Powered by Deep Web Technologies
Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ZhongHang Baoding Huiteng Windpower Equipment Co Ltd HT Blade | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest FinancingYantaiYourXingxing Wind

2

Baoding, China: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,AurantiaBanburyBankInvest TechnologyBaoding,

3

Baoding Huide Wind Power Engineering Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/Curium VitrificationAltensolOffshoreBaillie WindBaoding

4

Baoding Solar Thermal Equipment Company | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin EnergyBacliff,BallengerEnergyNIES07. ItBanyan EnergyBaoding

5

AWEA Offshore Windpower Conference & Exhibition 2014 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AWEA Offshore Windpower Conference & Exhibition 2014 AWEA Offshore Windpower Conference & Exhibition 2014 October 7, 2014 12:00PM EDT to October 8, 2014 9:00PM EDT Atlantic City,...

6

American Wind Energy Association Offshore WINDPOWER Conference...  

Broader source: Energy.gov (indexed) [DOE]

Offshore WINDPOWER Conference & Exhibition American Wind Energy Association Offshore WINDPOWER Conference & Exhibition October 7, 2014 9:00AM EDT to October 8, 2014 5:00PM EDT AWEA...

7

AWEA WINDPOWER 2015 Conference and Exhiibition  

Broader source: Energy.gov [DOE]

WINDPOWER offers educational, networking, and special events to foster interactions with industry peers, customers, and colleagues. It is the largest conference and exhibition for the wind industry...

8

Windpower  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy WindR&D RoadmapChilocco

9

Clipper Windpower Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower Inc Jump to:

10

Saxon Windpower Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatolia JumpRiegotecSadounSaxon Windpower Ltd

11

Arcadia Windpower Holdings LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy Information theDevelopmentAgroindustrialArcadia Windpower

12

Nautica Windpower LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst Second PowerNautica Windpower LLC Jump

13

Third Planet Windpower | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010) |Thesee Jump to:ThinkWindpower

14

Low Wind Speed Technology Phase I: Clipper Turbine Development Project; Clipper Windpower Technology, Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with Clipper Windpower Technology, Inc. to develop a new turbine design that incorporates advanced elements.

Not Available

2006-03-01T23:59:59.000Z

15

Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio)  

Broader source: Energy.gov [DOE]

Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be...

16

On the Patterns of Wind-Power Input to the Ocean Circulation  

E-Print Network [OSTI]

Pathways of wind-power input into the ocean general circulation are analyzed using Ekman theory. Direct rates of wind work can be calculated through the wind stress acting on the surface geostrophic flow. However, because ...

Roquet, Fabien

17

On the Patterns of Wind-Power Input to the Ocean Circulation FABIEN ROQUET AND CARL WUNSCH  

E-Print Network [OSTI]

On the Patterns of Wind-Power Input to the Ocean Circulation FABIEN ROQUET AND CARL WUNSCH received 1 February 2011, in final form 12 July 2011) ABSTRACT Pathways of wind-power input into the ocean pumping, with a pattern determined by the wind curl rather than the wind itself. Regions of power

Wunsch, Carl

18

Concepts for Wind Turbine Sound Mitigation Page 1 of 16 AWEA Windpower 2013  

E-Print Network [OSTI]

influenced by turbine operational parameters such as rotational speed and blade pitch angle as well as wind turbine source noise mitigation techniques as well as how these technologies and turbine operation canConcepts for Wind Turbine Sound Mitigation Page 1 of 16 AWEA Windpower 2013 Chicago, IL May 6

McCalley, James D.

19

Wind-Power Development in Germany and the U.S.: Multiple Streams, Advocacy Coalitions, and Turning Points  

E-Print Network [OSTI]

Wind-Power Development in Germany and the U.S.: Multiple Streams, Advocacy Coalitions, and Turning). Of the various forms of renewable energy, wind-generated electricity has a unique set of advantages, which make especially large. Wind power produces relatively low levels of environmental damage over its life cycle (like

Qiu, Weigang

20

The effect of wind speed fluctuations on the performance of a wind-powered membrane system for brackish water desalination   

E-Print Network [OSTI]

A wind-powered reverse osmosis membrane (wind-membrane) system without energy storage was tested using synthetic brackish water (2750 and 5500 mg/L NaCl) over a range of simulated wind speeds under both steady-state and ...

Park, Gavin L.; Schäfer, Andrea; Richards, Bryce S.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210  

SciTech Connect (OSTI)

Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

Hughes, S.

2012-05-01T23:59:59.000Z

22

AWEA WINDPOWER Conference & Exhibition  

Broader source: Energy.gov [DOE]

Posters will be presented by DOE’s  Idaho National Laboratory, National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Savannah River National Laboratory.

23

Baoding Tianwei Solarfilms Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin EnergyBacliff,BallengerEnergyNIES07. ItBanyan

24

Nordex Baoding Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst SecondTianjing Shenzhou WindNordex

25

Baoding Tianwei Baobian Electric Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/Curium VitrificationAltensolOffshoreBaillie

26

Windpower Monthly | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do BrasilGmbHWeardaleSmartWindia PowerMonthly

27

Wobben Windpower | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest Financing Service GmbH Co JumpWobben

28

Yorkshire Windpower | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest FinancingYantai

29

Clipper Windpower | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:Climatic Solar Jump

30

Acciona Windpower | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to: navigation, searchAcciona SA Jump to:

31

Urban vindkraft; Urban Windpower in Järva.  

E-Print Network [OSTI]

?? Wind power is an energy source that is becoming increasingly popular in Sweden and around the world. The establishment of large wind farms supply… (more)

Hultén, Mikael

2013-01-01T23:59:59.000Z

32

Third Planet Windpower LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do Brasil EnergiaSurPV Project

33

Wenzhou Huali Windpower | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do BrasilGmbHWeardale Task ForceWelspun

34

Zhongneng Windpower Equipments | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest FinancingYantaiYourXingxing

35

Antarctica: A Southern Hemisphere Windpower Station?  

E-Print Network [OSTI]

The International Polar Year commences in 2007. We offer a macroproject plan to generate a large amount of electricity on the continent of Antarctica by using sail-like wind dams incorporating air turbines. Electricity can be used to make exploration and exploitation efforts on Antarctica easier. We offer the technical specifications for the Fabric Aerial Dam and indicate some of the geographical facts underpinning our macro-engineering proposal.

Alexander A. Bolonkin; Richard B. Cathcart

2007-01-04T23:59:59.000Z

36

Antarctica : A Southern Hemisphere Windpower Station?  

E-Print Network [OSTI]

The International Polar Year commences in 2007. We offer a macroproject plan to generate a large amount of electricity on the continent of Antarctica by using sail-like wind dams incorporating air turbines. Electricity can be used to make exploration and exploitation efforts on Antarctica easier. We offer the technical specifications for the Fabric Aerial Dam and indicate some of the geographical facts underpinning our macro-engineering proposal.

Bolonkin, A A; Bolonkin, Alexander A.; Cathcart, Richard B.

2007-01-01T23:59:59.000Z

37

Langcheng Ruifeng Windpower | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co Ltd Jump to:Kenersys IndiaLGCLangcheng Ruifeng

38

Ningxia Kaitian Windpower | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst Second

39

North British Windpower Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst SecondTianjingNordwind

40

Third Planet Windpower (Texas) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010) |Thesee Jump to:Think

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nordic Windpower LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:Community Nominations open for $250,000Development Fund

42

Clipper Windpower Europe Limited | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JVGroupChoice Electric(CTI) JumpLimited Jump

43

Four Seasons Windpower, LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create a page with thisFortunySeasons

44

Aeronautica Windpower LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource(Nannini,InformationAeronautica

45

Southwest Windpower Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°Farms LtdLLC Jump to: navigation,

46

XEMC Windpower Co Ltd formerly Hunan Hara XEMC Windpower Co Ltd | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest Financing Service GmbHEnergy

47

An emerging architecture of local experimentalist governance in China : a study of local innovations in Baoding, 1992-2012  

E-Print Network [OSTI]

What are the conditions under which local actors are more likely to carry out policy innovations that produce environmental or social benefits in local China? Previous studies on "Chinese experimentalism" suggest that local ...

Shin, Kyoung Mun

2014-01-01T23:59:59.000Z

48

Modeling of customer adoption of distributed energy resources  

E-Print Network [OSTI]

manufacturer manufacturer manufacturer Bergey WindpowerBergey Windpower Jeff Oldman, Real Goods Jeff Oldman, Realmanufacturer Bergey Windpower Bergey Windpower Jeff Oldman,

2001-01-01T23:59:59.000Z

49

Excise Tax Exemption for Solar- or Wind-Powered Systems  

Broader source: Energy.gov [DOE]

Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

50

Excise Tax Deduction for Solar- or Wind-Powered Systems  

Broader source: Energy.gov [DOE]

In Massachusetts, businesses may deduct from net income, for state excise tax purposes, expenditures paid or incurred from the installation of any "solar or wind powered climatic control unit and...

51

REDUCTION OF WINDPOWER PREDICTION ERROR BY SPATIAL SMOOTHING EFFECTS  

E-Print Network [OSTI]

, Dispersed Turbine Systems - 3 1 Introduction The development of wind energy use has led to a notice- able in of electricity by wind energy acts as a negative load leading to an in- crease in fluctuations of net load to two days additional conventional reserves have to be kept ready to replace the wind energy share

Heinemann, Detlev

52

DOE Announces New Wind Vision Initiative at AWEA WINDPOWER Conference...  

Office of Environmental Management (EM)

speech, Zayas said that the reason for revitalizing the vision now is threefold. First, wind power has seen significant improvements in both costs and technologies. Second, the...

53

DOE Hosts Booth at WINDPOWER | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies orMilestone | DepartmentFirst

54

SeaWest WindPower Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaScira Offshore EnergyLLC Jump to:WindPower

55

Sky WindPower Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaSciraShenhuaWindPower Corp Place: Ramona,

56

Xiangtan Bergey Windpower Ltd XBWL | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest Financing ServiceXian Jieli

57

AWEA WINDPOWER 2015 Conference and Exhibition | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015 InformationA BRIEF HISTORYTO HOLDApplicationATVM

58

Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy This webinar is part ofMay 1,WhereDepartment

59

American Wind Energy Association Offshore WINDPOWER Conference & Exhibition  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation andEnergy| Department of Energy

60

DOE Announces New Wind Vision Initiative at AWEA WINDPOWER Conference |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThirdPartnershipDrilling Technologies | Department

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nantong Hongbo Windpower Equipment Co Ltd HWE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst Second Power Equipment Co LtdNantong

62

North Shore Solar & Windpower | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) | OpenIncNobleNorrisElec Member CorpSolar

63

Energy Department Hosts Booth at WINDPOWER 2012 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOE Hydrogen13,Department ofIrene |Departmentat

64

Bergey Windpower Headquarters Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: Energy Resources JumpHeadquarters

65

WindPower Innovations Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 SectorWind

66

AWEA Offshore WINDPOWER 2015 Conference & Exhibition | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout Us » FAQs » ATVM FAQsHealth, Safety,

67

Sandia National Laboratories: grid-tied wind-power inverters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfull moduleresources grid integration of

68

Chongqing Xinxing Windpower Investment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JVGroupChoice Electric Co Jump

69

Freewatt Ltd formerly Lincolnshire Windpower Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create a page withFree EnergyFreener

70

Beijing Bergey Windpower Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JV Jump to: navigation,Co Ltd Jump to:

71

CSIC Chongqing Haizhuang Windpower Equipment Co Ltd | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JV JumpBraselcoCMNA Power Jump to:CPV

72

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network [OSTI]

Date " presented at Global WINDPOWER Conference, Chi- cago,and Implementation," presented at WINDPOWER 2005, Denver,

Wiser, Ryan H

2008-01-01T23:59:59.000Z

73

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network [OSTI]

Association (AWEA) WINDPOWER 2002 Conference . Analyzing theand Implementation. ” WINDPOWER 2005. Denver, Colorado, May

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

74

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

and Turbine Costs. ” WINDPOWER 2008. Houston, Texas, JuneProject Performance. ” WINDPOWER 2010. Dallas, Texas, May

Lantz, Eric

2014-01-01T23:59:59.000Z

75

Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade  

E-Print Network [OSTI]

and Turbine Costs. ” WINDPOWER 2008. Houston, Texas, June 2,Time. ” Presentation at WINDPOWER 2011, Anaheim, California,

Bolinger, Mark

2013-01-01T23:59:59.000Z

76

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network [OSTI]

to  supply  mainland. ”  Windpower  Monthly,  October  14  Horns  Reef  repairs. ”  Windpower  Monthly.   November, 

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

77

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

and dynamic behavior. ” Windpower, Pittsburgh, Pennsylvania,Wind Energy Association WINDPOWER Conference and Exposition,

Prowell, I.

2011-01-01T23:59:59.000Z

78

Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain  

E-Print Network [OSTI]

Wind Energy Association Windpower 2008 Conference, AmericanWind Energy Association Windpower 2006 Conference, American

Lundquist, Katherine Ann

2010-01-01T23:59:59.000Z

79

A comparative analysis of business structures suitable for farmer-owned wind power projects in the United States  

E-Print Network [OSTI]

Wisconsin Community Based Windpower Project Business Plan.Wisconsin Community Based Windpower Project Business Plan

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

80

A Comparative Analysis of Community Wind Power Development Models  

E-Print Network [OSTI]

Wisconsin Community Based Windpower Project Business Plan.of Oregon Presented at WINDPOWER 2005 May 18, 2005 Denver,Wisconsin Community Based Windpower Project Business Plan

Bolinger, Mark; Wiser, Ryan; Wind, Tom; Juhl, Dan; Grace, Robert; West, Peter

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Preliminary Evaluation of the Section 1603 Treasury Grant Program for Renewable Power Projects in the United States  

E-Print Network [OSTI]

grows in the gloom. ” Windpower Monthly. Volume 26, Number2009. Presentation at WINDPOWER 2009, Chicago, Illinois, MayYear. ” North American Windpower, Volume 7, Number 2, March

Bolinger, Mark

2012-01-01T23:59:59.000Z

82

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network [OSTI]

and Turbine Costs. ” WINDPOWER 2008. Houston, Texas, June 2,Time. ” Presentation at WINDPOWER 2011, Anaheim, California,including Clipper Windpower – have more recently entered the

Bolinger, Mark

2012-01-01T23:59:59.000Z

83

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

a Changing Environment. WINDPOWER 2011. Poster Presentation.Review. Presentation to WINDPOWER 2013. 6 May. Chicago,Finance” panel at the WINDPOWER 2013 conference, May 7,

Wiser, Ryan

2014-01-01T23:59:59.000Z

84

Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth  

E-Print Network [OSTI]

Influence Them. ” WINDPOWER 2008 conference presentation,panel discussion at WINDPOWER 2008. Houston, Texas, June 2,in general (e.g. , Clipper Windpower commencing turbine

Bolinger, Mark A

2009-01-01T23:59:59.000Z

85

Making european-style community wind power development work in the United States  

E-Print Network [OSTI]

Wisconsin Community Based Windpower Project Business Plan.site, www.masstech.org/windpower/index.htm [12] __________.Wisconsin Community Based Windpower Project Business Plan”

Bolinger, Mark A.

2004-01-01T23:59:59.000Z

86

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network [OSTI]

Renewable Energy. ” Proceedings of WINDPOWER 1992. Seattle,for the proceedings of WINDPOWER 2002 and ACEEE 2002 Summerseminar participants at WINDPOWER 2002, ACEEE 2002 Summer

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

87

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

federal loan programme. ” Windpower Monthly. Bloomberg NewWind 102. Presentation at AWEA’s WINDPOWER 2010 Conference &discussion at AWEA’s WINDPOWER 2010 Conference & Exhibition,

Wiser, Ryan

2010-01-01T23:59:59.000Z

88

Community-Owned wind power development: The challenge of applying the European model in the United States, and how states are addressing that challenge  

E-Print Network [OSTI]

Wisconsin Community Based Windpower Project Business Plan.web site, www.masstech.org/windpower/index.htm __________.ems/ PRESENTED AT GLOBAL WINDPOWER 2004 CHICAGO, ILLINOIS W

Bolinger, Mark

2004-01-01T23:59:59.000Z

89

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

J. 2009. Presentation at WINDPOWER 2009, Chicago, Illinois,and EPC Price Trends. ” WINDPOWER 2009, Chicago, Illinois,in the Downturn." WINDPOWER 2009, Chicago, Illinois, May 5,

Bolinger, Mark

2010-01-01T23:59:59.000Z

90

Factors driving wind power development in the United States  

E-Print Network [OSTI]

presented at AWEA Windpower 2001 Conference, Washington,IN THE UNITED STATES WINDPOWER 2003 CONFERENCE WEDNESDAY,a portion to supply its Windpower green pricing program. The

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-01-01T23:59:59.000Z

91

Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network [OSTI]

hydropower dams, several windpower and geothermal projects,only 83 MW of installed windpower capacity, despite havinginstall 2,000 MW or more of windpower capacity annually. If

Shields, David

2008-01-01T23:59:59.000Z

92

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

sources and others, e.g. , Windpower Monthly and the Globalmanufacturer – Clipper Windpower – is in the process ofutilities commissions, Windpower Monthly magazine, AWEA’s

2008-01-01T23:59:59.000Z

93

Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector  

E-Print Network [OSTI]

Wind Energy Development,” WINDPOWER 2007, Los Angeles, CA,Discussion “Debt & Equity,” WINDPOWER 2007, Los Angeles, CA,Association (AWEA)’s annual WINDPOWER 2005 Conference and

Barradale, Merrill Jones

2010-01-01T23:59:59.000Z

94

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

a Changing Environment. WINDPOWER 2011. Poster Presentation.Suppliers. Presentation to WINDPOWER 2012. 4 June. Atlanta,sources and others, e.g. , Windpower Monthly, the Global

Bolinger, Mark

2013-01-01T23:59:59.000Z

95

Preliminary Evaluation of the Impact of the Section 1603 Treasury Grant Program on Renewable Energy Deployment in 2009  

E-Print Network [OSTI]

grows in the gloom. ” Windpower Monthly. Volume 26, NumberYear. ” North American Windpower, Volume 7, Number 2, March2009. Presentation at WINDPOWER 2009, Chicago, Illinois, May

Bolinger, Mark

2010-01-01T23:59:59.000Z

96

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

JA Solar 0.28 GW Baoding Yingli 0.28 GW Other 3.5 GW FigureSanyo SunPower JA Solar Baoding Yingli Kyocera Motech Sharp

Price, S.

2010-01-01T23:59:59.000Z

97

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network [OSTI]

Proceedings of WINDPOWER 2005, Denver, Colorado, May Mingst,in the proceedings of: WINDPOWER 2003. May 18-21. Austin,

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

98

Value Capture in the Global Wind Energy Industry  

E-Print Network [OSTI]

K. 2007. Clipper Windpower: an overview of manufacturing.capture for 2.5MW Clipper Windpower Liberty turbine, 2008

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

99

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network [OSTI]

means fall in greater windpower classes than does Palmcontrast, would only fall in windpower classes 1, 3, 2, and

Mansbach, David K

2010-01-01T23:59:59.000Z

100

The renewables portfolio standard in Texas: An early assessment  

E-Print Network [OSTI]

The Devil is in the Detail. ” Windpower Monthly, 13 (11): 32Policy. Presentation to Windpower 2001. Washington, D.C. :

Wiser, Ryan H.; Langniss, Ole

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network [OSTI]

up their activities: Clipper Windpower is in the process ofof January 2008. Nordic Windpower, a manufacturer of two-

Bolinger, Mark A

2009-01-01T23:59:59.000Z

102

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network [OSTI]

43511. Conference paper: WINDPOWER 2008. Houston, Texas. B T670-43510. Conference paper: WINDPOWER 2008. Houston, Texas.

Wiser, Ryan H

2010-01-01T23:59:59.000Z

103

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

NREL/CP-500-35969. Global WindPower Conference. Chicago,Transmission Projects. ” Windpower 2007 Conference. Los

Mills, Andrew D.

2009-01-01T23:59:59.000Z

104

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network [OSTI]

20. Typical simulated response of WECC system frequencies to38. Sample A – Response of WECC system frequency to loss ofP-C2A P-C2B RES1 RES2 VLD WECC Balancing area 1 Area Control

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

105

Power and Frequency Control as it Relates to Wind-Powered Generation  

SciTech Connect (OSTI)

This report is a part of an investigation of the ability of the U.S. power system to accommodate large scale additions of wind generation. The objectives of this report are to describe principles by which large multi-area power systems are controlled and to anticipate how the introduction of large amounts of wind power production might require control protocols to be changed. The operation of a power system is described in terms of primary and secondary control actions. Primary control is fast, autonomous, and provides the first-line corrective action in disturbances; secondary control takes place on a follow-up time scale and manages the deployment of resources to ensure reliable and economic operation. This report anticipates that the present fundamental primary and secondary control protocols will be satisfactory as wind power provides an increasing fraction of the total production, provided that appropriate attention is paid to the timing of primary control response, to short term wind forecasting, and to management of reserves for control action.

Lacommare, Kristina S H

2010-12-20T23:59:59.000Z

106

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network [OSTI]

rates than needed to follow daily load variation. c. Whileshould follow foreseeable variations of load and generatingas a whole can 'follow' the daily load cycle with far less

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

107

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network [OSTI]

of large amounts of wind power production might requirewill be satisfactory as wind power provides an increasing64   7.2   Wind Power in Relation to System

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

108

Economic analysis of wind-powered farmhouse and farm building heating systems. Final report  

SciTech Connect (OSTI)

The study evaluated the break-even values of wind energy for selected farmhouses and farm buildings focusing on the effects of thermal storage on the use of WECS production and value. Farmhouse structural models include three types derived from a national survey - an older, a more modern, and a passive solar structure. The eight farm building applications that were analyzed include: poultry-layers, poultry-brooding/layers, poultry-broilers, poultry-turkeys, swine-farrowing, swine-growing/finishing, dairy, and lambing. These farm buildings represent the spectrum of animal types, heating energy use, and major contributions to national agricultural economic values. All energy analyses were based on hour-by-hour computations which allowed for growth of animals, sensible and latent heat production, and ventilation requirements. Hourly or three-hourly weather data obtained from the National Climatic Center was used for the nine chosen analysis sites, located throughout the United States and corresponding to regional agricultural production centers.

Stafford, R.W.; Greeb, F.J.; Smith, M.F.; Des Chenes, C.; Weaver, N.L.

1981-01-01T23:59:59.000Z

109

E-Print Network 3.0 - alternative windpower ownership Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WIND ... Source: Lawrence Berkeley National Laboratory, Energy Analysis Department, Electricity Market Studies; Lawrence Berkeley National Laboratory, High Redshift Supernova...

110

DOE to Host a Booth at Offshore WINDPOWER | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S.D.C.Energy TheDepartmentThird

111

DOE Wind Program to Host Booth at Offshore WINDPOWER | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAlliance |Department of EnergyValuesDepartmentThe

112

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network [OSTI]

Undrill. 1975. "Automatic Generation Control", IEEE Tutorialfraction of generation providing response grid. The adjustment of generation, minute-by- minute, in

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

113

Balancing Performance, Noise, Cost, and Aesthetics in the Southwest Windpower "Storm" Wind Turbine: Preprint  

SciTech Connect (OSTI)

This paper describes the design, fabrication, and testing of an 1800-watt innovative small wind turbine and discusses the importance of idiosyncratic aerodynamic and aeroacoustic airfoil characteristics for clean airfoils at low Reynolds numbers.

Migliore, P.; Green, J.; Calley, D.; Lonjaret, J.

2005-08-01T23:59:59.000Z

114

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network [OSTI]

pressure controller of a steam turbine. For the purpose ofthe response of steam turbines to governing action: R = 0.05cycle plants. The steam turbines of these plants are most

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

115

China WindPower Jilin Power Share JV | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JVGroup IndiaChangtuAntecedence |Tong

116

U.S. Department of Energy Hosts Booth at WINDPOWER | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeed Families" |HydrogenHosts Booth

117

Potential of wind-powered renewable energy membrane systems for Ghana   

E-Print Network [OSTI]

Areas of the world that lack fresh water often have an ample supply of wind or solar energy, making renewable energy an attractive option as a power source for desalination systems. Particularly, wind energy is attractive because of its relatively...

Park, G.L.; Schäfer, Andrea; Richard, B.S.

2009-01-01T23:59:59.000Z

118

FFFAAALLLLLL 222000111000 EEENNNGGGIIINNNEEEEEERRRIIINNNGGG CCCAAARRREEEEEERRR FFFAAAIIIRRR  

E-Print Network [OSTI]

Solutions Clipper Windpower, Inc. Cook Medical Eaton Corporation Eisenmann Emerson Process Management Corporation Clipper Windpower, Inc. Eaton Corporation Eisenmann Emerson Process Management/Fisher Division ESP Caterpillar Inc Cerner Corporation Civco Medical Solutions Clipper Windpower, Inc. Cook Medical Eaton

Casavant, Tom

119

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network [OSTI]

for an Ohio Urban Residence Windpower in U.S. Virgin Islandschose is manufactured by mingbird Windpower Corp. ,1. (a)circuits Tel. Hummingbird Windpower, Holanda 3, Mexico 21

Kay, J.

2009-01-01T23:59:59.000Z

120

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

Books, Utrecht. Windpower Monthly (WPM), February 2001:20.for utility project. Windpower Monthly News Magazine A/S,Denmark. Windpower Monthly (WPM), June, 2002:8. Fear of

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Community wind power ownership schemes in Europe and their relevance to the United States  

E-Print Network [OSTI]

opens to Swedish co-ops. ” Windpower Monthly, 15 (7), 22-23.Threatens Progress. ” Windpower Monthly, 16 (7), p. ______.Growth Goes On and On. ” Windpower Monthly, 17 (3), 29-31.

Bolinger, Mark

2001-01-01T23:59:59.000Z

122

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

E-Print Network [OSTI]

Wind Energy Association WindPower 2002 Conference, 3-5 JunePRESENTED AT GLOBAL WINDPOWER 2004 CHICAGO, ILLINOIS W IND EModel, prepared by Bergey Windpower Co. for the National

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-01-01T23:59:59.000Z

123

An Analysis of the Costs, Benefits, and Implications of Different Approaches to Capturing the Value of Renewable Energy Tax Incentives  

E-Print Network [OSTI]

panel discussion at AWEA’s WINDPOWER 2011 conference, MayChallenges. ” AWEA’s WINDPOWER 2013 conference, Chicago,panel discussion at AWEA’s WINDPOWER 2011 conference, May

Bolinger, Mark

2014-01-01T23:59:59.000Z

124

Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool  

E-Print Network [OSTI]

permitting.pdf Bergey Windpower Co. WindCad Turbineof the 2004 Global Windpower Conference, March 2004, ChicagoWind Energy Association WindPower 2002 Conference, 3-5 June

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-01-01T23:59:59.000Z

125

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

a Changing Environment. WINDPOWER 2011. Poster Presentation.sources and others, e.g. , Windpower Monthly, the GlobalTurboWinds (1.6 MW), Nordic Windpower (2 MW), Emergya Wind

Wiser, Ryan

2012-01-01T23:59:59.000Z

126

E-Print Network 3.0 - atlantic coast including Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fish and Wildlife Service, Region 5, Quick Response Program Development of a Seabird -Windpower Database for the Summary: of a Seabird - Windpower Database for the Atlantic Coast...

127

Arnold Schwarzenegger DISTRIBUTED GENERATION DRIVETRAIN  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor DISTRIBUTED GENERATION DRIVETRAIN FOR WINDPOWER APPLICATION Prepared GENERATION DRIVETRAIN FOR WINDPOWER APPLICATION EISG AWARDEE Dehlsen Associates, LLC 7985 Armas Canyon Road

128

Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report  

SciTech Connect (OSTI)

Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

1980-03-01T23:59:59.000Z

129

A Certificate-Based Approach to Marketing Green Power and  

E-Print Network [OSTI]

Renewable Energy Laboratory To be presented at the American Wind Energy Association (AWEA) Windpower 2002

130

Lapworth, Heather From: King, Jeff  

E-Print Network [OSTI]

: Power Planning Division Subject: FW: Council's windpower assumptions Page 1 of 2Council's windpower:08 PM To: King, Jeff Cc: Bill Dearing; Jeff Atkinson Subject: Re: Council's windpower assumptions Jeff of Appendix I concerning our windpower assumptions. Once you have had a chance to look this over, give me

131

Prof. Dr. Stefan Krauter Decentralized Power Systems -DPS 2011 The Challenge of Renewable Energies  

E-Print Network [OSTI]

" of PV #12;Prof. Dr. Stefan Krauter Decentralized Power Systems - DPS 2011 page 13 Installed windpower

Noé, Reinhold

132

Students can: Designandracea  

E-Print Network [OSTI]

MAGLEVvehicle.Inschool, studentswilldesignandconstructavehicle andcompleteaStudentDesignPortfolio. Studentscompeteforatrophyinoneof sevencategories:windpower

Ohta, Shigemi

133

Iowa's Engineering Colleges Improving Lives and Livelihoods American Society for Engineering Education-Engineering Deans Council  

E-Print Network [OSTI]

to corporations, many with regional influence: o ADM o Caterpillar o Clipper Windpower o Emerson Process

Lin, Zhiqun

134

Leveraging High Performance Computation for Statistical Wind Prediction  

E-Print Network [OSTI]

Alan Edelman Stephen R Connors WINDPOWER 2010 American Wind Energy Association Dallas, Texas, USA May

135

Private Business and Government Laboratories In the past 20 years, many of our graduates (B.S., M.S., and Ph.D.) have joined the scientific ranks of the following  

E-Print Network [OSTI]

Technologies Unocal Corp US Geological Survey US Windpower Inc. Vermont Am Corp Versar Vitaphore Corp Waters

Haile, Sossina M.

136

Energy Syst (2011) 2:115141 DOI 10.1007/s12667-011-0032-y  

E-Print Network [OSTI]

. etration of windpower is growing, this raises questions on the associated impact on system reliability

Kim, Harrison

137

David P. Feldman hornacek.coa.edu/dave  

E-Print Network [OSTI]

Grant Consortium Education and Seed Research Program. "A Project- based Class in Residential Windpower

Feldman, David P.

138

Energistyrelsens workshop om  

E-Print Network [OSTI]

in February 2002 Windpower/consumption,% #12;Betydningen af at forudsige vindkraftproduktionen Vind- kraft MW

139

De-Carbonizing California and the EU  

E-Print Network [OSTI]

environmental protection agency Sector specific instruments Energy and housing sector Green certificates Subsidy to windpower

Berck, Peter; Brannlund, Runar

2008-01-01T23:59:59.000Z

140

Green regulations in Califorina and Sweden  

E-Print Network [OSTI]

Environmental Protection Agency. Sector-specific instruments Energy and housing sector Green certificates Subsidy to windpower

Berck, Peter; Braennlund, Runar

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Final Report to the U.S. Fish and Wildlife Service, Region 5, Quick Response Program Development of a Seabird -Windpower Database for the  

E-Print Network [OSTI]

interactions between birds and wind turbines in the marine environment (Exo et al. 2003, Garthe and HĂĽppop 2004 populations. Two recent reviews of impacts of wind farms on birds and how to effectively evaluate, MD 20705 #12;2 Introduction and Background: Offshore wind generated electricity promises

Holberton, Rebecca L.

142

A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy  

E-Print Network [OSTI]

Castilla la Mancha, Spain J.C. Smith UWIG, USA To be presented at WindPower 2008 Houston, Texas June 1 wind-power grid integration studies were analyzed, esp

143

Property Tax Exemption for Wind Generators (Oklahoma)  

Broader source: Energy.gov [DOE]

The state of Oklahoma offers a five year ad valorem property tax exemption for certain windpower generators.

144

Current Experience With Net Metering Programs Yih-huei Wan, NREL  

E-Print Network [OSTI]

Boulevard Golden, Colorado, 80401-3393 USA PRESENTED AT WINDPOWER '98 Bakersfield, CA USA April 27 - May 1

145

Effect of coarse marine aerosols on stratocumulus clouds Yoav Lehahn,1,2  

E-Print Network [OSTI]

an important role not only over land for windpower estimation but also over the oceans by changing clouds

Kostinski, Alex

146

Project funded by the European Commission under the 5th (EC) RTD Framework Programme (1998 -2002) within the thematic programme  

E-Print Network [OSTI]

.g. Global Windpower 2002, EWEC 2003, etc.) several prediction plat- forms have been presented (Bailey et al

Boyer, Edmond

147

1 Semst 8 Semth7 Semth6 Semth5 Semth4 Semth3 Semrd2 Semnd Mechanical and Industrial Engineering Department  

E-Print Network [OSTI]

Engineering MIE 570 Solar & Dir. Energy Conver. MIE 573 Engin. Windpower Systems MIE 597B Mechanical Behavior

Mountziaris, T. J.

148

Abstract--: Corruption in India is deemed an accepted reality by most Indians who spend at least Rs4000.00 a year on it. Even basic  

E-Print Network [OSTI]

solutions, fuel cells, generators , solar panels, windpower. All of which are used and in use. To add

Paris-Sud XI, Université de

150

Energies 2009, 2, 307-319; doi:10.3390/en20200307 ISSN 1996-1073  

E-Print Network [OSTI]

to the surface with a tether. In the design proposed by Sky Windpower (Figure 1b), four rotors are mounted

151

List of publication from the WEMSAR project Refereed journal  

E-Print Network [OSTI]

for offshore wind resource mapping. Proceedings of Global Windpower Conference, Paris, 2-5 April, 2002. See of offshore wind maps. Proceedings of Global Windpower Conference, Paris, 2-5 April, 2002. See proceedings speed distributions? Proceedings of Global Windpower Conference, Paris, 2-5 April, 2002. (in press). See

152

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

: California Energy Commission Prepared by: Clipper Windpower Technology Inc. #12;i Prepared by: Primary Author: Amir Mikhail Clipper Windpower Technology Inc Carpinteria, CA 93013 Contract Number: 500, was a successful collaboration of many teams and individual contributors from Clipper Windpower Technology, Inc

153

The U.S. Department of Energy to Hold the Inaugural Collegiate Wind Competition  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Collegiate Wind Competition will be held alongside the American Wind Energy Association's WINDPOWER 2014 Conference & Exhibition.

154

Energy Secretary Moniz's Remarks at University of Texas at Austin...  

Energy Savers [EERE]

production. This state already leads the nation in electricity generation from non-hydroelectric renewable resources. And Texas has the highest wind-powered generation capacity of...

155

Tax Credits, Rebates & Savings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Chapter 4906-17 of the Ohio Administrative Code states the Application Filing...

156

Commercial and Industrial Base Intermittent Resource Management Pilot  

E-Print Network [OSTI]

and Ramping Capability on Wind Integration. WindPower, 2007.ice storage for integration with wind. First, the shorterline. While wind generation can create integration problems

Kiliccote, Sila

2011-01-01T23:59:59.000Z

157

Analysis of Wind Power and Load Data at Multiple Time Scales  

E-Print Network [OSTI]

29   Appendix A. PJM Windat Multiple Time Scales Appendix A. PJM Wind Data The windpower data for the PJM control area cover the period January

Coughlin, Katie

2011-01-01T23:59:59.000Z

158

Department of Energy Funds Six Companies to Develop Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Boulder Wind Power in Boulder, Colorado; Clipper Windpower in Carpinteria, California; Eaton Corporation in Cleveland, Ohio; GE Global Research in Niskayuna, New York; and the...

159

Model Validation at the 204-MW New Mexico Wind Energy Center  

SciTech Connect (OSTI)

Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing model validation at the 204-MW New Mexico Wind Energy Center.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

160

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network [OSTI]

of Variable Renewable Generation The report is accompaniedit Relates to Wind-Powered Generation. LBNL-XXXX. Berkeley:with Increased Wind Generation. LBNL-XXXX. Berkeley:

Eto, Joseph H.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation  

E-Print Network [OSTI]

Performance of Wind Power Generation Working Group. ” IECwith Increased Wind Generation 9. Siemens Power Technologiesit Relates to Wind-Powered Generation. LBNL-XXXX. Berkeley:

Mackin, Peter

2011-01-01T23:59:59.000Z

162

Advance Patent Waiver W(A)2012-020  

Broader source: Energy.gov [DOE]

This is a request by CLIPPER WINDPOWER LLC for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005141.

163

NOVEMBER 1, 2013 SPECIFICATION  

E-Print Network [OSTI]

, and manufactured in NY State with 100% windpower. 94 Bright Manufactured In NY State 100% PCW A. Letterhead 8.5 x

Aronov, Boris

164

A New Energy Direction Bold Local Solutions to a Global Problem  

E-Print Network [OSTI]

: ReducingPetroleumDemand Chapter4: NextGenerationVehicles Chapter5: WindPower Chapter6: SolarPower Chapter7

Kammen, Daniel M.

165

Realities of Consumer-Owned Wind Power for Rural Electric Co-operatives (Presentation)  

SciTech Connect (OSTI)

Presentation for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing consumer-owned wind power for rural electric co-operatives.

Lindenberg, S.; Green, J.

2006-06-01T23:59:59.000Z

166

EIS-0255: Kenetech/Pacificorp Wind Power Program  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA's proposed agreement with Sea West Corporation, a wind developer, of San Diego, California, to install additional turbines at the Wyoming Windpower Plant in Carbon County, Wyoming.

167

Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006  

SciTech Connect (OSTI)

This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

Mikhail, A.

2009-01-01T23:59:59.000Z

168

Bringingethics intobusiness  

E-Print Network [OSTI]

combustion energy efficiency and C02 reduction, machines for wind-power generators, and numerical magnetic Polytechnic University (HKPU). Further partnerships are to be established in India and Europe this year

University of Technology, Sydney

169

DOE Collegiate Wind Competition  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Collegiate Wind Competition will take place concurrently with the 2014 AWEA WINDPOWER Conference and Exhibition in Las Vegas. Spectators are encouraged to attend...

170

Overcoming Challenges in America’s Offshore Wind Industry  

Office of Energy Efficiency and Renewable Energy (EERE)

A year of progress, preparation and promise was the theme connecting two days of panels and presentations last month at the 2013 American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island.

171

Top U.S. Energy Department Official Visits Iowa, Calls on Congress...  

Energy Savers [EERE]

the wind energy supply chain in Iowa. Acciona Windpower produces 1.5 MW and 3.0 MW wind turbines. At its West Branch assembly plant, the company sources over 80 percent of its...

172

NREL: Workforce Development and Education Programs - Collegiate...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turbines Go Blade-to-Blade in Wind Tunnel Tests at WINDPOWER May 1, 2014 Ten small wind turbines will go blade-to-blade in wind tunnel tests at the inaugural U.S. Department of...

173

Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network [OSTI]

for several days, hydropower was able to take their place.on Mexico’s most important hydropower dam complex on thecoast, two large new hydropower dams, several windpower and

Shields, David

2008-01-01T23:59:59.000Z

174

Wind Shear Characteristics at Central Plains Tall Towers: Preprint  

SciTech Connect (OSTI)

Conference paper for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing the wind shear characteristics at tall tower sites in the Central Plains of the United States.

Schwartz, M.; Elliott, D.

2006-06-01T23:59:59.000Z

175

Renewable Energy Equipment Sales Tax Exemption  

Broader source: Energy.gov [DOE]

Massachusetts law exempts from the state's sales tax "equipment directly relating to any solar, windpowered; or heat pump system, which is being utilized as a primary or auxiliary power system for...

176

1998 Records of Decision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3rd, 1998 Execution of Agreements to Install Additional Wind Turbines at the Wyoming Windpower Plant - September 1st, 1998 BPA Lower Valley Transmission Project - August 4th, 1998...

177

Wind Measurement Equipment: Registration (Nebraska)  

Broader source: Energy.gov [DOE]

All wind measurement equipment associated with the development or study of wind-powered electric generation, whether owned or leased, shall be registered with the Department of Aeronautics if the...

178

REGISTERED SCHOOLS ID TotalTeamScore  

E-Print Network [OSTI]

ProblemSolving Towers WindPower WriteIt,DoIt Hershey High School CY2 1 144 2 1 2 15 8 4 6 15 4 3 4 7 5 8 1 11 1 6 7 10 5

Hardy, Christopher R.

179

University of Strathclyde  

E-Print Network [OSTI]

of windpower CONTENTS winter 2012 12 wElCOME 09 I PrOFeSSOr SuSAN HArt, DeAN, StrAtHclyDe BuSiNeSS ScHOOl nergy

Strathclyde, University of

180

Renewable Energy Systems Property Tax Exemption  

Broader source: Energy.gov [DOE]

The Texas property tax code allows an exemption of the amount of the appraised property value that arises from the installation or construction of a solar or wind-powered energy device that is...

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Option values of low carbon technology policies  

E-Print Network [OSTI]

are: carbon capture and storage (CCS), the new nuclear, solar thermal plants, and offshore windpower farms. These technologies require high upfront capital investments and long construction lead?times. Such new large...

Finon, Dominique; Meunier, Guy

2012-06-19T23:59:59.000Z

182

Physica A 338 (2004) 187193 www.elsevier.com/locate/physa  

E-Print Network [OSTI]

as environmental problems arising from the power consumption. Renewable energies play a central role for solving energy market. At the end of 2003 the installed capacity of wind-power was over 35 GW. (Only in Germany

Peinke, Joachim

183

Energy and Interior Departments Host Offshore Energy Knowledge...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Related Articles DOE to Host a Booth at Offshore WINDPOWER Wind Program Newsletter: Second Quarter 2012 DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential...

184

Optimization of Wind Power and Its Variability With a Computational Intelligence Approach  

E-Print Network [OSTI]

Optimization of Wind Power and Its Variability With a Computational Intelligence Approach Zijun is presented for maximizing the generation of wind power while minimizing its variability. In the optimization model, data-driven approaches are used to model the wind-power generation process based on industrial

Kusiak, Andrew

185

Optimization of a Savonius rotor vertical-axis wind turbine for use in water pumping systems in rural Honduras  

E-Print Network [OSTI]

The D-lab Honduras team designed and constructed a wind-powered water pump in rural Honduras during IAP 2007. Currently, the system does not work under its own power and water must be pumped by hand. This thesis seeks to ...

Zingman, Aron (Aron Olesen)

2007-01-01T23:59:59.000Z

186

ANALYSE SPATIALE ET APPROCHE D'AIDE MULTI-CRITRES ET MULTI-ACTEURS LA NGOCIATION POUR VALUER DES  

E-Print Network [OSTI]

in Europe, and each year more and more wind power is produced in a number of countries, because it uses to its growth. This is why we have decided to conduct a study that will develop a case for wind power from a knowledge base that takes into account the stakeholders involved and their values in wind-power

Paris-Sud XI, Université de

187

Winds of change?: Projections of near-surface winds under climate change scenarios  

E-Print Network [OSTI]

a downscaling technique to generate probability distributions of wind speeds at sites in northern Europe on renewable energy resources including wind-power. 2. Data [4] Ten coupled Global Climate Models (GCMs) fromWinds of change?: Projections of near-surface winds under climate change scenarios S. C. Pryor,1 J

Pryor, Sara C.

188

Strong permanent magnets provide a backbone technology required many products, including computers, electric cars, and  

E-Print Network [OSTI]

Strong permanent magnets provide a backbone technology required many products, including computers, electric cars, and wind-powered generators. Currently, the strongest permanent magnets contain rare earth for most technologies requiring permanent magnets, due to their high energy product and coercivity. However

McQuade, D. Tyler

189

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

. Factors contributing to this rapid rate of development include sustained high natural gas prices, climate. While renewable resources, windpower in particular, play an important role in the 5th Plan, current, followed by renewable resources, resources utilizing waste heat or high fuel conversion efficiency

190

A Minimal Budget Approach Algorithm for Integration of Clean Energy to Electricity Systems  

E-Print Network [OSTI]

forms of renewable energy, wind energy has some built-in advantages. One of them is that it is environment friendly and another is that it cannot be depleted. By the end of 2008, the worldwide wind-powered. From 2005 to 2008, the capapcity doubled. Some countries have obtained high levels of wind power

191

Workforce Development and Wind for Schools (Poster)  

SciTech Connect (OSTI)

As the United States dramatically expands wind energy deployment, the industry is faced with the need to quickly develop a skilled workforce and to address public acceptance. Wind Powering America's Wind for Schools project addresses these challenges. This poster, produced for the American Wind Energy Association's annual WINDPOWER conference, provides an overview of the project, including objectives, methods, and results.

Newcomb, C.; Baring-Gould, I.

2012-06-01T23:59:59.000Z

192

FacultyofAerospace Engineering MSc Programme  

E-Print Network [OSTI]

as Nuna 6, the solar- powered car that won second place in the 2011 World Solar Challenge in Australia in aircraft and propulsion system design. Aerodynamics and Wind Energy The MSc track in Aerodynamics and Wind Energy combines fundamental and applied research disciplines of aerospace and wind-power systems

Langendoen, Koen

193

Wind Turbine Manufacturers in the United States: Locations and Local Impacts (Presentation)  

SciTech Connect (OSTI)

Suzanne Tegen's presentation about U.S. wind energy manufacturing (presented at WINDPOWER 2010 in Dallas) provides information about challenges to modeling renewables; wind energy's economic "ripple effect"; case studies about wind-related manufacturing in Colorado, Iowa, Ohio, and Indiana; manufacturing maps for the Great Lakes region, Arkansas, and the United States; sample job announcements; and U.S. Treasury Grant 1603 funding.

Tegen, S.

2010-05-26T23:59:59.000Z

194

Journal of Energy Engineering, American Society of Civil Engineers, Sept. 2007 Abstract: Application of individual distributed  

E-Print Network [OSTI]

) engines, gas turbines, microturbines, photovoltaic, fuel cells and wind-power. Most emerging technologies such as micro- turbines, photovoltaic, fuel cells and gas internal combustion engines with permanent magnet system as a whole. The size of emerging generation technologies permits generators to be placed optimally

195

innovati nNREL Innovations Contribute to an Award-Winning Small Wind Turbine  

E-Print Network [OSTI]

innovati nNREL Innovations Contribute to an Award-Winning Small Wind Turbine The Skystream 3.7 wind turbine is the result of a decade-long collaboration between the National Renewable Energy Laboratory (NREL) and Southwest Windpower, a commercially successful small wind turbine manufacturer. NREL drew

196

4/23/08 2:28 PMhttp://news.nationalgeographic.com/news/pf/19339168.html Page 1 of 2  

E-Print Network [OSTI]

of the global mix. Other renewable energy sources like solar and geothermal make up even less. "But as the world leader in installed capacity to spin the wind into electricity. Globally, wind-power capacity rose greater, according to Janet Sawin, director of the Worldwatch Institute's energy and climate change

Provancher, William

197

IEEE Communications Magazine March 2013136 0163-6804/13/$25.00 2013 IEEE INTRODUCTION  

E-Print Network [OSTI]

envisioned as big high-power towers or cell sites. And indeed, many are. Fundamentally, though, a BS must do connection, but it could in principle be solar, scavenging, wind-powered, fossil fuel generated (e technology that has existed for several decades. But it is important to recognize that traditional tower

Andrews, Jeffrey G.

198

Preprint submitted to the Proceedings of the European Wind Energy Conference EWEC in Madrid, Spain June 2003 PREVIENTO meets HORNS REV  

E-Print Network [OSTI]

of future offshore wind farms. Surprisingly, in all possible thermal conditions measured speeds of westerly Horns Rev offshore wind farm has to be considered as a step to new dimensions in wind power production June 2003 1 PREVIENTO meets HORNS REV Short-Term Wind-Power Prediction ­ adaptation to Offshore Sites

Heinemann, Detlev

199

Wind Energy Workforce Development: A Roadmap to a Wind Energy Educational Infrastructure (Presentation)  

SciTech Connect (OSTI)

Wind Powering America national technical director Ian Baring-Gould made this presentation about workforce development in the wind energy industry to an audience at the American Wind Energy Association's annual WINDPOWER conference in Anaheim. The presentation outlines job projections from the 20% Wind Energy by 2030 report and steps to take at all levels of educational institutions to meet those projections.

Baring-Gould, I.

2011-05-01T23:59:59.000Z

200

JEREMY FIRESTONE School of Marine Science and Policy  

E-Print Network [OSTI]

INTERESTS · Energy Policy, http://www.ceoe.udel.edu/windpower/ and http://carbonfree.udel.edu/ · International and Domestic Ocean, Coastal and Environmental Law, Management and Policy · Governance (Regulation and Environmental Policy Legal Aspects of the Coastal Zone U.S. Ocean and Coastal Policy Marine Policy Graduate

Firestone, Jeremy

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Water Resources Research Center Annual Technical Report  

E-Print Network [OSTI]

on water quality issues including water recycling, operation of wastewater treatment facilities, wind-powered from the University of Hawaii (for salaries and space), the U.S. Environmental Protection Agency, U of Environmental Services and several private sector organizations. Research Program The USGS/WRRIP grant

202

For More Information: http://www.Rowan.edu/engineering  

E-Print Network [OSTI]

Affiliated Faculty in Chemical Engineering (ChE), Civil and Environmental Engineering (CEE), Electrical Jahan (CEE) ­ Environmental engineering Dr. Peter Jansson (ECE) ­ Alternative energy Dr. William Riddell (CEE) ­ Windpower Dr. Mariano Savelski (ChE) ­ Alternative fuels Dr. C. Stewart Slater (Ch

Rusu, Adrian

203

The Burning Man festival is a unique happen-ing. For one week in September every year,  

E-Print Network [OSTI]

-reliance coupled with extreme altruism, a gift economy and a leave-no-trace environ- mental ethic. Add intense crea and thriving of the individual in this extreme environ- ment, the various camps as interac- tive and artistic in grey- water evaporation, and wind-powered cocktail bar, is paving the way. Exodus from the barren plain

Bourne, Philip E.

204

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

resource potential Over 2500 MW of installed wind power capacity has been constructed in the four Northwest wind resource potential. The assessment of additional wind resource potential is among the most Windpower Development Activity and Assessment of Additional Wind Resource Potential Northwest Power

205

Selection of windmill and site  

SciTech Connect (OSTI)

There are various types of windmills: horizontal, vertical, shaft, hybrid and others. Their merits and demerits were investigated to provide information for the selection of windmills and their design. Multi-wing types are suited to drive pumps, and propeller types are suited for wind-power generation. Since the wind varies in time with respect to its speed and direction, a windmill of any type should be controlled in rotation speed and/or direction. To realize this, auxiliary blades or other wind speed or direction detectors are combined with controllers of the windmills. Propeller-type and Darrieus-type wind-power generator systems were designed (including adequate power generators, power-transmission mechanisms, towers and foundations). Various factors involved in the selection of the site are given in addition to geographical investigations. 5 references.

Takeuchi, T.

1980-01-01T23:59:59.000Z

206

EIS-0205: Joint NEPA/SEPA Final Environmental Impact Statement Washington Windplant No. 1, Goldendale, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Bonneville Power Administration prepared this statement in order to fulfill its National Environmental Policy Act obligations ahead of signing an agreement with the utilities that would purchase the Windplant’s power from KENETECH. KENETECH Windpower, Inc., proposes to construct and operate Washington Windplant No. 1 in the Columbia Hills area, southeast of Goldendale, in Klickitat County, Washington.

207

NREL Innovations Contribute to an Award-Winning Small Wind Turbine (Fact Sheet)  

SciTech Connect (OSTI)

The Skystream 3.7 wind turbine is the result of a decade-long collaboration between the National Renewable Energy Laboratory (NREL) and Southwest Windpower, a commercially successful small wind turbine manufacturer. NREL drew heavily on its research experience to incorporate innovations into the Skystream 3.7, including a unique blade design that makes the wind turbine more efficient and quieter than most.

Not Available

2010-12-01T23:59:59.000Z

208

Collegiate Wind Competition Turbines go Blade-to-Blade in Wind Tunnel Tests  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief Medical OfficerofProgram Recordsat WINDPOWER |

209

Combined Fiscal Year (FY) 2002 Annual Performance Report and FY 2003 Annual  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief Medical OfficerofProgram Recordsat WINDPOWER

210

Clover Hill, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower Inc

211

Club for Rural Electrification | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower

212

Co-Mo Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpowerHill,

213

Scandia Wind Southwest LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatolia JumpRiegotecSadounSaxon Windpower

214

Netherlands Development Organisation (SNV) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst Second PowerNautica Windpower

215

Jet spoiler arrangement for wind turbine  

DOE Patents [OSTI]

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, Jack D. (Corrales, NM); Kadlec, Emil G. (Albuquerque, NM); Klimas, Paul C. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

216

Jet spoiler arrangement for wind turbine  

DOE Patents [OSTI]

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

1983-09-15T23:59:59.000Z

217

Alternative wind power modeling methods using chronological and load duration curve production cost models  

SciTech Connect (OSTI)

As an intermittent resource, capturing the temporal variation in windpower is an important issue in the context of utility production cost modeling. Many of the production cost models use a method that creates a cumulative probability distribution that is outside the time domain. The purpose of this report is to examine two production cost models that represent the two major model types: chronological and load duration cure models. This report is part of the ongoing research undertaken by the Wind Technology Division of the National Renewable Energy Laboratory in utility modeling and wind system integration.

Milligan, M R

1996-04-01T23:59:59.000Z

218

Renewable Electricity Futures (Presentation)  

SciTech Connect (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

DeMeo, E.

2012-08-01T23:59:59.000Z

219

Clipsol | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower Inc Jump to:Clipsol

220

Clive, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower Inc Jump

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Closter, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower Inc JumpCloster, New

222

Cloud County, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower Inc JumpCloster,

223

Cloud Lake, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower Inc JumpCloster,Cloud

224

Clover Solar Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower IncSolar Pvt Ltd Jump

225

Cloverland Electric Co-op | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower IncSolar Pvt Ltd

226

Cloverleaf, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower IncSolar Pvt

227

Cloverly, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower IncSolar PvtCloverly,

228

Clovis, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpower IncSolar

229

Clyde Hill, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpowerHill, Washington:

230

Clyde, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpowerHill, Washington:Clyde,

231

Co2 Deep Store Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpowerHill,Deep Store Ltd

232

Co2balance | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpowerHill,Deep Store

233

Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpowerHill,Deep Store| Open

234

Coachella, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpowerHill,Deep Store|

235

Coahoma County, Mississippi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpowerHill,Deep

236

Coal City, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpowerHill,Deep2856185°

237

Scan Energy AS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatolia JumpRiegotecSadounSaxon Windpower LtdAS

238

Navajo Wind Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst Second PowerNautica Windpower LLC

239

Nawitas Development | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst Second PowerNautica Windpower LLCNawitas

240

New Energy Development Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst Second PowerNautica WindpowerDevelopment

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New Energy Options | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst Second PowerNautica WindpowerDevelopment

242

Southwestern Electric Power Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -SonelgazSunbelt Wind FarmSouthwest WindPower

243

Collins.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic(SNfactory) | DOEat WINDPOWER |I MPACTS a

244

Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic(SNfactory) | DOEat WINDPOWER |I MPACTS

245

Colloidal Nanocrystals of Wurtzite Zn 1-xCox0 (0 ≤ x ≥ 1) Models of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic(SNfactory) | DOEat WINDPOWER |I

246

Colloidal Nanocrystals of Wurtzite Zn1-xCoxO (0 ≤ x ≤ 1): Models of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic(SNfactory) | DOEat WINDPOWER |ISpinodal

247

Colloquium flyer.8.5.13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic(SNfactory) | DOEat WINDPOWER

248

A Comparative Analysis of Community Wind Power DevelopmentModels  

SciTech Connect (OSTI)

For years, farmers in the United States have looked with envy on their European counterparts ability to profitably farm the wind through ownership of distributed, utility-scale wind projects. Only within the past few years, however, has farmer- or community-owned windpower development become a reality in the United States. The primary hurdle to this type of development in the United States has been devising and implementing suitable business and legal structures that enable such projects to take advantage of tax-based federal incentives for windpower. This article discusses the limitations of such incentives in supporting farmer- or community-owned wind projects, describes four ownership structures that potentially overcome such limitations, and finally conducts comparative financial analysis on those four structures, using as an example a hypothetical 1.5 MW farmer-owned project located in the state of Oregon. We find that material differences in the competitiveness of each structure do exist, but that choosing the best structure for a given project will largely depend on the conditions at hand; e.g., the ability of the farmer(s) to utilize tax credits, preference for individual versus cooperative ownership, and the state and utility service territory in which the project will be located.

Bolinger, Mark; Wiser, Ryan; Wind, Tom; Juhl, Dan; Grace, Robert; West, Peter

2005-05-20T23:59:59.000Z

249

Modeling access to wind resources in the United States  

SciTech Connect (OSTI)

To project the US potential to meet future electricity demands with wind energy, estimates of available wind resource and costs to access that resource are critical. The US Department of Energy (DOE) Energy Information Administration (EIA) annually estimates the US market penetration of wind in its Annual Energy Outlook series. For these estimates, the EIA uses wind resource data developed by the Pacific Northwest National Laboratory for each region of the country. However, the EIA multiplies the cost of windpower by several factors, some as large as 3, to account for resource quality, market factors associated with accessing the resource, electric grid impacts, and rapid growth in the wind industry. This paper examines the rationale behind these additional costs and suggests alternatives.

Short, W.D.

1999-10-20T23:59:59.000Z

250

Choosing wind power plant locations and sizes based on electric reliability measures using multiple-year wind speed measurements  

SciTech Connect (OSTI)

To project the US potential to meet future electricity demands with wind energy, estimates of available wind resource and costs to access that resource are critical. The US Department of Energy (DOE) Energy Information Administration (EIA) annually estimates the US market penetration of wind in its Annual Energy Outlook series. For these estimates, the EIA uses wind resource data developed by the Pacific Northwest National Laboratory for each region of the country. However, the EIA multiplies the cost of windpower by several factors, some as large as 3, to account for resource quality, market factors associated with accessing the resource, electric grid impacts, and rapid growth in the wind industry. This paper examines the rationale behind these additional costs and suggests alternatives.

Milligan, M.R.; Artig, R.

1999-07-08T23:59:59.000Z

251

Analysis of wind power for battery charging  

SciTech Connect (OSTI)

One type of wind-powered battery charging will be explored in this paper. It consists of a wind turbine driving a permanent magnet alternator and operates at variable speed. The alternator is connected to a battery bank via a rectifier. The characteristic of the system depends on the wind turbine, the alternator, and the system configuration. If the electrical load does not match the wind turbine, the performance of the system will be degraded. By matching the electrical load to the wind turbine, the system can be improved significantly. This paper analyzes the properties of the system components. The effects of parameter variation and the system configuration on the system performance are investigated. Two basic methods of shaping the torque-speed characteristic of the generator are presented. The uncompensated as well as the compensated systems will be discussed. Control strategies to improve the system performance will be explored. Finally, a summary of the paper will be presented in the last section.

Muljadi, E.; Drouilhet, S.; Holz, R. [National Renewable Energy Lab., Golden, CO (United States); Gevorgian, V. [University of Armenia, Yerevan (Armenia). State Engineering

1995-11-01T23:59:59.000Z

252

Wind energy and the Migratory Bird Treaty Act  

SciTech Connect (OSTI)

The Fish and Wildlife Service (Service) is charged to balance its support for clean, renewable energy such as windpower with its trust responsibilities under the Migratory Bird Treaty Act (MBTA). There are four international treaties implemented by the MBTA protecting 850 species of migratory birds. The Service is focused on managing healthy populations but must protect individuals by law. An activity cannot legally {open_quotes}take{close_quotes} one migratory bird except as provided by a hunting season or a permit. The Service does not have the authority to issue a permit to {open_quotes}take{close_quotes} a bird incidental to an otherwise legal activity. Scientific permits or special purpose permits may be appropriate. Development of incidental take regulations are being considered. More research is needed, but this should prevent some management actions. The Service will continue to work with the industry to develop broad guidelines to minimize avian mortality.

Schmidt, P.R. [Fish and Wildlife Service, Washington, DC (United States)

1995-12-31T23:59:59.000Z

253

Wind Vision: Updating the DOE 20% Wind Energy by 2030 Report (Poster)  

SciTech Connect (OSTI)

The 20% Wind Energy by 2030 report was developed as part of the Advanced Energy Initiative. Published in 2008, the report was largely based on information collected and analyzed in 2006. Much has changed since then, including shifts in technology, markets, and policy. The industry needs a new, clear, vision for wind power that is shared among stakeholders from the U.S. government, industry, academia, and NGO communities. At WINDPOWER 2013, the U.S. Department of Energy, in partnership with the American Wind Energy Association and the Wind Energy Foundation, launched a project to update the 20% report with new objectives. This conference poster outlines the elements of the new Wind Vision.

Baring-Gould, E. I.

2014-04-01T23:59:59.000Z

254

Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States  

SciTech Connect (OSTI)

It has been estimated that from 100 million to well over 1 billion birds are killed annually in the United States due to collisions with human-made structures, including vehicles, buildings and windows, powerlines, communication towers, and wind turbines. Although wind energy is generally considered environmentally friendly (because it generates electricity without emitting air pollutants or greenhouse gases), the potential for avian fatalities has delayed and even significantly contributed to blocking the development of some windplants in the U.S. Given the importance of developing a viable renewable source of energy, the objective of this paper is to put the issue of avian mortality associated with windpower into perspective with other sources of avian collision mortality across the U.S. The purpose of this paper is to provide a detailed summary of the mortality data collected at windplants and put avian collision mortality associated with windpower development into perspective with other significant sources of avian collision mortality across the United States. We provide a summary of data collected at many of the U.S. windplants and provide annual bird fatality estimates and projections for all wind turbines in the U.S. For comparison, we also review studies of avian collision mortality from other major human-made structures and report annual bird fatality estimates for these sources. Other sources also significantly contribute to overall avian mortality. For example, the National Audubon Society estimates avian mortality due to house cats at 100 million birds per year. Pesticide use, oil spills, disease, etc., are other significant sources of unintended avian mortality. Due to funding constraints, the scope of this paper is limited to examining only avian mortality resulting from collisions with human-made obstacles.

Wallace P. Erickson, Gregory D. Johnson, M. Dale Strickland, David P. Young, Jr., Karyn J. Sernka, Rhett E. Good

2001-08-01T23:59:59.000Z

255

South Dakota Wind Resource Assessment Network (WRAN)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

WRAN is a network of instrument stations sited throughout South Dakota. As of 2010, there are eleven stations, and some have been collecting data since 2001. The purpose of the WRAN:

There are several reasons why the WRAN was built. One of the most obvious is that it will allow verification of the existing resource assessments of our state. South Dakota has tremendous potential as an exporter of wind-generated electricity. There has recently been a great deal of publicity over a Pacific Northwest National Laboratories study conducted in the early 1990s that ranked the contiguous 48 states in terms of their potential to produce windpower. (Click here for the results of this study as given by the American Wind Energy Association.) South Dakota ranked fourth in that study. Also, more recently, detailed maps of the wind resource in South Dakota were produced by the National Renewable Energy Laboratory (NREL). Unfortunately, both of these studies had to rely heavily on computer-generated models and very sparse measured data, because very little appropriate measured data exists. The WRAN will provide valuable data that we anticipate will validate the NREL maps, and perhaps suggest minor adjustments.

There are many other benefits the WRAN will provide. The data it will measure will be at heights above ground that are more appropriate for predicting the performance of large modern wind turbines, as opposed to data collected at National Weather Service stations whose anemometers are usually only about 9 m (30 feet) above ground. Also, we will collect some different types of data than most wind measurement networks, which will allow a series of important studies of the potential impact and value of South Dakota's windpower. In addition, all of the WRAN data will be made available to the public via this WWWeb site. This will hopefully enable extensive informed discussion among all South Dakotans on such important topics as rural economic development and transmission system expansion. [Copied from http://sdwind.com/about/

256

Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint  

SciTech Connect (OSTI)

The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

Florita, A.; Hodge, B. M.; Milligan, M.

2012-08-01T23:59:59.000Z

257

Avian issues in wind development  

SciTech Connect (OSTI)

There is a lot of concern among wind supporters, I know, about Audubon`s position on wind power. There is concern that this is the wrong time to be critical, and the wrong time to be putting any doubts in investors` minds, and the wrong time to provide an excuse for utilities to stop buying windpower. The long-term future of biodiversity, including bird diversity, depends on development of renewable energy, and that will mean some wind development in the right places and with the right types of systems. For both the long-time survival of the wind industry and for protection of bird populations, Audubon cannot be quiet on this issue. To avoid mistakes that can kill the industry in the long run, expenditures for wind/avian research have to be increased way beyond their present scope. We are going to need about $5 million dollars per year, if we are to (1) understand the biology and physics of bird-wind plant interactions, (2) if we are to understand relevant bird flightpaths, and (3) if we are to design a strategy to protect bird populations.

Beyea, J. [National Audubon Society, New York, NY (United States)

1995-12-31T23:59:59.000Z

258

Wind-electric icemaking project: Analysis and dynamometer testing. Volume 1  

SciTech Connect (OSTI)

The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

1998-07-01T23:59:59.000Z

259

Wind-electric icemaking project: Analysis and dynamometer testing. Volume 2  

SciTech Connect (OSTI)

The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

1998-07-01T23:59:59.000Z

260

Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)  

SciTech Connect (OSTI)

About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "baoding huiteng windpower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Strategies for Voltage Control and Transient Stability Assessment  

SciTech Connect (OSTI)

As wind generation grows, its influence on power system performance will becoming increasingly noticeable. Wind generation di#11;ffers from traditional forms of generation in numerous ways though, motivating the need to reconsider the usual approaches to power system assessment and performance enhancement. The project has investigated the impact of wind generation on transient stability and voltage control, identifying and addressing issues at three distinct levels of the power system: 1) at the device level, the physical characteristics of wind turbine generators (WTGs) are quite unlike those of synchronous machines, 2) at the wind-farm level, the provision of reactive support is achieved through coordination of numerous dissimilar devices, rather than straightforward generator control, and 3) from a systems perspective, the location of wind-farms on the sub-transmission network, coupled with the variability inherent in their power output, can cause complex voltage control issues. The project has sought to develop a thorough understanding of the dynamic behaviour of type-3 WTGs, and in particular the WECC generic model. The behaviour of such models is governed by interactions between the continuous dynamics of state variables and discrete events associated with limits. It was shown that these interactions can be quite complex, and may lead to switching deadlock that prevents continuation of the trajectory. Switching hysteresis was proposed for eliminating deadlock situations. Various type-3 WTG models include control blocks that duplicate integrators. It was shown that this leads to non-uniqueness in the conditions governing steady-state, and may result in pre- and post-disturbance equilibria not coinciding. It also gives rise to a zero eigenvalue in the linearized WTG model. In order to eliminate the anomalous behaviour revealed through this investigation, WECC has now released a new generic model for type-3 WTGs. Wind-farms typically incorporate a variety of voltage control equipment including tapchanging transformers, switched capacitors, SVCs, STATCOMs and the WTGs themselves. The project has considered the coordinated control of this equipment, and has addressed a range of issues that arise in wind-farm operation. The #12;first concerns the ability of WTGs to meet reactive power requirements when voltage saturation in the collector network restricts the reactive power availability of individual generators. Secondly, dynamic interactions between voltage regulating devices have been investigated. It was found that under certain realistic conditions, tap-changing transformers may exhibit instability. In order to meet cost, maintenance, fault tolerance and other requirements, it is desirable for voltage control equipment to be treated as an integrated system rather than as independent devices. The resulting high-level scheduling of wind-farm reactive support has been investigated. In addressing this control problem, several forms of future information were considered, including exact future knowledge and stochastic predictions. Deterministic and Stochastic Dynamic Programming techniques were used in the development of control algorithms. The results demonstrated that while exact future knowledge is very useful, simple prediction methods yield little bene#12;fit. The integration of inherently variable wind generation into weak grids, particularly subtransmission networks that are characterized by low X=R ratios, aff#11;ects bus voltages, regulating devices and line flows. The meshed structure of these networks adds to the complexity, especially when wind generation is distributed across multiple nodes. A range of techniques have been considered for analyzing the impact of wind variability on weak grids. Sensitivity analysis, based on the power-flow Jacobian, was used to highlight sections of a system that are most severely a#11;ffected by wind-power variations. A continuation power flow was used to determine parameter changes that reduce the impact of wind-power variability. It was also used to explore interactions betw

Hiskens, Ian A.

2013-09-25T23:59:59.000Z

262

California energy flow in 1991  

SciTech Connect (OSTI)

Energy consumption in California fell in 1991 for the first time in five years. The State`s economy was especially hard hit by a continuing national recession. The construction industry for the second year experienced a dramatic downturn. Energy use in the industrial sector showed a modest increase, but consumption in other end-use categories declined. The decrease in energy used in transportation can be traced to a substantial fall in the sales of both highway diesel fuels and vessel bunkering fuels at California ports, the latter reflecting a mid-year increase in taxes. Gasoline sales by contrast increased as did the number of miles traveled and the number of automobiles in the State. Production in California`s oil and gas fields was at 1990 levels thus arresting a steady decline in output. Due to enlarged steam flooding operations, production at several fields reached record levels. Also countering the decline in many of California fields was new production from the Port Arguello offshore field. California natural gas production, despite a modest 1991 increase, will not fill the use within the State. Petroleum comprised more than half of the State`s energy supply principally for transportation. Natural gas use showed a small increase. Oil products play virtually no role in electrical production. The largest single source of electricity to the State is imports from the Pacific Northwest and from coal-fired plants in the Southwest. Combined contributions to transmitted electricity from renewable and alternate sources declined as hydropower was constrained by a prolonged drought and as geothermal power from the largest and oldest field at The Geysers fell. Windpower grew slightly; however solar power remained at 1990 levels and made no substantial contribution to total power generation.

Borg, I.Y.; Briggs, C.K.

1993-04-01T23:59:59.000Z

263

California energy flow in 1993  

SciTech Connect (OSTI)

Energy consumption in the state of California decreased about 3% in 1993 reflecting continuation of the recession that was manifest in a moribund construction industry and a high state unemployment that ran counter to national recovery trends. Residential/commercial use decreased slightly reflecting a mild winter in the populous southern portion of the state, a decrease that was offset to some extent by an increase in the state population. Industrial consumption of purchased energy declined substantially as did production of self-generated electricity for in-house use. Consumption in the transportation sector decreased slightly. The amount of power transmitted by the utilities was at 1992 levels; however a smaller proportion was produced by the utilities themselves. Generation of electricity by nonutilities, primarily cogenerators and small power producers, was the largest of any state in the US. The growth in the number of private power producers combined with increased amounts of electricity sold to the public utilities set the stage for the sweeping proposals before the California Public Utility Commission to permit direct sales from the nonutilities to retail customers. California production of both oil and natural gas declined; however, to meet demand only the imports of natural gas increased. A break in the decade-long drought during the 1992--1993 season resulted in a substantial increase in the amount of hydroelectricity generated during the year. Geothermal energy`s contribution increased substantially because of the development of new resources by small power producers. Decline in steam production continued at The Geysers, the state`s largest field, principally owned and managed by a public utility. Increases in windpower constituted 1--1/2% of the total electric supply--up slightly from 1992. Several solar photo voltaic demonstration plants were in operation, but their contribution remained small.

Borg, I.Y.; Briggs, C.K.

1995-04-01T23:59:59.000Z

264

Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems  

SciTech Connect (OSTI)

Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich Demonstration Plant Research Centre, Juelich (FZJ) (Germany); Schatz Solar Hydrogen Project, Schatz Energy Research Centre, Humboldt State University (USA); INTA Solar Hydrogen Facility, INTA (Spain); Solar Hydrogen Fueled Trucks, Clean Air Now, Xerox (USA), Electrolyser (Canada); SAPHYS: Stand-Alone Small Size Photovoltaic Hydrogen Energy System, ENEA (Italy), IET (Norway), FZJ (Germany); Hydrogen Generation from Stand-Alone Wind-Powered Electrolysis Systems, RAL (United Kingdom), ENEA (Italy), DLR (Germany); Palm Desert Renewable Hydrogen Transportation Project; Schatz Energy Research Centre, City of Palm Desert (USA). Other demonstration projects are summarized in chapter 11.

Schucan, T. [Paul Scherrer Inst., Villigen PSI (Switzerland)

1999-12-31T23:59:59.000Z

265

Community Wind: Once Again Pushing the Envelope of Project Finance  

SciTech Connect (OSTI)

In the United States, the 'community wind' sector - loosely defined here as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a 'test bed' or 'proving grounds' for up-and-coming wind turbine manufacturers that are trying to break into the U.S. wind power market. For example, community wind projects - and primarily those located in the state of Minnesota - have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010), Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Thus far, one of these turbine manufacturers - Suzlon - has subsequently achieved some success in the broader U.S. wind market as well. Just as it has provided a proving grounds for new turbines, so too has the community wind sector served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the special allocation partnership flip structure (see Figure 1 in Section 2.1) - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adopted by the broader wind market. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. These include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into New Markets Tax Credits using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind structures that could serve as useful examples for other projects - both community and commercial wind alike. This report describes each of these innovative new financing structures in some detail, using a case-study approach. The purpose is twofold: (1) to disseminate useful information on these new financial structures, most of which are widely replicable; and (2) to highlight the recent policy changes - many of them temporary unless extended - that have facilitated this innovation. Although the community wind market is currently only a small sub-sector of the U.S. wind market - as defined here, less than 2% of the overall market at the end of 2009 (Wiser and Bolinger 2010) - its small size belies its relevance to the broader market. As such, the information provided in this report has relevance beyond its direct application to the community wind sector. The next two sections of this report briefly summarize how most community wind projects in the U.S. have been financed historically (i.e., prior to this latest wave of innovation) and describe the recent federal policy changes that have enabled a new wave of financial innovation to occur, respectively. Section 4 contains brief case studies of how each of the five projects mentioned above were financed, noting the financial significance of each. Finally, Section 5 concludes by distilling a number of general observations or pertinent lessons learned from the experiences of these five projects.

bolinger, Mark A.

2011-01-18T23:59:59.000Z

266

Final Report for Harvesting a New Wind Crop: Innovative Economic Approaches for Rural America  

SciTech Connect (OSTI)

Final Report for ''Harvesting a New Wind Crop: Innovative Economic Approaches for Rural America'': This project, ''Harvesting a New Wind Crop'', helped stimulate wind development by rural electric cooperatives and municipal utilities in Colorado. To date most of the wind power development in the United States has been driven by large investor-owned utilities serving major metropolitan areas. To meet the 5% by 2020 goal of the Wind Powering America program the 2,000 municipal and 900 rural electric cooperatives in the country must get involved in wind power development. Public power typically serves rural and suburban areas and can play a role in revitalizing communities by tapping into the economic development potential of wind power. One barrier to the involvement of public power in wind development has been the perception that wind power is more expensive than other generation sources. This project focused on two ways to reduce the costs of wind power to make it more attractive to public power entities. The first way was to develop a revenue stream from the sale of green tags. By selling green tags to entities that voluntarily support wind power, rural coops and munis can effectively reduce their cost of wind power. Western Resource Advocates (WRA) and the Community Office for Resource Efficiency (CORE) worked with Lamar Light and Power and Arkansas River Power Authority to develop a strategy to use green tags to help finance their wind project. These utilities are now selling their green tags to Community Energy, Inc., an independent for-profit marketer who in turn sells the tags to consumers around Colorado. The Lamar tags allow the University of Colorado-Boulder, the City of Boulder, NREL and other businesses to support wind power development and make the claim that they are ''wind-powered''. This urban-rural partnership is an important development for the state of Colorado's rural communities get the economic benefits of wind power and urban businesses are able to claim the environmental benefits. The second method to reduce the cost of wind power we investigated involved access to cheap capital. Municipal utilities and rural electric cooperatives have access to low-interest loan programs and frequently finance projects through the sale of revenue bonds, but we were interested in the possibility for small businesses and community banks to provide equity and debt for wind projects. We worked with Boulder Community Hospital to explore their interest in partnering with other businesses and individuals to help catalyze the first community-owned wind project in Colorado. We also met with and gained interest from the independent community banks for the idea of wind power. These small banks may be restricted by lending limits, but are an integral part of rural communities and are very interested in the economic development opportunities wind power presents for small towns. This project was successful in getting six rural electric cooperatives and municipal utilities to purchase more than 25 MW of wind power in Colorado, Wyoming and Nebraska. These utilities also announced plans to explore an additional 100 MW or more of wind power development over the next few years. Finally, munis and coops in New Mexico began exploring wind power by offering small green power programs to their customers. WRA believes the lessons learned from this project will assist other municipal utilities and rural electric cooperatives as they develop wind projects.

Susan Innis; Randy Udall; Project Officer - Keith Bennett

2005-09-30T23:59:59.000Z

267

Novel Low Cost, High Reliability Wind Turbine Drivetrain  

SciTech Connect (OSTI)

Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of energy by 10.2%. This design was achieved by: (1) performing an extensive optimization study that deter-mined the preliminary cost for all practical chain drive topologies to ensure the most competitive configuration; (2) conducting detailed analysis of chain dynamics, contact stresses, and wear and efficiency characteristics over the chain�������¢����������������s life to ensure accurate physics-based predictions of chain performance; and (3) developing a final product design, including reliability analysis, chain replacement procedures, and bearing and sprocket analysis. Definition of this final product configuration was used to develop refined cost of energy estimates. Finally, key system risks for the chain drive were defined and a comprehensive risk reduction plan was created for execution in Phase 2.

Anthony Chobot; Debarshi Das; Tyler Mayer; Zach Markey; Tim Martinson; Hayden Reeve; Paul Attridge; Tahany El-Wardany

2012-09-13T23:59:59.000Z

268

Financial Innovation Among the Community Wind Sector in the United States  

SciTech Connect (OSTI)

In the relatively brief history of utility-scale wind generation, the 'community wind' sector - defined here as consisting of relatively small utility-scale wind power projects that are at least partly owned by one or more members of the local community - has played a vitally important role as a 'test bed' or 'proving ground' for wind turbine manufacturers. In the 1980s and 1990s, for example, Vestas and other now-established European wind turbine manufacturers relied heavily on community wind projects in Scandinavia and Germany to install - and essentially field-test - new turbine designs. The fact that orders from community wind projects seldom exceeded more than a few turbines at a time enabled the manufacturers to correct any design flaws or manufacturing defects fairly rapidly, and without the risk of extensive (and expensive) serial defects that can accompany larger orders. Community wind has been slower to take root in the United States - the first such projects were installed in the state of Minnesota around the year 2000. Just as in Europe, however, the community wind sector in the U.S. has similarly served as a proving ground - but in this case for up-and-coming wind turbine manufacturers that are trying to break into the broader U.S. wind power market. For example, community wind projects have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010),1 Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Just as it has provided a proving ground for new turbines, so too has the community wind sector in the United States served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the 'partnership flip structure' - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adapted by the broader wind market. More recently, a handful of community wind projects built in the United States over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures. These projects include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into 'New Markets Tax Credits' using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind financing structures that could serve as useful examples for other projects - both community and commercial wind alike. This new wave of financial innovation occurring in the community wind sector has been facilitated by policy changes, most of them recent. Most notably, the American Recovery and Reinvestment Act of 2009 ('the Recovery Act') enables, for a limited time, wind power (and other types of) projects to elect either a 30% investment tax credit ('ITC') or a 30% cash grant (the 'Section 1603 grant') in lieu of the federal incentive that has historically been available to wind projects in the U.S. - a 10-year production tax credit ('PTC'). This flexibility, in turn, enables wind power projects to pursue lease financing for the first time - leasing is not possible under the PTC. Because they are based on a project's cost rather than energy generation, the 30% ITC and Section 1603 grant also reduce performance risk relative to the PTC - this, too, is an important enabler of lease financing. Finally, by providing a cash rather than ta

Bolinger, Mark

2011-01-19T23:59:59.000Z

269

A Development Path to the Efficient and Cost-Effective Bulk Storage of Electrical Energy  

SciTech Connect (OSTI)

Efficient and cost-effective means for storing electrical energy is becoming an increasing need in our electricity-oriented society. For example, for electric utilities an emerging need is for distributed storage systems, that is, energy storage at substations, at solar or wind-power sites, or for load-leveling at the site of major consumers of their electricity. One of the important consequences of distributed storage for the utilities would be the reduction in transmission losses that would result from having a local source of load-leveling power. For applications such as these there are three criteria that must be satisfied by any new system that is developed to meet such needs. These criteria are: (1) high 'turn-around' efficiency, that is, high efficiency of both storing and recovering the stored energy in electrical form, (2) long service life (tens of years), with low maintenance requirements, and, (3) acceptably low capital cost. An additional requirement for these particular applications is that the system should have low enough standby losses to permit operation on a diurnal cycle, that is, storing the energy during a portion of a given day (say during sunlight hours) followed several hours later by its use during night-time hours. One answer to the spectrum of energy storage needs just outlined is the 'electromechanical battery'. The E-M battery, under development for several years at the Laboratory and elsewhere in the world, has the potential to solve the above energy storage problems in a manner superior to the electro-chemical battery in the important attributes of energy recovery efficiency, cycle lifetime, and amortized capital cost. An electromechanical battery is an energy storage module consisting of a high-speed rotor, fabricated from fiber composite, and having an integrally mounted generator/motor. The rotor operates at high speed, in vacuo, inside of a hermetically sealed enclosure, supported by a 'magnetic bearing', that is, a bearing that uses magnetic forces to support the rotor against gravity. Magnetic bearings are a virtual necessity for the E-M battery in order to achieve long service life, and to minimize frictional losses so that the battery does not lose its charge (run down) too rapidly. These considerations mitigate against the use of conventional mechanical bearings in the E-M battery for most applications. The Laboratory has pioneered the development of a new form of magnetic bearing to meet the special requirements of the E-M battery: the 'ambient-temperature passive magnetic bearing'. Simpler, and potentially much less expensive than the existing 'active' magnetic bearings (ones requiring electronic amplifiers and feedback circuits for their operation) development of the ambient-temperature passive magnetic bearing represents a technological breakthrough. Beyond its use in the E-M battery, the ambient-temperature magnetic bearing could have important applications in replacing conventional lubricated mechanical bearings in electrical machinery. Here the gains would be two-fold: reduced frictional losses, leading to higher motor efficiency, and, of equal importance, the elimination of the need for lubricants and for routine replacement of the bearings owing to mechanical wear. Thus an added benefit from a vigorous pursuit of our electromechanical battery concepts could be its impact on many other areas of industry where rotating machinery in need of improved bearings is involved. If perfected, passive magnetic bearings would seem to represent an almost ideal replacement for the mechanical bearings in many types of industrial electrical machinery. Returning to the issued of energy storage, the E-M battery itself has much to contribute in the area of improving the efficiency of stationary energy storage systems. For example, many electrical utilities utilize 'pumped hydro' energy storage systems as a means of improving the utilization of their 'base-load' power plants. That is, electrical energy is stored during off-peak hours for delivery at times of peak usage. These pumped hydro sys

Post, R F

2009-09-24T23:59:59.000Z

270

Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems  

SciTech Connect (OSTI)

Hydrogen (H2) offers advantages as an energy carrier: minimal discharge of pollutants, production from multiple sources, increased thermodynamic efficiencies compared to fossil fuels, and reduced dependence on foreign oil. However, potential impacts from the H2 generation processes, transport and distribution of H2, and releases of H2 into the atmosphere have been proposed. The goal of this project was to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, materials and structures. This project was part of a larger effort by DOE to assess the life-cycle costs and benefits and environmental impacts to inform decisions regarding future hydrogen research. Technical Approach: A modeling approach was developed and used to evaluate the potential environmental effects associated with the conversion of the on-road vehicle fleet from fossil-fuel vehicles to hydrogen fuel cell vehicles. GATOR-GCMOM was the primary tool used to predict atmospheric concentrations of gases and aerosols for selected scenarios. This model accounts for all feedbacks among major atmospheric processes based on first principles. The future scenarios and the emission rates selected for this analysis of hydrogen environmental effects are based on the scenarios developed by IPCC. The scenarios selected for the model simulations are a 2000 and 2050 A1B base cases, and a 2050 A1B case with hydrogen fuel cell vehicles (HFCVs). The hydrogen fuel cell scenario assumed conversion of 90% of fossil-fuel on-road vehicles (FFOV) in developed countries and 45% of FFOVs vehicles in other countries to HFCVs, with the H2 produced by steam-reforming of natural gas (SHFCVs). Simulations were conducted to examine the effect of converting the world�s FFOVs to HFCVs, where the H2 is produced by wind-powered electrolysis (WHFCVs). In all scenarios a 3% leakage of H2 consumed was assumed. Two new models were developed that provide the ability to evaluate a wider range of conditions and address some of the uncertainties that exist in the evaluation of hydrogen emissions. A simplified global hydrogen cycle model that simulates hydrogen dynamics in the troposphere and stratosphere was developed. A Monte Carlo framework was developed to address hydrogen uptake variability for different types of ecosystems. Findings 1.Converting vehicles worldwide in 2050 to SHFCVs at 90% penetration in developed countries and 45% penetration in other countries is expected to reduce NOx, CO, CO2, CH4, some other organic gases, ozone, PAN, black carbon, and other particle components in the troposphere, but may increase some other organic gases, depending on emissions. Conversion to SHFCVs is also expected to cool the troposphere and warm the stratosphere, but to a lesser extent than WHFCVs. Finally, SHFCVs are expected to increase UTLS ozone while decreasing upper stratospheric ozone, but to a lesser extent than WHFCVs. 2.The predicted criteria pollutant concentrations from the GATOR-GCMOM simulations indicated that near-surface annual mean concentrations in the US are likely to increase from the 2000 base case to the 2050 A1B base case for CO2 and ozone due to the increased economic activity, but to decrease for CO, NO2, SO2, and PM10 due to improved pollution control equipment and energy efficiencies. The shift to SHFCVs in 2050 was predicted to result in decreased concentrations for all the criteria pollutants, except for SO2 and PM10. The higher predicted concentrations for SO2 and PM10 were attributed to increased emissions using the steam-reforming method to generate H2. If renewable methods such as wind-based electrolysis were used to generate H2, the emissions of SO2 and PM10 would be lower. 3.The effects on air quality, human health, ecosystem, and building structures were quantified by comparing the GATOR-GCMOM model output and accepted health and ecosystem effects levels and ambient air quality criteria. Shifting to HFCVs is expected to result in improved air quality and benefits to human health. Shifting

Grieb, Thomas M.; Mills, W. B.; Jacobson, Mark Z.; Summers, Karen V.; Crossan, A. Brook

2010-12-31T23:59:59.000Z