmental impacts of increasing petroleum production, and of additional or expanded operational facilities, at Elk Hills from 160,000 barrels per day up to 240,000 barrels per day.

174

E-Print Network 3.0 - agricultural commodities opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Theater, MSU-Bozeman 282B Strand Union Building Summary: and outreach programs focus on bioenergy production opportunities, agricultural policy and consumer economics......

175

20 InsideGNSS SEP T EMBER /OC T OBER 2011 www.insidegnss.com he Arctic houses an estimated 90 billion barrels of  

E-Print Network (OSTI)

billion barrels of undiscovered, technically recoverable oil and 44 billion barrels of natural gas liquids) reference stations in or near the Arctic, integration of Iridium satellites with GNSS, and use of multi, and MSAS. More specifically, it analyzes the potential benefit of adding new SBAS reference stations

Stanford University

176

72657Federal Register / Vol. 72, No. 245 / Friday, December 21, 2007 / Proposed Rules lease in million barrels of oil equivalent  

E-Print Network (OSTI)

in million barrels of oil equivalent (MMBOE): Water depth Minimum royalty sus- pension volume (MMBOE) (1) 200 of paragraph (b) are revised to read as follows: § 260.124 How will royalty suspension apply if MMS assigns establish a royalty suspension volume for a field as a result of an approved application for royalty relief

177

Biofuels and bio-products derived from  

E-Print Network (OSTI)

NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

Ginzel, Matthew

178

Optimal Design of Reliable Integrated Chemical Production Site  

E-Print Network (OSTI)

with refinery complex 60 production units 28 commodities & specialty chemicals Will be one of the largest · Average inventory (set point) · Operation of intermediate storage during each failure mode scenario

Grossmann, Ignacio E.

179

STEO September 2012 - oil production  

U.S. Energy Information Administration (EIA) Indexed Site

oil production forecast to rise almost 700,000 bpd this oil production forecast to rise almost 700,000 bpd this year, help cut U.S. petroleum imports U.S. crude oil production is expected to average 6.3 million barrels per day in 2012. That's up nearly 700,000 barrels per day from last year and the highest annual oil output since 1997 says the U.S. Energy Information Administration in its new monthly short-term energy outlook for September. EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted U.S. oil production. The number of on-shore drilling rigs targeting oil nationwide has increased by around 200 so far this year to just under 1,400 rigs." Higher domestic oil production will help cut U.S. petroleum imports. The share of total U.S.

180

Can oil prices help estimate commodity futures prices? The cases of copper and silver  

Science Journals Connector (OSTI)

There is an extensive literature on modeling the stochastic process of commodity futures. It has been shown that models with several risk factors are able to adequately fit both the level and the volatility structure of observed transactions with reasonable low errors. One of the characteristics of commodity futures markets is the relatively short term maturity of their contracts, typically ranging for only a few years. This poses a problem for valuing long term investments that require extrapolating the observed term structure. There has been little work on how to effectively do this extrapolation and in measuring its errors. Cortazar et al. (2008b) propose a multicommodity model that jointly estimates two commodities, one with much longer maturity futures contracts than the other, showing that futures prices of one commodity may be useful information for estimating the stochastic process of another. They implement the procedure using highly correlated commodities like WTI and Brent. In this paper we analyze using prices of long term oil futures contracts to help estimate long term copper and silver future prices. We start by analyzing the performance of the Cortazar et al. (2008b) multicommodity model, now applied to oil-copper and oil-silver which have much lower correlation than the WTI–Brent contracts. We show that for these commodities with lower correlation the multicommodity model seems not to be effective. We then propose a modified multicommodity model with a much simpler structure which is easier to estimate and that uses the non-stationary long term process of oil to help estimate long term copper and silver futures prices, achieving a much better fit than using available individual or multicommodity models.

Gonzalo Cortazar; Francisco Eterovic

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

182

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

183

Total Crude Oil and Products Imports from All Countries  

U.S. Energy Information Administration (EIA) Indexed Site

Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

184

Gulf Coast (PADD 3) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

185

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

186

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

187

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

188

Production and price projections for Texas grapefruit - 1975  

E-Print Network (OSTI)

interested in price flexibility than in price elasticity. As opposed to price elasticity of demand, price flexibility generally is used more when dealing with farm products because it shows the responsiveness of the price of a commodity when the quantity... interested in price flexibility than in price elasticity. As opposed to price elasticity of demand, price flexibility generally is used more when dealing with farm products because it shows the responsiveness of the price of a commodity when the quantity...

Tefertiller, Edward Harold

2012-06-07T23:59:59.000Z

189

"ALON ISRAEL OIL COMPANY LTD",820,13,"ALON BAKERSFIELD OPERATING INC","West Coast","California","BAKERSFIELD",5,"CAT HYDROCRACKING, GAS OIL","Downstream Charge Capacity, Current Year (barrels per calendar day)",14250  

U.S. Energy Information Administration (EIA) Indexed Site

CORPORATION","SURVEY","PERIOD","COMPANY_NAME","RDIST_LABEL","STATE_NAME","SITE","PADD","PRODUCT","SUPPLY","QUANTITY" CORPORATION","SURVEY","PERIOD","COMPANY_NAME","RDIST_LABEL","STATE_NAME","SITE","PADD","PRODUCT","SUPPLY","QUANTITY" "ALON ISRAEL OIL COMPANY LTD",820,13,"ALON BAKERSFIELD OPERATING INC","West Coast","California","BAKERSFIELD",5,"CAT HYDROCRACKING, GAS OIL","Downstream Charge Capacity, Current Year (barrels per calendar day)",14250 "ALON ISRAEL OIL COMPANY LTD",820,13,"ALON BAKERSFIELD OPERATING INC","West Coast","California","BAKERSFIELD",5,"CAT HYDROCRACKING, GAS OIL","Downstream Charge Capacity, Current Year (barrels per stream day)",15000

190

STEO December 2012 - oil production  

U.S. Energy Information Administration (EIA) Indexed Site

Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen topping 7 million bpd U.S. crude oil production is now expected to rise by about 760,000 barrels per day in 2012, the biggest annual increase in oil output since U.S. commercial crude oil production began in 1859. American oil producers are expected to pump a daily average of 6.4 million barrels of crude oil this year, according to the U.S. Energy Information Administrator's new monthly energy forecast. The annual increase in oil output tops the previous record set in 1951 and marks the largest yearly production increase ever. Most of the increase in crude oil production is driven by drilling activity in shale formations located in Texas, North Dakota and Montana. U.S. crude oil production next year is expected to top 7 million barrels per day for the first time

191

Production  

Science Journals Connector (OSTI)

Production is obtained from proved reserves but the determinants of the scale of production in the industry and country components of the world total are many and complex with some unique to the individual com...

D. C. Ion

1980-01-01T23:59:59.000Z

192

Quantile Forecasting of Commodity Futures' Returns: Are Implied Volatility Factors Informative?  

E-Print Network (OSTI)

This study develops a multi-period log-return quantile forecasting procedure to evaluate the performance of eleven nearby commodity futures contracts (NCFC) using a sample of 897 daily price observations and at-the-money (ATM) put and call implied...

Dorta, Miguel

2012-07-16T23:59:59.000Z

193

Equilibrium Forward Curves for Commodities BRYAN R. ROUTLEDGE, DUANE J. SEPPI,  

E-Print Network (OSTI)

. As a consequence of a nonnegativity constraint on inventory, the spot commodity has an embedded timing option that is absent in forward con- tracts. This option's value changes over time due to both endogenous inventory extend the model to incorporate a permanent second factor and calibrate the model to crude oil futures

194

Merchant Commodity Storage and Term Structure Model Error Nicola Secomandi,1  

E-Print Network (OSTI)

; specifically, we consider natural gas storage lease contracts (Maragos 2002). Natural gas is an important flows of commodity and energy conversion assets as real options based on stochastic models the futures term structure affect the valuation and hedging of natural gas storage. We find that even small

Sadeh, Norman M.

195

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Edouard Bugnion, Scott Devine, and Mendel Rosenblum  

E-Print Network (OSTI)

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Edouard Bugnion, Scott operating system on a multiprocessor. Our experience shows that the overheads of the monitor are small of these systems. To reduce the memory overheads associated with running multiple operating systems, we have

Yang, Junfeng

196

Emissions of Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans from the Open Burning of Household Waste in Barrels  

Science Journals Connector (OSTI)

This study measured the emissions of several pollutants, including polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), from burning mixtures designed to simulate waste generated by a “recycling” and a “nonrecycling” family in a 208-L (55-gal) burn barrel at the EPA's Open Burning Test Facility. ... Four test burns were made in which the amount of waste placed in the barrel varied from 6.4 to 13.6 kg and the amount actually burned varied from 46.6% to 68.1%. ... This study included a survey of 187 residents in rural counties of Illinois to determine the quantity and type of wastes burned, the management of the ash, and the motivation for burning. ...

Paul M. Lemieux; Christopher C. Lutes; Judith A. Abbott; Kenneth M. Aldous

2000-01-04T23:59:59.000Z

197

The Relationship between Bulk Commodity and Chinese Steel Prices  

E-Print Network (OSTI)

Iron ore and coking coal are complementary inputs for steelmaking and therefore their prices are closely related to steel prices. Historically, trade in iron ore and coking coal was based on long-term contracts, but in recent years there has been a shift towards shorter-term pricing, including on the spot market, and consequently prices reflect market developments more quickly. This article analyses the relationship between the spot prices for iron ore, coking coal and Chinese steel products, and finds that in the short run the spot price for iron ore has tended to overshoot its long-run equilibrium following an unexpected change in Chinese steel prices.

Mark Caputo; Tim Robinson; Hao Wang

198

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1,600 1,600 2007 2008 2009 2010 2011 2012 2013 2014 Oil production thousand barrels/day Permian 0 10 20 30 Dec 1,335 Mbbl/d Production from new wells Legacy production change Net change Jan 1,335 Mbbl/d thousand barrels/day Permian +37 -36 +1 Indicated change in oil production (Jan vs. Dec) 0 20 40 60 80 Dec 5,046 MMcf/d Production from new wells Legacy production change Net change Jan 5,046 MMcf/d Indicated change in natural gas production (Jan vs. Dec) million cubic feet/day Permian +88 -88 +0 0 100 200 300 400 500 600 0 100 200 300 400 500 600 2007 2008 2009 2010 2011 2012 2013 2014 new-well oil production per rig rig count New-well oil production per rig barrels/day Permian Rig count rigs (40) (35) (30) (25) (20) (15) (10) (5) 0 2007 2008 2009 2010 2011 2012 2013 2014 Legacy oil production change thousand barrels/day

199

Production  

Energy.gov (U.S. Department of Energy (DOE))

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

200

Cumulative Energy Demand As Predictor for the Environmental Burden of Commodity Production  

Science Journals Connector (OSTI)

In the home, for example, smaller refrigerators with thicker insulation would use less electricity than do present units. ...

Mark A. J. Huijbregts; Stefanie Hellweg; Rolf Frischknecht; Harrie W. M. Hendriks; Konrad Hungerbühler; A. Jan Hendriks

2010-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Commodity chemicals from natural gas by methane chlorination  

SciTech Connect

Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

1987-01-01T23:59:59.000Z

202

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

203

Can the U.S. Oil and Gas Resource Base Support Sustained Production?  

Science Journals Connector (OSTI)

...that stable U.S. production levels ofthe first half...stable levels of domestic production? The productive character...Petroleum-Exporting Countries (OPEC). Statistics show...682,000 barrels a day (12). If adjustments...actual increase in Alaska production during 1986 and for...

WILLIAM L. FISHER

1987-06-26T23:59:59.000Z

204

Production  

Energy.gov (U.S. Department of Energy (DOE))

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

205

NBER WORKING PAPER SERIES THE SIMPLE ECONOMICS OF COMMODITY PRICE SPECULATION  

Gasoline and Diesel Fuel Update (EIA)

NBER WORKING PAPER SERIES NBER WORKING PAPER SERIES THE SIMPLE ECONOMICS OF COMMODITY PRICE SPECULATION Christopher R. Knittel Robert S. Pindyck Working Paper 18951 http://www.nber.org/papers/w18951 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 April 2013 Robert S. Pindyck hereby declares that he has no relevant material financial interests that relate to the research described in this paper. Christopher R. Knittel hereby declares that he has no direct relevant

206

The structural impact of commodity farm programs on farms in the Southern Texas High Plains  

E-Print Network (OSTI)

OPTIMIZATION OF A HYBRID SOLAR ENERGY COLLECTOR SYSTEM A Thesis by ALAN M. SHI NEMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree MASTER OF SCIENCE May 1981 Major Subject...: Mechanical Engineering 1981 Thesis 5558 THE STRUCTURAL IMPACT OP COMMODITY FARM PROGRAMS ON FARMS IN THE SOUTHERN TEXAS HIGH PLAINS A Thesis by CHRISTINA KAY SHIRLEY Submitted to the Graduate College of Texas AAM University in partial fulfillment...

Shirley, Christina Kay

1981-01-01T23:59:59.000Z

207

CACI: The Cesium-137 Agricultural Commodities Irradiator. Final design report: Volume 7, Safety analysis, thermal analysis, and thermal testing  

SciTech Connect

This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE`s Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. The CACI final design is described in eight volumes. This volume, Volume VII, describes Safety Analysis, Thermal Analysis, and Thermal Testing.

Not Available

1986-12-19T23:59:59.000Z

208

The Incremental Benefits of the Nearest Neighbor Forecast of U.S. Energy Commodity Prices  

E-Print Network (OSTI)

of the prices from 33 U.S. cities.2 Crude oil data covers January 1986 to June 2010. The data are monthly. It was taken from Cushing, OK WTI3 Spot Price FOB and are expressed in dollars per barrel. Heating oil data covers the period June 1986 to June 2010..., Upstate NY, Cincinnati, Portland, Memphis, Nashville, Houston, Richmond, Seattle, Milwaukie. (Hart?s Oxy Fuel News, 2010) 3 West Texas Intermediate, also known as Texas Light Sweet. WTI is produced in Texas and South Oklahoma. Price from WTI serves...

Kudoyan, Olga

2012-02-14T23:59:59.000Z

209

PROHIBITED COMMODITIES  

NLE Websites -- All DOE Office Websites (Extended Search)

are NOT acceptable for transport by DHL - UNDER ANY CIRCUMSTANCES, including domestic (USA) moves. * Live Animals, Reptiles, Snakes, Birds, Insects (other than those listed below...

210

Table 7: Crude oil proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Crude oil proved reserves, reserves changes, and production, 2011" : Crude oil proved reserves, reserves changes, and production, 2011" "million barrels" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

211

Future world oil production: Growth, plateau, or peak?1 Larry Hughes and Jacinda Rudolph  

E-Print Network (OSTI)

Energy Systems 2010 #12;Future world oil production: Growth, plateau, or peak? Larry Hughes2 and Jacinda governments to reduce their energy intensity (6), the growth in oil production resumed in the mid-1980s World Energy Outlook, production is projected to increase to 103.8 million barrels of oil a day by 2030

Hughes, Larry

212

Higher U.S. oil production in 2013 and 2014 means lower oil imports  

U.S. Energy Information Administration (EIA) Indexed Site

Higher U.S. oil production in 2013 and 2014 means lower oil Higher U.S. oil production in 2013 and 2014 means lower oil imports U.S. crude oil production topped 7 million barrels per day in November and December for the first time in 20 years, and production is expected to keep rising over the next two years. The U.S. Energy Information Administration's new monthly forecast sees domestic crude oil output averaging 7.3 million barrels per day this year and climbing to 7.9 million barrels next year. Higher crude oil production means America will need less imported oil. U.S. net imports of crude oil and liquid fuels are forecast to drop to 6.0 million barrels per day in 2014, less than half the 12.5 million barrels per day level in 2005. That will push U.S. imports down to just 32 percent of domestic oil consumption, the lowest

213

Forecasting Using Time Varying Meta-Elliptical Distributions with a Study of Commodity Futures Prices  

E-Print Network (OSTI)

.g. Iraq war), changes in weather conditions (e.g. global warming), the behaviour of commodity prices can be expected to be nonstationary. 2 There has been some statistical study in this area (e.g. Deb et al., 1996, Taylor, 1980), though, research... returns of gas oil, coffee and rice. Figure I 16 Figure I. Time Series Plot. Gas Oil 0 500 1000 1500 2000 2500 3000 -20 -10 0 10 Ga s Oi l Coffee 0 500 1000 1500 2000 2500 3000 -30 -20 -10 0 10 20 Co ffe e 17 Rice 0 500 1000 1500 2000 2500 3000 -20 -10 0...

Sancetta, Alessio; Nikanrova, Arina

2006-03-14T23:59:59.000Z

214

Factors Affecting Texas Farm Commodity Prices and Index Computation Methods, 1910-58.  

E-Print Network (OSTI)

major Texas farm commodities , were developed using weighted seasonal average ' monthly prices for the 1947-56 period, Figures 4- 14. The prices were adjusted for cycles and 1 trends.) i The zone of price expectancy was calculateil for 1947...-5'6 to afford a measure of the monthly variation in prices from the seasonal average price for the 10-year period. This zone gives the range of the average seasonal price that can be expecte'd for any particular month, in approxi- mately 7 out of 10 years...

Strong, G. B.; Kincannon, J. A.

1959-01-01T23:59:59.000Z

215

Energy futures prices and commodity index investment: New evidence from firm-level position data  

Science Journals Connector (OSTI)

Abstract This study brings fresh data to the highly-charged debate about the price impact of long-only index investment in energy futures markets. We use high frequency daily position data for NYMEX crude oil, heating oil, RBOB gasoline, and natural gas that are available from a representative large commodity index fund (“the Fund”) from February 13, 2007 through May 30, 2012. Simple correlation tests, difference-in-means tests, and Granger causality tests generally fail to reject the null hypothesis that changes in Fund positions are unrelated to subsequent returns in all four energy futures markets. We also fail to find any evidence that Fund positions are related to price movements in the WTI crude oil futures market using Singleton's (2014) long-horizon regression specification. Our results suggest Singleton's original finding of significant impacts and high levels of predictability may be simply an artifact of the method used to impute crude oil positions of index investors in a particular sample period. Overall, the empirical tests in this study fail to find compelling evidence of predictive links between commodity index investment and changes in energy futures prices.

Dwight R. Sanders; Scott H. Irwin

2014-01-01T23:59:59.000Z

216

A commodity approach to aging management review of supports for license renewal  

SciTech Connect

10CFR Part 54 requires that nuclear power plant licensees who seek renewal of their operating licenses for an additional 20 years of operation (i.e., for a total operating life of 60 years) perform an Integrated Plant Assessment (IPA) on all systems, structures and components (SSCs) within the scope of license renewal. Baltimore Gas and Electric (BGE) and MPR Associates, Inc., have recently completed an aging management review of component supports for Calvert Cliffs Nuclear Power Plant (CCNPP). A commodity approach was used on the basis that component supports perform essentially the same function regardless of the system with which they are associated. This approach, i.e., treating component supports as commodities as opposed to performing the aging management review for each individual component support, resulted in a cost-effective approach for this portion of the IPA. An important feature of the aging management review of component support at CCNPP is the evaluation of the adequacy of existing programs to manage component support aging. Two major programs were included in the evaluation: the ASME Section 11 In-Service Inspection (ISI) Program, and CCNPP`s Seismic Verification Project to resolve USI A-46. The key role that these programs play in the overall aging management strategy for component supports, as well as the evaluation of other on-going activities which complete the aging management approach for component supports, are discussed.

Schlaseman, C.S. [MPR Associates, Inc., Washington, DC (United States); Tilden, B.M. [Baltimore Gas and Electric Co., MD (United States)

1996-09-01T23:59:59.000Z

217

Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a  

E-Print Network (OSTI)

Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a fraction washed ashore onto sandy beaches from Louisiana to the Florida panhandle. Researchers at the MagLab compare the detailed molecular analysis of hydrocarbons in oiled sands from

Weston, Ken

218

Microbial Fuel Cells -Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6/28/2006 11:32 AM  

E-Print Network (OSTI)

.com Hydrogen Fuel Cells Buy Commercial & Educational Stacks PEM, Fuel Cell Generators & More! www.TheHydrogenCompany.com Hydrogen Fuel Cell Improve Your Fuel Economy 20 to 50% Begin Saving Fuel Now www.SaveMoreWithHydrogenMicrobial Fuel Cells - Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6

Lovley, Derek

219

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Bakken Bakken 0 50 100 Dec 1,000 Mbbl/d Production from new wells Legacy production change Net change Jan 1,025 Mbbl/d thousand barrels/day Bakken +88 -63 +25 Indicated change in oil production (Jan vs. Dec) 0 50 100 Dec 1,092 MMcf/d Production from new wells Legacy production change Net change Jan 1,119 MMcf/d Indicated change in natural gas production (Jan vs. Dec) million cubic feet/day Bakken +83 -55 +28 0 50 100 150 200 250 0 100 200 300 400 500 600 2007 2008 2009 2010 2011 2012 2013 2014 new-well oil production per rig rig count New-well oil production per rig barrels/day Bakken Rig count rigs (70) (60) (50) (40) (30) (20) (10) 0 2007 2008 2009 2010 2011 2012 2013 2014 Legacy oil production change thousand barrels/day Bakken (60) (50) (40) (30) (20) (10) 0 2007 2008 2009 2010 2011 2012 2013 2014 Legacy gas production change

220

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Marcellus Marcellus 0 400 800 1,200 1,600 2,000 2007 2008 2009 2010 2011 2012 2013 2014 Oil production thousand barrels/day Marcellus 0.0 1.0 2.0 3.0 4.0 Dec 39 Mbbl/d Production from new wells Legacy production change Net change Jan 41 Mbbl/d thousand barrels/day Marcellus +4 -2 +2 Indicated change in oil production (Jan vs. Dec) 0 200 400 600 Dec 13,303 MMcf/d Production from new wells Legacy production change Net change Jan 13,721 MMcf/d Indicated change in natural gas production (Jan vs. Dec) million cubic feet/day Marcellus +612 -193 +419 0 20 40 60 80 100 120 140 160 0 200 400 600 800 1,000 2007 2008 2009 2010 2011 2012 2013 2014 new-well oil production per rig rig count New-well oil production per rig barrels/day Marcellus Rig count rigs (3) (2) (1) 0 2007 2008 2009 2010 2011 2012 2013 2014 Legacy oil production change

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per  

E-Print Network (OSTI)

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

Phillips, David

222

Crude Oil and Petroleum Products Movements by Pipeline between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline between PAD Districts Pipeline between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

223

Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits  

E-Print Network (OSTI)

commodity prices and crude oil prices since 1990. Source:4 Price ($/barrel) Corn Rice Sugar Oil seeds Crude oil

Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

2009-01-01T23:59:59.000Z

224

Carbon-dioxide emissions trading and hierarchical structure in worldwide finance and commodities markets  

Science Journals Connector (OSTI)

In a highly interdependent economic world, the nature of relationships between financial entities is becoming an increasingly important area of study. Recently, many studies have shown the usefulness of minimal spanning trees (MST) in extracting interactions between financial entities. Here, we propose a modified MST network whose metric distance is defined in terms of cross-correlation coefficient absolute values, enabling the connections between anticorrelated entities to manifest properly. We investigate 69 daily time series, comprising three types of financial assets: 28 stock market indicators, 21 currency futures, and 20 commodity futures. We show that though the resulting MST network evolves over time, the financial assets of similar type tend to have connections which are stable over time. In addition, we find a characteristic time lag between the volatility time series of the stock market indicators and those of the EU CO2 emission allowance (EUA) and crude oil futures (WTI). This time lag is given by the peak of the cross-correlation function of the volatility time series EUA (or WTI) with that of the stock market indicators, and is markedly different (>20 days) from 0, showing that the volatility of stock market indicators today can predict the volatility of EU emissions allowances and of crude oil in the near future.

Zeyu Zheng, Kazuko Yamasaki, Joel N. Tenenbaum, and H. Eugene Stanley

2013-01-29T23:59:59.000Z

225

Medium-term planning for thermal electricity production  

Science Journals Connector (OSTI)

In the present paper, we present a mid-term planning model for thermal power generation which is based on multistage stochastic optimization and involves stochastic electricity spot prices, a mixture of fuels with stochastic prices, the effect of CO Keywords: Electricity production, Modeling commodity spot prices, Multistage stochastic programming, Tree generation

Raimund M. Kovacevic; Florentina Paraschiv

2014-07-01T23:59:59.000Z

226

Battle for the Barrel  

Science Journals Connector (OSTI)

...the National Renewable Energy Laboratory in Golden...says Coleman Jones, biofuel implementation manager...Congress to make the use of biofuels mandatory. That would...Congress could give all alternative energy producers a huge lift...

Robert F. Service

2013-03-22T23:59:59.000Z

227

Over a pork barrel  

Science Journals Connector (OSTI)

... Finally, Congress has bought into the notion that R&D is the key to economic competitiveness. So helping colleges and universities get some federal money is more enticing than it ...

David Goldston

2007-06-06T23:59:59.000Z

228

Battle for the Barrel  

Science Journals Connector (OSTI)

...producers go beyond such mandates over the next few years and flood the market with their fuel, there may be nowhere for it to go...director of the National Renewable Energy Laboratory in Golden, Colorado. To work with higher ethanol blends, carmakers will need...

Robert F. Service

2013-03-22T23:59:59.000Z

229

Relationship of organizational communication methods and leaders' perceptions of the 2002 Farm Bill: a study of selected commodity-specific, general agricultural, and natural resources organizations  

E-Print Network (OSTI)

The purpose of this study was to determine perceptions of organizational communication methods used by selected commodity-specific, general agricultural and, conservation or natural resources organizations to disseminate information about the Farm...

Catchings, Christa Leigh

2005-11-01T23:59:59.000Z

230

Carbon Balance Studies in Chaparral Shrubs: Implications for Biomass Production1  

E-Print Network (OSTI)

the gross energy equivalent of 18.2 x 10 6 barrels of oil or 546 million dollars at current oil prices. This is roughly the energy equivalent of 2 Hoover Dams or 1/2 of the on shore oil production of the central be considered in making management decisions. These included life history attributes, fluxes of minerals

Standiford, Richard B.

231

Table 39. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

State/Refiner/Location Alkylates Aromatics State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) Isooctane a

232

Cellulase for commodity products from cellulosic biomass Michael E Himmel*?, Mark F Ruth*1 and Charles E Wymans  

E-Print Network (OSTI)

dramatically over the past two decades, to the point where the fuel is now competitive for blending with gasoline to reduce greenhouse gas emissions, enhance octane, extend the gasoline supply, and promote more

California at Riverside, University of

233

OPEC agrees to lower oil prices, production  

Science Journals Connector (OSTI)

OPEC agrees to lower oil prices, production ... The attempt to stabilize prices and salvage some of OPEC's eroding control of the world oil market forced the cartel to make the first price cut in its history. ... U.S. government officials, predicting that the price ultimately would fall to between $25 and $27 per barrel from the new benchmark level of $29, said the new price would increase domestic production of goods and services 0.4% and cut consumer prices in the U.S. nearly 1.0%. ...

1983-03-21T23:59:59.000Z

234

Active hurricane season expected to shut-in higher amount of oil and natural gas production  

U.S. Energy Information Administration (EIA) Indexed Site

Active hurricane season expected to shut-in higher amount of Active hurricane season expected to shut-in higher amount of oil and natural gas production An above-normal 2013 hurricane season is expected to cause a median production loss of about 19 million barrels of U.S. crude oil and 46 billion cubic feet of natural gas production in the Gulf of Mexico, according to the new forecast from the U.S. Energy Information Administration. That's about one-third more than the amount of oil and gas production knocked offline during last year's hurricane season. Government weather forecasts predict 13 to 20 named storms will form between June and the end of November, with 7 to 11 of those turning into hurricanes. Production outages in previous hurricane seasons were as high as 107 million barrels of crude oil

235

Forecasting World Crude Oil Production Using Multicyclic Hubbert Model  

Science Journals Connector (OSTI)

OPEC’s actual production was mainly unrestricted until the 1973 Arab oil embargo. ... On the basis of the analysis of all 47 investigated oil producing countries, the results of our study estimated that the world ultimate reserve of crude oil is around 2140 BSTB and that 1161 BSTB are remaining to be produced as of 2005 year end. ... MSTB/D = thousand stock tank barrels per day ...

Ibrahim Sami Nashawi; Adel Malallah; Mohammed Al-Bisharah

2010-02-04T23:59:59.000Z

236

Proposal for the renegotiation of a contract for the supply of eight coil casings for the barrel toroid magnet of the ATLAS detector  

E-Print Network (OSTI)

This document concerns the renegotiation of a contract for the supply of eight coil casings for the Barrel Toroid Magnet of the ATLAS detector. The proposal for the award of a contract with ABB ENERTECH (CH) was presented to Finance Committee for information in September 1998 (CERN/FC/4089). In view of the developments outlined in this document, the Finance Committee is invited to agree to the renegotiation of a contract with ALSTOM SWITZERLAND (CH), for the supply of eight coil casings for the ATLAS Barrel Toroid Magnet for a total Ex-works price of 12 580 000 Swiss francs, subject to revision after 31 July 2001, with an option for an extra coil casing for an additional Ex-works price of 1 525 000 Swiss francs, subject to revision after 31 July 2001, bringing the total amount for the supply to 14 105 000 Swiss francs, subject to revision after 31 July 2001. The total amount of the contract, including transport to the integration site, will not exceed 14 490 000 Swiss francs, subject to revision after 31 July...

2001-01-01T23:59:59.000Z

237

The trigger, as given by the scintillator barrel counters, results from two counters (one in the upper and one in the lower part of the barrel) which have been hit by a particle  

E-Print Network (OSTI)

from the depleted uranium inside the hadron calorimeter, the production of delta-rays (knock and is the counts-to-time conversion constant (i.e. bin-size) of the TDC. The cosmic-ray muon trigger does

van Suijlekom, Walter

238

Managing in a Commodity World Mike O'Shaughnessy, Director, Business Planning  

E-Print Network (OSTI)

2010 2011 2012 2013 2014 2015 2016 2017 Real GDP (% Change Year over Year) Long Te project Andacollo (90%) · Recently completed expansion that quadrupled production · >20 year mine life and Cost Competitive Production Mine Advanced ProjectRefinery · Fort Hills: 20% · Frontier: 100% · Lease

Boisvert, Jeff

239

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

240

NETL: News Release - DOE Project Revives Oil Production in Abandoned Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

4 , 2006 4 , 2006 DOE Project Revives Oil Production in Abandoned Fields on Osage Tribal Lands Novel Oil Recovery Technique Developed Under DOE's Native American Initiative WASHINGTON, DC - A technology developed with U.S. Department of Energy funding has revived oil production in two abandoned oilfields on Osage Indian tribal lands in northeastern Oklahoma, and demonstrated a technology that could add billions of barrels of additional domestic oil production in declining fields. Production has jumped from zero to more than 100 barrels of oil per day in the two Osage County, Okla., fields, one of which is more than 100 years old. The technology was successfully pilot-tested in the century-old field, and using the knowledge gained, the technology was applied to a neighboring field with comparable success. This suggests that such approaches could revitalize thousands of other seemingly depleted oilfields across America's Midcontinent region.

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A SURVEY OF COMMODITY MARKETS AND STRUCTURAL MODELS FOR ELECTRICITY PRICES  

E-Print Network (OSTI)

focus on the important role of other energy prices and fundamental factors in setting the power price sources, the main production process remains the conversion of fossil fuels like coal, gas and oil. Since

Carmona, Rene

242

OPEC Production Likely To Remain Low  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: With a background of some weakening demand from weakening economies (being pushed lower by high crude oil prices), OPEC has shown not only a a reluctance to increase production any time soon, but has actually decreased production. OPEC has attempted to reduce production by 3.5 million barrels per day so far this year. The last of these cuts is not to occur until September, which will affect consuming countries the most over the upcoming winter. Tightness in both European (Brent price) and Asian (Dubai price) markets are reflected in the recent strength seen in the marker crude oil for these regions. But with the effect of the 2nd OPEC production cuts just taking effect and the effect of the 3rd production cut yet to come, U.S. crude oil stocks are

243

Investigating Sequestration Potential of Carbonate Rocks during Tertiary Recovery from a Billion Barrel Oil Field, Weyburn, Saskatchewan: the Geoscience Framework (IEA Weyburn CO2 Monitoring Project)  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Potential of Carbonate Rocks during Tertiary Sequestration Potential of Carbonate Rocks during Tertiary Recovery from a Billion Barrel Oil Field, Weyburn, Saskatchewan: the Geoscience Framework (IEA Weyburn CO 2 Monitoring and Storage Project) G. Burrowes (Geoffrey_Burrowes@pancanadian.ca; 403-290-2796) PanCanadian Resources 150 - 9 th Avenue S.W., P.O. Box 2850 Calgary, Alberta, Canada T2P 2S5 C. Gilboy (cgilboy@sem.gov.sk.ca; 306-787-2573) Petroleum Geology Branch, Saskatchewan Energy and Mines 201 Dewdney Avenue East Regina, Saskatchewan, Canada S4N 4G3 Introduction In Western Canada the application of CO 2 injection for enhanced, 'tertiary' oil recovery is a relatively recent addition to the arsenal available to reservoir engineers. The first successful application of CO 2 as a miscible fluid in Western Canada began in 1984 at Joffre Field, a

244

Du, X., Kockelman, K. M. 1 1 TRACKING TRANSPORTATION AND INDUSTRIAL PRODUCTION ACROSS A  

E-Print Network (OSTI)

commodities highlight the importance of food 35 and petroleum manufacturing sectors, in terms of production Southeast University 8 Nanjing, China 9 dxc@seu.edu.cn 10 11 Kara M. Kockelman 12 (Corresponding author) 13 Framework as its primary data source. Driven 30 by foreign export demands, RUBMRIO simulates trade patterns

Kockelman, Kara M.

245

BPA COMMODITY LISTING July 2014 OM/FSS -O= Open Market/F= Federal Supply Bus. Sz. -S= Small Business/O= Other than Small MOL= Maximum Order Limit  

E-Print Network (OSTI)

BPA COMMODITY LISTING July 2014 OM/FSS - O= Open Market/F= Federal Supply Bus. Sz. - S= Small Business/O= Other than Small MOL= Maximum Order Limit B.P.A. # Vendor Name ATTN: Phone # City State/30/2014 O S $25,000.00 #12;BPA COMMODITY LISTING July 2014 B.P.A. # Vendor Name ATTN: Phone # City State

Rau, Don C.

246

BPA COMMODITY LISTING February 2014 OM/FSS -O= Open Market/F= Federal Supply Bus. Sz. -S= Small Business/O= Other than Small MOL= Maximum Order Limit  

E-Print Network (OSTI)

BPA COMMODITY LISTING February 2014 OM/FSS - O= Open Market/F= Federal Supply Bus. Sz. - S= Small Business/O= Other than Small MOL= Maximum Order Limit B.P.A. # Vendor Name ATTN: Phone # City State,000.00 #12;BPA COMMODITY LISTING February 2014 B.P.A. # Vendor Name ATTN: Phone # City State Expiration O

Rau, Don C.

247

BPA COMMODITY LISTING August 2014 OM/FSS -O= Open Market/F= Federal Supply Bus. Sz. -S= Small Business/O= Other than Small MOL= Maximum Order Limit  

E-Print Network (OSTI)

BPA COMMODITY LISTING August 2014 OM/FSS - O= Open Market/F= Federal Supply Bus. Sz. - S= Small Business/O= Other than Small MOL= Maximum Order Limit B.P.A. # Vendor Name ATTN: Phone # City State/30/2014 O S $25,000.00 #12;BPA COMMODITY LISTING August 2014 B.P.A. # Vendor Name ATTN: Phone # City State

Rau, Don C.

248

Calculating Long-Term Trends in the Real Real Prices of Primary Commodities  

E-Print Network (OSTI)

Resources; Energy; Environment; Other Primary Products Q32 - Exhaustible Resources and Economic Development) index variously deflated by a manufacturing unit value index for exports to LDCs (MUV), the U.S. GDP) for a review of the PS literature. In the mid-1990s, the Boskin Commission report argued that measurement

249

150 Years of Boom and Bust: What Drives Mineral Commodity Prices?  

E-Print Network (OSTI)

and production levels of copper, lead, tin, zinc, and crude oil from 1840 to 2010. Price fluctuations that price surges caused by rapid industrialization are a recurrent phenomenon throughout history. Mineral that supply shocks account for the broad behavior of the price of crude oil. In contrast, Kilian (2008b, 2009

Nesterov, Yurii

250

Weekly Refiner Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Net Production Refiner Net Production (Thousand Barrels per Day) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product/Region 11/08/13 11/15/13 11/22/13 11/29/13 12/06/13 12/13/13 View History Finished Motor Gasoline 2,168 2,300 2,336 2,359 2,462 2,368 2010-2013 East Coast (PADD 1) 54 53 52 67 71 67 2010-2013 Midwest (PADD 2) 696 745 722 711 798 790 2010-2013 Gulf Coast (PADD 3) 891 916 1,010 1,053 1,011 1,021 2010-2013 Rocky Mountain (PADD 4) 260 248 245 232 279 235 2010-2013 West Coast (PADD 5) 268 338 308 296 302 255 2010-2013 Reformulated 50 49 49 49 48 49 2010-2013 Blended with Ethanol 50 49 49 49 48 49 2010-2013 Other

251

BCH222 -Greek Key Barrels C.I. Branden and J. Tooze (1999) Introduction to Protein Structure, Second Edition, pp. 77-78 & 335-336 (look at the color  

E-Print Network (OSTI)

at the back of the beta barrel. Residues 110-136 (View3) are a long alpha helix (how many turns.kin contains one domain from the -amylase enzyme of PDB file 1E43. Remind yourself of the basic geometrical

Richardson, David

252

Disco: Running Commodity Operating Systems on Scalable Multiprocessors Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). SaintMalo, France. October 1997.  

E-Print Network (OSTI)

Page 1 Disco: Running Commodity Operating Systems on Scalable Multiprocessors Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint­Malo, France. October 1997. In this paper we examine the problem of extending modern operating systems to run efficiently on large­scale shared

Krishnamurthy, Arvind

253

Page 1Disco: Running Commodity Operating Systems on Scalable Multiprocessors Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.  

E-Print Network (OSTI)

Page 1Disco: Running Commodity Operating Systems on Scalable Multiprocessors Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997. In this paper run multiple copies of Silicon Graphics' IRIX operating system on a multiprocessor. Our experience

Han, Richard Y.

254

Energy Supply Crude Oil Production (a)  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Supply Energy Supply Crude Oil Production (a) (million barrels per day) .............................. 6.22 6.29 6.42 7.02 7.11 7.29 7.61 7.97 8.26 8.45 8.57 8.86 6.49 7.50 8.54 Dry Natural Gas Production (billion cubic feet per day) ........................... 65.40 65.49 65.76 66.34 65.78 66.50 67.11 67.88 67.99 67.74 67.37 67.70 65.75 66.82 67.70 Coal Production (million short tons) ...................................... 266 241 259 250 245 243 264 256 258 249 265 262 1,016 1,008 1,033 Energy Consumption Liquid Fuels (million barrels per day) .............................. 18.36 18.55 18.59 18.45 18.59 18.61 19.08 18.90 18.69 18.67 18.91 18.82 18.49 18.80 18.77 Natural Gas (billion cubic feet per day) ........................... 81.09 62.38 63.72 71.27 88.05 59.49 60.69 74.92 85.76 59.40 60.87 72.53 69.60 70.72 69.58 Coal (b) (million short tons) ......................................

255

EIA Energy Conferences & Presentations, April 7, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

SESSION 6: "Financial Markets and Short-Term Energy Prices" SESSION 6: "Financial Markets and Short-Term Energy Prices" Mr. Lidderdale: This session is on the relationship between speculation in financial markets, and the impact on prices and energy markets. I expect everyone in this room is well aware of the current debate regarding the effect of speculation in financial commodity prices and on prices in physical markets. Yesterday 229 million barrels of light sweet crude oil for May delivery were traded on the NIMEX futures market. This compares with about 400,000 barrels a day of WTI crude oil that's produced, 5 million barrels a day of total U.S. production, and about 80 million barrels a day of worldwide production. All of us bring our own biases to this debate. For example, many economists are strongly influenced by their training in the traditional theory of

256

Lease Condensate Production  

Gasoline and Diesel Fuel Update (EIA)

Condensate Production Condensate Production (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009 2010 2011 View History U.S. 182 181 173 178 224 231 1979-2011 Alabama 2 2 2 2 2 2 1979-2011 Alaska 0 0 0 0 0 20 1979-2011 Arkansas 0 0 0 0 0 0 1979-2011 California 0 0 0 0 0 0 1979-2011 Coastal Region Onshore 0 0 0 0 0 0 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 0 0 0 0 0 0 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 6 6 7 7 7 8 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 1 1 1 1 2 1 1979-2011 Kentucky 0 0 0 0 0 0 1979-2011 Louisiana 22 20 20 18 14 14 1981-2011

257

Molecular Origin of Electron Paramagnetic Resonance Line Shapes on [beta]-Barrel Membrane Proteins: The Local Solvation Environment Modulates Spin-Label Configuration  

SciTech Connect

In this work, electron paramagnetic resonance (EPR) spectroscopy and X-ray crystallography were used to examine the origins of EPR line shapes from spin-labels at the protein-lipid interface on the {beta}-barrel membrane protein BtuB. Two atomic-resolution structures were obtained for the methanethiosulfonate spin-label derivatized to cysteines on the membrane-facing surface of BtuB. At one of these sites, position 156, the label side chain resides in a pocket formed by neighboring residues; however, it extends from the protein surface and yields a single-component EPR spectrum in the crystal that results primarily from fast rotation about the fourth and fifth bonds linking the spin-label to the protein backbone. In lipid bilayers, site 156 yields a multicomponent spectrum resulting from different rotameric states of the labeled side chain. Moreover, changes in the lipid environment, such as variations in bilayer thickness, modulate the EPR spectrum by modulating label rotamer populations. At a second site, position 371, the labeled side chain interacts with a pocket on the protein surface, leading to a highly immobilized single-component EPR spectrum that is not sensitive to hydrocarbon thickness. This spectrum is similar to that seen at other sites that are deep in the hydrocarbon, such as position 170. This work indicates that the rotameric states of spin-labels on exposed hydrocarbon sites are sensitive to the environment at the protein-hydrocarbon interface, and that this environment may modulate weak interactions between the labeled side chain and the protein surface. In the case of BtuB, lipid acyl chain packing is not symmetric around the {beta}-barrel, and EPR spectra from labeled hydrocarbon-facing sites in BtuB may reflect this asymmetry. In addition to facilitating the interpretation of EPR spectra of membrane proteins, these results have important implications for the use of long-range distance restraints in protein structure refinement that are obtained from spin-labels.

Freed, Daniel M.; Khan, Ali K.; Horanyi, Peter S.; Cafiso, David S. (UV)

2012-01-20T23:59:59.000Z

258

Forecasting future oil production in Norway and the UK: a general improved methodology  

E-Print Network (OSTI)

We present a new Monte-Carlo methodology to forecast the crude oil production of Norway and the U.K. based on a two-step process, (i) the nonlinear extrapolation of the current/past performances of individual oil fields and (ii) a stochastic model of the frequency of future oil field discoveries. Compared with the standard methodology that tends to underestimate remaining oil reserves, our method gives a better description of future oil production, as validated by our back-tests starting in 2008. Specifically, we predict remaining reserves extractable until 2030 to be 188 +/- 10 million barrels for Norway and 98 +/- 10 million barrels for the UK, which are respectively 45% and 66% above the predictions using the standard methodology.

Fievet, Lucas; Cauwels, Peter; Sornette, Didier

2014-01-01T23:59:59.000Z

259

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network (OSTI)

barrels  of   crude  oil  (McMahon  and  Price  2011).  one  barrel  of  crude  oil  (McMahon  and  Price  2011).  

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

260

Impacts of the Venezuelan Crude Oil Production Loss  

Gasoline and Diesel Fuel Update (EIA)

Impacts of the Venezuelan Crude Oil Production Loss Impacts of the Venezuelan Crude Oil Production Loss EIA Home > Petroleum > Petroleum Feature Articles Impacts of the Venezuelan Crude Oil Production Loss Printer-Friendly PDF Impacts of the Venezuelan Crude Oil Production Loss By Joanne Shore and John Hackworth1 Introduction The loss of almost 3 million barrels per day of crude oil production in Venezuela following a strike in December 2002 resulted in an increase in the world price of crude oil. However, in the short term, the volume loss probably affected the United States more than most other areas. This country receives more than half of Venezuela's crude and product exports, and replacing the lost volumes proved difficult. U.S. imports of Venezuelan crude oil dropped significantly in December 2002 relative to other years

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Modeling global and local dependence in a pair of commodity forward curves with an application to the US natural gas and heating oil markets  

Science Journals Connector (OSTI)

The goal of this paper is to present a model for the joint evolution of correlated commodity forward curves. Each forward curve is directed by two state variables, namely slope and level, and the model is meant to capture both the local and global dependence structures between slopes and levels. Our framework can be interpreted as an extension of the concept of cointegration to forward curves. The model is applied to a US database of heating oil and natural gas futures prices over the period February 2000–February 2009. We find the long-run slope and level relationships between natural gas and heating oil markets, analyze the lead and lag properties between the two energy commodities, the volatilities and correlations between their daily co-movements and evaluate the robustness of these observations to the turmoil experienced by energy markets since 2003.

Steve Ohana

2010-01-01T23:59:59.000Z

262

PRODUCTION ANALYSIS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH  

SciTech Connect

Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

Thomas C. Chidsey Jr.

2003-12-01T23:59:59.000Z

263

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

400 400 800 1,200 1,600 2,000 Bakken Eagle Ford Haynesville Marcellus Niobrara Permian January-2013 January-2014 Oil production thousand barrels/day 0 2,000 4,000 6,000 8,000 10,000 12,000 Bakken Eagle Ford Haynesville Marcellus Niobrara Permian January-2013 January-2014 Natural gas production million cubic feet/day 0 250 500 750 1,000 Bakken Eagle Ford Haynesville Marcellus Niobrara Permian January-2013 January-2014 New-well oil production per rig barrels/day 0 1,000 2,000 3,000 4,000 5,000 6,000 Bakken Eagle Ford Haynesville Marcellus Niobrara Permian January-2013 January-2014 New-well gas production per rig thousand cubic feet/day (450) (400) (350) (300) (250) (200) (150) (100) (50) 0 Bakken Eagle Ford Haynesville Marcellus Niobrara Permian January-2013 January-2014 Legacy gas production change million cubic feet/day

264

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

265

"Table A7. Shell Storage Capacity of Selected Petroleum Products by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Shell Storage Capacity of Selected Petroleum Products by Census" Shell Storage Capacity of Selected Petroleum Products by Census" " Region, Industry Group, and Selected Industries, 1991" " (Estimates in Thousand Barrels)" " "," "," "," "," ","Other","RSE" "SIC"," ","Motor","Residual"," ","Distillate","Row" "Code(a)","Industry Groups and Industry","Gasoline","Fuel Oil","Diesel","Fuel Oil","Factors" ,,"Total United States" ,"RSE Column Factors:",1,0.9,1,1.1 , 20,"Food and Kindred Products",38,1448,306,531,12.1 2011," Meat Packing Plants",1,229,40,13,13.2

266

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

0 0 December 2011 Table 59. Movements of Crude Oil and Petroleum Products by Tanker, and Barge Between PAD Districts, December 2011 (Thousand Barrels) Commodity From 1 to From 2 to 2 3 5 1 3 5 Crude Oil ................................................................. 374 533 - 294 1,445 - Petroleum Products ............................................... 143 6 0 1,165 3,822 0 Liquified Petroleum Gases ................................... - - - - - - Unfinished Oils ..................................................... 65 0 - 0 317 - Motor Gasoline Blending Components ................. 41 0 - 643 183 - Reformulated - RBOB ....................................... - - - - - - Conventional ..................................................... 41 0 - 643 183 - CBOB ...........................................................

267

Importance of systems biology in engineering microbes for biofuel production  

SciTech Connect

Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

2009-12-02T23:59:59.000Z

268

COMMODITIES USED BY WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

? Chemicals and Solvents ? Clocks, Timers, Watches ? Clothing Apparel & Uniforms, ShoesBoots ? Communications & Media Related Services ? Computers, Accessories & Supplies ?...

269

U. S. monthly coal production  

Gasoline and Diesel Fuel Update (EIA)

coal commodity regions (i.e., Central Appalachia (CAPP), Northern Appalachia (NAPP), Illinois Basin (ILB), Powder River Basin (PRB), and Uinta Basin (UIB)) in the United States....

270

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

271

Prompt-Month Energy Futures  

Gasoline and Diesel Fuel Update (EIA)

Prompt-Month Energy Futures Prompt-Month Energy Futures Prices and trading activity shown are for prompt-month (see definition below) futures contracts for the energy commodities listed in the table below. Note that trading for prompt-month futures contracts ends on different dates at the end of the month for the various commodities; therefore, some commodity prices may reference delivery for the next month sooner than other commodity prices. Product Description Listed With Crude Oil ($/barrel) West Texas Intermediate (WTI) light sweet crude oil delivered to Cushing, Oklahoma More details | Contract specifications New York Mercantile Exchange (Nymex) Gasoline-RBOB ($/gallon) Reformulated gasoline blendstock for oxygenate blending (RBOB) gasoline delivered to New York Harbor More details | Contract specifications Nymex

272

Long Term World Oil Supply (A Resource Base/Production Path Analysis)  

Gasoline and Diesel Fuel Update (EIA)

Long Term World Oil Supply Long Term World Oil Supply (A Resource Base/Production Path Analysis) 07/28/2000 Click here to start Table of Contents Long Term World Oil Supply (A Resource Base/Production Path Analysis) Executive Summary Executive Summary (Continued) Executive Summary (Continued) Overview The Year of Peak Production..When will worldwide conventional oil production peak?... Lower 48 Crude Oil Reserves & Production 1945-2000 Texas Oil and Condensate Production, and Texas First Purchase Price (FPP), 1980-1999 Published Estimates of World Oil Ultimate Recovery Different Interpretations of a Hypothetical 6,000 Billion Barrel World Original Oil-in-Place Resource Base Campbell-Laherrère World Oil Production Estimates, 1930-2050 Laherrere’s Oil Production Forecast, 1930-2150

273

SCT Hybrid Testing and the Production of Direct Photons in the ATLAS experiment at the LHC  

E-Print Network (OSTI)

Reported in this thesis are the results of production tests of barrel hybrids, photon identification and an analysis of Monte Carlo direct photons. The testing of barrel hybrids assembled at Birmingham is now complete. Hybrids were mounted with chips, bonded and tested to meet the ATLAS acceptance criteria. They have had sensors subsequently attached, been placed on the semiconductor tracker barrels and are preparing to start their operational life. Photon identification has been studied over the Et range 20-450 GeV. Calorimeter identification has been optimised to an efficiency of ~ 90% for single photons, giving a rejection factor against QCD jets increasing with Et from 2600 at 20 GeV to 12700 at > 300 GeV. The addition of an isolation cut inceases this rejection by a factor 2-4 (20-300 GeV) although the high energy region suffers from a lack of statistics. The feasibility of performing a direct photon cross section measurement has been shown. Significant numbers of events are expected over a large range o...

Hollins, T I

2006-01-01T23:59:59.000Z

274

Natural Gas Plant Liquids Production  

Gasoline and Diesel Fuel Update (EIA)

Production Production (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009 2010 2011 View History U.S. 629 650 667 714 745 784 1979-2011 Alabama 3 2 7 5 6 6 1979-2011 Alaska 14 13 13 13 11 11 1979-2011 Arkansas 0 0 0 0 0 0 1979-2011 California 11 11 11 11 10 10 1979-2011 Coastal Region Onshore 1 1 1 1 1 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 10 10 10 10 9 9 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 26 27 38 48 58 63 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 18 18 18 16 16 16 1979-2011 Kentucky 3 3 3 4 5 4 1979-2011 Louisiana

275

Analysis of fruitland water production treatment and disposal, San Juan Basin. Topical report, October 1991-March 1993  

SciTech Connect

The San Juan Basin produces more coalbed methane than the rest of the world combined. Brackish water is produced with the gas. Water production climbed from 40,000 barrels per day in 1989 to 115,000 bpd by late 1992. Underground injection is used to dispose of virtually all the produced water. Water production is projected to increase to 180,000 bpd in 1995. 650 million to 1.1 billion barrels are projected to be produced over the next 20 years. Restricted injection capacity and aquifer storage capacity may necessitate additional disposal wells and, ultimately, other methods to dispose of the water. Alternative treatment technologies, especially electrodialysis and/or reverse osmosis, may be applicable at costs of $0.17 to $0.22 per barrel, a considerable savings over the $0.80 to $1.00/bbl cost of deep injection. With suitable treatment, the majority of the produced water could be made suitable for agricultural or municipal uses. Reservoir analysis and simulations indicate stimulations can be optimized, and that heating water prior to injection might increase injectivity in some wells.

Cox, D.O.; Decker, A.D.; Stevens, S.H.

1993-06-01T23:59:59.000Z

276

CO2 Injection in Kansas Oilfield Could Greatly Increase Production,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Injection in Kansas Oilfield Could Greatly Increase Production, CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says August 31, 2011 - 1:00pm Addthis Washington, DC - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas.

277

CO2 Injection in Kansas Oilfield Could Greatly Increase Production,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Kansas Oilfield Could Greatly Increase Production, in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says August 31, 2011 - 1:00pm Addthis Washington, DC - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas.

278

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

2009-12-31T23:59:59.000Z

279

Financial potential of rubber plantations considering rubberwood production: Wood and crop production nexus  

Science Journals Connector (OSTI)

Globalization and urbanization have significantly increased the food and non-food commodity demand for the last century, and it is vital to consider a business strategy with economical and ecological sustainability. The objective of this study was to project the contribution of wood to the financial performance of rubber plantations. We adopted cost and revenue data of rubber plantations in Cambodia and utilized land expectation value (LEV) as the criterion for profitability analysis. Among the top-ten rubber-producing countries in pan-tropics, the areas of rubber plantation were equivalent to from 1% to 90% of forest plantations and 0.3%–10.2% of total forest areas. Rubberwood revenue accounts for about 4%–10% of the 30th year LEV in rubber plantations at discount rates of 2% y?1–10% y?1, and this was sufficient to cover the cost of re-establishing the plantations. The proportion of the 30th year LEV contributed by wood revenue increased under conditions normally associated with a more difficult business environment, i.e., at higher wage costs, and lower latex revenue. We found that the wood revenue can improve the profitability of rubber plantations by up to 40% depending on the price of the rubberwood. We assert that timber from wood producing commodity plantations should be encouragingly utilized as industrial timber by linking the wood production in the management strategy of the plantations.

Akira Shigematsu; Nobuya Mizoue; Khun Kakada; Pheng Muthavy; Tsuyoshi Kajisa; Shigejiro Yoshida

2013-01-01T23:59:59.000Z

280

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 AEO 1997 2362 2307 2245 2197 2143 2091 2055 2033 2015 2004 1997 1989 1982 1975 1967 1949 AEO 1998 2340 2332 2291 2252 2220 2192 2169 2145 2125 2104 2087 2068 2050 2033 2016 AEO 1999 2340 2309 2296 2265 2207 2171 2141 2122 2114 2092 2074 2057 2040 2025 AEO 2000 2193 2181 2122 2063 2016 1980 1957 1939 1920 1904 1894 1889 1889

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA - AEO2010 - World oil prices and production trends in AEO2010  

Gasoline and Diesel Fuel Update (EIA)

World oil prices and production trends in AEO2010 World oil prices and production trends in AEO2010 Annual Energy Outlook 2010 with Projections to 2035 World oil prices and production trends in AEO2010 In AEO2010, the price of light, low-sulfur (or “sweet”) crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. EIA makes projections of future supply and demand for “total liquids,” which includes conventional petroleum liquids—such as conventional crude oil, natural gas plant liquids, and refinery gain—in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil. World oil prices can be influenced by a multitude of factors. Some tend to be short term, such as movements in exchange rates, financial markets, and weather, and some are longer term, such as expectations concerning future demand and production decisions by the Organization of the Petroleum Exporting Countries (OPEC). In 2009, the interaction of market factors led prompt month contracts (contracts for the nearest traded month) for crude oil to rise relatively steadily from a January average of $41.68 per barrel to a December average of $74.47 per barrel [38].

282

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

283

Crude Oil and Petroleum Products Movements by Tanker, Pipeline, and Barge  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blend. Components (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

284

Crude Oil and Petroleum Products Movements by Tanker and Barge between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Tanker and Barge between PAD Districts Tanker and Barge between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Residual FO - Less than 0.31% Sulfur Residual FO - 0.31 to 1.00% Sulfur Residual FO - Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

285

Heavy oil production from Alaska  

SciTech Connect

North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-12-31T23:59:59.000Z

286

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 393 - - - - 330 -111 -46 4 562 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 406 0 2 15 -333 - - 0 20 9 61 Pentanes Plus .................................................. 58 0 - - - -33 - - 0 6 9 10 Liquefied Petroleum Gases .............................. 348 - - 2 15 -299 - -

287

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 23. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,197 - - - - 1,186 - -47 -4 2,340 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 14 4 - - - -60 83 20 43 Pentanes Plus .................................................. 32 0 - - - - - - -1 26 2 5 Liquefied Petroleum Gases .............................. 37 - - 14 4 - - - -59

288

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 7. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 24 - - - - 854 -10 42 -28 935 3 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 42 0 27 67 119 - - -30 26 1 259 Pentanes Plus .................................................. 7 0 - - - - - - 0 - 0 7 Liquefied Petroleum Gases .............................. 35 - - 27 67 119 - - -30 26

289

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,114 - - - - 1,730 800 -85 62 3,442 55 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 446 -16 121 74 -25 - - -12 105 111 395 Pentanes Plus .................................................. 50 -16 - - 1 82 - - -4 31 101 -12 Liquefied Petroleum Gases .............................. 396 - - 121 73 -107 - - -8 74 11 407

290

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 26 - - - - 864 11 23 -4 919 9 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 45 0 39 49 73 - - -4 20 8 182 Pentanes Plus .................................................. 8 0 - - 1 0 - - 0 0 1 7 Liquefied Petroleum Gases .............................. 37 - - 39 49 73 - - -4 20 7 175 Ethane/Ethylene ...........................................

291

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 20. PAD District 4 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 511 - - - - 289 -169 -49 4 579 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 316 0 13 11 -264 - - 2 16 15 44 Pentanes Plus .................................................. 50 0 - - 0 -38 - - 0 6 13 -7 Liquefied Petroleum Gases ..............................

292

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

293

Hydrogen and elemental carbon production from natural gas and other hydrocarbons  

DOE Patents (OSTI)

Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

Detering, Brent A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

294

EIA - New Iraqi oil production: How much; how fast?  

Gasoline and Diesel Fuel Update (EIA)

New Iraqi oil production: How much; how fast? New Iraqi oil production: How much; how fast? International Energy Outlook 2010 New Iraqi oil production: How much; how fast? Iraq holds a considerable portion of the world's conventional oil reserves, but has been unable to increase oil production substantially in recent years due to conflict and geopolitical constraints. As violence in Iraq has lessened, there has been a concerted effort to increase the country's oil production, both to bolster government revenues and to support wider economic development. Recently, Iraq offered prequalified foreign oil companies two opportunities to bid on designated fields under specific terms of investment. The success of the bidding rounds and the level of interest from foreign companies have raised hopes that oil production could increase substantially over a short period of time, with some Iraqi government officials stating that the country could increase its production to 12 million barrels per day by 2017.[a] Although Iraq has the reserves to support such growth, it will need to overcome numerous challenges in order to raise production to even a fraction of that goal.

295

World oil and gas resources-future production realities  

SciTech Connect

Welcome to uncertainty was the phrase Jack Schanz used to introduce both layman and professionals to the maze of petroleum energy data that must be comprehended to achieve understanding of this critical commodity. Schanz was referring to the variables as he and his colleagues with Resources for the Future saw them in those years soon after the energy-awakening oil embargo of 1973. In some respects, the authors have made progress in removing uncertainty from energy data, but in general, we simply must accept that there are many points of view and many ways for the blindman to describe the elephant. There can be definitive listing of all uncertainties, but for this paper the authors try to underscore those traits of petroleum occurrence and supply that the author's believe bear most heavily on the understanding of production and resource availability. Because oil and gas exist in nature under such variable conditions and because the products themselves are variable in their properties, the authors must first recognize classification divisions of the resource substances, so that the reader might always have a clear perception of just what we are talking about and how it relates to other components of the commodity in question.

Masters, C.D.; Root, D.H.; Attanasi, E.D. (U.S. Geological Survey, Reston, VA (US))

1990-01-01T23:59:59.000Z

296

U.S. Weekly Product Supplied  

Gasoline and Diesel Fuel Update (EIA)

Weekly Product Supplied Weekly Product Supplied (Thousand Barrels per Day) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product 12/06/13 12/13/13 12/20/13 12/27/13 01/03/14 01/10/14 View History Total 18,554 20,996 20,484 19,004 18,222 18,858 1990-2014 Finished Motor Gasoline 8,348 9,016 9,176 8,893 8,274 8,021 1991-2014 Kerosene-Type Jet Fuel 1,480 1,469 1,656 1,470 1,518 1,498 1991-2014 Distillate Fuel Oil 3,304 4,089 4,171 3,314 3,022 3,724 1991-2014 Residual Fuel Oil 205 265 199 221 215 214 1991-2014 Propane/Propylene 1,561 1,618 1,546 1,407 1,723 1,736 2004-2014 Other Oils 3,657 4,539 3,736 3,700 3,470 3,666 2004-2014 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

297

Estimates of Embodied Global Energy and Air-Emission Intensities of Japanese Products for Building a Japanese Input–Output Life Cycle Assessment Database with a Global System Boundary  

Science Journals Connector (OSTI)

To build a life cycle assessment (LCA) database of Japanese products embracing their global supply chains in a manner requiring lower time and labor burdens, this study estimates the intensity of embodied global environmental burden for commodities produced in Japan. ... This sector is followed by several food- and agriculture-related sectors such as seeds and seedlings (JD11) (?57%), flour and other grain mill products (JD47) (?52%), timber (JD90) (?52%), and Feeds (JD72) (?51%). ...

Keisuke Nansai; Yasushi Kondo; Shigemi Kagawa; Sangwon Suh; Kenichi Nakajima; Rokuta Inaba; Susumu Tohno

2012-08-10T23:59:59.000Z

298

Colorado Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

299

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Products (Thousand Barrels)","Midwest (PADD 2) Imports by PADD of Processing from Germany of Crude Oil and Petroleum Products (Thousand Barrels)","Midwest (PADD 2) Imports by...

300

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels)...

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Federal Offshore--Texas Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

302

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

303

Louisiana--State Offshore Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

304

California--State Offshore Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Plant Liquids, Expected Future Production (Million Barrels) California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1...

305

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

306

Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

307

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

308

Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

309

Federal Offshore--California Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

310

Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

311

Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

312

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1...

313

Texas - RRC District 10 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 10 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

314

U.S. Federal Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

315

Texas - RRC District 7B Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 7B Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

316

Texas - RRC District 6 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 6 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

317

Louisiana State Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

318

Louisiana - South Onshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana - South Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

319

Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

320

Texas - RRC District 7C Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 7C Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

California State Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

322

California Federal Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

323

California - Los Angeles Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Production from Reserves (Million Barrels) California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

324

California - Coastal Region Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Production from Reserves (Million Barrels) California - Coastal Region Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

325

Texas - RRC District 8A Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 8A Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

326

Texas - RRC District 9 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 9 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

327

California - San Joaquin Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Production from Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

328

Texas - RRC District 8 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 8 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

329

Texas - RRC District 1 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 1 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

330

Texas - RRC District 5 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 5 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

331

Texas (with State Offshore) Natural Gas Plant Liquids, Expected...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

332

Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

333

Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

334

Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Expected Future Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1...

335

California (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

336

Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

337

Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Expected Future Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0...

338

Mississippi (with State Offshore) Natural Gas Plant Liquids,...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

339

California (with State Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Expected Future Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0...

340

Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mississippi (with State Offshore) Natural Gas Plant Liquids,...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

342

Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

343

Texas (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

344

Lower 48 Federal Offshore Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

345

Rerouting Carbon Flux To Enhance Photosynthetic Productivity  

Science Journals Connector (OSTI)

...Massachusetts, USA b Wyss Institute...Massachusetts, USA c Undergraduate...chemical commodity markets. We demonstrate...for carbon and energy that can account...convert solar energy into biomass...chemical commodity markets. We demonstrate...Massachusetts, USA. | Journal Article...

Daniel C. Ducat; J. Abraham Avelar-Rivas; Jeffrey C. Way; Pamela A. Silver

2012-02-03T23:59:59.000Z

346

TABLE15.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

5. 5. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining PAD District I PAD District II Commodity East Appalachian Minn., Wis., Okla., Kans., Coast No. 1 Total Ind., Ill., Ky. N. Dak., S. Dak. Mo. Total Net Production Net Production Stocks Stocks Districts, (Thousand Barrels) PAD District III PAD Dist. PAD Dist. Commodity IV V Texas La. Texas Gulf Gulf N. La., New U.S. Inland Coast Coast Ark. Mexico Total Rocky Mt. West Coast Total January 1998 Natural Gas Liquids .................................................. 140 689 829 599 322 7,842 8,763 Pentanes Plus ......................................................... 11 68 79 109 81 956 1,146 Liquefied Petroleum Gases .................................... 129 621 750 490 241 6,886 7,617 Ethane ................................................................ 51 211 262 144 0 2,765 2,909

347

Estimates of future regional heavy oil production at three production rates--background information for assessing effects in the US refining industry  

SciTech Connect

This report is one of a series of publications from a project considering the feasibility of increasing domestic heavy oil (10{degree} to 20{degree} API gravity inclusive) production being conducted for the US Department of Energy. The report includes projections of future heavy oil production at three production levels: 900,000; 500,000; and 300,000 BOPD above the current 1992 heavy oil production level of 750,000 BOPD. These free market scenario projections include time frames and locations. Production projections through a second scenario were developed to examine which heavy oil areas would be developed if significant changes in the US petroleum industry occurred. The production data helps to define the possible constraints (impact) of increased heavy oil production on the US refining industry (the subject of a future report). Constraints include a low oil price and low rate of return. Heavy oil has high production, transportation, and refining cost per barrel as compared to light oil. The resource is known, but the right mix of technology and investment is required to bring about significant expansion of heavy oil production in the US.

Olsen, D.K.

1993-07-01T23:59:59.000Z

348

An Overview of Process Monitoring Related to the Production of Uranium Ore Concentrate  

SciTech Connect

Uranium ore concentrate (UOC) in various chemical forms, is a high-value commodity in the commercial nuclear market, is a potential target for illicit acquisition, by both State and non-State actors. With the global expansion of uranium production capacity, control of UOC is emerging as a potentially weak link in the nuclear supply chain. Its protection, control and management thus pose a key challenge for the international community, including States, regulatory authorities and industry. This report evaluates current process monitoring practice and makes recommendations for utilization of existing or new techniques for managing the inventory and tracking this material.

McGinnis, Brent [Innovative Solutions Unlimited, LLC] [Innovative Solutions Unlimited, LLC

2014-04-01T23:59:59.000Z

349

Hedging mean-reverting commodities  

Science Journals Connector (OSTI)

......investment has an international dimension, exchange rate risk and political risk are also important issues of economic exposure management...Manage., 35, 5386. CLARK, E. (1997) Valuing political risk. J. Int. Money. Financ., 16, 477490. COX......

Udo Broll; Ephraim Clark; Elmar Lukas

2010-01-01T23:59:59.000Z

350

Hedging mean-reverting commodities  

Science Journals Connector (OSTI)

......1985), these costs can be justified only if imperfect capital markets create conditions where corporate hedging re- duces...consumption C and his utility maximization problem. The consumption expenditure of the investor over time is denoted by Cdt. Consider a fixed......

Udo Broll; Ephraim Clark; Elmar Lukas

2010-01-01T23:59:59.000Z

351

Identity Preservation of Agricultural Commodities  

E-Print Network (OSTI)

oil corn, require IP programs to channel these com- modities to specific markets to capture the added in the mar- ketplace in order to receive premium prices. The introduction of crops developed using at each step, including testing and auditing points. Process Seed Testing Field history Field isolation

Bradford, Kent

352

PRODUCTS & MATERIALS  

Science Journals Connector (OSTI)

...1995-96 Spectrum Chemical and Safety Prod-ucts Catalog features products for molecular and life science laboratories and cleanroom environments. Spectrum Chemical Manu-facturing. Circle 150. SCIENCE * VOL. 268 * 23 JUNE 1995

1995-06-23T23:59:59.000Z

353

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

9.PDF 9.PDF Table 19. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 952 -29 923 1,600 -77 -190 1,333 Ethane/Ethylene ................................................... 3 - 3 - - - - Ethane .............................................................. - - - - - - - Ethylene ............................................................ 3 - 3 - - - - Propane/Propylene ............................................... 1,175 20 1,195 2,531 316 621 3,468 Propane ............................................................

354

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ..................................................................... 6,647 398 7,045 8,842 1,644 1,917 12,403 Petroleum Products ................................................... 17,842 2,339 20,181 30,832 7,611 10,741 49,184 Pentanes Plus .......................................................... - - - 175 - 191 366 Liquefied Petroleum Gases ...................................... 769 34 803 2,779 493 1,377 4,649 Ethane/Ethylene ...................................................

355

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 29. Refinery and Blender Net Production of Finished Petroleum Products by PAD and Refining Districts, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 719 28 747 2,872 146 444 3,462 Ethane/Ethylene ................................................... 9 - 9 - - - - Ethane .............................................................. - - - - - - - Ethylene ............................................................ 9 - 9 - - - - Propane/Propylene ............................................... 1,050 28 1,078 2,342 225 544 3,111 Propane

356

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7.PDF 7.PDF Table 17. Refinery and Blender Net Production of Finished Petroleum Products by PAD and Refining Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 952 -29 923 1,600 -77 -190 1,333 Ethane/Ethylene ................................................... 3 - 3 - - - - Ethane .............................................................. - - - - - - - Ethylene ............................................................ 3 - 3 - - - - Propane/Propylene ............................................... 1,175 20 1,195 2,531 316 621 3,468 Propane ............................................................

357

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8.PDF 8.PDF Table 38. Movements of Crude Oil and Petroleum Products by Tanker, and Barge Between PAD Districts, January 2012 (Thousand Barrels) Commodity From 1 to From 2 to 2 3 5 1 3 5 Crude Oil ................................................................. 18 141 - 303 1,948 - Petroleum Products ............................................... 137 44 0 855 3,010 0 Liquefied Petroleum Gases .................................. - 0 - 0 0 - Unfinished Oils ..................................................... 36 0 - 0 871 - Motor Gasoline Blending Components ................. 83 0 - 396 158 - Reformulated - RBOB ....................................... - - - - - - Conventional ..................................................... 83 0 - 396 158 - CBOB ........................................................... 0 0 - 396 0 -

358

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

40 40 September 2013 Table 31. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 719 28 747 2,872 146 444 3,462 Ethane/Ethylene ................................................... 9 - 9 - - - - Ethane .............................................................. - - - - - - - Ethylene ............................................................ 9 - 9 - - - - Propane/Propylene ............................................... 1,050 28 1,078 2,342 225 544 3,111 Propane ............................................................

359

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 3. Summary The 1.5 million-acre coastal plain of the 19 million-acre Arctic National Wildlife Refuge is the largest unexplored, potentially productive geologic onshore basin in the United States. The primary area of the coastal plain is the 1002 Area of ANWR established when ANWR was created. A decision on permitting the exploration and development of the 1002 Area is up to Congress and has not been approved to date. Also included in the Coastal Plain are State lands to the 3-mile offshore limit and Native Inupiat land near the village of Kaktovik. The USGS estimated: a 95 percent probability that at least 5.7 billion barrels of technically recoverable undiscovered oil are in the ANWR coastal plain,

360

Shallow oil production using horizontal wells with enhanced oil recovery techniques  

SciTech Connect

Millions of barrels of oil exist in the Bartlesville formation throughout Oklahoma, Kansas, and Missouri. In an attempt to demonstrate that these shallow heavy oil deposits can be recovered, a field project was undertaken to determine the effectiveness of enhanced oil recovery techniques (EOR) employing horizontal wells. Process screening results suggested that thermal EOR processes were best suited for the recovery of this heavy oil. Screening criteria suggested that in situ combustion was a viable technique for the production of these reserves. Laboratory combustion tube tests confirmed that sufficient amounts of fuel could be deposited. The results of the in situ combustion field pilot were disappointing. A total overall recovery efficiency of only 16.0 percent was achieved. Results suggest that the combustion front might have moved past the horizontal well, however elevated temperatures or crude upgrading were not observed. Factors contributing to the lack of production are also discussed.

Satchwell, R.M.; Johnson, L.A. Jr. [Western Research Institute, Laramie, WY (United States); Trent, R. [Univ. of Alaska, Fairbanks, AK (United States)

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Party Discipline and Pork-Barrel Politics  

E-Print Network (OSTI)

in the legislature, then K g f1;2;3g;j = arg max H(g j ) g j1 can be written as A U i1 = I i1 + A V 1 g f1;2;3g + h A2 ) 3 V 1 g f1;3g + where j h A i1 i A A i1 + 1 + (1 A i A V

Grossman, Gene M.

2006-01-01T23:59:59.000Z

362

CHOS in Production - Multiple Linux Environments on PDSF at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

CHOS CHOS in Production Multiple Linux Environments on PDSF at NERSC Larry Pezzaglia National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory April 2012 A commodity Linux cluster at NERSC serving HEP and NS projects 1GbE and 10GbE interconnect In continuous operation since 1996 ~1500 compute cores on ~200 nodes Over 750 TB shared GPFS storage in 17 filesystems Over 650 TB of XRootD storage Supports SL5 and SL6 environments Projects "buy in" to PDSF and the UGE share tree is adjusted accordingly PDSF at NERSC 2 PDSF has a broad user base (including non-CERN and non-LHC projects) Current projects include ALICE, ATLAS, CUORE, Daya Bay, IceCube, KamLAND, Majorana, and STAR Prior projects include BaBaR, CDF, Planck, SNO, and SNFactory PDSF Workloads 3 PDSF must support multiple applications for multiple projects Many are only tested

363

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Energy Gateway Solar Wind energy Selling and delivering broad range of advanced energy generating systems and accessories including wind turbines solar panels batteries regulators and stables and as well as developing renewable energy technology and related products st century Green Solutions LLC st century Green Solutions LLC Grand Blanc Michigan Wind energy Exclusive rights to manufacture and distribute kW wind turbine technology in North America Degrees Degrees Embarcadero Center Suite San Francisco California Bioenergy Buildings Carbon Geothermal energy Services Gateway Solar Wind energy Environmental Commodities http www degreesinc com Bay Area E E Brussels Belgium Buildings Hydro Services Gateway Solar Wind energy

364

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

(Thousand Barrels)","Rocky Mountain (PADD 4) Imports by PADD of Processing from Russia of Crude Oil and Petroleum Products (Thousand Barrels)" 29767,18390 30132,21766...

365

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

(Thousand Barrels)","Rocky Mountain (PADD 4) Imports by PADD of Processing from Russia of Crude Oil and Petroleum Products (Thousand Barrels)" 29601,2712 29632,1641...

366

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Marketable Petroleum Coke Consumed at Refineries (Thousand Barrels)","U.S. Catalyst Petroleum Coke Consumed at Refineries (Thousand Barrels)","U.S. Other Products...

367

PRODUCTS & MATERIALS  

Science Journals Connector (OSTI)

...Phar-macia Biotech. Circle 141. Cell Culture Production The CellCube offers the fastest, most com-pact system available for high-volume...culture production, according to the manu-facturer. The CellCube not only saves up to four times the space of roller bottles...

1995-08-04T23:59:59.000Z

368

The feasibility of ethanol production in Texas  

E-Print Network (OSTI)

Agricultural interests across Texas are looking at the possibility of an ethanol industry in Texas. Continued conflict in the Middle East, the ban of methyl tertiary butyl ether (MTBE) in California, and low commodity prices have all lead...

Herbst, Brian Keith

2012-06-07T23:59:59.000Z

369

Production cuts to support oil prices  

Science Journals Connector (OSTI)

Most commodity quotations have continued to fall in recent months as a result of the weaker global economy. Crude oil prices, on the other hand, had been ... to fall. Is the success of the oil exporters' change i...

Klaus Matthies

370

New Products  

Science Journals Connector (OSTI)

...security of unmatched sample traceability. Manufactured from high-quality polypropylene in a fully automated class-7 cleanroom environment ensures the laser-etched alphanumeric tubes exhibit absolute product consistency, near-zero contaminants...

2013-01-11T23:59:59.000Z

371

New Products  

Science Journals Connector (OSTI)

...bind cells and biomolecules through passive hydrophobic interactions. Molded from ultrapure polystyrene in a class 100,000 cleanroom production environment, the untreated culture plates are supplied with lids in individual sterile packs. The plates include...

2013-06-28T23:59:59.000Z

372

Production Materials  

Science Journals Connector (OSTI)

It is obvious that we must bring a number of things into our controlled environment besides clean conditioned air, equipment, and ultrapure water. If we are to do any production work, or research involving the pr...

M. Kozicki; S. Hoenig; P. Robinson

1991-01-01T23:59:59.000Z

373

New Products  

Science Journals Connector (OSTI)

...Finally, as a personal pipetting system, Liquidator 96 fits any benchtop or laminar-flow cabinet making it suitable for cleanroom conditions. Mettler Toledo For info: 800-472-4646 www.mt.com/liquidator Electronically submit your new product...

2014-01-03T23:59:59.000Z

374

Forest Products  

Energy.gov (U.S. Department of Energy (DOE))

Purchased energy remains the third largest manufacturing cost for the forest products industry–despite its extensive use of highly efficient co-generation technology. The industry has worked with...

375

NEW PRODUCTS:  

Science Journals Connector (OSTI)

......also be used with other heating elements and probes...content of diesel and heating oils. A highly specific titration...requirements for fuel oil products are consistently...de- scriptions, and prices are included for columns......

New Products

1979-12-01T23:59:59.000Z

376

New Products  

Science Journals Connector (OSTI)

...the area scanned. When the earth's thermal gradient appears, the vibrating mirror...Write for a Product Data Sheet giving specifications, typical drying perform-ance, and...pebble-bed heaters and electrical insulation at elevated temperatures. (Minneapolis-Honeywell...

Joshua Stern

1961-11-10T23:59:59.000Z

377

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

378

US production of natural gas from tight reservoirs  

SciTech Connect

For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

Not Available

1993-10-18T23:59:59.000Z

379

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 32. Blender Net Inputs of Petroleum Products by PAD District, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 308 5 313 45 44 345 434 Pentanes Plus ...................................................... - - - - 2 75 77 Liquefied Petroleum Gases .................................. 308 5 313 45 42 270 357 Normal Butane .................................................. 308 5 313 45 42 270 357 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

380

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

0.PDF 0.PDF Table 20. Blender Net Inputs of Petroleum Products by PAD Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 158 5 163 47 18 168 233 Pentanes Plus ...................................................... 5 - 5 - - 5 5 Liquefied Petroleum Gases .................................. 153 5 158 47 18 163 228 Normal Butane .................................................. 153 5 158 47 18 163 228 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Blender Net Inputs of Petroleum Products by PAD Districts, 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 1,744 80 1,824 345 324 2,161 2,830 Pentanes Plus ...................................................... 63 - 63 - - 87 87 Liquefied Petroleum Gases .................................. 1,681 80 1,761 345 324 2,074 2,743 Normal Butane .................................................. 1,681 80 1,761 345 324 2,074 2,743 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

382

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

5.PDF 5.PDF Table 35. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD District and State, January 2012 (Thousand Barrels) Commodity Motor Gasoline Motor Gasoline Blending Components Kerosene Reformulated Conventional Total Reformulated Conventional Total PAD District 1 ............................................ 244 3,987 4,231 16,344 28,462 44,806 1,585 Connecticut ............................................. - - - 927 - 927 28 Delaware ................................................ - - - 887 652 1,539 148 District of Columbia ................................ - - - - - - - Florida ..................................................... - 978 978 - 5,532 5,532 - Georgia ................................................... - 370 370 - 2,767 2,767 20 Maine ......................................................

383

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD District and State, 2012 (Thousand Barrels) Commodity Motor Gasoline Motor Gasoline Blending Components Kerosene Reformulated Conventional Total Reformulated Conventional Total PAD District 1 ............................................ 28 3,485 3,513 12,415 24,530 36,945 1,158 Connecticut ............................................. - - - 1,075 - 1,075 5 Delaware ................................................ - - - 692 755 1,447 106 District of Columbia ................................ - - - - - - - Florida ..................................................... - 747 747 - 4,523 4,523 - Georgia ................................................... - 220 220 4 2,600 2,604 14 Maine ......................................................

384

BIO?REFINERIES: BIOPROCESS TECHNOLOGIES FOR WASTE?WATER TREATMENT, ENERGY AND PRODUCT VALORIZATION  

Science Journals Connector (OSTI)

Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also potable water is becoming a scarce resource in many parts of the world and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non?GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food fiber and other biology?based products including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific?attribute raw materials for differentiated markets we can argue that processes such as mass cultivation of microalgae and the concept of bio?refineries be seen as part of a ‘new’ agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste?water treatment water polishing and endocrine disruptor (EDC) removal sustainable energy production and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings and for commercial extraction of bulk commodities such as bio?oils and lecithin. This presentation will address efforts to establish a fully operational solar?driven microalgae bio?refinery for use not only in waste remediation but to transform waste and biomass to energy fuels and other useful materials (valorisation) with particular focus on environmental quality and sustainability goals.

A. Keith Cowan

2010-01-01T23:59:59.000Z

385

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual" Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO 1995",,2401.7,2306.8,2204.6,2095.1,2036.7,1967.35,1952.75,1923.55,1916.25,1905.3,1894.35,1883.4,1887.05,1887.05,1919.9,1945.45,1967.35 "AEO 1996",,,2387.1,2310.45,2248.4,2171.75,2113.35,2062.25,2011.15,1978.3,1952.75,1938.15,1916.25,1919.9,1927.2,1949.1,1971,1985.6,2000.2 "AEO 1997",,,,2361.55,2306.8,2244.75,2197.3,2142.55,2091.45,2054.95,2033.05,2014.8,2003.85,1996.55,1989.25,1981.95,1974.65,1967.35,1949.1

386

Spot Prices for Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Spot Prices Spot Prices (Crude Oil in Dollars per Barrel, Products in Dollars per Gallon) Period: Daily Weekly Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product by Area 12/09/13 12/10/13 12/11/13 12/12/13 12/13/13 12/16/13 View History Crude Oil WTI - Cushing, Oklahoma 97.1 98.32 97.25 97.21 96.27 97.18 1986-2013 Brent - Europe 110.07 108.91 109.47 108.99 108.08 110.3 1987-2013 Conventional Gasoline New York Harbor, Regular 2.677 2.698 2.670 2.643 2.639 2.650 1986-2013 U.S. Gulf Coast, Regular 2.459 2.481 2.429 2.398 2.377 2.422 1986-2013 RBOB Regular Gasoline Los Angeles 2.639 2.661 2.569 2.543 2.514 2.527 2003-2013 No. 2 Heating Oil New York Harbor

387

Production and Innovative Applications of Cryogenic Solid Pellets  

SciTech Connect

For over two decades Oak Ridge National Laboratory has been developing cryogenic pellet injectors for fueling hot, magnetic fusion plasmas. Cryogenic solid pellets of all three hydrogen isotopes have been produced in a size range of 1- to 10-mm diameter and accelerated to speeds from <100 to {approx}3000 m/s. The pellets have been formed discretely by cryocondensation in gun barrels and also by extrusion of cryogenic solids at mass flow rates up to {approx}0.26 g/s and production rates up to ten pellets per second. The pellets traverse the hot plasma in a fraction of a millisecond and continuously ablate, providing fresh hydrogenic fuel to the interior of the plasma. From this initial application, uses of this technology have expanded to include (1) cryogenic xenon drops or solids for use as a debris-less target in a laser plasma source of X-rays for advanced lithography systems, (2) solid argon and carbon dioxide pellets for surface cleaning or decontamination, and (3) methane pellets in a liquid hydrogen bath for use as an innovative moderator of cold neutrons. Methods of production and acceleration/transport of these cryogenic solids will be described, and examples will be given of their use in prototype systems.

Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Milora, S.L.

1999-07-12T23:59:59.000Z

388

THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT  

E-Print Network (OSTI)

10 are yet to be reached for the entire country; Colombia is not expected to export biofuels Biofuels Use Close to reaching E10 and B10 Levels Biofuels Annual Colombia 7/1/2012 Required Report well exceeded the local demand and generated a surplus that sustained biofuels production

389

Online Catalog of Isotope Products from DOE's National Isotope Development Center  

DOE Data Explorer (OSTI)

The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority commodities of strategic importance for the Nation and are essential for energy, medical, and national security applications and for basic research; a goal of the program is to make critical isotopes more readily available to meet domestic U.S. needs. This subprogram is steward of the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL), the Brookhaven Linear Isotope Producer (BLIP) facility at BNL, and hot cell facilities for processing isotopes at ORNL, BNL and LANL. The subprogram also coordinates and supports isotope production at a suite of university, national laboratory, and commercial accelerator and reactor facilities throughout the Nation to promote a reliable supply of domestic isotopes. The National Isotope Development Center (NIDC) at ORNL coordinates isotope production across the many facilities and manages the business operations of the sale and distribution of isotopes.

390

New Products  

Science Journals Connector (OSTI)

...syrris.com Crimping Tool The La-Pha-Pack stainless steel cleanroom crimping tools are designed for a controlled, low-effort...product range is ideal for highly sensitive chromatography cleanroom applications where it is essential that the environment remains...

2011-01-14T23:59:59.000Z

391

New Products  

Science Journals Connector (OSTI)

...qiagen.com Crimping Tool The La-Pha-Pack stainless steel cleanroom crimping tools are designed for a controlled, low-effort...product range is ideal for highly sensitive chromatography cleanroom applications where it is essential that the environment remains...

2011-01-21T23:59:59.000Z

392

New Products  

Science Journals Connector (OSTI)

...three regulated d-c power supplies, a digital...Product Data Sheet giving specifications, typical drying perform-ance...than 4 lb. Nominal power consumption is less...heaters and electrical insulation at elevated temperatures...and 0.01 xsec. Power source is a 5-Mw...

Joshua Stern

1961-11-10T23:59:59.000Z

393

A Scenario-Based Hydrocarbon Production Forecast for Louisiana  

Science Journals Connector (OSTI)

Fields are classified as oil or gas based on the volume of ... in cubic feet) per unit of produced oil (measured in barrels), and described through the gas–oil ratio (GOR). Cumulative GOR (CGOR) is the aggregate ...

Mark J. Kaiser; Yunke Yu

2012-03-01T23:59:59.000Z

394

Broiler Production.  

E-Print Network (OSTI)

,","efficient broiler production. ,. . , .: I-A +>+ Panels or translucent plastic curtains which close and open easily when weather varies are helpful in providing comfortable temperatures for the birds. A damper is needed so that ridge ventilatm can be dosed... easily during ooM weather. inclement weather. However, poultry housing costs should be kept within a range whereby earnings can justify the investment. Location Orient the house with the long axis run- ning east and west to prevent the early morn...

Cawley, W. O.; Wormeli, B. C.; Quisenberry, J. H.

1962-01-01T23:59:59.000Z

395

Sugar Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Sugar Production Sugar Production Name: Lauren Location: N/A Country: N/A Date: N/A Question: This is the experiment I did: our class took 6 sugars, placed them in test tubes and put three drops of yeast in each test tube. we then placed them in the incubator for one day and the next day looked at our results. the purpose was to find out with sugar would produce the most carbon dioxide. two of the sugars that we tested were LACTOSE and STARCH. my question is, why are lactose and starch the only sugars who didn't produce any, or very very little, carbon dioxide? and how is this process related to glycolysis? Replies: Bacteria and yeast are very efficient with their enzyme systems. They don't make enzymes they can't use. Yeast don't have the enzymes necessary to metabolize lactose. Starch is a complex sugar and yeast needs certain enzymes to break starch down into sugar. Every chemical reaction needs its own enzyme.

396

Ghandi & Lin 1 Do Iran's Buy-Back Service Contracts Lead to Optimal Production?  

E-Print Network (OSTI)

countries' energy policies. Among the OPEC members, Iran, with 137.6 billion barrels of proven oil reserves.2 million barrels per day in 2030 (International Energy Agency [IEA], 2009). Meeting 2030 demand requires gas reserves after Russia.3 Iran's centerpiece of energy policies, enforced by the National Iranian

Lin, C.-Y. Cynthia

397

HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS  

SciTech Connect

As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66% using electrolysis and nuclear power as the hydrogen source. In addition, nuclear integration decreases CO2 emissions by 84% if sequestration is assumed and 96% without sequestration, when compared to conventional CTL. • The preliminary economic assessment indicates that the incorporation of 11 HTGRs and the associated HTSEs impacts the expected return on investment, when compared to conventional CTL with or without sequestration. However, in a carbon constrained scenario, where CO2 emissions are taxed and sequestration is not an option, a reasonable CO2 tax would equate the economics of the nuclear assisted CTL case with the conventional CTL case. The economic results are preliminary, as they do not include economies of scale for multiple HTGRs and are based on an uncertain reactor cost estimate. Refinement of the HTGR cost estimate is currently underway. • To reduce well to wheel (WTW) GHG emissions below baseline (U.S. crude mix) or imported crude derived diesel, integration of an HTGR is necessary. WTW GHG emissions decrease 8% below baseline crude with nuclear assisted CTL. Even with CO2 sequestration, conventional CTL WTW GHG emissions are 24% higher than baseline crude emissions. • Current efforts are underway to investigate the incorporation of nuclear integrated steam methane reforming for the production of hydrogen, in place of HTSE. This will likely reduce the number of HTGRs required for the process.

Anastasia M Gandrik; Rick A Wood

2010-10-01T23:59:59.000Z

398

Production Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome The Production Services site contains links to each of the division's groups with descriptions of their services. Our goal is to update this website frequently to reflect ongoing service upgrades which, by planning and design, are added so that we can continue to meet your needs in a constantly changing work environment. Note: The Graphic Design Studio has been relocated to the second floor in the north wing of the Research Support Building 400. The telephone number remains the same, X7288. If you have any questions, please call supervisor, Rick Backofen, X6183. Photography Photography services are available at no charge to BNL and Guest users. See a list of the complete range of photography services available. Video Video services are available at no charge to BNL and Guest users. See a list of the complete range of video services available.

399

Product lines for digital information products.  

E-Print Network (OSTI)

??Digital information products are an important class of widely used digital products, whose core benefit is the delivery of information or education (e.g., electronic books,… (more)

Pankratius, Victor

2007-01-01T23:59:59.000Z

400

First Capitol Risk Management LLC | Open Energy Information  

Open Energy Info (EERE)

Zip: 61036 Product: First Capitol Risk Management specializes in providing commodity price risk consulting and hedging solutions to commercial commodity producers, processors,...

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network (OSTI)

wet milling,” a process that allows the simultaneous production of several commodities from whole corn,

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

402

GEOGRAPHIC INFORMATION SYSTEM APPROACH FOR PLAY PORTFOLIOS TO IMPROVE OIL PRODUCTION IN THE ILLINOIS BASIN  

SciTech Connect

Oil and gas have been commercially produced in Illinois for over 100 years. Existing commercial production is from more than fifty-two named pay horizons in Paleozoic rocks ranging in age from Middle Ordovician to Pennsylvanian. Over 3.2 billion barrels of oil have been produced. Recent calculations indicate that remaining mobile resources in the Illinois Basin may be on the order of several billion barrels. Thus, large quantities of oil, potentially recoverable using current technology, remain in Illinois oil fields despite a century of development. Many opportunities for increased production may have been missed due to complex development histories, multiple stacked pays, and commingled production which makes thorough exploitation of pays and the application of secondary or improved/enhanced recovery strategies difficult. Access to data, and the techniques required to evaluate and manage large amounts of diverse data are major barriers to increased production of critical reserves in the Illinois Basin. These constraints are being alleviated by the development of a database access system using a Geographic Information System (GIS) approach for evaluation and identification of underdeveloped pays. The Illinois State Geological Survey has developed a methodology that is being used by industry to identify underdeveloped areas (UDAs) in and around petroleum reservoirs in Illinois using a GIS approach. This project utilizes a statewide oil and gas Oracle{reg_sign} database to develop a series of Oil and Gas Base Maps with well location symbols that are color-coded by producing horizon. Producing horizons are displayed as layers and can be selected as separate or combined layers that can be turned on and off. Map views can be customized to serve individual needs and page size maps can be printed. A core analysis database with over 168,000 entries has been compiled and assimilated into the ISGS Enterprise Oracle database. Maps of wells with core data have been generated. Data from over 1,700 Illinois waterflood units and waterflood areas have been entered into an Access{reg_sign} database. The waterflood area data has also been assimilated into the ISGS Oracle database for mapping and dissemination on the ArcIMS website. Formation depths for the Beech Creek Limestone, Ste. Genevieve Limestone and New Albany Shale in all of the oil producing region of Illinois have been calculated and entered into a digital database. Digital contoured structure maps have been constructed, edited and added to the ILoil website as map layers. This technology/methodology addresses the long-standing constraints related to information access and data management in Illinois by significantly simplifying the laborious process that industry presently must use to identify underdeveloped pay zones in Illinois.

Beverly Seyler; John Grube

2004-12-10T23:59:59.000Z

403

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 10. PAD District 2 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 366,285 - - - - 501,418 159,175 -109,633 -12,929 918,349 11,825 0 102,610 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 122,918 -4,579 37,556 21,926 4,444 - - 15,132 24,244 34,819 108,070 58,830 Pentanes Plus ..................................................

404

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

20 20 September 2013 Table 14. PAD District 3 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 1,188,751 - - - - 1,015,091 -112,708 94,064 20,399 2,158,191 6,608 0 882,207 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 440,766 -88 123,986 10,625 46,383 - - 16,960 76,972 72,880 454,860 114,138 Pentanes Plus ..................................................

405

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 2. U.S. Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,003,948 - - - - 2,123,490 65,265 6,899 4,157,486 28,318 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 686,936 -4,909 195,516 47,812 - - 36,219 127,051 118,364 643,721 189,672 Pentanes Plus .................................................. 92,842 -4,909 - - 10,243 - -

406

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1.PDF 1.PDF Table 11. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 36,593 - - - - 31,429 - 4,534 890 71,666 - 0 55,877 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,154 -11 1,013 192 - - - -786 2,587 629 918 3,544 Pentanes Plus .................................................. 1,013 -11 - - - - - - -35 842 110 85 36 Liquefied Petroleum Gases ..............................

407

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE7.PDF TABLE7.PDF Table 7. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 109,919 - - - - 142,073 -20,272 -3,481 6,003 222,236 - 0 858,776 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 43,678 -17 9,648 1,838 7,546 - - -2,299 8,340 4,663 51,989 65,215 Pentanes Plus .................................................. 4,840 -17 - - 1,688 -3,010 - -

408

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 8. PAD District 1 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 32 - - - - 843 -1 230 8 1,061 35 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 71 0 45 40 77 - - 1 16 10 205 Pentanes Plus .................................................. 12 0 - - 1 0 - - 0 0 2 9 Liquefied Petroleum Gases ..............................

409

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 5,877 - - - - 8,716 83 -218 14,841 53 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,351 -20 372 252 - - -417 566 206 2,600 Pentanes Plus .................................................. 296 -20 - - 78 - - 37 172 71 75 Liquefied Petroleum Gases .............................. 2,055 - - 372 174 - - -454 394 135 2,525

410

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 September 2013 Table 22. PAD District 5 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 300,668 - - - - 297,837 - 31,342 -3,713 633,292 267 0 52,719 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 17,739 -73 18,288 1,401 - - - 3,536 17,170 3,791 12,858 8,270 Pentanes Plus .................................................. 7,914

411

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 3,787 - - - - 4,456 -667 185 23 7,734 4 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,476 0 410 32 278 - - 81 299 169 1,648 Pentanes Plus .................................................. 181 0 - - 28 -45 - - -9 116 3 53 Liquefied Petroleum Gases .............................. 1,295 - - 410 4 323 - - 89 183 166

412

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 6,486 - - - - 8,527 146 93 14,999 67 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,408 -18 630 170 - - 65 509 314 2,301 Pentanes Plus .................................................. 317 -18 - - 29 - - -13 174 118 50 Liquefied Petroleum Gases .............................. 2,091 - - 630 141 - - 79 335 196 2,251 Ethane/Ethylene ...........................................

413

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 5. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 751 - - - - 26,471 -300 1,308 -869 28,999 100 0 9,902 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,313 -7 839 2,091 3,702 - - -929 816 33 8,018 7,618 Pentanes Plus .................................................. 225 -7 - - - - - - 3 - 11 204 31 Liquefied Petroleum Gases

414

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 6. PAD District 1 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 8,672 - - - - 230,125 -359 62,824 2,069 289,586 9,606 0 10,326 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 19,329 -83 12,151 10,808 21,118 - - 168 4,287 2,821 56,047 6,541 Pentanes Plus ..................................................

415

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1. TABLE1.PDF 1. TABLE1.PDF Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases

416

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2.PDF 2.PDF Table 12. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,180 - - - - 1,014 - 146 29 2,312 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 33 6 - - - -25 83 20 30 Pentanes Plus .................................................. 33 0 - - - - - - -1 27 4 3 Liquefied Petroleum Gases .............................. 37 - - 33 6 - - - -24 56 17 27 Ethane/Ethylene

417

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 233,810 - - - - 237,344 8,334 7,688 468,825 2,975 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 81,196 -552 19,023 4,020 - - 3,027 16,794 13,937 69,929 189,672 Pentanes Plus .................................................. 11,167 -552 - - 772 - - -700 5,666 2,989 3,432 18,036 Liquefied Petroleum Gases

418

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 9,431 - - - - 316,140 4,126 8,393 -1,574 336,230 3,434 0 8,328 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 16,548 -84 14,202 18,043 26,704 - - -1,588 7,264 3,052 66,685 6,377 Pentanes Plus .................................................. 2,828 -84 - - 185 -19 - - 12 63 315 2,520 43 Liquefied Petroleum Gases

419

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 182,188 - - - - 270,188 2,576 -6,767 460,074 1,646 0 1,026,829 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 72,869 -607 11,545 7,801 - - -12,921 17,534 6,391 80,604 128,709 Pentanes Plus .................................................. 9,170 -607 - - 2,421 - - 1,146 5,321 2,200 2,317 17,598 Liquefied Petroleum Gases

420

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 17. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,175 - - - - 10,226 -3,426 -1,436 132 17,407 1 0 15,969 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,584 -10 52 460 -10,314 - - -12 611 282 1,891 1,375 Pentanes Plus .................................................. 1,788 -10 - - - -1,036 - - -15 174 273 310 180 Liquefied Petroleum Gases

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 15. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 3,327 - - - - 4,646 -720 39 -191 7,482 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,380 -1 304 84 227 - - -113 306 108 1,693 Pentanes Plus .................................................. 155 -1 - - 77 -58 - - 35 106 1 31 Liquefied Petroleum Gases ..............................

422

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 9. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,019 - - - - 52,699 26,041 2,973 12 109,175 1,544 0 93,189 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 14,079 -560 812 2,541 -423 - - -6,605 4,051 2,114 16,889 48,197 Pentanes Plus .................................................. 1,354 -560 - - 21 2,843 - - 110 1,049

423

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 16. PAD District 3 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 4,354 - - - - 3,718 -413 345 75 7,905 24 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,615 0 454 39 170 - - 62 282 267 1,666 Pentanes Plus .................................................. 195 0 - - 36 -65 - - 15 113 4 35 Liquefied Petroleum Gases

424

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE9.PDF TABLE9.PDF Table 9. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,961 - - - - 10,783 -3,879 896 2,868 17,893 0 0 18,695 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,770 -9 127 502 -11,116 - - -50 621 280 1,423 1,326 Pentanes Plus .................................................. 1,484 -9 - - - -1,152 - - 7 122 264 -70 187 Liquefied Petroleum Gases

425

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 3. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 734 - - - - 26,368 419 -1,209 627 25,554 130 0 10,529 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,314 -6 923 1,606 2,621 - - -1,556 707 53 7,254 6,409 Pentanes Plus .................................................. 213 -6 - - - - - - 3 5 6 193 34 Liquefied Petroleum Gases ..............................

426

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,374,021 - - - - 3,120,755 53,567 34,134 5,489,516 24,693 0 1,060,764 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 881,306 -6,534 230,413 62,192 - - 23,894 186,270 115,054 842,159 153,268 Pentanes Plus .................................................. 116,002 -6,534 - - 10,680 - - -4,857 63,596 43,136 18,273 12,739 Liquefied Petroleum Gases

427

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE5.PDF TABLE5.PDF Table 5. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,902 - - - - 53,695 23,732 5,619 2,406 108,247 2,295 0 95,547 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 13,989 -544 1,333 2,797 949 - - -6,644 3,628 2,687 18,853 41,545 Pentanes Plus .................................................. 1,274 -544 - - 11 4,162 - - 233 966

428

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 7,340 - - - - 7,778 239 25 15,229 104 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,516 -18 716 175 - - 133 465 434 2,358 Pentanes Plus .................................................. 340 -18 - - 38 - - 20 168 134 38 Liquefied Petroleum Gases .............................. 2,176 - - 716

429

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 18. PAD District 4 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 139,573 - - - - 79,019 -46,108 -13,333 1,073 158,068 10 0 19,287 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 86,184 -86 3,535 3,052 -71,945 - - 423 4,378 4,054 11,885 1,893 Pentanes Plus ..................................................

430

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

30 30 September 2013 Table 24. PAD District 5 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,101 - - - - 1,091 - 115 -14 2,320 1 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 65 0 67 5 - - - 13 63 14 47 Pentanes Plus .................................................. 29 0 - - - - - - 1 21 4 3 Liquefied Petroleum Gases ..............................

431

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 1,386,172 - - - - 1,630,908 -244,084 67,631 8,560 2,830,779 1,288 0 861,333 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 540,336 -180 150,143 11,694 101,692 - - 29,480 109,476 61,693 603,036 96,994 Pentanes Plus .................................................. 66,222 -180 - - 10,282 -16,515 - -

432

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 2. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 6,133 - - - - 8,527 205 413 14,374 78 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,384 -19 421 224 - - -366 512 268 2,595 Pentanes Plus .................................................. 285 -19 - - 55 - - -26 160 89 98 Liquefied Petroleum Gases .............................. 2,099 - - 421 169 - - -340 353 179 2,497 Ethane/Ethylene

433

CRADA Final Report: Materials Development For Pulp and Paper Mills, Task 9 Proof of Commercial Concept: Commodity Carbon Fibers From Weyerhaeuser Lignin Based Fibers  

SciTech Connect

Tasks were assigned to Oak Ridge National Laboratory (ORNL) researchers for the development of lignin-based carbon fiber from a specific precursor that was produced by the Participant (Weyerhaeuser Corporation). These tasks included characterization of precursor polymers and fibers; and the development of conversion parameters for the fibers. ORNL researchers provided recommendations for in-house characterization of the precursor at the participant's laboratory. During the early stage of the precursor fiber production trials of various spools of fibers with varied compositions were produced. Some of those samples were sent to ORNL (by the Participant) for the development of conversion protocol. The trial tow samples were oxidized at ORNL's precursor evaluation system (PES), a bench-scale facility consisting of an oven, filament winder, tension controller, and a let off creel. The PES is a modular tool useful for the development of precursor conversion protocol. It can handle a single filament to a large single tow (50k filaments). It can also offer precise tensioning for few-filament tows. In the PES, after oxidation, fibers are typically carbonized first at low temperature, {le} 600 C, and subsequently at a higher temperature, {le} 1200 C with controlled residence time. ORNL has recently installed a new carbonization furnace with 1700 C limit and a furnace with 2500 C capacity is under installation. A protocol for the oxidation and carbonization of the trial precursor fibers was developed. Oxidized fiber with a density of 1.46 g/cc (oxidation time: 90 min) shows qualitative flame retardancy via simple flame test (fibers do not catch fire or shrink when exposed to flame). Oxidized and carbonized filaments of the Weyerhaeuser precursor fibers show moderate mechanical properties and 47-51 % carbon yield (based on oxidized fiber mass) after carbonization between 1000-1400 C. The properties of fibers from nonoptimized composition and processing parameters indicate the potential of low-cost, low-end carbon fibers based on renewable resource materials. Further work is necessary to produce high quality precursor and the corresponding carbonized filaments of superior properties.

Paulauskas, Felix L [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL; Keiser, James R [ORNL; Gorog, John Peter [Weyerhaeuser Company

2010-09-01T23:59:59.000Z

434

Impacts of renewable fuel regulation and production on agriculture, energy, and welfare.  

E-Print Network (OSTI)

??The purpose of this dissertation is to study the impact of U.S. federal renewable fuel regulations on energy and agriculture commodity markets and welfare. We… (more)

Mcphail, Lihong Lu

2010-01-01T23:59:59.000Z

435

NETL: News Release - Innovative Coal-Based Product Bumps Petroleum Out of  

NLE Websites -- All DOE Office Websites (Extended Search)

16, 2008 16, 2008 Innovative Coal-Based Product Bumps Petroleum Out of Equation Synthetic Binder Pitch Uses Hydrocarbons from Coal in Place of Petroleum Feedstocks WASHINGTON, DC - Through a cooperative agreement with the Office of Fossil Energy's National Energy Technology Laboratory (NETL), a team headed by West Virginia University (WVU) has developed and successfully demonstrated a synthetic binder pitch that uses hydrocarbons from coal to supplement or replace petroleum feedstocks. The new binder pitch, and similar coal-derived products, could potentially reduce America's dependence on imported oil. Binder pitch - a carbon-rich, tar-like material - is an important ingredient in making graphite rods used in electric arc furnaces for the manufacture of steel from scrap. Conventional binder pitch usually blends petroleum pitch with standard coal-tar pitch. The new synthetic pitch could replace at least 19,000 tons of conventional pitch needed each year by graphite electrode manufacturers. WVU claims that the same pitch could be used by the aluminum industry; if so, demand for the new product would be close to one million barrels per year.

436

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

January 2012 January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases .............................. 65,081 - - 13,044 5,236 - - -10,530 10,937 5,559 77,395 101,248 Ethane/Ethylene

437

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2012 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,374,021 - - - - 3,120,755 53,567 34,134 5,489,516 24,693 0 1,060,764 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 881,306 -6,534 230,413 62,192 - - 23,894 186,270 115,054 842,159 153,268 Pentanes Plus .................................................. 116,002 -6,534 - - 10,680 - - -4,857 63,596 43,136 18,273 12,739 Liquefied Petroleum Gases .............................. 765,304 - - 230,413 51,512 - - 28,751 122,674 71,918

438

Clean Production of Coke from Carbonaceous Fines  

SciTech Connect

In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.

Craig N. Eatough

2004-11-16T23:59:59.000Z

439

Covered Product Category: Cool Roof Products  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

440

Aesculap, Inc. Air Products  

E-Print Network (OSTI)

Aesculap, Inc. Air Products Air Products Foundation Alaric Compliance Services, LLC Alvin H. Butz & Herger, Inc. Sodexo Campus Services Sodexo Inc. and Affiliates Stupp Bros., Inc. Sugarbush Products, Inc

Napier, Terrence

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

SciTech Connect

The primary objective of this project was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 25 to 50 million barrels (40-80 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvania (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performances, and report associated validation activities.

Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

2001-04-19T23:59:59.000Z

442

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

SciTech Connect

The project's primary objective was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox Basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 25 to 50 million barrels (4-8 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performance(s), and report associated validation activities.

Chidsey, Jr., Thomas C.; Eby, David E.; Wray, Laural L.

2001-11-26T23:59:59.000Z

443

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

Unknown

2003-01-01T23:59:59.000Z

444

A fundamental approach for storage commodity classification  

E-Print Network (OSTI)

Combustion (J/kg) ?H g Heat of Gasification (J/kg) k ThermalH c ) to the heat of gasification (?H g ) shown in table 2.3and ?H g is its heat of gasification. Polymer ?H c (kJ/g) ?H

Gollner, Michael J.

2010-01-01T23:59:59.000Z

445

A fundamental approach for storage commodity classification  

E-Print Network (OSTI)

W/m 2 K) ?H c Heat of Combustion (J/kg) ?H g Heat ofvarious impetuses (i.e. heat of combustion) for burning to am ? f ) and effective heat of combustion, ?H c [24]. The HRR

Gollner, Michael J.

2010-01-01T23:59:59.000Z

446

Merrill Lynch Commodities | Open Energy Information  

Open Energy Info (EERE)

Id 49956 Utility Location Yes Ownership W Activity Buying Transmission Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

447

Constllation Enrgy Commodities | Open Energy Information  

Open Energy Info (EERE)

Id 50043 Utility Location Yes Ownership W NERC Location RFC NERC RFC Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

448

Speculative Execution Within A Commodity Operating System  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 Conditions for success . . . . . . . . . . . . . . . . . . 13 1.4 Process-level speculative

Chen, Peter M.

449

Essays on Pricing Behaviors of Energy Commodities  

E-Print Network (OSTI)

fundamentals within a two-state Markov-switching framework. It is found that the regime-switching model does a better forecasting job in general than the linear fundamental model without regime-switching framework, especially in the case of 1-step...

Qin, Xiaoyan

2012-07-16T23:59:59.000Z

450

Coal remains a hot commodity for Australia  

SciTech Connect

Based largely on analyses by the Australian Bureau of Agricultural and Resource Economics in late 2005 and early 2006, the article looks at the recent and near future export market for Australian coal. Demand in Asia is growing; European demand remains steady. Developments existing and new mines in Queensland are summarised in the article. 3 tabs.

Bram, L.

2006-02-15T23:59:59.000Z

451

from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

452

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Products (Thousand Barrels)","West Coast (PADD 5) Imports by PADD of Processing from Germany of Crude Oil and Petroleum Products (Thousand Barrels)","West Coast (PADD 5) Imports...

453

Texas--State Offshore Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

454

Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

455

Texas--State Offshore Natural Gas Plant Liquids, Expected Future...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

456

Recent Progress in the Direct Liquefaction of Coal  

Science Journals Connector (OSTI)

...less than $20 per barrel, imports...replace domestic production. However, when...begins to approach production capacity worldwide, the OPEC cartel is likely...to 300 barrels per day pilot plant...oil embargo of 1973. High oil prices...

ROBERT E. LUMPKIN

1988-02-19T23:59:59.000Z

457

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining Districts, 2012 (Thousand Barrels) Commodity Production PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Liquids ................................................ - 16,548 16,548 31,186 14,810 117,242 163,238 Pentanes Plus ...................................................... - 2,828 2,828 1,840 2,583 13,806 18,229 Liquefied Petroleum Gases .................................. - 13,720 13,720 29,346 12,227 103,436 145,009 Ethane .............................................................. - 174 174 14,046 18 45,585 59,649 Propane ............................................................

458

By-Products Utilization  

E-Print Network (OSTI)

Center for By-Products Utilization PROPERTIES OF CONCRETE CONTAINING SCRAP TIRE RUBBER in a variety of rubber and plastic products, thermal incineration of waste tires for production of electricity rubber in asphalt mixes, (ii) thermal incineration of worn-out tires for the production of electricity

Wisconsin-Milwaukee, University of

459

The Sea Off Southern California, A Modern Habitat Of Petroleum  

E-Print Network (OSTI)

CUMULATIVE PRODUCTION OF PETROLEUM FROM OFFSHORE-TO JANUARY t, 1958 Millions of Barrels of Crude Oil Field

Emery, K O

1960-01-01T23:59:59.000Z

460

Microsoft Word - Highlights.docx  

Gasoline and Diesel Fuel Update (EIA)

11 11 1 Independent Statistics & Analysis U.S. Energy Information Administration May 2011 Short-Term Energy Outlook May 10, 2011 Release Highlights  West Texas Intermediate (WTI) crude oil spot prices averaged $89 per barrel in February, $103 per barrel in March, and $110 per barrel in April. During the first week of May WTI crude oil prices fell by nearly $17 per barrel to $97 per barrel, along with a broad set of commodities, and then rebounded by almost $6 per barrel yesterday. However, EIA still expects oil markets to tighten through 2012 given projected world oil demand growth and slowing growth in supply from countries that are not members of the Organization of the

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production  

E-Print Network (OSTI)

#12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

Narasayya, Vivek

462

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

463

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

MODIS ASCII Subset Products - FTP Access MODIS ASCII Subset Products - FTP Access All of the MODIS ASCII Subsets are available from the ORNL DAAC's ftp site. The directory structure of the ftp site is based on the abbreviated names for the MODIS Products. Terra MODIS products are abbreviated "MOD", Aqua MODIS products are abbreviated "MYD" and combined Terra and Aqua MODIS products are abbreviated "MCD". The abbreviated names also include the version number (also known as collection). For specific products, please refer to the following table: Product Acronym Spatial Resolution Temporal Frequency Terra V005 SIN Aqua V005 SIN Terra/Aqua Combined V005 SIN Surface Reflectance SREF 500 m 8 day composites MOD09A1 MYD09A1 ---------- Land Surface Temperature and Emissivity TEMP 1 km 8 day composites MOD11A2 MYD11A2 ----------

464

Hydrogen Production- Current Technology  

Energy.gov (U.S. Department of Energy (DOE))

The development of clean, sustainable, and cost-competitive hydrogen production processes is key to a viable future clean energy economy. Hydrogen production technologies fall into three general...

465

State Energy Production Estimates  

U.S. Energy Information Administration (EIA) Indexed Site

State Energy Production Estimates 1960 Through 2012 2012 Summary Tables Table P1. Energy Production Estimates in Physical Units, 2012 Alabama 19,455 215,710 9,525 0 Alaska 2,052...

466

MODIS Land Product Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation > MODIS Land Subsets Validation > MODIS Land Subsets MODIS Land Product Subsets Overview Earth, Western Hemisphere The goal of the MODIS Land Product Subsets project is to provide summaries of selected MODIS Land Products for the community to use for validation of models and remote-sensing products and to characterize field sites. Output files contain pixel values of MODIS land products in text format and in GeoTIFF format. In addition, data visualizations (time series plots and grids showing single composite periods) are available. MODIS Land Product Subsets Resources The following MODIS Land Product Subsets resources are maintained by the ORNL DAAC: MODIS Land Products Offered Background Citation Policy Methods and formats MODIS Sinusoidal Grid - Google Earth KMZ Classroom Exercises

467

MECS 2006- Forest Products  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturing Energy and Carbon Footprint for Forest Products (NAICS 321, 322) Sector with Total Energy Input, October 2012 (MECS 2006)

468

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Blender Net Production of Petroleum Products by PAD Districts, 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Finished Motor Gasoline ........................................... 936,493 70,515 1,007,008 407,288 81,490 33,114 521,892 Reformulated ........................................................ 417,619 3,229 420,848 100,812 17,921 11,111 129,844 Reformulated Blended with Fuel Ethanol ......... 417,619 3,229 420,848 100,812 17,921 11,111 129,844 Reformulated Other .......................................... - - - - - - - Conventional ......................................................... 518,874 67,286 586,160 306,476

469

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between PAD Districts, 2012 (Thousand Barrels) Commodity From 1 to From 2 to From 3 to 2 3 5 1 3 4 5 1 2 Crude Oil ................................................................. 1,646 3,624 0 5,350 102,565 33,807 0 4,046 351,020 Petroleum Products ............................................... 109,235 465 0 32,407 177,805 31,369 0 1,159,745 245,412 Pentanes Plus ...................................................... 19 0 - 0 5,780 0 - 0 30,395 Liquefied Petroleum Gases .................................. 0 0 - 10,283 127,973 288 - 16,440 50,605 Unfinished Oils ..................................................... 571 10 0 0 6,901 - 0 305 1,643 Motor Gasoline Blending Components ................. 64,780 102 0 9,507 4,411 4,155 0 538,610 69,841

470

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1.PDF 1.PDF Table 21. Blender Net Production of Petroleum Products by PAD Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Finished Motor Gasoline ........................................... 70,877 4,650 75,527 32,247 6,563 2,707 41,517 Reformulated ........................................................ 32,914 - 32,914 8,133 1,466 955 10,554 Reformulated Blended with Fuel Ethanol ......... 32,914 - 32,914 8,133 1,466 955 10,554 Reformulated Other .......................................... - - - - - - - Conventional ......................................................... 37,963 4,650 42,613 24,114 5,097 1,752 30,963

471

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

2 2 December 2011 Table 60. Net Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between PAD Districts, December 2011 (Thousand Barrels) Commodity PAD District 1 PAD District 2 PAD District 3 Receipts Shipments Net Receipts Receipts Shipments Net Receipts Receipts Shipments Net Receipts Crude Oil ................................................................. 1,141 1,441 -300 34,752 8,711 26,041 6,469 28,784 -22,315 Petroleum Products ............................................... 100,976 9,207 101,951 35,804 23,219 -6,304 23,593 122,848 -94,762 Pentanes Plus ...................................................... 0 0 - 3,260 417 2,843 1,046 2,853 -1,807 Liquified Petroleum Gases ................................... 3,702 0 3,702 10,375 13,641 -3,266 17,197 8,355 8,842 Ethane/Ethylene

472

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

6 6 December 2011 Table 33. Blender Net Production of Petroleum Products by PAD District, December 2011 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Finished Motor Gasoline ........................................... 76,926 5,149 82,075 34,411 7,021 3,047 44,479 Reformulated ........................................................ 35,878 - 35,878 8,794 1,568 1,086 11,448 Reformulated Blended with Fuel Ethanol ......... 35,878 - 35,878 8,794 1,568 1,086 11,448 Reformulated Other .......................................... - - - - - - - Conventional ......................................................... 41,048 5,149 46,197 25,617 5,453

473

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

8 8 December 2011 Table 58. Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, December 2011 (Thousand Barrels) Commodity From 1 to From 2 to From 3 to 2 3 1 3 4 1 2 4 5 Crude Oil ................................................................. 0 534 165 3,957 2,850 682 28,102 0 - Petroleum Products ............................................... 9,058 0 1,967 13,942 2,323 79,774 19,452 0 4,094 Pentanes Plus ...................................................... 0 0 - 417 0 - 2,853 0 - Liquified Petroleum Gases ................................... 0 0 1,539 12,003 99 2,163 6,192 0 - Motor Gasoline Blending Components ................. 4,890 0 55 433 346 34,021 4,008 0 3,145 Reformulated - RBOB ....................................... 0 0 0 433 - 8,214 1,484 - 2,074 Conventional .....................................................

474

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

6 6 December 2011 Table 57. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between PAD Districts, December 2011 (Thousand Barrels) Commodity From 1 to From 2 to From 3 to 2 3 5 1 3 4 5 1 2 Crude Oil ................................................................. 374 1,067 - 459 5,402 2,850 - 682 28,102 Petroleum Products ............................................... 9,201 6 0 3,132 17,764 2,323 0 97,844 20,880 Pentanes Plus ...................................................... 0 0 - - 417 0 - - 2,853 Liquified Petroleum Gases ................................... 0 0 - 1,539 12,003 99 - 2,163 6,192 Unfinished Oils ..................................................... 65 0 - 0 317 - - 0 347 Motor Gasoline Blending Components ................. 4,931 0 0 698 616 346 0 40,455 4,008 Reformulated - RBOB

475

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

9.PDF 9.PDF Table 39. Net Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between PAD Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 PAD District 2 PAD District 3 Receipts Shipments Net Receipts Receipts Shipments Net Receipts Receipts Shipments Net Receipts Crude Oil ................................................................. 740 321 419 34,006 10,274 23,732 7,482 27,754 -20,272 Petroleum Products ............................................... 101,184 8,513 103,178 33,918 22,673 -8,062 23,754 122,191 -93,986 Pentanes Plus ...................................................... 0 0 - 4,568 406 4,162 1,111 4,121 -3,010 Liquefied Petroleum Gases .................................. 2,621 0 2,621 10,547 13,760 -3,213 17,861 7,305 10,556 Ethane/Ethylene ...............................................

476

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 34. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ..................................................................... 7,701 438 8,139 9,500 1,435 1,985 12,920 Petroleum Products ................................................... 14,683 1,697 16,380 31,875 7,020 10,626 49,521 Pentanes Plus .......................................................... - - - 120 - 295 415 Liquefied Petroleum Gases ...................................... 771 66 837 4,084 535 1,142 5,761 Ethane/Ethylene ...................................................

477

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6.PDF 6.PDF Table 36. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between PAD Districts, January 2012 (Thousand Barrels) Commodity From 1 to From 2 to From 3 to 2 3 5 1 3 4 5 1 2 Crude Oil ................................................................. 146 175 - 475 6,913 2,886 - 265 27,489 Petroleum Products ............................................... 8,469 44 0 2,765 17,339 2,569 0 98,419 19,332 Pentanes Plus ...................................................... 0 0 - - 406 0 - - 4,121 Liquefied Petroleum Gases .................................. 0 0 - 1,378 12,271 111 - 1,243 6,062 Unfinished Oils ..................................................... 36 0 - 0 871 - - 0 47 Motor Gasoline Blending Components ................. 4,378 0 0 536 527 307 0 41,206 3,077 Reformulated - RBOB .......................................

478

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Net Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between PAD Districts, 2012 (Thousand Barrels) Commodity PAD District 1 PAD District 2 PAD District 3 Receipts Shipments Net Receipts Receipts Shipments Net Receipts Receipts Shipments Net Receipts Crude Oil ................................................................. 9,396 5,270 4,126 434,346 141,722 292,624 111,580 355,664 -244,084 Petroleum Products ............................................... 1,192,152 109,700 1,187,640 421,032 241,581 -23,755 244,122 1,458,755 -1,170,927 Pentanes Plus ...................................................... 0 19 -19 35,669 5,780 29,889 13,880 30,395 -16,515 Liquefied Petroleum Gases .................................. 26,723 0 26,723 99,367 138,544 -39,177 185,252 67,045 118,207

479

By-Products Utilization  

E-Print Network (OSTI)

Fellow at the UWM-CBU. His research interests include the use of coal fly ash, coal bottom ash, and usedCenter for By-Products Utilization USE OF UNDER-UTILIZED COAL- COMBUSTION PRODUCTS IN PERMEABLE-Utilized Coal-Combustion Products in Permeable Roadway Base Construction 1 (MS #LV-R67) Use of Under

Wisconsin-Milwaukee, University of

480

By-Products Utilization  

E-Print Network (OSTI)

) coal-ash and by replacing up to 9% of aggregates with wet-collected, low-lime, coarse coal-ash. Cast of coal fly ash, coal bottom ash, and used foundry sand in concrete and cast-concrete productsCenter for By-Products Utilization PROPERTIES OF CAST-CONCRETE PRODUCTS MADE WITH FBC ASH

Wisconsin-Milwaukee, University of

Note: This page contains sample records for the topic "barrels commodity production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Productivity & Energy Flow  

E-Print Network (OSTI)

1 Productivity & Energy Flow Ecosystem approach, focuses: on flow of energy, water, and nutrients (capture) of energy by autotrophs Gross (total) Net (total ­ costs) Secondary productivity- capture of energy by herbivores http://sciencebitz.com/?page_id=204 What Controls the Primary Productivity

Mitchell, Randall J.

482

Covered Product Categories  

Energy.gov (U.S. Department of Energy (DOE))

Federal agencies are required by law to purchase products that are designated by the Federal Energy Management Program (FEMP-designated) or qualified by ENERGY STAR. Choose a product category for information about purchasing, installing, and using energy-efficient products.

483

DEMOCRACY OVER A BARREL: OIL, REGIME CHANGE AND WAR  

E-Print Network (OSTI)

wars and where the security of oil supplies could once beoil. Once thriving and self-supporting villages have been made completely unlivable, security

Karl, Terry

2008-01-01T23:59:59.000Z

484

Computational design of water-soluble ?-helical barrels  

Science Journals Connector (OSTI)

...Ibarra A. A. Bartlett G. J. Thomson A. R. Sessions R. B. Brady R. L. Woolfson D. N. , CCBuilder: An interactive Web-based tool for building, designing and assessing coiled-coil protein assemblies . Bioinformatics 10.1093/bioinformatics...

Andrew R. Thomson; Christopher W. Wood; Antony J. Burton; Gail J. Bartlett; Richard B. Sessions; R. Leo Brady; Derek N. Woolfson

2014-10-24T23:59:59.000Z

485

Biomass 2011: Replace the Whole Barrel, Supply the Whole Market  

Energy.gov (U.S. Department of Energy (DOE))

More than 600 speakers, moderators, sponsors, exhibitors, and attendees were able to listen to discussions about the ongoing challenges and achievements in the bioenergy industry. Biomass 2011 addressed key issues in important areas, such as feedstock supply, conversion pathways, algal biofuels, investment risk and innovation, regulation and policy, and the international perspective.

486

Energy Resources—Cornucopia or Empty Barrel?: Reply  

Science Journals Connector (OSTI)

...hydrocarbon (coal, oil, or natural...drilling and mining costs related...extensive thick coal accumulations...thin coals of Appalachia, for example...drilling and mining costs related...extensive thick coal accumulations...thin coals of Appalachia, for exam-ple...

Peter J. McCabe

487

Computational design of water-soluble ?-helical barrels  

Science Journals Connector (OSTI)

...PDB ID 4pn8); SLKEIA (CC-Hex2, green, PDB ID 4pn9); and ALKEIA (CC-Hept...packing of the a Leu (red) and d Ile (green) residues and variation of...Crisp J. Sessions R. B. , Benchmarking energy efficiency, power costs and carbon emissions...

Andrew R. Thomson; Christopher W. Wood; Antony J. Burton; Gail J. Bartlett; Richard B. Sessions; R. Leo Brady; Derek N. Woolfson

2014-10-24T23:59:59.000Z

488

ATLAS Electromagnetic Barrel Calorimeter Performance in Recent Testbeams  

E-Print Network (OSTI)

by ATLAS TDAQ software. Electrons, pions, muons protons and photons with energies ranging between 1 to 350 electrical calibration results and then to GeV using comparison with data and simulation. Corrections for Ar) with different energies (1 GeV to 350 GeV). The aim was to study the combined performance of the different

Paris-Sud XI, Université de

489

Balloon Array for RBSP Relativistic Electron Losses (BARREL) Science Objectives  

E-Print Network (OSTI)

precipitation and loss of radiation belt particles." Both practical NASA priorities (safety of astronauts and equipment in the radiation belts) and scientific ones (SSSC priorities in plasma physics and particle and analysis software, and data archiving and dissemination will be at the University of California, Santa Cruz

490

SUT JUNE 1999 GWYN GRIFFITHS $10 a Barrel  

E-Print Network (OSTI)

& Profilers t Gliders t Self propelled vehicles q Negatively buoyant q Neutral or positively buoyant t Largest Technologies include t Physical construction q Space frame vs monocoque Ă? t Control Architecture q Central Efficiency & reliability t Energy supply q High specific & volumetric densities at low cost t Docking

Griffiths, Gwyn

491

DEMOCRACY OVER A BARREL: OIL, REGIME CHANGE AND WAR  

E-Print Network (OSTI)

and A. Suramanian 2004. “Saving Iraq from Its Oil,” Foreignthe costs of the war in Iraq, I would be more than remissfor democratization. Iraq and the Devil’s Excrement “Oil is

Karl, Terry

2008-01-01T23:59:59.000Z

492

Gravity of world crude barrel to rise by 1995  

SciTech Connect

This paper reports on the loss of crude exports from Iraq and Kuwait in 1990-91 and their gradual reentry into oil markets which will have a profound effect on world crude quality. Accordingly, the proportion of heavy crude in world markets will decline the next 5 years.

Not Available

1991-12-16T23:59:59.000Z

493

Loading the syringe: Pull syringe barrel clamp out,1.  

E-Print Network (OSTI)

. Prime soft key is available only after Syringe Type and Medication selection (prior to infusion mode selection). At Infusion Mode screen, press2. OPTIONS, then press PRIME SET WITH SYRINGE. Press and hold3 and size. Select correct medication and concentration.10. At Infusion Mode screen, press11. OPTIONS

Oliver, Douglas L.

494

EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

Unknown

2002-07-01T23:59:59.000Z

495

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

John W. Rich

2001-03-01T23:59:59.000Z

496

Table 6. Domestic Crude Oil Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 8.79 8.85 8.84 8.80 8.66 8.21 AEO 1983 8.67 8.71 8.66 8.72 8.80 8.63 8.11 AEO 1984 8.86 8.70 8.59 8.45 8.28 8.25 7.19 AEO 1985 8.92 8.96 9.01 8.78 8.38 8.05 7.64 7.27 6.89 6.68 6.53 AEO 1986 8.80 8.63 8.30 7.90 7.43 6.95 6.60 6.36 6.20 5.99 5.80 5.66 5.54 5.45 5.43 AEO 1987 8.31 8.18 8.00 7.63 7.34 7.09 6.86 6.64 6.54 6.03 AEO 1989* 8.18 7.97 7.64 7.25 6.87 6.59 6.37 6.17 6.05 6.00 5.94 5.90 5.89 AEO 1990 7.67 7.37 6.40 5.86 5.35 AEO 1991 7.23 6.98 7.10 7.11 7.01 6.79 6.48 6.22 5.92 5.64 5.36 5.11 4.90 4.73 4.62 4.59 4.58 4.53 4.46 4.42 AEO 1992 7.37 7.17 6.99 6.89 6.68 6.45 6.28 6.16 6.06 5.91 5.79 5.71 5.66 5.64 5.62 5.63 5.62 5.55 5.52 AEO 1993 7.20 6.94 6.79 6.52 6.22 6.00 5.84 5.72

497

OPEC Prices Make Heavy Oil Look Profitable  

Science Journals Connector (OSTI)

...19 (Canadian) per barrel. He seemed...000 barrels a day by 1986. It will...underground in-to production wells, and will...heavy oil's day has come. Brian...of capital cost per SCIENCE, VOL. 204 barrel a day of production, conventional...

ELIOT MARSHALL

1979-06-22T23:59:59.000Z

498

Wood Products 201213 Student Handbook  

E-Print Network (OSTI)

Wood Products 201213 Student Handbook Ecosystem Science and Management College ........................................................................................................................... 2 Wood Products Undergraduate Program ...................................................................................................................................................... 3 Careers for Wood Products Majors

Boyer, Elizabeth W.

499

Tight Product Balance Pushes Up Product Spread (Spot Product - Crude  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Gasoline inventories indicate how tight the gasoline product market is in any one region. When the gasoline market is tight, it affects the portion of gasoline price is the spread between spot product price and crude oil price. Note that in late 1998-and early 1999 spreads were very small when inventories were quite high. Contrast summers of 1998 or 1999 with summer 2000. Last summer's tight markets, resulting low stocks and transition to Phase 2 RFG added price pressure over and above the already high crude price pressure on gasoline -- particularly in the Midwest. As we ended last winter, gasoline inventories were low, and the spread between spot prices and crude oil were higher than typical as a result. Inventories stayed well below average and the spread during the

500

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

Not Available

1993-10-29T23:59:59.000Z