Powered by Deep Web Technologies
Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Satellite-Based Actual Evapotranspiration over Drying Semiarid Terrain in West Africa  

Science Conference Proceedings (OSTI)

A simple satellite-based algorithm for estimating actual evaporation based on Makkink’s equation is applied to a seasonal cycle in 2002 at three test sites in Ghana, West Africa: at a location in the humid tropical southern region and two in the ...

D. Schüttemeyer; Ch Schillings; A. F. Moene; H. A. R. de Bruin

2007-01-01T23:59:59.000Z

2

Utah Crude Oil + Lease Condensate Reserves Sales (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Million Barrels) Utah Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 8...

3

Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

4

Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

+ Lease Condensate Proved Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

5

Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

+ Lease Condensate Proved Reserves (Million Barrels) Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

6

Secretary Bodman Announces Sale of 11 Million Barrels of Crude...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic...

7

Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

8

Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

9

Utah Natural Gas Liquids Proved Reserves (Million Barrels)  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Million Barrels) Utah Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59...

10

Pennsylvania Natural Gas Liquids Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) Pennsylvania Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

11

Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

12

Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

13

Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

14

Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

15

Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

16

Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

17

Miscellaneous States Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

18

Oklahoma Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Oklahoma Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

19

Colorado Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

20

Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Arkansas Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Arkansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

22

Wyoming Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

23

Michigan Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Michigan Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

24

New Mexico Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

25

DOE - Office of Legacy Management -- Queen City Barrel Co - OH 41  

Office of Legacy Management (LM)

Queen City Barrel Co - OH 41 Queen City Barrel Co - OH 41 FUSRAP Considered Sites Site: QUEEN CITY BARREL CO. (OH.41) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cincinnati , Ohio OH.41-1 Evaluation Year: 1987 OH.41-1 Site Operations: Cleaned and reconditioned 30- and 55-gallon drums. OH.41-2 OH.41-3 Site Disposition: Eliminated - Based upon limited scope of operations, potential for residual radioactive contamination from MED or AEC operations considered remote OH.41-1 Radioactive Materials Handled: Yes OH.41-2 Primary Radioactive Materials Handled: Radium Bearing Material OH.41-2 OH.41-3 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see

26

Table 4. Total Petroleum Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Consumption, Projected vs. Actual Petroleum Consumption, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6450 6566 6643 6723 6811 6880 6957 7059 7125 7205 7296 7377 7446 7523 7596 7665 7712 7775 AEO 1995 6398 6544 6555 6676 6745 6822 6888 6964 7048 7147 7245 7337 7406 7472 7537 7581 7621 AEO 1996 6490 6526 6607 6709 6782 6855 6942 7008 7085 7176 7260 7329 7384 7450 7501 7545 7581 AEO 1997 6636 6694 6826 6953 7074 7183 7267 7369 7461 7548 7643 7731 7793 7833 7884 7924 AEO 1998 6895 6906 7066 7161 7278 7400 7488 7597 7719 7859 7959 8074 8190 8286 8361 AEO 1999 6884 7007 7269 7383 7472 7539 7620 7725 7841 7949 8069 8174 8283 8351 AEO 2000 7056 7141 7266 7363 7452 7578 7694 7815 7926 8028 8113 8217 8288

27

Table 6. Petroleum Net Imports, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Net Imports, Projected vs. Actual Petroleum Net Imports, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2935 3201 3362 3504 3657 3738 3880 3993 4099 4212 4303 4398 4475 4541 4584 4639 4668 4672 AEO 1995 2953 3157 3281 3489 3610 3741 3818 3920 4000 4103 4208 4303 4362 4420 4442 4460 4460 AEO 1996 3011 3106 3219 3398 3519 3679 3807 3891 3979 4070 4165 4212 4260 4289 4303 4322 4325 AEO 1997 3099 3245 3497 3665 3825 3975 4084 4190 4285 4380 4464 4552 4617 4654 4709 4760 AEO 1998 3303 3391 3654 3713 3876 4053 4137 4298 4415 4556 4639 4750 4910 4992 5087 AEO 1999 3380 3442 3888 4022 4153 4238 4336 4441 4545 4652 4780 4888 4999 5073 AEO 2000 3599 3847 4036 4187 4320 4465 4579 4690 4780 4882 4968 5055 5113

28

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 AEO 1997 2362 2307 2245 2197 2143 2091 2055 2033 2015 2004 1997 1989 1982 1975 1967 1949 AEO 1998 2340 2332 2291 2252 2220 2192 2169 2145 2125 2104 2087 2068 2050 2033 2016 AEO 1999 2340 2309 2296 2265 2207 2171 2141 2122 2114 2092 2074 2057 2040 2025 AEO 2000 2193 2181 2122 2063 2016 1980 1957 1939 1920 1904 1894 1889 1889

29

,"Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011 ,"Release...

30

Table 3.1 Petroleum Overview (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review September 2013 37 Table 3.1 Petroleum Overview (Thousand Barrels per Day) Field Productiona

31

Table 3.4 Petroleum Stocks (Million Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 47 Table 3.4 Petroleum Stocks (Million Barrels) Crude Oila Distillate

32

Cushing, OK WTI Spot Price FOB (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

View History: Daily Weekly Monthly Annual : Download Data (XLS File) Cushing, OK WTI Spot Price FOB (Dollars per Barrel) Week Of Mon Tue Wed Thu Fri ; 1985 ...

33

Europe Brent Spot Price FOB (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

View History: Daily Weekly Monthly Annual : Download Data (XLS File) Europe Brent Spot Price FOB (Dollars per Barrel) Week Of Mon Tue Wed Thu Fri ; 1987 ...

34

Gas from the top of the barrel  

SciTech Connect

Refining management has recently entailed a search for that special niche in all the refinery process options that will make the overall operation profitable in the face of increasing impact of environmental regulation, decreasing demand through conservation, and variations in crude oil pricing. One such niche, bottom of the barrel processing, was attractive enough to result in major new and revamp projects which have contributed positively to direct refinery cost economics but not significantly to profitability. Today, proposed regulations reducing gasoline vapor pressure and forecasts of excess LPG supplies suggest that the other end of the barrel - the top - should be considered. Conventional uses of LPG in home heating and cooling, as petrochemical feedstocks, in gasoline blending, and, in limited amounts, as transportation fuels are well, or over, served. At the same time, recovery of LPG's from gas and refinery processing is increasing the supply. Those C/sub 3/-C/sub 4/ paraffin hydrocarbons can be converted economically to transportation fuels.

Andre, R.S.; Clark, R.G.; Craig, R.G.; Dufallo, J.M.

1988-01-01T23:59:59.000Z

35

Weekly U.S. Exports of Total Distillate (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Weekly U.S. Exports of Total Distillate (Thousand Barrels per Day) Year-Month Week 1 Week 2 Week 3 ... Exports of Distillate Fuel Oil ; U.S. Imports ...

36

U.S. Exports of Finished Motor Gasoline (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports of Finished Motor Gasoline (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1930's: 30,613: 28,646 ...

37

U.S. Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1850's: 2: 1860's: 500: 2,114 ...

38

California Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 30,297: 27,455: 30,515: 29,540: 31,203: 30,366 ...

39

California Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 365,370: 373,176 ...

40

North Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

North Dakota Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 45,424: 47,271 ...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Texas Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: ...

42

Ohio Imports of Residual Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Imports of Residual Fuel Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2000: 0: 0: 0: 0: 0: 108: 0: 0: 0: 0: 0: 27: 2001: 0: 44 ...

43

Ohio Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 13,551: 14,571: 14,971 ...

44

Ohio Natural Gas Liquids Proved Reserves (Million Barrels)  

Annual Energy Outlook 2012 (EIA)

Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 - No Data Reported; -- ...

45

Oklahoma Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Oklahoma Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 12,139: 12,268: 13,290: 11,905: 13,000: 12,891 ...

46

Alaska North Slope Crude Oil Production (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Alaska North Slope Crude Oil Production (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 1,524: 1,621 ...

47

Texas Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 932,350: 908,217: 882,911 ...

48

Weekly Cushing, OK WTI Spot Price FOB (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Weekly Cushing, OK WTI Spot Price FOB (Dollars per Barrel) Year-Month Week 1 Week 2 Week 3 Week 4 ... Spot Prices for Crude Oil and Petroleum Products ...

49

Effects of core barrel on vessel seismic loadings. [LMFBR  

Science Conference Proceedings (OSTI)

Reliability of reactor systems under seismic events is a major concern for the safety of the nuclear power plants. This paper deals with the effects of the core barrel on the seismic response of reactor tanks. The main emphases are the effects of core barrel on the free-surface wave height and the fluid coupling effects between the core barrel and primary tank. This study represents an initial step to investigate the effects of in-tank components, structures on the seismically-induced hydrodynamic behavior of the reactor tanks. To simplify the analysis, the tank used in the study is simulated by a two-dimensional model. Two parametric studies were carried out in which the wall flexibility and location of core barrel were used as parameters respectively.

Ma, D.C.; Gvildys, J.; Chang, Y.W.

1983-01-01T23:59:59.000Z

50

Michigan Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Michigan Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 32,665: 31,462: 31,736 ...

51

Alaska North Slope Crude Oil Production (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Alaska North Slope Crude Oil Production (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 556,265: 591,506 ...

52

Cushing, OK Crude Oil Future Contract 1 (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

View History: Daily Weekly ... Annual : Download Data (XLS File) Cushing, OK Crude Oil Future Contract 1 (Dollars per Barrel) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

53

Texas Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

View History: Monthly ... Download Data (XLS File) Texas Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981 ...

54

U.S. Imports of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) U.S. Imports of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

55

California Field Production of Crude Oil (Thousand Barrels per ...  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 977: 981: 984: 985: 1,007: 1,012 ...

56

Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

U.S. Energy Information Administration (EIA)

Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 583:

57

Europe Brent Spot Price FOB (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Europe Brent Spot Price FOB (Dollars per Barrel) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ... Spot Prices for Crude Oil and Petroleum Products ...

58

Alaska Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Alaska Field Production of Crude Oil (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 198: 193: 191 ...

59

Montana Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Montana Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 78: 84: 84: 83: 85: 86: 84: 85: 84: 88 ...

60

Colorado Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 81: 81: 82: 83: 81: 82: 81: 80: 82: 89 ...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Colorado Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 30,303: 30,545: 29,050 ...

62

U. S. Operating Crude Oil Distillation Capacity (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

U. S. Operating Crude Oil Distillation Capacity (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 14,361: 14,293: 14,268: 14,605 ...

63

U. S. Operating Crude Oil Distillation Capacity (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

U. S. Operating Crude Oil Distillation Capacity (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's ...

64

U. S. Operable Crude Oil Distillation Capacity (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

U. S. Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 15,659: 15,559: 15,582 ...

65

South Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

South Dakota Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 973: 1,158: 1,172 ...

66

New Mexico Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

New Mexico Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 6,286: 5,593: 6,105: 5,902: ...

67

U.S. Ending Stocks of Petroleum Coke (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Ending Stocks of Petroleum Coke (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 4,502: ...

68

U.S. Exports of Petroleum Coke (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports of Petroleum Coke (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 50,292: ...

69

U.S. Petroleum Coke Consumed at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Petroleum Coke Consumed at Refineries (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: ...

70

U.S. Exports of Petroleum Coke (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports of Petroleum Coke (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,754: 4,394: 3,722: 3,995: 5,211: ...

71

U.S. Petroleum Coke Stocks at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Petroleum Coke Stocks at Refineries (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 10,747: 11,072: 11,444: ...

72

Sodium Dichromate Barrel Landfill expedited response action proposal  

SciTech Connect

The US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) recommended that the US Department of Energy (DOE) prepare an expedited response action (ERA) for the Sodium Dichromate Barrel Landfill. The Sodium Dichromate Barrel Disposal Site was used in 1945 for disposal of crushed barrels. The site location is the sole waste site within the 100-IU-4 Operable Unit. The Waste Information Data System (WIDS 1992) assumes that the crushed barrels contained 1% residual sodium dichromate at burial time and that only buried crushed barrels are at the site. Burial depth is shallow since visual inspection finds numerous barrel debris on the surface. A non-time-critical ERA proposal includes preparation of an engineering evaluation and cost analysis (EE/CA) section. The EE/CA is a rapid, focused evaluation of available technologies using specific screening factors to assess feasibility, appropriateness, and cost. The ERA goal is to reduce the potential for any contaminant migration from the landfill to the soil column, groundwater, and Columbia River. Since the landfill is the only waste site within the operable unit, the ERA will present a final remediation of the 100-IU-4 operable unit.

Not Available

1993-09-01T23:59:59.000Z

73

Table 4. Total Petroleum Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Petroleum Consumption, Projected vs. Actual" Total Petroleum Consumption, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6449.55,6566.35,6643,6723.3,6810.9,6880.25,6956.9,7059.1,7124.8,7205.1,7296.35,7376.65,7446,7522.65,7595.65,7665,7712.45,7774.5 "AEO 1995",,6398.45,6544.45,6555.4,6675.85,6745.2,6821.85,6887.55,6964.2,7048.15,7146.7,7245.25,7336.5,7405.85,7471.55,7537.25,7581.05,7621.2 "AEO 1996",,,6489.7,6526.2,6606.5,6708.7,6781.7,6854.7,6942.3,7008,7084.65,7175.9,7259.85,7329.2,7383.95,7449.65,7500.75,7544.55,7581.05 "AEO 1997",,,,6635.7,6694.1,6825.5,6953.25,7073.7,7183.2,7267.15,7369.35,7460.6,7548.2,7643.1,7730.7,7792.75,7832.9,7884,7924.15

74

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual" Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO 1995",,2401.7,2306.8,2204.6,2095.1,2036.7,1967.35,1952.75,1923.55,1916.25,1905.3,1894.35,1883.4,1887.05,1887.05,1919.9,1945.45,1967.35 "AEO 1996",,,2387.1,2310.45,2248.4,2171.75,2113.35,2062.25,2011.15,1978.3,1952.75,1938.15,1916.25,1919.9,1927.2,1949.1,1971,1985.6,2000.2 "AEO 1997",,,,2361.55,2306.8,2244.75,2197.3,2142.55,2091.45,2054.95,2033.05,2014.8,2003.85,1996.55,1989.25,1981.95,1974.65,1967.35,1949.1

75

How People Actually Use Thermostats  

Science Conference Proceedings (OSTI)

Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

2010-08-15T23:59:59.000Z

76

Baseballs and Barrels: World Statistics Day | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baseballs and Barrels: World Statistics Day Baseballs and Barrels: World Statistics Day Baseballs and Barrels: World Statistics Day October 20, 2010 - 1:06pm Addthis Dr. Richard Newell Dr. Richard Newell Does the American League hold more baseball World Series titles than the National League? Yes. Does Saudi Arabia produce more crude oil than Russia? No. How do I know? Statistics. The month of October not only marks the beginning of Major League Baseball's World Series and Energy Awareness Month, but also the celebration of the first ever World Statistics Day on October 20th. Statistics don't just help us answer trivia questions - they also help us make intelligent decisions. If I heat my home with natural gas, I'm probably interested in what natural gas prices are likely to be this winter. If my business manufactures solar panels, I would want to know how

77

Apparatus and method for quantitative assay of samples of transuranic waste contained in barrels in the presence of matrix material  

DOE Patents (OSTI)

Apparatus and method for performing corrections for matrix material effects on the neutron measurements generated from analysis of transuranic waste drums using the differential-dieaway technique. By measuring the absorption index and the moderator index for a particular drum, correction factors can be determined for the effects of matrix materials on the ''observed'' quantity of fissile and fertile material present therein in order to determine the actual assays thereof. A barrel flux monitor is introduced into the measurement chamber to accomplish these measurements as a new contribution to the differential-dieaway technology. 9 figs.

Caldwell, J.T.; Herrera, G.C.; Hastings, R.D.; Shunk, E.R.; Kunz, W.E.

1987-08-28T23:59:59.000Z

78

Utah Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Utah Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,150: 2,170: 2,150: 2,160: 2,150: 2,160: 2,150 ...

79

Ohio Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 1,148: 1,036: 1,148: 1,111: 1,148: 1,111: 1,148 ...

80

Texas Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,600: 2,593: 2,604: 2,578: 2,577: 2,568 ...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

West Texas Sour First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

West Texas Sour First Purchase Price (Dollars per Barrel) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 14.87: 13.29: 11.28: 1994: 11.77: 11.65: 11.61 ...

82

U.S. Imports of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Imports of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1920: 6,294: 4,940: 6,503: 6,186: 6,966: 8,120: 6,768: 10,791 ...

83

U.S. Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1920: 34,008: 33,193: 36,171: 34,945: 36,622: 36,663 ...

84

Michigan Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Michigan Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,827: 2,493: 2,807: 2,720: 2,763: 2,682: 2,779 ...

85

U.S. LPG's Consumed at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. LPG's Consumed at Refineries (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 8,966: 8,021: 9,466: 11,962 ...

86

North Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

North Dakota Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 3,787: 3,493: 3,790: 3,805: 3,974: 3,839 ...

87

Colorado Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,506: 2,255: 2,527: 2,478: 2,498: 2,445: 2,523 ...

88

U.S. Ending Stocks of Fuel Ethanol (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Ending Stocks of Fuel Ethanol (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 2,059: 1,946: 1,929: 2,152: 2,441: 2,627: 2,706 ...

89

U.S. Crude Oil Proved Reserves (Million Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1890's: 2,500: 1900's: 2,900: 3,000 ...

90

U.S. Natural Gas Plant Liquids, Reserves Sales (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Sales (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 906 448...

91

U.S. crude oil production expected to top 8 million barrels per...  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. crude oil production expected to top 8 million barrels per day, highest output since 1988 U.S. crude oil production in 2014 is now expected to top 8 million barrels per day...

92

How many gallons of gasoline does one barrel of oil make? - FAQ ...  

U.S. Energy Information Administration (EIA)

How many gallons of gasoline does one barrel of oil make? U.S. refineries produce about 19 gallons of motor gasoline from one barrel (42 gallons) of crude oil.

93

U.S. Crude Oil + Lease Condensate Reserves Sales (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Sales (Million Barrels) U.S. Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 249...

94

U.S. Crude Oil + Lease Condensate Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Proved Reserves (Million Barrels) U.S. Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

95

Ornaments of Two Extinct Marine Pelecypods from the Barrel Springs Site in the Colorado Desert  

E-Print Network (OSTI)

Barrel Springs Site in the Colorado Desert JANICE F. FISHERSprings^ , Ocotillo Welle' COLORADO SA^N;-. DESERT Cornzo

Fisher, Janice F; Foster, John W; Oxendine, Joan

1979-01-01T23:59:59.000Z

96

Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

97

Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

98

New Mexico Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

99

Louisiana--North Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

100

Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Colorado Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

102

Kentucky Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

103

Kansas Natural Gas Plant Liquids, Reserves Based Production ...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

104

Utah Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

105

Florida Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Florida Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

106

Montana Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

107

North Dakota Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

108

Oklahoma Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

109

Michigan Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

110

Utah Natural Gas Liquids Lease Condensate, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

111

Arkansas Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

112

Texas--State Offshore Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

113

Before Getting There: Potential and Actual Collaboration  

Science Conference Proceedings (OSTI)

In this paper we introduce the concepts of Actual and Potential Collaboration Spaces. The former applies to the space where collaborative activities are performed, while the second relates to the initial space where opportunities for collaboration are ... Keywords: Doc2U, PIŃAS, casual and informal interactions, potential and actual collaboration spaces, potential collaboration awareness

Alberto L. Morán; Jesús Favela; Ana María Martínez Enríquez; Dominique Decouchant

2002-09-01T23:59:59.000Z

114

U.S. Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Based Production (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

115

New Mexico--East Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

116

New Mexico--West Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

117

Texas--RRC District 6 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 6 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

118

Texas--RRC District 1 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 1 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

119

Texas--RRC District 5 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 5 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

120

Texas--RRC District 7C Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 7C Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Texas--RRC District 7B Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 7B Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

122

Texas--RRC District 8A Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 8A Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

123

Texas--RRC District 10 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 10 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

124

Texas--RRC District 8 Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 8 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

125

Texas--RRC District 9 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 9 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

126

Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sale of 11 Million Barrels of Crude Oil Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve September 14, 2005 - 10:21am Addthis WASHINGTON, DC - Secretary Samuel W. Bodman announced that the Department of Energy has approved bids for the sale of 11 million barrels of crude oil from the Strategic Petroleum Reserve (SPR). Combined with the 12.6 million barrels of crude previously approved for loans these SPR releases, in response to the disruptions caused by Hurricane Katrina, will provide 23.6 million barrels of crude for the U.S. market. "The United States is committed to using all of the tools at our disposal to help keep our oil and gasoline markets well supplied," Secretary Bodman

127

The How's and Why's of Replacing the Whole Barrel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The How's and Why's of Replacing the Whole Barrel The How's and Why's of Replacing the Whole Barrel The How's and Why's of Replacing the Whole Barrel October 19, 2011 - 4:09pm Addthis A 42-U.S. gallon barrel of crude oil yields about 45 gallons of petroleum products. Source: Energy Information Administration, “Oil: Crude Oil and Petroleum Products Explained” and Annual Energy Outlook 2009 (Updated February 2010). A 42-U.S. gallon barrel of crude oil yields about 45 gallons of petroleum products. Source: Energy Information Administration, "Oil: Crude Oil and Petroleum Products Explained" and Annual Energy Outlook 2009 (Updated February 2010). Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy For many, a barrel of oil is almost synonymous with its most prominent

128

U.S. crude oil production tops 7 million barrels per day, highest ...  

U.S. Energy Information Administration (EIA)

U.S. crude oil production exceeded an average 7 million barrels per day (bbl/d) in November and December 2012, the highest volume since December 1992.

129

Table 5.1b Petroleum Overview, 1949-2011 (Thousand Barrels per ...  

U.S. Energy Information Administration (EIA)

Table 5.1b Petroleum Overview, 1949-2011 (Thousand Barrels per Day) Year: Field Production 1: Renewable Fuels and Oxygenates 5: Processing

130

U.S. Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) U.S. Field Production of Crude Oil (Thousand Barrels per Day) ... Crude Oil Supply and Disposition;

131

,"U.S. Crude Oil + Lease Condensate Reserves Sales (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Crude Oil + Lease Condensate Reserves Sales (Million Barrels)",1,"Annual",2011 ,"Release...

132

U.S. Exports to Belarus of Petroleum Coke (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports to Belarus of Petroleum Coke (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2004: 17

133

Table 7. Petroleum Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Net Imports, Projected vs. Actual Petroleum Net Imports, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 7.58 7.45 7.12 6.82 6.66 7.09 AEO 1983 5.15 5.44 5.73 5.79 5.72 5.95 6.96 AEO 1984 4.85 5.11 5.53 5.95 6.31 6.59 8.65 AEO 1985 4.17 4.38 4.73 4.93 5.36 5.72 6.23 6.66 7.14 7.39 7.74 AEO 1986 5.15 5.38 5.46 5.92 6.46 7.09 7.50 7.78 7.96 8.20 8.47 8.74 9.04 9.57 9.76 AEO 1987 5.81 6.04 6.81 7.28 7.82 8.34 8.71 8.94 8.98 10.01 AEO 1989* 6.28 6.84 7.49 7.96 8.53 8.83 9.04 9.28 9.60 9.64 9.75 10.02 10.20 AEO 1990 7.20 7.61 9.13 9.95 11.02 AEO 1991 7.28 7.25 7.34 7.48 7.72 8.10 8.57 9.09 9.61 10.07 10.51 11.00 11.44 11.72 11.86 12.11 12.30 12.49 12.71 12.91 AEO 1992 6.86 7.42 7.88 8.16 8.55 8.80 9.06 9.32 9.50 9.80 10.17 10.35 10.56 10.61 10.85 11.00 11.15 11.29 11.50 AEO 1993 7.25 8.01 8.49 9.06

134

Table 6. Domestic Crude Oil Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 8.79 8.85 8.84 8.80 8.66 8.21 AEO 1983 8.67 8.71 8.66 8.72 8.80 8.63 8.11 AEO 1984 8.86 8.70 8.59 8.45 8.28 8.25 7.19 AEO 1985 8.92 8.96 9.01 8.78 8.38 8.05 7.64 7.27 6.89 6.68 6.53 AEO 1986 8.80 8.63 8.30 7.90 7.43 6.95 6.60 6.36 6.20 5.99 5.80 5.66 5.54 5.45 5.43 AEO 1987 8.31 8.18 8.00 7.63 7.34 7.09 6.86 6.64 6.54 6.03 AEO 1989* 8.18 7.97 7.64 7.25 6.87 6.59 6.37 6.17 6.05 6.00 5.94 5.90 5.89 AEO 1990 7.67 7.37 6.40 5.86 5.35 AEO 1991 7.23 6.98 7.10 7.11 7.01 6.79 6.48 6.22 5.92 5.64 5.36 5.11 4.90 4.73 4.62 4.59 4.58 4.53 4.46 4.42 AEO 1992 7.37 7.17 6.99 6.89 6.68 6.45 6.28 6.16 6.06 5.91 5.79 5.71 5.66 5.64 5.62 5.63 5.62 5.55 5.52 AEO 1993 7.20 6.94 6.79 6.52 6.22 6.00 5.84 5.72

135

Impact of Distant Charge Reversals within a Robust -Barrel Protein Pore Mohammad M. Mohammad  

E-Print Network (OSTI)

recordings and standard protein engineering to explore the impact of two distant charge reversals withinImpact of Distant Charge Reversals within a Robust -Barrel Protein Pore Mohammad M. Mohammad of the two distant charge reversals resulted in a large-amplitude permanent blockade of the barrel, as judged

Movileanu, Liviu

136

Metabolic Engineering and Synthetic Biology in Strain Development Every year, we consume about 27 billion barrels of fossil oil.  

E-Print Network (OSTI)

billion barrels of fossil oil. This enormous amount of oil is used for fueling our cars and airplanes

137

Table 13. Coal Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production, Projected vs. Actual" Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO 1996",,,1037,1044,1041,1045,1061,1070,1086,1100,1112,1121,1135,1156,1161,1167,1173,1184,1190 "AEO 1997",,,,1028,1052,1072,1088,1105,1110,1115,1123,1133,1146,1171,1182,1190,1193,1201,1209 "AEO 1998",,,,,1088,1122,1127.746338,1144.767212,1175.662598,1176.493652,1182.742065,1191.246948,1206.99585,1229.007202,1238.69043,1248.505981,1260.836914,1265.159424,1284.229736

138

Table 22. Energy Intensity, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual" Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / real GDP in billion 2005 chained dollars)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",11.24893441,11.08565002,10.98332766,10.82852279,10.67400621,10.54170176,10.39583203,10.27184573,10.14478673,10.02575883,9.910410202,9.810812106,9.69894802,9.599821783,9.486985399,9.394733753,9.303329725,9.221322623 "AEO 1995",,10.86137373,10.75116461,10.60467959,10.42268977,10.28668187,10.14461664,10.01081222,9.883759026,9.759022105,9.627404949,9.513643295,9.400418762,9.311729546,9.226142899,9.147374752,9.071102491,8.99599906 "AEO 1996",,,10.71047701,10.59846153,10.43655044,10.27812088,10.12746866,9.9694713,9.824165152,9.714832565,9.621874334,9.532324916,9.428169355,9.32931308,9.232716414,9.170931044,9.086870061,9.019963901,8.945602337

139

Improving Industrial Refrigeration System Efficiency - Actual Applications  

E-Print Network (OSTI)

This paper discusses actual design and modifications for increased system efficiency and includes reduced chilled liquid flow during part load operation, reduced condensing and increased evaporator temperatures for reduced system head, thermosiphon cycle cooling during winter operation, compressor intercooling, direct refrigeration vs. brine cooling, insulation of cold piping to reduce heat gain, multiple screw compressors for improved part load operation, evaporative condensers for reduced system head and pumping energy, and using high efficiency motors.

White, T. L.

1980-01-01T23:59:59.000Z

140

DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sell 35,000 Barrels of Oil from the Northeast Home Heating Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have caused new storage costs to rise to a level that exceeds available funds. Revenue from the sale will be used to supplement funds for the award of new long-term storage contracts that will begin on October 1, 2007. The Department will work with Congress to resolve these funding issues in order to restore the inventory of the Reserve to its full authorized size.

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ... Fuel Ethanol Oxygenate Production;

142

U.S. Product Supplied of Distillate Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) U.S. Product Supplied of Distillate Fuel Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

143

U.S. Imports from Azerbaijan of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Imports from Azerbaijan of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 226: 2000's: 7 ...

144

DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Sell 35,000 Barrels of Oil from the Northeast Home Heating to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have caused new storage costs to rise to a level that exceeds available funds. Revenue from the sale will be used to supplement funds for the award of new long-term storage contracts that will begin on October 1, 2007. The Department will work with Congress to resolve these funding issues in order

145

U.S. Exports to Venezuela of MTBE (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

U.S. Exports to Venezuela of MTBE (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 9: 10: 18: 9: 7: 8: 21: 2006: 18: 11: 20: 26 ...

146

U.S. Imports from Venezuela of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Imports from Venezuela of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 368,641: 377,525 ...

147

U.S. Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) U.S. Crude Oil First Purchase Price (Dollars per Barrel) Decade Year-0 Year-1 Year-2 Year-3 Year-4

148

U.S. Imports of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) U.S. Imports of Crude Oil (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

149

U.S. Imports from Saudi Arabia of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

U.S. Imports from Saudi Arabia of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1973: 351: 255: 390: 290: 366: 434: 644 ...

150

U.S. Ending Stocks of Normal Butane-Butylene (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Ending Stocks of Normal Butane-Butylene (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 26,098: 24,979: 24,689: ...

151

U.S. monthly oil production tops 8 million barrels per day for...  

U.S. Energy Information Administration (EIA) Indexed Site

barrels per day for the first time in 25 years, according to the new monthly energy forecast from the U.S. Energy Information Administration. Rising oil output from tight oil...

152

U.S. Imports from Canada of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Imports from Canada of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: ...

153

U.S. Imports from Egypt of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Imports from Egypt of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 1,043: 687: 1,430: 1,375: 1,360: ...

154

U. S. Idle Crude Oil Distillation Capacity (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

U. S. Idle Crude Oil Distillation Capacity (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 1,298: 1,266: 1,314: 1,035: 1,320 ...

155

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 295,460 ...

156

U.S. Exports to Italy of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports to Italy of Kerosene-Type Jet Fuel (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 2: 2008: 23: 9: 18: 2009: 89: 2010: 10 ...

157

U.S. Exports to South Africa of Petroleum Coke (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports to South Africa of Petroleum Coke (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; ...

158

U.S. Exports to Cameroon of Petroleum Coke (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports to Cameroon of Petroleum Coke (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1995: 0: 0: 0: 35: 0: 0: 0: 36: ...

159

A Sensitivity Study of Building Performance Using 30-Year Actual...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Media Contacts A Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Title A Sensitivity Study of Building Performance Using 30-Year Actual...

160

Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per barrel in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 16.69 16.43 16.99 17.66 18.28 19.06 19.89 20.72 21.65 22.61 23.51 24.29 24.90 25.60 26.30 27.00 27.64 28.16 AEO 1995 1993 14.90 16.41 16.90 17.45 18.00 18.53 19.13 19.65 20.16 20.63 21.08 21.50 21.98 22.44 22.94 23.50 24.12 AEO 1996 1994 16.81 16.98 17.37 17.98 18.61 19.27 19.92 20.47 20.97 21.41 21.86 22.25 22.61 22.97 23.34 23.70 24.08

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per barrel) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 17.06 17.21 18.24 19.43 20.64 22.12 23.76 25.52 27.51 29.67 31.86 34.00 36.05 38.36 40.78 43.29 45.88 48.37 AEO 1995 15.24 17.27 18.23 19.26 20.39 21.59 22.97 24.33 25.79 27.27 28.82 30.38 32.14 33.89 35.85 37.97 40.28 AEO 1996 17.16 17.74 18.59 19.72 20.97 22.34 23.81 25.26 26.72 28.22 29.87 31.51 33.13 34.82 36.61 38.48 40.48

162

Table 14. Coal Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Production, Projected vs. Actual Coal Production, Projected vs. Actual (million short tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 914 939 963 995 1031 1080 AEO 1983 900 926 947 974 1010 1045 1191 AEO 1984 899 921 948 974 1010 1057 1221 AEO 1985 886 909 930 940 958 985 1015 1041 1072 1094 1116 AEO 1986 890 920 954 962 983 1017 1044 1073 1097 1126 1142 1156 1176 1191 1217 AEO 1987 917 914 932 962 978 996 1020 1043 1068 1149 AEO 1989* 941 946 977 990 1018 1039 1058 1082 1084 1107 1130 1152 1171 AEO 1990 973 987 1085 1178 1379 AEO 1991 1035 1002 1016 1031 1043 1054 1065 1079 1096 1111 1133 1142 1160 1193 1234 1272 1309 1349 1386 1433 AEO 1992 1004 1040 1019 1034 1052 1064 1074 1087 1102 1133 1144 1156 1173 1201 1229 1272 1312 1355 1397 AEO 1993 1039 1043 1054 1065 1076 1086 1094 1102 1125 1136 1148 1161 1178 1204 1237 1269 1302 1327 AEO 1994 999 1021

163

Optical transitions in Cd{sub x}Hg{sub 1-x}Te-based quantum wells and their analysis with account for the actual band structure of the material  

Science Conference Proceedings (OSTI)

Quantum-confinement levels in a Cd{sub x}Hg{sub 1-x}Te-based rectangular quantum well are calculated in the framework of the four-band Kane model taking into account mixing between the states of electrons and three types of holes (heavy, light, and spin-split holes). Comparison of the calculation results with experimental data on the photoluminescence of Cd{sub x}Hg{sub 1-x}Te-based quantum wells suggests that optical transitions involving the conduction and light-hole bands are possibly observed in the spectra.

Bazhenov, N. L., E-mail: bazhnil.ivom@mail.ioffe.ru; Shilyaev, A. V.; Mynbaev, K. D.; Zegrya, G. G. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

2012-06-15T23:59:59.000Z

164

Table 23. Energy Intensity, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual (quadrillion Btu / $Billion Nominal GDP) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 20.1 18.5 16.9 15.5 14.4 13.2 AEO 1983 19.9 18.7 17.4 16.2 15.1 14.0 9.5 AEO 1984 20.1 19.0 17.7 16.5 15.5 14.5 10.2 AEO 1985 20.0 19.1 18.0 16.9 15.9 14.7 13.7 12.7 11.8 11.0 10.3 AEO 1986 18.3 17.8 16.8 16.1 15.2 14.3 13.4 12.6 11.7 10.9 10.2 9.5 8.9 8.3 7.8 AEO 1987 17.6 17.0 16.3 15.4 14.5 13.7 12.9 12.1 11.4 8.2 AEO 1989* 16.9 16.2 15.2 14.2 13.3 12.5 11.7 10.9 10.2 9.6 9.0 8.5 8.0 AEO 1990 16.1 15.4 11.7 8.6 6.4 AEO 1991 15.5 14.9 14.2 13.6 13.0 12.5 11.9 11.3 10.8 10.3 9.7 9.2 8.7 8.3 7.9 7.4 7.0 6.7 6.3 6.0 AEO 1992 15.0 14.5 13.9 13.3 12.7 12.1 11.6 11.0 10.5 10.0 9.5 9.0 8.6 8.1 7.7 7.3 6.9 6.6 6.2 AEO 1993 14.7 13.9 13.4 12.8 12.3 11.8 11.2 10.7 10.2 9.6 9.2 8.7 8.3 7.8 7.4 7.1 6.7 6.4

165

Direct quantum communication without actual transmission of the message qubits  

E-Print Network (OSTI)

Recently an orthogonal state based protocol of direct quantum communication without actual transmission of particles is proposed by Salih \\emph{et al.}{[}Phys. Rev. Lett. \\textbf{110} (2013) 170502{]} using chained quantum Zeno effect. As the no-transmission of particle claim is criticized by Vaidman {[}arXiv:1304.6689 (2013){]}, the condition (claim) of Salih \\emph{et al.} is weaken here to the extent that transmission of particles is allowed, but transmission of the message qubits (the qubits on which the secret information is encoded) is not allowed. Remaining within this weaker condition it is shown that there exists a large class of quantum states, that can be used to implement an orthogonal state based protocol of secure direct quantum communication using entanglement swapping, where actual transmission of the message qubits is not required. The security of the protocol originates from monogamy of entanglement. As the protocol can be implemented without using conjugate coding its security is independent of non-commutativity.

Chitra Shukla; Anirban Pathak

2013-07-23T23:59:59.000Z

166

U.S. Normal Butane-Butylene Stocks in Pipelines (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Normal Butane-Butylene Stocks in Pipelines (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 1,901: 1,455: 1,356: 1,810: 2,062 ...

167

U.S. Imports from Venezuela of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Imports from Venezuela of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 32,173: 25,886: 25,870: 30,689: 30,748: 29,983 ...

168

Sensory experience modifies spontaneous state dynamics in a large-scale barrel cortical model  

Science Conference Proceedings (OSTI)

Experimental evidence suggests that spontaneous neuronal activity may shape and be shaped by sensory experience. However, we lack information on how sensory experience modulates the underlying synaptic dynamics and how such modulation influences the ... Keywords: Barrel cortex, Large-scale model, STDP, Spontaneous dynamics

Elena Phoka; Mark Wildie; Simon R. Schultz; Mauricio Barahona

2012-10-01T23:59:59.000Z

169

U.S. Gross Inputs to Refineries (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

U.S. Gross Inputs to Refineries (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 11,583: 11,485: 11,484: 11,969: 12,269: 12,422 ...

170

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 13,255: 14,640: 14,907: 15,583: 14,878 ...

171

U.S. Imports of Kerosene-Type Jet Fuel, Bonded (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Imports of Kerosene-Type Jet Fuel, Bonded (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 1,406: 1,620: 1,231: 1,388: 1,379: 1,456 ...

172

U.S. Imports from Canada of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Imports from Canada of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 24,124: 21,896: 23,885: 23,485: 27,100: 27,337 ...

173

Table 14a. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)"...

174

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

175

Site geotechnical considerations for expansion of the Strategic Petroleum Reserve (SPR) to one billion barrels  

SciTech Connect

Eight Gulf Coast salt domes have emerged as candidate sites for possible expansion of the Strategic Petroleum Reserve (SPR) to one billion barrels. Two existing SPR sites, Big Hill, TX, and Weeks Island, LA, are among the eight that are being considered. To achieve the billion barrel capacity, some 25 new leached caverns would be constructed, and would probably be established in two separate sites in Louisiana and Texas because of distribution requirements. Geotechnical factors involved in siting studies have centered first and foremost on cavern integrity and environmental acceptability, once logistical suitability is realized. Other factors have involved subsidence and flooding potential, loss of coastal marshlands, seismicity, brine injection well utility, and co-use by multiple operators. 5 refs., 11 figs., 2 tabs.

Neal, J.T. (Sandia National Labs., Albuquerque, NM (United States)); Whittington, D.W. (USDOE Strategic Petroleum Reserve Project Management Office, New Orleans, LA (United States)); Magorian, T.R. (Magorian (Thomas R.), Amherst, NY (United States))

1991-01-01T23:59:59.000Z

176

South Belridge Field reaches milestone with its billionth barrel of crude oil  

SciTech Connect

An 84-year-old California oil field which for at least the first two decades of its life was regarded as one of the minor fields of Kern County in May reached a plateau attained previously by only 11 fields in the United States. The South Belridge field 35 miles west of Bakersfield produced its one billionth barrel of oil, thus qualifying for membership in oil production`s most exclusive club. The other billion-barrel fields are Alaska`s Prudhoe Bay and Kuparuk River; California`s Wilmington and Huntington Beach; Oklahoma`s ShoVel-Tum; and Texas` East Texas, Yates, Kelly-Snyder, Slaughter, Wasson and Panhandle. California`s Ventura field presently is believed to be the only other field in the United States with the potential to produce one billion barrels. The field, to the first of this year had produced 930.2 MMbo and had estimated reserves of 81.8 MMbo. Production in the South Belridge field last year totaled 43.8 MMbo, or an average of 120 Mbo/d, which was enough to make the field the fifth most productive in the United States.

Rintoul, B.

1995-07-01T23:59:59.000Z

177

Table 13. Coal Production, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 999...

178

Table 14b. Average Electricity Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002...

179

Table 14b. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

180

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Consumption, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Predicted vs. Actual Energy Savings of Retrofitted House  

E-Print Network (OSTI)

This paper reports the results of actual energy savings and the predicted energy savings of retrofitted one-story house located in Dhahran, Saudi Arabia. The process started with modeling the house prior to retrofitting and after retrofitting. The monthly metered energy consumption is acquired from the electric company archives for seven years prior to retrofitting and recording the actual monthly energy consumption of the post retrofitting. The house model is established on DOE 2.1. Actual monthly energy consumption is used to calibrate and fine-tuning the model until the gap between actual and predicted consumption was narrowed. Then the Energy Conservation Measures (ECMs) are entered into the modeled house according to the changes in thermo-physical properties of the envelope and the changes in schedules and number of users. In order to account for those differences, electrical consumption attributed to A/C in summer was isolated and compared. The study followed the International Performance Measurement & Verification Protocol (IPMVP) in assessing the impact of energy conservation measures on actual, metered, building energy consumption. The study aimed to show the predicted savings by the simulated building model and the actual utility bills' analysis in air conditioning consumption and peak at monthly load due to building envelope.

Al-Mofeez, I.

2010-01-01T23:59:59.000Z

182

U.S. monthly oil production tops 8 million barrels per day for the first time since 1988  

Gasoline and Diesel Fuel Update (EIA)

U.S. crude oil production expected to hit four-decade high during 2015 U.S. crude oil production expected to hit four-decade high during 2015 U.S. crude oil production over the next two years is expected to grow to its highest level since the early 1970s. Oil output increased by 1 million barrels per day in 2013...and is expected to repeat that growth rate during 2014....according to the new forecast from the U.S. Energy Information Administration. U.S. crude oil production is forecast to average 8.5 million barrels per day this year and then rise to 9.3 million barrels per day in 2015. That would be the highest yearly oil output since 1972, and just 300,000 barrels per day below the all-time production high of 9.6 million barrels per day set in 1970. Most of the oil production growth will come from increased drilling in the shale formations in

183

Shale gas production: potential versus actual greenhouse gas emissions*  

E-Print Network (OSTI)

Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

184

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft July 9, 2009 Draft July 9, 2009 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2009 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

185

Table 12. Total Coal Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Consumption, Projected vs. Actual" Coal Consumption, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",920,928,933,938,943,948,953,958,962,967,978,990,987,992,1006,1035,1061,1079 "AEO 1995",,935,940,941,947,948,951,954,958,963,971,984,992,996,1002,1013,1025,1039 "AEO 1996",,,937,942,954,962,983,990,1004,1017,1027,1033,1046,1067,1070,1071,1074,1082,1087 "AEO 1997",,,,948,970,987,1003,1017,1020,1025,1034,1041,1054,1075,1086,1092,1092,1099,1104 "AEO 1998",,,,,1009,1051,1043.875977,1058.292725,1086.598145,1084.446655,1089.787109,1096.931763,1111.523926,1129.833862,1142.338257,1148.019409,1159.695312,1162.210815,1180.029785

186

Tropical Africa: Calculated Actual Aboveground Live Biomass in Open and  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculated Actual Aboveground Live Biomass in Open and Calculated Actual Aboveground Live Biomass in Open and Closed Forests (1980) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Land Use Maximum Potential Biomass Density Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By Country) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Total Forest Biomass (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit) Population Density - 1960 (By Administrative Unit)

187

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final July 01, 2010 Final July 01, 2010 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2010 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

188

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual" b. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per thousand cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.983258692,2.124739238,2.26534793,2.409252566,2.585728477,2.727400662,2.854942053,2.980927152,3.13861755,3.345819536,3.591100993,3.849544702,4.184279801,4.510016556,4.915074503,5.29147351,5.56022351,5.960471854 "AEO 1995",,1.891706924,1.998384058,1.952818035,2.064227053,2.152302174,2.400016103,2.569033816,2.897681159,3.160088567,3.556344605,3.869033816,4.267391304,4.561932367,4.848599034,5.157246377,5.413405797,5.660917874 "AEO 1996",,,1.630674532,1.740334763,1.862956911,1.9915856,2.10351261,2.194934146,2.287655669,2.378991658,2.476043002,2.589847464,2.717610782,2.836870306,2.967124845,3.117719429,3.294003735,3.485657428,3.728419409

189

OPTIMIZING CENTRIFUGAL BARREL POLISHING FOR MIRROR FINISH SRF CAVITY AND RF TESTS AT JEFFERSON LAB  

SciTech Connect

We performed Centrifugal Barrel Polishing (CBP) on a 1.3 GHz fine grain TESLA single cell cavity and 1.5 GHz fine grain CEBAF high gradient superconducting radio frequency (SRF) single cell cavity following a modified recipe originally developed at Fermi National Accelerator Lab (FNAL). We were able to obtain a mirror like surface similar to that obtained at FNAL, while reducing the number of CBP steps and total processing time. This paper will discuss the change in surface and subsequent cavity performance post CBP, after a 800 C bake (no pre-bake chemistry) and minimal controlled electro-polishing (10 micron). In addition to Q vs. E{sub ACC} thermometry mapping with preheating characteristics and optical inspection of the cavity after CBP will also be shown.

Ari Palczewski, Rongli Geng, Hui Tian

2012-07-01T23:59:59.000Z

190

Analysis of refiners' total barrel costs and revenues from the sale of petroleum products, 1976 to 1979  

SciTech Connect

In this report, the Economic Regulatory Administration has evaluated refiners' costs and revenues from the sale of major petroleum products from July 1976 through December 1979. This report represents a continuing effort to assess No. 2 heating oil prices and margins in that it updates prior middle distillate studies through March 1980. The analysis examines selling prices and costs associated with each major petroleum product category and a combination of petroleum products (total barrel) from a sample of nine refiners. The total barrel approach was adopted to reduce distortions caused by varying methods of allocation of costs among regulated and unregulated products by refiners. This report determines the extent to which increased costs were recovered on controlled products and whether refiners obtained greater cost recoupment on decontrolled products than would have been allowed under continued controls. The principal methods of measurement used to evaluate product pricing levels for the nine refiners surveyed were cost recoupment (Chapter III), gross margins (Chapter IV), and net margins (Chapter V). Gross margins were derived by subtracting average crude oil costs from average product selling prices for individual product categories and the total barrel. Net margins were derived by subtracting average crude oil costs as well as average marketing, manufacturing, and purchased product costs from average selling prices for individual product categories and the total barrel.

1980-11-01T23:59:59.000Z

191

Steam Trap Testing and Evaluation: An Actual Plant Case Study  

E-Print Network (OSTI)

With rising steam costs and a high failure rate on the Joliet Plants standard steam trap, a testing and evaluation program was begun to find a steam trap that would work at Olin-Joliet. The basis was to conduct the test on the actual process equipment and that a minimum life be achieved. This paper deals with the history of the steam system/condensate systems, the setting up of the testing procedure, which traps were and were not tested and the results of the testing program to date.

Feldman, A. L.

1981-01-01T23:59:59.000Z

192

Florida Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Florida Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0...

193

Kentucky Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Kentucky Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0...

194

Montana Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Montana Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0...

195

Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest  

Science Conference Proceedings (OSTI)

Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under-predicted to 77% over-predicted by the model with respect to monitored energy use. Many of the discrepancies were associated with occupant behavior which influences energy use, dramatically in some cases, actual versus modeled weather differences, modeling input limitations, and complex homes that are difficult to model. The discrepancy between actual and estimated energy use indicates a need for better modeling tools and assumptions. Despite the best efforts of researchers, the estimated energy savings are too inaccurate to determine reliable paybacks for retrofit projects. While the monitored data allows researchers to understand why these differences exist, it is not cost effective to monitor each home with the level of detail presented here. Therefore an appropriate balance between modeling and monitoring must be determined for more widespread application in retrofit programs and the home performance industry. Recommendations to address these deficiencies include: (1) improved tuning process for pre-retrofit energy use, which currently utilized broad-based monthly utility bills; (2) developing simple occupant-based energy models that better address the many different occupant types and their impact on energy use; (3) incorporating actual weather inputs to increase accuracy of the tuning process, which uses utility bills from specific time period; and (4) developing simple, cost-effective monitoring solutions for improved model tuning.

Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

2012-10-01T23:59:59.000Z

196

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual" Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO 1996",,,90.6,91.26,92.54,93.46,94.27,95.07,95.94,96.92,97.98,99.2,100.38,101.4,102.1,103.1,103.8,104.69,105.5 "AEO 1997",,,,92.64,93.58,95.13,96.59,97.85,98.79,99.9,101.2,102.4,103.4,104.7,105.8,106.6,107.2,107.9,108.6 "AEO 1998",,,,,94.68,96.71,98.61027527,99.81855774,101.254303,102.3907928,103.3935776,104.453476,105.8160553,107.2683716,108.5873566,109.8798981,111.0723877,112.166893,113.0926208

197

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual" a. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per thousand cubic feet in ""dollar year"" specific to each AEO)" ,"AEO Dollar Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1992,1.9399,2.029,2.1099,2.1899,2.29,2.35,2.39,2.42,2.47,2.55,2.65,2.75,2.89,3.01,3.17,3.3,3.35,3.47 "AEO 1995",1993,,1.85,1.899,1.81,1.87,1.8999,2.06,2.14,2.34,2.47,2.69,2.83,3.02,3.12,3.21,3.3,3.35,3.39 "AEO 1996",1994,,,1.597672343,1.665446997,1.74129355,1.815978527,1.866241336,1.892736554,1.913619637,1.928664207,1.943216205,1.964540124,1.988652706,2.003382921,2.024799585,2.056392431,2.099974155,2.14731431,2.218094587

198

Table 14a. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Average Electricity Prices, Projected vs. Actual a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 AEO 1996 1994 7.09 6.99 6.94 6.93 6.96 6.96 6.96 6.97 6.98 6.97 6.98 6.95 6.95 6.94 6.96 6.95 6.91 AEO 1997 1995 6.94 6.89 6.90 6.91 6.86 6.84 6.78 6.73 6.66 6.60 6.58 6.54 6.49 6.48 6.45 6.36

199

Table 10. Natural Gas Net Imports, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Net Imports, Projected vs. Actual" Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2.02,2.4,2.66,2.74,2.81,2.85,2.89,2.93,2.95,2.97,3,3.16,3.31,3.5,3.57,3.63,3.74,3.85 "AEO 1995",,2.46,2.54,2.8,2.87,2.87,2.89,2.9,2.9,2.92,2.95,2.97,3,3.03,3.19,3.35,3.51,3.6 "AEO 1996",,,2.56,2.75,2.85,2.88,2.93,2.98,3.02,3.06,3.07,3.09,3.12,3.17,3.23,3.29,3.37,3.46,3.56 "AEO 1997",,,,2.82,2.96,3.16,3.43,3.46,3.5,3.53,3.58,3.64,3.69,3.74,3.78,3.83,3.87,3.92,3.97 "AEO 1998",,,,,2.95,3.19,3.531808376,3.842532873,3.869043112,3.894513845,3.935930967,3.976293564,4.021911621,4.062207222,4.107616425,4.164502144,4.221304417,4.277039051,4.339964867

200

Table 12. Total Coal Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Coal Consumption, Projected vs. Actual Total Coal Consumption, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 920 928 933 938 943 948 953 958 962 967 978 990 987 992 1006 1035 1061 1079 AEO 1995 935 940 941 947 948 951 954 958 963 971 984 992 996 1002 1013 1025 1039 AEO 1996 937 942 954 962 983 990 1004 1017 1027 1033 1046 1067 1070 1071 1074 1082 1087 AEO 1997 948 970 987 1003 1017 1020 1025 1034 1041 1054 1075 1086 1092 1092 1099 1104 AEO 1998 1009 1051 1044 1058 1087 1084 1090 1097 1112 1130 1142 1148 1160 1162 1180 AEO 1999 1040 1075 1092 1109 1113 1118 1120 1120 1133 1139 1150 1155 1156 1173 AEO 2000 1053 1086 1103 1124 1142 1164 1175 1184 1189 1194 1199 1195 1200 AEO 2001 1078 1112 1135 1153 1165 1183 1191 1220 1228 1228 1235 1240

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Table 22. Total Carbon Dioxide Emissions, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Total Carbon Dioxide Emissions, Projected vs. Actual Total Carbon Dioxide Emissions, Projected vs. Actual (million metric tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 AEO 1983 AEO 1984 AEO 1985 AEO 1986 AEO 1987 AEO 1989* AEO 1990 AEO 1991 AEO 1992 AEO 1993 5009 5053 5130 5207 5269 5335 5401 5449 5504 5562 5621 5672 5724 5771 5819 5867 5918 5969 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441.3 5489.0 5551.3 5621.0 5679.7 5727.3 5775.0 5841.0 5888.7 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 AEO 1997 5295 5381 5491 5586 5658 5715 5781 5863 5934 6009 6106 6184 6236 6268 AEO 1998 5474 5621 5711 5784 5893 5957 6026 6098 6192 6292 6379 6465 6542 AEO 1999 5522 5689 5810 5913 5976 6036 6084 6152 6244 6325 6418 6493 AEO 2000

202

Table 16. Total Electricity Sales, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Electricity Sales, Projected vs. Actual Electricity Sales, Projected vs. Actual (billion kilowatt-hours) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2364 2454 2534 2626 2708 2811 AEO 1983 2318 2395 2476 2565 2650 2739 3153 AEO 1984 2321 2376 2461 2551 2637 2738 3182 AEO 1985 2317 2360 2427 2491 2570 2651 2730 2808 2879 2949 3026 AEO 1986 2363 2416 2479 2533 2608 2706 2798 2883 2966 3048 3116 3185 3255 3324 3397 AEO 1987 2460 2494 2555 2622 2683 2748 2823 2902 2977 3363 AEO 1989* 2556 2619 2689 2760 2835 2917 2994 3072 3156 3236 3313 3394 3473 AEO 1990 2612 2689 3083 3488.0 3870.0 AEO 1991 2700 2762 2806 2855 2904 2959 3022 3088 3151 3214 3282 3355 3427 3496 3563 3632 3704 3776 3846 3916 AEO 1992 2746 2845 2858 2913 2975 3030 3087 3146 3209 3276 3345 3415 3483 3552 3625 3699 3774 3847 3921 AEO 1993 2803 2840 2893 2946 2998 3052 3104 3157 3214 3271 3327

203

Table 9. Natural Gas Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual" Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",17.71,17.68,17.84,18.12,18.25,18.43,18.58,18.93,19.28,19.51,19.8,19.92,20.13,20.18,20.38,20.35,20.16,20.19 "AEO 1995",,18.28,17.98,17.92,18.21,18.63,18.92,19.08,19.2,19.36,19.52,19.75,19.94,20.17,20.28,20.6,20.59,20.88 "AEO 1996",,,18.9,19.15,19.52,19.59,19.59,19.65,19.73,19.97,20.36,20.82,21.25,21.37,21.68,22.11,22.47,22.83,23.36 "AEO 1997",,,,19.1,19.7,20.17,20.32,20.54,20.77,21.26,21.9,22.31,22.66,22.93,23.38,23.68,23.99,24.25,24.65 "AEO 1998",,,,,18.85,19.06,20.34936142,20.27427673,20.60257721,20.94442177,21.44076347,21.80969238,22.25416183,22.65365219,23.176651,23.74545097,24.22989273,24.70069313,24.96691322

204

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual a. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per thousand cubic feet in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.94 2.03 2.11 2.19 2.29 2.35 2.39 2.42 2.47 2.55 2.65 2.75 2.89 3.01 3.17 3.30 3.35 3.47 AEO 1995 1993 1.85 1.90 1.81 1.87 1.90 2.06 2.14 2.34 2.47 2.69 2.83 3.02 3.12 3.21 3.30 3.35 3.39 AEO 1996 1994 1.60 1.67 1.74 1.82 1.87 1.89 1.91 1.93 1.94 1.96 1.99 2.00 2.02 2.06 2.10 2.15 2.22

205

Nonlinear excitations in DNA: Aperiodic models vs actual genome sequences  

E-Print Network (OSTI)

We study the effects of the sequence on the propagation of nonlinear excitations in simple models of DNA in which we incorporate actual DNA sequences obtained from human genome data. We show that kink propagation requires forces over a certain threshold, a phenomenon already found for aperiodic sequences [F. Dom\\'\\i nguez-Adame {\\em et al.}, Phys. Rev. E {\\bf 52}, 2183 (1995)]. For forces below threshold, the final stop positions are highly dependent on the specific sequence. The results of our model are consistent with the stick-slip dynamics of the unzipping process observed in experiments. We also show that the effective potential, a collective coordinate formalism introduced by Salerno and Kivshar [Phys. Lett. A {\\bf 193}, 263 (1994)] is a useful tool to identify key regions in DNA that control the dynamical behavior of large segments. Additionally, our results lead to further insights in the phenomenology observed in aperiodic systems.

Sara Cuenda; Angel Sanchez

2004-07-02T23:59:59.000Z

206

Method and apparatus for distinguishing actual sparse events from sparse event false alarms  

DOE Patents (OSTI)

Remote sensing method and apparatus wherein sparse optical events are distinguished from false events. "Ghost" images of actual optical phenomena are generated using an optical beam splitter and optics configured to direct split beams to a single sensor or segmented sensor. True optical signals are distinguished from false signals or noise based on whether the ghost image is presence or absent. The invention obviates the need for dual sensor systems to effect a false target detection capability, thus significantly reducing system complexity and cost.

Spalding, Richard E. (Albuquerque, NM); Grotbeck, Carter L. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

207

The influence of indoor temperature on the difference between actual and theoretical energy consumption for space heating  

Science Conference Proceedings (OSTI)

The Energy Advice procedure (EAP) is developed to evaluate the energetic performance of "existing" dwellings to generate a useful advice for the occupants of the dwelling to invest in rational energy measures. The EAP is based on a theoretical calculation ... Keywords: actual energy consumption, consumer behaviour, indoor temperature, space heating, theoretical energy consumption

Amaryllis Audenaert; Katleen Briffaerts; Dries De Boeck

2011-11-01T23:59:59.000Z

208

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 AEO 1997 11.1 10.9 11.1 11.1 11.2 11.2 11.2 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.9 12.0 AEO 1998 10.7 11.1 11.2 11.4 11.5 11.5 11.6 11.7 11.8 11.9 11.9 12.1 12.1 12.2 12.3 AEO 1999 10.5 11.1 11.3 11.3 11.4 11.5 11.5 11.6 11.6 11.7 11.8 11.9 12.0 12.1 AEO 2000 10.7 10.9 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

209

Table 2. Real Gross Domestic Product, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Real Gross Domestic Product, Projected vs. Actual Real Gross Domestic Product, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 3.1% 3.2% 2.9% 2.8% 2.7% 2.7% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% AEO 1995 3.7% 2.8% 2.5% 2.7% 2.7% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.3% 2.3% 2.2% AEO 1996 2.6% 2.2% 2.5% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% 2.2% 2.2% 2.2% 1.6% AEO 1997 2.1% 1.9% 2.0% 2.2% 2.3% 2.3% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.1% 2.1% 1.5% AEO 1998 3.4% 2.9% 2.6% 2.5% 2.4% 2.4% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.2% 1.8% AEO 1999 3.4% 2.5% 2.5% 2.4% 2.4% 2.4% 2.3% 2.4% 2.4% 2.4% 2.4% 2.4% 2.4% 1.8% AEO 2000 3.8% 2.9% 2.7% 2.6% 2.6% 2.6% 2.6% 2.6% 2.5% 2.5%

210

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual b. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per thousand cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1.98 2.12 2.27 2.41 2.59 2.73 2.85 2.98 3.14 3.35 3.59 3.85 4.18 4.51 4.92 5.29 5.56 5.96 AEO 1995 1.89 2.00 1.95 2.06 2.15 2.40 2.57 2.90 3.16 3.56 3.87 4.27 4.56 4.85 5.16 5.41 5.66 AEO 1996 1.63 1.74 1.86 1.99 2.10 2.19 2.29 2.38 2.48 2.59 2.72 2.84 2.97 3.12 3.29 3.49 3.73 AEO 1997 2.03 1.82 1.90 1.99 2.06 2.13 2.21 2.32 2.43 2.54 2.65 2.77 2.88 3.00 3.11 3.24 AEO 1998 2.30 2.20 2.26 2.31 2.38 2.44 2.52 2.60 2.69 2.79 2.93 3.06 3.20 3.35 3.48 AEO 1999 1.98 2.15 2.20 2.32 2.43 2.53 2.63 2.76 2.90 3.02 3.12 3.23 3.35 3.47

211

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

212

Table 22. Energy Intensity, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / real GDP in billion 2005 chained dollars) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 11.2 11.1 11.0 10.8 10.7 10.5 10.4 10.3 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 AEO 1995 10.9 10.8 10.6 10.4 10.3 10.1 10.0 9.9 9.8 9.6 9.5 9.4 9.3 9.2 9.1 9.1 9.0 AEO 1996 10.7 10.6 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1997 10.3 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1998 10.1 10.1 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.2 9.1 9.0 AEO 1999 9.6 9.7 9.7 9.7 9.6 9.4 9.3 9.1 9.0 8.9 8.8 8.7 8.6 8.5 AEO 2000 9.4 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.7 8.6 8.5 8.4 AEO 2001 8.7 8.6 8.5 8.4 8.3 8.1 8.0 7.9 7.8 7.6 7.5 7.4

213

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9 8.0 8.1 8.1 8.2 AEO 1998 7.5 7.6 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.3 8.4 8.4 8.5 8.6 8.7 AEO 1999 7.4 7.8 7.9 8.0 8.1 8.2 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 AEO 2000 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.7 8.7 8.8 AEO 2001 7.8 8.1 8.3 8.6 8.7 8.9 9.0 9.2 9.3 9.5 9.6 9.7 AEO 2002 8.2 8.4 8.7 8.9 9.0 9.2 9.4 9.6 9.7 9.9 10.1

214

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

215

Table 10. Natural Gas Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Production, Projected vs. Actual Production, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 14.74 14.26 14.33 14.89 15.39 15.88 AEO 1983 16.48 16.27 16.20 16.31 16.27 16.29 14.89 AEO 1984 17.48 17.10 17.44 17.58 17.52 17.32 16.39 AEO 1985 16.95 17.08 17.11 17.29 17.40 17.33 17.32 17.27 17.05 16.80 16.50 AEO 1986 16.30 16.27 17.15 16.68 16.90 16.97 16.87 16.93 16.86 16.62 16.40 16.33 16.57 16.23 16.12 AEO 1987 16.21 16.09 16.38 16.32 16.30 16.30 16.44 16.62 16.81 17.39 AEO 1989* 16.71 16.71 16.94 17.01 16.83 17.09 17.35 17.54 17.67 17.98 18.20 18.25 18.49 AEO 1990 16.91 17.25 18.84 20.58 20.24 AEO 1991 17.40 17.48 18.11 18.22 18.15 18.22 18.39 18.82 19.03 19.28 19.62 19.89 20.13 20.07 19.95 19.82 19.64 19.50 19.30 19.08 AEO 1992 17.43 17.69 17.95 18.00 18.29 18.27 18.51 18.75 18.97

216

Table 17. Total Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption, Projected vs. Actual Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 79.1 79.6 79.9 80.8 82.1 83.3 AEO 1983 78.0 79.5 81.0 82.4 83.9 84.6 89.0 AEO 1984 78.5 79.4 81.2 83.1 85.1 86.4 93.0 AEO 1985 77.6 78.5 79.8 81.2 82.7 83.3 84.2 85.0 85.7 86.3 87.2 AEO 1986 77.0 78.8 79.8 80.7 81.5 82.9 83.8 84.6 85.3 86.0 86.6 87.4 88.3 89.4 90.2 AEO 1987 78.9 80.0 82.0 82.8 83.9 85.1 86.2 87.1 87.9 92.5 AEO 1989* 82.2 83.8 84.5 85.4 86.2 87.1 87.8 88.7 89.5 90.4 91.4 92.4 93.5 AEO 1990 84.2 85.4 91.9 97.4 102.8 AEO 1991 84.4 85.0 86.0 87.0 87.9 89.1 90.4 91.8 93.1 94.3 95.6 97.1 98.4 99.4 100.3 101.4 102.5 103.6 104.7 105.8 AEO 1992 84.7 87.0 88.0 89.2 90.5 91.4 92.4 93.4 94.5 95.6 96.9 98.0 99.0 100.0 101.2 102.2 103.2 104.3 105.2 AEO 1993 87.0 88.3 89.8 91.4 92.7 94.0 95.3 96.3 97.5 98.6

217

Table 3. Gross Domestic Product, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Gross Domestic Product, Projected vs. Actual Gross Domestic Product, Projected vs. Actual (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.3% 3.8% 3.6% 3.3% 3.2% 3.2% AEO 1983 3.3% 3.3% 3.4% 3.3% 3.2% 3.1% 2.7% AEO 1984 2.7% 2.4% 2.9% 3.1% 3.1% 3.1% 2.7% AEO 1985 2.3% 2.2% 2.7% 2.8% 2.9% 3.0% 3.0% 3.0% 2.9% 2.8% 2.8% AEO 1986 2.6% 2.5% 2.7% 2.5% 2.5% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% AEO 1987 2.7% 2.3% 2.4% 2.5% 2.5% 2.6% 2.6% 2.5% 2.4% 2.3% AEO 1989* 4.0% 3.4% 3.1% 3.0% 2.9% 2.8% 2.7% 2.7% 2.7% 2.6% 2.6% 2.6% 2.6% AEO 1990 2.9% 2.3% 2.5% 2.5% 2.4% AEO 1991 0.8% 1.0% 1.7% 1.8% 1.8% 1.9% 2.0% 2.1% 2.1% 2.1% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% AEO 1992 -0.1% 1.6% 2.0% 2.2% 2.3% 2.2% 2.2% 2.2% 2.2% 2.3% 2.3% 2.3% 2.3% 2.2%

218

Table 20. Total Industrial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Industrial Energy Consumption, Projected vs. Actual Industrial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 24.0 24.1 24.4 24.9 25.5 26.1 AEO 1983 23.2 23.6 23.9 24.4 24.9 25.0 25.4 AEO 1984 24.1 24.5 25.4 25.5 27.1 27.4 28.7 AEO 1985 23.2 23.6 23.9 24.4 24.8 24.8 24.4 AEO 1986 22.2 22.8 23.1 23.4 23.4 23.6 22.8 AEO 1987 22.4 22.8 23.7 24.0 24.3 24.6 24.6 24.7 24.9 22.6 AEO 1989* 23.6 24.0 24.1 24.3 24.5 24.3 24.3 24.5 24.6 24.8 24.9 24.4 24.1 AEO 1990 25.0 25.4 27.1 27.3 28.6 AEO 1991 24.6 24.5 24.8 24.8 25.0 25.3 25.7 26.2 26.5 26.1 25.9 26.2 26.4 26.6 26.7 27.0 27.2 27.4 27.7 28.0 AEO 1992 24.6 25.3 25.4 25.6 26.1 26.3 26.5 26.5 26.0 25.6 25.8 26.0 26.1 26.2 26.4 26.7 26.9 27.2 27.3 AEO 1993 25.5 25.9 26.2 26.8 27.1 27.5 27.8 27.4 27.1 27.4 27.6 27.8 28.0 28.2 28.4 28.7 28.9 29.1 AEO 1994 25.4 25.9

219

Table 8. Natural Gas Wellhead Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Wellhead Prices, Projected vs. Actual Natural Gas Wellhead Prices, Projected vs. Actual (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 9.2 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 7.29 8.09 8.94 9.62 10.27 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 6.37 6.89 7.50 8.15 9.05 AEO 1993 1.85 1.94 2.09 2.30

220

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 AEO 1997 92.6 93.6 95.1 96.6 97.9 98.8 99.9 101.2 102.4 103.4 104.7 105.8 106.6 107.2 107.9 108.6 AEO 1998 94.7 96.7 98.6 99.8 101.3 102.4 103.4 104.5 105.8 107.3 108.6 109.9 111.1 112.2 113.1 AEO 1999 94.6 97.0 99.2 100.9 102.0 102.8 103.6 104.7 106.0 107.2 108.5 109.7 110.8 111.8

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table 9. Natural Gas Production, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68 22.11 22.47 22.83 23.36 AEO 1997 19.10 19.70 20.17 20.32 20.54 20.77 21.26 21.90 22.31 22.66 22.93 23.38 23.68 23.99 24.25 24.65 AEO 1998 18.85 19.06 20.35 20.27 20.60 20.94 21.44 21.81 22.25 22.65 23.18 23.75 24.23 24.70 24.97 AEO 1999 18.80 19.13 19.28 19.82 20.23 20.77 21.05 21.57 21.98 22.47 22.85 23.26 23.77 24.15

222

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

223

Table 18. Total Residential Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Residential Energy Consumption, Projected vs. Actual Residential Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 10.1 10.1 10.1 10.1 10.2 10.2 AEO 1983 9.8 9.9 10.0 10.1 10.2 10.1 10.0 AEO 1984 9.9 9.9 10.0 10.2 10.3 10.3 10.5 AEO 1985 9.8 10.0 10.1 10.3 10.6 10.6 10.9 AEO 1986 9.6 9.8 10.0 10.3 10.4 10.8 10.9 AEO 1987 9.9 10.2 10.3 10.3 10.4 10.5 10.5 10.5 10.5 10.6 AEO 1989* 10.3 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 AEO 1990 10.4 10.7 10.8 11.0 11.3 AEO 1991 10.2 10.7 10.7 10.8 10.8 10.8 10.9 10.9 10.9 11.0 11.0 11.0 11.1 11.2 11.2 11.3 11.4 11.4 11.5 11.6 AEO 1992 10.6 11.1 11.1 11.1 11.1 11.1 11.2 11.2 11.3 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.8 11.9 12.0 AEO 1993 10.7 10.9 11.0 11.0 11.0 11.1 11.1 11.1 11.1 11.2 11.2 11.2 11.2 11.3 11.3 11.4 11.4 11.5 AEO 1994 10.3 10.4 10.4 10.4

224

Table 15. Average Electricity Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Average Electricity Prices, Projected vs. Actual Average Electricity Prices, Projected vs. Actual (nominal cents per kilowatt-hour) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.38 6.96 7.63 8.23 8.83 9.49 AEO 1983 6.85 7.28 7.74 8.22 8.68 9.18 13.12 AEO 1984 6.67 7.05 7.48 7.89 8.25 8.65 11.53 AEO 1985 6.62 6.94 7.32 7.63 7.89 8.15 8.46 8.85 9.20 9.61 10.04 AEO 1986 6.67 6.88 7.05 7.18 7.35 7.52 7.65 7.87 8.31 8.83 9.41 10.01 10.61 11.33 12.02 AEO 1987 6.63 6.65 6.92 7.12 7.38 7.62 7.94 8.36 8.86 11.99 AEO 1989* 6.50 6.75 7.14 7.48 7.82 8.11 8.50 8.91 9.39 9.91 10.49 11.05 11.61 AEO 1990 6.49 6.72 8.40 10.99 14.5 AEO 1991 6.94 7.31 7.59 7.82 8.18 8.38 8.54 8.73 8.99 9.38 9.83 10.29 10.83 11.36 11.94 12.58 13.21 13.88 14.58 15.21 AEO 1992 6.97 7.16 7.32 7.56 7.78 8.04 8.29 8.57 8.93 9.38 9.82 10.26 10.73 11.25 11.83 12.37 12.96 13.58 14.23 AEO 1993

225

Table 11. Natural Gas Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Net Imports, Projected vs. Actual Natural Gas Net Imports, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 1.19 1.19 1.19 1.19 1.19 1.19 AEO 1983 1.08 1.16 1.23 1.23 1.23 1.23 1.23 AEO 1984 0.99 1.05 1.16 1.27 1.43 1.57 2.11 AEO 1985 0.94 1.00 1.19 1.45 1.58 1.86 1.94 2.06 2.17 2.32 2.44 AEO 1986 0.74 0.88 0.62 1.03 1.05 1.27 1.39 1.47 1.66 1.79 1.96 2.17 2.38 2.42 2.43 AEO 1987 0.84 0.89 1.07 1.16 1.26 1.36 1.46 1.65 1.75 2.50 AEO 1989* 1.15 1.32 1.44 1.52 1.61 1.70 1.79 1.87 1.98 2.06 2.15 2.23 2.31 AEO 1990 1.26 1.43 2.07 2.68 2.95 AEO 1991 1.36 1.53 1.70 1.82 2.11 2.30 2.33 2.36 2.42 2.49 2.56 2.70 2.75 2.83 2.90 2.95 3.02 3.09 3.17 3.19 AEO 1992 1.48 1.62 1.88 2.08 2.25 2.41 2.56 2.68 2.70 2.72 2.76 2.84 2.92 3.05 3.10 3.20 3.25 3.30 3.30 AEO 1993 1.79 2.08 2.35 2.49 2.61 2.74 2.89 2.95 3.00 3.05 3.10

226

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Consumption, Projected vs. Actual Total Natural Gas Consumption, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 19.87 20.21 20.64 20.99 21.20 21.42 21.60 21.99 22.37 22.63 22.95 23.22 23.58 23.82 24.09 24.13 24.02 24.14 AEO 1995 20.82 20.66 20.85 21.21 21.65 21.95 22.12 22.25 22.43 22.62 22.87 23.08 23.36 23.61 24.08 24.23 24.59 AEO 1996 21.32 21.64 22.11 22.21 22.26 22.34 22.46 22.74 23.14 23.63 24.08 24.25 24.63 25.11 25.56 26.00 26.63 AEO 1997 22.15 22.75 23.24 23.64 23.86 24.13 24.65 25.34 25.82 26.22 26.52 27.00 27.35 27.70 28.01 28.47 AEO 1998 21.84 23.03 23.84 24.08 24.44 24.81 25.33 25.72 26.22 26.65 27.22 27.84 28.35 28.84 29.17 AEO 1999 21.35 22.36 22.54 23.18 23.65 24.17 24.57 25.19 25.77 26.41 26.92 27.42 28.02 28.50

227

Estimation of daily actual evapotranspiration from remotely sensed data under complex terrain over the upper Chao river basin in North China  

Science Conference Proceedings (OSTI)

Daily actual evapotranspiration over the upper Chao river basin in North China on 23 June 2005 was estimated based on the Surface Energy Balance Algorithm for Land (SEBAL), in which the parameterization schemes for calculating the instantaneous solar ...

Yanchun Gao; Di Long; Zhao-Liang Li

2008-06-01T23:59:59.000Z

228

Comparison of Projections to Actual Performance in the DOE-EPRI Wind Turbine Verification Program  

DOE Green Energy (OSTI)

As part of the US Department of Energy/Electric Power Research Institute (DOE-EPRI) Wind Turbine Verification Program (TVP), Global Energy Concepts (GEC) worked with participating utilities to develop a set of performance projections for their projects based on historical site atmospheric conditions, turbine performance data, operation and maintenance (O and M) strategies, and assumptions about various energy losses. After a preliminary operation period at each project, GEC compared the actual performance to projections and evaluated the accuracy of the data and assumptions that formed the performance projections. This paper presents a comparison of 1999 power output, turbine availability, and other performance characteristics to the projections for TVP projects in Texas, Vermont, Iowa, Nebraska, Wisconsin, and Alaska. Factors that were overestimated or underestimated are quantified. Actual wind speeds are compared to projections based on long-term historical measurements. Turbine power curve measurements are compared with data provided by the manufacturers, and loss assumptions are evaluated for accuracy. Overall, the projects performed well, particularly new commercial turbines in the first few years of operation. However, some sites experienced below average wind resources and greater than expected losses. The TVP project owners successfully developed and constructed wind power plants that are now in full commercial operation, serving a total of approximately 12,000 households.

Rhoads, H.; VandenBosche, J.; McCoy, T.; Compton, A. (Global Energy Concepts, LLC); Smith, B. (National Renewable Energy Laboratory)

2000-09-11T23:59:59.000Z

229

Table 19. Total Commercial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Commercial Energy Consumption, Projected vs. Actual Commercial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.6 6.7 6.8 6.8 6.8 6.9 AEO 1983 6.4 6.6 6.8 6.9 7.0 7.1 7.2 AEO 1984 6.2 6.4 6.5 6.7 6.8 6.9 7.3 AEO 1985 5.9 6.1 6.2 6.3 6.4 6.5 6.7 AEO 1986 6.2 6.3 6.4 6.4 6.5 7.1 7.4 AEO 1987 6.1 6.1 6.3 6.4 6.6 6.7 6.8 6.9 6.9 7.3 AEO 1989* 6.6 6.7 6.9 7.0 7.0 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 AEO 1990 6.6 6.8 7.1 7.4 7.8 AEO 1991 6.7 6.9 7.0 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.6 8.7 AEO 1992 6.8 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 AEO 1993 7.2 7.3 7.4 7.4 7.5 7.6 7.7 7.7 7.8 7.9 7.9 8.0 8.0 8.1 8.1 8.1 8.2 8.2 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 AEO 1995 6.94 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0

230

The University of Texas at Austin Jan-03 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-03 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1/93) #12;The University of Texas at Austin Feb-03 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1/93) #12;The University of Texas at Austin Mar-03 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1

Johns, Russell Taylor

231

Building a Model Patient Room to Test Design Innovations With Actual Patients  

E-Print Network (OSTI)

comfortable hospital environment SUMMARY Designing and constructing a new hospital is a complex and costly undertaking that involves experts from many disciplines both inside and outside the health care arena. But despite expending funds and time, hospital leaders often discover significant flaws once a hospital opens that can undermine the quality of patient care and staff effectiveness and efficiency. From 2010 to 2012, a team at the Princeton HealthCare System worked to devise an optimal design for inpatient rooms at a new hospital: the University Medical Center of Princeton at Plainsboro. The project entailed building a “functional model patient room.” This was a unique and innovative method to allow the team to test design innovations with actual patients, according to project director Susan Lorenz, DrNP, RN, vice president of patient care services and chief nursing officer for the Princeton HealthCare System. The project helped support the emerging field of evidence-based hospital design.

A Princeton; More Efficient; Key Results

2013-01-01T23:59:59.000Z

232

Pu speciation in actual and simulated aged wastes  

Science Conference Proceedings (OSTI)

X-ray Absorption Fine Structure Spectroscopy (XAFS) at the Pu L{sub II/III} edge was used to determine the speciation of this element in (1) Hanford Z-9 Pu crib samples, (2) deteriorated waste resins from a chloride process ion-exchange purification line, and (3) the sediments from two Waste Isolation Pilot Plant Liter Scale simulant brine systems. The Pu speciation in all of these samples except one is within the range previously displayed by PuO{sub 2+x-2y}(OH){sub y}{center_dot}zH{sub 2}O compounds, which is expected based on the putative thermodynamic stability of this system for Pu equilibrated with excess H{sub 2}O and O{sub 2} under environmental conditions. The primary exception was a near neutral brine experiment that displayed evidence for partial substitution of the normal O-based ligands with Cl{sup -} and a concomitant expansion of the Pu-Pu distance relative to the much more highly ordered Pu near neighbor shell in PuO{sub 2}. However, although the Pu speciation was not necessarily unusual, the Pu chemistry identified via the history of these samples did exhibit unexpected patterns, the most significant of which may be that the presence of the Pu(V)-oxo species may decrease rather than increase the overall solubility of these compounds. Several additional aspects of the Pu speciation have also not been previously observed in laboratory-based samples. The molecular environmental chemistry of Pu is therefore likely to be more complicated than would be predicted based solely on the behavior of PuO{sub 2} under laboratory conditions.

Lezama-pacheco, Juan S [Los Alamos National Laboratory; Conradson, Steven D [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

233

Wind Plant Capacity Credit Variations: A Comparison of Results Using Multiyear Actual and Simulated Wind-Speed Data  

DOE Green Energy (OSTI)

Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter- annual variation in capacity credit is still understated by the synthetic data technique.

Milligan, Michael

1997-06-01T23:59:59.000Z

234

Stress Actually Makes You Stronger ... At Least Some of the Time  

Office of Science (SC) Website

Stress Actually Makes You Stronger ... At Least Some of the Time News Featured Articles 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Presentations & Testimony...

235

The Multiple Peril Crop Insurance Actual Production History (APH) Insurance Plan  

E-Print Network (OSTI)

The Actual Production History insurance plan protects against crop losses from a number of causes. All aspects of this insurance are described, including reporting requirements for the producer.

Stokes, Kenneth; Barnaby, G. A. Art; Waller, Mark L.; Outlaw, Joe

2008-10-07T23:59:59.000Z

236

Actual Scale MOX Powder Mixing Test for MOX Fuel Fabrication Plant in Japan  

Science Conference Proceedings (OSTI)

Japan Nuclear Fuel Ltd. (hereafter, JNFL) promotes a program of constructing a MOX fuel fabrication plant (hereafter, J-MOX) to fabricate MOX fuels to be loaded in domestic light water reactors. Since Japanese fiscal year (hereafter, JFY) 1999, JNFL, to establish the technology for a smooth start-up and the stable operation of J-MOX, has executed an evaluation test for technology to be adopted at J-MOX. JNFL, based on a consideration that J-MOX fuel fabrication comes commercial scale production, decided an introduction of MIMAS technology into J-MOX main process, from powder mixing through pellet sintering, well recognized as mostly important to achieve good quality product of MOX fuel, since it achieves good results in both fuel production and actual reactor irradiation in Europe, but there is one difference that JNFL is going to use Japanese typical plutonium and uranium mixed oxide powder converted with the micro-wave heating direct de-nitration technology (hereafter, MH-MOX) but normal PuO{sub 2} of European MOX fuel fabricators. Therefore, in order to evaluate the suitability of the MH-MOX powder for the MIMAS process, JNFL manufactured small scale test equipment, and implemented a powder mixing evaluation test up until JFY 2003. As a result, the suitability of the MH-MOX powder for the MIMAS process was positively evaluated and confirmed It was followed by a five-years test named an 'actual test' from JFY 2003 to JFY 2007, which aims at demonstrating good operation and maintenance of process equipment as well as obtaining good quality of MOX fuel pellets. (authors)

Osaka, Shuichi; Kurita, Ichiro; Deguchi, Morimoto [Japan Nuclear Fuel Ltd., 4-108, Aza okitsuke, oaza obuchi rokkasyo-mura, kamikita-gun, Aomori 039-3212 (Japan); Ito, Masanori [Japan Atomic Energy Agency, 4-33 Muramatu, Tokai-mura, Ibaraki 319-1194 (Japan); Goto, Masakazu [Nuclear Fuel Industries, Ltd., 14-10, Mita 3-chome, Minato-ku, Tokyo 108-0073 (Japan)

2007-07-01T23:59:59.000Z

237

Lower 48 States Natural Gas Liquids Lease Condensate, Reserves Based  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Reserves Based Production (Million Barrels) Lower 48 States Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 147 1980's 159 161 157 157 179 168 169 162 162 165 1990's 158 153 147 153 157 145 162 174 178 199 2000's 208 215 207 191 182 174 182 181 173 178 2010's 224 211 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Estimated Production Lower 48 States Lease Condensate Proved Reserves, Reserve Changes, and Production Lease Condensate

238

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per  

E-Print Network (OSTI)

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

Phillips, David

239

BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE  

Science Conference Proceedings (OSTI)

Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

2008-09-25T23:59:59.000Z

240

Assessing Climate Information Use in Agribusiness. Part I: Actual and Potential Use and Impediments to Usage  

Science Conference Proceedings (OSTI)

A project for the development of methodology to enable agribusiness decision makers to utilize more effectively climate information involved investigation of three agribusiness firms, as well as measurement of their actual and potential use. The ...

Stanley A. Changnon; Steven T. Sonka; Steven Hofing

1988-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Trends of Calculated and Simulated Actual Evaporation in the Yangtze River Basin  

Science Conference Proceedings (OSTI)

Actual evaporation in the Yangtze River basin is calculated by the complementary relationship approach—that is, the advection–aridity (AA) model with parameter validation from 1961 to 2007—and simulated by the general circulation model (GCM) ...

Yanjun Wang; Bo Liu; Buda Su; Jianqing Zhai; Marco Gemmer

2011-08-01T23:59:59.000Z

242

Use of Remotely Sensed Actual Evapotranspiration to Improve Rainfall–Runoff Modeling in Southeast Australia  

Science Conference Proceedings (OSTI)

This paper explores the use of the Moderate Resolution Imaging Spectroradiometer (MODIS), mounted on the polar-orbiting Terra satellite, to determine leaf area index (LAI), and use actual evapotranspiration estimated using MODIS LAI data combined ...

Yongqiang Zhang; Francis H. S. Chiew; Lu Zhang; Hongxia Li

2009-08-01T23:59:59.000Z

243

Estimating Actual Evapotranspiration from Satellite and Meteorological Data in Central Bolivia  

Science Conference Proceedings (OSTI)

Spatial estimates of actual evapotranspiration are useful for calculating the water balance of river basins, quantifying hydrological services provided by ecosystems, and assessing the hydrological impacts of land-use practices. To provide this ...

Christian Seiler; Arnold F. Moene

2011-05-01T23:59:59.000Z

244

A Sensitivity Study of Building Performance Using 30-Year Actual Weather  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensitivity Study of Building Performance Using 30-Year Actual Weather Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Title A Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Publication Type Conference Paper Year of Publication 2013 Authors Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin Date Published 05/2013 Keywords Actual meteorological year, Building simulation, Energy use, Peak electricity demand, Typical meteorological year, Weather data Abstract Traditional energy performance calculated using building simulation with the typical meteorological year (TMY) weather data represents the energy performance in a typical year but not necessarily the average or typical energy performance of a building in long term. Furthermore, the simulated results do not provide the range of variations due to the change of weather, which is important in building energy management and risk assessment of energy efficiency investment. This study analyzes the weather impact on peak electric demand and energy use by building simulation using 30-year actual meteorological year (AMY) weather data for three types of office buildings at two design efficiency levels across all 17 climate zones. The simulated results from the AMY are compared to those from TMY3 to determine and analyze the differences. It was found that yearly weather variation has significant impact on building performance especially peak electric demand. Energy savings of building technologies should be evaluated using simulations with multi-decade actual weather data to fully consider investment risk and the long term performance.

245

WTI Crude Oil Price: Base Case and 95% Confidence Interval  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Spot WTI prices broke $35 and even $36 per barrel in November as anticipated boosts to world supply from OPEC and other sources failed to find much realization in actual stocks data. The idea that stocks are still languishing at below-normal levels is particularly persuasive when one views current levels (for key consuming regions) relative to "normal" values which account for the long-term trend in OECD stocks. We believe that monthly average WTI prices will stay around $30 per barrel for the first part of 2001. This is a noticeable upward shift in our projected average prices from even a month ago. The shift reflects greater emphasis on the lack of stock builds and less emphasis on the assumption that supply from OPEC and non-OPEC suppliers may be exceeding demand by 1-2

246

Comparison of actual and predicted energy savings in Minnesota gas-heated single-family homes  

Science Conference Proceedings (OSTI)

Data available from a recent evaluation of a home energy audit program in Minnesota are sufficient to allow analysis of the actual energy savings achieved in audited homes and of the relationship between actual and predicted savings. The program, operated by Northern States Power in much of the southern half of the state, is part of Minnesota's version of the federal Residential Conservation Service. NSP conducted almost 12 thousand RCS audits between April 1981 (when the progam began) and the end of 1982. The data analyzed here, available for 346 homes that obtained an NSP energy audit, include monthly natural gas bills from October 1980 through April 1983; heating degree day data matched to the gas bills; energy audit reports; and information on household demographics, structure characteristics, and recent conservation actions from mail and telephone surveys. The actual reduction in weather-adjusted natural gas use between years 1 and 3 averaged 19 MBtu across these homes (11% of preprogram consumption); the median value of the saving was 16 MBtu/year. The variation in actual saving is quite large: gas consumption increased in almost 20% of the homes, while gas consumption decreased by more than 50 MBtu/year in more than 10% of the homes. These households reported an average expenditure of almost $1600 for the retrofit measures installed in their homes; the variation in retrofit cost, while large, was not as great as the variation in actual natural gas savings.

Hirst, E.; Goeltz, R.

1984-03-01T23:59:59.000Z

247

Demonstration of a SREX flowsheet for the partitioning of strontium and lead from actual ICPP sodium-bearing waste  

SciTech Connect

Laboratory experimentation has indicated that the SREX process is effective for partitioning {sup 90}Sr and Pb from acidic radioactive waste solutions located at the Idaho Chemical Processing Plant. Previous countercurrent flowsheet testing of the SREX process with simulated waste resulted in 99.98% removal of Sr and 99.9% removal of Pb. Based on the results of these studies, a demonstration of the SREX flowsheet was performed. The demonstration consisted of (1) countercurrent flowsheet testing of the SREX process using simulated sodium-bearing waste spiked with {sup 85}Sr and (2) countercurrent flowsheet testing of the SREX process using actual waste from tank WM-183. All testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. The flowsheet tested consisted of an extraction section (0. 15 M 4`,4`(5)-di-(tert-butyldicyclohexo)-18-crown-6 and 1.5 M TBP in Isopar-L{reg_sign}), a 2.0 MHNO{sub 3} scrub section to remove extracted K from the SREX solvent, a 0.05 M HNO{sub 3} strip section for the removal of Sr from the SREX solvent, a 0.1 M ammonium citrate strip section for the removal of Pb from the SREX solvent, and a 3.0 M HNO{sub 3} equilibration section. The behavior of {sup 90}Sr, Pb, Na, K, Hg, H{sup +}, the actinides, and numerous other non-radioactive elements was evaluated. The described flowsheet successfully extracted and selectively stripped Sr and Ph from the SBW simulant and the actual tank waste. For the testing with actual tank waste (WM - 183), removal efficiencies of 99.995 % and >94% were obtained for {sup 90}Sr and Pb, respectively.

Law, J.D.; Wood, D.J.; Olson, L.G.; Todd, T.A.

1997-08-01T23:59:59.000Z

248

The University of Texas at Austin Jan-11 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-11 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1.7% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan-11 PART I CRIMES BURGLARY/93) #12;The University of Texas at Austin Jan-11 PART I CRIMES BURGLARY & THEFT TARGET SECTION (List Other

Johns, Russell Taylor

249

The University of Texas at Austin Jan-00 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-00 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1.3% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan-00 PART I CRIMES BURGLARY of Texas at Austin Jan-00 PART I CRIMES BURGLARY & THEFT TARGET SECTION (List Other Target Areas) #/Month

Johns, Russell Taylor

250

The University of Texas at Austin Jan-06 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-06 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1 Total % Rcvd. 1.0% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan-06 PART I/93) #12;The University of Texas at Austin Jan-06 PART I CRIMES BURGLARY & THEFT TARGET SECTION (List Other

Johns, Russell Taylor

251

The University of Texas at Austin Jan-09 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-09 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1. 8.0% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan-09 PART I CRIMES/93) #12;The University of Texas at Austin Jan-09 PART I CRIMES BURGLARY & THEFT TARGET SECTION (List Other

Johns, Russell Taylor

252

The University of Texas at Austin Jan-08 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-08 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1 Total % Rcvd. 2.2% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan-08 PART I(Rev. 1/93) #12;The University of Texas at Austin Jan-08 PART I CRIMES BURGLARY & THEFT TARGET SECTION

Johns, Russell Taylor

253

The University of Texas at Austin Jan-04 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-04 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1.1% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan-04 PART I CRIMES BURGLARY University of Texas at Austin Jan-04 PART I CRIMES BURGLARY & THEFT TARGET SECTION (List Other Target Areas

Johns, Russell Taylor

254

The University of Texas at Austin Jan-01 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-01 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1/93) #12;The University of Texas at Austin Jan-01 PART I CRIMES BURGLARY & THEFT TARGET SECTION Maintenance. 1/93)Co #12;The University of Texas at Austin Jan-01 PART I CRIMES BURGLARY & THEFT TARGET SECTION

Johns, Russell Taylor

255

The University of Texas at Austin Jan-05 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-05 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1/93) #12;The University of Texas at Austin Jan-05 PART I CRIMES BURGLARY & THEFT TARGET SECTION Maintenance - Page 2(Rev. 1/93) #12;The University of Texas at Austin Jan-05 PART I CRIMES BURGLARY & THEFT TARGET

Johns, Russell Taylor

256

The University of Texas at Austin Jan-10 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-10 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1 of Texas at Austin Jan-10 PART I CRIMES BURGLARY & THEFT TARGET SECTION Maintenance Shops Offices 6 OF REPORT DP Form #31 - Page 2(Rev. 1/93) #12;The University of Texas at Austin Jan-10 PART I CRIMES

Johns, Russell Taylor

257

The University of Texas at Austin Jan-02 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-02 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1 Theft Total $280 $280 Total % Rcvd 0.4% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas/93)Co #12;The University of Texas at Austin Jan-02 PART I CRIMES BURGLARY & THEFT TARGET SECTION (List

Johns, Russell Taylor

258

The University of Texas at Austin Jan07 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan07 PART I CRIMES Reported Unfounded Actual Cleared.1% DP Form #31 Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan07 PART I CRIMES BURGLARY Form #31 Page 2(Rev. 1/93) #12;The University of Texas at Austin Jan07 PART I CRIMES BURGLARY

Johns, Russell Taylor

259

Modeling of Optimal Oil Production and Comparing with Actual and Contractual Oil Production: Iran Case  

E-Print Network (OSTI)

Modeling of Optimal Oil Production and Comparing with Actual and Contractual Oil Production: Iran, Davis Introduction · The Iran Oil Project, initiated in 2007, aims to find the inefficiencies and their possible sources in Iranian oil and gas policies. Background Information Assumptions · Perfect Competition

California at Davis, University of

260

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Actual Impact of the International Tribunal for former Yugoslavia on the Reconciliation Process in Bosnia-Herzegovina.  

E-Print Network (OSTI)

??This thesis explores the actual impact of the International Criminal Tribunal for the former Yugoslavia (ICTY) on the reconciliation process in Bosnia-Herzegovina and analyses possible… (more)

Johansen, Kristine

2011-01-01T23:59:59.000Z

262

How many people actually see the price signal? Quantifying market failures in the end use of energy  

E-Print Network (OSTI)

investment, behaviour, energy price, consumers Abstract “suggest that raising energy prices—such as in the form ofconsumers actually “see” energy prices and are therefore

Meier, Alan; Eide, Anita

2007-01-01T23:59:59.000Z

263

Proposal for the renegotiation of a contract for the supply of eight coil casings for the barrel toroid magnet of the ATLAS detector  

E-Print Network (OSTI)

This document concerns the renegotiation of a contract for the supply of eight coil casings for the Barrel Toroid Magnet of the ATLAS detector. The proposal for the award of a contract with ABB ENERTECH (CH) was presented to Finance Committee for information in September 1998 (CERN/FC/4089). In view of the developments outlined in this document, the Finance Committee is invited to agree to the renegotiation of a contract with ALSTOM SWITZERLAND (CH), for the supply of eight coil casings for the ATLAS Barrel Toroid Magnet for a total Ex-works price of 12 580 000 Swiss francs, subject to revision after 31 July 2001, with an option for an extra coil casing for an additional Ex-works price of 1 525 000 Swiss francs, subject to revision after 31 July 2001, bringing the total amount for the supply to 14 105 000 Swiss francs, subject to revision after 31 July 2001. The total amount of the contract, including transport to the integration site, will not exceed 14 490 000 Swiss francs, subject to revision after 31 July...

2001-01-01T23:59:59.000Z

264

Actual versus predicted impacts of three ethanol plants on aquatic and terrestrial resources  

DOE Green Energy (OSTI)

To help reduce US dependence on imported petroleum, Congress passed the Energy Security Act of 1980 (public Law 96-294). This legislation authorized the US Department of Energy (DOE) to promote expansion of the fuel alcohol industry through, among other measures, its Alcohol Fuels Loan Guarantee Program. Under this program, selected proposals for the conversion of plant biomass into fuel-grade ethanol would be granted loan guarantees. of 57 applications submitted for loan guarantees to build and operate ethanol fuel projects under this program, 11 were considered by DOE to have the greatest potential for satisfying DOE`s requirements and goals. In accordance with the National Environmental Policy Act (NEPA), DOE evaluated the potential impacts of proceeding with the Loan Guarantee Program in a programmatic environmental assessment (DOE 1981) that resulted in a finding of no significant impact (FANCY) (47 Federal Register 34, p. 7483). The following year, DOE conducted site-specific environmental assessments (EAs) for 10 of the proposed projects. These F-As predicted no significant environmental impacts from these projects. Eventually, three ethanol fuel projects received loan guarantees and were actually built: the Tennol Energy Company (Tennol; DOE 1982a) facility near Jasper in southeastern Tennessee; the Agrifuels Refining Corporation (Agrifuels; DOE 1985) facility near New Liberia in southern Louisiana; and the New Energy Company of Indiana (NECI; DOE 1982b) facility in South Bend, Indiana. As part of a larger retrospective examination of a wide range of environmental effects of ethanol fuel plants, we compared the actual effects of the three completed plants on aquatic and terrestrial resources with the effects predicted in the NEPA EAs several years earlier. A secondary purpose was to determine: Why were there differences, if any, between actual effects and predictions? How can assessments be improved and impacts reduced?

Eddlemon, G.K.; Webb, J.W.; Hunsaker, D.B. Jr.; Miller, R.L.

1993-03-15T23:59:59.000Z

265

Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Coal Prices to Electric Generating Plants, Projected vs. Actual" b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.502753725,1.549729719,1.64272351,1.727259934,1.784039735,1.822135762,1.923203642,2.00781457,2.134768212,2.217425497,2.303725166,2.407715232,2.46134106,2.637086093,2.775389073,2.902293046,3.120364238,3.298013245 "AEO 1995",,1.4212343,1.462640338,1.488780998,1.545300242,1.585877053,1.619428341,1.668671498,1.7584219,1.803937198,1.890547504,1.968695652,2.048913043,2.134750403,2.205281804,2.281690821,2.375434783,2.504830918 "AEO 1996",,,1.346101641,1.350594221,1.369020126,1.391737646,1.421340737,1.458772082,1.496497523,1.561369914,1.619940033,1.674758358,1.749420803,1.800709877,1.871110564,1.924495246,2.006850327,2.048938234,2.156821499

266

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual" Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO 1996",,,23.89674759,24.08507919,24.47502899,24.84881783,25.25887871,25.65527534,26.040205,26.38586426,26.72540092,27.0748024,27.47158241,27.80837631,28.11616135,28.3992157,28.62907982,28.85912895,29.09081459 "AEO 1997",,,,24.68686867,25.34906006,25.87225533,26.437994,27.03513145,27.52499771,27.96490097,28.45482063,28.92999458,29.38239861,29.84147453,30.26097488,30.59760475,30.85550499,31.10873222,31.31938744

267

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual" Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO 1995",,26.164,26.293,26.499,27.044,27.252,26.855,26.578,26.798,27.098,27.458,27.878,28.158,28.448,28.728,29.038,29.298,29.608 "AEO 1996",,,26.54702756,26.62236823,27.31312376,27.47668697,26.90313339,26.47577946,26.67685979,26.928811,27.23795407,27.58448499,27.91057103,28.15050595,28.30145734,28.518,28.73702901,28.93001263,29.15872662 "AEO 1997",,,,26.21291769,26.45981795,26.88483478,26.67847443,26.55107968,26.78246968,27.07367604,27.44749539,27.75711339,28.02446072,28.39156621,28.69999783,28.87316602,29.01207631,29.19475644,29.37683575

268

File:Theoretical vs Actual Data Lesson Plan .pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:Theoretical vs Actual Data Lesson Plan .pdf Jump to: navigation, search File File history File usage Metadata File:Theoretical vs Actual Data Lesson Plan .pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 257 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:33, 3 January 2014 Thumbnail for version as of 09:33, 3 January 2014 1,275 × 1,650, 2 pages (257 KB) Foteri (Talk | contribs) Category:Wind for Schools Portal CurriculaCategory:Wind for Schools High School Curricula

269

Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47 1.50 AEO 1996 1994 1.32 1.29 1.28 1.27 1.26 1.26 1.25 1.27 1.27 1.27 1.28 1.27 1.28 1.27 1.28 1.26 1.28

270

Filtration and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites  

Science Conference Proceedings (OSTI)

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.( ) The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP-RPP-WTP-467, eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste-testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan • Characterizing the homogenized sample groups • Performing parametric leaching testing on each group for compounds of interest • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on filtration/leaching tests performed on two of the eight waste composite samples and follow-on parametric tests to support aluminum leaching results from those tests.

Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Geeting, John GH; Hallen, Richard T.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Snow, Lanee A.; Swoboda, Robert G.

2009-02-20T23:59:59.000Z

271

Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste  

Science Conference Proceedings (OSTI)

This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included • caustic leaching for Al removal • solids crossflow filtration through the cell unit filter (CUF) • stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF • oxidative leaching using sodium permanganate for removing Cr • solids filtration with the CUF • follow-on solids washing and filtration through the CUF • ion exchange processing for Cs removal • evaporation processing of waste stream recycle for volume reduction • combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

2009-01-01T23:59:59.000Z

272

PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE  

Science Conference Proceedings (OSTI)

Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

2011-11-01T23:59:59.000Z

273

"Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual" Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO 1996",,,7.059859276,7.17492485,7.228339195,7.28186655,7.336973667,7.387932777,7.442782879,7.501244545,7.561584473,7.623688221,7.684037209,7.749266148,7.815915108,7.884147644,7.950204372,8.016282082,8.085801125 "AEO 1997",,,,7.401538849,7.353548527,7.420701504,7.48336792,7.540113449,7.603093624,7.663851738,7.723834991,7.783358574,7.838726044,7.89124918,7.947964668,8.008976936,8.067288399,8.130317688,8.197405815

274

Investigating Sequestration Potential of Carbonate Rocks during Tertiary Recovery from a Billion Barrel Oil Field, Weyburn, Saskatchewan: the Geoscience Framework (IEA Weyburn CO2 Monitoring Project)  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Potential of Carbonate Rocks during Tertiary Sequestration Potential of Carbonate Rocks during Tertiary Recovery from a Billion Barrel Oil Field, Weyburn, Saskatchewan: the Geoscience Framework (IEA Weyburn CO 2 Monitoring and Storage Project) G. Burrowes (Geoffrey_Burrowes@pancanadian.ca; 403-290-2796) PanCanadian Resources 150 - 9 th Avenue S.W., P.O. Box 2850 Calgary, Alberta, Canada T2P 2S5 C. Gilboy (cgilboy@sem.gov.sk.ca; 306-787-2573) Petroleum Geology Branch, Saskatchewan Energy and Mines 201 Dewdney Avenue East Regina, Saskatchewan, Canada S4N 4G3 Introduction In Western Canada the application of CO 2 injection for enhanced, 'tertiary' oil recovery is a relatively recent addition to the arsenal available to reservoir engineers. The first successful application of CO 2 as a miscible fluid in Western Canada began in 1984 at Joffre Field, a

275

Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite  

SciTech Connect

This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

2009-02-28T23:59:59.000Z

276

Exposure of Ceramics and Ceramic Matrix Composites in Simulated and Actual Combustor Environments  

DOE Green Energy (OSTI)

A high-temperature, high-pressure, tube furnace has been used to evaluate the long term stability of different monolithic ceramic and ceramic matrix composite materials in a simulated combustor environment. All of the tests have been run at 150 psia, 1204 degrees C, and 15% steam in incremental 500 h runs. The major advantage of this system is the high sample throughput; >20 samples can be exposed in each tube at the same time under similar exposure conditions. Microstructural evaluations of the samples were conducted after each 500 h exposure to characterize the extent of surface damage, to calculate surface recession rates, and to determine degradation mechanisms for the different materials. The validity of this exposure rig for simulating real combustor environments was established by comparing materials exposed in the test rig and combustor liner materials exposed for similar times in an actual gas turbine combustor under commercial operating conditions.

Brentnall, W.D.; Ferber, M.K.; Keiser, j.R.; Miriyala, N.; More, K.L.; Price, J.R.; Tortorelli, P.F.; Walker, L.R.

1999-06-07T23:59:59.000Z

277

Table 12. Coal Prices to Electric Generating Plants, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Prices to Electric Generating Plants, Projected vs. Actual Coal Prices to Electric Generating Plants, Projected vs. Actual (nominal dollars per million Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2.03 2.17 2.33 2.52 2.73 2.99 AEO 1983 1.99 2.10 2.24 2.39 2.57 2.76 4.29 AEO 1984 1.90 2.01 2.13 2.28 2.44 2.61 3.79 AEO 1985 1.68 1.76 1.86 1.95 2.05 2.19 2.32 2.49 2.66 2.83 3.03 AEO 1986 1.61 1.68 1.75 1.83 1.93 2.05 2.19 2.35 2.54 2.73 2.92 3.10 3.31 3.49 3.68 AEO 1987 1.52 1.55 1.65 1.75 1.84 1.96 2.11 2.27 2.44 3.55 AEO 1989* 1.50 1.51 1.68 1.77 1.88 2.00 2.13 2.26 2.40 2.55 2.70 2.86 3.00 AEO 1990 1.46 1.53 2.07 2.76 3.7 AEO 1991 1.51 1.58 1.66 1.77 1.88 1.96 2.06 2.16 2.28 2.41 2.57 2.70 2.85 3.04 3.26 3.46 3.65 3.87 4.08 4.33 AEO 1992 1.54 1.61 1.66 1.75 1.85 1.97 2.03 2.14 2.26 2.44 2.55 2.69 2.83 3.00 3.20 3.40 3.58 3.78 4.01 AEO 1993 1.92 1.54 1.61 1.70

278

Actual Dose Variation of Parotid Glands and Spinal Cord for Nasopharyngeal Cancer Patients During Radiotherapy  

Science Conference Proceedings (OSTI)

Purpose: For intensity-modulated radiotherapy of nasopharyngeal cancer, accurate dose delivery is crucial to the success of treatment. This study aimed to evaluate the significance of daily image-guided patient setup corrections and to quantify the parotid gland volume and dose variations for nasopharyngeal cancer patients using helical tomotherapy megavoltage computed tomography (CT). Methods and Materials: Five nasopharyngeal cancer patients who underwent helical tomotherapy were selected retrospectively. Each patient had received 70 Gy in 35 fractions. Daily megavoltage CT scans were registered with the planning CT images to correct the patient setup errors. Contours of the spinal cord and parotid glands were drawn on the megavoltage CT images at fixed treatment intervals. The actual doses delivered to the critical structures were calculated using the helical tomotherapy Planned Adaptive application. Results: The maximal dose to the spinal cord showed a significant increase and greater variation without daily setup corrections. The significant decrease in the parotid gland volume led to a greater median dose in the later phase of treatment. The average parotid gland volume had decreased from 20.5 to 13.2 cm{sup 3} by the end of treatment. On average, the median dose to the parotid glands was 83 cGy and 145 cGy for the first and the last treatment fractions, respectively. Conclusions: Daily image-guided setup corrections can eliminate significant dose variations to critical structures. Constant monitoring of patient anatomic changes and selective replanning should be used during radiotherapy to avoid critical structure complications.

Han Chunhui [Division of Radiation Oncology, City of Hope National Medical Center, Duarte, CA (United States)], E-mail: chan@coh.org; Chen Yijen; Liu An; Schultheiss, Timothy E.; Wong, Jeffrey Y.C. [Division of Radiation Oncology, City of Hope National Medical Center, Duarte, CA (United States)

2008-03-15T23:59:59.000Z

279

Modeling of Boehmite Leaching from Actual Hanford High-Level Waste Samples  

SciTech Connect

The Department of Energy plans to vitrify approximately 60,000 metric tons of high level waste sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of high level waste requiring treatment, a goal has been set to remove about 90 percent of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum in the form of gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic, but boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. In this work, the dissolution kinetics of aluminum species during caustic leaching of actual Hanford high level waste samples is examined. The experimental results are used to develop a shrinking core model that provides a basis for prediction of dissolution dynamics from known process temperature and hydroxide concentration. This model is further developed to include the effects of particle size polydispersity, which is found to strongly influence the rate of dissolution.

Peterson, Reid A.; Lumetta, Gregg J.; Rapko, Brian M.; Poloski, Adam P.

2007-06-27T23:59:59.000Z

280

Actinide partitioning from actual Idaho chemical processing plant acidic tank waste using centrifugal contactors  

Science Conference Proceedings (OSTI)

The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) for the separation of the actinides from acidic radioactive wastes stored at the ICPP. These efforts have culminated in a recent demonstration of the TRUEX process with actual tank waste. This demonstration was performed using 24 stages of 2-cm diameter centrifugal contactors installed in a shielded hot cell at the ICPP Remote Analytical Laboratory. An overall removal efficiency of 99.97% was obtained for the actinides. As a result, the activity of the actinides was reduced from 457 nCi/g in the feed to 0.12 nCi/g in the aqueous raffinate, which is well below the U.S. NRC Class A LLW requirement of 10 nCi/g for non-TRU waste. Iron was partially extracted by the TRUEX solvent, resulting in 23% of the Fe exiting in the strip product. Mercury was also extracted by the TRUEX solvent (76%) and stripped from the solvent in the 0.25 M Na{sub 2}CO{sub 3} wash section.

Law, J.D.; Brewer, K.N.; Todd, T.A.

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado  

SciTech Connect

To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

Arena, L.; Williamson, J.

2013-11-01T23:59:59.000Z

282

Actual versus design performance of solar systems in the National Solar Data Network  

Science Conference Proceedings (OSTI)

This report relates field measured performance to the designer predicted performance. The field measured data was collected by the National Solar Data Network (NSDN) over a period of six years. Data from 25 solar systems was selected from a data pool of some 170 solar systems. The scope of the project extends beyond merely presenting comparisons of data. There is an attempt to provide answers which will move the solar industry forward. As a result of some industry and research workshops, several concerns arose which can be partially allayed by careful study of the NSDN data. These are: What types of failures occurred and why. How good was the design versus actual performance. Why was predicted performance not achieved in the field. Which components should be integrated with a system type for good performance. Since the designs span several years and since design philosophies are quite variable, the measured results were also compared to f-Chart 5.1 results. This comparison is a type of normalization in that all systems are modeled with the same process. An added benefit of this normalization is a further validation of the f-Chart model on a fairly large scale. The systems were modeled using equipment design parameters, measured loads, and f-Chart weather data from nearby cities.

Logee, T.L.; Kendall, P.W.

1984-09-01T23:59:59.000Z

283

Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites  

SciTech Connect

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form of gibbsite, and its impact on filtration. The initial sample was diluted with a liquid simulant to simulate the receiving concentration of retrieved tank waste into the UFP2 vessel (< 10 wt% undissolved solids). Filtration testing was performed on the dilute waste sample and dewatered to a higher solids concentration. Filtration testing was then performed on the concentrated slurry. Afterwards, the slurry was caustic leached to remove aluminum present in the undissolved solid present in the waste. The leach was planned to simulate leaching conditions in the UFP2 vessel. During the leach, slurry supernate samples were collected to measure the dissolution rate of aluminum in the waste. After the slurry cooled down from the elevated leach temperature, the leach liquor was dewatered from the solids. The remaining slurry was rinsed and dewatered with caustic solutions to remove a majority of the dissolved aluminum from the leached slurry. The concentration of sodium hydroxide in the rinse solutions was high enough to maintain the solubility of the aluminum in the dewatered rinse solutions after dilution of the slurry supernate. Filtration tests were performed on the final slurry to compare to filtration performance before and after caustic leaching.

Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

2009-03-02T23:59:59.000Z

284

ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE  

SciTech Connect

In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

Martino, C.; King, W.; Ketusky, E.

2012-07-10T23:59:59.000Z

285

STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138  

SciTech Connect

This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

Burket, P

2009-02-24T23:59:59.000Z

286

Small-Area Estimation based on Survey Data from a Left-Censored Fay-Herriot Model  

E-Print Network (OSTI)

Administration's monthly crude oil report is based on a survey (EIA-813, http://www.eia.doe.gov/oss/forms.html) in which respondent compa- nies that carry or store more than 1000 barrels of crude oil are required is the US Census Bureau's Small Area Income and Poverty Estimation (SAIPE) program, an ongoing effort

Maryland at College Park, University of

287

NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY  

SciTech Connect

A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

2009-09-16T23:59:59.000Z

288

DEMONSTRATION OF THE GLYCOLIC-FORMIC FLOWSHEET IN THE SRNL SHIELDED CELLS USING ACTUAL WASTE  

SciTech Connect

Glycolic acid was effective at dissolving many metals, including iron, during processing with simulants. Criticality constraints take credit for the insolubility of iron during processing to prevent criticality of fissile materials. Testing with actual waste was needed to determine the extent of iron and fissile isotope dissolution during Chemical Process Cell (CPC) processing. The Alternate Reductant Project was initiated by the Savannah River Remediation (SRR) Company to explore options for the replacement of the nitric-formic flowsheet used for the CPC at the Defense Waste Processing Facility (DWPF). The goals of the Alternate Reductant Project are to reduce CPC cycle time, increase mass throughput of the facility, and reduce operational hazards. In order to achieve these goals, several different reductants were considered during initial evaluations conducted by Savannah River National Laboratory (SRNL). After review of the reductants by SRR, SRNL, and Energy Solutions (ES) Vitreous State Laboratory (VSL), two flowsheets were further developed in parallel. The two flowsheet options included a nitric-formic-glycolic flowsheet, and a nitric-formic-sugar flowsheet. As of July 2011, SRNL and ES/VSL have completed the initial flowsheet development work for the nitric-formic-glycolic flowsheet and nitric-formic-sugar flowsheet, respectively. On July 12th and July 13th, SRR conducted a Systems Engineering Evaluation (SEE) to down select the alternate reductant flowsheet. The SEE team selected the Formic-Glycolic Flowsheet for further development. Two risks were identified in SEE for expedited research. The first risk is related to iron and plutonium solubility during the CPC process with respect to criticality. Currently, DWPF credits iron as a poison for the fissile components of the sludge. Due to the high iron solubility observed during the flowsheet demonstrations with simulants, it was necessary to determine if the plutonium in the radioactive sludge slurry demonstrated the same behavior. The second risk is related to potential downstream impacts of glycolate on Tank Farm processes. The downstream impacts will be evaluated by a separate research team. Waste Solidification Engineering (WSE) has requested a radioactive demonstration of the Glycolic-Formic Flowsheet with radioactive sludge slurry be completed in the Shielded Cells Facility of the SRNL. The Shielded Cells demonstration only included a Sludge Receipt and Adjustment Tank (SRAT) cycle, and not a Slurry Mix Evaporator (SME) cycle or the co-processing of salt products. Sludge Batch 5 (SB5) slurry was used for the demonstration since it was readily available, had been previously characterized, and was generally representative of sludges being processing in DWPF. This sample was never used in the planned Shielded Cells Run 7 (SC-7).

Lambert, D.; Pareizs, J.; Click, D.

2011-11-07T23:59:59.000Z

289

Selection of the most advantageous gas turbine air filtration system: Comparative study of actual operating experience  

SciTech Connect

This paper discusses relative merits of three types of air filtration systems used by Sui Northern Gas Pipelines Ltd. (Pakistan), on its gas turbine compressor packages. These Filtration systems are: (i) Two stage inertial plus auto oil bath type multi-duty filters by AAF used on Saturn Mark-1 packages manufactured by Solar Turbines Inc. (ii) Three stage high efficiency barrier filters by AAF used on Centaur packages by Solar. (iii) Single stage pulse-jet self-cleaning filter by Donaldson again used on a Centaur package. The selection is primarily based in package performance data collected over a 15 month period analyzing power loss due to fouling effects and related operation and maintenance costs for the three systems. The Company's operating experience indicates that on new installations the pulse clean system offers the best advantage both in terms of filtration costs as well as availability of additional horse power when operating under moderate to severe environmental conditions.

Gilani, S.I.; Mehr, M.Z.

1985-01-01T23:59:59.000Z

290

DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE  

DOE Green Energy (OSTI)

Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.

Adu-Wusu, K; Paul Burket, P

2009-03-31T23:59:59.000Z

291

Analysis of Actual Operating Conditions of an Off-grid Solid Oxide Fuel Cell  

DOE Green Energy (OSTI)

Fuel cells have been proposed as ideal replacements for other technologies in remote locations such as Rural Alaska. A number of suppliers have developed systems that might be applicable in these locations, but there are several requirements that must be met before they can be deployed: they must be able to operate on portable fuels, and be able to operate with little operator assistance for long periods of time. This project was intended to demonstrate the operation of a 5 kW fuel cell on propane at a remote site (defined as one without access to grid power, internet, or cell phone, but on the road system). A fuel cell was purchased by the National Park Service for installation in their newly constructed visitor center at Exit Glacier in the Kenai Fjords National Park. The DOE participation in this project as initially scoped was for independent verification of the operation of this demonstration. This project met with mixed success. The fuel cell has operated over 6 seasons at the facility with varying degrees of success, with one very good run of about 1049 hours late in the summer of 2006, but in general the operation has been below expectations. There have been numerous stack failures, the efficiency of electrical generation has been lower than expected, and the field support effort required has been far higher than expected. Based on the results to date, it appears that this technology has not developed to the point where demonstrations in off road sites are justified.

Dennis Witmer; Thomas Johnson; Jack Schmid

2008-12-31T23:59:59.000Z

292

WTI Crude Oil Price: Base Case and 95% Confidence Interval  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Spot WTI prices broke $35 and even $36 per barrel in November as anticipated boosts to world supply from OPEC and other sources did not show up in actual stocks data. The recent decline in prices seems to be more the result of an unraveling of speculative pressures than a change in underlying fundamentals. Prices had been running higher than supply/demand fundamentals would have indicated throughout the fall months as a result of rising Mideast tensions, concern over the adequacy of distillate supplies, and expectations of Iraqi supply interruptions. But Mideast tensions seemed to ease in December and the market appeared to perceive a quick return of Iraqi crude oil supplies at full capacity. Pledges by Saudi Arabia/OPEC to offset a longer term Iraqi

293

WTI Crude Oil Price: Base Case and 95% Confidence Interval  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Spot WTI crude oil prices broke $35 and even $36 per barrel in November as anticipated boosts to world supply from OPEC and other sources did not show up in actual stocks data. The recent decline in prices seems to be more the result of an unraveling of speculative pressures than a change in underlying fundamentals. Prices had been running higher than supply/demand fundamentals would have indicated throughout the fall months as a result of rising Mideast tensions, concern over the adequacy of distillate supplies, and expectations of Iraqi supply interruptions. But Mideast tensions seemed to ease in December and the market appeared to perceive a quick return of Iraqi crude oil supplies at full capacity. Pledges by Saudi Arabia/OPEC to offset a longer term Iraqi

294

Stability, Wear Resistance, and Microstructure of Iron, Cobalt and Nickel-based Hardfacing Alloys  

E-Print Network (OSTI)

of applications where surface modifications can play a dominant role include stationary and seal components of gas turbines, components in nuclear reactors and internal combustion engines, components in space and vacuum environments and barrels of guns and cannons... wear properties. The effects of arc welding process variables on weld bead dimensions, dilution and microstructure of iron-based hardfacing alloys have been studied using heat flow theory. Theoretical results were compared with experimental data...

Atamert, Serdar

1989-05-09T23:59:59.000Z

295

Is interactivity actually important?  

Science Conference Proceedings (OSTI)

It appears that it is a well-accepted assumption that interactivity will improve the entertainment and/or learning value of a media. This paper reviews various studies exploring the role of interactivity and reports on a study conducted to see whether ... Keywords: game engine, interactivity, learning, simulation, training

Debbie Richards

2006-12-01T23:59:59.000Z

296

An experimental and computational leakage investigation of labyrinth seals with rub grooves of actual size and shape  

E-Print Network (OSTI)

A large scale water test facility and a commercial CFD computer program were used to investigate labyrinth seals with rub grooves of actual size and shape found in aircraft engines. The 2-D test rig cases focused on the effect of tooth position and operating condition for the standard geometry. The computed cases considered tooth axial and radial position, different operating conditions, and several geometric dimensions. This investigation also compares the leakage of the standard geometry to that of a modified convex wall geometry. The test facility is a 33 times enlargement of the actual seal. The pressure drop leakage rate and flow visualization digital images for the standard geometry seal were measured at various Reynolds numbers and at nine different tooth positions. The discharge coefficient and a dimensionless pressure drop number were used to plot the leakage data to make it easier for seal designers to predict the leakage of labyrinth seals. The experimental visualization results show for a given Reynolds number that the closer the labryinth tooth gets to the step the deeper the throughflow jet penetrated into the seal cavity. The decrease of the tooth tip clearance also has a similar effect. Specifically the smaller the tooth tip clearance the deeper the flow path penetrated into the seal cavity. The experimental measurements show that the tooth tip axial position, as well as the minimum-tooth clearance, affect the leakage. A significant improvement in leakage was generally observed when the minimum-distance tooth clearance occurs across the entire tip of the tooth. This occurs only at the most upstream tooth position tested. Similarly, the computed results show that the tooth axial position affects the seal leakage. It was also found that the leakage of the modified convex wall geometry was significantly less than that of the standard geometry.

Ambrosia, Matthew Stanley

2001-01-01T23:59:59.000Z

297

Rainfall-Induced Changes in Actual Surface Backscattering Cross Sections and Effects on Rain-Rate Estimates by Spaceborne Precipitation Radar  

Science Conference Proceedings (OSTI)

In this study, the authors used Tropical Rainfall Measuring Mission precipitation radar (TRMM PR) data to investigate changes in the actual (attenuation corrected) surface backscattering cross section (?0e) due to changes in surface conditions ...

Shinta Seto; Toshio Iguchi

2007-10-01T23:59:59.000Z

298

Human activity recognition based on surrounding things  

Science Conference Proceedings (OSTI)

This paper proposes human activity recognition based on the actual semantics of the human’s current location. Since predefining the semantics of location is inadequate to identify human activities, we process information about things to automatically ...

Naoharu Yamada; Kenji Sakamoto; Goro Kunito; Kenichi Yamazaki; Satoshi Tanaka

2005-12-01T23:59:59.000Z

299

Demonstration of the UNEX Process for the Simultaneous Separation of Cesium, Strontium, and the Actinides from Actual INEEL Tank Waste  

Science Conference Proceedings (OSTI)

A universal solvent extraction (UNEX) process for the simultaneous separation of cesium, strontium, and the actinides from actual radioactive acidic tank waste was demonstrated at the Idaho National Engineering and Environmental Laboratory. The waste solution used in the countercurrent flowsheet demonstration was obtained from tank WM-185. The UNEX process uses a tertiary solvent containing 0.08 M chlorinated cobalt dicarbollide, 0.5% polyethylene glycol-400 (PEG-400), and 0.02 M diphenyl-N,N-dibutylcarbamoyl phosphine oxide (Ph2Bu2CMPO) in a diluent consisting of phenyltrifluoromethyl sulfone (FS-13). The countercurrent flowsheet demonstration was performed in a shielded cell facility using 24 stages of 2-cm diameter centrifugal contactors. Removal efficiencies of 99.4%, 99.995%, and 99.96% were obtained for 137Cs, 90Sr, and total alpha, respectively. This is sufficient to reduce the activities of 137Cs, 90Sr, and actinides in the WM-185 waste to below NRC Class A LLW requirement s. Flooding and/or precipitate formation were not observed during testing. Significant amounts of the Zr (87%), Ba (>99%), Pb (98.8%), Fe (8%), Ca (10%), Mo (32%), and K (28%) were also removed from the feed with the universal solvent extraction flowsheet. 99Tc, Al, Hg, and Na were essentially inextractable (<1% extracted).

Law, J.D.; Herbst, R.S.; Todd, T.A. (INEEL); Romanovskiy, V.N.; Esimantovskiy, V.M.; Smirnov, I.V.; Babain, V.A.; Zaitsev, B.N. (V. G. Khlopin Radium Institute); Logunov, M.V. (MAYAK Production Association)

1999-10-01T23:59:59.000Z

300

Demonstration of the SREX process for the removal of {sup 90}Sr from actual highly radioactive solutions in centrifugal contactors  

Science Conference Proceedings (OSTI)

The SREX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) for the separation of {sup 90}Sr from acidic radioactive wastes stored at the ICPP. These efforts have culminated in a recent demonstration of the SREX process with actual tank waste. This demonstration was performed using 24 stages of 2-cm diameter centrifugal contactors installed in a shielded hot cell at the ICPP Remote Analytical Laboratory. An overall removal efficiency of 99.995% was obtained for {sup 90}Sr. As a result, the activity of {sup 90}Sr was reduced from 201 Ci/m{sup 3} in the feed solution of 0.0089 Ci/m{sup 3} in the aqueous raffinate, which is below the U.S. NRC Class A LLW limit of 0.04 Ci/m{sup 3} for {sup 90}Sr. Lead was extracted by the SREX solvent and successfully partitioned from the {sup 90}Sr using an ammonium citrate strip solution. Additionally, 94% of the total alpha activity, 1.9% of the {sup 241}Am, 99.94% of the {sup 238}Pu, 99.97% of the {sup 239}Pu, 36.4% of the K, 64% of the Ba, and >83% of the Zr were extracted by the SREX solvent. Cs, B, Cd, Ca, Cr, Fe, Mn, Ni, and Na were essentially inextractable. 10 refs., 2 figs., 3 tabs.

Law, J.D.; Wood, D.J.; Todd, T.A.; Olson, L.G.

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Demonstration of an optimized TRUEX flowsheet for partitioning of actinides from actual ICPP sodium-bearing waste using centrifugal contactors in a shielded cell facility  

Science Conference Proceedings (OSTI)

The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) for the separation of the actinides from acidic radioactive wastes stored at the ICPP. These efforts have culminated in recent demonstrations of the TRUEX process with actual tank waste. The first demonstration was performed in 1996 using 24 stages of 2-cm diameter centrifugal contactors and waste from tank WM-183. Based on the results of this flowsheet demonstration, the flowsheet was optimized and a second flowsheet demonstration was performed. This test also was performed using 2-cm diameter centrifugal contactors and waste from tank WM-183. However, the total number of contactor stages was reduced from 24 to 20. Also, the concentration of HEDPA in the strip solution was reduced from 0.04 M to 0.01 M in order to minimize the amount of phosphate in the HLW fraction, which would be immobilized into a glass waste form. This flowsheet demonstration was performed using centrifugal contactors installed in the shielded hot cell at the ICPP Remote Analytical Laboratory. The flowsheet tested consisted of six extraction stages, four scrub stages, six strip stages, two solvent was stages, and two acid rinse stages. An overall removal efficiency of 99.79% was obtained for the actinides. As a result, the activity of the actinides was reduced from 540 nCi/g in the feed to 0.90 nCi/g in the aqueous raffinate, which is well below the NRC Class A LLW requirement of 10 nCi/g for non-TRU waste. Removal efficiencies of 99.84%, 99.97%, 99.97%, 99.85%, and 99.76% were obtained for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, {sup 235}U, and {sup 238}U, respectively.

Law, J.D.; Brewer, K.N.; Herbst, R.S.; Todd, T.A.; Olson, L.G.

1998-01-01T23:59:59.000Z

302

ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

Martino, C.; King, W.; Ketusky, E.

2012-01-12T23:59:59.000Z

303

dBASE IV basics  

Science Conference Proceedings (OSTI)

This is a user`s manual for dBASE IV. dBASE IV is a popular software application that can be used on your personal computer to help organize and maintain your database files. It is actually a set of tools with which you can create, organize, select and manipulate data in a simple yet effective manner. dBASE IV offers three methods of working with the product: (1) control center: (2) command line; and (3) programming.

O`Connor, P.

1994-09-01T23:59:59.000Z

304

"ALON ISRAEL OIL COMPANY LTD",820,13,"ALON BAKERSFIELD OPERATING INC","West Coast","California","BAKERSFIELD",5,"CAT HYDROCRACKING, GAS OIL","Downstream Charge Capacity, Current Year (barrels per calendar day)",14250  

U.S. Energy Information Administration (EIA) Indexed Site

CORPORATION","SURVEY","PERIOD","COMPANY_NAME","RDIST_LABEL","STATE_NAME","SITE","PADD","PRODUCT","SUPPLY","QUANTITY" CORPORATION","SURVEY","PERIOD","COMPANY_NAME","RDIST_LABEL","STATE_NAME","SITE","PADD","PRODUCT","SUPPLY","QUANTITY" "ALON ISRAEL OIL COMPANY LTD",820,13,"ALON BAKERSFIELD OPERATING INC","West Coast","California","BAKERSFIELD",5,"CAT HYDROCRACKING, GAS OIL","Downstream Charge Capacity, Current Year (barrels per calendar day)",14250 "ALON ISRAEL OIL COMPANY LTD",820,13,"ALON BAKERSFIELD OPERATING INC","West Coast","California","BAKERSFIELD",5,"CAT HYDROCRACKING, GAS OIL","Downstream Charge Capacity, Current Year (barrels per stream day)",15000

305

A Methodology to Assess the Reliability of Hydrogen-based Transportation Energy Systems  

E-Print Network (OSTI)

Million bbl/d) Crude Oil Price Average Cost per Barrel Yearof lost oil causes world oil prices to increase by $3-$5 perdisrupted and prevailing oil prices were $30 per barrel, oil

McCarthy, Ryan

2004-01-01T23:59:59.000Z

306

Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites  

SciTech Connect

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

2009-02-19T23:59:59.000Z

307

Characterization and Leach Testing for PUREX Cladding Waste Sludge (Group 3) and REDOX Cladding Waste Sludge (Group 4) Actual Waste Sample Composites  

SciTech Connect

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.(a) The testing program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual wastetesting program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR)—are the subjects of this report. Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, requiring caustic leaching. Characterization of the composite Group 3 and Group 4 waste samples confirmed them to be high in gibbsite. The focus of the Group 3 and 4 testing was on determining the behavior of gibbsite during caustic leaching. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

Snow, Lanee A.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

2009-02-13T23:59:59.000Z

308

Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Liquids Lease Condensate, Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade...

309

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

310

Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

311

Federal Offshore--Texas Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

312

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

313

Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

314

California (with State Offshore) Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

315

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

316

California (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

317

New Mexico--East Natural Gas Liquids Lease Condensate, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) New Mexico--East Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

318

New Mexico--West Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--West Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

319

Texas (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

320

Texas--RRC District 5 Natural Gas Liquids Lease Condensate, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 5 Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

322

Texas--RRC District 4 Onshore Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 4 Onshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

323

Texas--RRC District 7C Natural Gas Liquids Lease Condensate,...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 7C Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

324

Texas--RRC District 1 Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 1 Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

325

Texas--RRC District 10 Natural Gas Liquids Lease Condensate,...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 10 Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

326

Texas--RRC District 3 Onshore Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 3 Onshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

327

Texas--RRC District 8 Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 8 Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

328

Texas--RRC District 7B Natural Gas Liquids Lease Condensate,...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 7B Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

329

Texas (with State Offshore) Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

330

Texas--RRC District 6 Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 6 Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

331

Texas--RRC District 8A Natural Gas Liquids Lease Condensate,...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 8A Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

332

Texas--RRC District 2 Onshore Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 2 Onshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

333

Texas--RRC District 9 Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 9 Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

334

Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water  

Science Conference Proceedings (OSTI)

This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (K{sub d}`s), decontamination factors (DF), and material loadings (mmol g{sup -1}) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The {sup 137}Cs level is 1.74E-06 Ci L-{sup 1} which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the {sup 90}Sr radioactive component was measured to be 6.13E-06 Ci L{sup -1}. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium K{sub d} was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium K{sub d} values decreased significantly. Cesium K{sub d} values exceeding 1.0E+07 mL g{sup -1} were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g{sup -1} observed.

Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.

1997-09-01T23:59:59.000Z

335

Assessment of power-frequency based algorithms for fault location in power grids  

Science Conference Proceedings (OSTI)

The increased accuracy of the faults' location is a very actual request of the power grids' operation and management, reason to develop new and as precise as possible techniques for the estimation of the short-circuits' location. The actual fault locating ... Keywords: ATP simulation, fault location, power grids, power-frequency based algorithms

Marcel Istrate

2010-10-01T23:59:59.000Z

336

Ohio Crude Oil Proved Reserves (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 74: 69: 82: 1980's: 116: 112: 111: 130: 116: 79: 72: 66: 64: 56: 1990's: 65: 66 ...

337

FISSION REACTORS KEYWORDS: core-barrel vibra-  

E-Print Network (OSTI)

of a collab- orative research project between the Ringhals power plant and the Department of Nuclear Motion Monitoring," Nucl. Technol., 45, 5 ~1979!. 5. J. A. THIE, Power Reactor Noise, American Nuclear, Department of Nuclear Engineering SE-41296 Göteborg, Sweden Received December 22, 2004 Accepted

Demazière, Christophe

338

Montana Crude Oil Proved Reserves (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 175: 158: 152: 1980's: 179: 186: 216: 234: 224: 232: 248: 246: 241: 225: 1990's ...

339

Michigan Crude Oil Reserves Sales (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 1: 1: 2: 10: 0: 0: 1: 5: 0: 0: 2010's: 0: 0-

340

Barrel Bolt Cracking in a German PWR  

Science Conference Proceedings (OSTI)

Protective Insulated Coating for SCC Mitigation in BWRs · PWR Fuel Deposit Analysis at a B&W Plant with a 24-Month Fuel Cycle · PWSCC of Thermocoax ...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Arkansas Crude Oil Reserves Adjustments (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 0: 1: 4: 1980's: 0: 10: 2: 23: 2-9: 5: 2: 0-3: 1990's: 1: 13-3: 20-4: 4: 9-8-1-7 ...

342

Mississippi Crude Oil Reserves Sales (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 5: 5: 40: 15: 4: 1: 6: 1: 0: 4: 2010's: 8: 0-

343

Boehmite Actual Waste Dissolutions Studies  

SciTech Connect

The U.S. Department of Energy plans to vitrify approximately 60,000 metric tons of high-level waste (HLW) sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of HLW requiring treatment, a goal has been set to remove a significant quantity of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum is found in the form of gibbsite, sodium aluminate and boehmite. Gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic. Boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. Samples were taken from four Hanford tanks and homogenized in order to give a sample that is representative of REDOX (Reduction Oxidation process for Pu recovery) sludge solids. Bench scale testing was performed on the homogenized waste to study the dissolution of boehmite. Dissolution was studied at three different hydroxide concentrations, with each concentration being run at three different temperatures. Samples were taken periodically over the 170 hour runs in order to determine leaching kinetics. Results of the dissolution studies and implications for the proposed processing of these wastes will be discussed.

Snow, Lanee A.; Lumetta, Gregg J.; Fiskum, Sandra K.; Peterson, Reid A.

2008-07-15T23:59:59.000Z

344

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels)","U.S. Exports of Other Oxygenates (Thousand Barrels)","U.S. Exports of Fuel Ethanol (Thousand Barrels)","U.S. Exports of Biomass-Based Diesel Fuel (Thousand...

345

Long-Term Regional Estimates of Evapotranspiration for Mexico Based on Downscaled ISCCP Data  

Science Conference Proceedings (OSTI)

The development and evaluation of a long-term high-resolution dataset of potential and actual evapotranspiration for Mexico based on remote sensing data are described. Evapotranspiration is calculated using a modified version of the Penman–...

Justin Sheffield; Eric F. Wood; Francisco Munoz-Arriola

2010-04-01T23:59:59.000Z

346

Demonstration of the UNEX Process for the Simultaneous Separation of Cesium, Strontium, and the Actinides from Actual INEEL Sodium-Bearing Waste  

SciTech Connect

A universal solvent extraction (UNEX) process for the simultaneous separation of cesium, strontium, and the actinides from actual radioactive acidic tank waste was demonstrated at the Idaho National Engineering and Environmental Laboratory. The waste solution used in the countercurrent flowsheet demonstration was obtained from tank WM-185. The UNEX process uses a tertiary solvent containing 0.08 M chlorinated cobalt dicarbollide, 0.5% polyethylene glycol-400 (PEG-400), and 0.02 M diphenyl-N,N-dibutylcarbamoyl phosphine oxide (Ph2Bu2CMPO) in a diluent consisting of phenyltrifluoromethyl sulfone (FS-13). The countercurrent flowsheet demonstration was performed in a shielded cell facility using 24 stages of 2-cm diameter centrifugal contactors. Removal efficiencies of 99.4%, 99.995%, and 99.96% were obtained for 137Cs, 90Sr, and total alpha, respectively. This is sufficient to reduce the activities of 137Cs, 90Sr, and actinides in the WM-185 waste to below NRC Class A LLW requirements. Flooding and/or precipitate formation were not observed during testing. Significant amounts of the Zr (87%), Ba (>99%), Pb (98.8%), Fe (8%), Ca (10%), Mo (32%), and K (28%) were also removed from the feed with the universal solvent extraction flowsheet. 99Tc, Al, Hg, and Na were essentially inextractable (<1% extracted).

Law, Jack Douglas; Herbst, Ronald Scott; Todd, Terry Allen; Romanovskiy, V.; Smirnov, I.; Babain, V.; Zaitsev, B.; Esimantovskiy, V.

1999-11-01T23:59:59.000Z

347

The Universal Solvent Exchange (UNEX) Process II: Flowsheet Development & Demonstration of the UNEX Process for the Separation of Cesium, Strontium, and Actinides from Actual Acidic Radioactive Waste  

Science Conference Proceedings (OSTI)

A novel solvent extraction process, the Universal Extraction (UNEX) process, has been developed for the simultaneous separation of cesium, strontium, and the actinides from acidic waste solutions. The UNEX process solvent consists of chlorinated cobalt dicarbollide for the extraction of 137Cs, polyethylene glycol for the extraction of 90Sr, and diphenyl-N,N-dibutylcarbamoyl phosphine oxide for the extraction of the actinides and lanthanides. A nonnitroaromatic polar diluent consisting of phenyltrifluoromethyl sulfone has been developed for this process. A UNEX flowsheet consisting of a single solvent extraction cycle has been developed as a part of a collaborative effort between the Khlopin Radium Institute (KRI) and the Idaho National Engineering and Environmental Laboratory (INEEL). This flowsheet has been demonstrated with actual acidic radioactive tank waste at the INEEL using 24 stages of 2-cm diameter centrifugal contactors installed in a shielded cell facility. The activities of 137Cs, 90Sr, and the actinides were reduced to levels at which a grout waste form would meet NRC Class A LLW requirements. The extraction of 99Tc and several nonradioactive metals by the UNEX solvent has also been evaluated.

Law, Jack Douglas; Herbst, Ronald Scott; Todd, Terry Allen; Romanovskiy, V. N.; Smirnov, I. V.; Esimantovskiy, V. M.; Zaitsev. B. N.; Babain, V. A.

2001-01-01T23:59:59.000Z

348

Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per barrel in ""dollar year"" specific to each...

349

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

barrels) calculated Quantity oil produced from unit i inbest representation of the quantity of oil actually presentRemaining for Prudhoe Bay Oil Quantity Wells Count Jun 1968

Leighty, Wayne

2008-01-01T23:59:59.000Z

350

A framework for password-based authenticated key exchange1  

Science Conference Proceedings (OSTI)

In this paper, we present a general framework for password-based authenticated key exchange protocols, in the common reference string model. Our protocol is actually an abstraction of the key exchange protocol of Katz et al. and is based on the recently ... Keywords: Passwords, authentication, dictionary attack, projective hash functions

Rosario Gennaro; Yehuda Lindell

2006-05-01T23:59:59.000Z

351

POEM: Power-efficient Occupancy-based Energy Management System  

E-Print Network (OSTI)

for optimally controlling HVAC systems in buildings based on actual occupancy levels. POEM is comprised for Heating Ventilation and Air-Conditioning (HVAC) systems. Current HVAC systems only condition based are then fused with an occupancy prediction model us- ing a particle filter in order to determine the most

Cerpa, Alberto E.

352

Long Term World Oil Supply (A Resource Base/Production Path Analysis)  

Gasoline and Diesel Fuel Update (EIA)

Long Term World Oil Supply Long Term World Oil Supply (A Resource Base/Production Path Analysis) 07/28/2000 Click here to start Table of Contents Long Term World Oil Supply (A Resource Base/Production Path Analysis) Executive Summary Executive Summary (Continued) Executive Summary (Continued) Overview The Year of Peak Production..When will worldwide conventional oil production peak?... Lower 48 Crude Oil Reserves & Production 1945-2000 Texas Oil and Condensate Production, and Texas First Purchase Price (FPP), 1980-1999 Published Estimates of World Oil Ultimate Recovery Different Interpretations of a Hypothetical 6,000 Billion Barrel World Original Oil-in-Place Resource Base Campbell-Laherrère World Oil Production Estimates, 1930-2050 Laherrere’s Oil Production Forecast, 1930-2150

353

Demonstration of a Universal Solvent Extraction Process for the Separation of Cesium and Strontium from Actual Acidic Tank Waste at the INEEL  

Science Conference Proceedings (OSTI)

A universal solvent extraction process is being evaluated for the simultaneous separation of Cs, Sr, and the actinides from acidic high-activity tank waste at the Idaho National Engineering and Environmental Laboratory (INEEL) with the goal of minimizing the high-activity waste volume to be disposed in a deep geological repository. The universal solvent extraction process is being developed as a collaborative effort between the INEEL and the Khlopin Radium Institute in St. Petersburg, Russia. The process was recently demonstrated at the INEEL using actual radioactive, acidic tank waste in 24 stages of 2-cm diameter centrifugal contactors located in a shielded cell facility. With this testing, removal efficiencies of 99.95%, 99.985%, and 95.2% were obtained for 137 Cs, 90 Sr, and total alpha, respectively. This is sufficient to reduce the activities of 137 Cs and 90 Sr to below NRC Class A LLW requirements. The total alpha removal efficiency was not sufficient to reduce the activity of the tank waste to below NRC Class A non-TRU requirements. The lower than expected removal efficiency for the actinides is due to loading of the Ph2Bu2CMPO in the universal solvent exiting the actinide strip section and entering the wash section resulted in the recycle of the actinides back to the extraction section. This recycle of the actinides contributed to the low removal efficiency. Significant amounts of the Zr (>97.7%), Ba (>87%), Pb (>98.5%), Fe (6.9%), Mo (19%), and K (17%) were also removed from the feed with the universal solvent extraction flowsheet.

Law, Jack Douglas; Herbst, Ronald Scott; Todd, Terry Allen; Brewer, Ken Neal; Romanovskiy, V.N.; Esimantovskiy, V.M.; Smirnov, I.V.; Babain, V.A.; Zaitsev, B.N.

1999-09-01T23:59:59.000Z

354

Demonstration of the TRUEX process for partitioning of actinides from actual ICPP tank waste using centrifugal contactors in a shielded cell facility  

Science Conference Proceedings (OSTI)

TRUEX is being evaluated at Idaho Chemical Processing Plant (ICPP) for separating actinides from acidic radioactive waste stored at ICPP; efforts have culminated in a recent demonstration with actual tank waste. A continuous countercurrent flowsheet test was successfully completed at ICPP using waste from tank WM-183. This demonstration was performed using 24 states of 2-cm dia centrifugal contactors in the shielded hot cell at the ICPP Remote Analytical Laboratory. The flowsheet had 8 extraction stages, 5 scrub stages, 6 strip stages, 3 solvent wash stages, and 2 acid rinse stages. A centrifugal contactor stage in the scrub section was not working during testing, and the scrub feed (aqueous) solution followed the solvent into the strip section, eliminating the scrub section in the flowsheet. An overall removal efficiency of 99.97% was obtained for the actinides, reducing the activity from 457 nCi/g in the feed to 0.12 nCi/g in the aqueous raffinate, well below the NRC Class A LLW requirement of 10 nCi/g for non-TRU waste.The 0.04 M HEDPA strip section back-extracted 99.9998% of the actinide from the TRUEX solvent. Removal efficiencies of >99. 90, 99.96, 99.98, >98.89, 93.3, and 89% were obtained for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, {sup 235}U, {sup 238}U, and {sup 99}Tc. Fe was partially extracted by the TRUEX solvent, resulting in 23% of the Fe exiting in the strip product. Hg was also extracted by the TRUEX solvent (73%) and stripped from the solvent in the 0.25 M Na2CO3 wash section. Only 1.4% of the Hg exited with the high activity waste strip product.

Law, J.D.; Brewer, K.N.; Herbst, R.S.; Todd, T.A.

1996-09-01T23:59:59.000Z

355

Demonstration of a Universal Solvent Extraction Process for the Separation of Cesium and Strontium from Actual Acidic Tank Waste at the INEEL  

Science Conference Proceedings (OSTI)

A universal solvent extraction process is being evaluated for the simultaneous separation of Cs, Sr, and the actinides from acidic high-activity tank waste at the Idaho National Engineering and Environmental Laboratory (INEEL) with the goal of minimizing the high-activity waste volume to be disposed in a deep geological repository. The universal solvent extraction process is being developed as a collaborative effort between the INEEL and the Khlopin Radium Institute in St. Petersburg, Russia. The process was recently demonstrated at the INEEL using actual radioactive, acidic tank waste in 24 stages of 2-cm-diameter centrifugal contactors located in a shielded cell facility. With the testing, removal efficiencies of 99.95%, 99.985%, and 95.2% were obtained for Cs-137, Sr-90, and total alpha, respectively. This is sufficient to reduce the activities of Cs-137 and Sr-90 to below NRC Class A LLW requirements. The total alpha removal efficiency was not sufficient to reduce the activity of the tank waste to below NRC Class A non-TRU requirements. The lower than expected removal efficiency for the actinides is due to loading of the Ph2Bu2CMPO in the universal solvent with actinides and metals (Zr, Fe, and Mo). Also, the carryover of aqueous solution (flooding) with the solvent exiting the actinide strip section and entering the wash section resulted in the recycle of the actinides back to the extraction section. This recycle of the actinides contributed to the low removal efficiency. Significant amounts of the Zr (>97.7%), Ba (>87%), Pb (>98.5%), Fe (>6.9%), Mo (19%), and K (17%) were also removed from the feed with the universal solvent extraction flowsheet.

B. N. Zaitsev (Khlopin Radium Institute); D. J. Wood (INEEL); I. V. Smirnov; J. D. Law; R. S. Herbst; T. A. Todd; V. A. Babain; V. M. Esimantovskiy; V. N. Romanovskiy

1999-08-01T23:59:59.000Z

356

9/18/09 2:44 PMThunderbolts Forum View topic -Dark Energy may not actually exist Page 1 of 12http://www.thunderbolts.info/forum/phpBB3/viewtopic.php?p=25303&sid=87fbf6c3a5361ee50b143431ee0e553d  

E-Print Network (OSTI)

9/18/09 2:44 PMThunderbolts Forum · View topic - Dark Energy may not actually exist Page 1 of 12 Dark Energy may not actually exist Moderators: arc - On With the New #12;9/18/09 2:44 PMThunderbolts Forum · View topic - Dark Energy may not actually exist Page 2

Temple, Blake

357

Performance-Based Incentive | Open Energy Information  

Open Energy Info (EERE)

Performance-Based Incentive Performance-Based Incentive Jump to: navigation, search Performance-based incentives (PBIs), also known as production incentives, provide cash payments based on the number of kilowatt-hours (kWh) or BTUs generated by a renewable energy system. A "feed-in tariff" is an example of a PBI. To ensure project quality, payments based on a system's actual performance are generally more effective than payments based on a system's rated capacity. (Note that tax incentives based on the amount of energy produced by an eligible commercial facility are categorized as "Corporate Tax Incentives" in DSIRE.) [1] Contents 1 Performance-Based Incentive Incentives 2 References Performance-Based Incentive Incentives CSV (rows 1 - 194) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

358

SU?E?T?21: A Grid Intensity?Based Dose Algorithm to Realize MLC Irregular and Inhomogeneous Field Modeling for Monte Carlo Clinical Application  

Science Conference Proceedings (OSTI)

Purpose: A grid intensity?based dose algorithm to realize MLC irregular?inhomogeneous field modeling is presented for Monte Carlo clinical application in ARTS (Accurate Radiotherapy System). Methods: Linac modeling actually is a multi?parameter optimization process

2013-01-01T23:59:59.000Z

359

CENTIMETER CONTINUUM OBSERVATIONS OF THE NORTHERN HEAD OF THE HH 80/81/80N JET: REVISING THE ACTUAL DIMENSIONS OF A PARSEC-SCALE JET  

SciTech Connect

We present 6 and 20 cm Jansky Very Large Array/Very Large Array observations of the northern head of the HH 80/81/80N jet, one of the largest collimated jet systems known so far, aimed to look for knots farther than HH 80N, the northern head of the jet. Aligned with the jet and 10' northeast of HH 80N, we found a radio source not reported before, with a negative spectral index similar to that of HH 80, HH 81, and HH 80N. The fit of a precessing jet model to the knots of the HH 80/81/80N jet, including the new source, shows that the position of this source is close to the jet path resulting from the modeling. If the new source belongs to the HH 80/81/80N jet, its derived size and dynamical age are 18.4 pc and >9 Multiplication-Sign 10{sup 3} yr, respectively. If the jet is symmetric, its southern lobe would expand beyond the cloud edge resulting in an asymmetric appearance of the jet. Based on the updated dynamical age, we speculate on the possibility that the HH 80/81/80N jet triggered the star formation observed in a dense core found ahead of HH 80N, which shows signposts of interaction with the jet. These results indicate that parsec-scale radio jets can play a role in the stability of dense clumps and the regulation of star formation in the molecular cloud.

Masque, Josep M.; Estalella, Robert [Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Marti i Franques 1, E-08028 Barcelona, Catalunya (Spain); Girart, Josep M. [Institut de Ciencies de l'Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5-parell 2, E-08193 Bellaterra, Catalunya (Spain); Rodriguez, Luis F. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 3-72, 58090 Morelia, Michoacan (Mexico); Beltran, Maria T. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

2012-10-10T23:59:59.000Z

360

Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

362

Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

363

Actual Date of Delivery Deliverable Security Class  

E-Print Network (OSTI)

This document provides an overview of all NoAH components, defines their requirements and describes the interface between them. The NoAH architecture, as described so far, is a set of individual components that cooperate to form a farm of distributed honeypots. Although the main NoAH components –low- and highinteraction honeypots, signature generation,

unknown authors

2006-01-01T23:59:59.000Z

364

The Actual Cost of Food Systems on  

E-Print Network (OSTI)

emissions and air quality); infrastructure; energy (fuel); congestion; safety; and user (tax payer) costs emissions and air quality); infrastructure; energy (fuel); congestion; safety; and user (tax payer) costs ...................................................................................................................16 Table 14: Fruit and Vegetable Consumption Rate Per Capita from County Survey

Beresnev, Igor

365

Design Parameters Derived from Actual Forgings*  

Science Conference Proceedings (OSTI)

...Minimum R f : R c ratio is 1.0 to 1. Maximum R f : R c ratio is 6.8 to 1. Average R f : R c ratio is 2.8 to 1....

366

Definition: Net Actual Interchange | Open Energy Information  

Open Energy Info (EERE)

interchange, balancing authority, smart grid, Balancing Authority Area References Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign...

367

Might Dark Matter be Actually Black?  

DOE Green Energy (OSTI)

There have been proposals that primordial black hole remnants (BHRs) are the dark matter, but the idea is somewhat vague. We argue here first that the generalized uncertainty principle (GUP) may prevent black holes from evaporating completely, in a similar way that the standard uncertainty principle prevents the hydrogen atom from collapsing. Secondly we note that the hybrid inflation model provides a plausible mechanism for production of large numbers of small black holes. Combining these we suggest that the dark matter might be composed of Planck-size BHRs and discuss the possible constraints and signatures associated with this notion.

Chen, Pisin

2003-08-06T23:59:59.000Z

368

Attachment Implementation Procedures to Report Deferred, Actual...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

maintenance costs should be reported from asset-level data collected in the Site's Maintenance Management and Financial Management Systems. b. Annual Required Maintenance...

369

Geophysics-based method of locating a stationary earth object  

DOE Patents (OSTI)

A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

Daily, Michael R. (Albuquerque, NM); Rohde, Steven B. (Corrales, NM); Novak, James L. (Albuquerque, NM)

2008-05-20T23:59:59.000Z

370

Louisiana Light Sweet First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's----- 2000's----40.24: 51.95: 64.04: 72.93: 104.51: 61.26: 2010's: ...

371

Cushing, OK WTI Spot Price FOB (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 15.05: 19.20: 15.97: 19.64: 1990's: 24.53: 21.54: 20.58: 18.43: ...

372

Utah Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 69: 78: 69: 72: 69: 72: 69: 69: 72: 69: 72: 69: 1982: 63: 63: 63: 63: 63: 63: 63: 63: 46: 63: 63: 63: 1983 ...

373

Utah Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 9.98: 11.41: 1980's: 19.79: 34.14: 30.50: 28.12: 27.21: 23.98: 13.33: 17.22: 14 ...

374

Florida Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

456: 453: 469: 462: 479: 1993: 488: 385: 436: 453: 475: 449: 470: 489: 479: 501: 480: 499: 1994: 490: 482: 494: 510: 529: 491: 527: 497: 487: 525: 522: 538: 1995: 514 ...

375

Oklahoma Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

456: 432: 445: 414: 451: 435: 429: 464: 363: 1984: 451: 495: 440: 474: 454: 467: 468: 394: 509: 450: 476: 450: 1985: 446: 438: 449: 459: 458: 428: 440: 449: 429: 460 ...

376

U.S. Product Supplied of Waxes (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 568: 522: 574: 542: 542: 566: 529: 618: 593: 523: 506: 497: 1982: 466: 398: 418: 399: 357: 427: 457: 456 ...

377

Kansas Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Release Date: 11/1/2013: Next Release Date: 12/2/2013: Referring Pages: Domestic Crude Oil First Purchase Prices by Area

378

Louisiana Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

24.51: 24.84: 30.52: 40.48: 54.05: 64.23: 71.63: 100.89: 59.18: 2010's: 78.25: 106.20: 105.97 ... Domestic Crude Oil First Purchase Prices by Area ...

379

Wyoming Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

96.51: 97.39-= No Data Reported; --= Not Applicable; NA = Not Available; ... Domestic Crude Oil First Purchase Prices by Area ...

380

Montana Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

72.51: 72.37: 82.12: 87.25: 86.80: 82.93: 80.25: 2013: 88.92: 87.79: 86.40: 86.18: 87.02: 85.58: 98.28: 98.25 ... Domestic Crude Oil First Purchase Prices by Area ...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

U.S. Exports of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1870's: 248: 269: 390: 468: 344: 394: 603: 685: 573: 681: 1880's: 875: ...

382

Cushing, OK WTI Spot Price FOB (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

View History: Daily Weekly Monthly Annual : Download Data (XLS File) Cushing, OK ... Spot Prices for Crude Oil and Petroleum Products ...

383

U.S. Imports of Finished Motor Gasoline (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

1954: 2: 2: 1: 1: 2: 133: 133: 4: 15: 530: 198: 164: 1955: 307: 534: 575: 125: 310: 297: 384: 258: 1,063: 206: 537: 213: 1956: 11: 111: 84: 4: 139: ...

384

U.S. Exports of Finished Motor Gasoline (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

1954: 87: 101: 57: 85: 108: 112: 104: 92: 98: 102: 99: 85: 1955: 91: 81: 79: 79: 99: 96: 112: 103: 101: 104: 90: 97: 1956: 90: 56: 92: 92: 85: 88: ...

385

New Jersey Imports of Residual Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

1,954: 1,518: 1,613: 2,550: 2,835: 2,293: 1997: 1,158: 2,519: 2,310: 1,971: 2,003: 657: 2,225: 1,104: 1,023: 1,392: 1,779: 1,002: 1998: 2,722: 1,010: ...

386

U.S. Kerosene Stocks at Bulk Terminals (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

1,954: 1,760: 1,941: 2,174: 2,631: 2,627: 2,637: 2,157: 2010: 2,651: 2,126: 1,992: 2,006: 2,003: 2,170: 2,092: 2,106: 2,494: 2,762: 2,220: 1,733: ...

387

U.S. Exports of Distillate Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

1954: 1,780: 1,468: 1,652: 2,114: 2,176: 2,430: 2,018: 1,546: 1,646: 2,342: 2,911: 2,118: 1955: 1,993: 1,051: 1,761: 1,632: 2,319: 2,469: 2,379: ...

388

U.S. Exports of Finished Motor Gasoline (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

1954: 2,705: 2,833: 1,776: 2,539: 3,359: 3,367: 3,232: 2,865: 2,942: 3,148: 2,967: 2,633: 1955: 2,829: 2,280: 2,452: 2,376: 3,077: 2,874: 3,486: ...

389

Oklahoma Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

15.16: 14.48: 13.41: 13.72: 13.13: 11.72: 12.06: 11.69: 13.30: 12.65: 11.25: 9.74: 1999: 10.89: 10.39: 13.41: 15.68: 16.36: 16.84: 18.76: 19.58: ...

390

Wyoming Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 9.16: 11.73: 1980's: 21.34: 32.30: 29.37: 27.19: 26.73: 24.67: ...

391

Alaska North Slope First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Referring Pages: Domestic Crude Oil First Purchase Prices by Area; Domestic Crude Oil First Purchase Prices for Selected Crude Streams

392

U.S. Exports of Reformulated Motor Gasoline (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 0: 0: 1,150: 634: 79: 1,346: 175: 2000's: 208: 1,870: 1,948: 664: 647: 4,694 ...

393

U.S. Imports of Finished Motor Gasoline (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1930's: 0: 78: 144: 79: 47: 1940's: 97: 335: 115: 5,736: 3,148: 1,807: 1: 358: 302: 0 ...

394

U.S. Exports of Conventional Motor Gasoline (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: NA: NA: NA: NA: NA: NA: NA: NA: NA: NA: NA: NA: 1994: 3,010: 2,151: 2,737: 2,183: 1,996: 2,628: 2,410 ...

395

U.S. Exports to Chile of MTBE (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 21: 627: 930: 1,110: 2010's: 1,040: 1,115: 1,327-

396

California Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 1,001: 1,022: 1,025: 1,043: 1,079: 1,036: 999: 969: 907: 1990's: 879: 875: 835 ...

397

Cushing, OK Crude Oil Future Contract 1 (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Week Of Mon Tue Wed Thu Fri ; 1983 Apr- 4 to Apr- 8: 29.44: 29.71: 29.92: 30.17: 30.38: 1983 Apr-11 to Apr-15: 30.26: 30.83: 30.82: 30.67: 30.48: 1983 Apr-18 to Apr-22

398

Cushing, OK WTI Spot Price FOB (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Week Of Mon Tue Wed Thu Fri ; 1985 Dec-30 to Jan- 3: 25.56: 26.00: 1986 Jan- 6 to Jan-10: 26.53: 25.85: 25.87: 26.03: 25.65: 1986 Jan-13 to Jan-17: 25.08: 24.97

399

U.S. Product Supplied of Lubricants (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

4,982: 4,737: 5,138: 5,749: 5,140: 5,121: 5,015: 5,249: 5,236: 5,761: 4,330: 4,713: 1999: 4,433: 4,517: 5,213: 5,111: 4,934: 5,316: 5,194: 5,126: 5,455: 5,763: 5,287 ...

400

Ohio Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 37: 40: 41: 42: 41: 37: 33: 32: 28: 1990's: 27: 25: 25: 23: 24: 23: 23: 24: 18 ...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Extrusion of electrode material by liquid injection into extruder barrel  

DOE Patents (OSTI)

An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells. 1 fig.

Keller, D.G.; Giovannoni, R.T.; MacFadden, K.O.

1998-03-10T23:59:59.000Z

402

Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

403

Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Montana Natural Gas Liquids Proved Reserves...

404

Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Florida Natural Gas Liquids Proved Reserves...

405

Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

406

Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Kansas Natural Gas Liquids Proved Reserves...

407

New York Natural Gas Liquids Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 New York Natural Gas Liquids Proved Reserves...

408

Wyoming Natural Gas Liquids Proved Reserves (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 285: 1980's: 341: 384: 2000's: 1,032: 1,121-

409

Louisiana Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

9,977: 9,898: 9,839: 9,799: 9,742: 9,681: 2000: 9,132: 8,580: 9,183: 8,795: 8,943: 8,576: 8,808: 8,976: 8,473: 8,740: 8,337: 8,882: 2001: 8,719: 8,282: 9,030: 8,825 ...

410

Cushing, OK WTI Spot Price FOB (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 15.05: 19.20: 15.97: 19.64: 1990's: 24.53: 21.54: 20.58: 18.43: 17.20: 18.43: 22 ...

411

West Texas Intermediate First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Release Date: 7/1/2013: Next Release Date: 8/1/2013: Referring Pages: Domestic Crude Oil First Purchase Prices for Selected Crude Streams

412

Texas - RRC District 5 Crude Oil Proved Reserves (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 68: 68: 55: 1980's: 52: 49: 45: 42: 36: 59: 53: 54: 48: 46: 1990's: 47: 46: 56 ...

413

Texas Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Release Date: 10/1/2013: Next Release Date: 11/1/2013: Referring Pages: Domestic Crude Oil First Purchase Prices by Area

414

Texas - RRC District 9 Crude Oil Proved Reserves (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 260: 190: 200: 1980's: 218: 225: 219: 220: 214: 285: 237: 206: 202: 200: 1990's ...

415

Texas - RRC District 6 Crude Oil Proved Reserves (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 1,568: 1,444: 1,177: 1980's: 1,115: 1,040: 947: 918: 889: 851: 750: 733: 685 ...

416

Texas - RRC District 10 Crude Oil Proved Reserves (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 120: 90: 97: 1980's: 89: 107: 112: 105: 108: 140: 104: 102: 99: 97: 1990's: 99 ...

417

DEMOCRACY OVER A BARREL: OIL, REGIME CHANGE AND WAR  

E-Print Network (OSTI)

have declared war on the foreign oil companies they hold2004. “Saving Iraq from Its Oil,” Foreign Affairs, 77.Oil states are ‘honey pots’ – ones to be raided by all actors, foreign and

Karl, Terry

2008-01-01T23:59:59.000Z

418

U.S. Exports of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1920: 469: 853: 892: 693: 761: 627: 723: 553: 790: 777: 796: 823: 1921: 743: 794: 750: 748: 874: ...

419

Bakken oil production forecast to top 1 million barrels per ...  

U.S. Energy Information Administration (EIA)

Home; Browse by Tag; Most Popular Tags. electricity; oil/petroleum; liquid fuels; natural gas; prices; ... Privacy/Security Copyright & Reuse Accessibility ...

420

Cushing, OK WTI Spot Price FOB (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Release Date: 10/9/2013: Next Release Date: 10/17/2013: Referring Pages: Spot Prices for Crude Oil and Petroleum Products

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table 3.1 Petroleum Overview (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

R 6,383 547 R 6,930 R 2,507 R 9,437 R 901 R 1,006 R 10,047 3,255 R 6,793 R -304 R 265 R 18,705 November ..... 6,481 553 7,034 R 2,536 R 9,570 R 913 R 1,032 R 10,181 ...

422

West Virginia Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 248: 234: 316: 241: 294: 278: 293: 267: 288: 424: 266: 324: 1982: 249: 254: 276: 272: 241: 230: 279: 295 ...

423

U.S. Refinery Net Production of Ethylene (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 265: 241: 239: 161: 233: 222: 194: 212: 139: 209: 175: 191: 2006: 116: 122: 189: 170: 148: 142: 97: 108 ...

424

DEMOCRACY OVER A BARREL: OIL, REGIME CHANGE AND WAR  

E-Print Network (OSTI)

years ago in Caracas, Venezuela. “It brings trouble. ” Whilebecome democratic, as Venezuela demonstrated in 1958. Butdemocracies like Venezuela’s restricted partiocracy. These

Karl, Terry

2008-01-01T23:59:59.000Z

425

U.S. Exports to Venezuela of MTBE (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 271: 297: 551: 258: 223: 254: 663: 2006: 553: 311: 613: 766: 408: 755: 878: 1,099: 687: 775: 397: 488 ...

426

Michigan Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Release Date: 10/1/2013: Next Release Date: 11/1/2013: Referring Pages: Domestic Crude Oil First Purchase Prices by Area

427

Michigan Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 89: 86: 87: 83: 75: 70: 71: 64: 59: 1990's: 54: 48: 43: 38: 33: 31: 30: 28: 25 ...

428

Michigan Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 11.86: 14.47: 1980's: 23.54: 35.74: 31.80: 28.93: 28.54: 26.16: 14.61: 17.63: 14 ...

429

Michigan Crude Oil Reserves New Field Discoveries (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 13: 13: 4: 1980's: 7: 5: 3: 9: 3: 4: 2: 2: 1: 1: 1990's: 0: 1: 0: 0: 0: 1: 0: 0 ...

430

U.S. Imports of Fuel Ethanol (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 244: 279: 387: 313: 85: 66: 87: 2000's: 116: 315: 306: 292: 3,542: 3,234: 17,408 ...

431

Alaska North Slope Crude Oil Production (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 46,909: 42,829: 47,507: 45,677: 46,344: 46,325: 47,107: 47,117: 45,759: 46,890: 45,987: 47,814: 1982 ...

432

Europe Brent Spot Price FOB (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

View History: Daily Weekly Monthly Annual : Download Data (XLS File) Europe ... Spot Prices for Crude Oil and Petroleum Products ...

433

Table 4. Crude oil production and resources (million barrels)  

U.S. Energy Information Administration (EIA)

2013 EIA/ARI unproved shale oil technically recoverable resources (TRR) 2012 USGS conventional unproved oil TRR, including reserve growth

434

Arkansas Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 1,552: 1,400: 1,576: 1,486: 1,576: 1,486: 1,576: 1,576: 1,486: 1,576: 1,486: 1,576: 1982: 1,601: 1,446 ...

435

Cushing, OK Crude Oil Future Contract 1 (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 30.66: 29.44: 27.89: 15.05: 19.15: 15.96: 19.58: 1990's: 24.50: 21.50: 20.58: 18 ...

436

Alaska Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 49,789: 45,346: 50,150: 48,235: 48,977: 48,967: 49,761: 49,675: 48,212: 49,491: 48,427: 50,307: 1982 ...

437

Alaska North Slope Crude Oil Production (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 1,513: 1,530: 1,532: 1,523: 1,495: 1,544: 1,520: 1,520: 1,525: 1,513: 1,533: 1,542: 1982: 1,627: 1,631 ...

438

Texas Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 2,554: 2,488: 2,419: 2,413: 2,381: 2,245: 2,085: 2,010: 1,885: 1990's: 1,859 ...

439

Vermont Imports of Residual Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 51: 60: 21: 156: 86: 2000's: 49: 74: 53: 482: 623: 656: 518: 423: 1,313: 269 ...

440

Extrusion of electrode material by liquid injection into extruder barrel  

SciTech Connect

An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells.

Keller, David Gerard (Baltimore, MD); Giovannoni, Richard Thomas (Reisterstown, MD); MacFadden, Kenneth Orville (Highland, MD)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Colorado Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Release Date: 10/1/2013: Next Release Date: 11/1/2013: Referring Pages: Domestic Crude Oil First Purchase Prices by Area

442

Colorado Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 83: 84: 80: 79: 83: 80: 79: 88: 84: 1990's: 83: 86: 81: 81: 78: 77: 68: 70: 61 ...

443

Colorado Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 10.84: 13.28: 1980's: 22.91: 35.69: 31.56: 28.92: 28.09: 25.64: 13.98: 17.71: 14 ...

444

Louisiana Light Sweet First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

75.92: 73.85: 2010: 77.34: 76.09: 79.39: 82.65: 75.13: 76.32: 76.57: 76.92: 76.06: 82.14: 84.01: 89.31: 2011: 91.25: 93.00: 111.27: 119.68: 115.11: 109.07: 111.02 ...

445

Cushing, OK Crude Oil Future Contract 4 (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

93.75: 92.56: 94.79: 95.42: 101.55: 103.42-= No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

446

Weekly Europe Brent Spot Price FOB (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

75.70 : 07/23 : 76.64 : 07/30 : 77.24 : 2010-Aug: 08/06 : 82.69 : 08/13 : 78.21 : 08/20 : 74.94 : 08/27 : 72.82 : 2010-Sep: 09/03 : 75.41 : 09/10 : 77.17 : 09/17 : 78.44

447

The How's and Why's of Replacing the Whole Barrel | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Institute estimates that the United States currently spends about 1 billion each day on oil imports. Of that, more than 70% is consumed by the U.S. transportation sector,...

448

U.S. Exports of Propane and Propylene (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

930: 639: 635: 901: 759: 620: 885: 1,033: 972: 1997: 882: 1,183: 1,227: 949: 723: 942: 754: 729: 486: 910: 1,439: 1,637: 1998: 904: 781: 876: 655: 670: 393: 527: 478 ...

449

U.S. Imports from Greece of Waxes (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2009: 22: 11: 10: 17: 2010: 12: 7: 15: 39: 12: 18: 2011: 42: 22: 18: 28: 30: 2012: 16: 13: 15: 12: 2013: 14-

450

Illinois Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 66: 76: 80: 79: 83: 75: 66: 61: 56: 1990's: 55: 52: 53: 48: 47: 44: 43: 44: 38 ...

451

DEMOCRACY OVER A BARREL: OIL, REGIME CHANGE AND WAR  

E-Print Network (OSTI)

the third largest proven oil reserves in the world; it maythird biggest known crude oil reserves. “This is a nationalGulf monarchies, where oil reserves per capita are 43 times

Karl, Terry

2008-01-01T23:59:59.000Z

452

Florida Crude Oil Reserves New Field Discoveries (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 0: 0: 0: 1980's: 0: 0: 2: 0: 0: 1: 1: 0: 0: 0: 1990's: 0: 0: 0: 0: 0: 0: 0: 0: 0 ...

453

South Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 78: 60: 74: 79: 79: 79: 85: 86: 84: 85: 84: 100: 1982: 97: 86: 105: 101: 99: 101: 100: 102: 95: 92: 89: 91 ...

454

New Mexico - West Crude Oil Proved Reserves (Million Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 29: 25: 21: 1980's: 29: 33: 26: 34: 35: 45: 51: 46: 40: 46: ...

455

New Mexico Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 10.17: 14.33: 1980's: 24.06: 35.04: 31.82: 29.26: 28.69: 26.84: ...

456

New Mexico Crude Oil First Purchase Price (Dollars per Barrel)  

U.S. Energy Information Administration (EIA)

Release Date: 11/1/2013: Next Release Date: 12/2/2013: Referring Pages: Domestic Crude Oil First Purchase Prices by Area

457

U.S. Imports of Petroleum Coke Marketable (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Marketable Petroleum Coke Supply and Disposition; Petroleum Coke Imports from All Countries; U.S. Imports from All Countries ...

458

EPICS BASE  

Energy Science and Technology Software Center (OSTI)

002230MLTPL00 Experimental Physics and Industrial Control System BASE  http://www.aps.anl.gov/epics 

459

Dead-Time Compensation for PMSM Drive Based on Neuro-Fuzzy Observer  

Science Conference Proceedings (OSTI)

To compensate voltage difference between the reference and the actual output voltages caused by dead-time effects, a novel compensation method for permanent magnet synchronous motor (PMSM) drive based on neuro-fuzzy observer is proposed. This method ... Keywords: dead-time, PMSM, ANN, FC

Xianqing Cao; Liping Fan

2008-10-01T23:59:59.000Z

460

Preventive maintenance scheduling based on failure data in a medical device manufacturing facility  

E-Print Network (OSTI)

This study was conducted at a medical device production facility where analysis was done on the reliability of Product S barrel molds for the purpose of predicting preventive maintenance (PM) schedule. Pareto Rule was ...

Mohd Fauzi, Mohammed Faizal B

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A Methodology to Assess the Reliability of Hydrogen-based Transportation Energy Systems  

E-Print Network (OSTI)

between the government and foreign oil Freedom House is aIran that extend to foreign oil and gas companies investingoil inexpensively (for as little as $1/barrel at some fields), making it attractive to foreign

McCarthy, Ryan

2004-01-01T23:59:59.000Z

462

WTI Crude Oil Prices Are Expected To Remain Relatively High Through At  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: As we just saw, one of the primary factors impacting gasoline price is the crude oil price. This graph shows monthly average spot West Texas Intermediate crude oil prices. Spot WTI crude oil prices broke $36 per barrel in November briefly as anticipated boosts to world supply from OPEC and other sources did not show up in actual stocks data. Crude oil prices are expected to be about $30 per barrel for the rest of this year, but note the uncertainty bands on this projection. They give an indication of how difficult it is to know what these prices are going to do. Also, EIA does not forecast volatility. This relatively flat forecast could be correct on average, with wide swings around the base line. With the EIA forecast for crude prices staying high this year,

463

Weekly Preliminary Crude Imports by Top 10 Countries of Origin (based on  

Gasoline and Diesel Fuel Update (EIA)

Preliminary Crude Imports by Top 10 Countries of Origin (based on 2012 Petroleum Supply Monthly data) Preliminary Crude Imports by Top 10 Countries of Origin (based on 2012 Petroleum Supply Monthly data) (Thousand Barrels per Day) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Country 12/06/13 12/13/13 12/20/13 12/27/13 01/03/14 01/10/14 View History 1- Canada 2,316 2,786 2,594 2,515 2,838 2,460 2010-2014 2- Saudi Arabia 1,295 1,905 1,614 1,328 1,242 1,521 2010-2014 3- Mexico 1,161 947 1,019 1,082 867 555 2010-2014 4- Venezuela 783 779 518 1,008 709 730 2010-2014 5- Iraq 120 143 332 370 626 202 2010-2014 6- Nigeria 136 0 0 36 98 146 2010-2014 7- Colombia 114 127 288 320 257 360 2010-2014 8- Kuwait 127 237 85 438 584 263 2010-2014

464

Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per barrel)" ,1993,1994,1995,1996,1997,1998,1999,20...

465

Model-Checking Based on Fluid Petri Nets for the Temperature Control System of the ICARO Co-generative Plant  

Science Conference Proceedings (OSTI)

The modeling and analysis of hybrid systems is a recent and challenging research area which is actually dominated by two main lines: a functional analysis based on the description of the system in terms of discrete state (hybrid) automata (whose goal ...

Marco Gribaudo; A. Horváth; Andrea Bobbio; Enrico Tronci; Ester Ciancamerla; Michele Minichino

2002-09-01T23:59:59.000Z

466

Base Elements  

Science Conference Proceedings (OSTI)

Table 4   Principal effects of superalloy base elements on alloy characteristics...to γ� or γ� Requires fcc stabilizer Cobalt prices have been known to be volatile in the past. Suitable for creep-resistant applications with low stresses or

467

NETL: News Release - Innovative Coal-Based Product Bumps Petroleum Out of  

NLE Websites -- All DOE Office Websites (Extended Search)

16, 2008 16, 2008 Innovative Coal-Based Product Bumps Petroleum Out of Equation Synthetic Binder Pitch Uses Hydrocarbons from Coal in Place of Petroleum Feedstocks WASHINGTON, DC - Through a cooperative agreement with the Office of Fossil Energy's National Energy Technology Laboratory (NETL), a team headed by West Virginia University (WVU) has developed and successfully demonstrated a synthetic binder pitch that uses hydrocarbons from coal to supplement or replace petroleum feedstocks. The new binder pitch, and similar coal-derived products, could potentially reduce America's dependence on imported oil. Binder pitch - a carbon-rich, tar-like material - is an important ingredient in making graphite rods used in electric arc furnaces for the manufacture of steel from scrap. Conventional binder pitch usually blends petroleum pitch with standard coal-tar pitch. The new synthetic pitch could replace at least 19,000 tons of conventional pitch needed each year by graphite electrode manufacturers. WVU claims that the same pitch could be used by the aluminum industry; if so, demand for the new product would be close to one million barrels per year.

468

Development of simplified design aids based on the results of simulation analysis  

DOE Green Energy (OSTI)

The Solar Load Ratio method for estimating the performance of passive solar heating systems is described. It is a simplified technique which is based on correlating the monthly solar savings fraction in terms of the ratio of monthly solar radiation absorbed by the building to total monthly building thermal load. The effect of differences between actual design parameters and those used to develop the correlations is estimated afterwards using sensitivity curves. The technique is fast and simple and sufficiently accurate for design purposes.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

469

Analysis of Structural MtrC Models Based on Homology with the Crystal Structure of MtrF  

Science Conference Proceedings (OSTI)

The outer-membrane decahaem cytochrome MtrC is part of the transmembrane MtrCAB complex required for mineral respiration by Shewanella oneidensis. MtrC has significant sequence similarity to the paralogous decahaem cytochrome MtrF, which has been structurally solved through X-ray crystallography. This now allows for homology-based models of MtrC to be generated. The structure of these MtrC homology models contain ten bis-histidine-co-ordinated c-type haems arranged in a staggered cross through a four-domain structure. This model is consistent with current spectroscopic data and shows that the areas around haem 5 and haem 10, at the termini of an octahaem chain, are likely to have functions similar to those of the corresponding haems in MtrF. The electrostatic surfaces around haem 7, close to the ?-barrels, are different in MtrF and MtrC, indicating that these haems may have different potentials and interact with substrates differently.

Edwards, Marcus; Fredrickson, Jim K.; Zachara, John M.; Richardson, David; Clarke, Thomas A.

2012-12-01T23:59:59.000Z

470

A Micro-Computer-Based Fuel Optimization System Utilizing In-Situ Measurement of Carbon Monoxide  

E-Print Network (OSTI)

A microcomputer-based control system utilizing a distributed intelligence architecture has been developed to control combustion in hydrocarbon fuel-fired boilers and heaters to significantly reduce fuel usage. The system incorporates a unique flue gas analyzer that mounts directly in the flue or stack to continuously measure carbon monoxide, unburned hydrocarbons, opacity and temperature. The control console interfaces directly with the boiler's existing analog control system to provide precise air fuel ratio control based on carbon monoxide measurements. Significant decreases in excess air result in reduced fuel usage while meeting steam demand. Actual performance on industrial boilers shows increases in efficiency of from 1% to 3% with substantial fuel savings.

DeVivo, D. G.

1980-01-01T23:59:59.000Z

471

Geothermal energy in Idaho: site data base and development status  

DOE Green Energy (OSTI)

Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are presented. To assess the potential for geothermal resource development in Idaho, several kinds of data were obtained. These include information regarding institutional procedures for geothermal development, logistical procedures for utilization, energy needs and forecasted demands, and resource data. Area reports, data sheets, and scenarios were prepared that described possible geothermal development at individual sites. In preparing development projections, the objective was to base them on actual market potential, forecasted growth, and known or inferred resource conditions. To the extent possible, power-on-line dates and energy utilization estimates are realistic projections of the first events. Commercialization projections were based on the assumption that an aggressive development program will prove sufficient known and inferred resources to accomplish the projected event. This report is an estimate of probable energy developable under an aggressive exploration program and is considered extremely conservative. (MHR)

McClain, D.W.

1979-07-01T23:59:59.000Z

472

Data base of chemical explosions in Kazakhstan  

Science Conference Proceedings (OSTI)

Within the bounds of this report, the following works were done: (1) Information about explosion quarries, located in Southern, Eastern and Northern Kasakstan was summarized. (2) The general information about seismicity of areas of location of explosion quarries was adduced. (3) The system of observation and seismic apparatus, recording the local earthquakes and quarry explosions at the territory of Kazakstan were described. (4) Data base of quarry explosions, that were carried out in Southern, Eastern and Northern Kazakstan during 1995 and first half of 1996 year was adduced. (5) Upon the data of registration of explosions in Southern Kazakstan the correlative dependences between power class of explosions and summary weight of charge were constructed. (6) Seismic records of quarry explosions were adduced. It is necessary to note, that the collection of data about quarry explosions in Kazakstan in present time is very difficult task. Organizations, that makes these explosions, are always suffering reorganizations and sometimes it is actually impossible to receive all the necessary information. Some quarries are situated in remote, almost inaccessible regions, and within the bounds of supplier financing not the every quarry was in success to visit. So the present data base upon the chemical explosions for 1995 is not full and in further it`s expansion is possible.

Demin, V.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Malahova, M.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Martysevich, P.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Mihaylova, N.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Nurmagambetov, A. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Kopnichev, Yu.F. D. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Edomin, V.I. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan)

1996-12-01T23:59:59.000Z

473

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Liquid fuels Liquid fuels Overview Figure 27. World liquid fuels consumption by region, 1990-2035. figure data Consumption of petroleum and other liquid fuels15 increases from 85.7 million barrels per day in 2008 to 112.2 million barrels per day in 2035 in the IEO2011 Reference case. Although world liquids consumption actually declined in 2009 (to 83.9 million barrels per day), it recovered in 2010 to an estimated 86.0 million barrels per day and is expected to continue increasing in 2011 and beyond as economic growth strengthens, especially among the developing non-OECD nations. In the long term, world liquids consumption increases despite world oil prices that rise to $125 per barrel (real 2009 dollars) by 2035. More than 75 percent of the increase in total liquids consumption is projected for the nations of non-OECD Asia and the

474

Weekly Preliminary Crude Imports by Top 10 Countries of Origin ...  

U.S. Energy Information Administration (EIA)

Weekly Preliminary Crude Imports by Top 10 Countries of Origin (based on 2012 Petroleum Supply Monthly data) (Thousand Barrels per Day)

475

NDVI-based vegetation rendering  

Science Conference Proceedings (OSTI)

The area of terrain rendering has seen great improvements both in rendering performance and image quality. The latest terrain rendering algorithms efficiently utilize the capabilities of actual programmable graphics hardware in order to achieve real-time ... Keywords: continuous level of detail, terrain rendering, texture splatting, vegetation rendering

Stefan Roettger

2007-01-01T23:59:59.000Z

476

Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

barrels of oil (www.fe.doe.gov/programs/reserves/spr/spr-Persian-Gulf oil • the Strategic Petroleum Reserve (SPR) Inis added to the reserve, and that oil is sold sporadically

Delucchi, Mark; Murphy, James

2005-01-01T23:59:59.000Z

477

MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network (OSTI)

barrels of oil (www.fe.doe.gov/programs/reserves/spr/spr-Persian-Gulf oil • the Strategic Petroleum Reserve (SPR) Inis added to the reserve, and that oil is sold sporadically

Delucchi, Mark

2005-01-01T23:59:59.000Z

478

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Nonswitchable Minimum and Maximum Consumption, 2006; " Nonswitchable Minimum and Maximum Consumption, 2006; " " Level: National and Regional Data;" " Row: Energy Sources;" " Column: Consumption Potential;" " Unit: Physical Units." ,"Actual","Minimum","Maximum" "Energy Sources","Consumption","Consumption(a)","Consumption(b)" ,"Total United States" "Electricity Receipts(c) (million kilowatthours)",854102,826077,889281 "Natural Gas (billion cubic feet)",5357,4442,5649 "Distillate Fuel Oil (thousand barrels)",22139,19251,101340 "Residual Fuel Oil (thousand barrels)",39925,25176,85318

479

What if you could actually trust your kernel?  

Science Conference Proceedings (OSTI)

The advent of formally verified OS kernels means that for the first time we have a truly trustworthy foundation for systems. In this paper we explore the design space this opens up. The obvious applications are in security, although not all of them are ...

Gernot Heiser; Leonid Ryzhyk; Michael Von Tessin; Aleksander Budzynowski

2011-05-01T23:59:59.000Z

480

Table 5. Total Petroleum Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.00 17.89 17.55 17.24 16.98 16.99 AEO 1983 15.82 16.13 16.37 16.50 16.56 16.63 17.37 AEO 1984 15.77 15.76 16.01...

Note: This page contains sample records for the topic "barrels actual base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Efficiency in Denmark - Results and actual programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Renato Ezban is responsible for the implementation of a new system for certification of buildings and inspection of boilers and ventilation systems. Peter Bach is chairman of ECEEE...

482

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

483

Meteorological field measurements at potential and actual wind turbine sites  

DOE Green Energy (OSTI)

An overview of experiences gained in a meteorological measurement program conducted at a number of locations around the United States for the purpose of site evaluation for wind energy utilization is provided. The evolution of the measurement program from its inception in 1976 to the present day is discussed. Some of the major accomplishments and areas for improvement are outlined. Some conclusions on research using data from this program are presented.

Renne, D.S.; Sandusky, W.F.; Hadley, D.L.

1982-09-01T23:59:59.000Z

484

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O’Sullivan, Francis Martin

485

experiment actually sees," Smith says. "When we were  

E-Print Network (OSTI)

,200 pieces of music from record companies and various artists, and that number is still growing. "As more of ceremonies for a number of nationally known gospel artists' concerts and have produced a CD titled Thank You components. The students' main robot features customized parts made with a titanium powder manufacturing

486

Actual Commercial Buildings Energy Use and Emissions and ...  

U.S. Energy Information Administration (EIA)

An analysis of trends in energy consumption and energy-related carbon emissions in U.S. buildings, 1970-1998.

487

The potential and actual effectiveness of interactive query expansion  

E-Print Network (OSTI)

Van Rijsbergen,C.J. Magennis,M. Proceedings of the 20th Annual International ACM SIGIR Conference on Reseach and Development in Information Retrieval (Seattle, USA) pp 324-332 ACM

Van Rijsbergen, C.J.

488

Full field imaging based instantaneous hyperspectral absolute refractive index measurement  

SciTech Connect

Multispectral refractometers typically measure refractive index (RI) at discrete monochromatic wavelengths via a serial process. We report on the demonstration of a white light full field imaging based refractometer capable of instantaneous multispectral measurement of absolute RI of clear liquid/gel samples across the entire visible light spectrum. The broad optical bandwidth refractometer is capable of hyperspectral measurement of RI in the range 1.30 1.70 between 400nm 700nm with a maximum error of 0.0036 units (0.24% of actual) at 414nm for a = 1.50 sample. We present system design and calibration method details as well as results from a system validation sample.

Baba, Justin S [ORNL; Boudreaux, Philip R [ORNL

2012-01-01T23:59:59.000Z

489

Integrating multiple internet directories by instance-based learning  

E-Print Network (OSTI)

Finding desired information on the Internet is becoming increasingly difficult. Internet directories such as Yahoo!, which organize web pages into hierarchical categories, provide one solution to this problem; however, such directories are of limited use because some bias is applied both in the collection and categorization of pages. We propose a method for integrating multiple Internet directories by instance-based learning. Our method provides the mapping of categories in order to transfer documents from one directory to another, instead of simply merging two directories into one. We present herein an effective algorithm for determining similar categories between two directories via a statistical method called the k-statistic. In order to evaluate the proposed method, we conducted experiments using two actual Internet directories, Yahoo! and Google. The results show that the proposed method achieves extensive improvements relative to both the Naive Bayes and Enhanced Naive Bayes approaches, without any text analysis on documents. 1

Ryutaro Ichise; Hiedeaki Takeda; Shinichi Honiden

2003-01-01T23:59:59.000Z

490

Tariff-based analysis of commercial building electricityprices  

Science Conference Proceedings (OSTI)

This paper presents the results of a survey and analysis ofelectricity tariffs and marginal electricity prices for commercialbuildings. The tariff data come from a survey of 90 utilities and 250tariffs for non-residential customers collected in 2004 as part of theTariff Analysis Project at LBNL. The goals of this analysis are toprovide useful summary data on the marginal electricity prices commercialcustomers actually see, and insight into the factors that are mostimportant in determining prices under different circumstances. We providea new, empirically-based definition of several marginal prices: theeffective marginal price and energy-only anddemand-only prices, andderive a simple formula that expresses the dependence of the effectivemarginal price on the marginal load factor. The latter is a variable thatcan be used to characterize the load impacts of a particular end-use orefficiency measure. We calculate all these prices for eleven regionswithin the continental U.S.

Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; VanBuskirk, Robert D.; McMahon, James E.

2008-03-28T23:59:59.000Z

491

Template based parallel checkpointing in a massively parallel computer system  

DOE Patents (OSTI)

A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.

Archer, Charles Jens (Rochester, MN); Inglett, Todd Alan (Rochester, MN)

2009-01-13T23:59:59.000Z

492

Process for fabricating ZnO-based varistors  

DOE Patents (OSTI)

The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi.sub.2 O.sub.3. The mix is hot-pressed to form a compact at temperatures below 850.degree. C. and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.

Lauf, Robert J. (Oak Ridge, TN)

1985-01-01T23:59:59.000Z

493

Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions  

SciTech Connect

This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne?s research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based mater

Erdemir, Ali [Argonne National Laboratory] [Argonne National Laboratory

2013-09-26T23:59:59.000Z

494

Performance benefits of telerobotics and teleoperation - enhancements for an arm-based tank waste retrieval system  

SciTech Connect

This report evaluates telerobotic and teleoperational arm-based retrieval systems that require advanced robotic controls. These systems will be deployed in waste retrieval activities in Hanford`s Single Shell Tanks (SSTs). The report assumes that arm-based, retrieval systems will combine a teleoperational arm and control system enhanced by a number of advanced and telerobotic controls. The report describes many possible enhancements, spanning the full range of the control spectrum with the potential for technical maturation. The enhancements considered present a variety of choices and factors including: the enhancements to be included in the actual control system, safety, detailed task analyses, human factors, cost-benefit ratios, and availability and maturity of technology. Because the actual system will be designed by an offsite vendor, the procurement specifications must have the flexibility to allow bidders to propose a broad range of ideas, yet build in enough restrictions to filter out infeasible and undesirable approaches. At the same time they must allow selection of a technically promising proposal. Based on a preliminary analysis of the waste retrieval task, and considering factors such as operator limitations and the current state of robotics technology, the authors recommend a set of enhancements that will (1) allow the system to complete its waste retrieval mission, and (2) enable future upgrades in response to changing mission needs and technological advances.

Horschel, D.S. [Sandia National Labs., Albuquerque, NM (United States); Gibbons, P.W. [Westinghouse Hanford Co., Richland, WA (United States); Draper, J.V. [Oak Ridge National Lab., TN (United States)] [and others

1995-06-01T23:59:59.000Z

495

Base isolation case study  

E-Print Network (OSTI)

The primary objective of this thesis is the introduction of the current code, ASCE 7-05 into the base isolation design and the analysis of base isolation response due to seismic forces. An eight story irregular structure ...

Ching, Kenneth A. (Kenneth Apostol)

2008-01-01T23:59:59.000Z

496

Electron Based Techniques  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Characterization of Materials through High Resolution Coherent Imaging: Electron Based Techniques Sponsored by: TMS Structural Materials ...

497

Lattice-based Cryptography  

E-Print Network (OSTI)

In this chapter we describe some of the recent progress in lattice-based cryptography. Lattice-based cryptographic constructions hold a great promise for post-quantum cryptography, as they enjoy very strong security proofs based on worst-case hardness, relatively efficient implementations, as well as great simplicity. In addition, lattice-based cryptography is believed to be secure against quantum computers. Our focus here

Daniele Micciancio; Oded Regev

2008-01-01T23:59:59.000Z

498

Regression Models for Demand Reduction based on Cluster Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

respect to the validity of explanatory variables and fitness of regressions, using actual load profile data of Pacific Gas and Electric Company's commercial and industrial...

499

Contextual Information Retrieval based on Algorithmic Information Theory and Statistical Outlier Detection  

E-Print Network (OSTI)

The main contribution of this paper is to design an Information Retrieval (IR) technique based on Algorithmic Information Theory (using the Normalized Compression Distance- NCD), statistical techniques (outliers), and novel organization of data base structure. The paper shows how they can be integrated to retrieve information from generic databases using long (text-based) queries. Two important problems are analyzed in the paper. On the one hand, how to detect "false positives" when the distance among the documents is very low and there is actual similarity. On the other hand, we propose a way to structure a document database which similarities distance estimation depends on the length of the selected text. Finally, the experimental evaluations that have been carried out to study previous problems are shown.

Martinez, Rafael; Rodriguez, Francisco de Borja; Camacho, David

2007-01-01T23:59:59.000Z

500

Role Based Access Control  

Science Conference Proceedings (OSTI)

... Nash and Poland [10] discuss the application of role based access control to cryptographic authentication devices commonly used in the banking ...