National Library of Energy BETA

Sample records for banks ocean energy

  1. Outer Banks Ocean Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Sector: Wind energy Product: Privately-held company that plans to develop a 200-600MW offshore wind farm in federal lease blocks near North Carolina's barrier islands, known as...

  2. UCEAO: Energy Knowledge Bank | Open Energy Information

    Open Energy Info (EERE)

    UCEAO: Energy Knowledge Bank Jump to: navigation, search Name: UCEAO: Energy Knowledge Bank Place: Ohio Website: knowledgebank.uso.edu References: University Clean Energy Alliance...

  3. ocean energy technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers ocean energy technologies HomeTag:ocean ...

  4. Green Investment Bank | Open Energy Information

    Open Energy Info (EERE)

    Name: Green Investment Bank Place: United Kingdom Product: UK-based investment bank that will focus on clean energy investment. References: Green Investment Bank1 This article...

  5. Ocean Energy Technology Overview

    SciTech Connect (OSTI)

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  6. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  7. Ocean energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71% of the earth's surface, they collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy's (DOE) Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy cost-effectively and in a way that does not harm the environment. The program seeks to develop ocean energy technology to a point where industry can accurately assess whether the technology is a viable energy conversion alternative, or supplement, to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the OET Program is concentrating on research that advances the OTEC technology. The program also continues to monitor and study developments in wave energy, ocean current, and salinity gradient concepts; but it is not actively developing these technologies now. 13 figs.

  8. Ocean energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71{percent} of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost-effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the US Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW{sub e}. Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the US Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.

  9. PNC Bank Equipment Finance and Energy Group | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: PNC Bank - Equipment Finance and Energy Group Place: Valencia, California Zip: 91355 Product: Energy and Equipment Finance arm of PNC Bank...

  10. Ukraine-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    World Bank Climate Projects Jump to: navigation, search Name Ukraine-World Bank Climate Projects AgencyCompany Organization World Bank Sector Energy Focus Area Energy Efficiency...

  11. Green Ocean Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Energy Jump to: navigation, search Name: Green Ocean Wave Energy Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  12. Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Jump to: navigation, search Name: Ocean Energy Ltd Address: 3 Casement Square Place: Cobh Region: Ireland Sector: Marine and Hydrokinetic Phone Number:...

  13. Select Bank Plc | Open Energy Information

    Open Energy Info (EERE)

    Bank Plc Jump to: navigation, search Name: Select Bank Plc Place: Mayfair, England, United Kingdom Zip: W1J 8LQ Sector: Renewable Energy Product: England-based firm that promotes...

  14. Republic of Macedonia-World Bank Climate Projects | Open Energy...

    Open Energy Info (EERE)

    World Bank Climate Projects Jump to: navigation, search Name Republic of Macedonia-World Bank Climate Projects AgencyCompany Organization World Bank Sector Energy, Land Focus...

  15. Ocean Flow Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Ocean Flow Energy Place: United Kingdom Zip: NE29 6NL Product: Tidal energy device developer. References: Ocean Flow Energy1 This article...

  16. NY Green Bank | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    sector to address and alleviate market and financial barriers preventing a thriving clean energy marketplace. NY Green Bank does not accept deposits or offer retail loans, and...

  17. EA-342 Royal Bank of Canada | Department of Energy

    Energy Savers [EERE]

    Royal Bank of Canada EA-342 Royal Bank of Canada Order authorizing Royal Bank of Canada to export electric energy to Canada PDF icon EA-342 Royal Bank of Canada More Documents & Publications EA-342-A Royal Bank of Canada EA-330 The Royal Bank of Scotland plc EA-330-A The Royal Bank of Scotland plc

  18. International Conference on Ocean Energy

    Broader source: Energy.gov [DOE]

    Join the Energy Department in Edinburgh, Scotland from February 23–25th for the International Conference on Ocean Energy (ICOE) conference.

  19. Ninth Annual Ocean Renewable Energy Conference

    Broader source: Energy.gov [DOE]

    The future of clean, renewable ocean wave energy will be discussed in depth at the 2014 Ocean Renewable Energy Conference.

  20. India-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    Name India-World Bank Climate Projects AgencyCompany Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy Topics Background analysis...

  1. Philippines-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    Philippines-World Bank Climate Projects AgencyCompany Organization World Bank Sector Energy, Land Focus Area Renewable Energy, Energy Efficiency, Geothermal Topics Background...

  2. Ocean Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind

  3. Open Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Edit with form History Open Ocean Energy Ltd Jump to: navigation, search Name: Open Ocean Energy Ltd Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  4. Minority Banks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Banks Minority Banks Our Bank Deposit Financial Assistance Program was developed for the purpose of strengthening and expanding the Nation's minority and women-owned small business enterprises. In order to classify as "minority" the institution's majority ownership must include African Americans, Hispanic Americans, Asian Americans, American Indians, Eskimos, Aleuts, and women. The minority institution must certify minority ownership with the Department of the Treasury and appear on

  5. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  6. Colorado State Bank and Trust | Open Energy Information

    Open Energy Info (EERE)

    Bank and Trust Jump to: navigation, search Name: Colorado State Bank and Trust Place: Denver, Colorado Zip: 80202 Sector: Renewable Energy Product: Leasing and lending for...

  7. LNJ Bhilwara Group Glitnir Bank JV | Open Energy Information

    Open Energy Info (EERE)

    - Glitnir Bank JV Place: Noida, India Zip: 201 301 Sector: Geothermal energy Product: Joint venture established by LNJ Bhilwara Group and Glitnir Bank, for the development of...

  8. Georgia-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    Projects Jump to: navigation, search Name Georgia-World Bank Climate Projects AgencyCompany Organization World Bank Focus Area Renewable Energy, Hydro Topics Background analysis...

  9. EA-342-A Royal Bank of Canada | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A Royal Bank of Canada EA-342-A Royal Bank of Canada Order authorizing Royal Bank of Canada to export electric energy to Canada. PDF icon EA-342-A RBC (CN).pdf More Documents &...

  10. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Broader source: Energy.gov (indexed) [DOE]

    Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the world's ocean thermal ...

  11. IADG Energy Bank Revolving Loan Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Authority and Iowa Area Development Group Website http:www.iadg.comservicesfinancial-assistanceiadg-energy-bank.aspx Funding Source American Recovery and...

  12. Ocean Thermal | Open Energy Information

    Open Energy Info (EERE)

    the ability to produce 10000 TWh per year, which is greater than other types of ocean energy such as tides, marine currents and salinity gradient. OTEC functions best when...

  13. Ocean Renewable Energy Conference X

    Broader source: Energy.gov [DOE]

    The 10th annual Ocean Renewable Energy Conference provides attendees a forum to share new ideas and concepts, opportunity to learn from leading-edge practitioners and policy-makers, information...

  14. Ocean Energy Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Basics Ocean Energy Resource Basics August 16, 2013 - 4:34pm Addthis Although the potential for ocean energy technologies is believed to be very large, no comprehensive studies have been conducted to date to determine an accurate resource assessment for the United States. To address this problem, the U.S. Department of Energy announced in 2008 that it would fund several resource-assessment projects for advanced water power. Addthis Related Articles Glossary of Energy-Related

  15. Green Ocean Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Green Ocean Energy Place: Aberdeen, Scotland, United Kingdom Zip: AB10 1UP Product: Aberdeen, UK-based private developer of wave device....

  16. Ocean Motion International LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Saulsbury, Tennessee Zip: 38067 Sector: Ocean Product: Marine energy technology firm developing ocean wave powered generators. Coordinates: 35.052242,...

  17. Scott Wilson Oceans | Open Energy Information

    Open Energy Info (EERE)

    Wilson Oceans Jump to: navigation, search Name: Scott Wilson Oceans Place: Chesterfield, United Kingdom Zip: S30 1JF Sector: Wind energy Product: Specialist in the engineering of...

  18. Carbon Bank Ireland | Open Energy Information

    Open Energy Info (EERE)

    Ireland Jump to: navigation, search Name: Carbon Bank Ireland Place: Nevada Zip: 89411 Product: Investment bank focused on CDM projects. References: Carbon Bank Ireland1 This...

  19. NREL-Ocean Energy Thermal Conversion | Open Energy Information

    Open Energy Info (EERE)

    Energy Laboratory Sector: Energy Topics: Resource assessment Website: www.nrel.govotec NREL-Ocean Energy Thermal Conversion Screenshot References: OTEC1 Logo: NREL-Ocean...

  20. Ocean Wave Energy Company OWECO | Open Energy Information

    Open Energy Info (EERE)

    Energy Company OWECO Jump to: navigation, search Name: Ocean Wave Energy Company (OWECO) Place: Bristol, Rhode Island Sector: Ocean Product: Wave energy device developer. The...

  1. Ocean Energy Institute | Open Energy Information

    Open Energy Info (EERE)

    think tank established to accelerate offshore wind technology development that hopes to build a 5GW wind project off the coast of Maine. References: Ocean Energy Institute1 This...

  2. Ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Lockerby, R.W.

    1981-01-01

    Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)

  3. Ocean Renewable Energy Coalition OREC | Open Energy Information

    Open Energy Info (EERE)

    Energy Coalition OREC Jump to: navigation, search Name: Ocean Renewable Energy Coalition (OREC) Place: Potomac, Maryland Zip: 20859 Sector: Ocean Product: US trade association...

  4. Practical Ocean Energy Management Systems Inc POEMS | Open Energy...

    Open Energy Info (EERE)

    Ocean Energy Management Systems Inc POEMS Jump to: navigation, search Name: Practical Ocean Energy Management Systems Inc (POEMS) Place: San Diego, California Zip: 92138 Sector:...

  5. The Global Carbon Bank | Open Energy Information

    Open Energy Info (EERE)

    Global Carbon Bank Jump to: navigation, search Name: The Global Carbon Bank Place: Houston, Texas Zip: 77025 Sector: Carbon, Services Product: Houston-based provider of advisory...

  6. European Investment Bank | Open Energy Information

    Open Energy Info (EERE)

    Logo: European Investment Bank Name: European Investment Bank Address: 98-100, boulevard Konrad Adenauer L-2950 Place: Luxembourg Product: Microfinance, Loans, Venture Capital...

  7. Central Bank of India | Open Energy Information

    Open Energy Info (EERE)

    India Jump to: navigation, search Name: Central Bank of India Place: DELHI, Delhi (NCT), India Zip: 110002 Product: Retail bank closely conencted with social development through...

  8. MHK Technologies/Ocean Energy Rig | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The Ocean...

  9. Ocean Thermal Extractable Energy Visualization: Final Technical Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the world's ocean thermal resources. PDF icon Ocean Thermal Extractable Energy Visualization More Documents & Publications OTEC resource assessment NELHA Creates the 'Green Energy

  10. Makai Ocean Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Southern CA Area Sector: Marine and Hydrokinetic, Ocean, Renewable Energy Product: OTEC Number of Employees: 28 Year Founded: 1973 Phone Number: 808.259.8871 Website:...

  11. Ocean Electric Power | Open Energy Information

    Open Energy Info (EERE)

    Ocean Electric Power Place: United Kingdom Sector: Renewable Energy Product: UK-based offshore project developer. The firm is actively engaged in the development of offshore...

  12. Ocean Renewable Power Company | Open Energy Information

    Open Energy Info (EERE)

    LLC was founded in 2004 for the purpose of generating reliable, competitive, emission-free electricity from the energy resources of the oceans. Coordinates: 45.511795,...

  13. ocean energy | OpenEI Community

    Open Energy Info (EERE)

    ocean energy Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine...

  14. Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  15. Ocean Navitas | Open Energy Information

    Open Energy Info (EERE)

    Condry. Website: www.oceannavitas.com References: Ocean Navitas&127;UNIQ75db538f85b32404-ref-000014E2-QINU&127; This article is a stub. You can help OpenEI by expanding it. Ocean...

  16. MHK Technologies/Ocean Treader floating | Open Energy Information

    Open Energy Info (EERE)

    homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK ProjectsDevelopment of Ocean...

  17. Building America Expert Meeting: Energy Savings You Can Bank On |

    Energy Savers [EERE]

    Department of Energy Energy Savings You Can Bank On Building America Expert Meeting: Energy Savings You Can Bank On On October 12, 2011, Building America team Alliance for Residential Building Innovation conducted an Expert Meeting on the topic of performance guarantees and financing vehicles for Energy Efficiency Upgrades. The meeting brought together technical, policy, and financial experts, including researchers, experienced installation contractors, and innovative energy business

  18. Investing in Minority Banks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investing in Minority Banks Investing in Minority Banks Our Bank Deposit Financial Assistance Program was developed for the purpose of strengthening and expanding the Nation's minority and women-owned small business enterprises. In order to classify as "minority" the institution's majority ownership must include African Americans, Hispanic Americans, Asian Americans, American Indians, Eskimos, Aleuts, and women. The minority institution must certify minority ownership with the

  19. The World Bank - Transport | Open Energy Information

    Open Energy Info (EERE)

    provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes...

  20. Bank of America | Open Energy Information

    Open Energy Info (EERE)

    America Jump to: navigation, search Name: Bank of America Place: Charlotte, NC Zip: 28202 Website: www.bankofamerica.com References: NREL & Industry: National Account Companies1...

  1. Open Ocean Aquaculture & Wave Energy Site | Open Energy Information

    Open Energy Info (EERE)

    Aquaculture & Wave Energy Site Jump to: navigation, search Basic Specifications Facility Name Open Ocean Aquaculture & Wave Energy Site Overseeing Organization University of New...

  2. Ocean Thermal Energy Conversion: An overview

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  3. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer.

  4. Ocean floor mounting of wave energy converters

    DOE Patents [OSTI]

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  5. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United...

  6. Mapping and Assessment of the United States Ocean Wave Energy...

    Broader source: Energy.gov (indexed) [DOE]

    analysis and results of a rigorous assessment of the United States ocean wave energy resource. Mapping and Assessment of the United States Ocean Wave Energy Resource More Documents...

  7. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Production Potential from Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline ...

  8. BankInvest Technology AS | Open Energy Information

    Open Energy Info (EERE)

    that manages the BankInvest New Energy Solutions fund as well as funds in IT and biotechnology. Coordinates: 55.67631, 12.569355 Show Map Loading map......

  9. MHK Technologies/Ocean | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage Ocean.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK ProjectsAlaska 35 *MHK...

  10. Ocean Energy Projects Developing On and Off America's Shores | Department

    Energy Savers [EERE]

    of Energy Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East

  11. Environmental impacts of ocean thermal energy conversion

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    Ocean thermal energy conversion (OTEC) is a promising technology for production of energy and usable by-products from solar-generated temperature gradients in the world's oceans. Although considered benign compared to alternative forms of energy generation, deployment of OTEC plants will result in interactions with marine, terrestrial, and atmospheric environments and in socioeconomic interactions with surrounding areas. The Ocean Energy Technology Program of the Department of Energy has funded research to improve the understanding of these interactions. No insurmountable environmental obstacle to OTEC deployment has been uncovered. This document contains a summary of that research for entrepreneurs, utility engineers, and others interested in pursuing OTEC's potential. In addition, it provides a guide to permits, regulations, and licenses applicable to construction of an OTEC plant.

  12. Assessment of Energy Production Potential from Ocean Currents...

    Broader source: Energy.gov (indexed) [DOE]

    of ocean currents in the United States and the database created with that data. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline...

  13. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Report summarizing the results of ...

  14. MHK Technologies/Ocean Wave Air Piston | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator...

  15. Ocean Wave Wind Energy Ltd OWWE | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Ltd OWWE Jump to: navigation, search Name: Ocean Wave Wind Energy Ltd OWWE Region: Norway Sector: Marine and Hydrokinetic Website: www.owwe.net This company is listed...

  16. Red Bank, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    (Redirected from Red Bank, NJ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3470543, -74.0643065 Show Map Loading map... "minzoom":false,"mappingservice":...

  17. Gabon-World Bank Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    World Bank Climate Activities Jump to: navigation, search Name Gabon-World Bank Climate Activities AgencyCompany Organization World Bank Sector Land Focus Area Forestry Topics...

  18. Assessment of Energy Production Potential from Ocean Currents along the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Coastline | Department of Energy Energy Production Potential from Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Report summarizing the results of seven years of numerical model simulations of ocean currents in the United States and the database created with that data. PDF icon energy_production_ocean_currents_us.pdf More Documents & Publications Assessment of Energy Production

  19. EA-330 The Royal Bank of Scotland plc | Department of Energy

    Energy Savers [EERE]

    The Royal Bank of Scotland plc EA-330 The Royal Bank of Scotland plc Order authorizing The Royal Bank of Scotland plc to export electric energy to Canada PDF icon EA-330 The Royal Bank of Scotland plc More Documents & Publications EA-330-A

  20. EA-330-A The Royal Bank of Scotland plc | Department of Energy

    Energy Savers [EERE]

    -A The Royal Bank of Scotland plc EA-330-A The Royal Bank of Scotland plc Order authorizing The Royal Bank of Scotland plc to export electric energy to Canada PDF icon EA-330-A The Royal Bank of Scotland plc More Documents & Publications EA-330

  1. EA-331 The Royal Bank of Scotland plc | Department of Energy

    Energy Savers [EERE]

    The Royal Bank of Scotland plc EA-331 The Royal Bank of Scotland plc Order authorizing The Royal Bank of Scotland plc to export electric energy to Mexico PDF icon EA-331 The Royal Bank of Scotland plc More Documents & Publications EA-331-A

  2. EA-331-A The Royal Bank of Scotland plc | Department of Energy

    Energy Savers [EERE]

    -A The Royal Bank of Scotland plc EA-331-A The Royal Bank of Scotland plc Order authorizing The Royal Bank of Scotland plc to export eelctric energy to Mexico PDF icon EA-331-A The Royal Bank of Scotland plc More Documents & Publications EA-331

  3. Ocean current resource assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean current resource assessment Ocean current resource assessment Ocean current resource assessment Office presentation icon 45oceanresourcegtrchaas.ppt More Documents & ...

  4. Finavera Renewables Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Address: 595 Burrard Street Suite 3113 Three Bentall Centre PO Box 49071 Place: Vancouver Zip: V7X 1G4 Region: Canada Sector: Marine and Hydrokinetic...

  5. Red Bank, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Bank is a borough in Monmouth County, New Jersey. It falls under New Jersey's 6th...

  6. Red Bank, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Bank is a city in Hamilton County, Tennessee. It falls under Tennessee's 3rd...

  7. Ocean Energy Program Overview, Fiscal years 1990--1991

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71% of the earth's surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy's (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans' waves, currents, and thermal and salinity gradients.

  8. Assessment of Energy Production Potential from Ocean Currents along the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Coastline | Department of Energy Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Report summarizing the results of seven years of numerical model simulations of ocean currents in the United States and the database created with that data. PDF icon Assessment of Energy Production Potential from Ocean Currents along the United States Coastline More Documents & Publications

  9. Sandia Energy - High-Fidelity Hydrostructural Analysis of Ocean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrostructural Analysis of Ocean Renewable Power Company's (ORPC's) TidGen Turbine Home Renewable Energy Energy Water Power Partnership News News & Events Computational...

  10. Ocean energy technologies: The state of the art: Final report

    SciTech Connect (OSTI)

    Carmichael, A.D.; Adams, E.E.; Glucksman, M.A.

    1986-11-01

    A state-of-the-art study of ocean energy technologies has been conducted to evaluate their potential use for the generation of electrical power. The more developed technologies are tidal energy, ocean thermal energy conversion (OTEC), and wave energy. In addition there has been a demonstration of a small ocean current turbine, and proposals have been made for salinity gradient devices and ocean wind turbines. Energy costs were estimated for representative base case systems for tidal, OTEC, and wave energy projects. The tidal energy scheme was predicted to have the lowest energy costs.

  11. Expert Meeting Report: Energy Savings You Can Bank On

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Savings You Can Bank On Mark Berman, Jeremy Springer, Pepper Smith, and Erik Porse Alliance for Residential Building Innovation )HEUXDU\ 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

  12. Ocean thermal energy conversion: report to congress - fiscal year 1982

    SciTech Connect (OSTI)

    Not Available

    1983-03-31

    National Oceanic and Atmospheric Administration (NOAA) activities related to ocean thermal energy conversion (OTEC) during fiscal year 1982 are described. The agency focus has been in the areas of providing ocean engineering and technical assistance to the Department of Energy (DOE), in streamlining the administration of the Federal OTEC licensing system, and in environmental assistance.

  13. Ocean energy conversion systems annual research report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  14. Hawaii Oceanic Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Oceanic Technology Inc Jump to: navigation, search Name: Hawaii Oceanic Technology Inc Region: United States Sector: Marine and Hydrokinetic Website: www.hioceanictech.com This...

  15. Ocean thermal energy conversion: a review

    SciTech Connect (OSTI)

    Yuen, P.C.

    1981-10-01

    The OTEC principle is discussed along with general system and cycle types, specific OTEC designs, OTEC applications, and the ocean thermal resource. The historic development of OTEC is briefly reviewed, and the status of French, Japanese, EUROCEAN, and US programs is assessed. US efforts are detailed and DOE's strategy outlined with OTEC-1 and Mini-OTEC information. Power system components of the more technically advanced closed-cycle OTEC concept are discussed. These include: heat exchangers, corrosion and biofouling countermeasures, working fluids, ammonia power systems, and on-platform seawater systems. Several open-cycle features are also discussed. A critical review is presented of the ocean engineering aspects of OTEC power systems. Major subsystems such as platform, cold water pipe, mooring system, dynamic positioning system, power transmission cable system are assessed for their relationships with the ocean environment and with each other. Nine available studies of OTEC costs are reviewed. Tentative comparisons are made between OTEC and traditional fuel costs, and OTEC products and markets are considered. Possible environmental and social effects of OTEC development are discussed. International, national, and local laws regulating OTEC plants and OTEC energy products are reviewed. Tax incentives, attitudes of the utilities, and additional legislative needs are considered. (LEW)

  16. World Bank-Climate Change Knowledge Portal | Open Energy Information

    Open Energy Info (EERE)

    Climate Change Knowledge Portal Jump to: navigation, search Logo: World Bank-Climate Change Knowledge Portal Name World Bank-Climate Change Knowledge Portal AgencyCompany...

  17. Global Climate Change: Risk to Bank Loans | Open Energy Information

    Open Energy Info (EERE)

    Risk to Bank Loans Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Climate Change: Risk to Bank Loans AgencyCompany Organization: United Nations...

  18. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  19. Ocean energy program summary: Volume 1, Overview: Fiscal year 1988

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    Past studies conducted by the US Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to US energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. The program also continues to monitor and study developments in wave energy, ocean current and salinity gradient concepts, but it is not actively developing these technologies at the present time. 8 figs.

  20. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  1. Ocean thermal energy conversion: Perspective and status

    SciTech Connect (OSTI)

    Thomas, A.; Hillis, D.L.

    1990-01-01

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully be George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250--400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore-based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed-cycle concept. Cost-effective heat-exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat-transfer augmentation techniques were identified, which promised a reduction on heat-exchanger size and cost. Fresh water was produced by an OTEC open-cycle flash evaporator, using the heat energy in the seawater itself. The current R D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open-cycle process. The 10 MW shore-based, closed-cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power -- both valuable commodities on many tropical islands. The open-cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources. 7 refs.

  2. Ocean Thermal Extractable Energy Visualization: Final Technical Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approved for public release; distribution is unlimited OCEAN THERMAL EXTRACTABLE ENERGY VISUALIZATION Award # DE-EE0002664 October 28, 2012 Final Technical Report Prepared by Lockheed Martin Mission Systems & Sensors (MS2) DE-EE0002664 Ocean Thermal Energy Resource Assessment Final Draft i 10/28/2012 Project Title: Ocean Thermal Extractable Energy Visualization Recipient: Lockheed Martin Corporation Award #: DE-0002664 Working Partners Project Lead: Matthew Ascari - Lockheed Martin

  3. MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project...

    Open Energy Info (EERE)

    Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":...

  4. Ocean Thermal Energy Conversion Act of 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A legislative proposal to develop ocean thermal energy conversion (OTEC) facilities for power generation was the subject of hearings held on April 10 and May 1, 1980. Following the test of S. 2492 are the statements of 20 witnesses and additional materials submitted for consideration. The need for a large-scale demonstration of OTEC and the need for a Federal regulatory, siting, and financial-assistance framework are the major commercialization issues. S. 2492 provides one-stop licensing by treating the facilities as vessels and making them eligible for loan guarantees. The bill complements S. 1430, which deals with the demonstration program. OTEC development in Hawaii has progressed to a second pilot project. (DCK)

  5. Employees give to local food bank | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employees give to local food bank Employees give to local food bank September 12, 2014 - 11:00am Addthis This is the fifth year OREM employees have participated in the annual Feds Feed Families summer campaign that helps replenish local food banks and raises awareness about the prevalence of hunger. This is the fifth year OREM employees have participated in the annual Feds Feed Families summer campaign that helps replenish local food banks and raises awareness about the prevalence of hunger. OAK

  6. Energy Department Releases New Energy 101 Video on Ocean Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and

  7. MHK Technologies/OceanStar | Open Energy Information

    Open Energy Info (EERE)

    energy efficient process to smooth out the pulse characteristics common to wave energy in order to be electrical grid friendly The OceanStars high level of scalability is...

  8. World Bank Climate Innovation Centers | Open Energy Information

    Open Energy Info (EERE)

    America and the Caribbean) for this property. References Climate Innovation Center Business Plans1 InfoDev2 World Bank Climate Innovation Centers Screenshot "The CIC works...

  9. Ex-Im Bank Environmental Export Finance Program | Open Energy...

    Open Energy Info (EERE)

    Environmental Export Financing Webpage 1 "Ex-Im Bank's financing helps mitigate risk for U.S. environmental companies and also offers competitive financing terms to...

  10. SIMULATIONS OF THE AGS MMPS STORING ENERGY IN CAPACITOR BANKS

    SciTech Connect (OSTI)

    MARNERIS,I.; BADEA, V.S.; BONATI, R.; ROSER, T.; SANDBERG, J.

    2007-06-25

    The Brookhaven AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps, +/-9000 Volts. The peak magnet power is 50 MWatts. The power supply is fed from a motor/generator manufactured by Siemens. The generator is 3 phase 7500 Volts rated at 50 MVA. The peak power requirements come from the stored energy in the rotor of the motor/generator. The motor generator is about 45 years old, made by Siemens and it is not clear if companies will be manufacturing similar machines in the future. We are therefore investigating different ways of storing energy for future AGS MMPS operations. This paper will present simulations of a power supply where energy is stored in capacitor banks. Two dc to dc converters will be presented along with the control system of the power section. The switching elements will be IGCT's made by ABB. The simulation program used is called PSIM version 6.1. The average power from the local power authority into the power supply will be kept constant during the pulsing of the magnets at +/-50 MW. The reactive power will also be kept constant below 1.5 MVAR. Waveforms will be presented.

  11. Ocean County, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Jersey Manahawkin, New Jersey Mantoloking, New Jersey Mystic Island, New Jersey New Egypt, New Jersey North Beach Haven, New Jersey Ocean Acres, New Jersey Ocean Gate, New...

  12. Ocean energy resources: the impact of OTEC

    SciTech Connect (OSTI)

    Ditmars, J.D.

    1980-01-01

    The status of OTEC technological development is summarized with emphasis on the potential impacts of OTEC power production on the ocean environment, including implications for impacts to climate. (MHR)

  13. Energy Secretary Moniz and Export-Import Bank Chairman Hochberg to Visit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First Solar Facility in Perrysburg, Ohio | Department of Energy Moniz and Export-Import Bank Chairman Hochberg to Visit First Solar Facility in Perrysburg, Ohio Energy Secretary Moniz and Export-Import Bank Chairman Hochberg to Visit First Solar Facility in Perrysburg, Ohio February 14, 2015 - 6:35pm Addthis News Media Contact 202 586 4940 RSVP@hq.doe.gov Energy Secretary Moniz and Export-Import Bank Chairman Hochberg to Visit First Solar Facility in Perrysburg, Ohio WASHINGTON- On Friday,

  14. Energy Secretary Moniz, EPA Administrator McCarthy and World Bank President

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kim to Keynote ARPA-E Energy Innovation Summit | Department of Energy Moniz, EPA Administrator McCarthy and World Bank President Kim to Keynote ARPA-E Energy Innovation Summit Energy Secretary Moniz, EPA Administrator McCarthy and World Bank President Kim to Keynote ARPA-E Energy Innovation Summit December 9, 2015 - 2:05pm Addthis News Media Contact (202) 586-0976 DOENews@hq.doe.gov WASHINGTON - The U.S. Department of Energy today announced that U.S. Energy Secretary Ernest Moniz, U.S.

  15. Proceedings of the ocean energy information dissemination workshop, December 1979

    SciTech Connect (OSTI)

    Petty, D.

    1980-04-01

    The workshop was held to discuss the status of marketing ocean energy information and to develop an understanding of information needs and how to satisfy them. Presentations were made by the Solar Energy Research Institute (SERI) staff and media consultants about the effective use of audio-visual and print products, the mass media, and audience needs. Industry and government representatives reported on current efforts in each of their communication programs and outlined future plans. Four target audiences (DOE contractors, researchers, influencers, and general public) were discussed with respect to developing priorities for projects to enhance the commercialization of ocean energy technology.

  16. Mapping the Potential of U.S. Ocean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential of U.S. Ocean Energy Mapping the Potential of U.S. Ocean Energy November 6, 2013 - 12:00am Addthis In September 2013, EERE completed a series of resource assessments showing the technically recoverable potential energy available in the nation's waves, tidal and river currents, and ocean thermal gradients. These resource assessments are pivotal to understanding water power's potential and making these resources available to contribute to the United States' total annual electricity

  17. Quantitative evaluation of ocean thermal energy conversion (OTEC): executive briefing

    SciTech Connect (OSTI)

    Gritton, E.C.; Pei, R.Y.; Hess, R.W.

    1980-08-01

    Documentation is provided of a briefing summarizing the results of an independent quantitative evaluation of Ocean Thermal Energy Conversion (OTEC) for central station applications. The study concentrated on a central station power plant located in the Gulf of Mexico and delivering power to the mainland United States. The evaluation of OTEC is based on three important issues: resource availability, technical feasibility, and cost.

  18. MHK Projects/Makai Ocean Energy Research Center | Open Energy...

    Open Energy Info (EERE)

    Project Details Makai Ocean Engineering has designed, owns, and operates a closed-cycle OTEC system in Kailua-Kona Hawaii. True deep cold seawater is drawn from a depth of about...

  19. Ocean energy systems. Quarterly report, January-March 1983

    SciTech Connect (OSTI)

    Not Available

    1983-03-30

    Progress is reported on the development of Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual and preliminary design activity of industry teams that are designing a shelf-mounted offshore OTEC pilot plant that could deliver power to Oahu, Hawaii. In addition, a program is underway to evaluate and test the Pneumatic Wave-Energy Conversion System (PWECS), an ocean-energy device consisting of a turbine that is air-driven as a result of wave action in a chamber. This Quarterly Report summarizes the work on the various tasks as of 31 March 1983.

  20. Research and development on ocean thermal energy conversion in Japan

    SciTech Connect (OSTI)

    Uehara, H.

    1982-08-01

    The study of Ocean Thermal Energy Conversion (OTEC) in Japan has been conducted under the leadership of a team of the ''Sunshine Project'', a national new energy development project promoted by the Ministry of International Trade and Industries (MITI) since 1974. At present, two experimental OTEC power plants -Nauru's OTEC plant and Imari's OTEC plant are operating. In this paper, the review of research and development activity of these two OTEC plants in Japan is made.

  1. Lockheed Testing the Waters for Ocean Thermal Energy System | Department of

    Energy Savers [EERE]

    Energy Lockheed Testing the Waters for Ocean Thermal Energy System Lockheed Testing the Waters for Ocean Thermal Energy System May 27, 2010 - 11:46am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs A floating platform, simple turbine and tropical oceans could be the key to producing 30 percent or more of the total energy the world consumes today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin

  2. Mapping and Assessment of the United States Ocean Wave Energy Resource |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mapping and Assessment of the United States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and results of a rigorous assessment of the United States ocean wave energy resource. PDF icon Mapping and Assessment of the United States Ocean Wave Energy Resource More Documents & Publications Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

  3. Federal Ocean Energy Technology: Program summary for fiscal year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    The Department of Energy's (DOE) Ocean Energy Technology (OET) Program is looking for cost-effective ways to harness ocean energy to help power tomorrow's world. Federally sponsored researchers are studying methods to transform the solar heat stored in the ocean's surface waters into electricity as well as new ways to convert wave energy into mechanical energy or electricity. This report provides a summary of research completed during FY 1986. Four major research areas are addressed in the work covered by this report: Thermodynamic Research and Analysis addresses the process and system analyses which provide the underlying understanding of physical effects which constitute the energy conversion processes, Experimental Verification and Testing provides confirmation of the analytical projections and empirical relationships, Materials and Structural Research addresses special materials compatibility issues related to operation in the sea. Much of its focus is on concepts for the system CWP which is a major technology cost driver, and Oceanographic, Environmental, and Geotechnical Research addresss those unique design requirements imposed by construction in steep slope coastal areas.

  4. Indian National Institute of Ocean Technology | Open Energy Informatio...

    Open Energy Info (EERE)

    of Ocean Technology Jump to: navigation, search Name: Indian National Institute of Ocean Technology Place: Chennai, Tamil Nadu, India Sector: Ocean Product: Research institute...

  5. Ocean energy systems. Quarterly report, October-December 1982

    SciTech Connect (OSTI)

    Not Available

    1982-12-01

    Research progress is reported on developing Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual design activity of the two industry teams that are designing offshore OTEC pilot plants that could deliver power to Oahu, Hawaii. In addition, a program is underway in which tests of a different kind of ocean-energy device, a turbine that is air-driven as a result of wave action in a chamber, are being planned. This Quarterly Report summarizes the work on the various tasks as of 31 December 1982.

  6. Ocean Thermal Energy Conversion Program Management Plan

    SciTech Connect (OSTI)

    Combs, R E

    1980-01-01

    The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

  7. Inter-American Development Bank (IDB) | Open Energy Information

    Open Energy Info (EERE)

    IDB Expands Climate and Clean Energy Facility to Finance Energy Efficiency, Self-supply Renewables and Adaptation The IDB has doubled the size of its Climate and Clean Energy...

  8. Energy Secretary Moniz and Export-Import Bank Chairman Hochberg...

    Energy Savers [EERE]

    Chairman Hochberg to Visit First Solar Facility in Perrysburg, Ohio Energy Secretary Moniz and ... are making to the nation's goal of a low-carbon energy future. ...

  9. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  10. Ocean Energy Program Overview, Fiscal years 1990--1991. Programs in utility technologies

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The oceans are the world`s largest solar energy collector and storage system. Covering 71% of the earth`s surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy`s (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans` waves, currents, and thermal and salinity gradients.

  11. Expert Meeting Report. Energy Savings You Can Bank On

    SciTech Connect (OSTI)

    Berman, Mark; Springer, Jeremy; Smith, Pepper; Porse, Erik

    2013-02-01

    In October 2011, ARBI organized and conducted an Experts Meeting on the topic of performance guarantees and financing vehicles for Energy Efficiency Upgrades. The meeting brought together technical, policy, and financial experts, including researchers, experienced installation contractors, and innovative energy business leaders, in order to discuss the opportunities and challenges for the energy efficiency upgrade industry to increase market uptake of Home Energy Upgrades (HEUs) through innovative offerings, such as performance guarantees.

  12. MHK Projects/Ocean Energy Galway Bay IE | Open Energy Information

    Open Energy Info (EERE)

    at the Irish Marine Institute-run test site in the waters off Galway, Ireland. Ocean Energy conducted a 2006-2007 winter sea trial on its 28 ton OEBuoy prototype at the Irish...

  13. EERE Success Story-Establishing a Testing Center for Ocean Energy...

    Office of Environmental Management (EM)

    NNMREC offers a full range of capabilities to support wave and tidal energy development for the United States. Ocean energy, generated from waves, tides, and currents, can be ...

  14. Grays Harbor Ocean Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Energy, Wind energy Product: Grays Harbor has started a demonstration project for offshore windwave renewable power generation in Washington State and has applied for up...

  15. Building America Expert Meeting: Energy Savings You Can Bank...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The meeting brought together technical, policy, and financial experts, including ... efficiency upgrade industry to increase market uptake of Home Energy Upgrades (HEUs) ...

  16. South Africa-World Bank Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    of power generation, whereas renewable energy power generation is a substitute for fossil fuel power generation. As a result, solar water heating transactions are not linked to...

  17. Ex-Im Bank Environmental Export Finance Program | Open Energy...

    Open Energy Info (EERE)

    financing for U.S. exports of: Renewable energy equipment Wastewater treatment projects Air pollution technologies Waste management services Other various environmental goods and...

  18. Energy in Europe and Central Asia: A sector strategy for the World Bank Group

    SciTech Connect (OSTI)

    1998-12-31

    Many countries in the Europe and Central Asia region have had an excess production capacity, lower quality supply, decreasing demand, and inefficient consumption in the energy sector since the late 1980s. This report outlines the four main objectives that form the World Bank Group`s strategy for reform: assisting governments to protect the public interest, supporting economic transition, facilitating private investments, and promoting regional initiatives to increase energy trade.

  19. Expert Meeting Report: Energy Savings You Can Bank On

    SciTech Connect (OSTI)

    Beman, M.; Springer, J.; Smith, P.; Porse, E.

    2013-02-01

    In October 2011, ARBI organized and conducted an Experts' Meeting on the topic of performance guarantees and financing vehicles for Energy Efficiency Upgrades. The meeting brought together technical, policy, and financial experts, including researchers, experienced installation contractors, and innovative energy business leaders, in order to discuss the opportunities and challenges for the energy efficiency upgrade industry to increase market uptake of Home Energy Upgrades (HEUs) through innovative offerings, such as performance guarantees. The meeting had several primary goals. First, it sought to understand how other industries have developed successful models for financing renewable energy installations while providing performance guarantees. This has been most recently demonstrated by the solar leasing industry. Second, the meeting explored the applicability of such business models to the energy efficiency upgrade industry. Third, the meeting sought to identify technical impediments to performance guarantees for energy efficiency retrofits. Fourth, the meeting sought to provide a common framework for these goals within the context of current financing mechanisms for energy efficiency upgrades.

  20. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    SciTech Connect (OSTI)

    Haas, Kevin A.

    2013-10-03

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States.

  1. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  2. MHK Technologies/THOR Ocean Current Turbine | Open Energy Information

    Open Energy Info (EERE)

    THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary...

  3. Voith Hydro Ocean Current Technologies | Open Energy Information

    Open Energy Info (EERE)

    Ocean Current Technologies Jump to: navigation, search Name: Voith Hydro Ocean Current Technologies Place: Germany Sector: Hydro Product: Germany-based JV between Voith Hydro and...

  4. Energy Sector Management Assistance Program of the World Bank...

    Open Energy Info (EERE)

    that will help developing and middle-income countries integrate large shares of wind and solar energy into their electricity grids.

  5. Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles

    SciTech Connect (OSTI)

    Green, H.J. ); Guenther, P.R. )

    1990-09-01

    This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

  6. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1988-02-01

    In this lecture an overview of the heat and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems, are briefly discussed.

  7. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1987-03-01

    In this lecture an overview of the heat- and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open- and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems are briefly discussed.

  8. PNC Financial Services - Net-Zero Energy Bank Branch

    SciTech Connect (OSTI)

    none,

    2013-03-01

    PNC has opened a zero-energy building that is 57% more efficient than ASHRAE 90.1-2004. Exterior features include shading to control glare from sunlight and photovoltaic solar panels to produce as much electricity as the building consumes annually.

  9. MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy...

    Open Energy Info (EERE)

    with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following...

  10. Renewable energy from the ocean - a guide to OTEC

    SciTech Connect (OSTI)

    Avery, W.H.; Wu, C.

    1994-01-01

    An enormous renewable energy resource exists in the tropical oceans. The authors of this book state that this resource could be exploited to produce a large fraction of the world's energy needs in the form of methanol or ammonia and that any associated deleterious environmental effects would be minimal. Careful analyses of potential problems, detailed designs of OTEC plant ships, and consideration of costs occupy most of the book. Part of it is devoted to some limited practical experience. With the knowledge set forth a 40-MWe seagoing pilot plant could be constructed. Cost would be about $200 million in 1990 dollars. Construction could be relatively rapid, since most of the components would be commercially available. The authors provide extensive evidence that with experience costs of OTEC would be substantially reduced and that ultimately production of methanol and ammonia by OTEC could be made cost-competitive.

  11. Clean energy for development investment framework: the World Bank Group action plan

    SciTech Connect (OSTI)

    2007-03-06

    In September 2005 the Development Committee requested the World Bank to develop an Investment Framework for Clean Energy and Development - in the context of the Gleneagles Communique on Climate Change, Clean Energy and Sustainable Development which was issued in July 2005. This Action Plan provides an update of work undertaken to date as well as actions planned by the World Bank Group (WBG) in support of the Clean Energy for Development Investment Framework (CEIF). The Action Plan relies on partnerships, including with the International Financial Institutions (IFIs) and the private sector. While it concentrates on maximizing and extending existing instruments, it provides for continued dialogue with governments and the private sector on new approaches to accelerate the transition to a low carbon economy. In addition to increased investments, the private sector has an important role to play in closing the investment gap in many countries. Projects such as Bujagali (Uganda), Nam Theun II (Laos) and China and India Thermal Power Plant Rehabilitation projects are examples of how partnerships with the private sector can work, both on financing but also on enhancing the overall regulatory framework for enhanced partnerships. The report was prepared for the 15 April 2007 Development Committee meeting, a joint committee of the Board of Governors of the World Bank and the International Monetary Fund on the transfer of real resources to developing countries. 3 figs., 3 tabs., 5 annexes.

  12. Open cycle ocean thermal energy conversion system structure

    DOE Patents [OSTI]

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

  13. TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Karsenti, Eric [EMBL Heidelberg

    2013-03-01

    Eric Karsenti of EMBL delivers the closing keynote on "TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  14. EERE Success Story-Mapping the Potential of U.S. Ocean Energy...

    Office of Environmental Management (EM)

    a series of resource assessments showing the technically recoverable potential energy available in the nation's waves, tidal and river currents, and ocean thermal gradients. ...

  15. Pelamis Wave Power Ocean Power Delivery Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sector: Ocean Product: Scotland-based company specialising in the use of ocean power for electricity generation via its Pelamis convertor, which has been demonstrated up to 750kW....

  16. Waterborne noise due to ocean thermal energy conversion plants

    SciTech Connect (OSTI)

    Janota, C.P.; Thompson, D.E.

    1983-07-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the seawater pumps is expected to dominate in the frequency range 10 Hz to 1 kHz. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  17. Establishing a Testing Center for Ocean Energy Technologies in the Pacific

    Office of Environmental Management (EM)

    Northwest | Department of Energy Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest April 9, 2013 - 12:00am Addthis The University of Washington (UW) and Oregon State University (OSU) have partnered with EERE to develop the Northwest National Marine Renewable Energy Center (NNMREC), as one of three National Marine Renewable Energy Centers. NNMREC offers a full range of

  18. Ocean thermal energy conversion: Historical highlights, status, and forecast

    SciTech Connect (OSTI)

    Dugger, G.L.; Avery, W.H.; Francis, E.J.; Richards, D.

    1983-07-01

    In 1881, d'Arsonval conceived the closed-Rankine-cycle ocean thermal energy conversion (OTEC) system in which a working fluid is vaporized by heat exchange with cold water drawn from a 700-1200 m depth. In 1930, Claude demonstrated an open-cycle process in Cuba. Surface water was flash-vaporized at 3 kPa to drive a turbine directly (no secondary working fluid) and then was condensed by direct contact with water drawn from a 700-m depth through a 1.6m-diam, 1.75-km-long cold-water pipe (CWP). From a delta T of 14/sup 0/C his undersized turbine generated 22 kW. In 1956 a French team designed a 3.5-MW (net) open-cycle plant for installation off Abidjan on the Ivory Coast of Africa and demonstrated the necessary CWP deployment. The at-sea demonstrations by Mini-OTEC and OTEC-1 and other recent advances in OTEC technology summarized herein represent great progress. All of the types of plants proposed for the DOE's PON program may be worthy of development; certainly work on a grazing plant is needed. Our estimates indicate that the U.S. goals established by Public Law 96-310 leading to 10 GW of OTEC power and energy product equivalents by 1999 are achievable, provided that adequate federal financial incentives are retained to assure the building of the first few plants.

  19. MHK Technologies/Ocean Current Linear Turbine | Open Energy Informatio...

    Open Energy Info (EERE)

    Current Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary...

  20. MHK Projects/Development of Ocean Treader | Open Energy Information

    Open Energy Info (EERE)

    Wave Treader fixed *MHK TechnologiesOcean Treader floating Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  1. List of Ocean Thermal Incentives | Open Energy Information

    Open Energy Info (EERE)

    Cells Fuel Cells using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydrogen Landfill Gas Methanol Ocean Thermal Photovoltaics Renewable Fuels Small Hydroelectric...

  2. Capturing the Motion of the Ocean: Wave Energy Explained | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Capturing the Motion of the Ocean: Wave Energy Explained Capturing the Motion of the Ocean: Wave Energy Explained July 6, 2015 - 11:44am Addthis Energy Department-supported "Azura" wave energy converter is installed at a U.S. Navy test site in Hawaii. | Photo courtesy of Northwest Energy Innovations. Energy Department-supported "Azura" wave energy converter is installed at a U.S. Navy test site in Hawaii. | Photo courtesy of Northwest Energy Innovations. Matt

  3. Stromatolites, ooid dunes, hardgrounds, and crusted mud beds, all products of marine cementation and microbial mats in subtidal oceanic mixing zone on eastern margin of Great Bahama Bank

    SciTech Connect (OSTI)

    Dill, R.F.; Kendall, C.S.C.G.; Steinen, R.P.

    1989-03-01

    The interisland channels along the eastern margin of the Great Bahamas Bank contain lithified structures that owe their origin to recent marine cementation. This cementation appears to be commonly associated with a complex microbial community of plants and microorganisms living within a bank-margin oceanographic mixing zone. In this region, reversing tidal and wind-driven currents flow up to 3 knots (150 cm/sec) three hours out of each six-hour tidal period. Here, marine-cement crusted, carbonate mud beds are found interbedded within migrating ooid sand bars and dunes and are associated with growing, lithified stromatolites up to 2 m in height. These laminated mud beds are found with thicknesses of up to 1 m in subtidal depths of 4 to 8 m (12 to 25 ft). The muds appear to be homogeneous, but closer examination by SEM and under a microscope reveals they are composed of pelletoid aggregates of needle-shaped aragonite crystals with diameters of up to 50 ..mu... The size of these soft pellets is similar to the smaller grains of ooid sands that are abundant in the area. This size similarity could explain why both the mud beds are found in similar high-energy hydraulic regimes as the ooid sands, but does not suggest how or why the aggregates of pure aragonite needles form. A high production of ooid sand within this bank margin environment permits the formation of natural levees along the margins of tidal channels. The back sides of these levees are being lithified by marine cements to form hardgrounds. Skeletal and ooid sand dunes stabilized by Thallasia in channel bottoms also are becoming lithified. Grapestones form at the distributaries of flood tidal deltas of ooid sand. All of these features have a common attribute: they are continually in contact with the turbulent mixing-zone waters.

  4. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect (OSTI)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  5. Production of desalinated water using ocean thermal energy

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.

    1991-01-01

    This paper describes an Ocean Thermal Energy Conversion (OTEC) desalination plant that consists of a multistage flash evaporator (MSF), a closed-cycle OTEC power plant, and an appropriate seawater system depending if the desalination plant is land based or floating. OTEC desalination plants of this type are preferred because the production of desalinated water far exceeds that obtained from other OTEC plant types employing the same size seawater system. The focus of the paper is on the multistage flash evaporator. The similarities and differences between conventional MSF and OTEC multistage flash evaporators (OTEC-MSF) are first described. Then the details of the OTEC-MSF evaporator design are discussed and preliminary correlations are recommended for the three major elements: the flash chamber, the moisture removal device, and the condenser. Recent advances such as enhanced condenser tubes, condensers of the compact type, and corrugated-plate moisture separators are introduced into the design. Comparisons of the water production capability, evaporator shell volume, and material cost are then presented for state-of-the-art and the new design concepts. 20 refs., 11 figs., 5 tabs.

  6. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  7. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  8. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT Aleutian Pribilof Islands Association, Inc. U.S. Department of Energy, Renewable Energy Development and Deployment in Indian Country: DE-EE0005624.000 Bruce Wright, Principal Investigator 2 CONTENTS Executive Summary ........................................................................................................................ 3 Project

  9. World Bank-The Role of Nonmotorized Transport | Open Energy Informatio...

    Open Energy Info (EERE)

    Website: siteresources.worldbank.orgINTURBANTRANSPORTResourceschapter9.pdf Cost: Free World Bank-Role of Nonmotorized Transport Screenshot References: The Role of...

  10. SIMULATION RESULTS OF RUNNING THE AGS MMPS, BY STORING ENERGY IN CAPACITOR BANKS.

    SciTech Connect (OSTI)

    MARNERIS, I.

    2006-09-01

    The Brookhaven AGS is a strong focusing accelerator which is used to accelerate protons and various heavy ion species to equivalent maximum proton energy of 29 GeV. The AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps, +/-go00 Volts. The peak magnet power is 49.5 Mwatts. The power supply is fed from a motor/generator manufactured by Siemens. The motor is rated at 9 MW, input voltage 3 phase 13.8 KV 60 Hz. The generator is rated at 50 MVA its output voltage is 3 phase 7500 Volts. Thus the peak power requirements come from the stored energy in the rotor of the motor/generator. The rotor changes speed by about +/-2.5% of its nominal speed of 1200 Revolutions per Minute. The reason the power supply is powered by the Generator is that the local power company (LIPA) can not sustain power swings of +/- 50 MW in 0.5 sec if the power supply were to be interfaced directly with the AC lines. The Motor Generator is about 45 years old and Siemens is not manufacturing similar machines in the future. As a result we are looking at different ways of storing energy and being able to utilize it for our application. This paper will present simulations of a power supply where energy is stored in capacitor banks. The simulation program used is called PSIM Version 6.1. The control system of the power supply will also be presented. The average power from LIPA into the power supply will be kept constant during the pulsing of the magnets at +/-50 MW. The reactive power will also be kept constant below 1.5 MVAR. Waveforms will be presented.

  11. An assessment of research and development leadership in ocean energy technologies

    SciTech Connect (OSTI)

    Bruch, V.L.

    1994-04-01

    Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing.

  12. NY Green Bank

    Broader source: Energy.gov (indexed) [DOE]

    NY Green Bank 1359 Broadway, 19th Floor, New York, NY 10018 212.379.6257 | www.greenbank.ny.gov | info@nygreenbank.ny.gov Monday, October 6 th , 2014 Remarks by Nicholas Whitcombe, Managing Director, New York Green Bank Panel 1: Attracting and Maintaining Capital for Energy Transmission, Storage, and Distribution Quadrennial Energy Review Public Meeting in New York, NY: Energy Infrastructure Finance The conventional clean energy capital markets for large scale infrastructure are deep and robust.

  13. World Bank eAtlas of Global Development | Open Energy Information

    Open Energy Info (EERE)

    World Bank eAtlas of Global Development1 "This eAtlas, a new online companion to Atlas of Global Development, third edition, builds on the Atlas topics, allowing you to...

  14. Mapping and Assessment of the United States Ocean Wave Energy Resource

    Broader source: Energy.gov (indexed) [DOE]

    TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box 10412 Palo Alto, CA 94303-0813 USA 800.313.3774 650.855.2121 askepri@epri.com 1024637 www.epri.com Final Report, December 2011 Mapping and Assessment of the United States Ocean Wave Energy Resource DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN

  15. MHK Projects/Grays Harbor Ocean Energy and Coastal Protection...

    Open Energy Info (EERE)

    Energy Company LLC Project Technology *MHK TechnologiesTitan Platform Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  16. Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling - Depth...

    Open Energy Info (EERE)

    Author National Renewable Energy Laboratory Maintainer Nicholas Langle bureaucode 019:20 Catalog DOE harvestobjectid 3ba3acfd-d54a-4a3d-a971-1cf4ac97fcb0 harvestsourceid...

  17. Establishing a Testing Center for Ocean Energy Technologies in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNMREC offers a full range of capabilities to support wave and tidal energy development ... UW plans to deploy and test tidal turbines in Puget Sound, which provides a useful natural ...

  18. Sandia Energy - Dedication of University of Maine's W2 Ocean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program will be the first to use the W2 facility in their public prize challenge-the Wave Energy Prize. W2 will act as one of five facilities producing 150th scaled wave...

  19. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    SciTech Connect (OSTI)

    Haas, Kevin

    2013-09-15

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power estimates from the Stommel model and to help determine the size and capacity of arrays necessary to extract the maximum theoretical power, further estimates of the available power based on the distribution of the kinetic power density in the undisturbed flow was completed. This used estimates of the device spacing and scaling to sum up the total power that the devices would produce. The analysis has shown that considering extraction over a region comprised of the Florida Current portion of the Gulf Stream system, the average power dissipated ranges between 4-6 GW with a mean around 5.1 GW. This corresponds to an average of approximately 45 TWh/yr. However, if the extraction area comprises the entire portion of the Gulf Stream within 200 miles of the US coastline from Florida to North Carolina, the average power dissipated becomes 18.6 GW or 163 TWh/yr. A web based GIS interface, http://www.oceancurrentpower.gatech.edu/, was developed for dissemination of the data. The website includes GIS layers of monthly and yearly mean ocean current velocity and power density for ocean currents along the entire coastline of the United States, as well as joint and marginal probability histograms for current velocities at a horizontal resolution of 4-7 km with 10-25 bins over depth. Various tools are provided for viewing, identifying, filtering and downloading the data.

  20. Ocean thermal energy conversion: environmental effects assessment program plan, 1981-85. [Monograph

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The Ocean Thermal Energy Conversion (OTEC) Act of 1980 calls for a legal regime to encourage commercial OTEC while protecting the oceanic and coastal environments. The Act also requires a generic plan for assessing the environmental effects of OTEC development. The plan outlined in this report establishes a priority list of nine environmental effects and a research strategy for reducing uncertainties, with an emphasis on large-scale and long-term ecosystem implications and on the impacts of multiple facilities. 70 references, 4 figures, 4 tables. (DCK)

  1. Ocean thermal energy conversion report to congress: fiscal year 1981. public law 96-320

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    After a section on the background of Ocean Thermal Energy Conversion, which deals with the national interest and the nature of the industry, this report discusses OTEC technology, the legal regime, environmental considerations and the international impact and future of OTEC. At the current time no amendments to the ACT are recommended. NOAA is analyzing several areas in which technical amendments would clarify the original intent of the Act. The most significant of these relates to the specific requirements for issuance of OTEC licenses for facilities that are located partly on land and partly in ocean waters.

  2. Ocean thermal energy. Quarterly report, January-March 1982

    SciTech Connect (OSTI)

    Not Available

    1982-03-30

    This quarterly report summarizes work of the following tasks as of March 31, 1982: OTEC pilot plant conceptual design review; OTEC methanol; review of electrolyzer development programs and requirements; financial and legal considerations in OTEC implementation; potential Navy sites for GEOTEC systems; hybrid geothermal-OTEC power plants: single-cycle performance estimates; and supervision of testing of pneumatic wave energy conversion system.

  3. Ocean energy systems. Quarterly report, July-September 1982

    SciTech Connect (OSTI)

    Not Available

    1982-09-30

    This quarterly report summarizes work on the following tasks as of September 30, 1982: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) financial and legal considerations in OTEC implementation; (4) GEOTEC resource exploration at Adak, Alaska, and Lualualei, Hawaii; (5) preliminary GEOTEC plant cost estimates; and (6) supervision of testing of pneumatic wave energy conversion system.

  4. Ocean thermal energy. Quarterly report, April-June 1982

    SciTech Connect (OSTI)

    Not Available

    1982-06-30

    This quarterly report includes summaries of the following tasks: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) management decision requirements for OTEC construction; (4) hybrid geothermal - OTEC (GEOTEC) power plant performance estimates; and (5) supervision of testing of pneumatic wave energy conversion system.

  5. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai’i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  6. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  7. DE-EE0000319 Final Technical Report [National Open-ocean Energy Laboratory

    SciTech Connect (OSTI)

    Skemp, Susan

    2013-12-29

    Under the authorization provided by Section 634 of the Energy Independence and Security Act of 2007 (P.L. 110-140), in 2009 FAU was awarded U.S. Congressionally Directed Program (CDP) funding through the U.S. Department of Energy (DOE) to investigate and develop technologies to harness the energy of the Florida Current as a source of clean, renewable, base-load power for Florida and the U.S. A second CDP award in 2010 provided additional funding in order to enhance and extend FAU’s activities. These two CDPs in 2009 and 2010 were combined into a single DOE grant, DE-EE0000319, and are the subject of this report. Subsequently, in July 2010 funding was made available under a separate contract, DE-EE0004200. Under that funding, DOE’s Wind and Water Power Program designated FAU’s state of Florida marine renewable energy (MRE) center as the Southeast National Marine Renewable Energy Center (SNMREC). This report discusses SNMREC activities funded by the DE-EE0000319 grant, but will make reference, as appropriate, to activities that require further investigation under the follow-on grant. The concept of extracting energy from the motions of the oceans has a long history. However, implementation on large scales of the technologies to effect renewable energy recovery from waves, tides, and open-ocean currents is relatively recent. DOE’s establishment of SNMREC recognizes a significant potential for ocean current energy recovery associated with the (relatively) high-speed Florida Current, the reach of the Gulf Stream System flowing through the Straits of Florida, between the Florida Peninsula and the Bahamas Archipelago. The proximity of the very large electrical load center of southeast Florida’s metropolitan area to the resource itself makes this potential all the more attractive. As attractive as this potential energy source is, it is not without its challenges. Although the technology is conceptually simple, its design and implementation in a commercially-viable fashion presents a variety of challenges. Beyond the technology itself (and, especially, the effects on the technology of the harsh oceanic environment), it is important to consider the possible environmental impacts of commercial-scale implementation of oceanic energy extraction. Further, because such implementation represents a completely new undertaking, the human resources required do not exist, so education and training programs are critical to eventual success. This project, establishing a national open-ocean energy laboratory, was designed to address each of these three challenges in a flexible framework allowing for adaptive management as the project proceeded. In particular:  the technology challenge, including resource assessment, evolved during the project to recognize and address the need for a national testing facility in the ocean for small-scale prototype MRE systems developed by industry;  the environmental challenge became formalized and expanded during the permitting process for such a testing facility; and  the human resources/societal challenges, both in terms of the need for education and training and in terms of public acceptance of MRE, stimulated a robust outreach program far beyond that originally envisioned at SNMREC. While all of these activities at SNMREC are ongoing, a number of significant milestones (in addition to the contributions listed in the appendices) were achieved under the auspices of this award. These include:  Planning and site selection for the first-phase test facility, offshore of Dania Beach, FL, including some equipment for the facility, submission of an Interim Policy Lease Application to the U.S. Department of Interior’s Bureau of Ocean Energy Management (BOEM), and completion of an Environmental Assessment by BOEM and a positive Consistency Determination by the State of Florida;  Measurements using acoustic profilers of the current structure and variability in the vicinity of the site under a variety of weather conditions, seasons and time durations;  Design and implementation of instrumentation for the first phase of the offshore testing facility, the wet- and top-side data acquisition systems, and shore-based analysis systems;  Implementation of a laboratory-scale dynamometer system to test generators of up to 25 kW capacity using real-world (simulated) forcing;  Completion of 24 months of (airborne) marine vertebrate surveys and associated analysis of sea turtle offshore activity, marine mammal vocalization research, and ocean current turbine hydrodynamic noise characterization;  Development of a secondary-school (nominally grade 10) curriculum about hydrokinetic MRE, “Energy from the Oceans: The New Renewable”, and training of over 200 high-school teachers in its use and in how to educate their colleagues in application of the material in the classroom;  Presentations to over 50 interested civic groups in the region on various aspects of MRE in SE Florida  A series of public lectures to over 600 residents of south Florida to provide broader education on MRE.  Development of an interactive kiosk for installation in local science museums. These, and other accomplishments detailed in this report contribute to a comprehensive ongoing program at the SNMREC to support the affordable, responsible, and achievable commercialization of MRE. Many of the tasks of this award are continued or will be verified with follow-on funding DE-EE0004200, and its goal: the installation of the world’s first offshore ocean current turbine testing and validation capability.

  8. Feasibility of Tital and Ocean Current Energy in False Pass, Aleutian Islands, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monty Worthington Director of Project Development - Alaska Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (DE-EE0005624.000) Presented to DOE Tribal Energy Program Review March 25, 2014 Denver, Colorado 2 False Pass is a remote community at the beginning of the Aleutian Chain * Electricity is provided by diesel generators owned and maintained by the community * Cost of Power in the community ranges from $0.36 - $0.42 False Pass Alaska * The City's load

  9. Feasibility of Tital and Ocean Current Energy in False Pass, Aleutian Islands, Alaska

    Office of Environmental Management (EM)

    Monty Worthington Director of Project Development - Alaska Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (DE-EE0005624.000) Presented to DOE Tribal Energy Program Review March 25, 2014 Denver, Colorado 2 False Pass is a remote community at the beginning of the Aleutian Chain * Electricity is provided by diesel generators owned and maintained by the community * Cost of Power in the community ranges from $0.36 - $0.42 False Pass Alaska * The City's load

  10. Ocean Viruses: Tiny entities with Global Impacts ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Sullivan, Matthew B [University of Arizona

    2013-01-15

    Matt Sullivan from the University of Arizona on "Ocean Viruses: Tiny Entities with Global Impacts" at the 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif.

  11. Ocean Viruses: Tiny entities with Global Impacts ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Sullivan, Matthew B [University of Arizona] [University of Arizona

    2012-03-22

    Matt Sullivan from the University of Arizona on "Ocean Viruses: Tiny Entities with Global Impacts" at the 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif.

  12. Ocean Thermal Energy Conversion Project: OTEC support services. Monthly technical status report, October 1-31, 1980

    SciTech Connect (OSTI)

    1980-11-14

    The objective of this project is to provide technical engineering and management support services for the Ocean Thermal Energy Conversion (OTEC) program of the Division of Ocean Energy Systems, DOE. The principal contributions made are outlined for the following tasks: (1) Survey, analysis and recommendation concerning program performance; (2) Program technical monitoring; (3) Technical assessments; (4) OTEC system integration; (5) Environment and siting considerations; and (6) Transmission subsystem considerations.

  13. RESIDENTIAL NETWORK MEMBERS UNITE TO FORM GREEN BANK NETWORK...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network members Connecticut Green Bank and NY Green Bank, a division of Residential Network member New York State Energy Research and Development Authority, have helped ...

  14. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    SciTech Connect (OSTI)

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  15. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    SciTech Connect (OSTI)

    Heydt, G.T. . School of Electrical Engineering)

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation. The process is not new--and its history is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory--Hawaii (NELH). The NELH work is summarized in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  16. Definitional mission: Ocean Thermal Energy Conversion, Republic of the Marshall Islands. Export trade information

    SciTech Connect (OSTI)

    Dean, S.R.; Ross, J.M.

    1990-09-01

    The objective of the study was to determine the commercial viability of an Ocean Thermal Energy Conversion (OTEC) electric power plant at the Majuro Atoll in the Marshall Islands. It was concluded that various technology improvements and economic factors have converged to present a feasible opportunity. United States industrial and research organizations are technically capable of developing a commercial OTEC industry for domestic and export markets. It is estimated that 100% of OTEC equipment and services could be supplied by United States firms. However, Japan has aggressively pursued OTEC development with an apparent goal of dominating the export market.

  17. Building Green in Greensburg: The Peoples Bank

    Broader source: Energy.gov [DOE]

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Peoples Bank building in Greensburg, Kansas.

  18. Building Green in Greensburg: Greensburg State Bank

    Broader source: Energy.gov [DOE]

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Greensburg State Bank building in Greensburg, Kansas.

  19. Building Green in Greensburg: Centera Bank

    Broader source: Energy.gov [DOE]

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Centera Bank building in Greensburg, Kansas.

  20. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT

    SciTech Connect (OSTI)

    Wright, Bruce Albert

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  1. World Bank-Low-carbon Energy Projects for Development in Sub...

    Open Energy Info (EERE)

    Low-carbon Energy Projects for Development in Sub-Saharan Africa Jump to: navigation, search Name Low-carbon Energy Projects for Development in Sub-Saharan Africa AgencyCompany...

  2. Ocean thermal energy at the Johns Hopkins University Applied Physics Laboratory, quarterly report. Report for Jan-Mar 82

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The following are included: Ocean thermal energy conversion (OTEC)--OTEC pilot plant conceptual design review; OTEC methanol; review of electrolyzer development programs and requirements; financial and legal considerations in OTEC implementation; potential navy sites for GEOTEC systems; hybrid geothermal-OTEC power plants: single-cycle performance estimates; and supervision of testing of pneumatic wave energy conversion system.

  3. Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012

    SciTech Connect (OSTI)

    Ascari, Matthew B.; Hanson, Howard P.; Rauchenstein, Lynn; Van Zwieten, James; Bharathan, Desikan; Heimiller, Donna; Langle, Nicholas; Scott, George N.; Potemra, James; Nagurny, N. John; Jansen, Eugene

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today's state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources. The OTEEV project leverages existing NREL renewable energy GIS technologies and integrates extractable energy estimated from quality-controlled data and projected optimal achievable energy conversion rates. Input data are synthesized from a broad range of existing in-situ measurements and ground-truthed numerical models with temporal and spatial resolutions sufficient to reflect the local resource. Energy production rates are calculated for regions based on conversion rates estimated for current technology, local energy density of the resource, and sustainable resource extraction. Plant spacing and maximum production rates are then estimated based on a default plant size and transmission mechanisms. The resulting data are organized, displayed, and accessed using a multi-layered GIS mapping tool, http://maps.nrel.gov/mhk_atlas with a user-friendly graphical user interface.

  4. Potential impact of ocean thermal energy conversion (OTEC) on fisheries. Technical report

    SciTech Connect (OSTI)

    Myers, E.P.; Hoss, D.E.; Matsumoto, W.M.; Peters, D.S.; Seki, M.P.

    1986-06-01

    The commercial development of ocean thermal energy conversion (OTEC) operations will involve some environmental perturbations for which there is no precedent experience. The pumping of very large volumes of warm surface water and cold deep water and its subsequent discharge will result in the impingement, entrainment, and redistribution of biota. Additional stresses to biota will be caused by biocide usage and temperature depressions. However, the artificial upwelling of nutrients associated with the pumping of cold deep water, and the artificial reef created by an OTEC plant may have positive effects on the local environment. Although more detailed information is needed to assess the net effect of an OTEC operation on fisheries, certain assumptions and calculations are made, supporting the conclusion that the potential risk to fisheries is not signnificant enough to deter the early development of OTEC. It will be necessary to monitor a commercial-scale plant in order to remove many of the remaining uncertainties.

  5. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect (OSTI)

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  6. Kevin Banks | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Banks By Justin H.S. Breaux * October 6, 2014 Tweet EmailPrint Kevin Banks is a freshman at the Milwaukee School of Engineering, where he studies biomedical engineering. As an intern within the Chicago Scholars Argonne Future Research Program, Kevin conducted research this summer in Argonne's Energy Systems division. His research seeks to increase energy efficiency by reducing friction and wear on machines using engine oils. "What I liked most about my internship experience was

  7. Waterborne noise due to ocean thermal energy conversion plants. Technical memo

    SciTech Connect (OSTI)

    Janota, C.P.; Thompson, D.E.

    1982-06-17

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the sea-water pumps is expected to dominate in the frequency range 10 Hz to 1 kHZ. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  8. Innovative turbine concepts for open-cycle OTEC (ocean thermal energy conversion)

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This report summarizes the results of preliminary studies conducted to identify and evaluate three innovative concepts for an open-cycle ocean thermal energy conversion (OTEC) steam turbine that could significantly reduce the cost of OTEC electrical power plants. The three concepts are (1) a crossflow turbine, (2) a vertical-axis, axial-flow turbine, and (3) a double-flow, radial-inflow turbine with mixed-flow blading. In all cases, the innovation involves the use of lightweight, composite plastic blading and a physical geometry that facilitates efficient fluid flow to and from the other major system components and reduces the structural requirements for both the turbine or the system vacuum enclosure, or both. The performance, mechanical design, and cost of each of the concepts are developed to varying degrees but in sufficient detail to show that the potential exists for cost reductions to the goals established in the US Department of Energy's planning documents. Specifically, results showed that an axial turbine operating with 33% higher steam throughput and 7% lower efficiency than the most efficient configuration provides the most cost-effective open-cycle OTEC system. The vacuum enclosure can be significantly modified to reduce costs by establishing better interfaces with the system. 33 refs., 26 figs., 11 tabs.

  9. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    206 Unlimited Release Printed September 2014 Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data Ann R. Dallman, Vincent S. Neary Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security

  10. Renewables in Alaska Native Villages: Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding: Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, AK Bruce Wright, APIA Monty Worthington, ORPC Wright, B. A., J. W. Short, T. J. Weingartner and P. J. Anderson. 2000. The Gulf of Alaska.. Pp 373-384 in Sheppard, C. R. C., ed., Seas at the Millennium: An Environmental, Evaluation Volume I Regional Chapters: Europe, The Americas and Wes Africa. Pergammon Press, Elsevier, Amsterdam. Aleutian Pribilof Islands Regional Energy Summit April 24-25, 2010 Anchorage,

  11. MHK Projects/Ocean Navitas NaREC | Open Energy Information

    Open Energy Info (EERE)

    Number of Devices Deployed 1 Main Overseeing Organization Ocean Navitas Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  12. MHK Projects/Gulf of Mexico Ocean test | Open Energy Information

    Open Energy Info (EERE)

    Gulf of Mexico Ocean test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  13. MHK ISDB/Instruments/TRDI Ocean Observer ADCP | Open Energy Informatio...

    Open Energy Info (EERE)

    TRDI Ocean Observer ADCP < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help...

  14. A review and critique of the socioeconomic impact assessment for the Kahe Point Ocean Thermal Energy Conversion (OTEC) facility

    SciTech Connect (OSTI)

    Bowen, R; Gopalakrishnan, C; Samples, K

    1988-01-01

    This report addresses the adequacy of Ocean Thermal Corporation's socioeconomic impact assessment of its 40-MWe closed-cycle ocean thermal energy conversion (OTEC) pilot plant proposed for Kahe Point, Oahu, Hawaii. The socioeconomic impacts identified as relevant to the plant were assessed in detail, including potential economic-demographic, public-service and fiscal, ocean-use, aesthetic, cultural, and energy impacts. The economic-demographic impact assessment does not estimate the full extent of population and income changes or second-order effects associated with the plant. There is no subjective assessment of perceptions on the part of local communities concerning probable changes in land values, housing, and population. Anticipated public-service and fiscal impacts are found to be relatively unimportant; however, the measurement of the impact of the plant on tax revenues needs improvement. The assessment does not sufficiently consider the objective and subjective assessment of ocean-use, aesthetic, and cultural impacts, which are of major significance to the local communities. The quantification of physical impacts, perceptions of impacts, and potential mitigation measures is inadequate. The energy impacts need to be updated to reflect the recent declines in oil prices and price projections. An assessment of low-probability, high-risk occurrences may be necessary. 12 refs., 3 tabs.

  15. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    SciTech Connect (OSTI)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  16. Seawater test results of open-cycle ocean thermal energy conversion (OC-OTEC) components

    SciTech Connect (OSTI)

    Zangrando, F.; Bharathan, D.; Link, H. ); Panchal, C.B. )

    1994-01-01

    Key components of open-cycle ocean thermal energy conversion systems--the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages--have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 m[sup 3]/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  17. Ocean Thermal Energy Conversion moored pipe/mobile platform design study

    SciTech Connect (OSTI)

    Bullock, H.O.; McNatt, T.R.; Ross, J.M.; Stambaugh, K.A.; Watts, J.L.

    1982-07-30

    The Ocean Thermal Energy Conversion (OTEC) Moored Pipe/Mobile Platform (MP-Squared) Design Study was carried out to investigate an innovative approach to the moored floating OTEC plant. In the past, a number of concepts have been examined by NOAA for floating OTEC plants. These concepts have considered various configurations for platforms, cold water pipes and mooring systems. In most cases the cold water pipe (CWP) was permanently attached to the platform and the platform was permanently moored on station. Even though CWP concepts incorporating articulated joints or flexible pipes were used, the CWP stresses induced by platform motion were frequently excessive and beyond the design limits of the CWP. This was especially true in the survival (100-year storm) case. It may be feasible that the concept of a permanently moored CWP attached through a flexible transition CWP to the platform could reduce the degree of technical risk by de-coupling the CWP from the motions of the platform. In addition, if the platform is capable of disconnecting from the CWP during survival conditions, even less technical risk may be inherent in the OTEC system. The MP-Squared Design Study was an engineering evaluation of the concepts described above. The effort has been carried through to the conceptual design level, and culminated in model tests in an experimental wave basin.

  18. Open-cycle ocean thermal energy conversion surface-condenser design analysis and computer program

    SciTech Connect (OSTI)

    Panchal, C.B.; Rabas, T.J.

    1991-05-01

    This report documents a computer program for designing a surface condenser that condenses low-pressure steam in an ocean thermal energy conversion (OTEC) power plant. The primary emphasis is on the open-cycle (OC) OTEC power system, although the same condenser design can be used for conventional and hybrid cycles because of their highly similar operating conditions. In an OC-OTEC system, the pressure level is very low (deep vacuums), temperature differences are small, and the inlet noncondensable gas concentrations are high. Because current condenser designs, such as the shell-and-tube, are not adequate for such conditions, a plate-fin configuration is selected. This design can be implemented in aluminum, which makes it very cost-effective when compared with other state-of-the-art vacuum steam condenser designs. Support for selecting a plate-fin heat exchanger for OC-OTEC steam condensation can be found in the sizing (geometric details) and rating (heat transfer and pressure drop) calculations presented. These calculations are then used in a computer program to obtain all the necessary thermal performance details for developing design specifications for a plate-fin steam condenser. 20 refs., 5 figs., 5 tabs.

  19. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion

    SciTech Connect (OSTI)

    Pesaran, A.A. )

    1992-11-01

    This paper presents the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions. Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving the predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7 percent to 60 percent of the dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 35 to 9 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20 percent to 60 percent. The data also indicated that at typical OC-OTEC evaporator pressures, when flash evaporation in the evaporator occurred, 75 percent to 95 percent of the dissolved oxygen was desorbed overall from the warm seawater. The results were used to find the impact of a single-stage predeaeration scheme on the power to remove noncondensable gases in an OC-OTEC plant.

  20. Environmental Risk Evaluation System An Approach to Ranking Risk of Ocean Energy Development on Coastal and Estuarine Environments

    SciTech Connect (OSTI)

    Copping, Andrea E.; Hanna, Luke A.; Van Cleve, Frances B.; Blake, Kara M.; Anderson, Richard M.

    2015-01-01

    Deployment and operation of ocean energy devices does not represent the first foray into industrialization of the oceans; shipping, nearshore development, waste disposal, subsea mining, oil and gas extraction, and large-scale commercial fishing all coexist in various states of equilibrium with the marine environment. In most cases these industries were developed without a clear understanding of the likely outcomes of large-scale development. In virtually every country where the harvest of ocean energy is emerging, regulators and stakeholders require that the industry examine potential effects of devices, minimize the footprint of effects, and provide management measures that either avoid the impacts or mitigate to further reduce the residual impacts. The ERES analysis is based on scenarios that are consistent with sequences of events that lead to adverse impacts, distinguishing between episodic, intermittent, and chronic risks. In the context of ocean energy development, an episodic scenario might involve the exceedingly rare but potentially devastating event of an oil spill from vessels caused by the presence of the device, while vulnerable receptors are present; understanding the risk of such a scenario involves determining the probability of the occurrence by examining factors such as the petroleum content of ocean energy devices, the vessel traffic volume and the proximity of shipping lanes to the ocean energy devices, the reliability of the control measures to avoid an episodic event, and the likely presence of seabirds, marine mammals, or fish that may be affected by oil. In contrast, chronic risk scenarios involve events or circumstances that are continuous, so that risk characterization involves assessing only the severity of the consequences. An example of a chronic risk scenario might be the toxicity to marine organisms due to low-level chemical releases from anti-biofouling paints and coatings that may be used on devices, and the effect that the level of toxicity may have on marine flora and fauna. Between these two extremes are intermittent events, such as encounters between fish and rotating tidal turbine blades that will occur only when fish are present and the tidal device is turning. A key feature of understanding risk is describing the uncertainty associated with the occurrence of an episodic, intermittent, or chronic event, as well as the uncertainty of the resulting consequences.

  1. Identification of types of businesses with potential interest in operating and/or exporting ocean thermal energy conversion (OTEC) plants

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    This study describes the characteristics of three selected Ocean Thermal Energy Conversion (OTEC)-based lines of business, examines other lines of business and identifies those with similar characteristics, and indicates the types of businesses/corporations that could be expected to have potential interest in operating and/or exporting OTEC plants. An OTEC line of business model is developed to assist companies in making an internal corporate assessment as to whether OTEC should be in their business plan.

  2. Banking on Solar: An Analysis of Banking Opportunities in the U.S. Distributed Photovoltaic Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Banking on Solar: An Analysis of Banking Opportunities in the U.S. Distributed Photovoltaic Market David Feldman and Travis Lowder National Renewable Energy Laboratory Technical Report NREL/TP-6A20-62605 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  3. Far-field model of the regional influence of effluent plumes from ocean thermal energy conversion (OTEC) plants

    SciTech Connect (OSTI)

    Wang, D.P.

    1985-07-01

    Ocean thermal energy conversion (OTEC) plants discharge large volumes of cold water into the upper ocean. A three-dimensional, limited-area model was developed to investigate the regional influence of the far-field effluent plume created by the negatively buoyant discharge. The model was applied to discharges from a 40-MW/sub e/ OTEC plant into coastal waters characterized by various ambient ocean conditions. A typical ambient temperature structure and nutrient distribution, as well as the behavior of the effluent plume itself, were strongly modified by the discharge-induced circulation. Although temperature perturbations in the plume were small, upward entrainment of nutrients from below the thermocline was significant. The regional influence of discharges from an 80-MW/sub e/ OTEC plant, the interactions between the discharges from two adjacent 40-MW/sub e/ OTEC plants, and the effects of coastal boundary and bottom discharge were examined with respect to the regional influence of a 40-MW/sub e/ OTEC plant located in deep water off a coast (base case).

  4. EERE Success Story—Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest

    Broader source: Energy.gov [DOE]

    The University of Washington is researching tidal energy to maximize the energy extracted and understand potential marine ecosystem impacts.

  5. RESIDENTIAL NETWORK MEMBERS UNITE TO FORM GREEN BANK NETWORK

    Broader source: Energy.gov [DOE]

    Residential Network members Connecticut Green Bank and NY Green Bank, a division of Residential Network member New York State Energy Research and Development Authority, have helped launch the Green Bank Network, a new international organization focused on collaborating to scale up private financing to meet the challenge of climate change.

  6. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect (OSTI)

    Hagerman, G.; Scott, G.

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources.

  7. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  8. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    2012-11-01

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  9. Development of a demonstration power plant by ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Ito, F.; Takazawa, K.; Terayama, T.

    1984-01-01

    At the opening ceremony, the system was praised by leading figures invited from the Oceanic non-oil-producing countries. The power generation test of the OTEC demonstration plant was completed with many new records attained. As engineers who have participated in this project, the authors believe that they have gained confidence in their ability to construct a first-stage commercial OTEC plant of the built-on-land type, though admitting that there still remain some points to be improved. Subjects requiring further study are improvements of material and installation methods enabling the use of water intake piping with larger diameters, further improvement of heat transfer performance at the seawater side (tube inside) of the heat transfer tubes, etc. Since the commercialization of an OTEC system depends mainly on the economical level of the system, cost reduction in the manufacture of equipment and construction is also required.

  10. Memorandum of Understanding On Weather-Dependent and Oceanic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources...

  11. OCEANS'13 MTS/IEEE SAN DIEGO, SEPTEMBER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... They benefit from converting energy into usable power from highly dense energy resources, includ- ing: river, tidal and ocean currents, and ocean waves. In this paper, a simple ...

  12. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  13. ARM - Oceans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListOceans Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oceans Water vapor in the air eventually condenses and falls as rain, snow, sleet, or hail. Water that falls on land collects in rivers which carry it back to the ocean. The return of water to the ocean may be slowed when water

  14. Coupling Ocean Thermal Energy Conversion technology (OTEC) with nuclear power plants

    SciTech Connect (OSTI)

    Goldstein, M.K.; Rezachek, D.; Chen, C.S.

    1981-01-01

    The prospects of utilizing an OTEC Related Bottoming Cycle to recover waste heat generated by a large nuclear (or fossil) power plant are examined. With such improvements, OTEC can become a major energy contributor. 12 refs.

  15. Heat transfer in ocean thermal energy conversion (OTEC) systems. Proceedings of the wanter mnnual Meeting, Chicago, IL, November 16-21, 1980

    SciTech Connect (OSTI)

    Owens, W.L.

    1980-01-01

    Among the topics discussed are: condensation heat transfer on long vertical, axially ridged tubes tests of the Applied Physics Laboratory of Johns Hopkins University (APL/JHU) folded-tube, Ocean Thermal Energy Conversion (OTEC) heat exchanger the design of a 1.0-MW OTEC heat exchanger for ocean testing and convective vaporization and condensation in serrated-fin channels. Also considered are: heat tranfer studies of an improved heat transfer monitor for OTEC an analysis of the mist lift process for mist flow, open-cycle OTEC the heat transfer characteristics of working fluids for OTEC and a comparison of major OTEC power system characteristics.

  16. Sandia Energy Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication in Ocean Engineering http:energy.sandia.govpublication-in-ocean-engineering http:energy.sandia.govpublication-in-ocean-engineeringcomments Tue, 22 Dec 2015...

  17. First production of potable water by OTEC (ocean thermal energy conversion) and its potential applications

    SciTech Connect (OSTI)

    Thomas, A.; Hillis, D.L.

    1988-01-01

    An experiment--the Heat and Mass Transfer Scoping Test Apparatus--was built to obtain design data for a larger test that will assess the technical feasibility of the open-cycle OTEC process. (The closed-cycle concept was successfully demonstrated in 1979.) The DOE-funded project is a joint effort between Argonne National Laboratory (ANL) and the Solar Energy Research Institute (SERI). The apparatus was erected at the Natural Energy Laboratory of Hawaii and became operational in the summer of 1987. It is used by both ANL and SERI to conduct open-cycle OTEC experiments. After initial debugging, it produced 350 gallons per hour of potable water having a salinity of 86 ppM, one-fifth that of local tap water available at the test site. 6 refs., 6 figs.

  18. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect (OSTI)

    Paul T. Jacobson; George Hagerman; George Scott

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration?¢????s (NOAA?¢????s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  19. Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles

    SciTech Connect (OSTI)

    1981-12-22

    Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

  20. Technology Development Plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes: Final subcontract report

    SciTech Connect (OSTI)

    Valent, P.J.; Riggins, M.

    1989-04-01

    This report provides an overview of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high-quality sediment samples for laboratory dynamic testing, and to perform deep-penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor-resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35/degree/ and in water depths to 1300 m. 74 refs., 19 figs., 6 tabs.

  1. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    SciTech Connect (OSTI)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A; Panchal, C B

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  2. Study to develop an inspection, maintenance, and repair plan for OTEC (Ocean Thermal Energy Conversion) modular experiment plants. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    The inspection, maintenance and repair (IM and R) of the Ocean Thermal Energy Conversion (OTEC) Modular Experiment Plant (Pilot Plant) have been studied in two phases: Task I and Task II. Task I phase developed IM and R identification forms, identified requirements for routine and post casualty IM and R, and categorized and outlined potential procedures to perform IM and R activities. The efforts of the Task II phase have been directed to meet the following objectives: to provide feedback to the OTEC marine systems designs to assure that such designs reflect appropriate consideration of IM and R methods and unit costs, resulting in designs with reduced life cycle costs; to include technical information concerning OTEC IM and R possibilities to NOAA/DOE; to outline a basis in which the anticipated IM and R contributions to life cycle costs can be developed for any specific OTEC plant design; to identify IM and R methods within the state-of-the-art in the offshore industry; to determine the application of potential IM and R procedures for the commercial operation of OTEC 10/40 Pilot Plant(s); and input into the US government formulation of statutory and regulatory IM and R requirements for OTEC plants.

  3. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions

    SciTech Connect (OSTI)

    Pesaran, A.A.

    1989-12-01

    This paper reports the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC). Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving a predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7% to 60% of dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 9 to 35 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20% to 60%. The dependence of oxygen desorption with flow rate could not be determined. The data also indicated that at typical OC-OTEC evaporator pressures when flashing occurred, 75% to 95% of dissolved oxygen was desorbed overall from the warm seawater. The uncertainty in results is larger than one would desire. These uncertainties are attributed to the uncertainties and difficulties in the dissolved oxygen measurements. Methods to improve the measurements for future gas desorption studies for warm surface and cold deep seawater under OC-OTEC conditions are recommended. 14 refs., 5 figs., 2 tabs.

  4. Ocean thermal energy conversion gas desorption studies. Volume 1. Design of experiments. [Open-cycle power systems

    SciTech Connect (OSTI)

    Golshani, A.; Chen, F.C.

    1980-10-01

    Seawater deaeration is a process affecting almost all proposed Ocean Thermal Energy Conversion (OTEC) open-cycle power systems. If the noncondensable dissolved air is not removed from a power system, it will accumulate in thecondenser, reduce the effectiveness of condensation, and result in deterioration of system performance. A gas desorption study is being conducted at Oak Ridge National Laboratory (ORNL) with the goal of mitigating these effects; this study is designed to investigate the vacuum deaeration process for low-temperature OTEC conditions where conventional steam stripping deaeration may not be applicable. The first in a series describing the ORNL studies, this report (1) considers the design of experiments and discusses theories of gas desorption, (2) reviews previous relevant studies, (3) describes the design of a gas desorption test loop, and (4) presents the test plan for achieving program objectives. Results of the first series of verification tests and the uncertainties encountered are also discussed. A packed column was employed in these verification tests and test data generally behaved as in previous similar studies. Results expressed as the height of transfer unit (HTU) can be correlated with the liquid flow rate by HTU = 4.93L/sup 0/ /sup 25/. End effects were appreciable for the vacuum deaeration system, and a correlation of them to applied vacuum pressure was derived.

  5. Memorandum of Understanding On Weather-Dependent and Oceanic Renewable

    Office of Environmental Management (EM)

    Energy Resources | Department of Energy On Weather-Dependent and Oceanic Renewable Energy Resources Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources between the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy and the U.S. Department of Commerce, National Oceanic and Atmospheric Administration. PDF icon MOU_DOE_Commerce.pdf More Documents

  6. Ocean Power (4 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Areas of the country that have an available coastline but are limited in other renewable resources can use the oceans to produce energy. We are familiar with the large hydroelectric dams that dot our nation, creating large reservoirs and flooding millions of acres of land. By turning to the restless seas we can find a source of energy that is not affected by clouds and the scarcity of wind. By using ocean power we can increase our need for power without having to deplete our existing non-renewable resources.

  7. Flexible ocean upwelling pipe

    DOE Patents [OSTI]

    Person, Abraham (Los Alamitos, CA)

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  8. World Bank | Open Energy Information

    Open Energy Info (EERE)

    interested in REDD+. The FCPF thus seeks to create an enabling environment and garner a body of knowledge and experiences that can facilitate development of a much larger global...

  9. Ocean | Open Energy Information

    Open Energy Info (EERE)

    needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Categories: Articles with outstanding TODO tasks Sectors...

  10. EM Employees at West Valley Help Beat Goal for Food Banks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy at West Valley Help Beat Goal for Food Banks EM Employees at West Valley Help Beat Goal for Food Banks December 5, 2012 - 12:00pm Addthis West Valley Demonstration Project has a reputation for strong community involvement. Pictured here are the volunteers who distributed food to seven food banks. West Valley Demonstration Project has a reputation for strong community involvement. Pictured here are the volunteers who distributed food to seven food banks. WEST VALLEY, N.Y. - EM

  11. Measurements of gas sorption from seawater and the influence of gas release on open-cycle ocean thermal energy conversion (OC-OTEC) system performance

    SciTech Connect (OSTI)

    Penney, T.R.; Althof, J.A.

    1985-06-01

    The technical community has questioned the validity and cost-effectiveness of open-cycle ocean thermal energy conversion (OC-OTEC) systems because of the unknown effect of noncondensable gas on heat exchanger performance and the power needed to run vacuum equipment to remove this gas. To date, studies of seawater gas desorption have not been prototypical for system level analysis. This study gives preliminary gas desorption data on a vertical spout, direct contact evaporator and multiple condenser geometries. Results indicate that dissolved gas can be substantially removed before the seawater enters the heat exchange process, reducing the uncertainty and effect of inert gas on heat exchanger performance.

  12. Theoretical and experimental study of the intermediate field dynamics of ocean thermal energy conversion plants. Progress report 1978-1979

    SciTech Connect (OSTI)

    Jirka, G.H.; Jones, J.M.; Sargent, F.E.

    1980-03-01

    Results are described of a two-year research effort which has been conducted with the following objectives: (1) investigate analytically and experimentally the intermediate field spreading in a steady ocean current; (2) investigate analytically and experimentally the transient intermediate field spreading in a stagnant ocean; (3) compare the results with other available data on buoyancy driven currents in stratified surroundings, including the concurrent experimental program at MIT Parsons Laboratory; and (4) use the results in the formulation of preliminary siting guidelines for multiple OTEC plant interactions. The theoretical background for the intermediate field spreading is given including both steady-state and transient results. The experiments performed in the Stratified Flow Modeling Basin at Cornell University are described, and the data are compared to the theoretical results and to available experimental data from other sources. The application of the intermediate field results to the OTEC design problem is discussed. Typical intermediate field behavior is predicted for different plant sizes (100 MW/sub e/ and 1 MW/sub e/), designs and ambient ocean conditions. (WHK)

  13. Hawaii Ocean Science and Technology Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers Hawaii Ocean Science and Technology Park ...

  14. Kazakhstan-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis,...

  15. Chile-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis,...

  16. Nigeria-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis,...

  17. Vietnam-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis,...

  18. Thailand-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis,...

  19. Ukraine-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis,...

  20. Philippines-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis,...

  1. India-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis,...

  2. Colombia-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis,...

  3. Oceans '86 conference record

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    These five volumes represent the proceedings of the Oceans '86 Conference Washington, DC, 23-25 September 1986. Volume 1 includes papers on Underwater Photography and Sensing; Marine Recreation; Diving; CTACTS (Charleston Tactical Aircrew Combat Training System); Offshore and Coastal Structures; Underwater Welding, Burning and Cutting; Advances in Ocean Mapping; Ocean Energy; Biofouling and Corrosion; Moorings, Cables and Connections; Marine Minerals; Remote Sensing and Satellites; and Acoustics Analysis. Volume 2 covers Data Base Management; Modeling and Simulation; Ocean Current Simulation; Instrumentation; Artificial Reefs and Fisheries; US Status and Trends; Education and Technology Transfer; Economic Potential and Coastal Zone Management; and Water Quality. Volume 3 includes papers on National and Regional Monitoring Strategies; New Techniques and Strategies for Monitoring; Indicator Parameters/Organisms; Historical Data; Crystal Cube for Coastal and Estuarine Degradation; and the Monitoring Gap. Volume 4 covers the Organotin Symposium - Chemistry; Toxicity Studies; and Environmental Monitoring and Modeling. Volume 5 includes papers on Advances in Oceanography; Applied Oceanography; Unmanned Vehicles and ROV's; Manned Vehicles; and Oceanographic Ships.

  4. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    SciTech Connect (OSTI)

    PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

    2012-09-29

    This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton (< 2 um) such as prochlorococccus, nanoplankton (2-20 um), and microplankton (> 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the average pico-phytoplankton biomass. This perturbation exhibits a meandering horizontal plume trajectory and spatial extent, but remains similar in magnitude (generally 1-2 mgC/m3). The diatom perturbations become more noticeable after three weeks of the simulation period, when the nearshore diatom population trends towards a greater concentration of 1 to 3 mgC/m3 . Relative to the background concentrations, this increased response is a fraction of the ambient, with perturbations remaining within fluctuations of the existing system. The perturbations were quantified by post-processing each time-step of model simulations without OTEC plants, with identical simulations that included OTEC plumes. Without this post processing, the 10-25% perturbations were obscured by the larger dynamic variations naturally caused by ocean circulation.

  5. National Oceanic and Atmospheric Administration, Honolulu, Hawaii |

    Office of Environmental Management (EM)

    Department of Energy Oceanic and Atmospheric Administration, Honolulu, Hawaii National Oceanic and Atmospheric Administration, Honolulu, Hawaii Photo of a Staff Residence at the Pacific Tsunami Warning Center in Hawaii The staff residences at the Pacific Tsunami Warning Center in Hawaii now have solar water heating systems funded by the Federal Energy Management Program (FEMP). The Center is part of the Department of Commerce's National Oceanic and Atmospheric Administration (DOC-NOAA). New

  6. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  7. 40-MW(e) OTEC (Ocean Thermal Energy Conversion) plant at Kahe Point, Oahu, Hawaii: a case study of potential biological impacts. Technical memo

    SciTech Connect (OSTI)

    Harrison, J.T.

    1987-02-01

    Construction and operation of an Ocean Thermal Energy Conversion (OTEC) facility will affect marine, terrestrial, and atmospheric environments. The nature and degree of OTEC environmental impacts have been subjects of numerous studies and reports. The proposed 40-MWe OTEC plant at Kahe Point, Oahu, Hawaii has been the focus of much of the work. The first section provides a summary of pertinent design features of the proposed plant, including standard operating parameters. Next, salient elements of the biological oceanography in the region of the proposed development are summarized. The following sections discuss expected impacts of construction and operation of the plant, and finally, significant aspects of modeling studies conducted in support of the Kahe OTEC plant development are presented.

  8. Vietnam-Renewable Energy Action Plan | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Action Plan Jump to: navigation, search Name Vietnam-Renewable Energy Action Plan AgencyCompany Organization World Bank Sector Energy Focus Area Renewable Energy...

  9. Energy Efficiency Loan Program Agreement Template

    Office of Environmental Management (EM)

    ______________________________________________________________ [Program Name] Energy Efficiency Loan Program Agreement City/County of [ ], and [ ] Bank [ ], 2010 ENERGY EFFICIENCY LOAN PROGRAM AGREEMENT This Energy Efficiency Loan Program Agreement ("Agreement"), dated [ ], 2010 is undertaken by: The City of [ ] (the "City") incorporated under the laws of [ ] State; and [ ] Bank, a subsidiary of [ ] Corporation, ("Bank") a [ ] State chartered commercial bank,

  10. Turbines in the ocean

    SciTech Connect (OSTI)

    Smith, F.G.W.; Charlier, R.H.

    1981-09-01

    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  11. Energy 101: Marine & Hydrokinetic Energy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine and hydrokinetic energy technologies to capture energy from waves and currents. ... Energy Department Releases New Energy 101 Video on Ocean Power Riding the Clean Energy ...

  12. Sandia Energy Andrea Penner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper and Presentation at OCEANS2015 http:energy.sandia.govpaper-and-presentation-at-oceans2015 http:energy.sandia.govpaper-and-presentation-at-oceans2015comments Tue, 22...

  13. Commercialization and cost-sharing potential for Ocean Thermal Energy Conversion (OTEC) plantships and facilities by industry, utilities and government

    SciTech Connect (OSTI)

    Francis, E.J.

    1980-01-01

    Following the introduction and summary on the US energy situation and the potential for OTEC, the remaining chapters deal with the OTEC-ammonia model; legal aspects of OTEC commercialization; the formation of SOLARAMCO, a joint venture of ammonia companies; electric power from OTEC, fuel cells and direct cables, potential cost-sharing; and OTEC production of ammonia for fertilizer.

  14. EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine

    Office of Energy Efficiency and Renewable Energy (EERE)

    Draft Environmental AssessmentThis EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions.

  15. Current practices and new technology in ocean engineering

    SciTech Connect (OSTI)

    McGuinness, T.; Shih, H.H.

    1986-01-01

    This book presents the papers given at a conference on wave power and marine engineering. Topics considered at the conference included remote sensing, ocean current measurement, air and spaceborne instrumentation, marine dynamics, real-time measurements, telemetry systems, seafloor measurement, computer-based data acquisition, materials and devices for underwater work systems, ocean system design analysis and reliability, ocean structure fatigue life prediction, underwater life support systems, sensor design, ocean thermal energy conversion, and wave energy converters.

  16. Biomass Energy Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus Area:...

  17. Photovoltaic Energy Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus...

  18. Ethiopia Energy Access Project | Open Energy Information

    Open Energy Info (EERE)

    Energy Access Project Location of project Ethiopia Energy Services Lighting, Cooking and water heating, Information and communications Year initiated 2005 Organization World Bank...

  19. Ukrainian Energy Service Company | Open Energy Information

    Open Energy Info (EERE)

    AgencyCompany Organization European Bank for Reconstruction and Development Sector Energy Focus Area Renewable Energy Topics Finance, Background analysis Website http:...

  20. Wind Energy Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus Area:...

  1. Tenax Energy | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Logo: Tenax Energy Name: Tenax Energy Place: Darwin, NT Country: Australia Zip: 0801 Sector: Marine and Hydrokinetic, Ocean, Renewable Energy Year Founded:...

  2. Tips for Running an Air Conditioner Without Breaking the Bank | Department

    Energy Savers [EERE]

    of Energy for Running an Air Conditioner Without Breaking the Bank Tips for Running an Air Conditioner Without Breaking the Bank July 22, 2014 - 3:15pm Addthis Cooling your home doesn't have to break the bank, with these tips you can save money and stay comfortable.| Photo courtesy of ©iStockphoto.com/galinast Cooling your home doesn't have to break the bank, with these tips you can save money and stay comfortable.| Photo courtesy of ©iStockphoto.com/galinast Elizabeth Spencer

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    financing option for energy efficiency improvements, renewable energy projects, energy management, and implementation plans. The establishment of the IADG Energy Bank Revolving...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy efficiency improvements, renewable energy projects, energy management, and implementation plans. The establishment of the IADG Energy Bank Revolving Loan Fund is intended...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for energy efficiency improvements, renewable energy projects, energy management, and implementation plans. The establishment of the IADG Energy Bank Revolving Loan Fund is...

  6. Natural Currents Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Natural Currents Energy Group Jump to: navigation, search Name: Natural Currents Energy Group Place: New York Sector: Hydro, Ocean, Renewable Energy, Solar, Wind energy Product:...

  7. DOE Hosts Festival to Collect Items for Area Food Banks

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Deputy Secretary of Energy Daniel Poneman and a representative of the Capital Area Food Bank are among the guest speakers at an event this Tuesday, July 31, to collect food items for the DOE Feeds Families drive.

  8. Turner Hunt Ocean Renewable (TRL 4 System) - THOR's Power Method...

    Energy Savers [EERE]

    More Documents & Publications CX-004722: Categorical Exclusion Determination Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of Power Take-Off in VIVACE Ocean...

  9. Improved atmosphere-ocean coupled modeling in the tropics for...

    Office of Scientific and Technical Information (OSTI)

    The warming biases from the dynamic heat transport by ocean currents however stay throughout all seasons once they are developed, which are eventually balanced by enhanced energy ...

  10. Before the Senate Energy and Natural Resources Committee

    Broader source: Energy.gov [DOE]

    Subject: 21st Century Energy Deployment Act (Clean Energy Bank) By: Matthew Rogers, Senior Advisor, Office of the Secretary

  11. Grid Renewable Energy-Best Practices and Lessons Learnt | Open...

    Open Energy Info (EERE)

    Organization: World Bank Sector: Energy Focus Area: Renewable Energy Resource Type: Lessons learnedbest practices Website: web.worldbank.orgWBSITEEXTERNALTOPICS...

  12. Energy Efficient Cities: Assessment Tool and Benchmarking Practices...

    Open Energy Info (EERE)

    Practices AgencyCompany Organization: World Bank Sector: Energy Focus Area: Energy Efficiency, Buildings, Industry Topics: Resource assessment, Technology...

  13. Before the Senate Energy and Natural Resources Committee

    Broader source: Energy.gov [DOE]

    Subject: 21st Century Energy Deployment Act (Clean Energy Bank) Matthew Rogers, Senior Advisor, Office of the Secretary

  14. Contained Energy | Open Energy Information

    Open Energy Info (EERE)

    Bioenergy, Buildings, Efficiency, Hydro, Ocean, Renewable Energy, Services, Solar, Wind energy Year Founded: 2004 Phone Number: +62816858906 Website: www.containedenergy.com...

  15. Development of the Cummins 5.9 L for the Gale Banks Engineering Dodge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dakota Sidewinder | Department of Energy the Cummins 5.9 L for the Gale Banks Engineering Dodge Dakota Sidewinder Development of the Cummins 5.9 L for the Gale Banks Engineering Dodge Dakota Sidewinder 2003 DEER Conference Presentation: U.S. Department of Energy FreedomCAR and Vehicle Technologies Program PDF icon deer_2003_ruth.pdf More Documents & Publications DEER Chair's Overview North American Market Challenges for Diesel Engines Engine Maturity, Efficiency, and Potential

  16. Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bank Revolving Loan Program (Iowa) Alternate Energy Revolving Loan Program (Iowa) Methane Gas Conversion Property Tax Exemption (Iowa) view all (active) view all (inactive,...

  17. LBNL China Energy Group | Open Energy Information

    Open Energy Info (EERE)

    organizations, as well as with multilateral organizations working in China such as the IEA, World Bank, UN Development Program."1 "LBNL's China Energy Group can contribute to...

  18. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    solar energy, wind energy, ocean-thermal energy, geothermal energy, small hydropower, biogas from anaerobic digestion, or fuel cells using any of these energy sources are...

  19. ARM - Oceanic Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oceanic Properties Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oceanic Properties There are some other aspects that need to be examined regarding the imbalances in the current carbon cycle. First let's look at the effects of the ocean gaining 2 gigatonnes (1 gigatonne = 1x1012 kilograms)

  20. General Renewable Energy Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy...

  1. General Renewable Energy-Market Development Studies | Open Energy...

    Open Energy Info (EERE)

    Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy-Market Development Studies AgencyCompany Organization: World Bank Sector: Energy...

  2. Grid-Connected Renewable Energy Systems Case Studies | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid-Connected Renewable Energy Systems Case Studies AgencyCompany Organization: World Bank Sector: Energy Topics:...

  3. Hands-on Energy Adaptation Toolkit (HEAT) | Open Energy Information

    Open Energy Info (EERE)

    Management Assistance Program of the World Bank Sector: Energy Focus Area: Renewable Energy Topics: Adaptation, Implementation, Pathways analysis Resource Type: Guidemanual...

  4. Grid Renewable Energy-Policy and Regulatory Studies | Open Energy...

    Open Energy Info (EERE)

    Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid Renewable Energy-Policy and Regulatory Studies AgencyCompany Organization: World Bank Sector: Energy...

  5. Stand-alone Renewable Energy-Financing Mechanisms | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Stand-alone Renewable Energy-Financing Mechanisms AgencyCompany Organization: World Bank Sector: Energy Focus...

  6. Grid Renewable Energy-Legal Documents | Open Energy Information

    Open Energy Info (EERE)

    Legal Documents Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid Renewable Energy-Legal Documents AgencyCompany Organization: World Bank Sector: Energy Focus Area:...

  7. Benin: Increased Access to Modern Energy Project | Open Energy...

    Open Energy Info (EERE)

    Bank1 The objective of the Increased Access to Modern Energy Project is to improve reliability, efficiency, and access to modern energy services in Benin. There are three...

  8. Tool for Rapid Assessment of City Energy (TRACE) | Open Energy...

    Open Energy Info (EERE)

    Management Assistance Program of the World Bank Sector: Climate Focus Area: Renewable Energy, Buildings, Energy Efficiency Topics: Low emission development planning, Pathways...

  9. Publication in Ocean Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Current EC Partnerships How to Partner Small Business Vouchers Pilot at Sandia National Laboratories Social Twitter Google + Vimeo GovDelivery SlideShare Publication in Ocean ...

  10. Deutsches Windenergie Institut | Open Energy Information

    Open Energy Info (EERE)

    in wind energy, offering wind energy related measurements, energy analysis studies, education, and technical, economic, and political consultancy for industry, developers, banks,...

  11. RecycleBank | Open Energy Information

    Open Energy Info (EERE)

    Address: 95 Morton Street Place: New York, New York Region: Northeast - NY NJ CT PA Area Sector: Efficiency Number of Employees: 51-200 Website: www.recyclebank.com...

  12. Asian Development Bank | Open Energy Information

    Open Energy Info (EERE)

    Kazakhstan-Clean Technology Fund (CTF) Malaysia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Mekong Brahmaputra Clean Development Fund L.P....

  13. World Bank Safeguard Policies | Open Energy Information

    Open Energy Info (EERE)

    Topics: Policiesdeployment programs Resource Type: Guidemanual, Training materials, Lessons learnedbest practices Website: web.worldbank.orgWBSITEEXTERNALPROJECTS...

  14. African Development Bank | Open Energy Information

    Open Energy Info (EERE)

    field and country offices across the continent." Shareholders Regional Members Algeria Angola Benin Botswana Burkina Faso Burundi Cameroon Cape Verde Central African Republic Chad...

  15. Asian Development Bank - Transport | Open Energy Information

    Open Energy Info (EERE)

    sectorstransportmain Transport Toolkit Region(s): Asia Related Tools TRANSfer - Towards climate-friendly transport technologies and measures List of Publications from GIZ...

  16. World Bank Data Catalog | Open Energy Information

    Open Energy Info (EERE)

    to be updated as additional data resources are added. These resources include databases, pre-formatted tables and reports. Each of the listings includes a description of...

  17. Bank of Italy | Open Energy Information

    Open Energy Info (EERE)

    "http:en.openei.orgwindex.php?titleBankofItaly&oldid767465" Categories: Organizations Research Institutions Public Institutions Stubs Articles with outstanding TODO tasks...

  18. Asian Development Bank Institute | Open Energy Information

    Open Energy Info (EERE)

    Address: Kasumigaseki Building 8F 3-2-5, Kasumigaseki, Chiyoda-ku, Place: Tokyo, Japan Phone Number: + 81-3-3593-5500 Website: www.adbi.org Coordinates: 35.6894875,...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Virgin Islands- Renewables Portfolio Targets Photovoltaic Energy, wind energy, hydroelectric energy, landfill gas, biomass, ocean and microturbine systems. Eligibility:...

  20. Progress report on renewable energy in Hawaii

    SciTech Connect (OSTI)

    Troy, M.; Brown, N.E.

    1982-04-01

    Renewable energy projects in Hawaii are reviewed as follows: geothermal energy, ocean energy, biomass, wind energy, direct solar energy, hydroelectric and other energy.

  1. Hawaii Natural Energy Institute annual report, 1984

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Research and development project summaries are given on: biomass energy, geothermal energy, ocean energy, solar energy, wind energy, hydrogen research, other renewable energy. (DLC)

  2. EA-410 CWP Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-410 CWP Energy Application to Export Electric Energy OE Docket No. EA-410 CWP Energy: Federal Register Notice, Volume 80, No. 80 - April 27, 2015 EA-342-A Royal Bank of Canada...

  3. AWS Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zip: IV17 1SN Product: Inverness-based company established to commercialise the Archimedes Wave Swing. Coordinates: 48.55324, -110.689764 Show Map Loading map......

  4. Numerical techniques for steady two-dimensional transcritical stratified flow problems, with an application to the intermediate field dynamics of Ocean Thermal Energy Conversion plants

    SciTech Connect (OSTI)

    Jones, J.M.; Jirka, G.H.; Caughey, D.A.

    1985-01-01

    The development of predictive techniques for the predominantly horizontal, layered fluid motions that result when a continuous buoyant source is discharged into an ambient fluid at a bounding surface, interface or equilibrium level is studied. Although the numerical techniques developed are applicable to general discharge configurations, the model development is focused on the particular case of a radial source of buoyancy and momentum discharged into a uniform ambient crossflow. The resulting density current is analyzed by application of the depth-integrated hydrodynamic equations. The density current dynamics are shown to vary with the relative intermediate- to near-field strengths, as characterized by the ratio of their respective length scales. The complete range of this interaction, from small near-field effects to large near-field effects, is investigated. Results are presented as the depth integrated velocity and current thickness distributions for different field strength values. The model predictions are compared to two sets of laboratory data and to limited field information, involving a river discharge and a submerged outfall into the ocean. Good agreement is obtained in all cases. Finally, the model results are applied to the prediction of a river plume into a coastal ocean current and to the continuous discharge from an OTEC plant operating in the stratified ocean. In both cases, the results indicate the significant horizontal extent (order of several kilometers) of the resulting current, together with their limited vertical extent (order of several meters). Their strong sensitivity to ambient current magnitude and stratification strength is demonstrated.

  5. Intern Spotlight: Kevin Banks | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Banks is a freshman at the Milwaukee School of Engineering, where he studies biomedical engineering. As an intern within the Chicago Scholars Argonne Future Research...

  6. 2007 Federal Energy Management Program (FEMP) Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ocean Energy includes but is not limited to electric energy from tidal, wave, current, and ocean thermal energy conversion (OTEC). 2.2.9 Hydropower For the purpose of the EPACT ...

  7. Simple ocean carbon cycle models

    SciTech Connect (OSTI)

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  8. DOE Announces Up to $7.5 Million in Advanced Technology Research to Harness Energy Potential of Oceans, Tides and Rivers

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - As part of the Bush Administration's ongoing commitment to invest in clean energy technologies to meet growing energy demand while reducing greenhouse gas emissions, the U.S....

  9. Colorado's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    LLC BrightPhase Energy C Lock Technology Clean Energy Innovation Center Colorado Governor s Energy Office Colorado State Bank and Trust Conergy, Inc. Continuum Partners Crimson...

  10. Egypt-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    Bank Sector Climate, Energy Focus Area Renewable Energy, Solar, - Concentrating Solar Power Topics Background analysis, - Energy Security, Finance, Implementation, Low emission...

  11. India-Options for Low Carbon Development | Open Energy Information

    Open Energy Info (EERE)

    Low Carbon Growth Country Studies Program AgencyCompany Organization Energy Sector Management Assistance Program of the World Bank Sector Energy, Land Focus Area Energy...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in partnership with First American Bank, offers Iowa residential energy customers below-prime financing on installation of qualifying energy... Eligibility: Residential,...

  13. MCF Advisors LLC | Open Energy Information

    Open Energy Info (EERE)

    North Carolina Zip: 28202 Sector: Biomass, Renewable Energy, Services, Solar, Wind energy Product: Provide investment banking services to privately-held small to middle...

  14. Hydro Alternative Energy | Open Energy Information

    Open Energy Info (EERE)

    Alternative Energy Jump to: navigation, search Name: Hydro Alternative Energy Place: Boca Raton, Florida Zip: 33486 Sector: Ocean Product: Marine project developer focusing on...

  15. SeaScape Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lancaster, United Kingdom Zip: LA1 4XQ Sector: Wind energy Product: Develops offshore wind farms - specifically the Burbo Bank project. Coordinates: 42.847505, -90.709634...

  16. Renewable Energy Workshops and Study Tours | Open Energy Information

    Open Energy Info (EERE)

    Workshops and Study Tours Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Workshops and Study Tours AgencyCompany Organization: World Bank Sector:...

  17. General Renewable Energy-Financing Mechanisms | Open Energy Informatio...

    Open Energy Info (EERE)

    Financing Mechanisms Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy-Financing Mechanisms AgencyCompany Organization: World Bank Sector:...

  18. Ghana Energy Development and Access Project (GEDAP) | Open Energy...

    Open Energy Info (EERE)

    Access Project (GEDAP) Location of project Ghana Energy Services Lighting, Cooking and water heating, Information and communications Year initiated 2007 Organization World Bank...

  19. Mainstream Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    Name: Mainstream Renewable Power Place: Dublin, Ireland Zip: 18 Sector: Ocean, Solar, Wind energy Product: Developer of wind farms, solar, thermal and ocean stream projects....

  20. Aqua Magnetics Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 32937 Sector: Ocean Product: Manufactures patented system that converts ocean wave energy into electric power. References: Aqua-Magnetics Inc1 This article is a stub. You...

  1. Nautilus Renewables | Open Energy Information

    Open Energy Info (EERE)

    equity and investment banking firm, in order to break into the renewable energy and waste management markets. References: Nautilus Renewables1 This article is a stub. You...

  2. Prospero LLC | Open Energy Information

    Open Energy Info (EERE)

    Zip: 06854 Region: Northeast - NY NJ CT PA Area Product: Merchant bank providing financial services and capital to companies in the technology and energy sectors Year...

  3. 28812 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28812 28812 Memorandum of Understanding on Weather-Dependent and Oceanic Renewable Energy Resources between the US Department of Energy Office of Energy Efficiency and Renewable Energy and the US Department of Commerce, National Oceanic and Atmospheric Administration PDF icon 28812.pdf More Documents & Publications Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources Energy Department Infrastructure Improvement Plan A National Offshore Wind Strategy:

  4. National Oceanic and Atmospheric Administration (NOAA) | Open...

    Open Energy Info (EERE)

    National Oceanic and Atmospheric Administration (NOAA) Jump to: navigation, search Logo: National Oceanic and Atmospheric Administration (NOAA) Name: National Oceanic and...

  5. Financing Renewable Energy- No Pain, No Gain

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Community Renewable Energy Success Stories Webinar series presentation by Rob Holden, New Resource Bank, on financing renewable energy systems from a banker’s perspective.

  6. Before the Subcommittee on Water, Power, and Oceans - House Natural

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Committee | Department of Energy - House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee Testimony of Kenneth E. Legg, Administrator Southeastern Power Administration Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee PDF icon 3-24-15_Kenneth_Legg FT HNR.pdf More Documents & Publications Before The Subcommittee on Water and Power - House Energy and Natural Resources

  7. LLNL Ocean General Circulation Model

    Energy Science and Technology Software Center (OSTI)

    2005-12-29

    The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.

  8. Surf City | Open Energy Information

    Open Energy Info (EERE)

    Resources Zero Carbon Wind Energy Corp Developer Pavilion Energy Resources Zero Carbon Wind Energy Corp Location Atlantic Ocean NJ Coordinates 39.38, -73.508 Show Map...

  9. Executive Order 13547: Stewardship of the Ocean, Our Coasts, and the Great

    Energy Savers [EERE]

    Lakes | Department of Energy 47: Stewardship of the Ocean, Our Coasts, and the Great Lakes Executive Order 13547: Stewardship of the Ocean, Our Coasts, and the Great Lakes This order establishes a national policy to ensure the protection, maintenance, and restoration of the health of ocean, coastal, and Great Lakes ecosystems and resources, enhance the sustainability of ocean and coastal economies, preserve our maritime heritage, support sustainable uses and access, provide for adaptive

  10. Executive Order 13547: Stewardship of the Ocean, Our Coasts, and the Great

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lakes | Department of Energy Executive Order 13547: Stewardship of the Ocean, Our Coasts, and the Great Lakes Executive Order 13547: Stewardship of the Ocean, Our Coasts, and the Great Lakes This order establishes a national policy to ensure the protection, maintenance, and restoration of the health of ocean, coastal, and Great Lakes ecosystems and resources, enhance the sustainability of ocean and coastal economies, preserve our maritime heritage, support sustainable uses and access,

  11. Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project File 13_aquantismhk_da_alexfleming.pptx More Documents & Publications Aquantis 2.5MW Ocean Current Generation Device 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies CX-005670: Categorical Exclusion

  12. Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PowerBuoy Project | Department of Energy Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project Office presentation icon 04_pb50_ocean_power_technologies_inc_hart.ppt More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power

  13. Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...powertechnologiesinchart.ppt More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power Technologies (TRL 7 8 System) - Reedsport ...

  14. EA-389 Greay Bay Energy VI, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Application to Export Electric Energy OE Docket No. EA-389 Great Bay Energy VI, LLC EA-389-A Great Bay Energy VI, LLC EA-342-A Royal Bank of Canada...

  15. EA-315 BP Energy Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy to Canada PDF icon EA-315 BP Energy Company More Documents & Publications EA-315-A BP Energy Co EA-97-D Portland General Electric Company EA-342 Royal Bank of Canada...

  16. World Bank Renewable Energy Toolkit | Open Energy Information

    Open Energy Info (EERE)

    of a Monitoring and Evaluation Plan Audit of Solar Home Systems Project Mid-term Review Panel for Solar Home Systems Project Socio-Economic Survey of the Photovoltaic Pilot...

  17. Loan Programs | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Hydrogen Microturbines Ocean Thermal Photovoltaics Renewable Fuels Small Hydroelectric...

  18. Some ocean engineering considerations in the design of OTEC plants

    SciTech Connect (OSTI)

    McGuiness, T.

    1982-08-01

    An alternate energy resource using the temperature differences between warm surface waters and cool bottom waters of the world's oceans, Ocean Thermal Energy Conversion (OTEC) utilizes the solar energy potential of nearequatorial water masses and can be applied to generate electrical energy as a baseload augmentation of landside power plants or to process energy-intensive products at sea. Designs of OTEC plants include concepts of floating barge or shipshape structures with large (up to 100-foot diameter, 3,000 feet in length) pipes used to intake cool bottom waters and platforms located in 300-foot water depths similar to oil drilling rigs, also with a pipe to ingest cool waters, but in this case the pipe is laid on continental shelf areas in 25/sup 0/-30/sup 0/ slopes attaining a length of several miles. The ocean engineering design considerations, problem areas, and proposed solutions to data regarding various OTEC plant concepts are the topic of this presentation.

  19. South Africa-Low Carbon Growth Strategy | Open Energy Information

    Open Energy Info (EERE)

    Assistance Program of the World Bank Sector Energy, Land Focus Area Energy Efficiency, Transportation Topics GHG inventory, Low emission development planning, Policies...

  20. Feds Feed Families Wraps Up Successful Campaign to Stock Area Food Banks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Feds Feed Families Wraps Up Successful Campaign to Stock Area Food Banks Feds Feed Families Wraps Up Successful Campaign to Stock Area Food Banks August 1, 2012 - 12:00pm Addthis EM’s Nevada Site Office took first place in the site-submitted category of DOE’s CANstruction Sculpture Contest for its entry, shown here, inspired by London’s Tower Bridge during the 2012 Summer Olympics. EM's Nevada Site Office took first place in the site-submitted category of

  1. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Increase Reliability at First National Bank of Omaha Technology Center Fuel cells are a viable primary power choice for data centers-they generate highly reliable on-site power and useful thermal energy, and they can reduce greenhouse gas emissions by more than 50% compared to the baseline. 1 First National Bank of Omaha installed a fuel cell system in 1999 to provide primary power to its data center in Omaha, Nebraska. In more than 89,000 hours of operation through October 2009, the

  2. EM Rockets Past Target for Donations to Stock Food Banks | Department of

    Office of Environmental Management (EM)

    Energy Rockets Past Target for Donations to Stock Food Banks EM Rockets Past Target for Donations to Stock Food Banks November 13, 2012 - 12:00pm Addthis EMCBC Director Jack Craig, left to right, EM Executive Assistant Jillian Carter, who is EM's Feds Feed Families representative, and Senior Advisor for Environmental Management David Huizenga pause for a photo Nov. 8. Craig holds the "Teamwork Award" he and his staff received. EMCBC Director Jack Craig, left to right, EM Executive

  3. COLLOQUIUM: Ocean Acoustic Ecology: Great Whales, Ocean Scales...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The dramatic increase in ocean acoustic sensor data offers huge opportunities for ... Keeping pace with big data for current access and analyses needs at appropriate scales ...

  4. Aquantis C-Plane Ocean Current Turbine Project

    SciTech Connect (OSTI)

    Fleming, Alex

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  5. ARM - Lesson Plans: Ocean Currents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ocean Currents Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Ocean Currents Objective The objective of this activity is to demonstrate the effect of cooling and heating on currents in the ocean. Materials Each student or group of students will need the following: Large beaker

  6. Sea Solar Power International Inc | Open Energy Information

    Open Energy Info (EERE)

    21230 Region: United States Sector: Ocean Product: Ocean Thermal Energy Conversion (OTEC) technology developer. Website: www.seasolarpower.com Coordinates: 39.290555,...

  7. MHK Technologies/Deep Water Pipelines | Open Energy Information

    Open Energy Info (EERE)

    Makai Ocean Engineering Inc Project(s) where this technology is utilized *MHK ProjectsOTEC Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type...

  8. World Bank Good Practice Guidelines: Financial Analysis of Revenue...

    Open Energy Info (EERE)

    AgencyCompany Organization: World Bank Topics: Finance Resource Type: Guidemanual Website: siteresources.worldbank.orgINTRANETFINANCIALMGMTResourcesFMB-Notes...

  9. Village Hydro Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Hydro Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Village Hydro Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for Business Financing APS and National Bank of Arizona have partnered to offer low-interest financing to all customers qualifying for energy efficiency incentives under the...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Motors, Other EE, LED Lighting Energy Efficiency Loans for State Government Agencies Initial funding for the Green Bank of Kentucky provided by the American Recovery and...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    approval, Other EE, Wind (Small) Energy Efficiency Loans for State Government Agencies Initial funding for the Green Bank of Kentucky provided by the American Recovery and...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Refrigeration Equipment Energy Efficiency Loans for State Government Agencies Initial funding for the Green Bank of Kentucky provided by the American Recovery and...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Hydroelectric (Small) Energy Efficiency Loans for State Government Agencies Initial funding for the Green Bank of Kentucky provided by the American Recovery and...

  15. SWERA/About | Open Energy Information

    Open Energy Info (EERE)

    the SWERA system. SWERA guide.pdf New Initiatives ESMAP Initiative The Energy Sector Management Assistance Program (ESMAP) in the World Bank is implementing a new initiative...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency Loans for State Government Agencies Initial funding for the Green Bank of Kentucky provided by the American Recovery and Reinvestment Act (ARRA) through the...

  17. Access Fund Partners LP | Open Energy Information

    Open Energy Info (EERE)

    Partners, LP Place: San Juan Capistrano, California Zip: 92675 Product: Boutique investment banking and investment advisory firm with clean energy focus References: Access Fund...

  18. Energy Efficiency Loans for State Government Agencies

    Broader source: Energy.gov [DOE]

    Initial funding for the Green Bank of Kentucky provided by the American Recovery and Reinvestment Act (ARRA) through the Kentucky State Energy Program.

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency Loan Program Interstate Power and Light (Alliant Energy), in conjunction with Wells Fargo Bank, offers a low-interest loan for residential, commercial and agricultural...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions for Business Financing APS and National Bank of Arizona have partnered to offer low-interest financing to all customers qualifying for energy efficiency incentives...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Loan Program Interstate Power and Light (Alliant Energy), in conjunction with Wells Fargo Bank, offers a low-interest loan for residential, commercial and agricultural...

  2. Energy 101: Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    2013-04-29

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  3. Energy 101: Marine and Hydrokinetic Energy

    ScienceCinema (OSTI)

    None

    2014-06-26

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  4. MidAmerican Energy (Gas and Electric)- Residential EnergyAdvantage Loan Program

    Broader source: Energy.gov [DOE]

    MidAmerican Energy's EnergyAdvantage Financing Program, in partnership with First American Bank, offers Iowa residential energy customers below-prime financing on installation of qualifying energy...

  5. Ohio's 1st congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    RBI Solar Inc SEMCO THOR Turner Hunt Ocean Renewable LLC The Utilities Group Inc Vision Energy Energy Generation Facilities in Ohio's 1st congressional district Melink Solar...

  6. King County, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ecology Environment Inc EnerG2 Energy Priorities Frybrid General Biodiesel General Biodiesel Incorporated Go Green Save Fuel LLC Grays Harbor Ocean Energy Company GreenFoot...

  7. Energy Department Announces $10 million for Wave Energy Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    million to test prototypes designed to generate clean, renewable electricity from ocean waves and help diversify America's energy portfolio. The Energy Department-supported...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Islands- Renewables Portfolio Targets Photovoltaic Energy, wind energy, hydroelectric energy, landfill gas, biomass, ocean and microturbine systems. Eligibility: Investor-Owned...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Virgin Islands- Renewables Portfolio Targets Photovoltaic Energy, wind energy, hydroelectric energy, landfill gas, biomass, ocean and microturbine systems. Eligibility:...

  10. NEW ORLEANS COUNCIL CALLS ON ENTERGY TO INCREASE ENERGY SAVINGS

    Broader source: Energy.gov [DOE]

    Residential Network members Connecticut Green Bank and NY Green Bank, a division of Residential Network member New York State Energy Research and Development Authority, have helped launch the Green Bank Network, a new international organization focused on collaborating to scale up private financing to meet the challenge of climate change.

  11. EA-344-A Twin Cities Power | Department of Energy

    Energy Savers [EERE]

    4-A Twin Cities Power EA-344-A Twin Cities Power Order authorizing Royal Bank of Canada to export electric energy to Canada PDF icon EA-344-A Twin Cities Power More Documents & Publications EA-344 Twin Cities Power-Canada, LLC EA-342 Royal Bank of Canada EA-342-A Royal Bank of Canada

  12. Analysis of the Clean Energy Standard Act of 2012

    Gasoline and Diesel Fuel Update (EIA)

    ... 21 ''(7) RENEWABLE ENERGY.-The term 'renew- 22 able energy' means solar, wind, ocean, current, wave, 23 tidal, or geothermal energy. 24 ''(c) CLEAN ENERGY REQUIREMENT.- 25 ...

  13. The Ocean Sampling Day Consortium

    SciTech Connect (OSTI)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z.; Sonnenschein, Eva C.; Cariou, Thierry; O’Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R.; Kremp, Anke; DeLorenzo, Marie E.; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P.; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A.; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M.; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion M. F.; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C.; Kandil, Mahrous M.; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; ten Hoopen, Petra; Cochrane, Guy; L’Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M.; Martin, Patrick; Jensen, Rachelle M.; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A. Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J.; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N.; Gasol, Josep M.; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S.; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M.; Collins, R. Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J.; Amaral-Zettler, Linda A.; Gilbert, Jack A.; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  14. Oceanlinx | Open Energy Information

    Open Energy Info (EERE)

    GPP Namibia Greenwave Rhode Island Ocean Wave Energy Project Hawaii Oceanlinx Maui Port Kembla Portland This company is involved in the following MHK Technologies: Denniss...

  15. Ocean Power Technologies | Open Energy Information

    Open Energy Info (EERE)

    1590 Reed Road Place: Pennington, New Jersey Zip: 08534 Region: Northeast - NY NJ CT PA Area Year Founded: 1994 Website: www.oceanpowertechnologies.com Coordinates:...

  16. Ocean Prospect Ltd | Open Energy Information

    Open Energy Info (EERE)

    the Pelamis wave power device, and intends to commercialise it in the UK and Australia. Coordinates: 42.55678, -88.050449 Show Map Loading map... "minzoom":false,"map...

  17. EnOcean Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 02116 Region: Greater Boston Area Sector: Efficiency Product: Wireless sensor for building automation to improve efficiency Website: www.enocean.com Coordinates:...

  18. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and In-Stream Hydrokinetic Power | Department of Energy Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Office presentation icon 16_life_revision_previsic_update.ppt More Documents & Publications 2014 Water Power Program

  19. The Subcommittee on Water, Power, and Oceans House Committee on Natural

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources | Department of Energy The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources Testimony of Christopher M. Turner, Administrator Southwest Power Administration Before the Subcommittee on Water, Power, and Oceans House Committee on Natural Resources PDF icon 3-24-15_Christopher_Turner FT HNR.pdf More Documents & Publications Before the House Natural Resources Subcommittee

  20. Energy Economy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sieminski (202) 662-1624 April 2010 Energy and the Economy US EIA & JHU SAIS 2010 Energy Conference April 6, 2010 All prices are those current at the end of the previous trading session unless otherwise indicated. Prices are sourced from local exchanges via Reuters, Bloomberg and other vendors. Data is sourced from Deutsche Bank and subject companies. DISCLOSURES AND ANALYST CERTIFICATIONS ARE LOCATED IN APPENDIX 1. Adam Sieminski, CFA Chief Energy Economist adam.sieminski@db.com +1 202 662

  1. Advanced Integration of Power Take-off in Vortex Induced Vibrations Aquatic Clean Energy

    SciTech Connect (OSTI)

    Simiao, Gus

    2011-11-01

    Presentation from the 2011 Water Peer Review of a river and ocean device converting hydrokinetic energy.

  2. MPAS-Ocean Development Update

    SciTech Connect (OSTI)

    Jacobsen, Douglas W.; Ringler, Todd D.; Petersen, Mark R.; Jones, Philip W.; Maltrud, Mathew E.

    2012-06-13

    The Model for Prediction Across Scales (MPAS) is a modeling framework developed jointly between NCAR and LANL, built to allow core developers to: rapidly develop new dynamical cores, and leverage improvements made to shared codes. MPAS-Ocean (MPAS-O) is a functioning ocean model capable of high resolution, or highly vairable resolution simulations. The first MPAS-O publication is expected by the end of the year.

  3. Energy Investment Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Energy Investment Partnerships Energy Investment Partnerships Energy Investment Partnerships: How State and Local Governments Are Engaging Private Capital to Drive Clean Energy Investments EIP Image.png Energy Investment Partnerships-sometimes referred to as Green Banks--are newly emerging public-private partnerships with the authority to raise capital through a variety of means and can align clean energy finance initiatives and traditional development finance tools to maximize

  4. Thermal Energy Storage Technology for Transportation and Other Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak | Department of Energy Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon

  5. DOE's Disposition of Excess Real Property Status of Banked Square Feet

    Office of Environmental Management (EM)

    FY 2014 Report on DOE's Disposition of Excess Real Property Status of Banked Square Feet for Future One-for-One Offsets Office of Acquisition and Project Management January 2015 DOE REPORT ON THE ELIMINATION OF EXCESS FACILITIES Background The Conference Report (Rpt. 107-258) accompanying the FY 2002 Energy and Water Development Appropriations Act directed the Department to develop an excess facility elimination report to be submitted as part of the Congressional budget. To implement the program

  6. Making Development Climate Resilient: A World Bank Strategy for...

    Open Energy Info (EERE)

    Development Climate Resilient: A World Bank Strategy for Sub-Saharan Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Making Development Climate Resilient: A World...

  7. Technological challenges associated with the sequestration of CO{sub 2} in the ocean

    SciTech Connect (OSTI)

    Nihous, G.C.

    1998-07-01

    The specific technological challenges associated with the delivery of CO{sub 2} into the deep ocean are qualitatively discussed. Since the projected effectiveness of CO{sub 2} oceanic sequestration so far requires ocean depths of kilometer(s) and large flow rates, the necessary pipelines bear some similarities with the cold seawater conduits of Ocean Thermal Energy Conversion (OTEC). A unique perspective is thus provided by examining the history of OTEC seawater systems. Design criteria specific to CO{sub 2} delivery pipelines are also mentioned, as well as their impact on future design work.

  8. Riding the Clean Energy Wave: New Projects Aim to Improve Water...

    Broader source: Energy.gov (indexed) [DOE]

    the energy of the ocean's waves, tides, and currents and convert it into electricity. ... data on how deployed systems interact with wildlife and the surrounding ocean environment. ...

  9. Thermal Energy Storage Technology for Transportation and Other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. ...

  10. Low-Carbon Growth Planning: Issues & Challenges | Open Energy...

    Open Energy Info (EERE)

    World Bank Sector: Energy, Land Topics: Low emission development planning Resource Type: Lessons learnedbest practices, Presentation Website: www.esmap.orgesmapnode788...

  11. General Renewable Energy-Productive Uses and Development Impact...

    Open Energy Info (EERE)

    Impact Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy-Productive Uses and Development Impact AgencyCompany Organization: World Bank...

  12. Climate Change Development Policy Loan | Open Energy Information

    Open Energy Info (EERE)

    Development Policy Loan Jump to: navigation, search Name Climate Change Development Policy Loan AgencyCompany Organization World Bank Sector Energy, Land Topics Finance,...

  13. Grid Renewable Energy-Economic and Financial Analysis | Open...

    Open Energy Info (EERE)

    and Financial Analysis Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid Renewable Energy-Economic and Financial Analysis AgencyCompany Organization: World Bank...

  14. General Renewable Energy-Policy and Regulatory Studies | Open...

    Open Energy Info (EERE)

    and Regulatory Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy-Policy and Regulatory Studies AgencyCompany Organization: World Bank...

  15. Ocean FUSRAP: feasibility of ocean disposal of materials from the Formerly Utilized Sites Remedial Action Progam (FUSRAP)

    SciTech Connect (OSTI)

    Kupferman, S.L.; Anderson, D.R.; Brush, L.H.; Gomez, L.S.; Laul, J.C.; Shephard, L.E.

    1982-01-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) of the Department of Energy is designed to identify and evaluate the radiological conditions at sites formerly used by the Corps of Engineers Manhattan Engineer District and the US Atomic Energy Commission. Where required, remedial action will be instituted to remove potential restrictions on the use of the sites due to residual low-level radioactive contamination. A total of 31 sites that may require remedial action has been identified. The purpose of the Ocean FUSRAP Program, which began in March 1981, is to assess the technical, environmental, and institutional feasibility of disposing, in the ocean and on the ocean floor, of FUSRAP soil and rubble which contains traces of natural radioactive materials. The initial focus has been on the Middlesex, New Jersey, Sampling Plant site and surrounding properties, which contain on the order of 100,000 metric tons of material. The Belgian Congo uranium ore and other uranium ores used by the United States were handled at the sampling plant site. In studying the feasibility of ocean disposal of FUSRAP material from Middlesex, New Jersey, we have begun to examine institutional requirements to be met, the composition of the source material with regard to its inventory of toxic chemical and radiochemical components and the impact of the source material in the marine environment. To date we have found nothing that would preclude safe and inexpensive disposal of this material in the ocean.

  16. Energy 101: Marine and Hydrokinetic Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Description See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Topic Water Text Version Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy

  17. The Ocean Sampling Day Consortium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; et al

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less

  18. Ocean current wave interaction study

    SciTech Connect (OSTI)

    Hayes, J.G.

    1980-09-20

    A numerical model has been developed to incorporate refraction of ocean surface gravity waves by major ocean currents. The model is initialized with directional wave spectra and verified with aircraft synthetic aperture radar X band spectra, laser profilometer spectra, and pitch and roll buoy data. Data collected during the Marineland test experiment are used as surface truth observations for the wave-current study. Evidence of Gulf Stream refraction and trapping of surface waves as well as caustics in the current is shown and modeled assuming a nonuniform Gulf Stream distribution. Frequency and directional resolution of the wave spectral distribution and the current refraction patterns illustrates the need for further study of ocean current-wave interaction in wave refraction studies.

  19. Tidal Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Ocean » Tidal Energy Basics Tidal Energy Basics August 16, 2013 - 4:26pm Addthis Photo of the ocean rising along the beach. Some of the oldest ocean energy technologies use tidal power. All coastal areas experience two high tides and two low tides over a period of slightly more than 24 hours. For those tidal differences to be harnessed into electricity, the difference between high and low tides must be more than 16 feet (or at least 5 meters). However, there are only about

  20. State Grant Program | Open Energy Information

    Open Energy Info (EERE)

    Solar Thermal Electric Photovoltaics Landfill Gas Wind Biomass Geothermal Electric Hydrogen Tidal Energy Wave Energy Ocean Thermal Fuel Cells using Renewable Fuels No...

  1. Stoel Rives, LLP | Open Energy Information

    Open Energy Info (EERE)

    Address: 900 SW Fifth Avenue, Suite 2600 Place: Portland, Oregon Zip: 97204 Sector: Bioenergy, Biofuels, Biomass, Geothermal energy, Hydro, Ocean, Renewable energy, Services,...

  2. European Wave and Tidal Energy Conference

    Broader source: Energy.gov [DOE]

    The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tidal, Wave, Ocean Thermal, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Alternative Energy and Energy Conservation Patent Exemption (Corporate)...

  4. Grays Harbor Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    Project Facility Grays Harbor Demonstration Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Grays Harbor Ocean Energy Company LLC...

  5. Energy Department Accepting Small Business Grant Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of MHK Devices," the Energy Department seeks applications for innovative monitoring systems optimized for use in tidal, current, wave, andor ocean thermal energy converters. ...

  6. Metagenome of a Versatile Chemolithoautotroph from Expanding Oceanic Dead Zones

    SciTech Connect (OSTI)

    Walsh, David A.; Zaikova, Elena; Howes, Charles L.; Song, Young; Wright, Jody; Tringe, Susannah G.; Tortell, Philippe D.; Hallam, Steven J.

    2009-07-15

    Oxygen minimum zones (OMZs), also known as oceanic"dead zones", are widespread oceanographic features currently expanding due to global warming and coastal eutrophication. Although inhospitable to metazoan life, OMZs support a thriving but cryptic microbiota whose combined metabolic activity is intimately connected to nutrient and trace gas cycling within the global ocean. Here we report time-resolved metagenomic analyses of a ubiquitous and abundant but uncultivated OMZ microbe (SUP05) closely related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur-oxidation and nitrate respiration responsive to a wide range of water column redox states. Thus, SUP05 plays integral roles in shaping nutrient and energy flow within oxygen-deficient oceanic waters via carbon sequestration, sulfide detoxification and biological nitrogen loss with important implications for marine productivity and atmospheric greenhouse control.

  7. EA-1890: Reedsport PB150 Deployment and Ocean Test Project, Oregon

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has selected Ocean Power Technologies (OPT) for approximately $2.4 million in financial assistance and proposes to authorize the expenditure of federal funding to OPT...

  8. Scientists Find Ocean 'Dead' Zones Teeming with Life | U.S. DOE...

    Office of Science (SC) Website

    Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW ... Like green plants on land, algae and bacteria in the surface waters of the ocean combine ...

  9. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  10. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Energy on a Sphere

    Broader source: Energy.gov [DOE]

    The Energy Department is tapping into Science On a Sphere -- a new tool developed by the National Oceanic and Atmospheric Administration -- to display renewable energy visualizations at museums and science technology centers worldwide.

  13. The Asian Development Bank`s role in promoting cleaner production in the People`s Republic of China

    SciTech Connect (OSTI)

    Huq, A.; Lohani, B.N.; Jalal, K.F.; Ouano, E.A.R.

    1999-09-01

    The People`s Republic of China (PRC) has the fastest growing economy in the world and is the third largest producer and consumer of energy. At the same time, the PRC`s industrial sector contributes heavily to air and water pollution. Because of the linkages between the production and use of energy and environmental degradation, the PRC, with the active support of bilateral and multilateral aid agencies, including the Asian Development Bank (ADB), is adopting measures that link economic growth to improvements in the environment. The PRC is pursuing a two-pronged strategy that involves implementing priority investment programs and promoting economic reforms. The ADB`s experience shows that the concept of cleaner production (CP) has been widely accepted, but the widespread adoption of CP requires a new way of thinking and new management capacities. In this regard, the PRC is at an early stage of promoting CP, and inadequacies in coordination among relevant agencies remain a key obstacle. To support CP activities, the ADB is participating in a cluster of activities within China that include policy development, capacity building, and financing environmental investments. This article describes the ADB`s current efforts to promote CP in PRC and analyzes the effectiveness of those efforts.

  14. Marine Fuel Choice For Ocean Going Vessels Within Emission Control Areas -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Information Administration Marine Fuel Choice for Ocean Going Vessels within Emission Control Areas Release date: June 11, 2015 Introduction The U.S. Energy Information Administration (EIA) contracted with Leidos Corporation to analyze the impact on ocean-going vessel fuel usage of the International Convention for the Prevention of Pollution from Ships (MARPOL) emissions control areas in North America and the Caribbean. Leidos developed a new methodology for calculating fuel

  15. Speakers: Adam Sieminski, Deutsche Bank Stephen P. A. Brown, Resources for the Future

    Gasoline and Diesel Fuel Update (EIA)

    5: "Energy and the Economy" Speakers: Adam Sieminski, Deutsche Bank Stephen P. A. Brown, Resources for the Future Donald L. Paul, University of Southern California Energy Institute David Sandalow, DOE Christof Rühl, Group Chief Economist, BP [Note: Recorders did not pick up introduction of panel (see biographies for details on the panelists) or introduction of session.] Adam: Microphone. So, we've lost a little bit of time because of all of the sessions running a bit over, but here is

  16. DOE Webcast: Intra-organization Energy Efficiency Competitions

    Broader source: Energy.gov [DOE]

    The Maine Ocean & Wind Industry Initiative will host a webinar to provide an update on the Bureau of Ocean Energy Management's (BOEM's) Offshore Renewable Energy Program. The webinar will cover...

  17. Map of Clean Energy Companies | Open Energy Information

    Open Energy Info (EERE)

    Maps: Solar Browse Companies by Sector: Bioenergy, Biofuels, Biomass, Buildings, Carbon, Efficiency, Geothermal energy, Hydro, Hydrogen, Marine and Hydrokinetic, Ocean, Renewable...

  18. Pennington, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Jersey's 12th congressional district.12 Registered Energy Companies in Pennington, New Jersey Ocean Power Technologies References US Census Bureau Incorporated place and...

  19. Energy Department Announces $22 Million for Marine Energy Demonstratio...

    Office of Environmental Management (EM)

    electricity from waves, tides, and currents and to improve environmental monitoring ... thus increasing sustainable electricity generation from ocean and river energy resources. ...

  20. Bangladesh-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    socioeconomic impact, monitoring and evaluation, environmental safeguards, and poverty reduction aspects of electricity provision; ) implementation of a free-for-service...

  1. Peru-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    will come from the sale of CERs of greenhouse gases created by the combustion of methane, which makes up approximately 50 percent of the LFG. Finally, the second component is...

  2. Indonesia-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    Pontianak - LFG Recovery Project, Carbon Offset 1.2 Makassar - TPA Tamangapa Landfill Methane Collection and Flaring 1.3 Geothermal Power Generation Development 1.4 Geothermal...

  3. Chile-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    The design and operation of this project, in conjunction with the avoidance of methane emissions and production of compost as a soil amendment (and a source of revenues),...

  4. Vietnam-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    electricity access will be improved by upgrading, and strengthening the 110 KV sub-transmission line, and substations, restoring five existing hydropower plants, and, by...

  5. Indonesia-Bank Danamon DCA Guarantee | Open Energy Information

    Open Energy Info (EERE)

    officials and contractor staff in late 2008, each evaluation and the meta-evaluation synthesis are intended to provide EGATDC with information to (1) demonstrate and communicate...

  6. Egypt-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    term solution. With carbon finance support and the program's Framework Environment and Social Assessment (FESA), a recycling facility will ensure that scrapped vehicles neither...

  7. Jordan-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    The first component of the project is development of a promotional wind Independent Power Producer (IPP) power plant. This component involve the following sub-components: (a)...

  8. Ghana-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    and to help transition Ghana to a low-carbon economy through the reduction of greenhouse gas emissions'. The additional financing will scale-up the scope and impact of the...

  9. Colombia-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    Offset Project "The Colombia Rio Frio Carbon Offset Project aims to reduce greenhouse gas emissions fro the wastewater treatment sector in Colombia by modernizing the Rio Frio...

  10. Armenia-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    "The objective of the Second GeoFund Geothermal Project for Armenia is to assess the feasibility of exploratory drilling of the geothermal site with the estimated highest...

  11. Mexico-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    the access of emerging markets to the international capital markets, and (iv) declining oil production. However, several factors are in place to reduce these risks, including: a...

  12. Kenya-World Bank Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    Kengen, Kiambere, Tana, Eburru (2.77 M) Carbon Offset 1.4 Kenya KenGen Carbon Finance umbrella, Carbon Offset 1.5 Western Kenya Integrated Ecosystem Management Project (4.1M)...

  13. Brazil-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    1.1 Sao Paulo Metro Line 5 Project 1.2 BR-GEF Sustainable Transport and Air Quality Project (STAQ) 1.3 First Programmatic Development Policy Loan for Sustainable...

  14. World Bank Doing Business Reports | Open Energy Information

    Open Energy Info (EERE)

    companies and measures the regulations applying to them through their life cycle. Doing Business and the standard cost model are the only standard tools used across a broad range...

  15. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Animal, Vegetable or Mineral? Iron is a limiting nutrient in many parts of the oceans, nowhere more so than in the Southern Ocean's photic zone, which receives enough sunlight for...

  16. DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from ...

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wind turbines in the plains and out in the ocean near the coast. Teacher background and assessment sheets are provided. http:energy.goveereeducationdownloadssee-wind...

  18. Bond Programs | Open Energy Information

    Open Energy Info (EERE)

    CHPCogeneration Biodiesel Biomass Ethanol Fuel Cells using Renewable Fuels Hydroelectric energy Landfill Gas Methanol Ocean Thermal Photovoltaics Renewable Fuels Solar Thermal...

  19. Wave Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean » Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of

  20. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national energy security by developing energy sources with limited impacts on environment improving efficiency and reliability of nation's energy infrastructure Research...

  1. Energy Department Announces $10 million for Wave Energy Demonstration at Navy’s Hawaii Test Site

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $10 million to test prototypes designed to generate clean, renewable electricity from ocean waves and help diversify America’s energy portfolio.

  2. Forensic DNA data banking by state crime labortaories

    SciTech Connect (OSTI)

    McEwen, J.E.

    1995-06-01

    This article reports the results of a survey of the responsible crime laboratories in the first 19 states with legislation establishing forensic DNA data banks. The survey inquired into the labs` policies and procedures regarding the collection, storage, and analysis of samples; the retention of samples and data; search protocols; access to samples and data by third parties; and related matters. The research suggests that (1) the number of samples collected from convicted offenders for DNA data banking has far surpassed the number that have been analyzed; (2) data banks have already been used in a small but growing number of cases, to locate suspects and to identify associations between unresolved cases; (3) crime labs currently plan to retain indefinitely the samples collected for their data banks; and (4) the nature and extent of security safeguards that crime labs have implemented for their data banks vary among states. The recently enacted DNA Identification Act (1994) will provide $40 million in federal matching grants to states for DNA analysis activities, so long as states comply with specified quality-assurance standards, submit to external proficiency testing, and limit access to DNA information. Although these additional funds should help to ease some sample backlogs, it remains unclear how labs will allocate the funds, as between analyzing samples for their data banks and testing evidence samples in cases without suspects. The DNA Identification Act provides penalties for the disclosure or obtaining of DNA data held by data banks that participate in CODIS, the FBI`s evolving national network of DNA data banks, but individual crime labs must also develop stringent internal safeguards to prevent breaches of data-bank security. 9 refs., 3 tabs.

  3. Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy), in conjunction with Wells Fargo Bank, offers a low-interest loan for residential, commercial and agricultural customers who purchase and install energy...

  4. Hawaii Natural Energy Institute annual report, July 1981-June 1982

    SciTech Connect (OSTI)

    Brown, N.E.

    1982-01-01

    This report includes brief progress reports on the 35 research and development projects in geothermal energy, ocean energy, biomass energy, wind energy, solar energy, and other renewable energy sources. (DLC)

  5. ENERGY

    Office of Environmental Management (EM)

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http://energy.gov/qtr 2015-01-13 Page 2 The United States faces serious energy-linked challenges as well as substantial energy opportunities. Disruptions, both natural and man-made, threaten our aging energy infrastructure; global patterns of energy use are changing our climate; and our nation's dependence on foreign sources of energy comes at a significant cost to our economy. We need clean,

  6. Slope and bank erosional stability of the Canonsburg, Pennsylvania, UMTRA disposal site

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report was prepared in response to US Nuclear Regulatory Commission (NRC) comments received in a letter of 8 March 1994. This letter included discussions of the US Department of Energy (DOE) 21 May 1993 geomorphic report for the Canonsburg, Pennsylvania, site. To clarify the NRC`s position, a DOE/NRC conference call was held on 12 April 1994. The NRC clarified that it did not require a preliminary erosion protection design for the Canonsburg site, but directed the DOE to address a ``one-bad-year`` scenario. The NRC wants confirmation that one bad year of stream flooding and landsliding will not release residual radioactive material (RRM) from the Canonsburg site into the creek. The NRC is concerned that a bad year theoretically could occur between postcell-closure inspections. These annual inspections are conducted in September or October. The NRC suggested that the following procedures should be conducted in this analysis: a flooding analysis, including the maximum saturation levels (flood water elevations) anticipated during a 100-year flood; a stream bank erosion analysis to determine how much of the bank adjacent to the site may be removed in a bad year; a slope stability analysis to determine how far back the site would be disturbed by slope instability that could be triggered by a bad year of stream bank erosion; and a ``critical cross section`` study to show the relationship of the RRM located outside the disposal cell to the maximum computer estimated erosion/landslide activity.

  7. Ocean Engineering and Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Database. This company is involved in the following MHK Technologies: Kalina Cycle OTEC Open Cycle OTEC This article is a stub. You can help OpenEI by expanding it. Retrieved...

  8. AWS Ocean Energy formerly Oceanergia | Open Energy Information

    Open Energy Info (EERE)

    Commercial Pilot Project This company is involved in the following MHK Technologies: Archimedes Wave Swing This article is a stub. You can help OpenEI by expanding it. Retrieved...

  9. Ocean Power: Science Projects in Renewable Energy and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and technology" Science in Personal and Social Perspectives - Content Standard F: ... Tidal power stations utilize the twice- daily movements of the tides. Various devices use ...

  10. Global warming and changes in ocean circulation

    SciTech Connect (OSTI)

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  11. Data banks for risk assessment at the Savannah River Site

    SciTech Connect (OSTI)

    Durant, W.S.; Lux, C.R.; Baughman, D.F.

    1990-01-01

    The Savannah River Site maintains a compilation of operating problems and equipment failures that have occurred in the fuel reprocessing and other areas in the form of computerized data banks. 14 refs., 25 figs.

  12. Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |

    Energy Savers [EERE]

    Department of Energy into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database

  13. Greg Rutherford Executive Director Global Power & Utilities Investment Banking

    Broader source: Energy.gov (indexed) [DOE]

    Greg Rutherford Executive Director Global Power & Utilities Investment Banking Morgan Stanley Bankability of Electricity Transmission, Storage and Distribution Infrastructure Investment Opening Remarks Good morning and thank you for the opportunity to participate in this panel discussion. My name is Greg Rutherford. I am an Executive Director in the Global Power & Utilities Group within the Investment Banking Division at Morgan Stanley. At Morgan Stanley we provide strategic advisory

  14. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy /newsroom/_assets/images/energy-icon.png Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. Health Space Computing Energy Earth Materials Science Technology The Lab All The Grid Modernization Initiative represents a comprehensive DOE effort to help shape the future of our nation's grid and solve the challenges of integrating conventional and renewable sources with energy storage and smart buildings. Los

  15. Deployment, release and recovery of ocean riser pipes

    DOE Patents [OSTI]

    Person, Abraham; Wetmore, Sherman B.; McNary, James F.

    1980-11-18

    An ocean thermal energy conversion facility includes a long pipe assembly which is supported at its upper end by the hull of the floating facility. Cold water flows to the facility from deep in the ocean. The pipe assembly comprises an elongate pipe construction and a weight connected to the lower end of the construction by a line of selected length. A floatation collar is connected to the construction at its upper end to cause the construction to have positive buoyancy and a center of buoyancy closer to the upper end of the construction than its center of mass. The weight renders the entire pipe assembly negatively buoyant. In the event that support of the pipe assembly should be lost, as by release of the assembly from the facility hull in an emergency, the assembly sinks to the ocean floor where it is moored by the weight. The pipe construction floats submerged above the ocean floor in a substantially vertical attitude which facilitates recovery of the assembly.

  16. Los Alamos National Security, LLC partners with Los Alamos National Bank on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Las Conchas recovery challenge fund Las Conchas recovery challenge fund Los Alamos National Security, LLC partners with Los Alamos National Bank on Las Conchas recovery challenge fund LANS has given $50,000 as seed money to establish a fund at LANB. July 28, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to

  17. Energy Sources | Department of Energy

    Office of Environmental Management (EM)

    Sources Energy Sources December 17, 2015 Top 5 Interactives and Maps of 2015 From rapidly rising renewables to carbon emission comparisons, these powerful visual aids illustrate the biggest energy stories of 2015. August 21, 2015 This gigantic animated globe will soon take environmental awareness to a whole new level! The National Oceanic & Atmospheric Administration's (NOAA's) Science On a Sphere, like this one at their headquarters in Maryland, will soon feature new energy datasets to

  18. Before the Subcommittee on Water, Power, and Oceans House Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Committee | Department of Energy House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans House Natural Resources Committee Testimony of Elliot E. Mainzer, Administrator, Bonneville Power Administration Before the Subcommittee on Water, Power, and Oceans House Natural Resources Committee PDF icon 3-24-15_Elliot_Mainzer FT HNR.pdf More Documents & Publications Before The Subcommittee on Water and Power - House Committee on Natural Resources Before the

  19. User:GregZiebold/Sector test | Open Energy Information

    Open Energy Info (EERE)

    search Query all sector types for Companies: Bioenergy Biofuels Biomass Buildings Carbon Efficiency Geothermal energy Hydro Hydrogen Marine and Hydrokinetic Ocean Renewable Energy...

  20. List of Ceiling Fan Incentives | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Electric Ground Source Heat Pumps Municipal Solid Waste CHPCogeneration Hydrogen Small Hydroelectric Tidal Energy Wave Energy Ocean Thermal Renewable Fuels...

  1. Sandia Energy - DOE-Sponsored Reference Model Project Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

  2. Solar Energy Education. Reader, Part IV. Sun schooling Not Available...

    Office of Scientific and Technical Information (OSTI)

    Reader, Part IV. Sun schooling Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATION; BIOMASS; CURRICULUM GUIDES; GREENHOUSE EFFECT; METHANE; OCEAN THERMAL POWER PLANTS; RENEWABLE...

  3. Energy Department Announces $8 Million to Develop Advanced Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In the United States, waves, tides, and ocean currents represent a largely untapped renewable energy resource that could provide clean, affordable energy to homes and businesses ...

  4. National Clean Energy Business Plan Competition: OptiBit Wins...

    Office of Environmental Management (EM)

    two times lower latency, and 95% less energy use than the current copper-based technology. ... Technologies presented included a solution to convert ocean wave energy into electricity ...

  5. Annual Report on Federal Government Energy Management and Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Section 203(b) of EPACT 2005 defines the term ''renewable energy'' to mean electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, ...

  6. Tennessee's 7th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Companies in Tennessee's 7th congressional district Agri Energy Inc Biofuels America Inc Eco Energy Inc Memphis Biofuels LLC Nashville Electric Service NES Ocean Motion...

  7. Ocean Viral Metagenomics (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Rohwer, Forest

    2011-04-26

    Forest Rohwer from San Diego State University talks about "Ocean Viral Metagenomics" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  8. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    so than in the Southern Ocean's photic zone, which receives enough sunlight for photosynthesis to occur, but whose biological diversity is limited due to a lack of bioavailable...

  9. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll...

  10. Analyzing ocean mixing reveals insight on climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Nancy Ambrosiano Communications Office (505) 667-0471 Email "Not only does each particle tell us about the ocean currents, but groups of particles ...

  11. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At bottom left, the kinds of iron species found in two transects of the Southern Ocean are ... (ACC stands for Antarctic Circumpolar Current.) The map shows chlorophyll ...

  12. Vertical dispersion of inertial waves in the upper ocean

    SciTech Connect (OSTI)

    Rubenstein, D.M.

    1983-05-20

    A linear model of the vertical dispersion of near-inertial waves is developed. A porosity distribution near the bottom of the computational domain minimizes bottom reflections and simulates an ocean of the infinite depth. The model is used to show that the vertical dispersion of near-inertial waves in the upper ocean may, under certain conditions, contribute significanlty to the observed rapid decay of inertial oscillations in the surface layer. The kinetic energy of inertial oscillations at mid-latitudes decays with an e folding time scale of 10 days or less, when the parameter lambda(km)/N(cph)d(m) is less than or of the order of unity, where lambda is the wavelength of the wind-generated near-inertial waves, N is the Vaeisaelae frequency in the upper pycnocline, and d is the surface layer thickness. At the top of the pycnocline the model predicts a velocity maximum, which develops as energy propagates downward, out of the surface layer. However, when the upper pycnocline is sufficiently peaked, a resonant frequency interference effect is predicted. This effect modulates the dissipation of surface layer inertial oscillations, and their magnitude after a storm need not decay monotonically. We also make qualitative comparisons with deep-ocean current meter observations taken during the Mixed Layer Experiment (MILE) and with shallow water (105 m) observations taken in the Baltic Sea.

  13. Think Green Global Inc | Open Energy Information

    Open Energy Info (EERE)

    Green Global Inc Jump to: navigation, search Name: Think Green Global, Inc. Place: New York, New York Zip: 10010 Sector: Renewable Energy Product: New York-based investment bank...

  14. Cora Capital Advisors LLC | Open Energy Information

    Open Energy Info (EERE)

    Advisors LLC Jump to: navigation, search Name: Cora Capital Advisors LLC Place: New York, New York Zip: 10022 Sector: Renewable Energy Product: New York-based investment bank and...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Small Business Energy Loan Program The maximum loan amount is 350,000, and VEDA will only fund up to 40% of the project. The remainder is typically funded 50% by a bank and 10% by...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Energy Loan Program The maximum loan amount is 2,000,000, and VEDA will only fund up to 40% of the project. The remainder is typically funded 50% by a bank and 10% by...

  17. Characterization of U.S. Wave Energy Converter Test Sites: A...

    Office of Environmental Management (EM)

    Characterization of U.S. Wave Energy Converter Test Sites: A Catalogue of Met-Ocean Data Characterization of U.S. Wave Energy Converter Test Sites: A Catalogue of Met-Ocean Data ...

  18. Ocean Fertilization and Other Climate Change Mitigation Strategies: An Overview

    SciTech Connect (OSTI)

    Huesemann, Michael H.

    2008-07-29

    In order to evaluate ocean fertilization in the larger context of other proposed strategies for reducing the threat of the global warming, a wide range of different climate change mitigation approaches are compared in terms of their long-term potential, stage of development, relative costs and potential risks, as well as public acceptance. This broad comparative analysis is carried out for the following climate change mitigation strategies: supply-side and end-use efficiency improvements, terrestrial and geological carbon sequestration, CO2 ocean disposal and iron fertilization, nuclear power, and renewable energy generation from biomass, passive solar, solar thermal, photovoltaics, hydroelectric and wind. In addition, because of the inherent problems of conducting an objective comparative cost-benefit analysis, two non-technological solutions to global warming are also discussed: curbing population growth and transitioning to a steady-state economy.

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Heat Pumps, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small) Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Landfill Gas, Tidal, Wave, Ocean Thermal, Geothermal Direct-Use Local Option- Property Tax Exemption for Renewable Energy Systems Beginning in October 2013, a municipality may...