National Library of Energy BETA

Sample records for barrels calif-coastal region

  1. ,"Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"Calif--Coastal Region Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--Coastal Region Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  3. Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 137 134 2000's 130 148 61 61 16 70 85 42 26 51 2010's 199 248 293 280 281 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  4. Calif--Coastal Region Onshore Natural Gas Liquids Lease Condensate, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Calif--Coastal Region Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 1 1 0 0 0 0 1990's 0 1 1 2 2 1 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  5. Calif--Coastal Region Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Plant Liquids, Reserves Based Production (Million Barrels) Calif--Coastal Region Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 2 1 2 2 2 2 1 1 1 1 1990's 1 1 1 1 1 1 1 1 1 1 2000's 1 1 1 1 1 1 1 1 1 1 2010's 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  6. Calif--Coastal Region Onshore Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Coastal Region Onshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  7. ,"California - Coastal Region Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  9. Secretary Bodman Announces Sale of 11 Million Barrels of Crude...

    Office of Environmental Management (EM)

    Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic...

  10. Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquids, Proved Reserves (Million Barrels) Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  11. BARRELING THROUGH THE VACUUM OF SPACE at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1663 October 2015 1663 October 2015 19 BARRELING THROUGH THE VACUUM OF SPACE at over 17,000 miles per hour, Earth's reflection glinting off its solar panels, the satellite is fiercely efficient and mission driven. It has hard edges and cold surfaces. It is brand new and state-of-the-art. It is an engineering masterpiece. And it's roughly the size of an electric pencil sharpener. Satellites are generally thought of as hulking beasts of instrumentation. They are billion-dollar machines capable of

  12. Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 267 266 265 292 303 342 372 421 2000's 419 459 451 485 467 409 406 414

  13. Beam test of the SDC barrel EM calorimeter test module

    SciTech Connect (OSTI)

    Balka, L.; Guarino, V.; Hill, N.

    1994-05-01

    The SDC barrel electromagnetic calorimeter test module was exposed to beams of high energy pions and electrons in the MP9 test beam at Fermilab in the fall of 1991. Data were collected on resolution, light yield, signal timing and hermiticity. These data demonstrated that the design met the specifications for the barrel electromagnetic calorimeter of the Solenoidal Detector collaboration (SDC).

  14. Small arms mini-fire control system: fiber-optic barrel deflection sensor

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Small arms mini-fire control system: fiber-optic barrel deflection sensor Citation Details In-Document Search Title: Small arms mini-fire control system: fiber-optic barrel deflection sensor Traditionally the methods to increase firearms accuracy, particularly at distance, have concentrated on barrel isolation (free floating) and substantial barrel wall thickening to gain rigidity. This barrel stiffening technique did not completely eliminate barrel

  15. Biomass 2011: Replace the Whole Barrel, Supply the Whole Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: Replace the Whole Barrel, Supply the Whole Market Biomass 2011: Replace the Whole Barrel, Supply the Whole Market The New Horizons of Bioenergy Biomass 2011 July 26-27, 2011 Gaylord National Resort and Convention Center 201 Waterfront Street National Harbor, MD 20745 Thank you to everyone who attended and participated to help make Biomass 2011 a remarkable success. More than 600 speakers, moderators, sponsors, exhibitors, and attendees were able to listen to

  16. Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 252 2010's 254 245 276 235 241 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as

  17. Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 20 18 18 19 15 12 11 11 12 12 1990's 11 10 9 11 9 8 7 6 8 10 2000's 8 10 8 7 6 7 8 9 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural

  18. Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 343 2010's 369 384 388 413 445 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  19. Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 6 83 2000's 36 43 65 79 104 88 91 90 50 42 2010's 74 59 95 104 155 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing

  20. Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 16 11 18 19 18 21 16 16 11 16 1990's 15 14 12 8 8 8 7 5 5 8 2000's 4 5 6 8 6 9 10 11 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids

  1. Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 10 2010's 14 21 20 18 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec.

  2. New Mexico Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) New Mexico Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 530 1980's 541 560 531 551 511 445 577 771 1,023 933 1990's 990 908 1,066 996 1,011 943 1,059 869 929 954 2000's 896 873 838 875 864 840 861 844 804 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  3. North Dakota Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) North Dakota Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 47 1980's 61 68 71 69 73 74 69 67 52 59 1990's 60 56 64 55 55 53 48 47 48 53 2000's 54 57 47 45 43 49 55 58 55 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  4. Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 583 1980's 604 631 745 829 769 826 857 781 765 654 1990's 657 628 629 643 652 674 684 685 698 749 2000's 734 694 695 686 790 839 892 949 1,034 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  5. Pennsylvania Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Pennsylvania Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Pennsylvania Natural Gas Liquids Proved Reserves Natural

  6. Colorado Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Colorado Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 177 1980's 194 204 186 183 155 173 148 166 181 209 1990's 169 197 226 214 248 273 287 264 260 303 2000's 316 345 396 395 465 484 478 559 716 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  7. Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 2010's 19 22 24 38 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 Florida

  8. Florida Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Florida Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 6 12 2000's 9 7 7 6 6 2 1 12 0 2 2010's 2 4 3 9 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  9. Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 21 1980's 27 17 11 17 17 14 9 16 10 1990's 8 7 8 9 18 17 22 17 18 16 2000's 11 12 14 17 12 7 3 2 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas

  10. Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 66 2010's 64 54 51 42 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  11. Illinois Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Illinois Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 11 2000's 4 15 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil Illinois Proved

  12. Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 8 2010's 8 7 13 8 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  13. Kansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Kansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 264 2010's 302 350 382 390 451 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  14. Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 11 12 2000's 13 21 23 18 11 16 17 9 11 3 2010's 2 4 6 11 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves

  15. Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 402 1980's 389 409 302 443 424 373 440 462 345 329 1990's 313 428 444 380 398 369 338 271 334 358 2000's 306 302 263 248 271 224 209 198 181 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  16. Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 24 2010's 16 22 13 22 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  17. Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 4 4 5 5 0 0 1 3 2010's 0 0 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  18. Kentucky Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Kentucky Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 16 1990's 25 24 32 26 39 43 46 48 54 69 2000's 56 72 66 66 72 70 105 89 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  19. Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 480 2010's 530 525 584 622 649 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as

  20. Louisiana Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Louisiana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 713 524 525 517 522 1990's 538 526 495 421 434 601 543 437 411 457 2000's 436 391 323 295 263 292 280 303 300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  1. Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 52 2010's 55 59 71 67 55 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  2. Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 3 1 2000's 4 6 4 14 10 17 15 2 9 6 2010's 0 0 0 4 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of

  3. Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 112 1980's 112 102 97 105 84 67 88 111 99 97 1990's 81 72 68 57 54 45 53 50 51 48 2000's 35 43 47 48 48 39 42 55 62 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  4. Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 53 2010's 60 65 69 58 79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec.

  5. Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 213 1980's 226 192 193 216 200 182 177 166 166 168 1990's 170 145 171 158 142 120 119 93 81 107 2000's 150 64 57 60 50 61 56 53 106 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  6. Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,566 2010's 3,722 3,852 3,352 2,898 2,857 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved

  7. Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 23 1980's 11 10 9 8 19 383 381 418 401 380 1990's 340 360 347 321 301 306 337 631 320 299 2000's 277 405 405 387 369 352 338 325 312 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  8. Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 29 2010's 42 40 55 41 67 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  9. Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2 5 2000's 7 4 5 2 3 2 1 0 0 0 2010's 1 0 11 10 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  10. Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 17 1980's 16 16 15 11 12 11 16 16 13 9 1990's 9 5 4 4 6 6 4 7 5 5 2000's 5 5 4 3 3 3 4 3 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids

  11. California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2,835 2010's 2,939 3,009 2,976 2,878 2,874 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved

  12. California Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) California Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 111 1980's 120 79 152 134 130 123 113 1990's 105 92 99 104 92 92 92 95 72 98 2000's 101 76 95 101 122 137 132 126 113 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  13. Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 376 2010's 501 555 760 1,171 1,451 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec.

  14. Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 26 30 2000's 49 44 56 61 62 74 102 122 123 42 2010's 180 208 283 607 765 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  15. Utah Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Utah Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 127 277 2000's 108 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Utah Natural Gas Liquids Proved Reserves

  16. Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 3 7 2010's 8 11 11 11 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Production

  17. Wyoming Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Wyoming Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 285 1980's 341 384 2000's 1,032 1,121 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Wyoming Natural Gas Liquids Proved

  18. Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5,496 2010's 6,356 8,108 11,101 12,004 14,058 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved

  19. New Mexico Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) New Mexico Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 780 2010's 922 960 1,069 1,277 1,558 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of

  20. New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 97 157 2000's 91 161 146 133 142 171 159 147 136 149 2010's 180 185 232 314 489 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  1. North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,058 2010's 1,887 2,658 3,773 5,683 6,045 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves,

  2. Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 50 2010's 54 55 64 87 163 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 Ohio Crude

  3. Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 17 2000's 10 6 8 8 7 7 8 8 7 5 2010's 1 1 2 7 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil

  4. Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 802 2010's 926 1,150 1,280 1,469 1,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of

  5. Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 98 80 2000's 111 109 105 92 92 101 90 118 129 138 2010's 143 244 279 292 444 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  6. Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 2010's 34 44 67 58 87 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  7. Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 855 2010's 823 919 932 955 1,137 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  8. Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 31 52 2000's 63 74 69 61 45 249 258 208 162 144 2010's 152 188 233 219 362 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  9. Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 488 2010's 518 582 700 670 606 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 Utah

  10. Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 36 58 2000's 91 100 91 76 61 52 164 174 140 235 2010's 257 258 368 312 261 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  11. Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

    SciTech Connect (OSTI)

    Chatrchyan, S.; et al.,

    2010-03-01

    The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.

  12. DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis ...

  13. Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein

    SciTech Connect (OSTI)

    Wu, Ying; Kondrashkina, Elena; Kayatekin, Can; Matthews, C. Robert; Bilsel, Osman (NWU); (UMASS, Amherst)

    2008-09-29

    The earliest kinetic folding events for ({beta}{alpha}){sub 8} barrels reflect the appearance of off-pathway intermediates. Continuous-flow microchannel mixing methods interfaced to small-angle x-ray scattering (SAXS), circular dichroism (CD), time-resolved Foerster resonant energy transfer (trFRET), and time-resolved fluorescence anisotropy (trFLAN) have been used to directly monitor global and specific dimensional properties of the partially folded state in the microsecond time range for a representative ({beta}{alpha}){sub 8} barrel protein. Within 150 {micro}s, the {alpha}-subunit of Trp synthase ({alpha}TS) experiences a global collapse and the partial formation of secondary structure. The time resolution of the folding reaction was enhanced with trFRET and trFLAN to show that, within 30 {micro}s, a distinct and autonomous partially collapsed structure has already formed in the N-terminal and central regions but not in the C-terminal region. A distance distribution analysis of the trFRET data confirmed the presence of a heterogeneous ensemble that persists for several hundreds of microseconds. Ready access to locally folded, stable substructures may be a hallmark of repeat-module proteins and the source of early kinetic traps in these very common motifs. Their folding free-energy landscapes should be elaborated to capture this source of frustration.

  14. U.S. Natural Gas Total Liquids Extracted (Thousand Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Liquids Extracted (Thousand Barrels) U.S. Natural Gas Total Liquids Extracted (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 569,968 599,518 584,160 571,256 587,502 594,306 569,913 1990's 573,054 602,734 626,320 634,481 635,983 649,149 689,314 690,999 668,011 686,862 2000's 721,895 682,873 681,646 622,291 657,032 619,884 637,635 658,291 673,677 720,612 2010's 749,095 792,481 873,563 937,591 1,124,416 - = No Data Reported; -- = Not

  15. Nebraska Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil Nebraska Proved Nonproducing Reserves

  16. Ohio Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Ohio Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec. 31

  17. Indiana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Indiana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil Indiana Proved Nonproducing Reserves

  18. Master plate production for the tile calorimeter extended barrel modules.

    SciTech Connect (OSTI)

    Guarino, V.J.; Hill, N.; Petereit, E.; Price, L.E.; Proudfoot, J.; Wood, K.

    1999-03-10

    Approximately 41,000 master plates (Fig. 1) are required for the Extended Barrel Hadronic Calorimeter for the ATLAS experiment at the LHC. Early in the R&D program associated with the detector, it was recognized that the fabrication of these steel laminations was a significant issue, both in terms of the cost to produce these high precision formed plates, as well as the length of time required to produce all plates for the calorimeter. Two approaches were given serious consideration: laser cutting and die stamping. The Argonne group was a strong supporter of the latter approach and in late 1995 initiated an R&D program to demonstrate the feasibility and cost effectiveness of die stamping these plates by constructing a die and stamping approximately 2000 plates for use in construction of three full size prototype modules. This was extremely successful and die stamping was selected by the group for production of these plates. When the prototype die was constructed it was matched to the calorimeter envelope at that time. This subsequently changed. However with some minor adjustments in the design envelope and a small compromise in terms of instrumented volume, it became possible to use this same die for the production of all master plates for the Tile Calorimeter. Following an extensive series of discussions and an evaluation of the performance of the stamping presses available to our collaborators in Europe, it was decided to ship the US die to CERN for use in stamping master plates for the barrel section of the calorimeter. This was done under the supervision of CERN and JINR, Dubna, and carried out at the TATRA truck plant at Koprivinice, Czech Republic. It was a great success. Approximately 41,000 plates were stamped and fully met specification. Moreover, the production time was significantly reduced by avoiding the need of constructing and then qualifying a second die for use in Europe. This also precluded small geometrical differences between the barrel and extended barrel plates (and therefore submodules) being an issue, with the result that standard submodules are fully exchangeable between the two types of module.

  19. Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude Oil Virginia Proved Nonproducing Reserves

  20. Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil | Department of

    Energy Savers [EERE]

    Energy Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil Converting domestic biomass into affordable fuels, products, and power supports our national strategy to diversify energy resources and reduce dependence on imported oil. PDF icon replacing_barrel_overview.pdf More Documents & Publications Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Bioenergy Technologies Office Conversion

  1. The How's and Why's of Replacing the Whole Barrel | Department of Energy

    Energy Savers [EERE]

    The How's and Why's of Replacing the Whole Barrel The How's and Why's of Replacing the Whole Barrel October 19, 2011 - 4:09pm Addthis A 42-U.S. gallon barrel of crude oil yields about 45 gallons of petroleum products. Source: Energy Information Administration, “Oil: Crude Oil and Petroleum Products Explained” and Annual Energy Outlook 2009 (Updated February 2010). A 42-U.S. gallon barrel of crude oil yields about 45 gallons of petroleum products. Source: Energy Information

  2. Modeling of gun barrel surface erosion: Historic perspective

    SciTech Connect (OSTI)

    Buckingham, A.C.

    1996-08-01

    Results and interpretations of numerical simulations of some dominant processes influencing gun barrel propellant combustion and flow-induced erosion are presented. Results include modeled influences of erosion reduction techniques such as solid additives, vapor phase chemical modifications, and alteration of surface solid composition through use of thin coatings. Precedents and historical perspective are provided with predictions from traditional interior ballistics compared to computer simulations. Accelerating reactive combustion flow, multiphase and multicomponent transport, flow-to-surface thermal/momentum/phase change/gas-surface chemical exchanges, surface and micro-depth subsurface heating/stress/composition evolution and their roles in inducing surface cracking, spall, ablation, melting, and vaporization are considered. Recognition is given to cyclic effects of previous firing history on material preconditioning. Current perspective and outlook for future are based on results of a US Army-LLNL erosion research program covering 7 y in late 1970s. This is supplemented by more recent research on hypervelocity electromagnetic projectile launchers.

  3. U.S. crude oil production expected to top 8 million barrels per day, highest output since 1988

    Gasoline and Diesel Fuel Update (EIA)

    U.S. crude oil production expected to top 8 million barrels per day, highest output since 1988 U.S. crude oil production in 2014 is now expected to top 8 million barrels per day for the first time in over a quarter century. The U.S. Energy Information Administration boosted its forecast for daily crude oil production this year by 120,000 barrels to 7.4 million barrels per day. For 2014, EIA's forecast for daily production was revised upward by 310,000 barrels to nearly 8.2 million barrels per

  4. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    Snow and cold cut into U.S. crude oil production this winter This winter's harsh weather conditions temporarily slowed U.S. crude oil production. In its new forecast....the U.S. Energy Information Administration said oil production in the Bakken formation in North Dakota and Montana hit 1 million barrels per day last November. However, winter storms caused a drop in the oil output from the Bakken formation during December. Production in the Bakken region is forecast to return to 1 million

  5. Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays

    DOE Patents [OSTI]

    Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.

    2005-08-30

    By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.

  6. U.S. crude oil production expected to top 9 million barrels per day in December

    Gasoline and Diesel Fuel Update (EIA)

    crude oil production expected to top 9 million barrels per day in December U.S. crude oil production is expected to continue to increase through next year, despite the outlook for lower crude oil prices. In its new short-term forecast, the U.S. Energy Information Administration said monthly average oil production is on track to surpass 9 million barrels per day in December for the first time since 1986 and then rise to an average 9.4 million barrels a day next year. Even though that's down about

  7. EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day

    Gasoline and Diesel Fuel Update (EIA)

    EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day The forecast for U.S. crude oil production keeps going higher. The U.S. Energy Information Administration revised upward its projection for crude oil output in 2013 by 70,000 barrels per day and for next year by 190,000 barrels per day. U.S. oil production is now on track to average 7.5 million barrels per day this year and rise to 8.4 million barrels per day in 2014, according to EIA's latest monthly forecast.

  8. Small arms mini-fire control system: fiber-optic barrel deflection...

    Office of Scientific and Technical Information (OSTI)

    Conference: Small arms mini-fire control system: fiber-optic barrel deflection sensor Citation Details In-Document Search Title: Small arms mini-fire control system: fiber-optic ...

  9. Replacing a Barrel of Oil with Plants and Microbes (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: Replacing a Barrel of Oil with Plants and Microbes Citation Details In-Document Search Title: Replacing a Barrel of Oil with Plants and Microbes From Berkeley Lab's Science at the Theater event on May 13th, 2013. Authors: Simmons, Blake Publication Date: 2015-06-09 OSTI Identifier: 1191172 Resource Type: Conference Resource Relation: Conference: Berkeley's Science at the Theater Research Org: LBNL (Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United

  10. DOE - Office of Legacy Management -- Queen City Barrel Co - OH 41

    Office of Legacy Management (LM)

    Queen City Barrel Co - OH 41 FUSRAP Considered Sites Site: QUEEN CITY BARREL CO. (OH.41) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cincinnati , Ohio OH.41-1 Evaluation Year: 1987 OH.41-1 Site Operations: Cleaned and reconditioned 30- and 55-gallon drums. OH.41-2 OH.41-3 Site Disposition: Eliminated - Based upon limited scope of operations, potential for residual radioactive contamination from MED or AEC operations considered

  11. California--Coastal Region Onshore Natural Gas Plant Liquids, Expected

    Gasoline and Diesel Fuel Update (EIA)

    Future Production (Million Barrels) Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 22 1980's 23 14 16 17 14 15 15 13 13 11 1990's 12 11 9 10 9 7 9 9 9 31 2000's 27 16 17 15 19 16 22 14 10 10 2010's 11 12 18 13 12

  12. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    monthly crude oil production highest in nearly 26 year Estimated U.S. crude oil production in May averaged almost 8.4 million barrels per day, the highest output for any month since March 1988. In its new monthly forecast, the U.S. Energy Information Administration expects domestic crude oil production will also average 8.4 million barrels per day this year.....which is 1 million barrels per day higher than last year....and then rise to 9.3 million barrels per day in 2015. That would be highest

  13. Quantitative/Statistical Approach to Bullet-to-Firearm Identification with Consecutively Manufactured Barrels

    SciTech Connect (OSTI)

    Peter Striupaitis; R.E. Gaensslen

    2005-01-30

    Efforts to use objective image comparison and bullet scanning technologies to distinguish bullets from consecutively manufactured handgun barrels from two manufacturers gave mixed results. The ability of a technology to reliably distinguish between matching and non-matching bullets, where the non-matching bullets were as close in pattern to the matching ones as is probably possible, would provide evidence that the distinctions could be made ''objectively'', and independently of human eyes. That evidence is identical or very close to what seems to be needed to satisfy Daubert standards. It is fair to say that the FTI IBIS image comparison technology correctly distinguished between all the Springfield barrel bullets, and between most but not all of the HiPoint barrel bullets. In the HiPoint cases that were not distinguished 100% of the time, they would he distinguished correctly at least 83% of the time. These results, although obviously limited to the materials used in the comparisons, provide strong evidence that barrel-to-bullet matching is objectively reliable. The results with SciClops were less compelling. The results do not mean that bullet-to-barrel matching is not objectively reliable--rather, they mean that this version of the particular technology could not quite distinguish between these extremely similar yet different bullets as well as the image comparison technology did. In a number of cases, the numerical results made the correct distinctions, although they were close to one another. It is hard to say from this data that this technology differs in its ability to make distinctions between the manufacturers, because the results are very similar with both. The human examiner results were as expected. We did not expect any misidentifications, and there were not any. It would have been preferable to have a higher return rate, and thus more comparisons in the overall sample. As noted, the ''consecutively manufactured barrel exercise'' has been done before, with the same outcome.

  14. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,835 2,072 2,127 2,518 2,567 2,949 2,793 2,744 2000's 3,174 4,288 4,444 4,554 4,144 4,042 3,655 3,464

  15. U.S. Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Acquisitions (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,051 550 512 433 554 596 1,048 771 332 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Reserves Acquisitions

  16. U.S. Natural Gas Plant Liquids, Reserves Adjustments (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Adjustments (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 64 1980's 153 231 299 849 -123 426 367 231 11 -277 1990's -83 233 225 102 43 192 474 -15 -361 99 2000's -83 -429 62 -338 273 -89 173 -139 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  17. U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Based Production (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 580 1980's 572 580 564 568 597 585 569 585 592 566 1990's 574 601 626 635 634 646 688 690 655 697 2000's 710 675 677 611 645 614 629 650 667 714 2010's 745 784 865 931 1,124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  18. U.S. Natural Gas Plant Liquids, Reserves Extensions (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Extensions (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 364 1980's 418 542 375 321 348 337 263 213 268 259 1990's 299 189 190 245 314 432 451 535 383 313 2000's 645 717 612 629 734 863 924 1,030 956 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  19. ,"Montana Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  20. ,"Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  1. ,"Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  2. ,"Nebraska Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  3. ,"New Mexico Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  4. ,"New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  5. ,"New Mexico Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  6. ,"New Mexico Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  7. ,"New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  8. ,"New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  9. ,"New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  10. ,"North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  11. ,"North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  12. ,"North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  13. ,"Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"Ohio Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",1985 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  15. ,"Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  17. ,"Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  18. ,"Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  19. ,"Pennsylvania Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",1985 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  20. ,"Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  1. ,"U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  2. ,"U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  3. ,"U.S. Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  4. ,"U.S. Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  5. ,"U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  6. ,"Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  7. ,"Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  8. ,"Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  9. ,"Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2006 ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"West Virginia Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  11. ,"Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  13. ,"Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  14. U.S. Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) U.S. Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 344 2010's 1,470 1,561 1,234 1,925 2,828 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Acquisitions

  15. U.S. Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) U.S. Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 46 2010's 188 207 137 -595 440 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  16. U.S. Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) U.S. Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,305 2010's 1,766 3,107 5,191 4,973 5,021 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  17. U.S. Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) U.S. Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 249 2010's 803 1,024 819 1,536 2,475 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  18. ,"Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  19. ,"Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  20. ,"Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"Arkansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  2. ,"Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  3. ,"California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  4. ,"California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  6. ,"California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"Colorado Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  9. ,"Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  10. ,"Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"Florida Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  13. ,"Florida Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  14. ,"Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"Kansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"Kansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  18. ,"Kansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  19. ,"Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. ,"Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  1. ,"Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  2. ,"Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  3. ,"Louisiana--North Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--North Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  6. ,"Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"Lower 48 States Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 States Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"Lower 48 States Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 States Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  11. ,"Michigan Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  12. ,"Michigan Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  13. ,"Miscellaneous States Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  14. ,"Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  15. ,"Miscellaneous States Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  16. ,"Miscellaneous States Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  17. ,"Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  18. ,"Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. Video: SuperTruck Barreling Down the Road of Sustainability | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SuperTruck Barreling Down the Road of Sustainability Video: SuperTruck Barreling Down the Road of Sustainability May 14, 2015 - 4:30pm Addthis New Energy 101 video shows how the Energy Department's SuperTruck initiative is making Class 8 trucks more fuel efficient and less expensive to operate. | Office of Energy Efficiency and Renewable Energy video. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS SuperTruck initiative helping make Class 8

  20. California - Coastal Region Onshore Crude Oil + Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - Coastal Region Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 341 2010's 478 564 620 599 587 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  1. California - Coastal Region Onshore Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California - Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 22 1980's 23 14 16 17 15 16 15 13 13 11 1990's 12 12 10 12 11 8 9 9 9 31 2000's 27 16 17 15 19 16 22 14 10 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  2. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    monthly crude oil production highest in 26 years with bigger oil flows still to come U.S. crude oil production averaged 8.3 million barrels per day in April....the highest monthly level in 26 years....and output is expected to keep growing. In its new monthly forecast, the U.S. Energy Information Administration expects oil production to average 8.5 million barrels per day this year and increase to 9.2 million barrels per day next year. That would be the highest annual output level since 1972.

  3. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    Rising U.S. oil production cuts into petroleum imports Growing U.S. crude oil production is on track to push the amount of petroleum liquid fuels imports needed to meet domestic fuel consumption to the lowest level in more than four decades. U.S. crude oil production is expected to jump from 7.4 million barrels per day in 2013 to 8.5 million barrels per day this year.....and then rise to 9.3 million barrels a day in 2015, according to the new monthly forecast from the U.S. Energy Information

  4. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    oil production tops 8 million barrels per day for the first time since 1988 Estimated U.S. crude oil production in November topped 8 million barrels per day for the first time in 25 years, according to the new monthly energy forecast from the U.S. Energy Information Administration. Rising oil output from tight oil formations in North Dakota and Texas are playing a key role, with annual U.S. oil production expected to increase to an average of 8.5 million barrels per day next year. More oil

  5. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    to account for 91% of the growth in world oil production in 2015 The United States is expected to provide nine out of every 10 barrels of new global oil supplies in 2015. In its new forecast, the U.S. Energy Information Administration said it expects world oil production to rise by 1.3 million barrels per day next year....with U.S. daily oil output alone increasing by 1.2 million barrels. Rising U.S. oil production, along with more fuel-efficient vehicles on America's highways, is expected to

  6. U.S. Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) U.S. Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,615 1980's 6,728 7,068 7,221 7,901 7,643 7,944 8,165 8,147 8,238 7,769 1990's 7,586 7,464 7,451 7,222 7,170 7,399 7,823 7,973 7,524 7,906 2000's 8,345 7,993 7,994 7,459 7,928 8,165 8,472 9,143 9,275 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,474 3,755 4,147 4,206 2000's 4,019 5,195 5,271 5,580 5,143 5,691 5,174 5,455 5,400 6,015 2010's 6,980 9,049 11,884 13,200 14,816 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - Secretary Samuel W. Bodman announced that the Department of Energy has approved bids for the sale of 11 million barrels of crude oil from the Strategic Petroleum Reserve (SPR)....

  9. ,"California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  10. ,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  11. U.S. crude oil production expected to top 9 million barrels per day in December

    Gasoline and Diesel Fuel Update (EIA)

    3 2015 Falling crude prices to slow U.S. oil production growth in 2015 U.S. crude oil production is expected to increase again this year, but lower crude prices will slow the growth in output. In its new forecast, the U.S. Energy Information Administration said domestic crude oil production should average 9.3 million barrels per day in 2015. On-shore production in the Lower 48-states is expected to grow in the early part of the year, before declining in the second half. Production for the

  12. Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacing the Whole Barrel To Reduce U.S. Dependence on Oil July 2013 Biofuels are improving America's energy security and helping to lower prices at the pump. Photo: iStock/ 3295439. Cover photos from iStock/ 13311982, 8047298, 6019274, 16059398, 6439341 If we are going to control our energy future, then we've got to have an all-of-the-above strategy. We've got to develop every source of American energy-not just oil and gas, but wind power and solar power, nuclear power, biofuels. President

  13. Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential;

    Gasoline and Diesel Fuel Update (EIA)

    Nonswitchable Minimum and Maximum Consumption, 2010; Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential; Unit: Physical Units. Actual Minimum Maximum Energy Sources Consumption Consumption(a) Consumption(b) Total United States Electricity Receipts(c) (million kilowatthour 745,247 727,194 770,790 Natural Gas (billion cubic feet) 5,064 4,331 5,298 Distillate Fuel Oil (thousand barrels) 22 20 82 Residual Fuel Oil (thousand barrels) 13 9 46 Coal (thousand short

  14. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    U.S. crude oil production expected to hit four-decade high during 2015 U.S. crude oil production over the next two years is expected to grow to its highest level since the early 1970s. Oil output increased by 1 million barrels per day in 2013...and is expected to repeat that growth rate during 2014....according to the new forecast from the U.S. Energy Information Administration. U.S. crude oil production is forecast to average 8.5 million barrels per day this year and then rise to 9.3 million

  15. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    World oil supply more than adequate to meet demand over next 2 years Rising U.S. crude oil production will help non-OPEC supply growth exceed global demand growth for the next two years. Non-OPEC petroleum and other liquids supply is expected to increase 1.9 million barrels per day this year, while oil consumption will grow just 1.3 million barrels per day, according to the U.S. Energy Information Administration's new monthly forecast. Next year....non-OPEC supply is expected to rise another 1.5

  16. ,"New Mexico--East Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico--East Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  17. ,"New Mexico--East Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico--East Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  18. ,"New Mexico--West Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico--West Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  19. ,"New Mexico--West Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico--West Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"Texas (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  1. ,"Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"Texas--RRC District 1 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 1 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"Texas--RRC District 10 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 10 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  6. ,"Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"Texas--RRC District 5 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 5 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"Texas--RRC District 6 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 6 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"Texas--RRC District 7B Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 7B Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"Texas--RRC District 7C Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 7C Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"Texas--RRC District 8 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 8 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"Texas--RRC District 8A Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 8A Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"Texas--RRC District 9 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 9 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  14. ,"Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  15. ,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  16. ,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  17. ,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  18. ,"Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  19. ,"Calif--Los Angeles Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--Los Angeles Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  1. ,"Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"California (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  6. ,"Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  14. ,"Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  15. ,"Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  16. ,"Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  17. ,"Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  18. Detailed Surface Analysis Of Incremental Centrifugal Barrel Polishing (CBP) Of Single-Crystal Niobium Samples

    SciTech Connect (OSTI)

    Palczewski, Ari D.; Hui Tian; Trofimova, Olga; Reece, Charles E.

    2011-07-01

    We performed Centrifugal Barrel Polishing (CBP) on single crystal niobium samples/coupons housed in a stainless steel sample holder following the polishing recipe developed at Fermi Lab (FNAL) in 2011 \\cite{C. A. Cooper 2011}. Post CBP, the sample coupons were analyzed for surface roughness, crystal composition and structure, and particle contamination. Following the initial analysis each coupon was high pressure rinsed (HRP) and analyzed for the effectiveness of contamination removal. We were able to obtain the mirror like surface finish after the final stage of tumbling, although some defects and embedded particles remained. In addition, standard HPR appears to have little effect on removing embedded particles which remain after each tumbling step, although final polishing media removal was partially affected by standard/extended HPR.

  19. Table 5.10 Natural Gas Plant Liquids Production, 1949-2011 (Thousand Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Natural Gas Plant Liquids Production, 1949-2011 (Thousand Barrels) Year Finished Petroleum Products 1 Liquefied Petroleum Gases Pentanes Plus 4 Total Ethane 2 Isobutane Normal Butane 3 Propane 2,3 Total 1949 19,210 3,056 4,182 22,283 27,114 56,634 81,241 157,086 1950 23,931 4,253 4,667 25,323 37,018 71,261 86,769 181,961 1951 26,505 5,545 5,509 27,960 45,798 84,812 93,437 204,754 1952 25,488 7,089 6,568 31,349 54,732 99,738 98,289 223,515 1953 25,739 6,151 7,006 35,308 61,544 110,009 102,831

  20. Table 5.18 Crude Oil Domestic First Purchase Prices, 1949-2011 (Dollars per Barrel)

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Crude Oil Domestic First Purchase Prices, 1949-2011 (Dollars per Barrel) Year Alaska North Slope California Texas U.S. Average Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 1949 – – – – NA NA NA NA 2.54 17.52 [R] 1950 – – – – NA NA NA NA 2.51 17.13 [R] 1951 – – – – NA NA NA NA 2.53 16.10 [R] 1952 – – – – NA NA NA NA 2.53 15.83 [R] 1953 – – – – NA NA NA NA 2.68 16.57 [R] 1954 – – – – NA NA NA NA 2.78 17.03 [R] 1955 – – – – NA NA NA NA 2.77 16.69

  1. Table 5.6 Petroleum Exports by Country of Destination, 1960-2011 (Thousand Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Exports by Country of Destination, 1960-2011 (Thousand Barrels) Year Belgium 1 Brazil Canada France Italy Japan Mexico Nether- lands South Korea Spain United Kingdom U.S. Virgin Islands and Puerto Rico Other Total 1960 1,128 1,547 12,622 1,591 2,184 22,681 6,428 2,057 NA NA 4,273 487 18,908 73,906 1961 1,418 1,337 8,401 1,442 1,706 21,473 4,548 1,496 NA NA 3,705 400 17,637 63,563 1962 1,182 1,649 7,714 969 1,994 19,687 4,981 1,671 NA NA 3,044 344 18,155 61,390 1963 3,191 1,335 7,987

  2. OPTIMIZING CENTRIFUGAL BARREL POLISHING FOR MIRROR FINISH SRF CAVITY AND RF TESTS AT JEFFERSON LAB

    SciTech Connect (OSTI)

    Ari Palczewski, Rongli Geng, Hui Tian

    2012-07-01

    We performed Centrifugal Barrel Polishing (CBP) on a 1.3 GHz fine grain TESLA single cell cavity and 1.5 GHz fine grain CEBAF high gradient superconducting radio frequency (SRF) single cell cavity following a modified recipe originally developed at Fermi National Accelerator Lab (FNAL). We were able to obtain a mirror like surface similar to that obtained at FNAL, while reducing the number of CBP steps and total processing time. This paper will discuss the change in surface and subsequent cavity performance post CBP, after a 800 C bake (no pre-bake chemistry) and minimal controlled electro-polishing (10 micron). In addition to Q vs. E{sub ACC} thermometry mapping with preheating characteristics and optical inspection of the cavity after CBP will also be shown.

  3. Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from the open burning of household waste in barrels

    SciTech Connect (OSTI)

    Lemieux, P.M.; Lutes, C.C.; Abbott, J.A.; Aldous, K.M.

    2000-02-01

    Backyard burning of household waste in barrels is a common waste disposal practice for which pollutant emissions have not been well characterized. This study measured the emissions of several pollutants, including polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), from burning mixtures designed to simulate waste generated by a recycling and a nonrecycling family in a 208-L (55-gal) burn barrel at the EPA's Open Burning Test Facility. This paper focuses on the PCDD/PCDF emissions and discusses the factors influencing PCDD/PCDF formation for different test burns. Four test burns were made in which the amount of waste placed in the barrel varied from 6.4 to 13.6 kg and the amount actually burned varied from 46.6% to 68.1%. Emissions of total PCDDs/PCDFs ranged between 0.0046 and 0.48 mg/kg of waste burned. Emissions are also presented in terms of 2,3,7,8-TCDD toxic equivalents. Emissions of PCDDs/PCDFs appear to correlate with both copper and hydrochloric acid emissions. The results of this study indicate that backyard burning emits more PCDDs/PCDFs on a mass of refuse burned basis than various types of municipal waste combustors (MWCs). Comparison of burn barrel emissions to emissions from a hypothetical modern MWC equipped with high-efficiency flue gas cleaning technology indicates that about 2--40 households burning their trash daily in barrels can produce average PCDD/PCDF emissions comparable to a 182,000 kg/day (200 ton/day) MWC facility. This study provides important data on a potentially significant source of emissions of PCDDs/PCDFs.

  4. Table 5.21 Crude Oil Refiner Acquisition Costs, 1968-2011 (Dollars per Barrel)

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Crude Oil Refiner Acquisition Costs, 1968-2011 (Dollars per Barrel) Year Domestic Imported Composite Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 1968E 3.21 14.57 [R] 2.90 13.16 [R] 3.17 14.39 [R] 1969E 3.37 14.58 [R] 2.80 12.11 [R] 3.29 14.23 [R] 1970E 3.46 14.22 [R] 2.96 12.16 [R] 3.40 13.97 [R] 1971E 3.68 14.40 [R] 3.17 12.41 [R] 3.60 14.09 [R] 1972E 3.67 13.77 [R] 3.22 12.08 [R] 3.58 13.43 [R] 1973E 4.17 14.82 [R] 4.08 14.50 [R] 4.15 14.75 [R] 1974 7.18 23.40 [R] 12.52 40.80 [R] 9.07

  5. Apparatus and method for quantitative assay of samples of transuranic waste contained in barrels in the presence of matrix material

    DOE Patents [OSTI]

    Caldwell, J.T.; Herrera, G.C.; Hastings, R.D.; Shunk, E.R.; Kunz, W.E.

    1987-08-28

    Apparatus and method for performing corrections for matrix material effects on the neutron measurements generated from analysis of transuranic waste drums using the differential-dieaway technique. By measuring the absorption index and the moderator index for a particular drum, correction factors can be determined for the effects of matrix materials on the ''observed'' quantity of fissile and fertile material present therein in order to determine the actual assays thereof. A barrel flux monitor is introduced into the measurement chamber to accomplish these measurements as a new contribution to the differential-dieaway technology. 9 figs.

  6. Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential;

    Gasoline and Diesel Fuel Update (EIA)

    Table 10.1 Nonswitchable Minimum and Maximum Consumption, 2006; Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential; Unit: Physical Units. Actual Minimum Maximum Energy Sources Consumption Consumption(a) Consumption(b) Total United States Electricity Receipts(c) (million kilowatthour 854,102 826,077 889,281 Natural Gas (billion cubic feet) 5,357 4,442 5,649 Distillate Fuel Oil (thousand barrels) 22,139 19,251 101,340 Residual Fuel Oil (thousand barrels) 39,925

  7. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  8. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  9. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  10. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch LPG to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  11. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  12. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  13. R&D progress in SRF surface preparation with centrifugal barrel polishing (cbp) for both Nb and Cu

    SciTech Connect (OSTI)

    Palczewski, Ari

    2013-09-01

    Centrifugal Barrel polishing (CBP) is becoming a common R&D tool for SRF cavity preparation around the world. During the CBP process a cylindrically symmetric SRF cavity is filled with relatively cheap and environmentally friendly abrasive and sealed. The cavity is then spun around a cylindrically symmetric axis at high speeds uniformly conditioning the inner surface. This uniformity is especially relevant for SRF application because many times a single manufacturing defects limits cavity?s performance well below it?s theoretical limit. In addition CBP has created surfaces with roughness?s on the order of 10?s of nm which create a unique surface for wet chemistry or thin film deposition. CBP is now being utilized at Jefferson Laboratory, Fermi Laboratory and Cornell University in the US, Deutsches Elektronen-Synchrotron in Germany, Laboratori Nazionali di Legnaro in Italy, and Raja Ramanna Centre for Advanced Technology in India. In this talk we will present current CBP research from each lab including equipment, baseline recipes, cavity removal rates and subsequent cryogenic cavity tests on niobium as well as copper cavities where available.

  14. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel ?-barrel consisting of two Greek-key motifs

    SciTech Connect (OSTI)

    Geerds, Christina; Wohlmann, Jens; Haas, Albert; Niemann, Hartmut H.

    2014-06-18

    The structure of VapB, a member of the Vap protein family that is involved in virulence of the bacterial pathogen R. equi, was determined by SAD phasing and reveals an eight-stranded antiparallel ?-barrel similar to avidin, suggestive of a binding function. Made up of two Greek-key motifs, the topology of VapB is unusual or even unique. Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel ?-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded ?-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology.

  15. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) Total United States 311 Food 1 * 1 * * * * 0 0 * 3112 Grain and Oilseed Milling * * * * * * * 0

  16. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Barrels. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 4 * 3 * * * 0 * 0 * 3112 Grain and Oilseed Milling * * * * * * 0 *

  17. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    Record natural gas production for the U.S. in 2014 U.S. natural gas production is expected to increase 5.3% this year. In its new forecast, the U.S. Energy Information Administration said it expects U.S. natural gas production to reach a record 69.8 billion cubic feet per day this year....that's about 3.2 billion cubic feet per day higher than in 2013. Higher U.S. gas production...particularly in Pennsylvania's Marcellus Shale region and the Eagle Ford Shale region in Texas...is supporting the

  18. Exploration of material removal rate of srf elliptical cavities as a function of media type and cavity shape on niobium and copper using centrifugal barrel polishing (cbp)

    SciTech Connect (OSTI)

    Palczewski, Ari; Ciovati, Gianluigi; Li, Yongming; Geng, Rongli

    2013-09-01

    Centrifugal barrel polishing (cbp) for SRF application is becoming more wide spread as the technique for cavity surface preparation. CBP is now being used in some form at SRF laboratories around the world including in the US, Europe and Asia. Before the process can become as mature as wet chemistry like eletro-polishing (EP) and buffered chemical polishing (BCP) there are many questions which remain unanswered. One of these topics includes the uniformity of removal as a function of cavity shape and material type. In this presentation we show CBP removal rates for various media types on 1.3 GHz TESLA and 1.5 GHz CEBAF large/fine grain niobium cavities, and 1.3GHz low surface field copper cavity. The data will also include calculated RF frequency shift modeling non-uniform removal as a function of cavity position and comparing them with CBP results.

  19. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    residential summer power bills to be higher than last year The average household power bill this summer is expected to be 4.9 percent higher than last year. In its new monthly forecast, the U.S. Energy Information Administration said residential electricity expenses will be higher during the June through August period because of rising electricity prices and higher power use. Household power expenses will vary by region....with increases in electricity bills ranging from 2.1% for the Mountain

  20. Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Zan; Millan, Robyn M.; Hudson, Mary K.; Woodger, Leslie A.; Smith, David M.; Chen, Yue; Friedel, Reiner; Rodriguez, Juan V.; Engebretson, Mark J.; Goldstein, Jerry; et al

    2014-12-23

    Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution,more » and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.« less

  1. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    SciTech Connect (OSTI)

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  2. Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations

    SciTech Connect (OSTI)

    Li, Zan; Millan, Robyn M.; Hudson, Mary K.; Woodger, Leslie A.; Smith, David M.; Chen, Yue; Friedel, Reiner; Rodriguez, Juan V.; Engebretson, Mark J.; Goldstein, Jerry; Fennell, Joseph F.; Spence, Harlan E.

    2014-12-23

    Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution, and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.

  3. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) Total United States 311 Food 850 159 549 Q 86 8 * 0 0 Q 3112 Grain and Oilseed Milling Q 2 Q 1 Q

  4. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 4,124 2,134 454 0 1,896 284 0 Q 0 Q 3112 Grain and Oilseed Milling

  5. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 2,723 127 2,141 4 111 * 0 5 0 7 3112 Grain and Oilseed Milling 153 6

  6. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 2 1 1 * 1 * 0 0 0 * 3112 Grain and Oilseed Milling * * * 0 * * 0 0

  7. CAPITAL REGION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    t 09/20/07 15:28 FAX 301 903 4656 CAPITAL REGION 0 j002 SDOE F 1325.8 (8-89) EFG (0790) Energy United States Government Department of Energy Memorandum DATE. September 18, 2007 Audit Report No.: OAS-L-07-23 REPLY TO: IG-34 (A07TG036) SUBJECT: Evaluation of "The Federal Energy Regulatory Commission's Cyber Security Program-2007" TO: Chairman, Federal Energy Regulatory Commission The purpose of this report is to inform you of the results o Four evaluation of the Federal Energy Regulatory

  8. Regional overview of Latin American and Caribbean energy production, consumption, and future growth. Report series No. 1

    SciTech Connect (OSTI)

    Wu, K.

    1994-07-01

    The Latin American and Caribbean region - comprising Mexico, Central and South America, and the Caribbean - is relatively well endowed with energy resources, although the distribution of these resources is uneven across countries. The region produces more energy than it consumes, and the surplus energy, which amounts to 3.6 million barrels of oil equivalent per day (boe/d), is mostly oil. While the region`s total oil (crude and products) exports decreased from 4.4 million barrels per day (b/d) in 1981 to 3.8 million b/d in 1992, its net oil exports increased from about 1.6 million b/d in 1981 to 2.8 million b/d in 1992. In 1993, the surplus oil in Latin America and the Caribbean remained at 2.8 million b/d. This report analyzes the key issues of the Latin American and Caribbean energy industry and presents the future outlook for oil, gas, coal, hydroelectricity, and nuclear power developments in the region. In addition, the status of biomass energy, geothermal, and other noncommercial energy in the region will be briefly discussed in the context of overall energy development. The rest of the report is organized as follows: Section II assesses the current situation of Latin American and Caribbean energy production and consumption, covering primary energy supply, primary energy consumption, downstream petroleum sector development, and natural gas utilization. Section III presents the results of our study of future energy growth in Latin America. Important hydrocarbons policy issues in the region are discussed in Section IV, and a summary and concluding remarks are provided in Section V.

  9. Regional Education Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Education Partners Regional Education Partners One of the Laboratory's STEM education objectives is centered on strengthening the future workforce of Northern New Mexico...

  10. Southwest Regional Partnership on Carbon Sequestration Phase II

    SciTech Connect (OSTI)

    James Rutledge

    2011-02-01

    The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the Desert Creek zone reservoir, Gothic seal, and overlying aquifers, (4) characterizing the depositional environments and diagenetic events that produced significant reservoir heterogeneity, (5) describing the geochemical, petrographic, and geomechanical properties of the seal to determine the CO2 or hydrocarbon column it could support, and (6) evaluating the production history to compare primary production from vertical and horizontal wells, and the effects of waterflood and wateralternating- gas flood programs. The field monitoring demonstrations were conducted by various Partners including New Mexico Institute of Mining and Technology, University of Utah, National Institute of Advanced Industrial Science and Technology, Japan, Los Alamos National Laboratory and Cambridge Geosciences. The monitoring tests are summarized in Chapters 8 through 12, and includes (1) interwell tracer studies during water- and CO2-flood operations to characterize tracer behavoirs in anticipation of CO2-sequestration applications, (2) CO2 soil flux monitoring to measure background levels and variance and assess the sensitivity levels for CO2 surface monitoring, (3) testing the continuous monitoring of self potential as a means to detect pressure anomalies and electrochemical reaction due to CO2 injection, (4) conducting time-lapse vertical seismic profiling to image change near a CO2 injection well, and (5) monitoring microseismicity using a downhole string of seismic receivers to detect fracture slip and deformation associated with stress changes. Finally, the geologic modeling and numerical simulation study was conducted by researcher at the University of Utah. Chapter 13 summarizes their efforts which focused on developing a site-specific geologic model for Aneth to better understand and design CO2 storage specifically tailored to oil reservoirs.

  11. Regional Education Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Education Partners Regional Education Partners One of the Laboratory's STEM education objectives is centered on strengthening the future workforce of Northern New Mexico and LANL through effective partnerships with regional secondary and higher education organizations, businesses and industry. Contact Executive Office Director Kathy Keith Community Relations & Partnerships (505) 665-4400 Email Regional Partners Charlie McMillan talking with Rick Ulibarri and Dr. Fries, President of

  12. Regional Economic Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Economic Development Regional Economic Development Supporting companies in every stage of development through access to technology, technical assistance or investment Questions Richard P. Feynman Center for Innovation Regional Programs (505) 665-9090 New Mexico Small Business Assistance Email Venture Acceleration Fund Email DisrupTECH Email SBIR/STTR Email FCI facilitates commercialization in New Mexico to accelerate and enhance our efforts to convert federal and state research

  13. Western Regional Partnership Overview

    Broader source: Energy.gov (indexed) [DOE]

    Regional Partnership Overview June 2013 Briefing Overview  WRP Background  Importance of Region  WRP Tribal Relations Committee  WRP Energy Committee WRP Region's Uniqueness  5 states stretching from the Great Plains to the Pacific Ocean  Diverse terrain ranging from desert valleys to forested mountains  Significant State Trust Landholdings  Approximately 188 Federally recognized Tribes  Significant amounts of Federally managed land  According to GSA 2004 study, WRP

  14. AEMC Northeast Regional Summit

    Broader source: Energy.gov [DOE]

    The Energy Department's Clean Energy Manufacturing Initiative will host a Northeast Regional Summit to showcase the achievements in American Energy & Manufacturing through public-private partnerships.

  15. CEMI Western Regional Summit

    Broader source: Energy.gov [DOE]

    Please Join Assistant Secretary of Energy Dr. David Danielson for the Clean Energy Manufacturing Initiative's Western Regional Summit. Register now for this free event.

  16. ERHIC INTERACTION REGION DESIGN.

    SciTech Connect (OSTI)

    MONTAG,C.PARKER,B.PTITSYN,V.TEPIKIAN,S.WANG,D.WANG,F.

    2003-10-13

    This paper presents the current interaction region design status of the ring-ring version of the electron-ion collider eRHIC (release 2.0).

  17. Regional Analysis Briefs

    Reports and Publications (EIA)

    2028-01-01

    Regional Analysis Briefs (RABs) provide an overview of specific regions that play an important role in world energy markets, either directly or indirectly. These briefs cover areas that are currently major producers (Caspian Sea), have geopolitical importance (South China Sea), or may have future potential as producers or transit areas (East Africa, Eastern Mediterranean).

  18. Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January » Regional Science Bowl Regional Science Bowl WHEN: Jan 23, 2016 8:00 AM - 5:00 PM WHERE: Highland High School 4700 Coal SE, Albuquerque, NM CONTACT: Janelle Vigil-Maestas (505) 665-4329 CATEGORY: Community INTERNAL: Calendar Login Event Description Five teams from Northern New Mexico area schools are among 16 participating in the middle school Regional Science Bowl competition. Northern area teams participating are from Los Alamos, Española, Cuba and Santa Fe. The winning team at this

  19. Regional Workforce Study - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Workforce Study Regional employers will need to fill more than 30,000 job openings over the next five years in the five-county region of South Carolina and Georgia represented by the SRS Community Reuse Organization (SRSCRO). That is a key finding of a new study released on April 22, 2015. TIP Strategies, an Austin, Texas-based economic consulting firm, performed the study for the SRSCRO by examining workforce trends in the five counties the SRSCRO represents - Aiken, Allendale and

  20. Regional Carbon Sequestration Partnerships

    Broader source: Energy.gov [DOE]

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  1. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  2. NV PFA Regional Data

    SciTech Connect (OSTI)

    James Faulds

    2015-10-28

    This project focused on defining geothermal play fairways and development of a detailed geothermal potential map of a large transect across the Great Basin region (96,000 km2), with the primary objective of facilitating discovery of commercial-grade, blind geothermal fields (i.e. systems with no surface hot springs or fumaroles) and thereby accelerating geothermal development in this promising region. Data included in this submission consists of: structural settings (target areas, recency of faulting, slip and dilation potential, slip rates, quality), regional-scale strain rates, earthquake density and magnitude, gravity data, temperature at 3 km depth, permeability models, favorability models, degree of exploration and exploration opportunities, data from springs and wells, transmission lines and wilderness areas, and published maps and theses for the Nevada Play Fairway area.

  3. Baseballs and Barrels: World Statistics Day

    Broader source: Energy.gov [DOE]

    Statistics don’t just help us answer trivia questions – they also help us make intelligent decisions. For example, if I heat my home with natural gas, I’m probably interested in what natural gas prices are likely to be this winter.

  4. Regional Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Partnerships Regional Partnerships DOE's Regional Carbon Sequestration Partnerships Program DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also called carbon sequestration) in different regions and geologic formations within the Nation. Collectively, the seven RCSPs represent regions encompassing: 97 percent of coal-fired CO2 emissions; 97 percent

  5. Regional Energy Planning

    Energy Savers [EERE]

    Regional Energy Planning Alaska Native Village Energy Development Workshop April 29, 2014 Affordable and Stable Energy for Alaskans  Maintain consistency with State energy policy and goals  Provide vetting process to incorporate renewables, fossil fuels  Provide statewide perspective while balancing Railbelt infrastructure development  Engage communities in providing sustainable energy futures 2 Energy Sources Vary 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Wind Hydroelectric

  6. Energy Regional Catalyst

    Office of Environmental Management (EM)

    Shaina Kilcoyne Energy Regional Catalyst Energy Efficiency Director Energy Efficiency Barriers  Cost of an energy audit  Lack of understanding of energy efficiency opportunities  Capacity for long-term planning  Program Gaps  Cash for energy upgrades  Owner-payer disconnect  Little energy tracking Collaboration Overcoming Barriers * Communication * Collaboration * Identify easy recommendations * Coordination * Follow Up! Photo Credits: Tim Leach Traveling Energy Efficiency

  7. Introduction: Regional Dialogue Contract Templates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction: Regional Dialogue Contract Templates October 17, 2007 1. Summary * BPA invites comments on the first draft of the Regional Dialogue Master Template by Friday,...

  8. Regions for Select Spot Prices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are used to represent the following regions: Region Gas Point Used Power Point Used New England Algonquin Citygate Massachusetts Hub (ISONE) New York City Transco Zone 6-NY...

  9. Regional Energy Planning

    Energy Savers [EERE]

    Regional Energy Planning Photo by: Cassandra Cerny, GVEA Jed Drolet, Energy Information Analyst BIA Providers Conference December 3, 2015 Alaska Energy Authority: Mission "To Reduce the Cost of Energy in Alaska"  AEA is an independent and public corporation of the State of Alaska  Created by the Alaska Legislature in 1976  44.83.070: " The purpose of the Authority is to promote, develop, and advance the general prosperity and economic welfare of the people of the state by

  10. Colorado Regional Faults

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  11. Strengthening regional safeguards

    SciTech Connect (OSTI)

    Palhares, L.; Almeida, G.; Mafra, O.

    1996-08-01

    Nuclear cooperation between Argentina and Brazil has been growing since the early 1980`s and as it grew, so did cooperation with the US Department of Energy (DOE). The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was formed in December 1991 to operate the Common System of Accounting and Control of Nuclear Materials (SCCC). In April 1994, ABACC and the DOE signed an Agreement of Cooperation in nuclear material safeguards. This cooperation has included training safeguards inspectors, exchanging nuclear material measurement and containment and surveillance technology, characterizing reference materials, and studying enrichment plant safeguards. The goal of the collaboration is to exchange technology, evaluate new technology in Latin American nuclear facilities, and strengthen regional safeguards. This paper describes the history of the cooperation, its recent activities, and future projects. The cooperation is strongly supported by all three governments: the Republics of Argentina and Brazil and the United States.

  12. Coal-Producing Region

    Gasoline and Diesel Fuel Update (EIA)

    . Coal Production by State (thousand short tons) Year to Date Coal-Producing Region and State July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change Alabama 3,192 3,504 4,331 10,718 12,345 -13.2 Alaska 255 345 372 866 1,178 -26.5 Arizona 1,762 1,912 2,165 5,429 5,979 -9.2 Arkansas 26 27 18 74 58 27.4 Colorado 5,123 5,078 6,574 15,464 18,367 -15.8 Illinois 13,967 13,360 14,816 44,105 42,575 3.6 Indiana 9,124 8,577 9,805 27,164 29,328 -7.4 Kansas 42 49 5 144 16 NM

  13. REGIONAL PARTNERSHIPSThe Pioneer Regional Partnerships are early-stage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REGIONAL PARTNERSHIPSThe Pioneer Regional Partnerships are early-stage public/private collaborative projects that address specific near-term grid modernization issues important to the identified region and its stakeholders. The Grid Modernization Laboratory Consortium (GMLC) has initiated 11 proposed partnerships to accomplish the following:Address a key state/regional grid modernization challenge that is visible and important to local industry and government stakeholders.Engage collaboration

  14. Regional Networks for Energy Efficiency

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Sustainability Peer Exchange Call: Regional Networks for Energy Efficiency, call slides and discussion summary, December 6, 2012.

  15. EWONAP Training and Regional Meeting

    Broader source: Energy.gov [DOE]

    The Native Learning Center is pleased to announce the 2016 Eastern Woodlands ONAP Training and Regional Meeting taking place in our newly renovated training facility in Hollywood, FL. This three-day interactive training is designed to address Tribal Housing needs identified throughout the Eastern Woodlands region.

  16. USDA Regional Conservation Partnership Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture is accepting applications for the Regional Conservation Partnership Program to identify and address natural resource objectives in balance with operational goals in order to benefit soil, water, wildlife, and related natural resources locally, regionally, and nationally.

  17. Yellowstone Caldera Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Region (Finn & Morgan, 2002) Compound and Elemental Analysis At Yellowstone Region (Goff & Janik, 2002) Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al.,...

  18. Regional Climate Change Webinar Presentation | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Regional Climate Change Webinar presentation dated August 6, 2015. Regional Climate Change Webinar Presentation More Documents & Publications Regional Climate Change Webinar...

  19. Figure 1. Census Regions and Divisions

    Gasoline and Diesel Fuel Update (EIA)

    US Federal Region Map US Federal Regions> Region 1 Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Region 2 New...

  20. 2015 NHA Alaska Regional Meeting

    Broader source: Energy.gov [DOE]

    Register today and join industry professionals for interactive discussions covering a variety of regional topics and a tour of the Eklutna lake Project.

  1. Geothermal Regions | Open Energy Information

    Open Energy Info (EERE)

    groundwater flow), and other relevant factors. The 21 regions can be seen outlined in red and overlain on the 2008 USGS Geothermal Favorability Map in Figure 1.1 Add a new...

  2. More Regional Science Bowl Winners

    Broader source: Energy.gov [DOE]

    By March 25, 2011, thousands of students will have competed in more than 100 regional science bowl contests throughout the country, and then the winning schools will compete in DC this spring for the national championship.

  3. CEMI Southeast Regional Summit Speakers

    Broader source: Energy.gov [DOE]

    The following are confirmed speakers for the CEMI Southeast Regional Summit, which will be held on July 9, 2015 at the Renaissance Atlanta Midtown Hotel in Atlanta, Georgia. 

  4. Regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ta boa vontade de aprender e dis- ponibilidade", afirma humilde- mente Carlos Sousa, entrevista- do nandiaatravs de e-mail pelo Aoriano Oriental. Estas so, alis,...

  5. WINDExchange: About Regional Resource Centers

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers About Economic Development Siting About Regional Resource Centers Significant expansion of wind energy deployment will be required to achieve the President's goal of doubling renewable energy production in the United States by 2020. Wind energy currently provides more than 4% of the nation's electricity but has the potential to provide much more. Increasing the country's percentage from wind power will mean

  6. Regional Transmission Projects: Finding Solutions

    SciTech Connect (OSTI)

    The Keystone Center

    2005-06-15

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association of State Utility Consumer Advocates National Grid Northeast Utilities PA Office of Consumer Advocates Pacific Gas & Electric Corporation Pennsylvania Public Utility Commission PJM Interconnection The Electricity Consumers Resource Council U.S. Department of Energy US Department of the Interior Van Ness Feldman Western Interstate Energy Board Wind on the Wires Wisconsin Public Service Commission Xcel Energy

  7. Hierarchical probabilistic regionalization of volcanism for Sengan region, Japan.

    SciTech Connect (OSTI)

    Balasingam, Pirahas; Park, Jinyong; McKenna, Sean Andrew; Kulatilake, Pinnaduwa H. S. W.

    2005-03-01

    A 1 km square regular grid system created on the Universal Transverse Mercator zone 54 projected coordinate system is used to work with volcanism related data for Sengan region. The following geologic variables were determined as the most important for identifying volcanism: geothermal gradient, groundwater temperature, heat discharge, groundwater pH value, presence of volcanic rocks and presence of hydrothermal alteration. Data available for each of these important geologic variables were used to perform directional variogram modeling and kriging to estimate geologic variable vectors at each of the 23949 centers of the chosen 1 km cell grid system. Cluster analysis was performed on the 23949 complete variable vectors to classify each center of 1 km cell into one of five different statistically homogeneous groups with respect to potential volcanism spanning from lowest possible volcanism to highest possible volcanism with increasing group number. A discriminant analysis incorporating Bayes theorem was performed to construct maps showing the probability of group membership for each of the volcanism groups. The said maps showed good comparisons with the recorded locations of volcanism within the Sengan region. No volcanic data were found to exist in the group 1 region. The high probability areas within group 1 have the chance of being the no volcanism region. Entropy of classification is calculated to assess the uncertainty of the allocation process of each 1 km cell center location based on the calculated probabilities. The recorded volcanism data are also plotted on the entropy map to examine the uncertainty level of the estimations at the locations where volcanism exists. The volcanic data cell locations that are in the high volcanism regions (groups 4 and 5) showed relatively low mapping estimation uncertainty. On the other hand, the volcanic data cell locations that are in the low volcanism region (group 2) showed relatively high mapping estimation uncertainty. The volcanic data cell locations that are in the medium volcanism region (group 3) showed relatively moderate mapping estimation uncertainty. Areas of high uncertainty provide locations where additional site characterization resources can be spent most effectively. The new data collected can be added to the existing database to perform future regionalized mapping and reduce the uncertainty level of the existing estimations.

  8. Mr. W. Librirzi Regional Superfund Office EPA Region II

    Office of Legacy Management (LM)

    * , AP)J2 p" H-l2 &,q qp@- Department of Energy Washington, D .C. 20545 DEC. 20 1984 Mr. W. Librirzi Regional Superfund Office EPA Region II 4th Floor 26 Federal Plaza New York, New York 10278 Dear Mr. Librizzi: The Department of Energy (DOE) has completed two radiological surveys at the former Simonds Saw & Steel Company site (presently owned by the Guterl Steel Corporation), Lockport, New York (Enclosures 1 and 2). These surveys indicated that the levels of residual radioactive

  9. http://www.bea.gov/regional/rims/

    National Nuclear Security Administration (NNSA)

    About BEA National International Regional Industry Glossary FAQs About Regional * Methodologies * Articles * Release Schedule * Staff Contacts * Email Subscriptions Home > Regional Economic Accounts > Regional Input-Output Modeling System (RIMS II) Regional Input-Output Modeling System (RIMS II) Regional input-output multipliers such as the RIMS II multipliers attempt to estimate how much a one-time or sustained increase in economic activity in a particular region will be supplied by

  10. Groundwater in the Regional Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater in the Regional Aquifer Groundwater in the Regional Aquifer LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at Los Alamos National Laboratory RELATED IMAGES http://farm4.staticflickr.com/3749/9827580556_473a91fd78_t.jpg Enlarge http://farm3.staticflickr.com/2856/9804364405_b25f74cbb2_t.jpg En

  11. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    last week with an offsetting 0.3 million-barrel gain in the East Coast region nearly matching the 0.3 million-barrel loss in the Gulf Coast region, while during this same...

  12. Regional Energy Efficiency Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Energy Efficiency Programs Regional Energy Efficiency Programs This presentation covers regional industrial energy efficiency programs in the Midwest, Southeast, and Southwest. PDF icon Regional Energy Efficiency Programs (December 13, 2011) More Documents & Publications Energy Management and Financing Staged Upgrades as a Strategy for Residential Energy Efficiency Small Buildings Small Portfolio Commercial Upstream Incentive Project: Regional Roll-Out - 2014 BTO Peer Review

  13. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

  14. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-09-30

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

  15. Form:GeothermalRegion | Open Energy Information

    Open Energy Info (EERE)

    of a Geothermal Region below. If the region already exists, you will be able to edit its information. AddEdit a Geothermal Region Retrieved from "http:en.openei.orgw...

  16. State & Regional Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » State & Regional Resources State & Regional Resources The Bioenergy Technologies Office partners with the National Biomass State and Regional Partnerships' five regional organizations that provide leadership in their regions with regard to policies and technical issues in order to advance the use of biomass. This page lists contacts from the partner organizations, and it provides information on some state-level programs. The regional partnership programs include:

  17. Southeast Regional Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2006-08-30

    The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

  18. Category:Geothermal Regions | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Regions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal...

  19. Germany Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Germany Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Germany Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques (0)...

  20. Thailand Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Thailand Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Thailand Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0)...

  1. Indonesia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Indonesia Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Indonesia Geothermal Region Details Areas (5) Power Plants (4) Projects (0) Techniques (0)...

  2. Philippines Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Philippines Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Philippines Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques...

  3. Cascades Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Cascades Geothermal Region (Redirected from Cascades) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cascades Geothermal Region Details Areas (2) Power Plants (0)...

  4. Lake Region State College | Open Energy Information

    Open Energy Info (EERE)

    College Jump to: navigation, search Name Lake Region State College Facility Lake Region State College Sector Wind energy Facility Type Community Wind Facility Status In Service...

  5. Italy Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Region Larderello Geothermal Area Mount Amiata Geothermal Area Travale-Radicondoli Geothermal Area Energy Generation Facilities within the Italy Geothermal Region Bagnore 3...

  6. Clean Cities Regional Support & Petroleum Displacement Awards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Support & Petroleum Displacement Awards Clean Cities Regional Support & Petroleum Displacement Awards 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  7. Austria Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Austria Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  8. Australia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Australia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  9. New Zealand Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home New Zealand Geothermal Region Details Areas (2) Power Plants (2) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  10. Russia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  11. Iceland Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Iceland Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  12. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  13. Turkey Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Turkey Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  14. Mexico Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Mexico Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  15. Transition Zone Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Unknown Planned Capacity 1 Geothermal Areas within the Transition Zone Geothermal Region Energy Generation Facilities within the Transition Zone Geothermal Region Geothermal Power...

  16. EIA - Natural Gas Pipeline Network - Regional Definitions

    U.S. Energy Information Administration (EIA) Indexed Site

    Definitions Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Regional Definitions The regions defined in the...

  17. China Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home China Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  18. Regional solid waste management study

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  19. WINDExchange: Wind Energy Regional Resource Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers About Economic Development Siting Wind Energy Regional Resource Centers The U.S. Department of Energy's Regional Resource Centers provide unbiased wind energy information to communities and decision makers to help them evaluate wind energy potential and learn about wind power's benefits and impacts in their regions. During their first year of operations, the Regional Resource Centers impacted more than 12,000

  20. CEMI Southeast Regional Summit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CEMI Southeast Regional Summit CEMI Southeast Regional Summit CEMI Southeast Regional Summit July 9, 2015 8:30AM to 5:30PM EDT Renaissance Atlanta Midtown Hotel 866 West Peachtree Street, NW Atlanta, Georgia 30308 About the CEMI Southeast Regional Summit As part of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy (DOE) organizes regional summits around the country to expand its partnerships, share resources and successes, and refine its strategy to boost U.S.

  1. DC High School Science Bowl Regionals

    Broader source: Energy.gov [DOE]

    This event is the Washington, D.C. High School Regional competition for the US National Science Bowl. The regional competition is run by the Office of Economic Impact and Diversity, and the...

  2. State and Regional Hydrogen Initiatives Meeting, Challenges for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Regional Hydrogen Initiatives Meeting, Challenges for State and Regional Hydrogen Initiatives State and Regional Hydrogen Initiatives Meeting, Challenges for State and Regional...

  3. Geothermal Literature Review At Cascades Region (Ingebritsen...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Cascades Region (Ingebritsen & Mariner, 2010) Exploration Activity Details...

  4. Regional Standards Enforcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Standards Enforcement Regional Standards Enforcement For the first time, central air conditioner energy conservation standards vary by region, so different air conditionerw will be available to customers living in the North, Southeast, and Southwest regions. A central air conditioner meeting the new standards will save you money through lower energy bills. These standards apply based on when and where the split-system central air conditioner is installed. The "Southwest"

  5. EIA - Natural Gas Pipeline System - Central Region

    Gasoline and Diesel Fuel Update (EIA)

    Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve

  6. EIA - Natural Gas Pipeline System - Midwest Region

    Gasoline and Diesel Fuel Update (EIA)

    Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Midwest Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty-six interstate and at least eight intrastate natural gas pipeline companies operate within the Midwest Region (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin). The principal sources of natural gas supply for the

  7. EIA - Natural Gas Pipeline System - Northeast Region

    Gasoline and Diesel Fuel Update (EIA)

    Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These

  8. EIA - Natural Gas Pipeline System - Southeast Region

    Gasoline and Diesel Fuel Update (EIA)

    Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama,

  9. EIA - Natural Gas Pipeline System - Southwest Region

    Gasoline and Diesel Fuel Update (EIA)

    Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily

  10. EIA - Natural Gas Pipeline System - Western Region

    Gasoline and Diesel Fuel Update (EIA)

    Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving

  11. Pennsylvania Regional Infrastructure Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pennsylvania Regional Infrastructure Project Pennsylvania Regional Infrastructure Project Presentation by 11-Wang to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. PDF icon 11_wang_infra.pdf More Documents & Publications Hydrogen Regional Infrastructure Program in Pennsylvania Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop Pipeline and Pressure Vessel R&D under the Hydrogen Regional

  12. Enforcement Policy: Regional Standards Enforcement and Distributors |

    Energy Savers [EERE]

    Department of Energy Enforcement and Distributors Enforcement Policy: Regional Standards Enforcement and Distributors Issued April 24, 2014 DOE has initiated a rulemaking to consider possible approaches to enforcing regional standards for residential central air conditioners and heat pumps. DOE will not assert civil penalty authority over distributors for violation of the regional standard for central air conditioners. PDF icon Enforcement Policy: Regional Standards Enforcement and

  13. Community Programs Office supports regional education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Programs Office supports regional education Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Community Programs Office supports regional education New programs strengthen teachers' math and science teaching skills September 1, 2013 Teachers from the region attended a half-day workshop to improve their science-teaching skills Teachers from the region attended a half-day workshop to

  14. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Last weeks increase of 1.6 million barrels improved on the previous weeks gain, positioning propane inventories at an estimated 47.8 million barrels as of June 25. Regional...

  15. This Week In Petroleum Summary Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    million barrels, 8.7 million barrels (34 per cent) higher than the same week last year. Big gains happened in the Midwest and Gulf Coast regions, which grew by 0.6 and 0.5...

  16. NOAA 2015 Regional Coast Resilience Grant Program

    Broader source: Energy.gov [DOE]

    The National Oceanic and Atmospheric Administration (NOOA) is accepting applications for the Regional Coastal Resilience Grant program to support regional approaches to undertake activities that build resilience of coastal regions, communities, and economic sectors to the negative impacts from extreme weather events, climate hazards, and changing ocean conditions.

  17. Clean Energy Manufacturing Initiative Midwest Regional Summit:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Breakout Session Summary | Department of Energy Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary June 21, 2013 PDF icon Lightweighting Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer

  18. Replacing the whole barrel of oil with plants and microbes

    ScienceCinema (OSTI)

    Simmons, Blake

    2014-06-24

    In this May 13, 2013 talk, Blake Simmons discusses how scientists are exploring how plants and microbes can be used to replace many of the everyday goods we use that are derived from petroleum. To watch the entire entire Science at the Theater event, in which seven of our scientists present BIG ideas in eight minutes each.

  19. Replacing the whole barrel of oil with plants and microbes

    SciTech Connect (OSTI)

    Simmons, Blake

    2013-05-29

    In this May 13, 2013 talk, Blake Simmons discusses how scientists are exploring how plants and microbes can be used to replace many of the everyday goods we use that are derived from petroleum. To watch the entire entire Science at the Theater event, in which seven of our scientists present BIG ideas in eight minutes each.

  20. Extrusion of electrode material by liquid injection into extruder barrel

    DOE Patents [OSTI]

    Keller, David Gerard (Baltimore, MD); Giovannoni, Richard Thomas (Reisterstown, MD); MacFadden, Kenneth Orville (Highland, MD)

    1998-01-01

    An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells.

  1. Extrusion of electrode material by liquid injection into extruder barrel

    DOE Patents [OSTI]

    Keller, D.G.; Giovannoni, R.T.; MacFadden, K.O.

    1998-03-10

    An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells. 1 fig.

  2. New York Natural Gas Liquids Proved Reserves (Million Barrels...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Date: 12312016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 New York Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of...

  3. Securing non-volatile memory regions

    DOE Patents [OSTI]

    Faraboschi, Paolo; Ranganathan, Parthasarathy; Muralimanohar, Naveen

    2013-08-20

    Methods, apparatus and articles of manufacture to secure non-volatile memory regions are disclosed. An example method disclosed herein comprises associating a first key pair and a second key pair different than the first key pair with a process, using the first key pair to secure a first region of a non-volatile memory for the process, and using the second key pair to secure a second region of the non-volatile memory for the same process, the second region being different than the first region.

  4. NERSC Staff Participate in Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Participate in Regional Science Bowl NERSC Staff Participate in Regional Science Bowl February 5, 2013 DOEScienceBowl NERSC's Elizabeth Bautista moderates DOE Science Bowl Competition at Berkeley Lab. High School students from all corners of the San Francisco Bay Area flocked to the Lawrence Berkeley National Laboratory (Berkeley Lab) on Saturday, February 2, 2013 to battle in the Department of Energy's Regional Science Bowl-an academic competition that tests students' knowledge in all

  5. Regional math teacher wins presidential award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional math teacher wins presidential award Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Regional math teacher wins presidential award Regional economic growth celebrated February 1, 2014 Vivian Valencia, (fourth-grade math teacher at the San Juan Elementary School in Espanola) recently won the Presidential Award for Excellence in Mathematics and Science Teaching Vivian Valencia,

  6. Washington: Integrated Transportation Programs & Coordinated Regional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning | Department of Energy Integrated Transportation Programs & Coordinated Regional Planning Washington: Integrated Transportation Programs & Coordinated Regional Planning November 6, 2013 - 5:42pm Addthis The Thurston Regional Planning Council (TRPC) developed the Thurston "Here to There" program as a project designed to reduce vehicle miles traveled. The program was a coordinated set of activities with one goal: to improve access to travel options for the people who

  7. Southeast Regional Clean Energy Policy Analysis

    Broader source: Energy.gov [DOE]

    This report covers the states that largely fall into the Southeastern Reliability Corporation (SERC) region: Alabama, Arkansas, Georgia, Louisiana, Kentucky, Missouri, Mississippi, North Carolina, South Carolina, and Tennessee.

  8. Gainesville Regional Utilities- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Gainesville Regional Utilities (GRU) offers an incentive to business customers for upgrading or installing fuel efficient natural gas equipment at eligible facilities. Incentives are available for...

  9. Northeast Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  10. Hawaii Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Area Mokapu Penninsula Geothermal Area Molokai Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area Energy Generation Facilities within the Hawaii Geothermal Region Puna...

  11. Pacific Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  12. Disclosure of Permitted Communication Concerning Regional Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE-2011-BT-CE-0077 Disclosure of Permitted Communication Concerning Regional Standards ... More Documents & Publications Disclosure of Permitted Communication Concerning Fossil Fuel ...

  13. Regional geophysics, Cenozoic tectonics and geologic resources...

    Open Energy Info (EERE)

    and geologic resources of the Basin and Range Province and adjoining regions Author G.P. Eaton Conference Basin and Range Symposium and Great Basin Field Conference; Denver,...

  14. 2011 Municipal Consortium Northwest Region Workshop Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northwest Region Workshop, held in Seattle July 15, 2011.

  15. Students benefit the Laboratory and the region

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Students benefit the Laboratory and the region Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2015-Jan. 2016 all...

  16. Southern Rockies Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    ENERGYGeothermal Home Southern Rockies Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques (0) Assessment of Moderate- and High-Temperature...

  17. Northern Rockies Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    ENERGYGeothermal Home Northern Rockies Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: Name Province is situated in northern Idaho...

  18. Sierra Nevada Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    ENERGYGeothermal Home Sierra Nevada Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: Name California's Sierra Nevada is a...

  19. Outside a Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Outside a Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0) This is a category for geothermal areas added that do...

  20. Regional Standards Enforcement Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    standards for residential central air conditioners and heat pumps. DOE will not assert civil penalty authority over distributors for violation of the regional standard for central...

  1. Multispectral Imaging At Yellowstone Region (Hellman & Ramsey...

    Open Energy Info (EERE)

    Region Exploration Technique Multispectral Imaging Activity Date Spectral Imaging Sensor ASTER Usefulness useful DOE-funding Unknown Notes ASTER References Melanie J. Hellman,...

  2. Hyperspectral Imaging At Yellowstone Region (Hellman & Ramsey...

    Open Energy Info (EERE)

    Region Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes AVIRIS airborne hyperspectral...

  3. Regional Science Bowl | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Science Bowl Growing Scientific Communities from the Ground Up Jeopardy is America's favorite quiz game show. Imagine combining the concept of Jeopardy with science and a...

  4. Geothermometry At Yellowstone Region (Fournier, 1979) | Open...

    Open Energy Info (EERE)

    Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Enthalpy-Chloride digram. Not exactly cation geothermometry...

  5. Browse By Region | Open Energy Information

    Open Energy Info (EERE)

    (231) States (50) Congressional Districts (437) Counties (3142) Cities (27936) Clean Energy Economy Regions (7) Programs (1157) Tools (1669) Retrieved from "http:...

  6. TCEQ Regional Offices | Open Energy Information

    Open Energy Info (EERE)

    Environmental Quality provides a map, list of managers, addresses, and phone numbers of its regional offices. Published NA Year Signed or Took Effect 2014 Legal Citation TCEQ...

  7. Northwest Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  8. Regional Dynamics Model (REDYN) | Open Energy Information

    Open Energy Info (EERE)

    use the REDYN model to estimate the effects of actions and policies on people and the economy. The REDYN model powers the unique Regional Dynamics Economic Service, an...

  9. LANL subcontractor supports the region: SOC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL subcontractor supports the region: SOC The company's financial giving has benefited ... Through these efforts, SOC was able to provide more than 55,000 in direct financial ...

  10. Scenario Evaluation and Regionalization Analysis (SERA) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scenario Evaluation and Regionalization Analysis (SERA) Model (National Renewable Energy Laboratory) Objectives Determine optimal regional infrastructure development patterns for hydrogen and other transportation fuels, given resource availability and technology cost estimates. Geospatially and temporally resolve the expansion of production, transmission, and distribution infrastructure components. Identify and characterize niche markets and synergies related to refueling station placement and

  11. Wintertime meteorology of the Grand Canyon region

    SciTech Connect (OSTI)

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  12. REEEP South Asia Regional Secretariat | Open Energy Information

    Open Energy Info (EERE)

    South Asia Regional Secretariat Jump to: navigation, search Name: REEEP South Asia Regional Secretariat Place: New Delhi, Delhi (NCT), India Zip: 110 003 Product: Regional...

  13. Energy Secretary Ernest Moniz Releases Report on America's Regional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The report also notes the important efforts to improve climate resilience in each region ... Sector: Regional Vulnerabilities and Resilience Solutions, including all nine regional ...

  14. Snake River Plain Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Survey At Snake River Plain Region (DOE GTP) Micro-Earthquake At Snake River Plain Geothermal Region (1976) Reflection Survey At Snake River Plain Region (DOE GTP)...

  15. Rio Grande Rift Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Region Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al., 2010) Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) Magnetotellurics At...

  16. Cape Cod Regional Transit Authority | Open Energy Information

    Open Energy Info (EERE)

    Cod Regional Transit Authority Jump to: navigation, search Name Cape Cod Regional Transit Authority Facility Cape Cod Regional Transit Authority Sector Wind energy Facility Type...

  17. Stockton Regional Water Control Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional...

  18. Mississippi Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ... High School Science Bowl Simpson County Mississippi Regional High School Science Bowl Smith County Mississippi Regional High School Science Bowl Stone County Louisiana Regional ...

  19. LEDSGP/about/regional-platforms | Open Energy Information

    Open Energy Info (EERE)

    Guiding Structure Regional Platforms LEDS GP regional platforms lead regional peer learning, training, and collaboration; engage technical working groups, the LEDS GP...

  20. Regional seismic discrimination research at LLNL

    SciTech Connect (OSTI)

    Walter, W.R.; Mayeda, K.M.; Goldstein, P.; Patton, H.J.; Jarpe, S.; Glenn, L.

    1995-10-01

    The ability to verify a Comprehensive Test Ban Treaty (CTBT) depends in part on the ability to seismically detect and discriminate between potential clandestine underground nuclear tests and other seismic sources, including earthquakes and mining activities. Regional techniques are necessary to push detection and discrimination levels down to small magnitudes, but existing methods of event discrimination are mainly empirical and show much variability from region to region. The goals of Lawrence Livermore National Laboratory`s (LLNL`s) regional discriminant research are to evaluate the most promising discriminants, improve the understanding of their physical basis and use this information to develop new and more effective discriminants that can be transported to new regions of high monitoring interest. In this report the authors discuss preliminary efforts to geophysically characterize the Middle East and North Africa. They show that the remarkable stability of coda allows one to develop physically based, stable single station magnitude scales in new regions. They then discuss progress to date on evaluating and improving physical understanding and ability to model regional discriminants, focusing on the comprehensive NTS dataset. The authors apply this modeling ability to develop improved discriminants including slopes of P to S ratios. They find combining disparate discriminant techniques is particularly effective in identifying consistent outliers such as shallow earthquakes and mine seismicity. Finally they discuss development and use of new coda and waveform modeling tools to investigate special events.

  1. Robie G. Russell, Regional Administrator, Region 10, U.S. Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-1 14.0 SIGNATURE The original signatories of the action plan signed May 15, 1989 were Robie G. Russell, Regional Administrator, Region 10, U.S. Environmental Protection Agency; Michael J. Lawrence, Manager, Richland Operations Office, U.S. Department of Energy; and Christine O. Gregoire, Director, Washington State Department of Ecology. The following are the titles of the current signatories: For the United States Environmental Protection Agency: Regional Administrator, Region 10 U.S.

  2. Database for Regional Geology, Phase 1- A Tool for informing Regional

    Office of Environmental Management (EM)

    Evaluations of Alternative Geologic Media and Decision Making | Department of Energy Database for Regional Geology, Phase 1- A Tool for informing Regional Evaluations of Alternative Geologic Media and Decision Making Database for Regional Geology, Phase 1- A Tool for informing Regional Evaluations of Alternative Geologic Media and Decision Making The report describes implementation and planning of websites that allow visualization or manipulation of data in the UFD GIS Database; e.g., the

  3. Regional Climate Modeling: Progress, Challenges, and Prospects

    SciTech Connect (OSTI)

    Wang, Yuqing; Leung, Lai R.; McGregor, John L.; Lee, Dong-Kyou; Wang, Wei-Chyung; Ding, Yihui; Kimura, Fujio

    2004-12-01

    Regional climate modeling with regional climate models (RCMs) has matured over the past decade and allows for meaningful utilization in a broad spectrum of applications. In this paper, latest progresses in regional climate modeling studies are reviewed, including RCM development, applications of RCMs to dynamical downscaling for climate change assessment, seasonal climate predictions and climate process studies, and the study of regional climate predictability. Challenges and potential directions of future research in this important area are discussed, with the focus on those to which less attention has been given previously, such as the importance of ensemble simulations, further development and improvement of regional climate modeling approach, modeling extreme climate events and sub-daily variation of clouds and precipitation, model evaluation and diagnostics, applications of RCMs to climate process studies and seasonal predictions, and development of regional earth system models. It is believed that with both the demonstrated credibility of RCMs capability in reproducing not only monthly to seasonal mean climate and interannual variability but also the extreme climate events when driven by good quality reanalysis and the continuous improvements in the skill of global general circulation models (GCMs) in simulating large-scale atmospheric circulation, regional climate modeling will remain an important dynamical downscaling tool for providing the needed information for assessing climate change impacts and seasonal climate predictions, and a powerful tool for improving our understanding of regional climate processes. An internationally coordinated effort can be developed with different focuses by different groups to advance regional climate modeling studies. It is also recognized that since the final quality of the results from nested RCMs depends in part on the realism of the large-scale forcing provided by GCMs, the reduction of errors and improvement in physics parameterizations in both GCMs and RCMs remain a priority for climate modeling community.

  4. CEMI Southeast Regional Summit Speakers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CEMI Southeast Regional Summit Speakers CEMI Southeast Regional Summit Speakers PDF icon CEMI Southeast Regional Summit Speakers More Documents & Publications CEMI Southeast Regional Summit Agenda CEMI Days Factsheet Amped Up! Volume 1, No.2

  5. CEMI Southeast Regional Summit Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CEMI Southeast Regional Summit Agenda CEMI Southeast Regional Summit Agenda PDF icon CEMI Southeast Regional Summit Agenda More Documents & Publications CEMI Southeast Regional Summit Speakers Amped Up! Volume 1, No.2 Introduction to CEMI Fact Sheet

  6. 2010 Municipal Consortium Southwest Region Workshop Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southwest Region Workshop, held in Los Angeles on September 30, 2010.

  7. Detection Of Amplified Or Deleted Chromosomal Regions

    DOE Patents [OSTI]

    Stokke, Trond (San Fransisco, CA), Pinkel, Daniel (Walnut Creek, CA), Gray, Joe W. (San Fransisco, CA)

    1997-05-27

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  8. Detection of amplified or deleted chromosomal regions

    DOE Patents [OSTI]

    Stokke, Trond (San Francisco, CA); Pinkel, Daniel (Walnut Creek, CA); Gray, Joe W. (San Francisco, CA)

    1995-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  9. 2011 Municipal Consortium Northeast Region Workshop Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northeast Region Workshop, held in Philadelphia, May 19–20, 2011.

  10. 2011 Municipal Consortium Southwest Region Workshop Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southwest Region Workshop, held in San Jose, California, August 25­–26, 2011.

  11. 2011 Municipal Consortium Southeast Region Workshop Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southeast Region Workshop, held in Tampa, FL, February 17–18, 2011.

  12. Johnstown Regional Energy | Open Energy Information

    Open Energy Info (EERE)

    Johnstown Regional Energy is a US local energy company who owns three landfill gas to natural gas plants in Pennsylvania. Coordinates: 40.32726, -78.918354 Show Map Loading...

  13. ECOWAS GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP

    Broader source: Energy.gov [DOE]

    Presentation given by the Biomass Program's Bryce Stokes, CNJV, at the GBEP Regional Biomass Resource Assessment Workshop providing results found in the U.S. Billion-Ton Update.

  14. Regional characteristics, tilt domains, and extensional history...

    Open Energy Info (EERE)

    and Transfer Zones and the Regional Segmentation of the Basin and Range Province Author J.H. Stewart Editors Faulds, J.E., and Stewart and J.H. Published Geological Society of...

  15. Detection of amplified or deleted chromosomal regions

    DOE Patents [OSTI]

    Stokke, T.; Pinkel, D.; Gray, J.W.

    1995-12-05

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20. 3 figs.

  16. AWEA Wind Energy Regional Summit: Northeast

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AWEA Wind Energy Northeast Regional Summit will connect you with New England-area wind energy professionals and offers the opportunity to discuss significant issues related to land-based and...

  17. Residential market transformation: National and regional indicators

    SciTech Connect (OSTI)

    Van Wie McGrory, Laura L.; McNamara, Maureen; Suozzo, Margaret

    2000-06-01

    A variety of programs are underway to address market barriers to the adoption of energy-efficient residential technologies and practices. Most are administered by utilities, states, or regions that rely on the Energy Star as a consistent platform for program marketing and messaging. This paper reviews regional and national market transformation activities for three key residential end-uses -- air conditioning, clothes washing, and lighting -- characterizing current and ongoing programs; reporting on progress; identifying market indicators; and discussing implications.

  18. Regional Transportation Simulation Tool for Emergency Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rtstep-diag TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Regional Transportation Simulation Tool for Emergency Evacuation Planning (Click to play movie) Large-scale evacuations from major cities during no-notice events - such as chemical or radiological attacks, hazardous material spills, or earthquakes - have an obvious impact on large regions rather than on just the directly affected area. The scope of impact includes the

  19. Clean Energy Manufacturing Initiative Southeast Regional Summit

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy (DOE) organizes regional summits around the country to expand its partnerships, share resources and successes, and refine its strategy to boost U.S. competitiveness in clean energy manufacturing. The CEMI Southeast Regional Summit, which will be held on July 9, 2015 at the Renaissance Atlanta Midtown Hotel in Atlanta, Georgia, is the third in this series.

  20. NREL: Wind Research - Regional Test Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Test Centers To increase the availability of small wind turbine testing and share field expertise, the U.S. Department of Energy (DOE) and NREL initiated the Regional Test Center (RTC) project in 2009. The project ended in early 2016. During the project, DOE and NREL subsidized certification testing of two small wind turbines at each RTC. In addition, NREL provided technical assistance during the testing and data analysis process. The project goal is for the RTCs to be self-sustaining,

  1. Mid-Columbia Region Clean Energy Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93 -VA Revision 0 Mid-Columbia Region Clean Energy Opportunities Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management P.O. Box 550 Richland, Washington 99352 Approved for Public Release; Further Dissemination Unlimited DOE-0393 -VA Revision 0 Mid-Columbia Region Clean Energy Opportunities D. R. Bratzel, Energy Initiatives Mission Support Alliance Date Published February 2012 To be Presented at Business Development Briefing RL Site Stewardship Division

  2. State of Alaska Regional Energy Planning

    Energy Savers [EERE]

    Tribal Energy Summit September 24, 2015 State of Alaska Regional Energy Planning Solar Energy Anaktuvuk Pass, Alaska Humpback Creek Hydroelectric Cordova, Alaska Wind Diesel Generation Selawik, Alaska WHPacific, Inc. REGIONAL PLANNING ZONES:  North Slope  Northwest Arctic  Bering Straits  Interior (YK/Upper Tanana)  YK Delta (Lower Yukon- Kuskokwim)  Chugach Logistics Reality Alaska Arctic Communities: Energy Platform A Holistic Approach Infrastructure Housing Water Systems

  3. Enforcement Policy Statement: Regional Standards Enforcement Rulemaking

    Office of Environmental Management (EM)

    Regional Standards Enforcement Rulemaking and Distributors April 24, 2014 On June 27, 2011, the Department of Energy (DOE) published in the Federal Register a direct final rule (DFR) under the Energy Policy and Conservation Act (EPCA), 42 U.S.C. §§ 6291-6309, which set forth amended energy conservation standards for central air conditioners and heat pumps, including regional standards in certain States. 76 FR 37408. DOE has initiated a rulemaking to consider possible approaches to enforcing

  4. State and Regional Energy Risk Assessment Initiative

    Broader source: Energy.gov [DOE]

    OE is leading a State and Regional Energy Risk Assessment Initiative to help States better understand risks to their energy infrastructure so they can be better prepared to make informed decisions about their investments, resilience and hardening strategies, and asset management. As part of this Initiative, OE has developed a series of State and Regional Energy Risk Profiles that examine the relative magnitude of the risks that each State's energy infrastructure routinely encounters in comparison with the probable impacts.

  5. Clean Cities Coalition Regions | Department of Energy

    Office of Environmental Management (EM)

    Clean Cities Coalition Regions Clean Cities Coalition Regions Nearly 100 Clean Cities coalitions work to reduce petroleum use in communities across the country. Led by Clean Cities coordinators, coalitions are composed of businesses, fuel providers, vehicle fleets, state and local government agencies, and community organizations. These stakeholders come together to share information and resources, educate the public, help craft public policy, and collaborate on projects that reduce petroleum

  6. 2016 Argonne Regional Science Bowl | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Regional Science Bowl 2016 Argonne Regional Middle School Science Bowl 1 of 29 2016 Argonne Regional Middle School Science Bowl Photographer: Wes Agresta 2016 Argonne Regional Middle School Science Bowl 1 of 29 2016 Argonne Regional Middle School Science Bowl Photographer: Wes Agresta 2016 Argonne Regional Middle School Science Bowl 2 of 29 2016 Argonne Regional Middle School Science Bowl Photographer: Wes Agresta 2016 Argonne Regional Middle School Science Bowl 3 of 29 2016 Argonne

  7. [CII] dynamics in the S140 region

    SciTech Connect (OSTI)

    Dedes, C.; Rllig, M.; Okada, Y.; Ossenkopf, V.; Mookerjea, B.; Collaboration: WADI Team

    2015-01-22

    We report the observation of [C II] emission in a cut through the S140 region together with single pointing observations of several molecular tracers, including hydrides, in key regions of the photon-dominated region (PDR) and molecular cloud [1]. At a distance of 910 pc, a BOV star ionizes the edge of the molecular cloud L1204, creating S140. In addition, the dense molecular cloud hosts a cluster of embedded massive young stellar objects only 75' from the H II region [e.g. 2, 3]. We used HIFI on Herschel to observe [CII] in a strip following the direction of the impinging radiation across the ionisation front and through the cluster of embedded YSOs. With [C II], we can trace the ionising radiation and, together with the molecular tracers such as CO isotopologues and HCO{sup +}, study the dynamical processes in the region. Combining HIFIs high spectral resolution data with ground based molecular data allows us to study the dynamics and excitation conditions both in the ionization front and the dense molecular star forming region and model their physical conditions [4].

  8. Regional Climate Change Webinar Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Climate Change Webinar Presentation Regional Climate Change Webinar Presentation Regional Climate Change Webinar presentation dated August 6, 2015. PDF icon Regional Climate Change Webinar Presentation More Documents & Publications Regional Climate Change Webinar Presentation Quadrennial Energy Review Fact Sheets Regional Climate Change Webinar Presentation The Quadrennial Energy Review (Full Report) Before the House Committee on Energy and Commerce Subcommittee on Energy and

  9. SOUTHWEST REGIONAL PARTNERSHIP FOR CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson

    2004-04-01

    The Southwest Partnership Region includes five states (Arizona, Colorado, New Mexico, Oklahoma, Utah) and contiguous areas from three adjacent states (west Texas, south Wyoming, and west Kansas). This energy-rich region exhibits some of the largest growth rates in the nation, and it contains two major CO{sub 2} pipeline networks that presently tap natural subsurface CO{sub 2} reservoirs for enhanced oil recovery at a rate of 30 million tons per year. The ten largest coal-fired power plants in the region produce 50% (140 million tons CO{sub 2}/y) of the total CO{sub 2} from power-plant fossil fuel combustion, with power plant emissions close to half the total CO{sub 2} emissions. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, the five major electric utility industries, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs including the Western Governors Association, and data sharing agreements with four other surrounding states. The Partnership is developing action plans for possible Phase II carbon sequestration pilot tests in the region, as well as the non-technical aspects necessary for developing and carrying out these pilot tests. The establishment of a website network to facilitate data storage and information sharing, decision-making, and future management of carbon sequestration in the region is a priority. The Southwest Partnership's approach includes (1) dissemination of existing regulatory/permitting requirements, (2) assessing and initiating public acceptance of possible sequestration approaches, and (3) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region. The Partnership will also identify potential gaps in monitoring and verification approaches needed to validate long-term storage efforts.

  10. The 17 GHz active region number

    SciTech Connect (OSTI)

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  11. State action in regional transmission groups

    SciTech Connect (OSTI)

    Rokach, J.Z.

    1994-12-01

    States should participate in coordinated transmission planning through regional transmission groups, while reserving their right to pass upon transmission planning. This would smooth an otherwise difficult transition, as FERC and state regulators seek to facilitate a competitive bulk power market that ignores arbitrary jurisdiction lines. Since the Federal Energy Regulatory Commission issued its Policy Statement on Regional Transmission Groups, two RTG`s, the Western Regional Transmission Association and the Southwest Regional Transmission Association, have gained conditional approval from FERC. A third, the Northwest Regional Transmission Association, files its governing agreement with the Commission, seeking FERC`s approval. Price setting within RTGs and information exchanges involved in planning the grid raise questions of the legality of these collective actions under the antitrust laws. All three agreements allow for exchanges of commercial and planning information, but, conspicuously, do not set transmission prices. For the moment, therefore, antitrust liability for RTGs would arise out of the information exchanges involved in planning the grid. In addition, with FERC pushing for `restructuring` at the wholesale level through open access and the states becoming aggressive in trying to institute competition at the consumer level through retail wheeling, issues of federal-state jurisdiction in transmission have come to the fore.

  12. Multilateral, regional and bilateral energy trade governance

    SciTech Connect (OSTI)

    Leal-Arcas, Rafael; Grasso, Costantino; Rios, Juan Alemany )

    2014-12-01

    The current international energy trade governance system is fragmented and multi-layered. Streamlining it for greater legal cohesiveness and international political and economic cooperation would promote global energy security. The current article explores three levels of energy trade governance: multilateral, regional and bilateral. Most energy-rich countries are part of the multilateral trading system, which is institutionalized by the World Trade Organization (WTO). The article analyzes the multilateral energy trade governance system by focusing on the WTO and energy transportation issues. Regionally, the article focuses on five major regional agreements and their energy-related aspects and examines the various causes that explain the proliferation of regional trade agreements, their compatibility with WTO law, and then provides several examples of regional energy trade governance throughout the world. When it comes to bilateral energy trade governance, this article only addresses the European Unions (EU) bilateral energy trade relations. The article explores ways in which gaps could be filled and overlaps eliminated whilst remaining true to the high-level normative framework, concentrating on those measures that would enhance EU energy security.

  13. A Hierarchical Evaluation of Regional Climate Simulations

    SciTech Connect (OSTI)

    Leung, Lai-Yung R.; Ringler, Todd; Collins, William D.; Taylor, Mark; Ashfaq, Moetasim

    2013-08-20

    Global climate models (GCMs) are the primary tools for predicting the evolution of the climate system. Through decades of development, GCMs have demonstrated useful skill in simulating climate at continental to global scales. However, large uncertainties remain in projecting climate change at regional scales, which limit our ability to inform decisions on climate change adaptation and mitigation. To bridge this gap, different modeling approaches including nested regional climate models (RCMs), global stretch-grid models, and global high-resolution atmospheric models have been used to provide regional climate simulations (Leung et al. 2003). In previous efforts to evaluate these approaches, isolating their relative merits was not possible because factors such as dynamical frameworks, physics parameterizations, and model resolutions were not systematically constrained. With advances in high performance computing, it is now feasible to run coupled atmosphere-ocean GCMs at horizontal resolution comparable to what RCMs use today. Global models with local refinement using unstructured grids have become available for modeling regional climate (e.g., Rauscher et al. 2012; Ringler et al. 2013). While they offer opportunities to improve climate simulations, significant efforts are needed to test their veracity for regional-scale climate simulations.

  14. BIA Southwest Region - Wood Energy Assessment for BIA Schools and Facilities in the Southwest Region

    Office of Environmental Management (EM)

    Wood Energy Assessment for BIA Schools and Facilities in Southwest Region John Waconda, BIA Southwest Region Regional Forester 505-563-3360 Tribal Energy Review October 26, 2006 Project Objectives/Goals * Seek viable solutions to forest product utilization challenges in support of fuels reduction activities, forest health/timber stand improvement projects, and assisting tribal and other forest enterprises seeking higher valued use for waste material. * Demonstrate to tribes and ourselves that

  15. Light emitting device having peripheral emissive region

    DOE Patents [OSTI]

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  16. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  17. FY08 LDRD Final Report Regional Climate

    SciTech Connect (OSTI)

    Bader, D C; Chin, H; Caldwell, P M

    2009-05-19

    An integrated, multi-model capability for regional climate change simulation is needed to perform original analyses to understand and prepare for the impacts of climate change on the time and space scales that are critical to California's future environmental quality and economic prosperity. Our intent was to develop a very high resolution regional simulation capability to address consequences of climate change in California to complement the global modeling capability that is supported by DOE at LLNL and other institutions to inform national and international energy policies. The California state government, through the California Energy Commission (CEC), institutionalized the State's climate change assessment process through its biennial climate change reports. The bases for these reports, however, are global climate change simulations for future scenarios designed to inform international policy negotiations, and are primarily focused on the global to continental scale impacts of increasing emissions of greenhouse gases. These simulations do not meet the needs of California public and private officials who will make major decisions in the next decade that require an understanding of climate change in California for the next thirty to fifty years and its effects on energy use, water utilization, air quality, agriculture and natural ecosystems. With the additional development of regional dynamical climate modeling capability, LLNL will be able to design and execute global simulations specifically for scenarios important to the state, then use those results to drive regional simulations of the impacts of the simulated climate change for regions as small as individual cities or watersheds. Through this project, we systematically studied the strengths and weaknesses of downscaling global model results with a regional mesoscale model to guide others, particularly university researchers, who are using the technique based on models with less complete parameterizations or coarser spatial resolution. Further, LLNL has now built a capability in state-of-the-science mesoscale climate modeling that complements that which it has in global climate simulation, providing potential sponsors with an end-to-end simulation and analysis program.

  18. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect (OSTI)

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, five major electric utility companies, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs, and the Western Governors Association. This group is continuing its work in the Phase II Validation Program, slated to conclude in 2009.

  19. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  20. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  1. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  2. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  3. ORIGINAL UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION

    Energy Savers [EERE]

    ORIGINAL UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III 1050 Arch Street Philadelphia, Pennsylvania 10103-2029 November 15, 2012 I 'D.J cri rn n n~ nrv I Kimberly D. Bose, Secretary Federal Energy Regulatory Commission 888 First Street NE, Room 1A Washington, DC 20426 ~s- ~l RE: EPA Region 3 Seeping Comments in Response to FERC's Netic&iklnfent ton= Prepare an Environmental Assessment (EA) for the Planned Cove Po@P " g Liquefaction Project; FERC Docket Ne. PF12-16-000

  4. Clean Energy Manufacturing Initiative Southeast Regional Summit

    Broader source: Energy.gov [DOE]

    Registration is now open for the Clean Energy Manufacturing Initiatives (CEMI) Southeast Regional Summit! The all-day conference, hosted by the U.S. Department of Energy (DOE), will take place on July 9 in Atlanta, Georgia, at the Renaissance Atlanta Midtown Hotel. The Southeast Regional Summit will bring together leaders from industry, academia, and government to focus on competitiveness and innovation in clean energy manufacturing throughout the southeastern United States. The Summit is the third in a series organized around the country, and will convene key stakeholders to:

  5. Southeast Regional Clean Energy Policy Analysis

    SciTech Connect (OSTI)

    McLaren, Joyce

    2011-04-01

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  6. Southeast Regional Clean Energy Policy Analysis (Revised)

    SciTech Connect (OSTI)

    McLaren, J.

    2011-04-01

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  7. Root region airfoil for wind turbine

    DOE Patents [OSTI]

    Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

    1995-01-01

    A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

  8. Interaction Region Issues at the NLC

    SciTech Connect (OSTI)

    Markiewicz, Thomas W.; Maruyama, T.; /SLAC

    2007-09-26

    Two detector concepts are being investigated for the Next Linear Collider. This paper discusses the current design of the interaction region for one of them, based on a 6 Tesla solenoid and silicon based tracking. Topics include masking layout, backgrounds and the suppression of final quadrupole jitter. All calculations are based on the 1 TeV design parameters.

  9. CEMI Southeast Regional Summit Breakout Sessions

    Broader source: Energy.gov [DOE]

    The following breakout sessions will take place at the CEMI Southeast Regional Summit at 3:00 P.M. on July 9, 2015 at the Renaissance Atlanta Midtown Hotel in Atlanta, Georgia. At these breakout...

  10. Southeast Regional Carbon Sequestration Partnership (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2005-09-30

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is a diverse partnership covering eleven states involving the Southern States Energy Board (SSEB) an interstate compact; regulatory agencies and/or geological surveys from member states; the Electric Power Research Institute (EPRI); academic institutions; a Native American enterprise; and multiple entities from the private sector. Figure 1 shows the team structure for the partnership. In addition to the Technical Team, the Technology Coalition, an alliance of auxiliary participants, in the project lends yet more strength and support to the project. The Technology Coalition, with its diverse representation of various sectors, is integral to the technical information transfer, outreach, and public perception activities of the partnership. The Technology Coalition members, shown in Figure 2, also provide a breadth of knowledge and capabilities in the multiplicity of technologies needed to assure a successful outcome to the project and serve as an extremely important asset to the partnership. The eleven states comprising the multi-state region are: Alabama; Arkansas; Florida; Georgia; Louisiana; Mississippi; North Carolina; South Carolina; Tennessee; Texas; and Virginia. The states making up the SECARB area are illustrated in Figure 3. The primary objectives of the SECARB project include: (1) Supporting the U.S. Department of Energy (DOE) Carbon Sequestration Program by promoting the development of a framework and infrastructure necessary for the validation and deployment of carbon sequestration technologies. This requires the development of relevant data to reduce the uncertainties and risks that are barriers to sequestration, especially for geologic storage in the SECARB region. Information and knowledge are the keys to establishing a regional carbon dioxide (CO{sub 2}) storage industry with public acceptance. (2) Supporting the President's Global Climate Change Initiative with the goal of reducing greenhouse gas intensity by 18 percent by 2012. A corollary to the first objective, this objective requires the development of a broad awareness across government, industry, and the general public of sequestration issues and establishment of the technological and legal frameworks necessary to achieve the President's goal. The information developed by the SECARB team will play a vital role in achieving the President's goal for the southeastern region of the United States. (3) Evaluating options and potential opportunities for regional CO{sub 2} sequestration. This requires characterization of the region regarding the presence and location of sources of greenhouse gases (GHGs), primarily CO{sub 2}, the presence and location of potential carbon sinks and geological parameters, geographical features and environmental concerns, demographics, state and interstate regulations, and existing infrastructure.

  11. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2004-09-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first year of its two year program. Work during the semiannual period (third and fourth quarter) of the project (April 1--September 30, 2004) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, Texas and Virginia were added during the second quarter of the project and no geographical changes occurred during the third or fourth quarter of the project. Under Task 2.0 Characterize the Region, general mapping and screening of sources and sinks has been completed, with integration and Geographical Information System (GIS) mapping ongoing. The first step focused on the macro level characterization of the region. Subsequent characterization will focus on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB has completed a preliminary assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has conducted a survey and focus group meeting to gain insight into approaches that will be taken to educate and involve the public. Task 5.0 and 6.0 will be implemented beginning October 1, 2004. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB will evaluate findings from work performed during the first year and shift the focus of the project team from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team will develop an integrated approach to implementing and setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. During this semiannual period special attention was provided to Texas and Virginia, which were added to the SECARB region, to ensure a smooth integration of activities with the other 9 states. Milestones completed and submitted during the third and fourth quarter included: Q3-FY04--Complete initial development of plans for GIS; and Q4-FYO4--Complete preliminary action plan and assessment for overcoming public perception issues.

  12. Regional assessment of aquifers for thermal-energy storage. Volume 2. Regions 7 through 12

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: Unglaciated Central Region; Glaciated Appalachians, Unglaciated Appalachians; Coastal Plain; Hawaii; and Alaska. (LCL)

  13. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHP (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2005-04-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first 18-months of its two year program. Work during the semiannual period (fifth and sixth project quarters) of the project (October 1, 2004-March 31, 2005) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, no changes occurred during the fifth or sixth quarters of the project. Under Task 2.0 Characterize the Region, refinements have been made to the general mapping and screening of sources and sinks. Integration and geographical information systems (GIS) mapping is ongoing. Characterization during this period was focused on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB continues to expand upon its assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has used results of a survey and focus group meeting to refine approaches that are being taken to educate and involve the public. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB has evaluated findings from work performed during the first 18-months. The focus of the project team has shifted from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team is developing an integrated approach to implementing the most promising opportunities and in setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. Milestones completed during the fifth and sixth project quarters included: (1) Q1-FY05--Assess safety, regulatory and permitting issues; and (2) Q2-FY05--Finalize inventory of major sources/sinks and refine GIS algorithms.

  14. The Midwest Regional Carbon Sequestration Partnership (MRCSP)

    SciTech Connect (OSTI)

    James J. Dooley; Robert Dahowski; Casie Davidson

    2005-12-01

    This final report summarizes the Phase I research conducted by the Midwest regional Carbon Sequestration Partnership (MRCSP). The Phase I effort began in October 2003 and the project period ended on September 31, 2005. The MRCSP is a public/private partnership led by Battelle with the mission of identifying the technical, economic, and social issues associated with implementation of carbon sequestration technologies in its seven state geographic region (Indiana, Kentucky, Maryland, Michigan, Ohio, Pennsylvania, and West Virginia) and identifying viable pathways for their deployment. It is one of seven partnerships that together span most of the U.S. and parts of Canada that comprise the U.S. Department of Energy's (DOE's) Regional Carbon Sequestration Program led by DOE's national Energy Technology Laboratory (NETL). The MRCSP Phase I research was carried out under DOE Cooperative Agreement No. DE-FC26-03NT41981. The total value of Phase I was $3,513,513 of which the DOE share was $2,410,967 or 68.62%. The remainder of the cost share was provided in varying amounts by the rest of the 38 members of MRCSP's Phase I project. The next largest cost sharing participant to DOE in Phase I was the Ohio Coal Development Office within the Ohio Air Quality Development Authority (OCDO). OCDO's contribution was $100,000 and was contributed under Grant Agreement No. CDO/D-02-17. In this report, the MRCSP's research shows that the seven state MRCSP region is a major contributor to the U. S. economy and also to total emissions of CO2, the most significant of the greenhouse gases thought to contribute to global climate change. But, the research has also shown that the region has substantial resources for sequestering carbon, both in deep geological reservoirs (geological sequestration) and through improved agricultural and land management practices (terrestrial sequestration). Geological reservoirs, especially deep saline reservoirs, offer the potential to permanently store CO2 for literally 100s of years even if all the CO2 emissions from the region's large point sources were stored there, an unlikely scenario under any set of national carbon emission mitigation strategies. The terrestrial sequestration opportunities in the region have the biophysical potential to sequester up to 20% of annual emissions from the region's large point sources of CO2. This report describes the assumptions made and methods employed to arrive at the results leading to these conclusions. It also describes the results of analyses of regulatory issues in the region affecting the potential for deployment of sequestration technologies. Finally, it describes the public outreach and education efforts carried out in Phase I including the creation of a web site dedicated to the MRCSP at www.mrcsp.org.

  15. National Clean Energy Business Plan Competition: 2014 Regional Winners |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Clean Energy Business Plan Competition: 2014 Regional Winners National Clean Energy Business Plan Competition: 2014 Regional Winners Addthis Western Southwest Region Winner 1 of 5 Western Southwest Region Winner KAir Battery won the Rice Business Plan Competition for its cost-effective large-scale stationary potassium-air battery. Image: Courtesy of KAir Battery Southeastern Region Winner 2 of 5 Southeastern Region Winner Energy Internet won the ACC Clean Energy

  16. State and Regional Hydrogen Initiatives Meeting, Challenges for State and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Hydrogen Initiatives | Department of Energy and Regional Hydrogen Initiatives Meeting, Challenges for State and Regional Hydrogen Initiatives State and Regional Hydrogen Initiatives Meeting, Challenges for State and Regional Hydrogen Initiatives These notes from the State and Regional Hydrogen Initiatives Meeting in March 2007 provides discussion points from the Coalition Management Breakout Session. PDF icon coalition_management_nordstrom.pdf More Documents & Publications

  17. National Clean Energy Business Plan Competition: Six Regional Winners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advance to Final Round | Department of Energy Six Regional Winners Advance to Final Round National Clean Energy Business Plan Competition: Six Regional Winners Advance to Final Round May 16, 2014 - 1:14pm Addthis Western Southwest Region Winner 1 of 5 Western Southwest Region Winner KAir Battery won the Rice Business Plan Competition for its cost-effective large-scale stationary potassium-air battery. Image: Courtesy of KAir Battery Southeastern Region Winner 2 of 5 Southeastern Region

  18. Electric System Decision Making in Other Regions: A Preliminary Analysis

    Office of Environmental Management (EM)

    Prepared for Western Interstate Energy Board Committee on Regional Electric Power Cooperation | Department of Energy System Decision Making in Other Regions: A Preliminary Analysis Prepared for Western Interstate Energy Board Committee on Regional Electric Power Cooperation Electric System Decision Making in Other Regions: A Preliminary Analysis Prepared for Western Interstate Energy Board Committee on Regional Electric Power Cooperation The nation's electricity system is regional in nature,

  19. The makings of a regional transmission group

    SciTech Connect (OSTI)

    Peterson, H.

    1994-04-15

    The Southwest Regional Transmission Association (SWRTA) plans to file this month at the Federal Energy Regulatory Commission (FERC) for recognition as a regional transmission group (RTG), pursuant to the FERC's July 1993 policy statement on RTGs. As the provision of electricity becomes less regulated and more competitive, many industry observers expect RTGs to play a key role in increasing the efficiency of our nation's electricity supply system. What exactly is an RTG There are as many definitions as there are interested parties. SWRTA's working group has spent over two years turning an idea into an RTG. Along the way they have learned a few important things about the FERC, congressional intent, the amended Federal Power Act, the dynamics of large groups, and fairness. This article describes the creation of the SWRTA RTG.

  20. Regional partnerships lead US carbon sequestration efforts

    SciTech Connect (OSTI)

    NONE

    2007-07-01

    During the sixth annual conference on carbon capture and sequestration, 7-10 May 2007, a snapshot was given of progress on characterization efforts and field validation tests being carried out through the Carbon Sequestration Regional Partnership Initiative. The initiative is built on the recognition that geographical differences in fossil fuel/energy use and CO{sub 2} storage sinks across North America will dictate approaches to carbon sequestration. The first characterization phase (2003-2005) identified regional opportunities and developed frameworks to validate and deploy technologies. The validation phase (2005-2009) includes 10 enhanced oil recovery/enhanced gas recovery field tests in progress in Alberta and six US states and is applying lessons learned from these operations to sequestration in unmineable coal seams. Storage in saline formations are the focus of 10 field tests, and terrestrial sequestration will be studied in 11 other projects. 1 tab., 3 photos.

  1. AWEA Regional Wind Energy Conference—Northeast

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association (AWEA) will be hosting a conference that focuses on the key issues in the northeast region. The event will provide attendees with a comprehensive view of the critical issues for wind power’s growth in this part of the country and cover both land-based wind power development, as well as the nascent efforts to develop off-shore wind power off the New England coast.

  2. Photovoltaic Regional Testing Center (PV RTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Testing Center (PV RTC) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  3. Regional Wave Field Modeling and Array Effects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1C Marine and Hydrokinetic Instrumentation, Measurement & Computer Modeling Workshop - Broomfield, CO July 9 th , 2012 Regional Wave Field Modeling and Array Effects Outline  Overview of SNL's Large-Scale Wave and WEC Array Modeling Activities * WEC Farm Modeling on Roadmap * SNL Current Modeling Capabilities * SNL WEC Farm Model Tool Development WEC Farm Modeling  WEC Farms * Currently focused on improving large scale wave models for environmental assessments WEC Farm Modeling: WEC

  4. Assistance Focus: Asia/Pacific Region (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    The Clean Energy Solutions Center Ask an Expert service connects governments seeking policy information and advice with one of more than 30 global policy experts who can provide reliable and unbiased quick-response advice and information. The service is available at no cost to government agency representatives from any country and the technical institutes assisting them. This publication presents summaries of assistance provided to governments in the Asia/Pacific region, including the benefits of that assistance.

  5. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Larry Myer; Terry Surles; Kelly Birkinshaw

    2004-01-01

    The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct.1. Contracts were then put into place with twelve organizations which will carry out the technical work required to meet Partnership objectives.

  6. Root region airfoil for wind turbine

    DOE Patents [OSTI]

    Tangler, J.L.; Somers, D.M.

    1995-05-23

    A thick airfoil is described for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%--26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4--1.6 that has minimum sensitivity to roughness effects. 3 Figs.

  7. UNITED STATES NUCLEAR REGULATORY COMMISSION REGION I

    Office of Legacy Management (LM)

    REGION I 475 ALLENDALE ROAD KING OF PRUSSIA, PENNSYLVANIA 194061415 Docket No. 040-07123 JUL. 19 '996 License No. SUB-748 (Retired) United States -Department of Energy O ffice of EnvironmentalRestoration ATTN: W. Alexander Williams, Ph.D. EM-241 Cloverleaf Building 19901 Germantown Road Germantown, Maryland 20874-1290 SUBJECT: NL INDUSTRIES, ALBANY, NEW YORK Dear Dr. Williams: We are aware that DOE is responsible for the former National Lead Company (NL Industries) facility near Albany, New

  8. Electric System Decision Making in Other Regions: A Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Regional Electric Power Cooperation The nation's electricity system is regional in nature, because of the operation of the interconnected grids and the markets defined by them. ...

  9. Northwest Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (51) Power Plants (10)...

  10. Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan...

    Open Energy Info (EERE)

    Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes San Luis Basin (south-central CO) regional study. References Paul Morgan, Peter Barkmann,...

  11. REGIONAL WORKFORCE STUDY PREPARED FOR THE SRS COMMUNITY REUSE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workers poses a significant challenge for regional employers. The 15 regional higher education institutions graduate about 7,300 students annually. The most popular fields of...

  12. LEDSGP/about/Latin America and Caribbean Regional Platform |...

    Open Energy Info (EERE)

    Latin America and Caribbean Regional Platform < LEDSGP | about(Redirected from Latin America and Caribbean Regional Platform) Redirect page Jump to: navigation, search REDIRECT...

  13. Jefferson Lab hosts 19 schools for Virginia Regional High School...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb. 10, to compete in the Virginia Regional High School Science Bowl. Nineteen teams, representing high schools from across the region are participating in this year's...

  14. Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...

    Open Energy Info (EERE)

    Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Yellowstone Region...

  15. Wind energy resources atlas. Volume 1. Northwest region

    SciTech Connect (OSTI)

    Elliott, D.L.; Barchet, W.R.

    1980-04-01

    Information is presented concering regional wind energy resource assessment; regional features; and state features for Idaho, Montana, Oregon, Washington, and Wyoming.

  16. Solar Atlas (PACA Region - France) | Open Energy Information

    Open Energy Info (EERE)

    Atlas (PACA Region - France) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Atlas (PACA Region - France) AgencyCompany Organization: MINES ParisTech Sector:...

  17. Regional Geology: GIS Database for Alternative Host Rocks and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines ...

  18. Regional Variation in Residential Heat Pump Water Heater Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Variation in Residential Heat Pump Water Heater Performance in the United States Regional Variation in Residential Heat Pump Water Heater Performance in the United States ...

  19. DOE Releases EPRI Report on Benefits of Regional Coordination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Due to varying regional wind speeds, specific regions of the country, such as the Midwest and ... Power Pool (Texas, Oklahoma, New Mexico, Kansas, Arkansas, and Missouri) -to ...

  20. Papua New Guinea Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    ENERGYGeothermal Home Papua New Guinea Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  1. East African Rift Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    ENERGYGeothermal Home East African Rift Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Country(ies)...

  2. ECOWAS Regional Centre for Renewable Energy and Energy Efficiency...

    Open Energy Info (EERE)

    ECOWAS Regional Centre for Renewable Energy and Energy Efficiency (ECREEE) (Redirected from Regional Centre for Renewable Energy and Energy Efficiency) Jump to: navigation, search...

  3. ECOWAS Regional Centre for Renewable Energy and Energy Efficiency...

    Open Energy Info (EERE)

    ECOWAS Regional Centre for Renewable Energy and Energy Efficiency (ECREEE) (Redirected from West African Regional Centre for Renewable Energy and Energy Efficiency (ECREEE)) Jump...

  4. ECOWAS Regional Centre for Renewable Energy and Energy Efficiency...

    Open Energy Info (EERE)

    ECOWAS Regional Centre for Renewable Energy and Energy Efficiency (ECREEE) Jump to: navigation, search Logo: Regional Centre for Renewable Energy and Energy Efficiency Name:...

  5. 2015 ACI Mid-Atlantic Regional Home Performance Conference |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACI Mid-Atlantic Regional Home Performance Conference 2015 ACI Mid-Atlantic Regional Home Performance Conference October 20, 2015 9:00AM EDT to October 21...

  6. KAir Battery Wins Southwest Regional Clean Energy Business Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition April 18, 2014 - 12:05pm...

  7. Surface Gas Sampling At Yellowstone Region (Goff & Janik, 2002...

    Open Energy Info (EERE)

    Yellowstone Region (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Yellowstone Region (Goff & Janik,...

  8. Sandia Energy - SunShot Grand Challenge: Regional Test Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge: Regional Test Centers Home Videos Renewable Energy Energy Events News SunShot News & Events Photovoltaic Solar SunShot Grand Challenge: Regional Test Centers Previous...

  9. Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...

    Open Energy Info (EERE)

    Soil Sampling At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Yellowstone Region...

  10. regional clean energy application centers | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Clean Energy Application Centers The U.S. Department of Energy's (DOE's) Regional Clean Energy Application Centers (CEACs), formerly called the Combined Heat and Power...

  11. South Asia Regional Initiative for Energy Cooperation and Development...

    Open Energy Info (EERE)

    reduced greenhouse gas emissions, and overall improvements in environmental quality and human health in the region. "The South Asia Regional Initiative for Energy Cooperation and...

  12. Saint Vincent and the Grenadines-Regional Implementation Plan...

    Open Energy Info (EERE)

    Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Saint Vincent and the Grenadines-Regional Implementation Plan for...

  13. Asia-Pacific Regional Climate Change Adaptation Assessment |...

    Open Energy Info (EERE)

    Pacific Regional Climate Change Adaptation Assessment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Asia-Pacific Regional Climate Change Adaptation Assessment Agency...

  14. MIE Regional Climate Change Impact Webinar Series: Hawaii & Pacific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MIE Regional Climate Change Impact Webinar Series: Hawaii & Pacific Islands MIE Regional Climate Change Impact Webinar Series: Hawaii & Pacific Islands November 5, 2015 1:00PM to...

  15. Regional Climate Change Adaptation Platform for Asia | Open Energy...

    Open Energy Info (EERE)

    Climate Change Adaptation Platform for Asia Jump to: navigation, search Logo: Regional Climate Change Adaptation Platform for Asia Name Regional Climate Change Adaptation Platform...

  16. Microsoft Word - Letter to the region on DSI service - 102909...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    refer to: A-7 To: Regional Customers, Stakeholders, and Other Interested Parties Re: DSI Service In an August 19 letter to the region, the Bonneville Power Administration (BPA)...

  17. Walker-Lane Transition Zone Geothermal Region | Open Energy Informatio...

    Open Energy Info (EERE)

    At Walker-Lane Transitional Zone Region (Coolbaugh, Et Al., 2005 - 2) Direct-Current Resistivity Survey At Walker-Lane Transitional Zone Region (Pritchett,...

  18. Assessing Impact of Biofuel Production on Regional Water Resource...

    Office of Environmental Management (EM)

    Assessing Impact of Biofuel Production on Regional Water Resource Use and Availability Assessing Impact of Biofuel Production on Regional Water Resource Use and Availability Dr. ...

  19. AGA Eastern Consuming Region Natural Gas Underground Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eastern Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year...

  20. Eastern Consuming Regions Natural Gas Underground Storage Net...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eastern Consuming Regions Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Eastern Consuming Regions Natural Gas Underground Storage Net Withdrawals (Million...