Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Sector Management Assistance Program of the World Bank (ESMAP) |  

Open Energy Info (EERE)

Sector Management Assistance Program of the World Bank (ESMAP) Sector Management Assistance Program of the World Bank (ESMAP) Jump to: navigation, search Logo: Energy Sector Management Assistance Program Name Energy Sector Management Assistance Program Address 1818 H Street, NW Place Washington, DC Zip 20433 Region Northeast - NY NJ CT PA Area Number of employees 11-50 Year founded 1983 Website http://www.esmap.org/esmap/ Coordinates 38.899458°, -77.042447° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.899458,"lon":-77.042447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Energy Sector Management Assistance Program of the World Bank Feed | Open  

Open Energy Info (EERE)

World Bank Feed World Bank Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

3

World Bank Renewable Energy Toolkit | Open Energy Information  

Open Energy Info (EERE)

World Bank Renewable Energy Toolkit World Bank Renewable Energy Toolkit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: World Bank Renewable Energy Toolkit Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Solar, Wind Topics: Finance, Implementation, Market analysis, Policies/deployment programs, Resource assessment, Pathways analysis Resource Type: Publications, Guide/manual, Training materials, Lessons learned/best practices Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: World Bank RE Toolkit Homepage [1] The Word Bank's REToolKit is designed "to assist Bank staff and country counterparts to improve the design and implementation of renewable energy (RE) projects, incorporates best practices and lessons learned from RE

4

Public Sector Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Capitol dome Capitol dome Public Sector Energy Efficiency Research on sustainable federal operations supports the implementation of sustainable policies and practices in the public sector. This work serves as a bridge between the technology development of Department of Energy's National Laboratories and the operational needs of public sector. Research activities involve many aspects of integrating sustainability into buildings and government practices, including technical assistance for sustainable building design, operations, and maintenance; project financing for sustainable facilities; institutional change in support of sustainability policy goals; and procurement of sustainable products. All of those activities are supported by our work on program and project evaluation, which analyzes overall program effectiveness while ensuring

5

Energy Analysis by Sector | Department of Energy  

Office of Environmental Management (EM)

Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use...

6

Armenia-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Jump to: navigation, search Name Armenia-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Geothermal Topics Background analysis Website http://web.worldbank.org/exter Country Armenia Western Asia References World Bank-Armenia [1] Contents 1 World Bank Active Climate Projects in Armenia 1.1 GEOFUND 2: Armenia Geothermal Project 1.2 Renewable Energy Project 1.3 Renewable Energy GEF Project 2 References World Bank Active Climate Projects in Armenia GEOFUND 2: Armenia Geothermal Project Renewable Energy Project Renewable Energy GEF Project GEOFUND 2: Armenia Geothermal Project "The objective of the Second GeoFund Geothermal Project for Armenia is to

7

Jordan-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Jump to: navigation, search Name Jordan-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy Focus Area Energy Efficiency, Renewable Energy, Biomass, Wind Topics Background analysis Country Jordan Western Asia References World Bank project database[1] Contents 1 World Bank Active Climate Projects in Jordan 1.1 Jordan Energy Efficiency 1.2 Promotion of a Wind Power Market 1.3 JO-Amman Landfill Gas Recovery 1.4 Integrated Ecosystems in the Jordan Rift Valley 2 References World Bank Active Climate Projects in Jordan Jordan Energy Efficiency (1M) GEF Medium Sized Program Promotion of a Wind Power Market (6M) Global Environment Project JO-Amman Landfill Gas Recovery (15M) Carbon Offset Integrated Ecosystems in the Jordan Rift Valley (6.15M) Global

8

Post-2012 Climate Instruments in the transport sector | Open Energy  

Open Energy Info (EERE)

Post-2012 Climate Instruments in the transport sector Post-2012 Climate Instruments in the transport sector Jump to: navigation, search Name Post-2012 Climate Instruments in the transport sector Agency/Company /Organization Energy Research Centre of the Netherlands Partner Asian Development Bank Sector Energy Focus Area Transportation Topics Finance Resource Type Presentation Website http://www.slocat.net Program Start 2009 Program End 2010 UN Region South-Eastern Asia References Post-2012 Climate Instruments in the transport sector (CITS)[1] The post 2012 Climate Instruments in the transport sector (CITS) project implemented by the Asian Development Bank (ADB), in cooperation with the Inter-American Development Bank (IDB), is a first step to help ensure that the transport sector can benefit from the revised/new climate change

9

Energy Sector Market Analysis  

SciTech Connect

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

10

Ghana-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Renewable Energy, Forestry Topics Background analysis, Co-benefits assessment, - Energy Access, Finance Country Ghana Western Africa References World Bank Project Database - Ghana [1] Contents 1 Active World Bank Climate Projects in Ghana 1.1 Forest Carbon Partnership Facility Readiness Grant 1.2 Energy Development and Access Project (GEDAP) 1.3 Ghana Rural Energy Access - Global Env. Project 1.4 Ghana Natural Resources and Environmental Governance 2 References Active World Bank Climate Projects in Ghana Forest Carbon Partnership Facility Readiness Grant (.2M - Active) Energy Development and Access Project - IBRD/IDA (90M - Active) Ghana Rural Energy Access - Global Env. Project (5.5M - Active).

11

Egypt-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Jump to: navigation, search Name Egypt-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy Focus Area Energy Efficiency, Renewable Energy, Biomass, Wind, Transportation Topics Background analysis Country Egypt Northern Africa References World Bank project database[1] Contents 1 World Bank Active Climate Projects in Egypt 1.1 Egypt Vehicle Scrapping and Recycling Program 1.2 EG-LAND FILLING AND PROCESING SERVICES FOR SOUTHERN ZONE IN CAIRO 1.3 Egypt - Wind Power Development Project 1.4 Pollution Abatement Project 1.5 ONYX solid Waste Alexandria 2 References World Bank Active Climate Projects in Egypt Egypt Vehicle Scrapping and Recycling Program (8.32M) Carbon Offset, Pipeline EG-LAND FILLING AND PROCESING SERVICES FOR SOUTHERN ZONE IN CAIRO

12

Bangladesh-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

Bangladesh-World Bank Climate Projects Bangladesh-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy Focus Area Energy Efficiency, Renewable Energy, Solar Topics Market analysis, Background analysis Country Bangladesh Southern Asia References World Bank Project Database - Bangladesh[1] Contents 1 World Bank Active Climate Projects in Bangladesh 1.1 Solar Home Systems project 1.2 EGY SEC ADJ CREDIT SUPPLEMENT 1.3 Bangladesh - Brick Kiln Efficiency 1.4 Renewable Energy Development Project 1.5 Grameen Shakti Solar Homes Project 1.6 Rural Electrification and Renewable Energy Development 2 References World Bank Active Climate Projects in Bangladesh Solar Home Systems project (1M - Active) EGY SEC ADJ CREDIT SUPPLEMENT (2.3M Active) Bangladesh - Brick Kiln Efficiency (N/A Active)

13

India-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

India-World Bank Climate Projects India-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy Topics Background analysis Country India Southern Asia References World Bank project database[1] Contents 1 World Bank Active Climate Projects in India 1.1 INDIA - Financing Energy Efficiency at SMEs 1.2 Karnataka Wind 1.3 Street Lighting Energy Efficiency 1.4 Sustainable Urban Transport Project 1.5 Karnataka Municipal Water Energy Efficiency Project 1.6 Sustainable Rural Livelihoods and Security through Innovations in Land and Ecosystem Mgmt /Additional GEF financing to India NAIP 1.7 Chiller Energy Efficiency 1.8 INDIA Chiller Energy Effiency Carbon Finance Operation 1.9 Coal-Fired Generation Rehabilitation 1.10 India - Chiller Energy Efficiency Project - MP Component

14

2 - The evolution, reform and development of the Chinese banking sector  

Science Journals Connector (OSTI)

Abstract: Since the late 1970s, a series of banking reforms have been implemented by the Chinese government to improve the performance, enhance the stability, and create a more competitive environment in the banking sector. This chapter will start by reviewing banking reforms since 1979 and then review the structure of the Chinese banking sector. This will be followed by an overview of the Chinese banking sector over the period 200311 with emphasis on different indicators such as market share of assets, volume of non-performing loans and non-performing loan ratios, and capital adequacy and profitability of different ownerships of commercial banks. The chapter is structured as follows: Chinas banking reforms reviews Chinese banking reforms that have taken place over the last three decades. Structure of the Chinese banking sector looks at the structure of the Chinese banking sector with a focus on the introduction of banking regulatory authority and different ownerships of commercial banks. Overview of the Chinese banking sector over the period 200311 and Summary and conclusion bring the chapter to an end.

Yong Tan

2014-01-01T23:59:59.000Z

15

Indonesia-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Geothermal, Forestry Topics Background analysis Country Indonesia South-Eastern Asia References World Bank project database[1] Contents 1 World Bank Active Climate Projects in Indonesia 1.1 Pontianak - LFG Recovery Project, Carbon Offset 1.2 Makassar - TPA Tamangapa Landfill Methane Collection and Flaring 1.3 Geothermal Power Generation Development 1.4 Geothermal Clean Energy Investment Project 1.5 ID-PCF-Indonesia Lahendong Geothermal Project 1.6 ID-PCF-Indocement Cement, Carbon Offset 1.7 Bekasi Landfill Gas Flaring, Carbon Offset 2 References World Bank Active Climate Projects in Indonesia Pontianak - LFG Recovery Project, Carbon Offset

16

UCEAO: Energy Knowledge Bank | Open Energy Information  

Open Energy Info (EERE)

UCEAO: Energy Knowledge Bank UCEAO: Energy Knowledge Bank Jump to: navigation, search Name UCEAO: Energy Knowledge Bank Place Ohio Website http://knowledgebank.uso.edu/ References University Clean Energy Alliance of Ohio (UCEAO)[1] LinkedIn Connections This article is a stub. You can help OpenEI by expanding it. UCEAO: Energy Knowledge Bank is an organization based in Ohio. References ↑ "University Clean Energy Alliance of Ohio (UCEAO)" Retrieved from "http://en.openei.org/w/index.php?title=UCEAO:_Energy_Knowledge_Bank&oldid=368110" Categories: Clean Energy Organizations Networking Organizations Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

17

Mexico-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy Focus Area Energy Efficiency, Renewable Energy, Transportation Topics Market analysis, Background analysis Resource Type Dataset Country Mexico Central America References World Bank Project Database - Mexico [1] Contents 1 Active World Bank climate projects in Mexico including 1.1 Urban Transport Transformation 1.2 Efficient Lighting and Appliances 1.3 Sustainable Transport and Air Quality 1.4 Sustainable Rural - IBRD 1.5 Sustainable Rural Development - GEF 1.6 Mexico Framework for Green Growth Development Policy Loan 1.7 Mexico Environmental Sustainability Development Policy Loan 2 References Active World Bank climate projects in Mexico including Urban Transport Transformation (180M Pipeline)

18

Kenya-World Bank Climate Activities | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Activities World Bank Climate Activities Jump to: navigation, search Name Kenya-World Bank Climate Activities Agency/Company /Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Agriculture Topics Background analysis Country Kenya Eastern Africa References World Bank project database[1] Contents 1 Active World Bank Climate Projects in Kenya 1.1 Kenya: Adaptation to Climate Change in Arid and Semi-Arid Lands (KACCAL) (5.5 M) Global Environment Project, Pipeline 1.2 Kenya Agricultural Carbon Project (1M) Carbon Offset, Pipeline 1.3 CF Kengen, Kiambere, Tana, Eburru (2.77 M) Carbon Offset 1.4 Kenya KenGen Carbon Finance umbrella, Carbon Offset 1.5 Western Kenya Integrated Ecosystem Management Project (4.1M) Global Environment Project

19

Colombia-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

Colombia-World Bank Climate Projects Colombia-World Bank Climate Projects Jump to: navigation, search Name Colombia-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Forestry Topics Background analysis Country Colombia South America References World Bank project database[1] Contents 1 Active World Bank Climate Projects in Colombia 1.1 Rio Frio Carbon Offset Project 1.2 Integrated Mass Transit Systems Second Additional Financing 1.3 Colombia: San Nicolas Carbon Sequestration Project 1.4 CO: Caribbean Savannah Carbon Sink project 1.5 Jepirachi Carbon Off Set Project, Carbon Offset 1.6 COLOMBIA - Amoya River Environmental Services, Carbon Offset 1.7 Colombia: Integrated National Adaptation Program Global Environment Project

20

Chile-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Jump to: navigation, search Name Chile-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy Topics Background analysis Resource Type Dataset Country Chile South America References World Bank Project Database - Chile[1] Contents 1 World Bank Active Climate Projects in Chile 1.1 CL Securitization and Carbon Sinks Project 1.2 Chile Santiago Composting Project 1.3 Chile Quilleco Hydropower Project 1.4 Chile Hornitos Project (Chacabuquito II) 1.5 Sustainable Transport and Air Quality for Santiago (GEF) 1.6 Chile Sustainable Land Management Project 2 References World Bank Active Climate Projects in Chile CL Securitization and Carbon Sinks Project Chile Santiago Composting Project Chile Quilleco Hydropower Project

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Philippines-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Renewable Energy, Energy Efficiency, Geothermal Topics Background analysis, Co-benefits assessment, - Energy Access Country Philippines South-Eastern Asia References World Bank project database[1] Contents 1 World Bank Active Climate Projects in the Philippines 1.1 PH - Chiller Energy Efficiency Project (2.6M) Global Environment Project 1.2 Additional Financing for Rural Power (40M) IBRD/IDA 1.3 Northern Negros Geothermal Power Project (6.76M) Carbon Offset 1.4 20 MW Palinpinon II Geothermal Optimization Project, Carbon Offset 1.5 Laguna de Bay Community Watershed Rehab, Carbon Offset 1.6 Philippines: Northwind Bangui Bay Project (1.4M) Carbon Offset 1.7 EDSA Bus Reduction Project (6M) Carbon Offset

22

Energy Sector Cybersecurity Framework Implementation Guidance  

Energy Savers (EERE)

DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

23

Peru-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Jump to: navigation, search Name Peru-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Renewable Energy, Hydro, Transportation, Forestry Topics Background analysis Country Peru South America References World Bank Project Database - Peru[1] Contents 1 Active Projects 1.1 Water Resources Management Modernization - IBRD/IDA 1.2 PE Santa Rosa Hydro Carbon Finance 1.3 PERU - Poechos Hydropower Project 1.4 LIMA TRANSPORT 1.5 PE Huaycoloro Landfill Gas Recovery 2 References Active Projects The World Bank currently has the following climate projects active in Peru: Water Resources Management Modernization - IBRD/IDA (10M - Active) PE Santa Rosa Hydro Carbon Finance (1.5M) Carbon Offset PERU - Poechos Hydropower Project (1.2M) Carbon Offset

24

The World Bank Partnership for Market Readiness (PMR) | Open Energy  

Open Energy Info (EERE)

for Market Readiness (PMR) for Market Readiness (PMR) Jump to: navigation, search Logo: The World Bank Partnership for Market Readiness (PMR) - Brazil Name The World Bank Partnership for Market Readiness (PMR) - Brazil Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs Website http://wbcarbonfinance.org/Rou

25

Energy Sector Cybersecurity Framework Implementation Guidance  

Energy Savers (EERE)

JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

26

South Africa-World Bank Climate Activities | Open Energy Information  

Open Energy Info (EERE)

Activities Activities Jump to: navigation, search Name South Africa-World Bank Climate Activities Agency/Company /Organization World Bank Sector Energy Focus Area Energy Efficiency, Renewable Energy Topics Background analysis Country South Africa Southern Africa References World Bank Climate Project Database - South Africa[1] Contents 1 Active World Bank Climate Projects in South Africa 1.1 South African Cities EE and RE program 1.2 RE Market Transformation - Global Env. Project 1.3 ESKOM Power Investment Support Project 1.4 Durban Landfill Gas-to-Electricity Project, Carbon Offset 2 References Active World Bank Climate Projects in South Africa South African Cities EE and RE program (.4M - Active) RE Market Transformation - Global Env. Project (6M - Active) ESKOM Power Investment Support Project - IBRD/IDA (3750M -

27

Brazil-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

Brazil-World Bank Climate Projects Brazil-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Transportation Topics Finance, Background analysis Website http://web.worldbank.org/exter Country Brazil UN Region Latin America and the Caribbean References World Bank Project Database-Brazil[1] Contents 1 World Bank Active Climate Projects in Brazil 1.1 Sao Paulo Metro Line 5 Project 1.2 BR-GEF Sustainable Transport and Air Quality Project (STAQ) 1.3 First Programmatic Development Policy Loan for Sustainable Environmental Management 1.4 BR Nova Gerar Carbon Finance and Solid Waste Management Project II 1.5 BR Lages Woodwaste Cogeneration 1.6 PCF Sugar Bagasse Cogeneration Project 1.7 Nova Gerar Landfill Rio de Janeiro

28

Low Carbon Development Planning in the Power Sector | Open Energy  

Open Energy Info (EERE)

the Power Sector the Power Sector Jump to: navigation, search Logo: Low Carbon Development Planning in the Power Sector Name Low Carbon Development Planning in the Power Sector Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy Topics Low emission development planning Website http://www.esmap.org/esmap/nod Country Morocco, Nigeria UN Region Northern Africa References ESMAP[1] Overview "This new program was initiated in 2010 and aims to provide clients with analytical support to develop capacity for low-carbon development in power sector planning. It employs a learning-by doing approach with pilot activities in two countries in the initial stage (Nigeria and Morocco - 2010-12). A toolkit will be developed at the end of the pilot program to

29

Federal Sector Renewable Energy Project Implementation: ""What...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

30

Mexico-The World Bank Partnership for Market Readiness (PMR) | Open Energy  

Open Energy Info (EERE)

Mexico-The World Bank Partnership for Market Readiness (PMR) Mexico-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: Mexico-The World Bank Partnership for Market Readiness (PMR) Name Mexico-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

31

Brazil-The World Bank Partnership for Market Readiness (PMR) | Open Energy  

Open Energy Info (EERE)

Brazil-The World Bank Partnership for Market Readiness (PMR) Brazil-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: Brazil-The World Bank Partnership for Market Readiness (PMR) Name Brazil-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

32

China-The World Bank Partnership for Market Readiness (PMR) | Open Energy  

Open Energy Info (EERE)

China-The World Bank Partnership for Market Readiness (PMR) China-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: China-The World Bank Partnership for Market Readiness (PMR) Name China-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

33

India-The World Bank Partnership for Market Readiness (PMR) | Open Energy  

Open Energy Info (EERE)

India-The World Bank Partnership for Market Readiness (PMR) India-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: India-The World Bank Partnership for Market Readiness (PMR) Name India-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

34

Ukraine-The World Bank Partnership for Market Readiness (PMR) | Open Energy  

Open Energy Info (EERE)

Ukraine-The World Bank Partnership for Market Readiness (PMR) Ukraine-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: Ukraine-The World Bank Partnership for Market Readiness (PMR) Name Ukraine-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

35

Chile-The World Bank Partnership for Market Readiness (PMR) | Open Energy  

Open Energy Info (EERE)

Chile-The World Bank Partnership for Market Readiness (PMR) Chile-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: Chile-The World Bank Partnership for Market Readiness (PMR) Name Chile-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

36

Vietnam-The World Bank Partnership for Market Readiness (PMR) | Open Energy  

Open Energy Info (EERE)

Vietnam-The World Bank Partnership for Market Readiness (PMR) Vietnam-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: Vietnam-The World Bank Partnership for Market Readiness (PMR) Name Vietnam-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

37

Morocco-The World Bank Partnership for Market Readiness (PMR) | Open Energy  

Open Energy Info (EERE)

Morocco-The World Bank Partnership for Market Readiness (PMR) Morocco-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: Morocco-The World Bank Partnership for Market Readiness (PMR) Name Morocco-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

38

Jordan-The World Bank Partnership for Market Readiness (PMR) | Open Energy  

Open Energy Info (EERE)

Jordan-The World Bank Partnership for Market Readiness (PMR) Jordan-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: Jordan-The World Bank Partnership for Market Readiness (PMR) Name Jordan-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

39

Turkey-The World Bank Partnership for Market Readiness (PMR) | Open Energy  

Open Energy Info (EERE)

Turkey-The World Bank Partnership for Market Readiness (PMR) Turkey-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: Turkey-The World Bank Partnership for Market Readiness (PMR) Name Turkey-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

40

Energy-Sector Stakeholders Attend the Department of Energy's...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Banks, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Banks, Idaho: Energy Resources Banks, Idaho: Energy Resources Jump to: navigation, search Name Banks, Idaho GeoNames ID 5584615 Coordinates 44.0804473°, -116.1240151° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0804473,"lon":-116.1240151,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

The Global Carbon Bank | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » The Global Carbon Bank Jump to: navigation, search Name The Global Carbon Bank Place Houston, Texas Zip 77025 Sector Carbon, Services Product Houston-based provider of advisory and development services to utilities regarding carbon compliance and emissions offsets. References The Global Carbon Bank[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Global Carbon Bank is a company located in Houston, Texas . References ↑ "The Global Carbon Bank"

43

Republic of Macedonia-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

Macedonia-World Bank Climate Projects Macedonia-World Bank Climate Projects Jump to: navigation, search Name Republic of Macedonia-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy Topics Background analysis Website http://web.worldbank.org/exter Country Republic of Macedonia UN Region Southern Europe References World Bank-Macedonia[1] World Bank Active Climate Projects in the Republic of Macedonia Sustainable Energy GEF Project Sustainable Energy GEF Project "The development objective of the Sustainable Energy Project of the Former Yugoslav Republic of Macedonia is to develop a sustainable market for energy efficiency (EE) and renewable energy (RE) by supporting the development of an enabling framework, institutional capacity, and necessary

44

Asian Development Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

Asian Development Bank - Transport Asian Development Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Asian Development Bank - Transport Agency/Company /Organization: Asian Development Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: www.adb.org/sectors/transport/main This website provides relevant information about transport, focusing on the Sustainable Transport Initiative-Operational Plan (STI-OP). The website includes publications, current approved projects in Asia and toolkits classified by type of transport and/or country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

45

RecycleBank | Open Energy Information  

Open Energy Info (EERE)

RecycleBank RecycleBank Jump to: navigation, search Logo: RecycleBank Name RecycleBank Address 95 Morton Street Place New York, New York Sector Efficiency Number of employees 51-200 Website http://www.recyclebank.com/ Coordinates 40.731373°, -74.008584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.731373,"lon":-74.008584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Minority Banks | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Minority Banks Minority Banks Minority Banks Our Bank Deposit Financial Assistance Program was developed for the purpose of strengthening and expanding the Nation's minority and women-owned small business enterprises. In order to classify as "minority" the institution's majority ownership must include African Americans, Hispanic Americans, Asian Americans, American Indians, Eskimos, Aleuts, and women. The minority institution must certify minority ownership with the Department of the Treasury and appear on Treasury's Roster of Financial Institutions Participating in the Federal Government's Minority Bank Deposit Program. In keeping with the intent of the Program, we purchase certificates of deposit from those minority financial institutions which desire to participate in the Program. The institutions in turn use the principal

47

Market Assessment of Public Sector Energy Efficiency Potential in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Assessment of Public Sector Energy Efficiency Potential in India Market Assessment of Public Sector Energy Efficiency Potential in India Title Market Assessment of Public Sector Energy Efficiency Potential in India Publication Type Report Year of Publication 2012 Authors Iyer, Maithili, and Jayant A. Sathaye Date Published 10-Mar Publisher LBNL Keywords energy efficiency, india, market assessment Abstract The purpose of this study is to assess, with limited resources, the potential for improving energy efficiency in public buildings by providing preliminary estimates of the size of the public sector buildings market, the patterns of energy use in public buildings, and the opportunity for reducing energy use in public buildings. This report estimates the size of this market and the potential for carbon savings with conservative assumptions requiring moderate investment towards efficiency improvement in public sector buildings-here defined as the sum of the public sector commercial and institutional buildings as characterized by the Ministry of Statistics and Program Implementation (MOSPI). Information from this study will be provided to the World Bank and the BEE to assist them in designing effective energy efficiency programs for public buildings

48

Danish Government - Sector Programmes | Open Energy Information  

Open Energy Info (EERE)

Government - Sector Programmes Government - Sector Programmes Jump to: navigation, search Name Danish Government - Sector Programmes Agency/Company /Organization Danish Government Partner Danish Ministry for Climate, Energy, and Building; The Danish Energy Agency Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program End 2012 Country South Africa, Vietnam Southern Africa, South-Eastern Asia References Denmark[1] Promoting wind energy in South Africa and energy efficiency in Vietnam (subject to parliamentary approval) References ↑ "Denmark" Retrieved from "http://en.openei.org/w/index.php?title=Danish_Government_-_Sector_Programmes&oldid=580876" Category: Programs

49

Indonesia-Bank Danamon DCA Guarantee | Open Energy Information  

Open Energy Info (EERE)

Bank Danamon DCA Guarantee Bank Danamon DCA Guarantee Jump to: navigation, search Name Indonesia-Bank Danamon DCA Guarantee Agency/Company /Organization U.S. Agency for International Development Sector Energy Topics Finance, Background analysis Website http://www.usaid.gov/our_work/ Country Indonesia UN Region South-Eastern Asia References EGAT DCA Indonesia[1] Background "The Indonesia DCA loan guarantee evaluation is the third in a series of about 20 evaluations of Development Credit Authority (DCA) guarantees, which are being conducted over a four-year period. The unit of analysis for the individual evaluations is the lender. The evaluations address the guarantees' performance with respect to lending at three levels - output, outcome, and impact-which are outlined in Figure 1 below. Each

50

World Bank | Open Energy Information  

Open Energy Info (EERE)

Bank Bank Jump to: navigation, search Logo: World Bank Name World Bank Address 1818 H Street, NW Place Washington, District of Columbia Zip 20433 Number of employees 10,000+"+" is not declared as a valid unit of measurement for this property. Year founded 1944 Phone number (202) 473-1000 Coordinates 38.899458°, -77.042447° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.899458,"lon":-77.042447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Ukraine-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

database1 World Bank Active Climate Projects in Ukraine UA - ENERGY EFFICIENCY (250M) IBRDIDA References "World Bank project database" Retrieved from "http:en.openei.org...

52

Working to Achieve Cybersecurity in the Energy Sector | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working to Achieve Cybersecurity in the Energy Sector Working to Achieve Cybersecurity in the Energy Sector Presentation covers cybersecurity in the energy sector and is given at...

53

DOE Issues Energy Sector Cyber Organization NOI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues National Energy Sector Cyber Organization Notice of Intent Issues National Energy Sector Cyber Organization Notice of Intent February 11, 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. The cyber organization is expected to have the knowledge, expertise, capabilities, and capacity, at a minimum to: * Identify and prioritize cyber security research and development issues.

54

energy use by sector | OpenEI  

Open Energy Info (EERE)

use by sector use by sector Dataset Summary Description Statistics New Zealand conducted and published results of an energy use survey across industry and trade sectors to evaluate energy use in 2009. The data includes: energy use by fuel type and industry (2009); petrol and diesel purchasing and end use by industry (2009); energy saving initiatives by industry (2009); and areas identified as possibilities for less energy use (2009). Source Statistics New Zealand Date Released October 15th, 2010 (4 years ago) Date Updated Unknown Keywords diesel energy savings energy use by sector New Zealand petrol Data application/vnd.ms-excel icon New Zealand Energy Use Survey: Industrial and Trade Sectors (xls, 108 KiB) application/zip icon Energy Use Survey (zip, 127 KiB) Quality Metrics

55

Energy Sector Cybersecurity Framework Implementation Guidance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cybersecurity Framework Implementation Guidance - Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014 Energy Sector Cybersecurity Framework...

56

Photonic Sensing Technology in the Energy Sector  

Science Journals Connector (OSTI)

A review of photonic sensing technologies based on spectroscopic, fiber optics, and LIDAR technologies used in energy sector for measurement and monitoring applications in wind, oil...

Mendez, Alexis

57

Energy Sector Cybersecurity Framework Implementation Guidance...  

Energy Savers (EERE)

and government. In developing this guidance, the Energy Department collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council and the...

58

Energy-Sector Stakeholders Attend the Department of Energy's...  

Office of Environmental Management (EM)

Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for...

59

LNJ Bhilwara Group Glitnir Bank JV | Open Energy Information  

Open Energy Info (EERE)

LNJ Bhilwara Group Glitnir Bank JV LNJ Bhilwara Group Glitnir Bank JV Jump to: navigation, search Name LNJ Bhilwara Group - Glitnir Bank JV Place Noida, India Zip 201 301 Sector Geothermal energy Product Joint venture established by LNJ Bhilwara Group and Glitnir Bank, for the development of geothermal power plants in India and Nepal. Coordinates 28.56737°, 77.36779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.56737,"lon":77.36779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Program Program Organization Country Region Topic Sector Sector  

Open Energy Info (EERE)

Program Organization Country Region Topic Sector Sector Program Organization Country Region Topic Sector Sector Albania Enhancing Capacity for Low Emission Development Strategies EC LEDS Albania Enhancing Capacity for Low Emission Development Strategies EC LEDS United States Agency for International Development USAID United States Environmental Protection Agency United States Department of Energy United States Department of Agriculture United States Department of State Albania Southern Asia Low emission development planning LEDS Energy Land Climate Algeria Clean Technology Fund CTF Algeria Clean Technology Fund CTF African Development Bank Asian Development Bank European Bank for Reconstruction and Development EBRD Inter American Development Bank IDB World Bank Algeria South Eastern Asia Background analysis Finance Implementation

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Property:ProgramSector | Open Energy Information  

Open Energy Info (EERE)

ProgramSector ProgramSector Jump to: navigation, search This is a property of type String. Pages using the property "ProgramSector" Showing 25 pages using this property. (previous 25) (next 25) 2 2008 Solar Technologies Market Report + Energy + 2010 Solar Market Transformation Analysis and Tools + Energy + 2011 APTA Public Transportation Fact Book + Energy + A A Case for Climate Neutrality: Case Studies on Moving Towards a Low Carbon Economy + Energy +, Land +, Climate + A Conceptual Framework for Progressing Towards Sustainability in the Agriculture and Food Sector + Land + A Guide to Community Solar: Utility, Private, and Non-profit Project Development + Energy + A Low Carbon Economic Strategy for Scotland + Energy +, Land + A Municipal Official's Guide to Diesel Idling Reduction + Climate +, Energy +

62

Historical Renewable Energy Consumption by Energy Use Sector and Energy  

Open Energy Info (EERE)

Historical Renewable Energy Consumption by Energy Use Sector and Energy Historical Renewable Energy Consumption by Energy Use Sector and Energy Source, 1989-2008 Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset

63

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

64

U.S. Energy Sector Vulnerability Report | Department of Energy  

Energy Savers (EERE)

future impacts of climate change trends on the U.S. energy sector, including: Coastal energy infrastructure is at risk from sea level rise, increasing storm intensity and...

65

Energy-Sector Stakeholders Attend the Department of Energy's 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Sector Stakeholders Attend the Department of Energy's 2010 Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, 2010 during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and learn about DOE projects, while more than 20 joined in by webinar. Energy Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review More Documents & Publications

66

Morocco-Low Carbon Development Planning in the Power Sector | Open Energy  

Open Energy Info (EERE)

Morocco-Low Carbon Development Planning in the Power Sector Morocco-Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Morocco-Low Carbon Development Planning in the Power Sector Name Morocco-Low Carbon Development Planning in the Power Sector Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy Topics Low emission development planning Website http://www.esmap.org/esmap/nod Country Morocco UN Region Northern Africa References ESMAP[1] Overview "This new program was initiated in 2010 and aims to provide clients with analytical support to develop capacity for low-carbon development in power sector planning. It employs a learning-by doing approach with pilot activities in two countries in the initial stage (Nigeria and Morocco -

67

Nigeria-Low Carbon Development Planning in the Power Sector | Open Energy  

Open Energy Info (EERE)

Nigeria-Low Carbon Development Planning in the Power Sector Nigeria-Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Nigeria-Low Carbon Development Planning in the Power Sector Name Nigeria-Low Carbon Development Planning in the Power Sector Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy Topics Low emission development planning Website http://www.esmap.org/esmap/nod Country Nigeria UN Region Northern Africa References ESMAP[1] Overview "This new program was initiated in 2010 and aims to provide clients with analytical support to develop capacity for low-carbon development in power sector planning. It employs a learning-by doing approach with pilot activities in two countries in the initial stage (Nigeria and Morocco -

68

Low Carbon Society Toward 2050: Indonesia Energy Sector | Open Energy  

Open Energy Info (EERE)

Society Toward 2050: Indonesia Energy Sector Society Toward 2050: Indonesia Energy Sector Jump to: navigation, search Tool Summary Name: Low Carbon Society Toward 2050: Indonesia Energy Sector Agency/Company /Organization: National Institute for Environmental Studies, Institute for Global Environmental Strategies, Mizuho Information & Research Institute - Japan, Kyoto University, Institut Teknologi Bandung (ITB) - Indonesia Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Economic Development, Energy Efficiency, Grid Assessment and Integration, People and Policy, Solar Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Adaptation, Background analysis, Baseline projection, Implementation, Low emission development planning, -LEDS, Pathways analysis, Policies/deployment programs, Resource assessment

69

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

values. Figure 7. Global Primary Energy by End-Use Sector,Scenario Figure 8. Global Primary Energy by End-Use Sector,

2006-01-01T23:59:59.000Z

70

Template:Energy Generation Facilities by Sector | Open Energy Information  

Open Energy Info (EERE)

Facilities by Sector Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the specified sector in a map, or in a list with CSV link depending on SUBPAGENAME; the purpose being the separation of the map content from the underlying data. If the page it is included on ends in '/Data' it will display the raw data and the CSV link. Otherwise, it will display the full screen map. Parameters sector - the sector to query on (for example: Biomass, Solar, Wind energy, Geothermal energy) (required) Usage It should be called in the following format: {{Energy Generation Facilities by Sector}} Example For an example of this template in use, see one of the pages listed in 'What links here' below.

71

Working with the Private Sector to Achieve a Clean Energy Economy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working with the Private Sector to Achieve a Clean Energy Economy Working with the Private Sector to Achieve a Clean Energy Economy Working with the Private Sector to Achieve a Clean Energy Economy October 29, 2010 - 10:39am Addthis Doug Schultz Program Director, Loan Programs Office of the Department of Energy. What does this project do? Brings more certainty to the market by incentivizing the capital markets. Increases non-government lending capacity to the renewable sector. Provides a bridge between innovative but high tech risk projects and commercial technology projects whose risk profiles banks readily assume. It's an example of how the Administration is working with the private sector to achieve its goal of a clean energy economy. Today, I had the pleasure to speak to some of the leading power industry players about the DOE Loan Program Office's (LPO) Financial Institution

72

Working with the Private Sector to Achieve a Clean Energy Economy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with the Private Sector to Achieve a Clean Energy Economy with the Private Sector to Achieve a Clean Energy Economy Working with the Private Sector to Achieve a Clean Energy Economy October 29, 2010 - 10:39am Addthis Doug Schultz Program Director, Loan Programs Office of the Department of Energy. What does this project do? Brings more certainty to the market by incentivizing the capital markets. Increases non-government lending capacity to the renewable sector. Provides a bridge between innovative but high tech risk projects and commercial technology projects whose risk profiles banks readily assume. It's an example of how the Administration is working with the private sector to achieve its goal of a clean energy economy. Today, I had the pleasure to speak to some of the leading power industry players about the DOE Loan Program Office's (LPO) Financial Institution

73

New Report Highlights Growth of America's Clean Energy Job Sector |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector August 23, 2012 - 12:20pm Addthis New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs

74

Dams and Energy Sectors Interdependency Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

[Type text] [Type text] Dams and Energy Sectors Interdependency Study September 2011 September 2011 Page 2 Abstract The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. 1 The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water available for hydropower production. In recent years, various regions of the Nation suffered drought, impacting stakeholders in both the Dams and Energy Sectors. Droughts have the potential to affect the operation of dams and reduce hydropower production,

75

Ex-Im Bank Environmental Export Finance Program | Open Energy Information  

Open Energy Info (EERE)

Finance Program Finance Program Jump to: navigation, search Name Ex-Im Bank Environmental Export Financing Agency/Company /Organization Ex-Im Bank Sector Energy, Land Topics Finance, Implementation Website http://www.exim.gov/products/p References Environmental Export Financing Webpage [1] "Ex-Im Bank's financing helps mitigate risk for U.S. environmental companies and also offers competitive financing terms to international buyers for the purchase of U.S.-made environmental goods and services. Sectors: Active portfolio that includes financing for U.S. exports of: Renewable energy equipment Wastewater treatment projects Air pollution technologies Waste management services Other various environmental goods and services" [1] References ↑ 1.0 1.1 [1] Retrieved from

76

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

77

U.S. Energy Sector Vulnerability Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Energy Sector Vulnerability Report U.S. Energy Sector Vulnerability Report U.S. Energy Sector Vulnerability Report As part of the Administration's efforts to support national climate change adaptation planning through the Interagency Climate Change Adaptation Task Force and Strategic Sustainability Planning process -- and to advance the Energy Department's goal of promoting energy security -- the Department released the U.S. Energy Sector Vulnerability to Climate Change and Extreme Weather report. The report examines current and potential future impacts of climate change trends on the U.S. energy sector, including: Coastal energy infrastructure is at risk from sea level rise, increasing storm intensity and higher storm surge and flooding. Oil and gas production -- including refining, hydraulic fracturing

78

Property:Sector | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Sector Jump to: navigation, search This is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this property. (previous 25) (next 25) 1 1 Solar Inc + Renewable Energy +, Solar + 1.5-ft Wave Flume Facility + Hydro + 10-ft Wave Flume Facility + Hydro + 11-ft Wave Flume Facility + Hydro + 12 Voltz Limited + Renewable Energy +, Solar +, Wind energy + 1366 Technologies + Solar + 1st Light Energy, Inc. + Solar + 2 2-ft Flume Facility + Hydro + 2008 Solar Technologies Market Report + Renewable Energy +, Solar +, Concentrating solar power +, ... 2010 Carbon Sequestration Atlas of the United States and Canada: Third Edition + Clean Fossil Energy +

79

Energy-Sector Stakeholders Attend the Department of Energy's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Sector Stakeholders Attend the Department of Energy's Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review August 15, 2011 - 1:12pm Addthis The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and learn about DOE projects, while more than 20 joined in by webinar. The CEDS program's national lab, academic, and industry partners-including the National SCADA Test Bed (NSTB) partners and Trustworthy Cyber Infrastructure for the Power Grid (TCIPG)

80

Energy Efficiency and the Finance Sector | Open Energy Information  

Open Energy Info (EERE)

the Finance Sector the Finance Sector Jump to: navigation, search Name Energy Efficiency and the Finance Sector Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Energy Efficiency Topics Finance, Market analysis, Policies/deployment programs Website http://www.unepfi.org/fileadmi References Energy Efficiency and the Finance Sector[1] Summary "This survey was carried out in 2008, when high and volatile oil prices, steadily rising demand for energy, and global imperatives, such as climate change, created significant renewed attention to energy efficiency - both in the policy and commercial world. UNEP Finance Initiative sought to provide an evidence base on current lending activities in the energy efficiency space, as well as views on this issue through a survey among

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EA-330 The Royal Bank of Scotland plc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Royal Bank of Scotland plc EA-330 The Royal Bank of Scotland plc Order authorizing The Royal Bank of Scotland plc to export electric energy to Canada EA-330 The Royal Bank of...

82

EA-331 The Royal Bank of Scotland plc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Royal Bank of Scotland plc EA-331 The Royal Bank of Scotland plc Order authorizing The Royal Bank of Scotland plc to export electric energy to Mexico EA-331 The Royal Bank of...

83

Public Sector Energy Efficiency Aggregation Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Sector Energy Efficiency Aggregation Program Public Sector Energy Efficiency Aggregation Program Public Sector Energy Efficiency Aggregation Program < Back Eligibility Fed. Government Institutional Local Government Nonprofit Schools State Government Savings Category Other Maximum Rebate $4,000,000 Program Info Expiration Date 3/22/2013 State Illinois Program Type State Grant Program Rebate Amount $500,000-$4,000,000 Provider Illinois Department of Commerce and Economic Opportunity The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will allow public sector participants to combine energy efficiency projects in order to simplify the application process and implement projects that might otherwise be

84

EIA - International Energy Outlook 2008-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Chapter 6 - Transportation Sector Energy Consumption In the IEO2008 reference case, transportation energy use in the non-OECD countries increases by an average of 3.0 percent per year from 2005 to 2030, as compared with an average of 0.7 percent per year for the OECD countries. Over the next 25 years, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2008 reference case, the transportation share of total liquids consumption increases from 52 percent in 2005 to 58 percent in 2030. Much of the growth in transportation energy use is projected for the non-OECD nations, where many rapidly expanding economies

85

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar  

Energy.gov (U.S. Department of Energy (DOE))

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar, from the U.S. Department of Energy's Better Buildings program.

86

Colorado State Bank and Trust | Open Energy Information  

Open Energy Info (EERE)

Trust Trust Jump to: navigation, search Name Colorado State Bank and Trust Place Denver, Colorado Zip 80202 Sector Renewable Energy Product Leasing and lending for renewable projects Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE  

E-Print Network (OSTI)

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

88

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities,  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables provide estimates of commercial sector energy consumption and energy intensities for 1992, 1995, 1999 and 2003 based on the Commercial Buildings Energy Consumption Survey (CBECS). They also provide estimates of energy consumption and intensities adjusted for the effect of weather on heating, cooling, and ventilation energy use. Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF bullet By Principal Building Activity (Table 1a) html Table 1a excel table 1a. pdf table 1a. Weather-Adjusted by Principal Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b.

89

World Bank-Climate Change Knowledge Portal | Open Energy Information  

Open Energy Info (EERE)

Portal Portal Jump to: navigation, search Logo: World Bank-Climate Change Knowledge Portal Name World Bank-Climate Change Knowledge Portal Agency/Company /Organization World Bank Sector Climate Resource Type Maps, Training materials, Lessons learned/best practices Website http://sdwebx.worldbank.org/cl References World Bank-Climate Change Knowledge Portal[1] Abstract The WB Climate Change Portal is intended to provide quick and readily accessible climate and climate-related data to policy makers and development practitioners. World Bank-Climate Change Knowledge Portal Screenshot "The WB Climate Change Portal is intended to provide quick and readily accessible climate and climate-related data to policy makers and development practitioners. The site also includes a mapping visualization tool (webGIS) that displays

90

EIA - International Energy Outlook 2007-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Figure 66. OECD and Non-OECD Transportation Sector Liquids Consumption, 2005-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 67. Change in World Liquids Consumption for Transportation, 2005 to 2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 68. Average Annual Growth in OECD and Non-OECD Gros Domestic Product and Transportation Sector Delivered Energy Use, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 69. Motor Vehicle Ownership in OECD Countries, 2005, 2015, and 2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

91

Department of Energy Releases New Report on Energy Sector Vulnerablities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Sector Energy Sector Vulnerablities Department of Energy Releases New Report on Energy Sector Vulnerablities July 11, 2013 - 7:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Department of Energy released a new report which assesses how America's critical energy and electricity infrastructure is vulnerable to the impacts of climate change. Historically high temperatures in recent years have been accompanied by droughts and extreme heat waves, more wildfires than usual, and several intense storms that caused power and fuel disruptions for millions of people. These trends are expected to continue, which could further impact energy systems critical to the nation's economy. The U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather report, which builds on President Obama's Climate Action Plan,

92

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network (OSTI)

of Labor Statistics. Energy Efficiency Services Sector:Renewable Energy and Energy Efficiency: Economic Drivers forStatewide Long Term Energy Efficiency Strategic Plan. San

Goldman, Charles

2010-01-01T23:59:59.000Z

93

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

the end user while primary energy consumption includes finalWEC 2001). GDP Primary Energy Consumption (EJ) natural gasHistorical Primary Energy Consumption by sector Energy Use

2008-01-01T23:59:59.000Z

94

World Bank Climate Innovation Centers | Open Energy Information  

Open Energy Info (EERE)

Innovation Centers Innovation Centers Jump to: navigation, search Name World Bank Climate Innovation Centers Agency/Company /Organization World Bank Sector Energy, Climate Topics Finance, Policies/deployment programs, Background analysis Website http://www.infodev.org/en/Proj Program Start 2011 Country Kenya, India, South Africa, Ethiopia, Vietnam UN Region South-Eastern Asia, "South Asia" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

95

Investing in Minority Banks | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Investing in Minority Banks Investing in Minority Banks Investing in Minority Banks Our Bank Deposit Financial Assistance Program was developed for the purpose of strengthening and expanding the Nation's minority and women-owned small business enterprises. In order to classify as "minority" the institution's majority ownership must include African Americans, Hispanic Americans, Asian Americans, American Indians, Eskimos, Aleuts, and women. The minority institution must certify minority ownership with the Department of the Treasury and appear on Treasury's Roster of Financial Institutions Participating in the Federal Government's Minority Bank Deposit Program. In keeping with the intent of the Program, we purchase certificates of deposit from those minority financial institutions which desire to

96

World Bank Safeguard Policies | Open Energy Information  

Open Energy Info (EERE)

World Bank Safeguard Policies World Bank Safeguard Policies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: World Bank Safeguard Policies Agency/Company /Organization: World Bank Topics: Policies/deployment programs Resource Type: Guide/manual, Training materials, Lessons learned/best practices Website: web.worldbank.org/WBSITE/EXTERNAL/PROJECTS/EXTPOLICIES/EXTSAFEPOL/0,,m References: World Bank Safeguard Policies [1] Overview "The World Bank's environmental and social safeguard policies are a cornerstone of its support to sustainable poverty reduction. The objective of these policies is to prevent and mitigate undue harm to people and their environment in the development process. These policies provide guidelines for bank and borrower staffs in the identification, preparation, and

97

Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.  

SciTech Connect

Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for addressing the various energy and environmental concerns. The work presented in this report builds on earlier analyses presented at the COP 6 conference in Bonn.

Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

2008-02-28T23:59:59.000Z

98

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

99

Nexus of Energy Use and Technology in the Buildings Sector  

U.S. Energy Information Administration (EIA) Indexed Site

of Energy Use and Technology in the Buildings Sector EIA Energy Conference July 15, 2014 | Washington, DC Tom Leckey, EIA Director, Office of Energy Consumption and Efficiency...

100

Table E6. Transportation Sector Energy Price Estimates, 2012  

Annual Energy Outlook 2012 (EIA)

E6. Transportation Sector Energy Price Estimates, 2012 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy Coal Natural Gas Petroleum Total Aviation...

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

not provide data on primary energy consumption by sector. Inconsumption into primary energy consumption by multiplyingA.3.5 provides primary energy consumption values for the

2006-01-01T23:59:59.000Z

102

Energy Critical Infrastructure and Key Resources Sector-Specific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector Government Coordinating Council Letter of Support i ii Energy Sector-Specific Plan (Redacted) Energy Sector Coordinating Councils Letter of Concurrence The National Infrastructure Protection Plan (NIPP) provides the unifying structure for the integration of federal critical infrastructures and key resources (CI/KR) protection efforts into a single national program. The NIPP includes an overall framework integrating federal programs and activities that are currently underway in the various sectors, as well as new and developing CI/KR protection efforts. The Energy

103

The World Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

The World Bank - Transport The World Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The World Bank - Transport Agency/Company /Organization: The World Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: go.worldbank.org/0SYYVJWB40 This website provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes international publications and toolkits classified by type of transport and/or region/country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

104

sector Renewable Energy Non renewable Energy Biomass Buildings Commercial  

Open Energy Info (EERE)

user interface valueType text user interface valueType text sector valueType text abstract valueType text website valueType text openei tool keyword valueType text openei tool uri valueType text items label Calculator user interface Spreadsheet Website sector Renewable Energy Non renewable Energy Biomass Buildings Commercial Buildings Residential Economic Development Gateway Geothermal Greenhouse Gas Multi model Integration Multi sector Impact Evaluation Gateway Solar Wind energy website https www gov uk pathways analysis openei tool keyword calculator greenhouse gas emissions GHG low carbon energy planning energy data emissions data openei tool uri http calculator tool decc gov uk pathways primary energy chart uri http en openei org w index php title Calculator type Tools label AGI

105

East Bank, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bank, West Virginia: Energy Resources Bank, West Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.2181589°, -81.4428935° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.2181589,"lon":-81.4428935,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Restructuring our Transportation Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Restructuring our Transportation Sector Restructuring our Transportation Sector 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting,...

107

Employees give to local food bank | Department of Energy  

Energy Savers (EERE)

helps replenish local food banks and raises awareness about the prevalence of hunger. OAK RIDGE, Tenn.-Employees in U.S. Department of Energy's Oak Ridge Office of...

108

Asian Development Bank | Open Energy Information  

Open Energy Info (EERE)

Bank Bank Jump to: navigation, search Logo: Asian Development Bank Name Asian Development Bank Address 6 ADB Avenue, Place Mandaluyong City, Philippines Year founded 1966 Phone number + 632 632 4444 Website http://www.adb.org/default.asp Coordinates 14.5871066°, 121.0597685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":14.5871066,"lon":121.0597685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

African Development Bank | Open Energy Information  

Open Energy Info (EERE)

Bank Bank Jump to: navigation, search Logo: African Development Bank Name African Development Bank Address Rue Joseph Anoma, 01 BP 1387 Abidjan 01 Abidjan, Côte d'Ivoire Place Ivory Coast Year founded 1964 Website http://www.afdb.org/en/ Coordinates 5.336318°, -4.027751° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":5.336318,"lon":-4.027751,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

European Investment Bank | Open Energy Information  

Open Energy Info (EERE)

European Investment Bank European Investment Bank Jump to: navigation, search Logo: European Investment Bank Name European Investment Bank Address 98-100, boulevard Konrad Adenauer L-2950 Place Luxembourg Product Microfinance, Loans, Venture Capital Phone number (+352) 43 79 1 Website http://www.eib.org/index.htm Coordinates 49.6214766°, 6.139629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.6214766,"lon":6.139629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Bank of Italy | Open Energy Information  

Open Energy Info (EERE)

Bank of Italy Bank of Italy Jump to: navigation, search Logo: Bank of Italy Name Bank of Italy Address Via nazionale 91 Place Rome, Italy Zip 00149 Number of employees 5001-10,000 Year founded 1900 Coordinates 41.8975332°, 12.488383° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8975332,"lon":12.488383,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

EA-331-A The Royal Bank of Scotland plc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-A The Royal Bank of Scotland plc EA-331-A The Royal Bank of Scotland plc Order authorizing The Royal Bank of Scotland plc to export eelctric energy to Mexico EA-331-A The Royal...

113

EA-330-A The Royal Bank of Scotland plc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-A The Royal Bank of Scotland plc EA-330-A The Royal Bank of Scotland plc Order authorizing The Royal Bank of Scotland plc to export electric energy to Canada EA-330-A The Royal...

114

Public Finance Mechanisms to Catalyze Sustainable Energy Sector Growth |  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Public Finance Mechanisms to Catalyze Sustainable Energy Sector Growth Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Public Finance Mechanisms to Catalyze Sustainable Energy Sector Growth Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Energy Efficiency, Renewable Energy Topics: Finance, Market analysis Resource Type: Publications Website: www.sefalliance.org/fileadmin/media/base/downloads/SEFI_Public_Finance Public Finance Mechanisms to Catalyze Sustainable Energy Sector Growth Screenshot

115

Asian Development Bank Institute | Open Energy Information  

Open Energy Info (EERE)

Asian Development Bank Institute Asian Development Bank Institute Name Asian Development Bank Institute Address Kasumigaseki Building 8F 3-2-5, Kasumigaseki, Chiyoda-ku, Place Tokyo, Japan Phone number + 81-3-3593-5500 Website http://www.adbi.org/ Coordinates 35.6894875°, 139.6917064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6894875,"lon":139.6917064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Bank of America | Open Energy Information  

Open Energy Info (EERE)

America America Jump to: navigation, search Name Bank of America Place Charlotte, NC Zip 28202 Website https://www.bankofamerica.com/ References NREL & Industry: National Account Companies[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration Partnership Year 2009 Link to project description http://www.nrel.gov/features/20090619_buildings.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Bank of America is a company located in Charlotte, NC. Bank of America is one of 23 National Accounts Companies partnering with NREL and PNNL for testing and validation of design concepts that will

117

Interacting vacuum energy in the dark sector  

E-Print Network (OSTI)

We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

L. P. Chimento; S. Carneiro

2014-04-02T23:59:59.000Z

118

Utility Sector Leaders Make Firm Commitment to Energy Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency: Press Release, July 31, 2006 announcing an energy efficiency action plan. More than 80 energy, environmental and other organizations announced commitments and public statements in support of the National Action Plan for Energy Efficiency (NAPEE), which provides energy consumers and providers information on policies and techniques to save money as well as protect the environment. Utility Sector Leaders Make Firm Commitment to Energy Efficiency More Documents & Publications Chapter 3: Demand-Side Resources US - Brazil Binational Energy Working Group Joint Action Plan

119

US Energy Sector Vulnerabilities to Climate Change  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On the cover: Trans-Alaska oil pipeline; aerial view of New Jersey refinery; coal barges on Mississippi River in St. Paul, Minnesota; power plant in Prince On the cover: Trans-Alaska oil pipeline; aerial view of New Jersey refinery; coal barges on Mississippi River in St. Paul, Minnesota; power plant in Prince George's County, Maryland; Grand Coulee Dam in Washington State; corn field near Somers, Iowa; wind turbines in Texas. Photo credits: iStockphoto U.S. ENERGY SECTOR VULNERABILITIES TO CLIMATE CHANGE AND EXTREME WEATHER Acknowledgements This report was drafted by the U.S. Department of Energy's Office of Policy and International Affairs (DOE-PI) and the National Renewable Energy Laboratory (NREL). The coordinating lead author and a principal author was Craig Zamuda of DOE-PI; other principal authors included Bryan Mignone of DOE-PI, and Dan Bilello, KC Hallett, Courtney Lee, Jordan Macknick, Robin Newmark, and Daniel Steinberg of NREL. Vince Tidwell of Sandia National Laboratories, Tom Wilbanks of

120

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

Technologies for Climate Change Mitigation: Transport Sector Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector Agency/Company /Organization: Global Environment Facility, United Nations Environment Programme Sector: Energy, Climate Focus Area: Transportation Topics: Low emission development planning Resource Type: Guide/manual Website: tech-action.org/Guidebooks/TNAhandbook_Transport.pdf Cost: Free Technologies for Climate Change Mitigation: Transport Sector Screenshot References: Technologies for Climate Change Mitigation: Transport Sector[1] "The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ecofys-Sectoral Proposal Templates | Open Energy Information  

Open Energy Info (EERE)

Ecofys-Sectoral Proposal Templates Ecofys-Sectoral Proposal Templates Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ecofys Sectoral Proposal Templates Agency/Company /Organization: Ecofys Partner: GtripleC Sector: Energy, Land Phase: Determine Baseline Topics: Baseline projection, GHG inventory, Low emission development planning Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.sectoral-approaches.net/ Cost: Free References: Ecofys Sectoral Proposal Templates[1] The 'Sectoral Proposal Templates' aim at supporting developing countries in proposing sectoral emission baselines under a post-Kyoto climate regime. The sectoral approach underlying this work is seen as a means to scale-up investments in clean technology and systems in developing countries.

122

Roadmap to Secure Control Systems in the Energy Sector  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap Roadmap to Secure Control Systems in the Energy Sector -  - Foreword T his document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improing cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and goernment to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors oer the next ten years. The Roadmap proides a strategic framework for guiding industry and goernment efforts based on a clear ision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. A distinctie feature of this collaboratie effort is the actie inolement and leadership of energy asset

123

Private Sector Outreach and Partnerships | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation. The division's domestic capabilities have been greatly enhanced by the relationships that have been created over years of collaborations with companies from all parts the sector, including electricity, oil, and natural gas. Specific mission areas, such as risk and system analysis, modeling and visualization across subsectors, and incident response would not be possible without the participation of the private sector. The relationships ISER maintains with energy sector owners and operators and public associations representing energy subsectors, including the American

124

Climate Change Mitigation in the Energy and Forestry Sectors...  

Open Energy Info (EERE)

of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries...

125

Category:Private Sectors | Open Energy Information  

Open Energy Info (EERE)

currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PrivateSectors&oldid272250" Categories: Programs Projects...

126

Category:Public Sectors | Open Energy Information  

Open Energy Info (EERE)

This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PublicSectors&oldid272249" Categories: Programs Projects...

127

Draft Energy Sector Cybersecurity Framework Implementation Guidance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC)...

128

Energy Efficiency Financing for Public Sector Projects (California) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Financing for Public Sector Projects (California) Energy Efficiency Financing for Public Sector Projects (California) Energy Efficiency Financing for Public Sector Projects (California) < Back Eligibility Institutional Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Buying & Making Electricity Energy Sources Solar Wind Maximum Rebate $3 million Program Info State California Program Type State Loan Program Provider California Energy Commission Cities, counties, public care institutions, public hospitals, public schools and colleges, and special districts in California can apply for low-interest loans from the California Energy Commission for energy

129

Fact #792: August 12, 2013 Energy Consumption by Sector and Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 Fact 792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 In the...

130

EA-0513: Approaches for Acquiring Energy Savings in Commercial Sector  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13: Approaches for Acquiring Energy Savings in Commercial 13: Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration EA-0513: Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration SUMMARY This EA evaluates the environmental impacts of a proposal for DOE's Bonneville Power Administration to use several diverse approaches to purchase or acquire energy savings from commercial sector buildings region wide. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 25, 1991 EA-0513: Final Environmental Assessment Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration September 25, 1991 EA-0513: Finding of No Significant Impact Approaches for Acquiring Energy Savings in Commercial Sector Buildings,

131

World Bank Data Catalog | Open Energy Information  

Open Energy Info (EERE)

World Bank Data Catalog World Bank Data Catalog Jump to: navigation, search Tool Summary LAUNCH TOOL Name: World Bank Data Catalog Agency/Company /Organization: World Bank Resource Type: Dataset Website: data.worldbank.org/data-catalog UN Region: Central Asia, Eastern Asia, South-Eastern Asia, "Pacific" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Latin America and Caribbean" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Western Asia & North Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., Northern America, "South Asia" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

132

Two Paths to Transforming Markets through Public Sector Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Paths to Transforming Markets through Public Sector Energy Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down Laura Van Wie McGrory, Philip Coleman, David Fridley, and Jeffrey Harris, Lawrence Berkeley National Laboratory (LBNL) Edgar Villaseñor Franco, Promoting an Energy-efficient Public Sector (PEPS) ABSTRACT The evolution of government purchasing initiatives in Mexico and China, part of the PEPS (Promoting an Energy-efficient Public Sector) program, demonstrates the need for flexibility in designing energy-efficiency strategies in the public sector. Several years of pursuing a top-down (federally led) strategy in Mexico produced few results, and it was not until the program was restructured in 2004 to focus on municipal-level purchasing that the program

133

Energy Demand and Emission from Transport Sector in China  

Science Journals Connector (OSTI)

This paper aims to present a comprehensive overview of the current status and future trends of energy demand and emissions from transportation sector in China. ... a brief review of the national profile of energy

Yin Huang; Mengjun Wang

2013-01-01T23:59:59.000Z

134

Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 -  

Open Energy Info (EERE)

by Energy Use Sector and Energy Source, 2004 - by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

135

Dams and Energy Sectors Interdependency Study, September 2011 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dams and Energy Sectors Interdependency Study, September 2011 Dams and Energy Sectors Interdependency Study, September 2011 Dams and Energy Sectors Interdependency Study, September 2011 The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water available for hydropower production. Dams-Energy Interdependency Study.pdf More Documents & Publications Hydroelectric Webinar Presentation Slides and Text Version Impacts of Long-term Drought on Power Systems in the U.S. Southwest - July 2012 Before the Senate Energy and Natural Resources Committee

136

Energy Department Announces New Private Sector Partnership to Accelerate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Private Sector Partnership to Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 7, 2009 - 12:00am Addthis Washington DC --- U.S. Energy Secretary Steven Chu today announced the Department of Energy (DOE) will provide up to $750 million in funding from the American Recovery and Reinvestment Act to help accelerate the development of conventional renewable energy generation projects. This funding will cover the cost of loan guarantees which could support as much as $4 to 8 billion in lending to eligible projects, and the Department will invite private sector participation to accelerate the financing of these renewable energy projects. To this end, the Department announced the creation of its new Financial

137

Economics of Transition in the Power Sector | Open Energy Information  

Open Energy Info (EERE)

Economics of Transition in the Power Sector Economics of Transition in the Power Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Economics of Transition in the Power Sector Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Market analysis, Policies/deployment programs Website: www.iea.org/papers/2010/economics_of_transition.pdf References: The Economics of Transition in the Power Sector[1] The power sector carries a considerably great burden of the CO2 emission reductions required to address climate change, a feature common to many scenarios of emissions abatement. These reductions will only be possible if existing plants are replaced with more efficient, and less-emitting types of plants over the coming decades. This report considers: the risk factors

138

Commercial Buildings Sector Agent-Based Model | Open Energy Information  

Open Energy Info (EERE)

Commercial Buildings Sector Agent-Based Model Commercial Buildings Sector Agent-Based Model Jump to: navigation, search Tool Summary Name: Commercial Buildings Sector Agent-Based Model Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Buildings - Commercial Phase: Evaluate Options Topics: Implementation Resource Type: Technical report User Interface: Website Website: web.anl.gov/renewables/research/building_agent_based_model.html OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US Commercial Buildings Sector[1] Model the market-participants, dynamics, and constraints-help decide whether to adopt energy-efficient technologies to meet commercial building

139

NREL: Energy Analysis: Electric Sector Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Sector Integration Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher levels of variable renewable electricity. Impacts of renewable electricity generation on efficiency and emissions of conventional generators. Grid expansion and planning to allow large scale deployment of renewable generation. Graphic showing a high concept diagram of how a modern electricity system can be designed to include storage and incorporate large scale renewable generation. High Renewable Generation Electric System Flexibility and Storage Impacts on Conventional Generators Transmission Infrastructure

140

BankInvest Technology AS | Open Energy Information  

Open Energy Info (EERE)

BankInvest Technology AS BankInvest Technology AS Jump to: navigation, search Name BankInvest Technology AS Place Copenhagen, Denmark Zip DK-2100 Product Copenhagen-based venture capital arm of BankInvest Group, that manages the BankInvest New Energy Solutions fund as well as funds in IT and biotechnology. Coordinates 55.67631°, 12.569355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.67631,"lon":12.569355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Transportation sector energy demand Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy in 2040, the same as the level of energy demand in 2011 (Figure 70). The projection of no growth in transportation energy demand differs markedly from the historical trend, which saw 1.1-percent average annual growth from 1975 to 2011 [126]. No growth in transportation energy demand is the result of declining energy use for LDVs, which offsets increased energy use for heavy-duty vehicles (HDVs), aircraft, marine, rail, and pipelines. Energy demand for LDVs declines from 16.1 quadrillion Btu in 2011 to 13.0 quadrillion Btu in 2040, in contrast to 0.9-percent average annual growth

142

EA-342 Royal Bank of Canada | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Canada EA-342 Royal Bank of Canada More Documents & Publications EA-342-A Royal Bank of Canada EA-330 The Royal Bank of Scotland plc EA-330-A The Royal Bank of Scotland plc...

143

Working to Achieve Cybersecurity in the Energy Sector  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rita Wells Rita Wells Idaho National Laboratory Working to Achieve Cybersecurity in the Energy Sector "Cybersecurity for Energy Delivery Systems (CEDS)" Roadmap Vision In 10 years, control systems for critical applications will be designed, installed, operated, and maintained to survive an intentional cyber assault with no loss of critical function. * Published in January 2006 * Energy Sector's synthesis of critical control system security challenges, R&D needs, and implementation milestones * Provides strategic framework to - align activities to sector needs - coordinate public and private programs - stimulate investments in control systems security Roadmap - Framework for Public-Private Collaboration Roadmap - Key Strategies & 2015 Goals

144

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial sector energy demand Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments, industrial delivered energy consumption increases by only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of shipments from energy-intensive manufacturing industries (bulk chemicals, petroleum refineries, paper products, iron and steel, food products, aluminum, cement and lime, and glass) to other, less energy-intensive industries, such as plastics, computers, and transportation equipment. Also, the decline in energy intensity for the less energy-intensive industries is almost twice

145

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Market Trends - Industrial sector energy demand Market Trends - Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments, industrial delivered energy consumption increases by only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of shipments from energy-intensive manufacturing industries (bulk chemicals, petroleum refineries, paper products, iron and steel, food products, aluminum, cement and lime, and glass) to other, less energy-intensive industries, such as plastics, computers, and transportation equipment. Also, the decline in energy intensity for the less energy-intensive industries is almost twice

146

International industrial sector energy efficiency policies  

E-Print Network (OSTI)

company and the Danish Energy Agency (Ezban et al. , 1994;company and the Danish Energy Agency. The agreements, whichagreements with the Danish Energy Agency, representing 45%

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

147

Ecofys-Sectoral Proposal Templates | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Ecofys-Sectoral Proposal Templates (Redirected from Ecofys Sectoral Proposal Templates) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ecofys Sectoral Proposal Templates Agency/Company /Organization: Ecofys Partner: GtripleC Sector: Energy, Land Phase: Determine Baseline Topics: Baseline projection, GHG inventory, Low emission development planning Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.sectoral-approaches.net/ Cost: Free References: Ecofys Sectoral Proposal Templates[1]

148

Energy Use and Savings in the Canadian Industrial Sector  

E-Print Network (OSTI)

The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

James, B.

1982-01-01T23:59:59.000Z

149

Utility Sector Leaders Make Firm Commitment to Energy Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency July 31, 2006 - 9:30am Addthis (San Francisco, Calif. - July 31, 2006) More than 80 energy, environmental and other organizations announced commitments and public statements in support of the National Action Plan for Energy Efficiency (NAPEE), released today, which provides energy consumers and providers information on policies and techniques to save money as well as protect the environment. By adopting the plan's recommendations on low-cost, under-used energy efficiency, Americans could save hundreds of billions of dollars on their gas and electric utility bills, cut greenhouse gas emissions, and lower the costs for energy and pollution controls.

150

Property:Incentive/ImplSector | Open Energy Information  

Open Energy Info (EERE)

ImplSector ImplSector Jump to: navigation, search Property Name Incentive/ImplSector Property Type String Description Implementing Sector. Pages using the property "Incentive/ImplSector" Showing 25 pages using this property. (previous 25) (next 25) 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) + Federal + 3 30% Business Tax Credit for Solar (Vermont) + State/Territory + 4 401 Certification (Vermont) + State/Province + A AEP (Central and North) - CitySmart Program (Texas) + Utility + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + Utility + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + Utility + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + Utility + AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) + Utility +

151

Energy intensity in China's iron and steel sector  

E-Print Network (OSTI)

In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

152

World Bank-Low-carbon Energy Projects for Development in Sub-Saharan Africa  

Open Energy Info (EERE)

Projects for Development in Sub-Saharan Africa Projects for Development in Sub-Saharan Africa Jump to: navigation, search Name Low-carbon Energy Projects for Development in Sub-Saharan Africa Agency/Company /Organization World Bank Sector Energy Focus Area Energy Efficiency, Renewable Energy Topics Low emission development planning, Policies/deployment programs Resource Type Publications Website http://wbcarbonfinance.org/doc UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

153

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial Mkt trends Market Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case. Energy consumption growth is moderated by a shift in the mix of output, as growth in energy-intensive manufacturing output (aluminum, steel, bulk chemicals, paper, and refining) slows and growth in high-value (but less energy-intensive) industries, such as computers and transportation equipment, accelerates. See more figure data Reference Case Tables Table 2. Energy Consumption by Sector and Source - United States XLS Table 2.1. Energy Consumption by Sector and Source - New England XLS Table 2.2. Energy Consumption by Sector and Source - Middle Atlantic XLS

154

IADG Energy Bank Revolving Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The Iowa Economic Development Authority in partnership with the Iowa Area Development Group (IADG) is offering Iowa businesses and industries a low interest financing option for energy efficiency...

155

Methodology for Modeling Building Energy Performance across the Commercial Sector  

SciTech Connect

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

156

Slideshow: Innovation in the Manufacturing Sector | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector December 12, 2013 - 5:00pm Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean energy manufacturing. Image: Sarah Gerrity, Energy Department. Date taken: 2013-12-12 11:29 AEMC Summit 2 of 12 AEMC Summit Additive manufacturing (or 3D printing) is a new way of making products and components from a digital model to reduce manufacturing waste, save energy

157

HOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY WITH THE  

E-Print Network (OSTI)

..........................................................................................................16 #12;2 1. Summary The global energy scene is currently dominated by two overriding concerns relies almost 100 % on oil, and in 2004 transport energy use amounted to 26% of total world energy useHOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY

158

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial sector energy demand Industrial sector energy demand On This Page Heat and power energy... Industrial fuel mix changes... Iron and steel... Delivered energy use... Chemical industry use of fuels... Output growth for... Industrial and commercial... Heat and power energy consumption increases in manufacturing industries Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case. Energy consumption growth is moderated by a shift in the mix of output, as growth in energy-intensive manufacturing output (aluminum, steel, bulk chemicals, paper, and refining) slows and growth in high-value (but less energy-intensive) industries, such as computers and transportation equipment, accelerates. figure data

159

Public Sector Electric Efficiency Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Sector Electric Efficiency Programs Public Sector Electric Efficiency Programs Public Sector Electric Efficiency Programs < Back Eligibility Fed. Government Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate $300,000 per location Total incentive may not exceed 75% of project cost (equipment + labor) or 100% of incremental measure cost Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge for ComEd, Ameren subsidiary customers Start Date 06/01/2008 State Illinois Program Type State Rebate Program Rebate Amount Standard Incentive Program: Varies by technology

160

Public Sector New Construction and Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program < Back Eligibility Fed. Government Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Appliances & Electronics Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Insulation Water Heating Windows, Doors, & Skylights Maximum Rebate Bonus maximum: $100,000 All incentives: $2.50/sq. ft. (base plus bonus), $300,000, 75% of project costs, and 100% of incremental costs Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge for Ameren,

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Data Sourcebook for the U.S. Residential Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Sourcebook for the U.S. Residential Sector Data Sourcebook for the U.S. Residential Sector Title Energy Data Sourcebook for the U.S. Residential Sector Publication Type Report LBNL Report Number LBNL-40297 Year of Publication 1997 Authors Wenzel, Thomas P., Jonathan G. Koomey, Gregory J. Rosenquist, Marla C. Sanchez, and James W. Hanford Date Published 09/1997 Publisher Lawrence Berkeley National Laboratory City Berkeley, CA ISBN Number LBNL-40297, UC-1600 Keywords Enduse, Energy End-Use Forecasting, EUF Abstract Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment; historical and current appliance and equipment market shares; appliance and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl.gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

162

LEDSGP/sector/AFOLU | Open Energy Information  

Open Energy Info (EERE)

Agricultural Research (CGIAR), Energy Center of the Kwame Nkrumah University of Science and Technology of Ghana, Ethiopian Development Research Institute, Global Green...

163

Energy Department Advances Market Access for U.S. Firms in Chinese Energy Efficiency Sector  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department is helping to solve global environmental challenges and increase American competitiveness in the clean energy sector.

164

Energy and Labor in the Construction Sector  

Science Journals Connector (OSTI)

...The opera-. tional energy demand would be 60.5 mil-lion...and an operational energy demand, due to conduction heat loss...is, 1 percent of the 1976 refinery output of No. 6 fuel oil...final new building construction demand; nevertheless, they may be...

Bruce Hannon; Richard G. Stein; B. Z. Segal; Diane Serber

1978-11-24T23:59:59.000Z

165

Gabon-World Bank Climate Activities | Open Energy Information  

Open Energy Info (EERE)

Forestry Topics Background analysis Country Gabon Middle Africa References World Bank Project Database - Gabon 1 Active World Bank Climate Projects in Gabon Forest Carbon...

166

Georgia-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

Topics Background analysis Website http:web.worldbank.orgexter Country Georgia (country) Western Asia References Georgia-World Bank1 World Bank Active Climate Projects in...

167

Activities to Secure Control Systems in the Energy Sector  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sector sector NSTB November 2008 Hank Kenchington - Program Manager Office of Electricity of Delivery and Energy Reliability U.S. Department of Energy Activities to Secure Control Systems in the Energy Sector * 2,000,000 Miles of Oil Pipelines * 1,300,000 Miles of Gas Pipelines * 2,000 Petroleum Terminals * ~1,000,000 Wells * Extensive Ports, Refineries, Transportation, and LNG Facilities * 160,000 Miles of Electrical Transmission lines * ~17,000 Generators; 985,000 Megawatts (net summer capacity) * Over 3,100 Electric Utilities, with 131 million customers Refinery Locations, Crude and Product Pipelines Source: Energy Information Administration, Office of Oil & Gas LNG Import Facilities (Reactivation underway) Legend Interstate Pipelines Intrastate and Other Pipelines

168

Proposed Final Opinion on GHG Strategies in the Energy Sectors  

E-Print Network (OSTI)

1 Proposed Final Opinion on GHG Strategies in the Energy Sectors Key Findings and Recommendations;3 Background and Context Energy Commission and PUC developing recommendations to ARB for reducing GHG emissions requirements as foundation for GHG reductions Consider a mix of direct mandatory and market mechanisms Pursue

169

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Residential sector energy demand Residential sector energy demand Residential energy intensity continues to decline across a range of technology assumptions figure data In the AEO2013 Reference case, the energy intensity of residential demand, defined as annual energy use per household, declines from 97.2 million Btu in 2011 to 75.5 million Btu in 2040 (Figure 55). The projected 22-percent decrease in intensity occurs along with a 32-percent increase in the number of homes. Residential energy intensity is affected by various factors-for example, population shifts to warmer and drier climates, improvements in the efficiency of building construction and equipment stock, and the attitudes and behavior of residents toward energy savings. Three alternative cases show the effects of different technology

170

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Residential sector energy demand Residential sector energy demand Residential energy intensity continues to decline across a range of technology assumptions figure data In the AEO2013 Reference case, the energy intensity of residential demand, defined as annual energy use per household, declines from 97.2 million Btu in 2011 to 75.5 million Btu in 2040 (Figure 55). The projected 22-percent decrease in intensity occurs along with a 32-percent increase in the number of homes. Residential energy intensity is affected by various factors-for example, population shifts to warmer and drier climates, improvements in the efficiency of building construction and equipment stock, and the attitudes and behavior of residents toward energy savings. Three alternative cases show the effects of different technology

171

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

coal Residential coal Residential market trends icon Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating. See more issues Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy

172

Sustainable Energy Future in China's Building Sector  

E-Print Network (OSTI)

, The Netherlands and Finland (11W/m). Heating and hot water consumption represent 2/3 of energy demand in buildings in China. The thermal performance and heating system efficiency need to be improved dramatically in order to contain the soaring... Efficiency Standard for New Residential Buildings in 1995, the average energy consumption for heating in China is about 90~100kWh/ma 3 which is still almost twice of that in Sweden, Denmark, The Netherlands and Finland (40~50KWh/ma). Furthermore...

Li, J.

2007-01-01T23:59:59.000Z

173

Renewable energy sources in the Mexican electricity sector  

Science Journals Connector (OSTI)

This paper analyzes the role of renewable energy sources (RES) in the Mexican electricity sector in the context of the proposed renewable energy bill currently under consideration in the Mexican Congress. This paper was divided into three parts. The first part presents a chronology of institutional background related to the RES. This is followed by an analysis of the coordination and management system of the Mexican electricity sector, which can facilitate the promotion and integration of the RES without significant structural changes. Finally, the pros and cons of the renewable energy bill are analyzed in order to demonstrate the need for greater coherence between the bill and the coordination system of the sector. It is concluded that when inconsistency is eliminated, RES would strongly be promoted in Mexico.

B.J. Ruiz; V. Rodrguez-Padilla; J.H. Martnez

2008-01-01T23:59:59.000Z

174

The Greenhouse Gas Protocol Initiative: Sector Specific Tools | Open Energy  

Open Energy Info (EERE)

Gas Protocol Initiative: Sector Specific Tools Gas Protocol Initiative: Sector Specific Tools Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Sector Specific Tools Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity[1] The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion[2] The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources[3]

175

Energy and Labor in the Construction Sector  

Science Journals Connector (OSTI)

...other products requiring sophisticated plants and equipment. Thus, it will be possible...Energy cost life cycle: mineral wool insulation in wood frame walls in the New York area...Interior finish '/2 in. gypsum board Same Insulation 3'/2 in. rock wool 51/2 in. rock...

Bruce Hannon; Richard G. Stein; B. Z. Segal; Diane Serber

1978-11-24T23:59:59.000Z

176

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Commercial sector energy demand Commercial sector energy demand For commercial buildings, pace of decline in energy intensity depends on technology figure data Average delivered energy consumption per square foot of commercial floorspace declines at an annual rate of 0.4 percent from 2011 to 2040 in the AEO2013 Reference case (Figure 59), while commercial floorspace grows by 1.0 percent per year. Natural gas consumption increases at about one-half the rate of delivered electricity consumption, which grows by 0.8 percent per year in the Reference case. With ongoing improvements in equipment efficiency and building shells, the growth of energy consumption declines more rapidly than commercial floorspace increases, and the average energy intensity of commercial buildings is reduced. Three alternative technology cases show the effects of efficiency

177

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Commercial sector energy demand Commercial sector energy demand For commercial buildings, pace of decline in energy intensity depends on technology figure data Average delivered energy consumption per square foot of commercial floorspace declines at an annual rate of 0.4 percent from 2011 to 2040 in the AEO2013 Reference case (Figure 59), while commercial floorspace grows by 1.0 percent per year. Natural gas consumption increases at about one-half the rate of delivered electricity consumption, which grows by 0.8 percent per year in the Reference case. With ongoing improvements in equipment efficiency and building shells, the growth of energy consumption declines more rapidly than commercial floorspace increases, and the average energy intensity of commercial buildings is reduced. Three alternative technology cases show the effects of efficiency

178

UK Energy Consumption by Sector | OpenEI  

Open Energy Info (EERE)

68 68 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278068 Varnish cache server UK Energy Consumption by Sector Dataset Summary Description The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following sectors: transport, domestic, industrial and service. Each of the five spreadsheets contains a page of commentary and interpretation. In addition, a user guide is available as a supplement to the full set of spreadsheets to explain the technical concepts and vocabulary found within Energy Consumption in the UK (http://www.decc.gov.uk/assets/decc/Statistics/publications/ecuk/272-ecuk-user-guide.pdf). Energy Consumption in the United Kingdom is an annual publication currently published by the UK Department of Energy and Climate Change (DECC) for varying time periods, generally 1970 to 2009 (though some time periods are shorter).

179

By Sector, 2010 Nonprofit /  

E-Print Network (OSTI)

% West USA 46% By Region, 2010 Consul9ng 9% Environment/Energy 7% Finance/Investment Banking 4Public 38% Private 44% By Sector, 2010 Nonprofit / Mul9lateral 18% Asia 32% East USA 22 4% Manufacturing 3% Market Research 4% Media 3% Other 6% Technology 12% Think Tank 2

Tsien, Roger Y.

180

Two Paths to Transforming Markets through Public Sector Energy Efficiency:  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down Title Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down Publication Type Conference Paper LBNL Report Number LBNL-60144 Year of Publication 2006 Authors McGrory, Laura Van Wie, Philip Coleman, David Fridley, Jeffrey P. Harris, and Edgar Villasenor Franco Conference Name 2006 ACEEE Summer Study on Energy Efficiency in Buildings Date Published 08/2006 Conference Location Pacific Grove, CA Abstract The evolution of government purchasing initiatives in Mexico and China, part of the PEPS (Promoting an Energy-efficient Public Sector) program, demonstrates the need for flexibility in designing energy-efficiency strategies in the public sector. Several years of pursuing a top-down (federally led) strategy in Mexico produced few results, and it was not until the program was restructured in 2004 to focus on municipal-level purchasing that the program gained momentum. Today, a new partnership with the Mexican federal government is leading to an intergovernmental initiative with strong support at the federal level. By contrast, the PEPS purchasing initiative in China was successfully initiated and led at the central government level with strategic support from international experts. The very different success trajectories in these two countries provide valuable lessons for designing country-specific public sector energy-efficiency initiatives. Enabling conditions for any successful public sector purchasing initiative include the existence of mandatory energy-efficiency performance standards, an effective energy-efficiency endorsement labeling program, an immediate need for energy conservation, a simple pilot phase (focusing on a limited number of strategically chosen products), and specialized technical assistance. Top-down purchasing programs are likely to be more successful where there is high-level political endorsement and a national procurement law in place, supported by a network of trained purchasers. Bottom-up (municipally led) purchasing programs require that municipalities have the authority to set their own purchasing policies, and also benefit from existing networks of cities, supported by motivated municipal leaders and trained purchasing officials.

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Red Bank, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Red Bank, NJ) (Redirected from Red Bank, NJ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3470543°, -74.0643065° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3470543,"lon":-74.0643065,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

List of Companies in Geothermal Sector | Open Energy Information  

Open Energy Info (EERE)

Geothermal Sector Geothermal Sector Jump to: navigation, search Companies in the Geothermal energy sector: Add a Company Download CSV (rows 1-211) Map of Geothermal energy companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":2,"width":"99%","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

183

List of Companies in Wind Sector | Open Energy Information  

Open Energy Info (EERE)

Companies in Wind Sector Companies in Wind Sector Jump to: navigation, search WindTurbine-icon.png Companies in the Wind energy sector: Add a Company Download CSV (rows 1-1687) Map of Wind energy companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":2,"width":"99%","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

184

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Commercial Sector Energy Demand Commercial Sector Energy Demand On This Page End-use efficiency... Growth in electricity use... Core technologies... Improved interconnection... End-use efficiency improvements could lower energy consumption per capita The AEO2011 Reference case shows minimal change in commercial energy use per capita between 2009 and 2035 (Figure 62). While growth in commercial floorspace (1.2 percent per year) is faster than growth in population (0.9 percent per year), energy use per capita remains relatively steady due to efficiency improvements in equipment and building shells. Efficiency standards and the addition of more efficient technologies account for a large share of the improvement in the efficiency of end-use services, notably in space cooling, refrigeration, and lighting. figure data

185

Superheavy hidden sectors and the vacuum energy density  

E-Print Network (OSTI)

In the present work a quintessence like mechanism is presented, which models a considerable fraction of the critical energy density today $\\rho_c\\simeq 10^{-47}\\;\\hbox{GeV}^4$. By assuming that the Quantum Field Theory vacuum energy is lowered down to zero by a suitable adjustment mechanism, the critical energy density is modelled in terms of a quintessence axion field $a$. This axion is a pseudo-Goldstone boson arising due to a symmetry breaking mechanism in a hidden sector, corresponding to an $\\hbox{SU(2)}$ gauge interaction. The unification between the latter sector and QCD is produced at a very large energy scale, of the order of the GUT or even of the Planck energy. This theory is confining at a very low scale, of the order of a very light neutrino mass $m_\

Santilln, Osvaldo P

2015-01-01T23:59:59.000Z

186

Public Sector Leadership: Government Purchasing of Energy-efficient  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Sector Leadership: Government Purchasing of Energy-efficient Public Sector Leadership: Government Purchasing of Energy-efficient Products to Save Energy and "Pull" the Market Title Public Sector Leadership: Government Purchasing of Energy-efficient Products to Save Energy and "Pull" the Market Publication Type Conference Proceedings Year of Publication 2004 Authors Coleman, Philip, and Jeffrey P. Harris Conference Name Kuwait ASST Workshop on Energy Conservation in Buildings Series Title Energy Efficiency for Fuelling the World Date Published 01/2004 Conference Location Kuwait Abstract In most countries, government spending represents between 10% and 25% of total economic activity, with the national government generally accounting for the largest portion. Consequently, governments' spending can exert a strong influence on the markets for the products and services they purchase, especially when this procurement is concerted. In the last decade, several governments have instituted programs designed to direct their purchasing of energy-using products to the more efficient models on the market. This has two impacts: It provides substantial direct savings to the government on its utility bills while also helping to increase the availability and lower the prices of these more efficient models for all buyers.

187

U.S. Building-Sector Energy Efficiency Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Building-Sector Energy Efficiency Potential Building-Sector Energy Efficiency Potential Title U.S. Building-Sector Energy Efficiency Potential Publication Type Journal Article LBNL Report Number LBNL-1096E Year of Publication 2008 Authors Brown, Richard E., Sam Borgeson, Jonathan G. Koomey, and Peter J. Biermayer Date Published 09/2008 Publisher Lawrence Berkeley National Laboratory ISBN Number LBNL-1096E Abstract This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 ¢/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu (2.4 to 6.6 $/GJ). This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

188

World Bank eAtlas of Global Development | Open Energy Information  

Open Energy Info (EERE)

World Bank eAtlas of Global Development World Bank eAtlas of Global Development Jump to: navigation, search Tool Summary Name: World Bank eAtlas of Global Development Agency/Company /Organization: World Bank Topics: Co-benefits assessment, - Macroeconomic, - Energy Access, - Energy Security, - Environmental and Biodiversity, - Health Resource Type: Dataset Website: www.app.collinsindicate.com/worldbankatlas-global/en World Bank eAtlas of Global Development Screenshot References: World Bank eAtlas of Global Development[1] "This eAtlas, a new online companion to Atlas of Global Development, third edition, builds on the Atlas topics, allowing you to visualize and analyze a wider variety of data in greater depth, over a longer time period. You can: Map more than 175 World Bank indicators worldwide

189

Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

190

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. energy demand U.S. energy demand In the United States, average energy use per person declines from 2010 to 2035 figure data Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use but also the mix of fuels consumed. Changes in the structure of the economy and in the efficiency of the equipment deployed throughout the economy also have an impact on energy use per capita. The shift in the industrial sector away from energy-intensive manufacturing toward services is one reason for the projected decline in industrial energy intensity (energy use per dollar of GDP), but its impact on energy consumption per capita is less direct (Figure 71). From 1990 to

191

Private Sector Outreach and Partnerships | Department of Energy  

Energy Savers (EERE)

Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to...

192

Expert Meeting Report: Energy Savings You Can Bank On  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Savings You Energy Savings You Can Bank On Mark Berman, Jeremy Springer, Pepper Smith, and Erik Porse Alliance for Residential Building Innovation 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply

193

Perform, Achieve and Trade (PAT): An Innovative Mechanism for Enhancing Energy Efficiency in India's Industrial Sector  

E-Print Network (OSTI)

On 31st March 2012, India quietly announced a historic regulation for industrial sector in a bid to ensure energy security of the country. The regulation, with an aim to enhance energy efficiency in energy intensive industrial sectors, is empowered...

Garnik, S. P.; Martin, M.

2014-01-01T23:59:59.000Z

194

Energy and water sector policy strategies for drought mitigation.  

SciTech Connect

Tensions between the energy and water sectors occur when demand for electric power is high and water supply levels are low. There are several regions of the country, such as the western and southwestern states, where the confluence of energy and water is always strained due to population growth. However, for much of the country, this tension occurs at particular times of year (e.g., summer) or when a region is suffering from drought conditions. This report discusses prior work on the interdependencies between energy and water. It identifies the types of power plants that are most likely to be susceptible to water shortages, the regions of the country where this is most likely to occur, and policy options that can be applied in both the energy and water sectors to address the issue. The policy options are designed to be applied in the near term, applicable to all areas of the country, and to ease the tension between the energy and water sectors by addressing peak power demand or decreased water supply.

Kelic, Andjelka; Vugrin, Eric D.; Loose, Verne W.; Vargas, Vanessa N.

2009-03-01T23:59:59.000Z

195

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

0. Comparisons of energy consumption by sector projections, 2025, 2035, and 2040 0. Comparisons of energy consumption by sector projections, 2025, 2035, and 2040 (quadrillion Btu) Sector AEO2013 Reference INFORUM IHSGI ExxonMobil IEA 2011 Residential 11.3 11.5 10.8 -- -- Residential excluding electricity 6.4 6.6 6.0 5.0 -- Commercial 8.6 8.6 8.5 -- -- Commercial excluding electricity 4.1 4.1 4.0 4.0 -- Buildings sector 19.9 20.1 19.3 -- 19.3a Industrial 24.0 23.6 -- -- 23.7a Industrial excluding electricity 20.7 20.2 -- 20.0 -- Lossesb 0.7 -- -- -- -- Natural gas feedstocks 0.5 -- -- -- -- Industrial removing losses and feedstocks 22.9 -- 21.7 -- -- Transportation 27.1 27.2 26.2 27.0 23.1a Electric power 39.4 39.2 40.5 37.0 37.2a Less: electricity demandc 12.7 12.8 12.7 -- 15.0a

196

Energy Sector-Specific Plan: An Annex to the National Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sector-Specific Plan: An Annex to the National Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan In its role as the lead Sector-Specific Agency for the Energy Sector, the Department of Energy has worked closely with dozens of government and industry partners to prepare this updated 2010 Energy Sector-Specific Plan (SSP). Much of that work was conducted through the two Energy Sector Coordinating Councils (SCCs) and the Energy Government Coordinating Council (GCC). Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan More Documents & Publications National Infrastructure Protection Plan Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as

197

Efficient Energy Utilization in the Industrial Sector - Case Studies  

E-Print Network (OSTI)

require. Recent figures for the distribution of energy indi cate that the industrial sector consumes about 44% of the total with about 2/3 of that for combustion and the remainder for raw materials. This repre sents about 24 quadrillion BTU's per year... 16 years to a possible 70 quqd rillion BTU's. The total energy consumption wi~l continue to grow over the next 16 years as shown in Figure 2. Again, under moderate economic growth, energy gnowth will average about 3 percent per year. For exa...

Davis, S. R.

1984-01-01T23:59:59.000Z

198

Application of technology roadmaps for renewable energy sector  

Science Journals Connector (OSTI)

Technology Roadmapping (TRM) is a growing technique widely used for strategy planning and aligning technology with overall business objectives. Technology roadmaps are extensively used in many diverse fields at product, technology, industry, company and national levels. An increasing number of articles published on TRM and technology roadmaps indicate that there is a growing attention for TRM among the researchers from academia, industry and government. In this article, an overview of the application of TRM in renewable energy sector has been provided. After survey of the relevant academic literature and industry roadmaps, we tried to group the roadmaps related to the renewable energy technologies into national, industry/sector and organizational level roadmaps. Research findings indicate that goals and objectives of renewable energy roadmaps are different at these three levels. At national level, roadmaps focus on future energy security, energy dependence, energy policy formulation and environment protection. At industry/sector level, roadmaps are used to identify vision, common needs and evaluate barriers, constraints and risks faced by the industry from technical, political and commercial aspects. Organizational roadmap focuses on evaluation and prioritization of R&D projects to achieve the business goals. Similarly different methods, tools and approaches are used to develop roadmaps at different levels. Various other characteristics of these roadmaps are also discussed and analyzed. Research findings also indicate that greater numbers of roadmaps are developed for those renewable energy technologies undergoing rapid growth. Moreover, most of these roadmaps are developed in the regions where more research, development and deployment activities of renewable energy technologies is taking place.

Muhammad Amer; Tugrul U. Daim

2010-01-01T23:59:59.000Z

199

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

7. Key assumptions for the commercial sector in the AEO2012 integrated demand technology cases 7. Key assumptions for the commercial sector in the AEO2012 integrated demand technology cases Assumptions Integrated 2011 Deand Technology Integraged High Demand Technologya Integrated Buildings Best Available Demand Technologya End-use equipment Limited to technology menu available in 2011. Promulgated standards still take effect. Earlier availability, lower cost, and/ or higher efficiencies for advanced equipment. Purchases limited to highest available efficiency for each technology class, regardless of cost. Hurdle rates Same as Reference case distribution. All energy efficiency investments evaluated at 7-percent real interest rate. All energy efficiency investments evaluated at 7-percent real interest rate. Building shells Fixed at 2011 levels. 25 percent more improvement than in the Reference case by 2035. 50 percent more improvement than in the Reference case by 2035.

200

Energy Efficiency Services Sector: Workforce Education and Training Needs  

SciTech Connect

This report provides a baseline assessment of the current state of energy efficiency-related education and training programs and analyzes training and education needs to support expected growth in the energy efficiency services workforce. In the last year, there has been a significant increase in funding for 'green job' training and workforce development (including energy efficiency), through the American Recovery and Reinvestment Act (ARRA). Key segments of the energy efficiency services sector (EESS) have experienced significant growth during the past several years, and this growth is projected to continue and accelerate over the next decade. In a companion study (Goldman et al. 2009), our research team estimated that the EESS will increase two- to four-fold by 2020, to 220,000 person-years of employment (PYE) (low-growth scenario) or up to 380,000 PYE (high-growth scenario), which may represent as many as 1.3 million individuals. In assessing energy efficiency workforce education and training needs, we focus on energy-efficiency services-related jobs that are required to improve the efficiency of residential and nonresidential buildings. Figure ES-1 shows the market value chain for the EESS, sub-sectors included in this study, as well as the types of market players and specific occupations. Our assessment does not include the manufacturing, wholesale, and retail distribution subsectors, or energy efficiency-focused operations and maintenance performed by facility managers.

Goldman, Charles A.; Peters, Jane S.; Albers, Nathaniel; Stuart, Elizabeth; Fuller, Merrian C.

2010-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIA Energy Efficiency-Residential Sector Energy Intensities, 1978-2001  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Sector Energy Intensities Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of residential sector energy consumption and energy intensities for 1978 -1984, 1987, 1990, 1993, 1997, 2001 and 2005 based on the Residential Energy Consumption Survey (RECS). Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF By Type of Housing Unit (Table 1a) html Table 1a excel table 1a. excel table 1a. Weather-Adjusted by Type of Housing Unit (Table 1b) html table 1b excel table 1b excel table 1b Total Primary Energy Consumption (U.S. and Census Region) By Type of Housing Unit (Table 1c) html Table 1c excel table 1c excel table 1c Weather-Adjusted by Type of Housing Unit (Table 1d)

202

Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012  

Energy.gov (U.S. Department of Energy (DOE))

In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that time from about...

203

ImSET: Impact of Sector Energy Technologies  

SciTech Connect

This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

2005-07-19T23:59:59.000Z

204

Global Climate Change: Risk to Bank Loans | Open Energy Information  

Open Energy Info (EERE)

Climate Change: Risk to Bank Loans Climate Change: Risk to Bank Loans Jump to: navigation, search Tool Summary Name: Global Climate Change: Risk to Bank Loans Agency/Company /Organization: United Nations Environment Programme Topics: Finance, Co-benefits assessment, Market analysis Resource Type: Publications, Guide/manual Website: www.unepfi.org/fileadmin/documents/global_climate_change_risk.pdf Global Climate Change: Risk to Bank Loans Screenshot References: Global Climate Change: Risk to Bank Loans[1] Summary "The purpose of this study is to evaluate the impact of climate change related risks on bank borrowers, utilizing as much data and analysis as possible. The first section of this report reviews the current climate change policies in place in Canada, Europe, and the US, in order to provide

205

Energy Sector Cybersecurity Framework Implementation Guidance- Draft for Public Comment & Comment Submission Form (September 2014)  

Energy.gov (U.S. Department of Energy (DOE))

On September 12, 2014, the Department issued a Federal Register Notice announcing the availability of the Energy Sector Cybersecurity Framework Implementation Guidance for public comment. The draft Energy Sector Cybersecurity Framework Implementation Guidance and comment submission form are available.

206

Roadmap to Secure Control Systems in the Energy Sector- January 2006  

Energy.gov (U.S. Department of Energy (DOE))

This document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improving cyber security in the energy sector. It is the result of an unprecedented...

207

Energy Outlook for the Transport Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Energy: A View to 2030 The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Algae Biofuels Technology...

208

Department of Energy Releases New Report on Energy Sector Vulnerabliti...  

Office of Environmental Management (EM)

could decrease summer water availability leading to potential hydropower shortages when energy demand for cooling is greatest. Risks to energy infrastructure located along the...

209

Modeling Clean and Secure Energy Scenarios for the Indian Power Sector in 2030  

E-Print Network (OSTI)

of International Policies in the solar Electricity sector:Y. R. (2012). Solar energy in India: Strategies, policies,

Abhyankara, Nikit

2014-01-01T23:59:59.000Z

210

Banking sector of the Russian Federation : study of the correlation between commodity prices and key safety, soundness and performance indicators  

E-Print Network (OSTI)

The purpose of this work is to provide a comprehensive overview of the state of banking system in Russia, and to understand its core dependencies and potential risks. The system, the way we find it now, has evolved though ...

Sinilov, Nikolay

2010-01-01T23:59:59.000Z

211

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Issues in Focus Issues in Focus On This Page Introduction... No Sunset and... World oil price... Increasing light-duty... Fuel consumption... Potential efficiency... Potential of offshore... Prospects for shale... Cost uncertanties... Carbon capture... Power sector... Introduction The "Issues in focus" section of the Annual Energy Outlook (AEO) provides an in-depth discussion on topics of special interest, including significant changes in assumptions and recent developments in technologies for energy production and consumption. Detailed quantitative results are available in Appendix D. The first topic updates a discussion included in Annual Energy Outlook 2010 (AEO2010) that compared the results of two cases with different assumptions about the future course of existing energy policies.

212

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Commercial Commercial Mkt trends Market Trends The AEO2011 Reference case shows minimal change in commercial energy use per capita between 2009 and 2035 (Figure 62). While growth in commercial floorspace (1.2 percent per year) is faster than growth in population (0.9 percent per year), energy use per capita remains relatively steady due to efficiency improvements in equipment and building shells. Efficiency standards and the addition of more efficient technologies account for a large share of the improvement in the efficiency of end-use services, notably in space cooling, refrigeration, and lighting. See more issues Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

213

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down  

E-Print Network (OSTI)

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top National Laboratory (LBNL) Edgar Villaseñor Franco, Promoting an Energy-efficient Public Sector (PEPS (Promoting an Energy-efficient Public Sector) program, demonstrates the need for flexibility in designing

214

Electricity Net Generation From Renewable Energy by Energy Use Sector and  

Open Energy Info (EERE)

Net Generation From Renewable Energy by Energy Use Sector and Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset

215

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

2006-01-01T23:59:59.000Z

216

Louisville Private Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Private Sector Attendees Private Sector Attendees ENERGY STAR Kick-off Meeting December 2007 5/3rd Bank Al J Schneider Company (The Galt House East) Baptist Hospital East Brown - Forman Building Owner and Managers Association (BOMA) Louisville CB Richard Ellis Commercial Real Estate Women (CREW) Louisville Cushman Wakefield General Electric Company Golden Foods Greater Louisville Chapter of International Facility Management Association (IFMA) Hines Humana, Inc Institute of Real Estate Management (IREM) Kentucky Chapter Jewish Hospital & St Mary's Healthcare Kentucky Chapter, Certified Commercial Investment Managers (CCIM) Kentucky Governor's Office of Energy Policy Kentucky Society of Health Care Engineers Kindred Health Care Louisville Air Pollution Control Board

217

Interfuel Substitution and Energy Use in the UK Manufacturing Sector  

E-Print Network (OSTI)

of the following reasons. First, studies based on the aggregate data fail to account for large dierences in technological requirements for fuel types used in speci?c industries. For ex- ample, most cement kilns today use coal and petroleum coke as primary fuels... in the manufacturing processes. Waverman (1992) pointed out that fuels used by industrial sectors for non-energy purposes, such as coking coal, petrochemical feedstocks, or lubricants, have few available substitutes, and should therefore be excluded from the data...

Steinbuks, Jevgenijs

218

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Commercial Building Median Lifetimes (Years) Building Type Median (1) 66% Survival (2) 33% Survival (2) Assembly 55 40 75 Education 62 45 86 Food Sales 55 41 74 Food Service 50 35 71 Health Care 55 42 73 Large Office 65 46 92 Mercantile & Service 50 36 69 Small Office 58 41 82 Warehouse 58 41 82 Lodging 53 38 74 Other 60 44 81 Note(s): Source(s): 1) PNNL estimates the median lifetime of commercial buildings is 70-75 years. 2) Number of years after which the building survives. For example, a third of the large office buildings constructed today will survive 92 years later. EIA, Assumptions for the Annual Energy Outlook 2011, July 2011, Table 5.2, p. 40; EIA, Model Documentation Report: Commercial Sector 'Demand Module of the National Energy Modeling System, May 2010, p. 30-35; and PNNL, Memorandum: New Construction in the Annual Energy Outlook 2003, Apr. 24,

219

Energy sector analysis and modeling From primary to final energy.  

E-Print Network (OSTI)

?? Climate change and energy supply limitation are growing concerns. Solving them requires strong implication from our societies and more and more stakeholders and scientists (more)

Praz, Bastien

2012-01-01T23:59:59.000Z

220

Major models and data sources for residential and commercial sector energy conservation analysis. Final report  

SciTech Connect

Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

Not Available

1980-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and  

Open Energy Info (EERE)

Nonelectric Use by Energy Use Sector and Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description This dataset provides annual renewable energy consumption (in quadrillion Btu) for nonelectric use in the United States by energy use sector and energy source between 2004 and 2008. The data was compiled and published by EIA; the spreadsheet provides more details about specific sources for data used in the analysis. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Nonelectric Renewable Energy Consumption Residential transportation Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Non-Elec.Gen_EIA.Aug_.2010.xls (xls, 27.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

222

World Bank-Low-carbon Energy Projects for Development in Sub...  

Open Energy Info (EERE)

for Development in Sub-Saharan Africa Jump to: navigation, search Name Low-carbon Energy Projects for Development in Sub-Saharan Africa AgencyCompany Organization World Bank...

223

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction The Annual Energy Outlook 2011 (AEO2011) Reference case generally assumes that current laws and regulations affecting the energy sector remain unchanged throughout the projection (including the implication that laws which include sunset dates do, in fact, become ineffective at the time of those sunset dates). Currently, there are many pieces of legislation and regulation that appear to have some probability of being enacted in the not-too-distant future, and some laws include sunset provisions that may be extended. However, it is difficult to discern the exact forms that the final provisions of pending legislation or regulations will take, and sunset provisions may or may not be extended. Even in situations where existing legislation contains provisions to allow revision of implementing

224

Fact #689: August 22, 2011 Energy Use by Sector and Source |...  

Energy Savers (EERE)

sector consumed 28% of U.S. energy in 2010, nearly all of it (93.5%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The...

225

Fact #582: August 3, 2009 Energy Shares by Sector and Source...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

sector consumed about 28% of U.S. energy in 2008, nearly all of it (95%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The...

226

DOE Issues Energy Sector Cyber Organization NOI, Feb 2010 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Energy Sector Cyber Organization NOI, Feb 2010 Issues Energy Sector Cyber Organization NOI, Feb 2010 DOE Issues Energy Sector Cyber Organization NOI, Feb 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. DOE Issues Energy Sector Cyber Organization NOI More Documents & Publications FAQ: Funding Opportunity Announcement-Smart Grid Investment Grants Grantsdown.xls Before the House Science and Technology Subcommittee on Energy and

227

Expert Meeting Report: Energy Savings You Can Bank On | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Savings You Can Bank On Energy Savings You Can Bank On Expert Meeting Report: Energy Savings You Can Bank On In October 2011, ARBI organized and conducted an Experts Meeting on the topic of performance guarantees and financing vehicles for Energy Efficiency Upgrades. The meeting brought together technical, policy, and financial experts, including researchers, experienced installation contractors, and innovative energy business leaders, in order to discuss the opportunities and challenges for the energy efficiency upgrade industry to increase market uptake of Home Energy Upgrades (HEUs) through innovative offerings, such as performance guarantees. The meeting had several primary goals. First, it sought to understand how other industries have developed successful models for financing renewable energy installations while

228

Roadmap to Secure Control Systems in the Energy Sector - 2006 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 2006 - 2006 Roadmap to Secure Control Systems in the Energy Sector - 2006 This document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improving cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and government to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors over the next ten years. The Roadmap provides a strategic framework for guiding industry and government efforts based on a clear vision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. Roadmap to Secure Control Systems in the Energy Sector More Documents & Publications

229

Scrutinising the influence of the performance of Malaysia agricultural sector on energy use  

Science Journals Connector (OSTI)

Most sectors rely on energy as input to produce output. Though the use of energy by the agriculture sector is not as high as in other sectors, it is still necessary to study the links between the two. This is vital as there are only few studies that illustrate the bonds between them in Malaysia. This study resorts to input-output analysis to examine the link between the two sectors and assess their economic sustainability using input-output data for 1991 to 2005 period. This analysis and assessment show the existence of linkages between agriculture and energy sectors. However, the linkage is not strong for the named period. Among the three energy subsectors, the agriculture sector relies heavily on inputs from 'petrol and coal industries' as compared to the other two subsectors. As such, the current study introduces some policy implications to further diversify the sources of energy use and to promote the most efficient utilisation of energy in agriculture sector.

Hussain Ali Bekhet; Azlina Abdullah

2012-01-01T23:59:59.000Z

230

U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Energy Sector Vulnerabilities to Climate Change and Extreme U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather This report-part of the Administration's efforts to support national climate change adaptation planning through the Interagency Climate Change Adaptation Task Force and Strategic Sustainability Planning process established under Executive Order 13514 and to advance the U.S. Department of Energy's goal of promoting energy security-examines current and potential future impacts of these climate trends on the U.S. energy sector. Report updated July 16, 2013. Explore an interactive map that shows where climate change has already impacted the energy sector. US Energy Sector Vulnerabilities to Climate Change More Documents & Publications

231

Profiles in Renewable Energy- Case Studies of Successful Utility-Sector  

Open Energy Info (EERE)

Profiles in Renewable Energy- Case Studies of Successful Utility-Sector Profiles in Renewable Energy- Case Studies of Successful Utility-Sector Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Profiles in Renewable Energy- Case Studies of Successful Utility-Sector Projects Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Profiles in Renewable Energy- Case Studies of Successful Utility-Sector Projects Citation U.S. Department of Energy. Profiles in Renewable Energy- Case Studies of Successful Utility-Sector Projects [Internet]. [updated 2000;cited 2000]. Available from: http://www.osti.gov/accomplishments/NRELprofiles.html#oesi Retrieved from "http://en.openei.org/w/index.php?title=Profiles_in_Renewable_Energy-_Case_Studies_of_Successful_Utility-Sector_Projects&oldid=682490"

232

U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Energy Sector Vulnerabilities to Climate Change and Extreme U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather This report-part of the Administration's efforts to support national climate change adaptation planning through the Interagency Climate Change Adaptation Task Force and Strategic Sustainability Planning process established under Executive Order 13514 and to advance the U.S. Department of Energy's goal of promoting energy security-examines current and potential future impacts of these climate trends on the U.S. energy sector. Report updated July 16, 2013. Explore an interactive map that shows where climate change has already impacted the energy sector. US Energy Sector Vulnerabilities to Climate Change More Documents & Publications

233

Sectoral trends in global energy use and greenhouse gasemissions  

SciTech Connect

In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

2006-07-24T23:59:59.000Z

234

European Bank for Reconstruction and Development (EBRD) | Open Energy  

Open Energy Info (EERE)

Bank for Reconstruction and Development (EBRD) Bank for Reconstruction and Development (EBRD) (Redirected from European Bank for Reconstruction and Development) Jump to: navigation, search Logo: European Bank for Reconstruction and Development Name European Bank for Reconstruction and Development Address EBRD One Exchange Square Place London, United Kingdom Year founded 1991 Phone number 44 20 7338 6000 Website http://www.ebrd.com/ Coordinates 51.5760683°, 0.18155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.5760683,"lon":0.18155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Inter-American Development Bank (IDB) | Open Energy Information  

Open Energy Info (EERE)

Inter-American Development Bank (IDB) Inter-American Development Bank (IDB) (Redirected from Inter-American Development Bank) Jump to: navigation, search Logo: Inter-American Development Bank Name Inter-American Development Bank Address 1300 New York Avenue, N.W. Place Washington, D.C. Zip 20577 Region Northeast - NY NJ CT PA Area Year founded 1959 Phone number (202) 623-1000 Website http://www.iadb.org/index.cfm? Coordinates 38.899316°, -77.031605° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.899316,"lon":-77.031605,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

237

Regulation of Foreign Banks in Russia.  

E-Print Network (OSTI)

??In this paper, the issues of foreign investment in Russian banking sector are addressed. The study aims to shed light on foreign banks challenges in (more)

Trofimov, Kirill

2010-01-01T23:59:59.000Z

238

Policies to Reduce Emissions from the Transportation Sector | Open Energy  

Open Energy Info (EERE)

Policies to Reduce Emissions from the Transportation Sector Policies to Reduce Emissions from the Transportation Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies to Reduce Emissions from the Transportation Sector Agency/Company /Organization: PEW Center Sector: Climate Focus Area: Transportation, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan Resource Type: Guide/manual User Interface: Other Website: www.pewclimate.org/DDCF-Briefs/Transportation Cost: Free References: Policies To Reduce Emissions From The Transportation Sector[1] Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Overview Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Outputs include: General Information

239

Energy Sector Vulnerable to Climate Change, U.S. Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Sector Vulnerable to Climate Change, U.S. Department of Energy Report Says Print E-mail Energy Sector Vulnerable to Climate Change, U.S. Department of Energy Report Says Print E-mail President Obama Announces His Climate Action Plan Friday, July 26, 2013 Featured by DOE, a member of the U.S. Global Change Research Program In his speech at Georgetown University last month, President Obama referred to our nation's vulnerabilities to climate change, underscoring how Hurricane Sandy and other climate-related disasters serve as wake-up calls. These extreme weather events as well as changes in temperature and water availability - all related to our changing climate - are disrupting the ways we generate, distribute, and consume energy, according to a new report released by the US Department of Energy. The U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather report examines current and potential future impacts of these climate trends on the U.S. energy sector.

240

European Bank for Reconstruction and Development (EBRD) | Open Energy  

Open Energy Info (EERE)

European Bank for Reconstruction and Development (EBRD) European Bank for Reconstruction and Development (EBRD) Jump to: navigation, search Logo: European Bank for Reconstruction and Development Name European Bank for Reconstruction and Development Address EBRD One Exchange Square Place London, United Kingdom Year founded 1991 Phone number 44 20 7338 6000 Website http://www.ebrd.com/ Coordinates 51.5760683°, 0.18155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.5760683,"lon":0.18155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Inter-American Development Bank (IDB) | Open Energy Information  

Open Energy Info (EERE)

Inter-American Development Bank (IDB) Inter-American Development Bank (IDB) Jump to: navigation, search Logo: Inter-American Development Bank Name Inter-American Development Bank Address 1300 New York Avenue, N.W. Place Washington, D.C. Zip 20577 Region Northeast - NY NJ CT PA Area Year founded 1959 Phone number (202) 623-1000 Website http://www.iadb.org/index.cfm? Coordinates 38.899316°, -77.031605° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.899316,"lon":-77.031605,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

3.3 Commercial Sector Expenditures 3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2 16.7 198.9 147.5 36.8 16.9 201.2 143.8 35.1 16.4 195.2 145.0 35.5 16.6 197.0 141.1 34.0 16.0 191.1 142.5 34.6 16.2 193.3 136.9 32.1 15.7 184.8 139.1 33.0 15.9 188.0 133.5 31.0 15.4 179.9 135.0 31.6 15.6 182.2 131.0 29.7 15.1 175.8 131.9 30.3 15.3 177.5 128.1 28.7 14.5 171.3 130.0 29.3 15.0 174.4 129.4 29.7 15.4 174.5 127.7 29.2 13.8 170.7 134.8 29.9 14.5 179.2 134.5 28.5 16.9 180.0 141.1

243

Colombia-The World Bank Partnership for Market Readiness (PMR) | Open  

Open Energy Info (EERE)

Colombia-The World Bank Partnership for Market Readiness (PMR) Colombia-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: Colombia-The World Bank Partnership for Market Readiness (PMR) Name Colombia-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

244

Thailand-The World Bank Partnership for Market Readiness (PMR) | Open  

Open Energy Info (EERE)

Thailand-The World Bank Partnership for Market Readiness (PMR) Thailand-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: Thailand-The World Bank Partnership for Market Readiness (PMR) Name Thailand-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

245

Indonesia-The World Bank Partnership for Market Readiness (PMR) | Open  

Open Energy Info (EERE)

Indonesia-The World Bank Partnership for Market Readiness (PMR) Indonesia-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: Indonesia-The World Bank Partnership for Market Readiness (PMR) Name Indonesia-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

246

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

247

Climate change perception in the energy sector : A comparative study of Norway and Germany.  

E-Print Network (OSTI)

??The thesis investigates perceptions of climate change (CC) among stakeholders within Norwegian and German energy sector, and the implications of climate perception for personal behaviour. (more)

Lindberg, Marie Byskov

2008-01-01T23:59:59.000Z

248

Manufacturing Energy Bandwidth Studies: Chemical, Peroleum Refining, Pulp and Paer, and Iron and Steel Sectors  

E-Print Network (OSTI)

identify energy intensity and consumption for key manufacturing processes and the sector as a whole. Potential energy savings opportunities are identified by quantifying four measures of energy consumption for each process area: current average (year 2010...

Brueske, S.; Cresko, J.; Capenter, A.

2014-01-01T23:59:59.000Z

249

Modelling useful energy demand system as derived from basic needs in the household sector  

Science Journals Connector (OSTI)

Inter-fuel substitution in the household sector depends on whether their target energy use is similar or not. To account ... for the effect of end-use application on energy demand, the concept of useful energy is...

Zahra A. Barkhordar; Yadollah Saboohi

2014-10-01T23:59:59.000Z

250

Cora Capital Advisors LLC | Open Energy Information  

Open Energy Info (EERE)

investment bank and financial advisory firm focused on the renewable energy and clean technology sectors. References: Cora Capital Advisors LLC1 This article is a stub....

251

EC-LEDS in the Agriculture Sector | Open Energy Information  

Open Energy Info (EERE)

the Agriculture Sector the Agriculture Sector Jump to: navigation, search Name EC-LEDS in the Agriculture Sector Agency/Company /Organization United States Department of Agriculture, United States Department of State Partner Ministry of Agriculture, Ministry of Environment Sector Climate, Land Focus Area Agriculture, Economic Development, Greenhouse Gas, Land Use Topics Adaptation, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program Start 2011 Program End 2013 Country Costa Rica, Kenya, Mexico, Vietnam Central America, Eastern Africa, Central America, South-Eastern Asia References Land Use Assessment Toolkit - Agriculture Resources[1] Overview Progress and Outcomes Capacity building activities include strengthening implementation of

252

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

heat and synfuels) consumed by each end-use sector by a final-to- primary conversion factor that accounts for conversion, transmission and distribution losses.heat and synfuels) consumed by each end-use sector by a final-to-primary conversion factor that account for conversion, transmission and distribution losses.

2006-01-01T23:59:59.000Z

253

Reverse-Engineering Banks' Financial Strength Ratings Using ...  

E-Print Network (OSTI)

Dec 27, 2006 ... reverse-engineering a superior bank rating system, which turns out to ...... sector (

mal92

2009-05-16T23:59:59.000Z

254

Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy  

Open Energy Info (EERE)

Nepal-Sectoral Climate Impacts Economic Assessment Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Partner Ministry of Environment for Government of Nepal Sector Climate Focus Area Agriculture, Forestry, Greenhouse Gas, Industry, Land Use, People and Policy, Water Conservation Topics Low emission development planning Website http://cdkn.org/2011/11/call-f Country Nepal Southern Asia References Nepal Sectoral Climate impacts Economic Assessment[1] CDKN is providing support to the GoN through a number of projects to design and deliver climate compatible development (CCD) plans and policies. To

255

Nepal Sectoral Climate impacts Economic Assessment | Open Energy  

Open Energy Info (EERE)

Sectoral Climate impacts Economic Assessment Sectoral Climate impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Partner Ministry of Environment for Government of Nepal Sector Climate Focus Area Agriculture, Forestry, Greenhouse Gas, Industry, Land Use, People and Policy, Water Conservation Topics Low emission development planning Website http://cdkn.org/2011/11/call-f Country Nepal Southern Asia References Nepal Sectoral Climate impacts Economic Assessment[1] CDKN is providing support to the GoN through a number of projects to design and deliver climate compatible development (CCD) plans and policies. To

256

Energy Sector Control Systems Working Group to Meet March 25, 2008 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Sector Control Systems Working Group to Meet March 25, 2008 Energy Sector Control Systems Working Group to Meet March 25, 2008 Energy Sector Control Systems Working Group to Meet March 25, 2008 The Energy Sector Control Systems Working Group is a unique public-private partnership recently formed to help guide implementation of the priorities identified in the industry-led Roadmap to Secure Control Systems in the Energy Sector. The group seeks to provide a platform for pursuing innovative and practical activities that will improve the security of the control systems that manage our nation's energy infrastructure. The Group will meet March 25, 2008 in St. Louis Missouri to focus on four objectives: Help identify and implement practical, near-term activities that are high priority for the industry Promote the value to the industry of achieving the goals of the

257

Buildings Energy Data Book: 1.2 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Residential Sector Energy Consumption March 2012 1.2.9 Implicit Price Deflators (2005 1.00) Year Year Year 1980 0.48 1990 0.72 2000 0.89 1981 0.52 1991 0.75 2001 0.91 1982 0.55...

258

Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy: Critical Infrastructure and Key Resources Sector-Specific Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) In June 2006, the U.S. Department of Homeland Security (DHS) announced completion of the National Infrastructure Protection Plan (NIPP) Base Plan, a comprehensive risk management framework that defines critical infrastructure protection (CIP) roles and responsibilities for all levels of government, private industry, and other security partners. The U.S. Department of Energy (DOE) has been designated the Sector-Specific Agency (SSA) for the Energy Sector,and is tasked with coordinating preparation of

259

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Oil/Liquids Oil/Liquids Petroleum and other liquids consumption outside industrial sector is stagnant or declines figure data Consumption of petroleum and other liquids peaks at 19.8 million barrels per day in 2019 in the AEO2013 Reference case and then falls to 18.9 million barrels per day in 2040 (Figure 93). The transportation sector accounts for the largest share of total consumption throughout the projection, although its share falls to 68 percent in 2040 from 72 percent in 2012 as a result of improvements in vehicle efficiency following the incorporation of CAFE standards for both LDVs and HDVs. Consumption of petroleum and other liquids increases in the industrial sector, by 0.6 million barrels per day from 2011 to 2040, but decreases in all the other end-use sectors.

260

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Oil/Liquids Oil/Liquids Petroleum and other liquids consumption outside industrial sector is stagnant or declines figure data Consumption of petroleum and other liquids peaks at 19.8 million barrels per day in 2019 in the AEO2013 Reference case and then falls to 18.9 million barrels per day in 2040 (Figure 93). The transportation sector accounts for the largest share of total consumption throughout the projection, although its share falls to 68 percent in 2040 from 72 percent in 2012 as a result of improvements in vehicle efficiency following the incorporation of CAFE standards for both LDVs and HDVs. Consumption of petroleum and other liquids increases in the industrial sector, by 0.6 million barrels per day from 2011 to 2040, but decreases in all the other end-use sectors.

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Global Energy & Mining Data, World Bank (1970 - 2007) | OpenEI  

Open Energy Info (EERE)

Global Energy & Mining Data, World Bank (1970 - 2007) Global Energy & Mining Data, World Bank (1970 - 2007) Dataset Summary Description The energy-mining_xml_en.zip and energy-mining_xls_en.zip files contain identical data, but in different formats (XML and Excel, respectively). In particular, each contains files with the following contents: Alternative and Nuclear Energy: Percentage of Total Energy Use Combustible Renewables and Waste: Metric Tons of Oil Equivalent Combustible Renewable and Waste: Percentage of Total Energy Electric Power Consumption Electric Power Transmission and Distribution Losses Electric Power Transmission and Distribution Losses: Percentage of Output Electricity Production from Coal Sources Electricity Production from Coal Sources: Percentage of Total Electricity Production from Hydroelectric Sources

262

Draft Energy Sector Cybersecurity Framework Implementation Guidance Available for Public Comment  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) has issued a Notice of Public Comment in the Federal Register, inviting the public to comment on DOE's Energy Sector Cybersecurity Framework Implementation Guidance. The document is available for a 30 day comment period.

263

World Bank Doing Business Reports | Open Energy Information  

Open Energy Info (EERE)

World Bank Doing Business Reports World Bank Doing Business Reports Jump to: navigation, search Tool Summary LAUNCH TOOL Name: World Bank Doing Business Reports Agency/Company /Organization: World Bank Focus Area: Industry Topics: Market analysis Resource Type: Guide/manual Website: www.doingbusiness.org/ UN Region: Central Asia, Eastern Asia, South-Eastern Asia, "Pacific" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Latin America and Caribbean" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Western Asia & North Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., Northern America, "South Asia" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

264

Mexico-NAMA on Reducing GHG Emissions in the Cement Sector | Open Energy  

Open Energy Info (EERE)

Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Jump to: navigation, search Name CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Agency/Company /Organization Center for Clean Air Policy (CCAP) Sector Energy Focus Area Industry, - Industrial Processes Topics Implementation, Low emission development planning, -NAMA, Market analysis, Policies/deployment programs Website http://www.ccap.org/docs/resou Program Start 2011 Program End 2011 Country Mexico UN Region Central America References CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector[1] CCAP-Mexico-NAMA on Reducing GHG Emissions in the Cement Sector Screenshot "This interim report presents the preliminary results of the first phase of the study - an evaluation of sectoral approach issues and opportunities

265

Tonga-Pilot Program for Climate Resilience (PPCR) | Open Energy...  

Open Energy Info (EERE)

Program for Climate Resilience (PPCR) AgencyCompany Organization World Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development...

266

Cambodia-Pilot Program for Climate Resilience (PPCR) | Open Energy...  

Open Energy Info (EERE)

Bank Sector Energy, Land Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http:www.climateinvestmentfu Country...

267

Energy Sector Control Systems Working Group to Meet March 25, 2008 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sector Control Systems Working Group to Meet March 25, 2008 Sector Control Systems Working Group to Meet March 25, 2008 Energy Sector Control Systems Working Group to Meet March 25, 2008 The Energy Sector Control Systems Working Group is a unique public-private partnership recently formed to help guide implementation of the priorities identified in the industry-led Roadmap to Secure Control Systems in the Energy Sector. The group seeks to provide a platform for pursuing innovative and practical activities that will improve the security of the control systems that manage our nation's energy infrastructure. The Group will meet March 25, 2008 in St. Louis Missouri to focus on four objectives: Help identify and implement practical, near-term activities that are high priority for the industry Promote the value to the industry of achieving the goals of the

268

Status of Power Sector Reform in Africa: Impact on the Poor | Open Energy  

Open Energy Info (EERE)

Status of Power Sector Reform in Africa: Impact on the Poor Status of Power Sector Reform in Africa: Impact on the Poor Jump to: navigation, search Tool Summary Name: Status of Power Sector Reform in Africa: Impact on the Poor Agency/Company /Organization: Stephen Karekezi and John Kimani Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, People and Policy Phase: Create a Vision Topics: Co-benefits assessment, - Energy Access Resource Type: Publications User Interface: Website Website: www.sciencedirect.com/science/article/pii/S0301421502000484 Cost: Free UN Region: Eastern Africa, Southern Africa Language: English This article is based on a regional study by the authors reviewing the status, challenges and prospects of ongoing and planned power sector reform in eastern and southern Africa with special emphasis on the implications

269

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network (OSTI)

Conservation and Renewable Energy, Building EquipmentConservation and Renewable Energy, Building EquipmentConservation and Renewable Energy, Building Equipment

Wenzel, T.P.

2010-01-01T23:59:59.000Z

270

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

Energy Consumption 11and a decomposition of energy consumption to understand theData Historical energy consumption and energy-related CO 2

2006-01-01T23:59:59.000Z

271

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

structure. From 51% of total energy consumption in 1980, thefor 61% of total energy consumption. Industrial energy usethis scenario, Chinas total energy consumption by 2020 will

2008-01-01T23:59:59.000Z

272

Energy-saving technology adoption under uncertainty in the residential sector  

E-Print Network (OSTI)

Energy-saving technology adoption under uncertainty in the residential sector Dorothée Charlier in the energy-saving technology, to save or to consume energy goods and non-energy goods. Resolution in the same way as in a partial equilibrium framework. JEL classification: Q55, D11, D81,C61 Keywords : energy-saving

Paris-Sud XI, Université de

273

List of Companies in Biomass Sector | Open Energy Information  

Open Energy Info (EERE)

Companies in Biomass Sector Companies in Biomass Sector Jump to: navigation, search BiomassImage.JPG Companies in the Biomass sector: Add a Company Download CSV (rows 1-589) Map of Biomass companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":2,"width":"99%","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

274

Site Attracts Private Sector Investments for Reuse | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Attracts Private Sector Investments for Reuse Attracts Private Sector Investments for Reuse Site Attracts Private Sector Investments for Reuse June 26, 2013 - 12:00pm Addthis This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center. This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center. A new solar installation was recently dedicated at the East Tennessee Technology Park Heritage Center in Oak Ridge. A new solar installation was recently dedicated at the East Tennessee Technology Park Heritage Center in Oak Ridge. This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center.

275

List of Companies in Hydrogen Sector | Open Energy Information  

Open Energy Info (EERE)

Companies in Hydrogen Sector Companies in Hydrogen Sector Jump to: navigation, search Companies in the Hydrogen sector: Add a Company Download CSV (rows 1-190) Map of Hydrogen companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":2,"width":"99%","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

276

Novolyte Charging Up Electric Vehicle Sector | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector August 11, 2010 - 10:15am Addthis Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Joshua DeLung What does this mean for me?

277

Site Attracts Private Sector Investments for Reuse | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Attracts Private Sector Investments for Reuse Site Attracts Private Sector Investments for Reuse Site Attracts Private Sector Investments for Reuse June 26, 2013 - 12:00pm Addthis This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center. This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center. A new solar installation was recently dedicated at the East Tennessee Technology Park Heritage Center in Oak Ridge. A new solar installation was recently dedicated at the East Tennessee Technology Park Heritage Center in Oak Ridge. This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center.

278

List of Companies in Biofuels Sector | Open Energy Information  

Open Energy Info (EERE)

List of Companies in Biofuels Sector List of Companies in Biofuels Sector Jump to: navigation, search BiomassImage.JPG Companies in the Biofuels sector: Add a Company Download CSV (rows 1-253) Map of Biofuels companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":2,"width":"99%","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

279

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

World Energy. http://www.bp.com/statisticalreview2004. EDMC 2002, Handbook of Energy & Economics Statistics

2006-01-01T23:59:59.000Z

280

List of Companies in Efficiency Sector | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » List of Companies in Efficiency Sector Jump to: navigation, search Companies in the Efficiency sector: Add a Company Download CSV (rows 1-387) Map of Efficiency companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Federal Sector Renewable Energy Project Implementation: "What's Working and Why"  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Sector Renewable Energy Project Federal Sector Renewable Energy Project Implementation: "What's Working and Why" Implementation: What s Working and Why DOD-DOE Waste-to- Energy and Fuel Cell Workshop January 13, 2011 Bob Westby Bob Westby NREL Laboratory Program Manager: Federal Energy Management Program NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Innovation for Our Energy Future Contents Federal Sector Renewable Energy Project Implementation: "What's Working and Why" "What's Working and Why" ƒ Commercially viable RE technologies ƒ RE project economic drivers ƒ Project construct scenarios ƒ ƒ Implementation mechanisms Implementation mechanisms

282

Energy efficiency achievements in China?s industrial and transport sectors: How do they rate?  

Science Journals Connector (OSTI)

Abstract China is experiencing intensified industrialisation and motorisation. In the world?s largest emerging economy, energy efficiency is expected to play a critical role in the ever-rising demand for energy. Based on factual overviews and numerical analysis, this article carries out an in-depth investigation into the effectiveness of policies announced or implemented in recent decades targeted at energy conservation in the energy intensive manufacturing and transportation sectors. It highlights nine energy intensive sectors that achieved major improvements in their energy technology efficiency efforts. Under the umbrella of the 11th Five-Year Plan, these sectors? performances reflect the effectiveness of China?s energy conservation governance. Numerous actions have been taken in China to reduce the road transport sector?s demand for energy and its GHG emissions by implementing fuel economy standards, promoting advanced energy efficient vehicles, and alternative fuels. Coal-based energy saving technologies, especially industrial furnace technologies, are critical for China?s near and medium-term energy saving. In the long run, renewable energy development and expanding the railway transport system are the most effective ways to reduce energy use and GHG emissions in China. Fuel economy standards could reduce oil consumption and \\{GHGs\\} by 3435 per cent.

Libo Wu; Hong Huo

2014-01-01T23:59:59.000Z

283

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network (OSTI)

Model Part I, Energy Technology Systems Analysis Programme,A Report of the Energy Technology Systems Analysis Project,Energy Efficiency Technologies in Integrated Assessment

Karali, Nihan

2014-01-01T23:59:59.000Z

284

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network (OSTI)

2009a. Green Jobs & Energy Market Trends Relevant Trends,Engineers 2009a. Energy Independence and Market Trends: AEEFace of Energy Efficiency and Market Transformation.

Goldman, Charles

2010-01-01T23:59:59.000Z

285

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network (OSTI)

of Excellence 2009b. Energy Efficiency Occupations: Centralof Excellence 2009c. Energy Efficiency Occupations: Greaterof Excellence 2009d. Energy Efficiency Occupations: Inland

Goldman, Charles A.

2010-01-01T23:59:59.000Z

286

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network (OSTI)

Northwest Energy Efficiency Alliance New York EnergyIn New York, the New York Energy Research and Developmentenergy efficiency policies, such as California, New York,

Goldman, Charles A.

2010-01-01T23:59:59.000Z

287

U.S. Building-Sector Energy Efficiency Potential  

E-Print Network (OSTI)

New York State Energy Research and Development Authority (of conserved energy values from the CEF and New York stateEnergy Efficiency Resource Development Potential In New York.

Brown, Rich

2008-01-01T23:59:59.000Z

288

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network (OSTI)

the Massachusetts Energy Efficiency and Building ScienceSummer Study on Energy Efficiency in Buildings. The UnitedStudy on Energy Efficiency in Buildings. American Council

Goldman, Charles

2010-01-01T23:59:59.000Z

289

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Buildings. WashingtonSummer Study on Energy Efficiency in Buildings. WashingtonStudy on Energy Efficiency in Buildings. American Council

Wenzel, T.P.

2010-01-01T23:59:59.000Z

290

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

data were performed for biomass energy consumption, for theinformation regarding biomass energy consumption only afterswitching from biomass energy use to a more modern form of

2006-01-01T23:59:59.000Z

291

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

et al. (2005). Renewable energy policies and markets in theefficiency and renewable energy policy in the state. Inand Renewable Energy Technology and Policy. Washington,

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

292

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

world best practice energy intensity values for productionWorld best practice energy intensity values for productionWorld Best Practice Final Energy Intensity Values for Aluminium Production (

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

293

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

Approximately 30% of total energy consumption is residualrepresented 37% of total energy consumption globally inwe observed how the total energy consumption projected by A1

2006-01-01T23:59:59.000Z

294

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

World Conference on Photovoltaic Energy Conversion, 2003,Effects of Residential Photovoltaic Energy Systems on Homeand renewable energy technologies, solar photovoltaic (PV)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

295

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

A1 scenario forecasts GDP energy intensity to continue toby activity levels and the energy intensity of the specificDemand Activity x Energy Intensity Additional information on

2006-01-01T23:59:59.000Z

296

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

J. , 2001. Changing Energy Intensity in Chinese Industry,M. ,1994. Changing Energy Intensity in Chinese Industry,2006. Indicators of Energy Intensity in the Unites States,

2008-01-01T23:59:59.000Z

297

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network (OSTI)

performance services, energy auditors). In the future, asHVAC technicians, energy auditors and raters, and buildingperformance services, energy auditors) and learning on the

Goldman, Charles A.

2010-01-01T23:59:59.000Z

298

Petroleum Refining Sector (NAICS 324110) Energy and GHG Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the manufactured products are energy commodities that are often measured in terms of energy content, separate from the energy content of purchased fuels and electricity. Most...

299

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

10 Historical Primary Energy Per GDP and Per11 Historical Primary Energy per GDP and perHistorical Primary Energy Per GDP and Per capita Population

2008-01-01T23:59:59.000Z

300

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

Final energy per GDP decreased considerably inper unit of GDP. Final energy per GDP decreased considerablysubstantial decline in final energy demand per unit of GDP.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Best Practice Final Energy Intensity Values for Stand-AloneBest Practice Final Energy Intensity Values for Stand-AloneBest Practice Primary Energy Intensity Values for Stand-

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

302

Climate Investment Funds | Open Energy Information  

Open Energy Info (EERE)

Climate Investment Funds Climate Investment Funds Jump to: navigation, search Tool Summary Name: Clean Technology Fund Agency/Company /Organization: African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector: Energy, Land Topics: Finance, Implementation, Low emission development planning, Market analysis, Background analysis Website: www.climateinvestmentfunds.org/cif/ References: Climate Investment Funds[1] Overview The Climate Investment Funds are a unique pair of financing instruments designed to support low-carbon and climate-resilient development through scaled-up financing channeled through the African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development,

303

AEO2011: Renewable Energy Consumption by Sector and Source | OpenEI  

Open Energy Info (EERE)

Consumption by Sector and Source Consumption by Sector and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed

304

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

report describes best practices in energy efficiency for keyImproving Energy Efficiency of shape casting. Best practice

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

305

retrocommissioning_public_sector.doc | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Intergovernmental Programs Office Home About the Office Weatherization Assistance Program State Energy Program Energy Efficiency & Conservation Block Grant Program...

306

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network (OSTI)

in the number of energy auditors over the next 3 years; noteinclude auditors, In order to provide the needed energy

Goldman, Charles

2010-01-01T23:59:59.000Z

307

EUROPEAN ENERGY EFFICIENCY AND DECARBONIZATION STRATEGIES BEYOND 2030 --A SECTORAL MULTI-MODEL  

E-Print Network (OSTI)

EUROPEAN ENERGY EFFICIENCY AND DECARBONIZATION STRATEGIES BEYOND 2030 -- A SECTORAL MULTI-1800, USA **h.foerster@oeko.de Published 5 December 2013 Energy efficiency and decarbonization are important by improving energy efficiency, by at least 20%, and by investing in new and cleaner energy infrastructures

Paris-Sud XI, Université de

308

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Industrial and electric power sectors lead U.S. growth in natural gas consumption figure data U.S. total natural gas consumption grows from 24.4 trillion cubic feet in 2011 to 29.5 trillion cubic feet in 2040 in the AEO2013 Reference case. Natural gas use increases in all the end-use sectors except residential (Figure 85), where consumption declines as a result of improvements in appliance efficiency and falling demand for space heating, attributable in part to population shifts to warmer regions of the country. Despite falling early in the projection period from a spike in 2012, which resulted from very low natural gas prices relative to coal, consumption of natural gas for power generation increases by an average of 0.8 percent per year, with more natural gas used for electricity production as relatively

309

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Industrial and electric power sectors lead U.S. growth in natural gas consumption figure data U.S. total natural gas consumption grows from 24.4 trillion cubic feet in 2011 to 29.5 trillion cubic feet in 2040 in the AEO2013 Reference case. Natural gas use increases in all the end-use sectors except residential (Figure 85), where consumption declines as a result of improvements in appliance efficiency and falling demand for space heating, attributable in part to population shifts to warmer regions of the country. Despite falling early in the projection period from a spike in 2012, which resulted from very low natural gas prices relative to coal, consumption of natural gas for power generation increases by an average of 0.8 percent per year, with more natural gas used for electricity production as relatively

310

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Renewable Renewable Wind dominates renewable capacity growth, but solar and biomass gain market share figure data From 2010 to 2035, total nonhydropower renewable generating capacity more than doubles in the AEO2012 Reference case (Figure 100). Wind accounts for the largest share of that new capacity, increasing from 39 gigawatts in 2010 to 70 gigawatts in 2035. Both solar capacity and biomass capacity grow at faster rates than wind capacity, but they start from smaller levels. Excluding new projects already under construction, PV accounts for nearly all solar capacity additions both in the end-use sectors (where 11 gigawatts of PV capacity is added from 2010 to 2035) and in the electric power sector (8 gigawatts added from 2010 to 2035). While end-use solar capacity grows throughout the projection, the growth of solar capacity in

311

Building America Expert Meeting: Energy Savings You Can Bank On  

Energy.gov (U.S. Department of Energy (DOE))

On October 12, 2011, Building America team Alliance for Residential Building Innovation conducted an Expert Meeting on the topic of performance guarantees and financing vehicles for Energy Efficiency Upgrades. The meeting brought together technical, policy, and financial experts, including researchers, experienced installation contractors, and innovative energy business leaders, in order to discuss the opportunities and challenges for the energy efficiency upgrade industry to increase market uptake of Home Energy Upgrades (HEUs) through innovative offerings, such as performance guarantees.

312

The private sector's capacity to manage climate risks and finance carbon neutral energy infrastructure  

E-Print Network (OSTI)

This dissertation examines the financial aspects of climate change relating to the private sector's capacity to manage climate risks and finance carbon neutral energy infrastructure. The dissertation examines (a) potential ...

Hart, Craig A

2007-01-01T23:59:59.000Z

313

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report)  

Energy.gov (U.S. Department of Energy (DOE))

This paper examines the behavioral assumptions that underlie Californias residential sector energy efficiency programs and recommends improvements that will help to advance the states ambitious greenhouse gas reduction goals.

314

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

by Fuel (with biomass) Primary Energy Consumption (EJ) RuralEnd-use (without biomass) Commercial Energy Use by Fuel andfor 9% of primary energy excluding biomass fuels. Figure 10

2008-01-01T23:59:59.000Z

315

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

and 30% of total energy consumption in China. During the30 kWh/ADt 54 for total energy consumption of 11.2 GJ/ADt (leads to a total overall energy consumption value of 11.1

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

316

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network (OSTI)

that forecast US residential energy consumption by end-use.new unit energy consumption in the U.S. DOE appliancethe Residential Energy Consumption Survey, or RECS (US DOE

Wenzel, T.P.

2010-01-01T23:59:59.000Z

317

Fact Sheet: Detection and Analysis of Threats to the Energy Sector (DATES)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Detection and Analysis of Threats Detection and Analysis of Threats to the Energy Sector (DATES) A groundbreaking integrated capability in intrusion detection, security event management, and sector-wide threat analysis Detecting cyber attacks against digital control systems quickly and accurately is essential to energy sector security. Current intrusion detection systems (IDS) continuously scan control system communication paths and alert operators of suspicious network traffic. But existing IDS, often not tailored to the control environment, typically offer limited attack response capability and frequently produce false alarms or fail to alert. Without carefully deployed monitoring, these devices can produce an overwhelming number of alarms

318

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network (OSTI)

contacts: Unions and trade associations Energy EfficiencyThird-party and Trade Association Programs supporting Energycontractors and trades, utility ratepayer-funded energy

Goldman, Charles A.

2010-01-01T23:59:59.000Z

319

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

and Renewable Energy (EERE) of Department of Energy (DOE),1985-2004 period in the U.S. (EERE, 2006). k W h / s q u a r

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2012 (EIA)

delivered energy consumption by LDVs is tempered by more stringent standards for vehicle GHG emissions through model year (MY) 2016 and fuel economy through MY 2020. Energy demand...

322

Federal Sector Renewable Energy Project Implementation: ""What's Working and Why  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Robert Westby, National Renewable Energy Laboratory, at the Waste-to-Energy Using Fuel Cells Workshop held Jan. 13, 2011.

323

User:GregZiebold/Sector test | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Ocean Renewable Energy Services Vehicles Wind energy Retrieved from "http:en.openei.orgwindex.php?titleUser:GregZieboldSectortest&oldid20763...

324

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network (OSTI)

Sustainable Energy Resource Management Community or Technical College EESS Workforce Educationsustainable energy field. This certificate will not provide an individual without prior education

Goldman, Charles A.

2010-01-01T23:59:59.000Z

325

U.S. Building-Sector Energy Efficiency Potential  

E-Print Network (OSTI)

consumption from Energy Star monitor savings calculator (USconsumption and savings percentage from Energy Star restaurant guide (USEnergy Star restaurant guide (US EPA 2007b). E15) Baseline consumption

Brown, Rich

2008-01-01T23:59:59.000Z

326

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

10 1.5. The Coordination of Solar and Energyintegration of solar and energy efficiency. Currentlytension between solar and energy efficiency remains much

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

327

U.S. Building-Sector Energy Efficiency Potential  

E-Print Network (OSTI)

Product: Commercial Steam Cookers. Washington, DC: USEPA. 2004. ENERGY STAR Gas Steam Cooker Savings Calculator [source: Energy Star gas steam cooker savings calculator (US

Brown, Rich

2008-01-01T23:59:59.000Z

328

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

7 7 Range 10 4 48 Clothes Dryer 359 (2) 4 49 Water Heating Water Heater-Family of 4 40 64 (3) 26 294 Water Heater-Family of 2 40 32 (3) 12 140 Note(s): Source(s): 1) $1.139/therm. 2) Cycles/year. 3) Gallons/day. A.D. Little, EIA-Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case, Sept. 2, 1998, p. 30 for range and clothes dryer; LBNL, Energy Data Sourcebook for the U.S. Residential Sector, LBNL-40297, Sept. 1997, p. 62-67 for water heating; GAMA, Consumers' Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, Apr. 2002, for water heater capacity; and American Gas Association, Gas Facts 1998, December 1999, www.aga.org for range and clothes dryer consumption. Operating Characteristics of Natural Gas Appliances in the Residential Sector

329

Vietnam-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

of sustainable energy efficiency. Rural electricity access will be improved by upgrading, and strengthening the 110 KV sub-transmission line, and substations, restoring...

330

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 Cost of a Generic Quad Used in the Residential Sector ($2010 Billion) (1) Residential 1980 10.45 1981 11.20 1982 11.58 1983 11.85 1984 11.65 1985 11.43 1986 10.90 1987 10.55 1988 10.18 1989 9.98 1990 10.12 1991 9.94 1992 9.78 1993 9.77 1994 9.78 1995 9.44 1996 9.44 1997 9.59 1998 9.23 1999 8.97 2000 9.57 2001 10.24 2002 9.33 2003 10.00 2004 10.32 2005 11.10 2006 11.60 2007 11.61 2008 12.29 2009 11.65 2010 9.98 2011 9.99 2012 9.87 2013 9.77 2014 9.76 2015 9.88 2016 9.85 2017 9.83 2018 9.86 2019 9.88 2020 9.91 2021 10.00 2022 10.09 2023 10.11 2024 10.12 2025 10.09 2026 10.10 2027 10.13 2028 10.11 2029 10.06 2030 10.06 2031 10.13 2032 10.23 2033 10.34 2034 10.45 2035 10.57 Note(s): 1) See Table 1.5.1 for generic quad definition. This table provides the consumer cost of a generic quad in the buildings sector. Use this table to estimate the average consumer cost savings resulting from the savings of a generic (primary) quad in the buildings sector. 2) Price of

331

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

solar incentive programs, direct subsidies for energy efficiency audits and projects,solar contactors are not in business of selling energy efficiency, when in fact a hybrid projectprojects with an energy component likely for energy efficiency measures even more so than for solar

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

332

Climate VISION: Private Sector Initiatives: Electric Power - Energy  

Office of Scientific and Technical Information (OSTI)

Energy Management Expertise Energy Management Expertise Pumping System Assessment Tool Qualification PSAT helps users assess energy savings opportunities in pumping systems, relying on field measurements of flow rate, head, and either motor power or current to perform the assessment. AIRMaster+ Qualification AirMaster+ provides comprehensive information on assessing compressed AirMaster+ air systems, including modeling, existing and future system upgrades, and savings and effectiveness of energy efficiency measures. Processing Heating Assessment and Survey Tool Qualification (PHAST) PHAST assists users to survey process heating equipment and identify the most energy-intensive equipment and to perform energy (heat) balances on furnaces to identify and reduce non-productive energy use

333

Climate VISION: Private Sector Initiatives: Lime - Energy Management  

Office of Scientific and Technical Information (OSTI)

Energy Management Expertise Energy Management Expertise Pumping System Assessment Tool Qualification PSAT helps users assess energy savings opportunities in pumping systems, relying on field measurements of flow rate, head, and either motor power or current to perform the assessment. AIRMaster+ Qualification AirMaster+ provides comprehensive information on assessing compressed AirMaster+ air systems, including modeling, existing and future system upgrades, and savings and effectiveness of energy efficiency measures. Processing Heating Assessment and Survey Tool Qualification (PHAST) PHAST assists users to survey process heating equipment and identify the most energy-intensive equipment and to perform energy (heat) balances on furnaces to identify and reduce non-productive energy use

334

Measuring plant level energy efficiency in China's energy sector in the presence of allocative inefficiency  

Science Journals Connector (OSTI)

Abstract Most studies on measuring China's energy efficiency were conducted in the framework of the input-oriented Data Envelopment Analysis. This approach generally calculates the technical efficiency by shrinking all the input factors equally proportionally subject to the observed output still being producible. Thus, all the input factor efficiencies, including the energy efficiency, are measured as the technical efficiency. One drawback of this approach is the presumption of an identical input factor frontier for all input factors and of unrestricted factor substitutability. The present study employs a stochastic frontier analysis approach to measuring energy efficiency that not only allows for non-identical input factor frontiers, but also controls for the effects on the measure of energy efficiency of substitution away from energy or substitution of energy for non-energy factors. This approach is applied to evaluating the efficiency performances of three types of energy amongst a sample of coal mines, petroleum refineries and power plants in China's energy sector which is specifically targeted by the Chinese government to improve energy efficiency.

Baiding Hu

2014-01-01T23:59:59.000Z

335

Expert Meeting Report: Energy Savings You Can Bank On  

SciTech Connect

In October 2011, ARBI organized and conducted an Experts' Meeting on the topic of performance guarantees and financing vehicles for Energy Efficiency Upgrades. The meeting brought together technical, policy, and financial experts, including researchers, experienced installation contractors, and innovative energy business leaders, in order to discuss the opportunities and challenges for the energy efficiency upgrade industry to increase market uptake of Home Energy Upgrades (HEUs) through innovative offerings, such as performance guarantees. The meeting had several primary goals. First, it sought to understand how other industries have developed successful models for financing renewable energy installations while providing performance guarantees. This has been most recently demonstrated by the solar leasing industry. Second, the meeting explored the applicability of such business models to the energy efficiency upgrade industry. Third, the meeting sought to identify technical impediments to performance guarantees for energy efficiency retrofits. Fourth, the meeting sought to provide a common framework for these goals within the context of current financing mechanisms for energy efficiency upgrades.

Beman, M.; Springer, J.; Smith, P.; Porse, E.

2013-02-01T23:59:59.000Z

336

Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO  

Open Energy Info (EERE)

Sector Energy Use by Fuel Type Within a Mode from EIA AEO Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release Dataset Summary Description Supplemental Table 46 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration Fuel mode TEF transportation Transportation Energy Futures Data text/csv icon Transportation_Sector_Energy_Use_by_Fuel_Type_Within_a_Mode.csv (csv, 144.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

337

Renewable energy sector development in the Caribbean: Current trends and lessons from history  

E-Print Network (OSTI)

Renewable energy sector development in the Caribbean: Current trends and lessons from history considerations for an enabling regional energy policy framework. a r t i c l e i n f o Article history: Received Rebekah Shirley a , Daniel Kammen a,b,n a Energy and Resources Group, University of California, 310

Kammen, Daniel M.

338

Energy Sector Framework Implementation Guidance Notice of Stakeholder Participation: Federal Register Notice Volume 79, No.- 119 June 20, 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) invites public participation in DOEs efforts to develop a guidance document entitled: Energy Sector Framework Implementation Guidance.

339

Energy Sector Cybersecurity Framework Implementation Guidance- Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy invites public comment on a draft of the Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October 14, 2014.

340

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. energy demand U.S. energy demand In the United States, average energy use per person declines from 2011 to 2040 figure data Population growth affects energy use through increases in housing, commercial floorspace, transportation, and economic activity. The effects can be mitigated, however, as the structure and efficiency of the U.S. economy change. In the AEO2013 Reference case, U.S. population increases by 0.9 percent per year from 2011 to 2040; the economy, as measured by GDP, increases at an average annual rate of 2.5 percent; and total energy consumption increases by 0.3 percent per year. As a result, energy intensity, measured both as energy use per person and as energy use per dollar of GDP, declines through the projection period (Figure 52). The decline in energy use per capita is brought about largely by gains in

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. energy demand U.S. energy demand In the United States, average energy use per person declines from 2011 to 2040 figure data Population growth affects energy use through increases in housing, commercial floorspace, transportation, and economic activity. The effects can be mitigated, however, as the structure and efficiency of the U.S. economy change. In the AEO2013 Reference case, U.S. population increases by 0.9 percent per year from 2011 to 2040; the economy, as measured by GDP, increases at an average annual rate of 2.5 percent; and total energy consumption increases by 0.3 percent per year. As a result, energy intensity, measured both as energy use per person and as energy use per dollar of GDP, declines through the projection period (Figure 52). The decline in energy use per capita is brought about largely by gains in

342

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Demand U.S. Energy Demand On This Page U.S. average energy use... Industrial and commercial... Renewable sources... Transportation uses... U.S. average energy use per person and per dollar of GDP declines through 2035 Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to

343

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases On This Page The National Energy Modeling... Component modules Annual Energy Outlook 2011... The National Energy Modeling System The projections in the Annual Energy Outlook 2011 (AEO2011) are generated from the National Energy Modeling System (NEMS) [1], developed and maintained by the Office of Energy Analysis (OEA), formerly known as the Office Integrated Analysis and Forecasting (OIAF), of the U.S. Energy Information Administration (EIA) [2]. In addition to its use in developing the Annual Energy Outlook (AEO) projections, NEMS is also used to complete analytical studies for the U.S. Congress, the Executive Office of the President, other offices within the U.S. Department of Energy (DOE), and other Federal agencies. NEMS is also used by other nongovernment groups,

344

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases JUMP TO: The National Energy Modeling System | Component modules | Annual Energy Outlook 2013 cases The National Energy Modeling System Projections in the Annual Energy Outlook 2013 (AEO2013) are generated using the National Energy Modeling System (NEMS) [148], developed and maintained by the Office of Energy Analysis of the U.S. Energy Information Administration (EIA). In addition to its use in developing the Annual Energy Outlook (AEO) projections, NEMS is also used to complete analytical studies for the U.S. Congress, the Executive Office of the President, other offices within the U.S. Department of Energy (DOE), and other Federal agencies. NEMS is also used by other nongovernment groups, such as the Electric Power Research Institute, Duke University, and Georgia Institute

345

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases JUMP TO: The National Energy Modeling System | Component modules | Annual Energy Outlook 2013 cases The National Energy Modeling System Projections in the Annual Energy Outlook 2013 (AEO2013) are generated using the National Energy Modeling System (NEMS) [148], developed and maintained by the Office of Energy Analysis of the U.S. Energy Information Administration (EIA). In addition to its use in developing the Annual Energy Outlook (AEO) projections, NEMS is also used to complete analytical studies for the U.S. Congress, the Executive Office of the President, other offices within the U.S. Department of Energy (DOE), and other Federal agencies. NEMS is also used by other nongovernment groups, such as the Electric Power Research Institute, Duke University, and Georgia Institute

346

India-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

India-NAMA Programme for the Construction Sector in Asia India-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name India-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country India Southern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with work by CDM and UNEP/ISO. NAMA will deliver significant GHG emission

347

Indonesia-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

Indonesia-NAMA Programme for the Construction Sector in Asia Indonesia-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name Indonesia-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country Indonesia South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with work by CDM and UNEP/ISO. NAMA will deliver significant GHG emission

348

NAMA-Programme for the construction sector in Asia | Open Energy  

Open Energy Info (EERE)

NAMA-Programme for the construction sector in Asia NAMA-Programme for the construction sector in Asia Jump to: navigation, search Name NAMA-Programme for the construction sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country China, India, Indonesia, Malaysia, Philippines, Thailand, Vietnam Eastern Asia, Southern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with

349

Thailand-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

Thailand-NAMA Programme for the Construction Sector in Asia Thailand-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name Thailand-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country Thailand South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with work by CDM and UNEP/ISO. NAMA will deliver significant GHG emission

350

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2012 (EIA)

S.W. Diegel, and R.G. Boundy, Transportation Energy Databook: Edition 31, ORNL-6987 (Oak Ridge, TN: July 2012), Chapter 2, Table 2.1, U.S. Consumption of Total Energy...

351

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network (OSTI)

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

Zhou, A.; Tutterow, V.; Harris, J.

352

Energy efficiency in the domestic sector, what can utilities do?  

Science Journals Connector (OSTI)

Back in April 1994, during a stimulating workshop on Energy Futures organized by the strategic think-tank of the European Commission s Energy Directorate, a relevant question was raised.

Angelo Camplani

1999-01-01T23:59:59.000Z

353

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network (OSTI)

Residential Dishwashers Hot Water Motor, Booster, Total Min.Clothes Washers Hot Water Motor Database Year Min. EnergyUS DOE 1990b. Hot water energy and motor, booster and dryer

Wenzel, T.P.

2010-01-01T23:59:59.000Z

354

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network (OSTI)

Renewable Energy (USDOE/EERE). 2009. U. S. Buildings EnergyRenewable Energy (USDOE/EERE), 2010. States activities andin the manufacturing sector (USDOE/EERE, 2010). Industry (

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

355

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity On This Page Residential and... Coal-fired plants... Most new capacity... Annual capacity... Growth in generating... Costs and regulatory... EPACT2005 tax... Biomass and wind... Renewable capacity... State portfolio... Electricity use... Real Growth in... Improved interconn... Residential and commercial sectors dominate electricity demand growth Electricity demand growth has slowed in each decade since the 1950s. After 9.8-percent annual growth in the 1950s, demand (including retail sales and direct use) increased 2.4 percent per year in the 1990s. From 2000 to 2009 (including the 2008-2009 economic downturn) demand grew by 0.5 percent per year. In the Reference case, electricity demand growth rebounds but remains relatively slow, as growing demand for electricity services is offset by

356

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Electric Power exec summary Executive Summary The EPA is expected to enact several key regulations in the coming decade that will have an impact on the U.S. power sector, particularly the fleet of coal-fired power plants. Because the rules have not yet been finalized, their impacts cannot be fully analyzed, and they are not included in the Reference case. However, AEO2011 does include several alternative cases that examine the sensitivity of power generation markets to various assumed requirements for environmental retrofits. In addition, a case with an explicit price on CO2 emissions is also examined. See more Mkt trends Market Trends Electricity demand growth has slowed in each decade since the 1950s. After 9.8-percent annual growth in the 1950s, demand (including retail sales and

357

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Demand U.S. Energy Demand Mkt trends Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and appliances take effect (Figure 55). See more figure data Reference Case Tables

358

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

International energy International energy On This Page Non-OECD nations account... U.S. reliance on imported... Oil price cases depict... Liquids demand in developing... Unconventional liquids gain... Non-OECD nations account for 84 percent of growth in world energy use EIA's International Energy Outlook shows world marketed energy consumption increasing strongly over the projection period, rising by nearly 50 percent from 2009 through 2035 (Figure 50). Most of the growth occurs in emerging economies outside the Organization for Economic Cooperation and Development (OECD), especially in non-OECD Asia. Total non-OECD energy use increases by 84 percent in the Reference case, compared with a 14-percent increase in the developed OECD nations. figure data Energy use in non-OECD Asia, led by China and India, shows the most robust

359

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network (OSTI)

or certificate program on green buildings or discussed asand Control Systems Green Buildings, LEED & Energy Starhave also developed green building or sustainability

Goldman, Charles A.

2010-01-01T23:59:59.000Z

360

List of Companies in Services Sector | Open Energy Information  

Open Energy Info (EERE)

Techno Centre Pvt Ltd Kawar Energy Kawasaki Plant Systems Ltd Kelman Ltd Kinarot Jordan Valley Technological Incubator King Machine & Tool Co. Kornic Glory Co Ltd Kosmo Solar...

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Heat of reaction Steam, heating and losses Fractionation and compression Separation Total Note: Primary energy includes electricity generation, transmission, and distribution losses

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

362

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2012 (EIA)

S.W. Diegel, and R.G. Boundy, Transportation Energy Databook: Edition 30, ORNL-6986 (Oak Ridge, TN: June 2011), Chapter 4, "Light Vehicles and Characteristics," website...

363

Solar Adoption and Energy Consumption in the Residential Sector.  

E-Print Network (OSTI)

??This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region (more)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

364

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network (OSTI)

air conditioning Industrial Assessment Centers Internationalof Energy Industrial Assessment Centers have been aexample of the Industrial Assessment Centers 33 (IAC) and

Goldman, Charles A.

2010-01-01T23:59:59.000Z

365

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network (OSTI)

Gas Market Survey: 1995. AHAM, Association of Home ApplianceEnergy Efficiency and Consumption Trends. Chicago: AHAM.AHAM, Association of Home Appliance Manufacturers. 1996.

Wenzel, T.P.

2010-01-01T23:59:59.000Z

366

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Japan and Europe but not elsewhere Wind power leads rise in world renewable generation, solar power also grows rapidly Reference Case Tables Table 1. Total Energy Supply,...

367

Activities to Secure Control Systems in the Energy Sector | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Group (FUPWG) Fall 2008 meeting-covers North American energy infrastructure, SCADA architecture, cyber threat trends, roadmaps, and more. fupwgfall08kenchington.pdf More...

368

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network (OSTI)

were anticipating and planning for a growing workforce. Forand planning centers that emphasize education/training needed for energy efficiency program design and implementation. EESS Workforceand Planning and MIT Energy Initiative College/University National Association of Home Builders (NAHB) Green Building for Building Professionals Association EESS Workforce

Goldman, Charles A.

2010-01-01T23:59:59.000Z

369

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Focus Focus Introduction The "Issues in focus" section of the Annual Energy Outlook (AEO) provides an in-depth discussion on topics of special interest, including significant changes in assumptions and recent developments in technologies for energy production and consumption. Detailed quantitative results are available in Appendix D. The first topic updates a discussion included in the Annual Energy Outlook 2011 (AEO2011) that compared the results of two cases with different assumptions about the future course of existing energy policies. One case assumes the elimination of sunset provisions in existing energy policies; that is, the policies are assumed not to sunset as they would under current law. The other case assumes the extension or expansion of a

370

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

371

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 for 2005 expenditures; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators.

372

Energy Sector Stakeholders Attend the Department of Energy¬タルs 2010 Cybersecurity for Energy Delivery Systems Peer Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review July 29, 2010 The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and learn about DOE projects, while more than 20 joined in by webinar. The CEDS program's national lab, academic, and industry partners-including the National SCADA Test Bed (NSTB) partners and Trustworthy Cyber Infrastructure for the Power Grid (TCIPG) project- presented DOE-supported efforts involving secured SCADA communications and smart grid applications,

373

Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective  

Science Journals Connector (OSTI)

Abstract In order to better understand sectoral greenhouse gas (GHG) emissions in China, this study utilized a logarithmic mean Divisia index (LMDI) decomposition analysis to study emission changes from a sectoral perspective. Based on the decomposition results, recently implemented policies and measures for emissions mitigation in China were evaluated. The results show that for the economic sectors, economic growth was the dominant factor in increasing emissions from 1996 to 2011, whereas the decline in energy intensity was primarily responsible for the emission decrease. As a result of the expansion of industrial development, economic structure change also contributed to growth in emissions. For the residential sector, increased emissions were primarily driven by an increase in per-capita energy use, which is partially confirmed by population migration. For all sectors, the shift in energy mix and variation in emission coefficient only contributed marginally to the emissions changes. The decomposition results imply that energy efficiency policy in China has been successful during the past decade, i.e., Top 1000 Priorities, Ten-Key Projects programs, the establishment of fuel consumption limits and vehicle emission standards, and encouragement of efficient appliances. Moreover, the results also indicate that readjusting economic structure and promoting clean and renewable energy is urgently required in order to further mitigate emissions in China.

Xianshuo Xu; Tao Zhao; Nan Liu; Jidong Kang

2014-01-01T23:59:59.000Z

374

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

375

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Issues in Focus Issues in Focus Introduction The "Issues in focus" section of the Annual Energy Outlook (AEO) provides an in-depth discussion on topics of special significance, including changes in assumptions and recent developments in technologies for energy production and consumption. Selected quantitative results are available in Appendix D. The first topic updates a discussion included in a number of previous AEOs that compared the Reference case to the results of two cases with different assumptions about the future course of existing energy policies. One case assumes the elimination of sunset provisions in existing energy policies; that is, the policies are assumed not to terminate as they would under current law. The other case assumes the extension or expansion

376

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

Stephane de la Rue du Can, Sinton, J. , Worrell, E. , Zhou,Press, Cambridge: UK Sinton, J.E. , Fridley, D.G. , Levine,No. 4, September, 1996. Sinton, J. , 2001. Changing Energy

2008-01-01T23:59:59.000Z

377

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

rate paid at the utilitys avoided cost. Results of theroughly to the utilitys avoided cost of energy. Details anda reasonable value for the avoided cost of residential PV

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

378

Manufacturing Energy and Carbon Footprint - Sector: Iron and...  

Energy Savers (EERE)

6 1 369 0 2 3 39 30 8 48 15 81 120 11 5 1 1,043 581 201 0 5 12 Conventional Boilers 71 CHP Cogeneration Nonprocess Energy Process Cooling and Refrigeration Machine Drive...

379

Energy Efficiency Services Sector: Workforce Education and Training Needs  

E-Print Network (OSTI)

Efficiency and Renewable Energy (EERE), Weatherization andBeckley and Mark Bailey (DOE EERE) and Larry Mansueti (DOECEE CEEBS CEM COMNET DOE EE EERE EESS EIA ESCO EUCI FTE FY

Goldman, Charles A.

2010-01-01T23:59:59.000Z

380

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Issues in Focus Issues in Focus Introduction The "Issues in focus" section of the Annual Energy Outlook (AEO) provides an in-depth discussion on topics of special significance, including changes in assumptions and recent developments in technologies for energy production and consumption. Selected quantitative results are available in Appendix D. The first topic updates a discussion included in a number of previous AEOs that compared the Reference case to the results of two cases with different assumptions about the future course of existing energy policies. One case assumes the elimination of sunset provisions in existing energy policies; that is, the policies are assumed not to terminate as they would under current law. The other case assumes the extension or expansion

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mitigation Possibilities in the Energy Sector An Arctic Perspective  

Science Journals Connector (OSTI)

There are vast utilisable wind energy resources in the Arctic frequently located in ... example in the Mountain areas in Sweden and Norway, and in the Northwest of Russia. Large wind resources are also found in t...

Maria Pettersson

2009-01-01T23:59:59.000Z

382

LBL-40297 UC-1600 ENERGY DATA SOURCEBOOK FOR THE U.S. RESIDENTIAL SECTOR  

NLE Websites -- All DOE Office Websites (Extended Search)

40297 40297 UC-1600 ENERGY DATA SOURCEBOOK FOR THE U.S. RESIDENTIAL SECTOR Tom P. Wenzel, Jonathan G. Koomey, Gregory J. Rosenquist, Marla Sanchez, and James W. Hanford September 1997 Energy Analysis Program Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 http://enduse.lbl.gov/Projects/RED.html This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs of the U.S. Department of Energy under Contract No. DE-AC03- 76SF00098. i ABSTRACT Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous

383

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and expenditures, and Table A-9, p. 97 for total energy expenditures; EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. 24.30 318.35 17.06 43.87 16.19 36.64 9.37 1138.21 15.25 419.30 3.62 62.87 Average Fuel Prices Total Expenditures ($/million BTU) ($ million) (2) 23.68

384

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2005 Households and Energy Expenditures, by Income Level ($2010) Energy Expenditures by Household Income Households (millions) Household Less than $10,000 9.9 9% $10,000 to $14,999 8.5 8% $15,000 to $19,999 8.4 8% $20,000 to $29,999 15.1 14% $30,000 to $39,999 13.6 12% $40,000 to $49,999 11.0 10% $50,000 to $74,999 19.8 18% $75,000 to $99,999 10.6 10% $100,000 or more 14.2 13% Total 111.1 100% Note(s): Source(s): 7% 1) See Table 2.3.15 for more on energy burdens. 2) A household is defined as a family, an individual, or a group of up to nine unrelated individuals occupying the same housing unit. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part 2; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators. 2,431 847 3% 2,774 909 3% 1,995

385

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Issues in focus Issues in focus Table 4. Key analyses from "Issues in focus" in recent AEOs AEO2012 AEO2011 AEO2010 Potential efficiency improvements and their impacts on end-use energy demand Increasing light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Energy impacts of proposed CAFE standards for light-duty vehicles, model years 2017 to 2025 Fuel consumption and greenhouse gas emissions standards for heavy-duty vehicles Natural gas as a fuel for heavy trucks: issues and incentives Impacts of a breakthrough in battery vehicle technology Potential efficiency improvements in alternative cases for appliance standards and building codes Factors affecting the relationship between crude oil and natural gas prices

386

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

4. Key analyses from "Issues in focus" in recent AEOs 4. Key analyses from "Issues in focus" in recent AEOs AEO2012 AEO2011 AEO2010 Potential efficiency improvements and their impacts on end-use energy demand Increasing light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Energy impacts of proposed CAFE standards for light-duty vehicles, model years 2017 to 2025 Fuel consumption and greenhouse gas emissions standards for heavy-duty vehicles Natural gas as a fuel for heavy trucks: issues and incentives Impacts of a breakthrough in battery vehicle technology Potential efficiency improvements in alternative cases for appliance standards and building codes Factors affecting the relationship between crude oil and natural gas prices

387

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

388

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

2 2 Principal Commercial Building Types, as of 2003 (Percent of Total Floorspace) (1) Office 17% 17% 19% Mercantile 16% 14% 18% Retail 6% 9% 5% Enclosed & Strip Malls 10% 4% 13% Education 14% 8% 11% Warehouse and Storage 14% 12% 7% Lodging 7% 3% 7% Service 6% 13% 4% Public Assembly 5% 6% 5% Religious Worship 5% 8% 2% Health Care 4% 3% 8% Inpatient 3% 0% 6% Outpatient 2% 2% 2% Food Sales 2% 5% 5% Food Service 2% 6% 6% Public Order and Safety 2% 1% 2% Other 2% 2% 4% Vacant 4% 4% 1% Total 100% 100% 100% Note(s): Source(s): Total Floorspace Total Buildings Primary Energy Consumption 1) For primary energy intensities by building type, see Table 3.1.13. Total CBECS 2003 commercial building floorspace is 71.7 billion SF. EIA, 2003 Commercial Buildings Energy Consumption Survey: Consumption and Expenditures Tables, Oct. 2006, Table C1A

389

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

390

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

See most recent version of AEO See most recent version of AEO Annual Energy Outlook Products - Archive Annual Energy Outlook Supplement Tables Assumptions NEM System (NEMS): An Overview NEMS Retrospective Early Release HTML PDF HTML PDF HTML PDF HTML PDF HTML PDF HTML PDF 2013 2013 2013 2013 2012 2012 2012 2012 2012 2012 2011 2011 2011 2011 2011 2011 2011 2011 2010 2010 2010 2010 2010 2010 2010 2010 2010 2009 2009 2009 2009 2009 2009 2009 2009 2009 2008 2008 2008 2008 2008 2008 2009 2008 2008 2008 2008 2007 2007 2007 2007 2007

391

Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report  

SciTech Connect

This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

Zinaman, O.; Miller, M.; Bazilian, M.

2014-04-01T23:59:59.000Z

392

Restructuring the Indian power sector with energy conservation as the motive for economic and environmental benefits  

SciTech Connect

India's strong economic performance of recent years requires continuing effort from the newly formed Government to widen the ambit of economic reform. Though the Government has given higher priority for the power development projects, the Indian Power sector is struggling with formidable difficulties of meeting the heavy demands of electricity due to higher amount of power losses and energy thefts. To give a supporting hand to the Government, this paper suggests restructuring of the Power sector with energy conservation as the main motive to achieve economical and environmental benefits. The capabilities of the Energy Conservation Policies developed are illustrated via tests by three distinct ways on a State Grid alike Test System and the test results confirm the suitability of the proposed policies for real-time implementation on the Indian Power Sector.

Palanichamy, C.; Chelvan, R.K.; Babu, N.S.; Nadarajan, C.

1999-12-01T23:59:59.000Z

393

Carbon Market Opportunities for the Forestry Sector of Africa | Open Energy  

Open Energy Info (EERE)

Carbon Market Opportunities for the Forestry Sector of Africa Carbon Market Opportunities for the Forestry Sector of Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Market Opportunities for the Forestry Sector of Africa Agency/Company /Organization: Food and Agriculture Organization of the United Nations, Winrock International Sector: Land Focus Area: Renewable Energy, Forestry Topics: Implementation, Policies/deployment programs Resource Type: Presentation Website: www.winrock.org/ecosystems/files/Winrock_FAO_Carbon_opportunities_in_A UN Region: "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

394

Vietnam-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Vietnam-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name Vietnam-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country Vietnam South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate Mitigation Actions (NAMA) for the building sector. The NAMAs will be developed and apply common MRV methodologies for buildings in line with

395

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network (OSTI)

an Energy-Efficient Economy. Hanford, J.W. and Y . J. Huang.Laboratory. LBL-33101. Hanford, J.W. , J.G. Koomey, L.E.97. Ritschard, R. L. , J.W. Hanford, and A.O. Sezgen. 1992a.

Wenzel, T.P.

2010-01-01T23:59:59.000Z

396

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

3. Renewable portfolio standards in the 30 states and District of Columbia with current mandates 3. Renewable portfolio standards in the 30 states and District of Columbia with current mandates State Target Qualifying renewables Qualifying other (thermal, efficiency, nonrenewable distributed generation, etc.) Compliance mechanisms AZ 15% by 2025 Solar, wind, biomass, hydropower, landfill gas (LFG), anaerobic digestion built after January 1, 1997 Direct use of solar heat, ground-source heat pumps, and renewable-fueled combined heat and power (CHP), cogeneration, and fuel cells Credit trading is allowed, with some bundling restrictions. Includes distributed generation requirement, starting at 5% of target in 2007, growing to 30% in 2012 and beyond. CA 33% by 2020 Solar, wind, biomass, geothermal, LFG and municipal solid waste (MSW), small hydro, biodiesel, anaerobic digestion, and marine Energy storage Credit trading is allowed, with some restrictions. Renewable energy credit prices are capped at $50 per megawatthour.

397

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases Table E1. Summary of the AEO2011 cases Reference Baseline economic growth (2.7 percent per year from 2009 through 2035), world oil price, and technology assumptions. Complete projection tables in Appendix A. World light, sweet crude oil prices rise to about $125 per barrel by 2035 in year 2009 dollars. Assumes RFS target to be met as soon as possible. Fully integrated Low Economic Growth Real GDP grows at an average annual rate of 2.1 percent from 2009 to 2035. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. Fully integrated High Economic Growth Real GDP grows at an average annual rate of 3.2 percent from 2009 to 2035. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. Fully integrated

398

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

3. Renewable portfolio standards in the 30 states and District of Columbia with current mandates 3. Renewable portfolio standards in the 30 states and District of Columbia with current mandates State Target Qualifying renewables Qualifying other (thermal, efficiency, nonrenewable distributed generation, etc.) Compliance mechanisms AZ 15% by 2025 Solar, wind, biomass, hydropower, landfill gas (LFG), anaerobic digestion built after January 1, 1997 Direct use of solar heat, ground-source heat pumps, and renewable-fueled combined heat and power (CHP), cogeneration, and fuel cells Credit trading is allowed, with some bundling restrictions. Includes distributed generation requirement, starting at 5% of target in 2007, growing to 30% in 2012 and beyond. CA 33% by 2020 Solar, wind, biomass, geothermal, LFG and municipal solid waste (MSW), small hydro, biodiesel, anaerobic digestion, and marine Energy storage Credit trading is allowed, with some restrictions. Renewable energy credit prices are capped at $50 per megawatthour.

399

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases Table E1. Summary of the AEO2012 cases Reference Baseline economic growth (2.5 percent per year from 2010 through 2035), oil price, and technology assumptions. Complete projection tables in Appendix A. Light, sweet crude oil prices rise to about $145 per barrel (2010 dollars) in 2035. Assumes RFS target to be met as soon as possible. Low Economic Growth Real GDP grows at an average annual rate of 2.0 percent from 2010 to 2035. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B.. High Economic Growth Real GDP grows at an average annual rate of 3.0 percent from 2010 to 2035. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B.

400

Kyiv institutional buildings sector energy efficiency program: Technical assessment  

SciTech Connect

The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

Secrest, T.J.; Freeman, S.L. [Pacific Northwest National Lab., Richland, WA (United States); Popelka, A. [Tysak Engineering, Acton, MA (United States); Shestopal, P.A.; Gagurin, E.V. [Agency for Rational Energy Use and Ecology, Kyiv (Ukraine)

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table 4. 2010 State energy-related carbon dioxide emission shares by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 State energy-related carbon dioxide emission shares by sector " 2010 State energy-related carbon dioxide emission shares by sector " "percent of total" ,"Shares" "State","Commercial","Electric Power","Residential","Industrial","Transportation" "Alabama",0.01584875241,0.5778871607,0.02136328943,0.1334667239,0.2514340736 "Alaska",0.06448385239,0.0785744956,0.0462016929,0.4291084798,0.3816314793 "Arizona",0.02474932909,0.5668758159,0.02425067581,0.04966758421,0.334456595 "Arkansas",0.03882032779,0.4886410984,0.03509200153,0.1307772146,0.3066693577 "California",0.04308920353,0.1176161395,0.07822332929,0.1824277392,0.5786435885 "Colorado",0.04301641968,0.4131279202,0.08115394032,0.1545280216,0.3081736982

402

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 Average Annual Energy Expenditures per Square Foot of Commercial Floorspace, by Year ($2010) Year $/SF 1980 (1) 2.12 1981 2.22 (2) 1982 2.24 1983 2.21 1984 2.25 1985 2.20 1986 2.06 1987 2.00 1988 1.99 1989 2.01 1990 1.98 1991 1.92 1992 1.86 1993 1.96 1994 2.05 1995 2.12 1996 2.10 1997 2.08 1998 1.97 1999 1.88 2000 2.06 2001 2.20 2002 2.04 2003 2.13 2004 2.16 2005 2.30 2006 2.36 2007 2.35 2008 1.71 2009 2.43 2010 2.44 2011 2.44 2012 2.35 2013 2.28 2014 2.27 2015 2.29 2016 2.29 2017 2.28 2018 2.29 2019 2.29 2020 2.29 2021 2.31 2022 2.32 2023 2.32 2024 2.32 2025 2.32 2026 2.32 2027 2.33 2028 2.32 2029 2.31 2030 2.31 2031 2.32 2032 2.35 2033 2.37 2034 2.39 2035 2.42 Note(s): Source(s): EIA, State Energy Data Prices and Expenditures Database, June 2011 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A2, p. 3-5 and Table A5, p. 11-12 for consumption, Table A3, p. 6-8 for prices for 2008-2035; EIA, Annual Energy Review

403

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Residential Energy Prices, by Year and Fuel Type ($2010) LPG ($/gal) 1980 2.24 1981 2.51 1982 2.30 1983 2.14 1984 2.10 1985 1.96 1986 1.54 1987 1.42 1988 1.39 1989 1.48 1990 1.69 1991 1.56 1992 1.40 1993 1.33 1994 1.27 1995 1.22 1996 1.37 1997 1.34 1998 1.15 1999 1.16 2000 1.70 2001 1.59 2002 1.42 2003 1.67 2004 1.84 2005 2.36 2006 2.64 2007 2.81 2008 3.41 2009 2.52 2010 2.92 2011 3.62 2012 3.65 2013 3.43 2014 3.60 2015 3.74 2016 3.79 2017 3.86 2018 3.89 2019 3.92 2020 3.96 2021 3.99 2022 4.02 2023 4.07 2024 4.10 2025 4.15 2026 4.19 2027 4.23 2028 4.26 2029 4.30 2030 4.34 2031 4.35 2032 4.38 2033 4.43 2034 4.50 2035 4.55 Source(s): EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2, p. 24-25 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A3, p. 6-8 for 2010-2035 and Table G1, p. 215 for fuels' heat content; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

404

Coal exports may make Australia's energy sector among least sustainable  

SciTech Connect

Plentiful coal and cheap energy prices have resulted in an unusually heavy carbon footprint. Clearly, Australia has to rethink how much coal it will use to feed its own growing economy while becoming more conscious of its significant carbon export problem. For a country long used to digging the coal out of the ground and shipping it overseas, climate change will be a game changer.

NONE

2009-11-15T23:59:59.000Z

405

Profiles in Renewable Energy: Case Studies of Successful Utility-Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Profiles in Renewable Energy: Case Studies of Successful Utility-Sector Profiles in Renewable Energy: Case Studies of Successful Utility-Sector Projects The Shape of Renewable Energy Technologies Today Biomass Wood-Burning Plant Reduces Air Pollution Kettle Falls Wood-Fired Plant Washington Power Company Regulatory Changes Spur Wood-Fired Plant Grayling Generating Station Decker Energy International, Inc. Community Partnership Leads to Waste-Burning Plant Bristol Waste-to-Energy Plant Ogden Martin Systems Geothermal Geothermal Loan Encourages New Power Industry Ormesa Geothermal Complex OESI Power Corporation (Orman Group) Project Consolidation Rescues Geothermal Development Dixie Valley Project Oxbow Geothermal (Oxbow Corporation) Hydropower Run-of-River Plant Minimizes Environmental Impacts Sidney A. Murray Hydroelectric Station Catalyst Energy Corporation

406

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

9 9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table 4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. Per Square Foot Per Building

407

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

1 1 Total Commercial Floorspace and Number of Buildings, by Year 1980 50.9 (1) N.A. 3.1 (3) 1990 64.3 N.A. 4.5 (3) 2000 (4) 68.5 N.A. 4.7 (5) 2008 78.8 15% N.A. 2010 81.1 26% N.A. 2015 84.1 34% N.A. 2020 89.2 43% N.A. 2025 93.9 52% N.A. 2030 98.2 60% N.A. 2035 103.0 68% N.A. Note(s): Source(s): EIA, Annual Energy Outlook 1994, Jan. 1994, Table A5, p. 62 for 1990 floorspace; EIA, AEO 2003, Jan. 2003, Table A5, p. 127-128 for 2000 floorspace; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A5, p. 11-12 for 2008-2035 floorspace; EIA Commercial Building Characteristics 1989, June 1991, Table A4, p. 17 for 1990 number of buildings; EIA, Commercial Building Characteristics 1999, Aug. 2002, Table 3 for 1999 number of buildings and floorspace; and EIA, Buildings and Energy in the 1980s, June 1995, Table 2.1, p. 23 for number of buildings in 1980.

408

Comparative analysis of energy data bases for the industrial and commercial sectors  

SciTech Connect

Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

Roop, J.M.; Belzer, D.B.; Bohn, A.A.

1986-12-01T23:59:59.000Z

409

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

9 9 Average Annual Energy Expenditures per Household, by Year ($2010) Year 1980 1,991 1981 1,981 1982 2,058 1983 2,082 1984 2,067 1985 2,012 1986 1,898 1987 1,846 1988 1,849 1989 1,848 1990 1,785 1991 1,784 1992 1,729 1993 1,797 1994 1,772 1995 1,727 1996 1,800 1997 1,761 1998 1,676 1999 1,659 2000 1,824 2001 1,900 2002 1,830 2003 1,978 2004 2,018 2005 2,175 2006 2,184 2007 2,230 2008 2,347 2009 2,173 2010 2,201 2011 2,185 2012 2,123 2013 2,056 2014 2,032 2015 2,030 2016 2,007 2017 1,992 2018 1,982 2019 1,973 2020 1,963 2021 1,961 2022 1,964 2023 1,962 2024 1,959 2025 1,957 2026 1,959 2027 1,960 2028 1,953 2029 1,938 2030 1,932 2031 1,937 2032 1,946 2033 1,956 2034 1,967 2035 1,978 Source(s): Average Expenditure EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A2, p. 3-

410

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015 241.7 2016 241.8 2017 243.0 2018 244.7 2019 246.4 2020 247.9 2021 250.4 2022 253.3 2023 255.6 2024 257.8 2025 260.3 2026 263.2 2027 266.0 2028 267.6 2029 268.1 2030 269.7 2031 272.9 2032 276.6 2033 280.4 2034 284.6 2035 288.6 Note(s): Source(s): 1) Residential petroleum products include distillate fuel oil, LPG, and kerosene. EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table

411

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 Energy Service Company (ESCO) Industry Activity ($Million Nominal) (1) Low High 1990 143 342 Market Segment Share 1991 218 425 MUSH (2) 69% 1992 331 544 Federal 15% 1993 505 703 Commercial & Industrial 7% 1994 722 890 Residential 6% 1995 1,105 1,159 Public Housing 3% 1996 1,294 1,396 1997 1,394 1,506 1998 1,551 1,667 2008 Revenues by Project/Technology Type 1999 1,764 1,925 2000 1,876 2,186 Market Segment Share 2001 - - Energy Efficiency 75% 2002 - - Onsite Renewables 14% 2003 - - Engine/Turbine Generators 6% 2004 2,447 2,507 Consulting/Master Planning 3% 2005 2,949 3,004 Other 2% 2006 3,579 3,627 2007 - - 2008 4,087 4,171 Note(s): Source(s): Estimated Revenue ($Million Nominal) (1) 2008 Revenue Sources 1) Estimates based on surveys of major ESCOs and input from industry experts. 2) Includes municipal and state governments, universities

412

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases Table E1. Summary of the AEO2013 cases Case name Description Reference Real GDP grows at an average annual rate of 2.5 percent from 2011 to 2040. Crude oil prices rise to about $163 per barrel (2011 dollars) in 2040. Complete projection tables in Appendix A. Low Economic Growth Real GDP grows at an average annual rate of 1.9 percent from 2011 to 2040. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. High Economic Growth Real GDP grows at an average annual rate of 2.9 percent from 2011 to 2040. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. Low Oil Price Low prices result from a combination of low demand for petroleum and other liquids in the non-OECD nations and higher global supply. Lower demand is measured by lower economic growth relative to the Reference case. On the supply side, OPEC increases its market share to 49 percent, and the costs of other liquids production technologies are lower than in the Reference case.Light, sweet crude oil prices fall to $75 per barrel in 2040. Partial projection tables in Appendix C.

413

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

0. Description of battery-powered electric vehicles 0. Description of battery-powered electric vehicles Vehicle type Description Micro or "mild" hybrid Vehicles with ICEs, larger batteries, and electrically powered auxiliary systems that allow the engine to be turned off when the vehicle is coasting or idle and then be quickly restarted. Regenerative braking recharges the batteries but does not provide power to the wheels for traction. Micro and mild hybrids are not connected to the electrical grid for recharging and are not considered as HEVs in this analysis. Full hybrid electric (HEV) Vehicles that combine an internal combustion engine with electric propulsion from an electric motor and battery. The vehicle battery is recharged by capturing some of the energy lost during braking. Stored energy is used to eliminate engine operation during idle, operate the vehicle at slow speeds for limited distances, and assist the ICE drivetrain throughout its drive cycle. Full HEV systems are configured in parallel, series, or power split systems, depending on how power is delivered to the drivetrain. HEVs are not connected to the electric grid for recharging.

414

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases Table E1. Summary of the AEO2013 cases Case name Description Reference Real GDP grows at an average annual rate of 2.5 percent from 2011 to 2040. Crude oil prices rise to about $163 per barrel (2011 dollars) in 2040. Complete projection tables in Appendix A. Low Economic Growth Real GDP grows at an average annual rate of 1.9 percent from 2011 to 2040. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. High Economic Growth Real GDP grows at an average annual rate of 2.9 percent from 2011 to 2040. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. Low Oil Price Low prices result from a combination of low demand for petroleum and other liquids in the non-OECD nations and higher global supply. Lower demand is measured by lower economic growth relative to the Reference case. On the supply side, OPEC increases its market share to 49 percent, and the costs of other liquids production technologies are lower than in the Reference case.Light, sweet crude oil prices fall to $75 per barrel in 2040. Partial projection tables in Appendix C.

415

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy"  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings Title Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings Publication Type Conference Proceedings Year of Publication 2008 Authors Selkowitz, Stephen E., Jessica Granderson, Philip Haves, Paul A. Mathew, and Jeffrey P. Harris Conference Name 2008 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Asilomar, California, USA Abstract It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings.

416

Two Paths to Transforming Markets through Public Sector EnergyEfficiency: Bottom Up versus Top Down  

SciTech Connect

The evolution of government purchasing initiatives in Mexicoand China, part of the PEPS (Promoting an Energy-efficient Public Sector)program, demonstrates the need for flexibility in designingenergy-efficiency strategies in the public sector. Several years ofpursuing a top-down (federally led) strategy in Mexico produced fewresults, and it was not until the program was restructured in 2004 tofocus on municipal-level purchasing that the program gained momentum.Today, a new partnership with the Mexican federal government is leadingto an intergovernmental initiative with strong support at the federallevel. By contrast, the PEPS purchasing initiative in China wassuccessfully initiated and led at the central government level withstrategic support from international experts. The very different successtrajectories in these two countries provide valuable lessons fordesigning country-specific public sector energy-efficiency initiatives.Enabling conditions for any successful public sector purchasinginitiative include the existence of mandatory energy-efficiencyperformance standards, an effective energy-efficiency endorsementlabeling program, an immediate need for energy conservation, a simplepilot phase (focusing on a limited number of strategically chosenproducts), and specialized technical assistance. Top-down purchasingprograms are likely to be more successful where there is high-levelpolitical endorsement and a national procurement law in place, supportedby a network of trained purchasers. Bottom-up (municipally led)purchasing programs require that municipalities have the authority to settheir own purchasing policies, and also benefit from existing networks ofcities, supported by motivated municipal leaders and trained purchasingofficials.

Van Wie McGrory, Laura; Coleman, Philip; Fridley, David; Harris,Jeffrey; Villasenor Franco, Edgar

2006-05-10T23:59:59.000Z

417

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

418

Department of Energy to Host Spectrum Policy Seminar for the Utility Sector  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Host Spectrum Policy Seminar for the to Host Spectrum Policy Seminar for the Utility Sector on December 8, 2010 Department of Energy to Host Spectrum Policy Seminar for the Utility Sector on December 8, 2010 November 17, 2010 - 7:09pm Addthis On October 5, 2010, after an extensive public notice and comment process, the Department of Energy (DOE) issued a report entitled, "Communications Requirements of Smart Grid Technologies". The complete text of the report, and of a second report addressing data access and privacy issues arising from the deployment of smart grid technologies, can be found here. One recommendation in the report was to provide more information to the utility sector on spectrum policy issues in light of the role wireless communications will surely play in the deployment of smart grid

419

Probing Dark Forces and Light Hidden Sectors at Low-Energy e+e- Colliders  

SciTech Connect

A dark sector - a new non-Abelian gauge group Higgsed or confined near the GeV scale - can be spectacularly probed in low-energy e{sup +}e{sup -} collisions. A low-mass dark sector can explain the annual modulation signal reported by DAMA/LIBRA and the PAMELA, ATIC, and INTEGRAL observations by generating small mass splittings and new interactions for weak-scale dark matter. Some of these observations may be the first signs of a low-mass dark sector that collider searches can definitively confirm. Production and decay of {Omicron}(GeV)-mass dark states is mediated by a Higgsed Abelian gauge boson that mixes kinetically with hypercharge. Existing data from BaBar, BELLE, CLEO-c, and KLOE may contain thousands of striking dark-sector events with a high multiplicity of leptons that reconstruct mass resonances and possibly displaced vertices. We discuss the production and decay phenomenology of Higgsed and confined dark sectors and propose e{sup +}e{sup -} collider search strategies. We also use the DAMA/LIBRA signal to estimate the production cross-sections and decay lifetimes for dark-sector states.

Essig, Rouven; Schuster, Philip; /SLAC; Toro, Natalia; /Stanford U., ITP

2009-06-19T23:59:59.000Z

420

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Emissions Emissions On This Page Concerns about GHG... Growth of carbon... Sulfur dioxide emissions... Nitrogen oxide emissions... Concerns about GHG legislation affect the long-term outlook for coal In the Reference case, the cost of capital for investments in GHG-intensive technologies-including conventional coal-fired power plants, CTL plants, CBTL plants, and integrated coal gasification and combined cycle plants without CCS-is increased by 3 percentage points to reflect the behavior of utilities, other energy companies, and regulators concerning the possible enactment of GHG legislation which could mandate that owners purchase allowances, invest in CCS, or invest in other projects to offset their emissions in the future. A No GHG Concern case, in which the additional 3 percentage points for GHG-intensive technologies is removed,

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

4. California low carbon fuel standard 4. California low carbon fuel standard California's LCFS will be administered by CARB [32]. In general, the regulated parties under the LCFS legislation are fuel producers or importers who sell motor gasoline or diesel fuel in California. The legislation is designed to reduce the carbon intensity of motor gasoline and diesel fuels sold in California by 10 percent between 2012 and 2020 through the increased sale of alternative low-carbon fuels. Each low-carbon fuel has its own carbon intensity, based on life-cycle analyses conducted under the guidance of CARB for a number of approved fuel pathways. The carbon intensities are calculated on an energy-equivalent basis, measured in grams of CO2-equivalent emissions per megajoule. The AEO2011 Reference case incorporates the California LCFS, using CARB's

422

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Growth in electricity use slows but still increases by 28 percent from 2011 to 2040 figure data The growth of electricity demand (including retail sales and direct use) has slowed in each decade since the 1950s, from a 9.8-percent annual rate of growth from 1949 to 1959 to only 0.7 percent per year in the first decade of the 21st century. In the AEO2013 Reference case, electricity demand growth remains relatively slow, as increasing demand for electricity services is offset by efficiency gains from new appliance standards and investments in energy-efficient equipment (Figure 75). Total electricity demand grows by 28 percent in the projection (0.9 percent per year), from 3,839 billion kilowatthours in 2011 to 4,930 billion kilowatthours in 2040.

423

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Economic Trends Economic Trends Productivity and investment offset slow growth in labor force figure data Growth in the output of the U.S. economy depends on increases in the labor force, the growth of capital stock, and improvements in productivity. In the Annual Energy Outlook 2013 (AEO2013) Reference case, U.S. labor force growth slows over the projection period as the baby boom generation starts to retire, but projected growth in business fixed investment and spending on research and development offsets the slowdown in labor force growth. Annual real gross domestic product (GDP) growth averages 2.5 percent per year from 2011 to 2040 in the Reference case (Figure 44), which is 0.2 percentage point slower than the growth rate over the past 30 years. Slow long-run increases in the labor force indicate more moderate long-run

424

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

California California Colorado Delaware Massachusetts New Jersey New York State renewable energy requirements and goals: Update through 2010 To the extent possible, AEO2011 incorporates the impacts of State laws requiring the addition of renewable generation or capacity by utilities doing business in the States. Currently, 30 States and the District of Columbia have enforceable RPS or similar laws (Table 2). Under such standards, each State determines its own levels of renewable generation, eligible technologies, and noncompliance penalties. AEO2011 includes the impacts of all laws in effect in 2010 (with the exception of Hawaii, because NEMS provides electricity market projections for the continental United States only). In the AEO2011 Reference case, States generally meet their ultimate RPS

425

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

International International Range of oil price cases represents uncertainty in world oil prices figure data In AEO2013, the Brent crude oil price is tracked as the main benchmark for world oil prices. The West Texas Intermediate (WTI) crude oil price has recently been discounted relative to other world benchmark crude prices. The recent growth in U.S. mid-continental oil production has exceeded the capacity of the oil transportation infrastructure out of Cushing, Oklahoma, the market center for WTI prices. The U.S. Energy Information Administration (EIA) expects the WTI price to approach levels near the Brent price as new oil pipeline capacity is added and begins operation. Future oil prices are uncertain. EIA develops three oil price cases-Reference, High, and Low-to examine how alternative price paths

426

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Trends in Economic Activity Trends in Economic Activity On This Page Real gross domestic product... Inflation, interest rates... Output growth... Energy expenditures decline... Real growth in gross domestic product averages 2.1 to 3.2 percent across cases AEO2011 presents three views of economic growth (Figure 45). The rate of growth in real gross domestic product (GDP) depends on assumptions about labor force growth and productivity. In the Reference case, growth in real GDP averages 2.7 percent per year due to a 0.7 percent per year growth in the labor force and a 2.1 percent per year growth in labor productivity. figure data GDP growth in 2010 partially offsets the decline in 2009, helping GDP to recover to pre-recession levels by 2011. In the AEO2011 Reference case, economic recovery accelerates in 2012, while employment recovers more

427

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

International International Range of oil price cases represents uncertainty in world oil prices figure data In AEO2013, the Brent crude oil price is tracked as the main benchmark for world oil prices. The West Texas Intermediate (WTI) crude oil price has recently been discounted relative to other world benchmark crude prices. The recent growth in U.S. mid-continental oil production has exceeded the capacity of the oil transportation infrastructure out of Cushing, Oklahoma, the market center for WTI prices. The U.S. Energy Information Administration (EIA) expects the WTI price to approach levels near the Brent price as new oil pipeline capacity is added and begins operation. Future oil prices are uncertain. EIA develops three oil price cases-Reference, High, and Low-to examine how alternative price paths

428

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Economic Trends Economic Trends Productivity and investment offset slow growth in labor force figure data Growth in the output of the U.S. economy depends on increases in the labor force, the growth of capital stock, and improvements in productivity. In the Annual Energy Outlook 2013 (AEO2013) Reference case, U.S. labor force growth slows over the projection period as the baby boom generation starts to retire, but projected growth in business fixed investment and spending on research and development offsets the slowdown in labor force growth. Annual real gross domestic product (GDP) growth averages 2.5 percent per year from 2011 to 2040 in the Reference case (Figure 44), which is 0.2 percentage point slower than the growth rate over the past 30 years. Slow long-run increases in the labor force indicate more moderate long-run

429

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7) 0.0 7.7 7.7 47.9 55.7 19.3% Total 66.0 11.5 17.5 29.6 0.0 193.0 288.6 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.8 billion). 3) Fan energy use included. 4) Includes refrigerators ($14.1 billion) and freezers ($2.9 billion). 5) Includes color televisions ($14.2 billion). 6) Includes clothes washers ($0.8 billion), natural gas

430

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other (8) 0.0 4.4 4.4 6.7 11.1 4.4% Adjust to SEDS (9) 13.6 13.6 5.4% Total 56.1 13.3 15.2 29.0 0.0 166.8 251.8 100% Note(s): Source(s): 0.5 0.5 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.5 billion). 3) Fan energy use included. 4) Includes residential recreational water heating ($1.4 billion). 5) Includes refrigerators ($15.3 billion) and freezers ($4.4 billion). 6) Includes color televisions ($11.0

431

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7) 0.0 6.4 6.4 38.7 45.0 17.3% Total 59.1 12.9 16.3 29.8 0.0 171.3 260.3 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.7 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.7 billion) and freezers ($2.8 billion). 5) Includes color televisions ($12 billion). 6) Includes clothes washers ($0.8 billion), natural gas

432

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7) 0.0 5.2 5.2 31.3 36.5 15.1% Total 51.3 14.9 15.7 31.1 0.0 159.3 241.7 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.6 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.3 billion) and freezers ($2.8 billion). 5) Includes color televisions ($10.9 billion). 6) Includes clothes washers ($1.1 billion), natural gas

433

AEO2011: Energy Consumption by Sector and Source - Middle Atlantic | OpenEI  

Open Energy Info (EERE)

Middle Atlantic Middle Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 2, and contains only the reference case. The dataset uses quadrillion btu. The energy consumption data is broken down by sector (residential, commercial, industrial, transportation, electric power) as well as source, and also provides total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA middle atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Middle Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment

434

Microsoft Word - US Industrial Sector Energy End Use Analysis_051812.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

United States Industrial Sector Energy End Use Analysis United States Industrial Sector Energy End Use Analysis Arman Shehabi, William R. Morrow, Eric Masanet This work was supported by the Advanced Manufacturing Office of the Energy Efficiency and Renewable Energy Program through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

435

AEO2011: Energy Consumption by Sector and Source - South Atlantic | OpenEI  

Open Energy Info (EERE)

South Atlantic South Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 5, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption sector South Atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - South Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

436

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan National Renewable Energy Laboratory National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov The Joint Institute for Strategic Energy Analysis 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.jisea.org Technical Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan

437

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 2035 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 63.4 13.0 1.6 7.7 0.8 23.1 0.2 20.6 107.2 20.9% Water Heating 23.8 2.2 1.2 3.4 35.8 63.0 12.3% Space Cooling 0.4 55.7 56.1 10.9% Lighting 47.8 47.8 9.3% Electronics (4) 27.2 27.2 5.3% Refrigeration (5) 27.0 27.0 5.3% Computers 14.8 14.8 2.9% Cooking 5.8 0.8 0.8 5.4 12.1 2.3% Wet Clean (6) 0.9 10.4 11.3 2.2% Ventilation (7) 2.4 2.4 0.5% Other (8) 9.3 0.4 12.6 2.0 15.0 88.8 113.2 22.0% Adjust to SEDS (9) 4.6 5.3 5.3 21.7 31.6 6.2% Total 108.2 21.0 1.6 22.3 2.8 47.6 0.2 357.8 513.8 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.8 billion) and motor gasoline other uses ($2.0 billion). 3) Includes furnace fans ($4.8 billion). 4) Includes color televisions ($14.2 billion). 5) Includes refrigerators ($24.1 billion) and freezers ($3.0

438

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2015 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 28.4 28.4 16.3% Space Heating 14.6 2.9 1.3 0.1 4.3 0.1 4.7 23.7 13.6% Ventilation 15.1 15.1 8.6% Space Cooling 0.3 14.2 14.5 8.3% Refrigeration 9.9 9.9 5.7% Electronics 8.8 8.8 5.1% Water Heating 4.1 0.7 0.7 2.5 7.3 4.2% Computers 5.3 5.3 3.0% Cooking 1.7 0.6 2.3 1.3% Other (4) 2.9 0.3 3.7 1.4 5.4 22.8 31.1 17.8% Adjust to SEDS (5) 5.8 4.5 4.5 17.7 28.1 16.1% Total 29.3 8.4 1.3 3.7 1.5 14.9 0.1 130.0 174.5 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.4 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

439

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 2010 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 35.4 35.4 19.7% Space Heating 15.0 2.9 0.9 0.1 3.9 0.1 8.5 27.5 15.3% Space Cooling 0.4 25.0 25.3 14.1% Ventilation 15.9 15.9 8.9% Refrigeration 11.6 11.6 6.5% Water Heating 4.0 0.6 0.6 2.7 7.3 4.1% Electronics 7.8 7.8 4.3% Computers 6.3 6.3 3.5% Cooking 1.6 0.7 2.3 1.3% Other (4) 2.7 0.3 3.3 1.2 4.8 20.4 28.0 15.6% Adjust to SEDS (5) 6.2 5.2 5.2 0.6 12.0 6.7% Total 29.9 9.0 0.9 3.3 1.3 14.5 0.1 134.8 179.4 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.2 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

440

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

8 8 2003 Average Commercial Building Floorspace, by Principal Building Type and Vintage Building Type 1959 or Prior 1960 to 1989 1990 to 2003 All Education 27.5 26.9 21.7 25.6 Food Sales N.A. N.A. N.A. 5.6 Food Service 6.4 4.4 5.0 5.6 Health Care 18.5 37.1 N.A. 24.5 Inpatient N.A. 243.6 N.A. 238.1 Outpatient N.A. 11.3 11.6 10.4 Lodging 9.9 36.1 36.0 35.9 Retail (Other Than Mall) 6.2 9.3 17.5 9.7 Office 12.4 16.4 14.2 14.8 Public Assembly 13.0 13.8 17.3 14.2 Public Order and Safety N.A. N.A. N.A. 15.4 Religious Worship 8.7 9.6 15.6 10.1 Service 6.1 6.5 6.8 6.5 Warehouse and Storage 19.7 17.2 15.4 16.9 Other N.A. N.A. N.A. 22.0 Vacant N.A. N.A. N.A. 14.1 Source(s): Average Floorspace/Building (thousand SF) EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, June 2006, Table B8, p. 63-69, and Table B9, p. 70-76

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2010 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 53.7 14.2 0.9 8.0 0.6 23.7 0.1 23.2 100.8 23.4% Space Cooling 0.4 61.3 61.7 14.3% Lighting 59.3 59.3 13.8% Water Heating 18.3 2.6 2.0 4.6 17.8 40.7 9.4% Refrigeration (4) 26.9 26.9 6.2% Electronics (5) 26.1 26.1 6.1% Ventilation (6) 15.9 15.9 3.7% Cooking 4.0 0.8 0.8 8.8 13.6 3.2% Computers 12.1 12.1 2.8% Wet Cleaning (7) 0.6 11.0 11.6 2.7% Other (8) 2.7 0.3 7.7 1.2 9.2 27.3 39.2 9.1% Adjust to SEDS (9) 6.2 5.2 5.2 11.9 23.4 5.4% Total 86.0 22.3 0.9 18.5 1.8 43.5 0.1 301.6 431.2 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.6 billion) and motor gasoline other uses ($1.2 billion). 3) Includes furnace fans ($4.5 billion). 4) Includes refrigerators ($24.1 billion) and freezers ($2.8 billion). 5) Includes color televisions ($11.0

442

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2015 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Gas Distil. Resid. LPG Oth(2) Total Coal Total Percent Space Heating (3) 49.5 15.9 1.3 8.1 0.7 25.9 0.2 18.7 94.3 22.7% Space Cooling 0.3 48.0 48.3 11.6% Lighting 45.9 45.9 11.0% Water Heating 17.6 2.6 1.5 4.1 18.3 40.0 9.6% Refrigeration (4) 24.9 24.9 6.0% Electronics (5) 19.8 19.8 4.7% Ventilation (6) 15.1 15.1 3.6% Computers 11.6 11.6 2.8% Wet Cleaning (7) 0.6 10.8 11.4 2.7% Cooking 3.9 0.9 0.9 4.4 9.1 2.2% Other (8) 2.9 0.3 8.9 1.4 10.6 54.1 67.6 16.3% Adjust to SEDS (9) 5.8 4.5 4.5 17.7 28.1 6.7% Total 80.6 23.3 1.3 19.4 2.1 46.1 0.2 289.3 416.2 100% Note(s): Source(s): Petroleum Electricity 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.7 billion) and motor gasoline other uses ($1.4 billion). 3) Includes furnace fans ($4.6 billion). 4) Includes refrigerators ($22.6 billion) and freezers ($2.8 billion). 5) Includes color televisions ($10.9

443

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2025 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 56.7 14.3 1.5 7.8 0.7 24.3 0.2 19.5 100.7 22.0% Space Cooling 0.3 50.5 50.9 11.1% Lighting 45.2 45.2 9.9% Water Heating 21.3 2.3 1.3 3.6 19.6 44.4 9.7% Refrigeration (4) 24.9 24.9 5.4% Electronics (5) 23.2 23.2 5.1% Computers 13.2 13.2 2.9% Wet Clean (6) 0.8 9.8 10.5 2.3% Cooking 4.8 0.8 0.8 4.9 10.5 2.3% Ventilation (7) 16.6 16.6 3.6% Other (8) 4.8 0.4 10.6 1.7 12.7 69.8 87.4 19.1% Adjust to SEDS (9) 5.9 4.9 4.9 19.2 30.0 6.6% Total 94.6 21.9 1.5 20.6 2.5 46.4 0.2 316.3 457.4 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.7 billion) and motor gasoline other uses ($1.7 billion). 3) Includes furnace fans ($4.7 billion). 4) Includes refrigerators ($22.3 billion) and freezers ($2.6 billion). 5) Includes color televisions ($12.0

444

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2025 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 30.1 30.1 15.2% Space Heating 17.1 2.8 1.5 0.1 4.4 0.2 4.5 26.1 13.3% Electronics 11.2 11.2 5.7% Space Cooling 0.3 14.3 14.6 7.4% Water Heating 5.2 0.8 0.8 2.5 8.5 4.3% Computers 5.5 5.5 2.8% Refrigeration 9.4 9.4 4.8% Ventilation 16.6 16.6 8.4% Cooking 2.1 0.6 2.7 1.4% Other (4) 4.8 0.3 4.3 1.7 6.3 31.2 42.3 21.5% Adjust to SEDS (5) 5.9 4.9 4.9 19.2 30.0 15.2% Total 35.5 8.9 1.5 4.3 1.9 16.5 0.2 145.0 197.1 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.7 billion). 3) Coal average price is from AEO 2011 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

445

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2035 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 32.3 32.3 14.4% Space Heating 19.0 2.7 1.6 0.2 4.5 0.2 4.6 28.2 12.5% Water Heating 6.3 1.0 1.0 18.1 25.4 11.3% Space Cooling 0.4 15.1 15.5 6.9% Electronics 13.0 13.0 5.8% Refrigeration 10.0 10.0 4.4% Computers 6.0 6.0 2.7% Cooking 2.6 0.6 3.2 1.4% Ventilation 2.4 2.4 1.1% Other (4) 9.3 0.4 4.9 2.0 7.2 40.9 57.5 25.5% Adjust to SEDS (5) 4.6 5.3 5.3 21.7 31.6 14.0% Total 42.2 9.4 1.6 4.9 2.2 18.0 0.2 164.8 225.1 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.2 billion) and motor gasoline other uses ($2.0 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

446

Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy"  

E-Print Network (OSTI)

this are noteworthy: 1) the growing market interest in "green buildings" and "sustainable design", 2) the major, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an "action plan" for moving the U.S. commercial building sector towards zero energy performance

447

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Commercial Energy Prices, by Year and Fuel Type ($2010) Electricity Natural Gas Distillate Oil Residual Oil ($/gal) ($/gal) 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 9.39 104.50 2.79 3.78 9.35 104.74 2.81 3.81 9.47 101.25 2.73 3.69 9.40 103.22 2.76 3.75 9.54 99.28 2.67 3.60 9.51 100.49 2.70 3.64 9.52 94.53 2.66 3.52 9.55 97.45 2.64 3.55 9.46 90.92 2.61 3.46 9.48 92.13 2.63 3.49 9.49 87.65 2.54 3.41 9.47 89.48 2.58 3.42 9.58 85.91 2.41 3.28 9.54 86.36 2.49 3.34 9.57 87.02 2.07 2.97 9.52 84.58 2.26 3.14 10.09 86.14 2.34 3.55 9.76 87.22 2.37 3.57 10.27 97.87 1.49 2.03 10.14 90.95 1.66 2.86 10.04 114.33 1.51 2.47 10.56 121.16 2.01 3.34 9.59 121.45 1.24 2.07 10.13 124.31 1.39 2.32 9.44 94.94 0.93 1.23

448

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

Residential Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Avg. 1980 36.40 8.35 16.77 17.64 1981 38.50 8.88 18.35 19.09 1982 40.15 10.08 17.28 19.98 1983 40.43 11.30 16.08 21.00 1984 38.80 11.02 15.61 20.20 1985 38.92 10.68 14.61 20.10 1986 38.24 9.98 11.88 19.38 1987 37.29 9.22 11.23 18.73 1988 36.22 8.80 10.83 18.02 1989 35.67 8.71 11.96 17.93 1990 35.19 8.63 13.27 18.64 1991 34.88 8.38 12.49 18.31 1992 34.79 8.28 11.23 17.76 1993 34.52 8.47 10.75 17.76 1994 34.04 8.63 10.63 17.87 1995 33.43 8.00 10.33 17.50 1996 32.63 8.21 11.70 17.28 1997 32.34 8.83 11.47 17.69 1998 31.33 8.55 9.96 17.73 1999 30.52 8.29 10.13 17.09 2000 30.13 9.54 14.18 18.06 2001 30.71 11.50 13.98 19.38 2002 29.73 9.24 12.26 17.89 2003 30.05 10.87 14.21 18.88 2004 29.98 11.97 15.54 19.76 2005 30.64 13.66 18.93 21.50 2006 32.67 14.30 21.06 23.34 2007 32.50

449

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

3 3 Share of Total U.S. Households, by Census Region, Division, and Vintage, as of 2005 Prior to 1950 to 1970 to 1980 to 1990 to 2000 to Region 1950 1969 1979 1989 1999 2005 Northeast 6.7% 5.2% 2.4% 2.1% 1.3% 0.8% 18.5% New England 2.1% 1.2% 0.5% 0.5% 0.3% 0.3% 4.9% Middle Atlantic 4.6% 4.0% 1.9% 1.6% 1.0% 0.5% 13.6% Midwest 5.7% 5.8% 3.6% 2.5% 3.7% 1.7% 23.0% East North Central 4.3% 3.9% 2.7% 1.8% 2.1% 1.1% 16.0% West North Central 1.4% 1.9% 0.9% 0.7% 1.6% 0.6% 7.1% South 4.0% 6.9% 6.4% 7.5% 7.5% 4.3% 36.6% South Atlantic 2.0% 3.4% 3.5% 4.2% 4.3% 2.2% 17.4% East South Central 0.9% 1.3% 0.9% 1.0% 1.3% 0.7% 6.2% West South Central 1.2% 2.3% 4.7% 2.2% 1.8% 1.4% 13.6% West 3.4% 4.6% 4.5% 4.6% 3.1% 1.5% 21.8% Mountain 0.7% 1.2% 1.3% 1.5% 1.3% 0.9% 6.8% Pacific 2.8% 3.4% 3.3% 3.1% 1.8% 0.6% 15.0% United States 19.9% 22.5% 17.0% 16.7% 15.6% 8.3% 100% Source(s): All Vintages EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC10

450

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 Building Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Residential Buildings Commercial Buildings Building Electricity Natural Gas Petroleum (1) Avg. Electricity Natural Gas Petroleum (2) Avg. Avg. (3) 1980 36.40 8.35 16.77 17.64 37.22 7.70 13.06 18.52 17.99 1981 38.50 8.88 18.35 19.09 39.06 8.29 14.78 20.56 19.68 1982 40.15 10.08 17.28 19.98 40.15 9.40 13.28 21.21 20.48 1983 40.43 11.30 16.08 21.00 39.51 10.43 12.53 21.55 21.23 1984 38.80 11.02 15.61 20.20 38.68 10.00 12.04 21.14 20.58 1985 38.92 10.68 14.61 20.10 38.29 9.60 11.68 21.41 20.63 1986 38.24 9.98 11.88 19.38 37.09 8.69 7.85 20.17 19.70 1987 37.29 9.22 11.23 18.73 34.93 7.93 8.16 19.14 18.90 1988 36.22 8.80 10.83 18.02 33.60 7.45 7.47 18.24 18.11 1989 35.67 8.71 11.96 17.93 33.06 7.34 8.13 18.29 18.07 1990 35.19 8.63 13.27 18.64 32.49 7.20 9.31 18.62 18.63 1991 34.88 8.38 12.49 18.31

451

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Residential Buildings Commercial Buildings Total Building Electricity Natural Gas Petroleum (2) Total Electricity Natural Gas Petroleum (3) Total Expenditures 1980 89.1 40.5 28.9 158.5 70.9 20.5 17.2 108.6 267.2 1981 94.9 41.3 27.8 164.0 79.4 21.4 16.5 117.3 281.3 1982 99.9 47.9 24.5 172.3 83.4 25.1 13.7 122.2 294.5 1983 103.6 51.0 21.4 176.1 83.6 26.1 14.6 124.3 300.4 1984 103.3 51.6 23.6 178.5 87.6 25.9 14.7 128.2 306.7 1985 105.4 48.8 22.6 176.8 90.0 24.0 12.6 126.6 303.4 1986 106.9 44.2 18.1 169.2 90.5 20.7 9.1 120.2 289.4 1987 108.2 40.9 18.0 167.1 88.7 19.8 9.2 117.7 284.7 1988 110.3 41.8 18.0 170.1 89.9 20.4 8.2 118.5 288.7 1989 110.2 42.9 19.7 172.8 91.5 20.5 8.4 120.4 293.2 1990 110.9 39.0 18.2 168.2 92.9 19.4 9.2 121.5 289.7 1991 113.7 39.2 17.0 169.9 93.9 19.5 7.7 121.1 291.0

452

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

Commercial Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Average 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 (2) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 27.39 10.47 27.48 21.15 27.10 10.45 27.73 21.01 27.56 10.32 27.04 21.10 27.52 10.45 27.28 21.18 27.86 10.05 26.41 21.06 27.74 10.12 26.73 21.07 28.00 9.75 25.85 20.90 27.96 9.93 26.16 21.01 27.78 9.21 25.46 20.46 27.90 9.45 25.69 20.67 27.76 8.95 24.95 20.23 27.72 9.09 25.24 20.32 27.96 8.64 24.34 20.11 27.81 8.77 24.80 20.14 27.91 8.46 23.15 19.90 28.07 8.59 24.07 20.11 28.61 8.72 23.94 20.36 28.05 8.70 22.00 19.99 29.73 9.10 20.28 20.99 29.57 8.61 24.24 21.03 30.95 12.12 23.75 23.21 30.09 9.79 15.83 21.13 29.70

453

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Building Energy Prices, by Year and Fuel Type ($2010) (cents/therm) (cents/gal) ($/gal) 1980 12.42 83.51 1.53 2.24 12.70 77.01 1.43 2.05 1981 13.14 88.83 1.47 2.51 13.33 82.90 1.63 2.32 1982 13.70 100.83 1.54 2.30 13.70 93.95 1.40 2.11 1983 13.79 113.04 1.51 2.14 13.48 104.33 1.30 1.75 1984 13.24 110.16 1.46 2.10 13.20 100.01 1.37 1.68 1985 13.28 106.80 1.37 1.96 13.06 95.96 1.21 1.56 1986 13.05 99.76 1.25 1.54 12.66 86.86 0.71 1.01 1987 12.72 92.16 1.22 1.42 11.92 79.32 0.79 1.05 1988 12.36 87.96 1.15 1.39 11.46 74.52 0.62 0.95 1989 12.17 87.08 1.39 1.48 11.28 73.39 0.70 1.07 1990 12.01 86.28 1.40 1.69 11.08 72.04 0.78 1.26 1991 11.90 83.77 1.34 1.56 10.97 69.49 0.58 1.11 1992 11.87 82.80 1.24 1.40 10.93 68.64 0.58 1.01 1993 11.78 84.73 1.19 1.33 10.81 71.91 0.58 0.96 1994 11.62 86.30 1.25 1.27 10.57 74.09 0.60 0.90 1995 11.41 79.96 1.22 1.22 10.32 66.99 0.64 0.88 1996 11.13 82.07 1.36 1.37

454

Changes in Energy Intensity in the Manufacturing Sector 1985-1994  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in Energy Intensity in the Manufacturing Sector 1985 - 1994 Full Report Introduction Summary of Data Data Tables Data Summaries All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone (32) Metals (33) Fab. Metals (34) Machinery (35) El. Equip.(36) Instruments (38) Misc. (39) Appendices Survey Design Quality of Data Sector Description Nonobservation Errors Glossary Intensity Sites Commercial Residential Transportation International Manufacturing Energy Intensity Changes in Energy Intensity Click for Full Graph Manufacturing Energy Consumption Consumption of Energy Click for Full Graph Manufacturing Shipments History of Shipments Click for Full Graph The focus of this data report is on intensity of energy use, measured by energy consumption relative to constant dollar shipments of manufactured products -- commonly called energy intensities (EI) by energy analysts. This report explicitly relates changes in two energy measures of energy intensity to efficiency, while being cognizant that there are structural and behavioral effects enmeshed in those measures of energy efficiency. Reporting EI serves to continue the Intensity Change report series.

455

BetterBuildings Financing Energy Efficiency Retrofits in the Commercial Sector - Part 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Commercial Energy Efficiency Finance Programs Small Commercial Energy Efficiency Finance Programs Sponsored by State Governments SURVEY OF SURVEY OF SMALL COMMERCIAL ENERGY EFFICIENCY FINANCE PROGRAMS SPONSORED BY PROGRAMS SPONSORED BY STATE GOVERNMENTS May 3, 2011 Background of Small Commercial Finance Program Survey  Includes 20 States ( (mostly y identified from database of state incentives for renewable energy, DSIRE)  Sponsoring programs for:  small commercial (generally defined as 30,000 square feet or less and/or 150 kW or less) or   both small and large commercial sectors both small and large commercial sectors  Discussions with program managers   Creation of a table of program elements Creation of a table of program elements

456

Renewable energy technologies for the Indian power sector: mitigation potential and operational strategies  

Science Journals Connector (OSTI)

The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with attendant shortages and problems. Due to the predominance of fossil fuels in the generation mix, there are large negative environmental externalities caused by electricity generation. The power sector alone has a 40 percent contribution to the total carbon emissions. In this context, it is imperative to develop and promote alternative energy sources that can lead to sustainability of the energyenvironment system. There are opportunities for renewable energy technologies under the new climate change regime as they meet the two basic conditions to be eligible for assistance under UNFCCC mechanisms: they contribute to global sustainability through GHG mitigation; and, they conform to national priorities by leading to the development of local capacities and infrastructure. This increases the importance of electricity generation from renewables. Considerable experience and capabilities exist in the country on renewable electricity technologies. But a number of technoeconomic, market-related, and institutional barriers impede technology development and penetration. Although at present the contribution of renewable electricity is small, the capabilities promise the flexibility for responding to emerging economic, socioenvironmental and sustainable development needs. This paper discusses the renewable and carbon market linkages and assesses mitigation potential of power sector renewable energy technologies under global environmental intervention scenarios for GHG emissions reduction. An overall energy system framework is used for assessing the future role of renewable energy in the power sector under baseline and different mitigation scenarios over a time frame of 35 years, between 2000 to 2035. The methodology uses an integrated bottom-up modelling framework. Looking into past performance trends and likely future developments, analysis results are compared with officially set targets for renewable energy. The paper also assesses the CDM investment potential for power sector renewables. It outlines specific policy interventions for overcoming the barriers and enhancing deployment of renewables for the future.

Debyani Ghosh; P.R. Shukla; Amit Garg; P.Venkata Ramana

2002-01-01T23:59:59.000Z

457

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect

In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2013-01-01T23:59:59.000Z

458

Carbon dioxide emissions intensity of Portuguese industry and energy sectors: A convergence analysis and econometric approach  

Science Journals Connector (OSTI)

Abstract Given the relevance of energy and pollution issues for industrialised countries and the importance of industry and energy sectors to the achievement of their economic and environmental goals, it is important to know if there is a common pattern of emissions intensity, fuel intensity and energy intensity, between industries, to know if it justifies a more specific application of energy policies between sectors, which sectors have the greatest potential for reducing energy use and which are the long term effects of those specific variables on the mitigation of emissions. We found that although there is literature on decomposition of effects that affect emissions, the study of the convergence and of the relationships between these variables does not include ratios or effects that result from the decomposition analysis. Thus, the above questions are not answered, much less for the Portuguese reality. The purpose of this paper is to study: (i) the existence of convergence of some relevant ratios as Carbon Dioxide (CO2) emissions intensity, CO2 emissions by fossil fuel consumption, fossil fuel intensity, energy intensity and economic structure, between industry and energy sectors in Portugal, and (ii) the influence that the consumption of fossil fuels, the consumption of aggregate energy and GDP have on CO2 emissions, and the influence that the ratios in which CO2 emissions intensity decomposes can affect that variable, using an econometric approach, namely Panel corrected standard errors estimator. We concluded that there is sigma convergence for all ratios with exception of fossil fuel intensity. Gamma convergence verifies for all ratios, with exception of CO2 emissions by fossil fuel. From the econometric approach we concluded that the considered variables have a significant importance in explaining CO2 emissions and CO2 emissions intensity.

Victor Moutinho; Margarita Robaina-Alves; Jorge Mota

2014-01-01T23:59:59.000Z

459

Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)  

SciTech Connect

The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

Ross, M.H. [Univ. of Michigan, Ann Arbor, MI (US). Dept. of Physics; Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. [Argonne National Lab., IL (US)

1993-05-01T23:59:59.000Z

460

China-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » China-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name China-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country China Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Malaysia-NAMA Programme for the Construction Sector in Asia | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Malaysia-NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name Malaysia-NAMA Programme for the Construction Sector in Asia Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.unep.org/sbci/pdfs/ Program End 2017 Country Malaysia South-Eastern Asia References Buildings and Climate Change[1] Program Overview This project will support countries to develop Nationally Appropriate

462

Alternative Energy Technologies in Asia: Achievements & Outlook for the  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Energy Technologies in Asia: Achievements & Outlook for the Alternative Energy Technologies in Asia: Achievements & Outlook for the World Bank's Asia Alternative Energy Program Speaker(s): Grayson Heffner Date: March 21, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare In 1992, the World Bank and donor partners established the Asia Alternative Energy Program (ASTAE) to support the transition to environmentally sustainable energy use in developing countries in Asia. ASTAE's strategic objective during the past decade has been to mainstream alternative energy in World Bank energy sector activities, with the aim of achieving a 10% share of renewable energy and energy efficiency components in World Bank energy sector projects in Asia. This strategic objective has been achieved, as during the period FY98-00 over 12 percent of the Bank's power sector

463

Session 5: Renewable Energy in the Transportation and Power SectorsŽ  

U.S. Energy Information Administration (EIA) Indexed Site

5: "Renewable Energy in the Transportation and Power 5: "Renewable Energy in the Transportation and Power Sectors" Mr. Michael Schaal: Well, let's get started and we'll have people come in as we move along. Welcome to the session which addresses the topic of renewable energy and the transportation and power sectors, a topic that is very much on the minds of the public at large, policymakers who are pondering the cost benefits and preferred outcomes of a variety of current and potential future laws and regulations, and also researchers who are busily involved with pushing the state-of-the-art in a number of key technology areas and also technology developer who are weighing the risks and benefits of pursuing different business plans in this evolving market, and environmentalists who are

464

Reduction in tribological energy losses in the transportation and electric utilities sectors  

SciTech Connect

This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

1985-09-01T23:59:59.000Z

465

ENERGY STAR Snapshot: Measuring Progress in the Commercial and Industrial Sectors, Spring 2008.  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Progress in the Commercial and Industrial Sectors Spring 2008 Introduction Through 2007, commercial and industrial (C&I) leaders have made unprecedented progress in their efforts to improve energy efficiency and reduce greenhouse gas emissions across their buildings and facilities. This includes: y Hundreds of organizations and individuals stepping forward to take the ENERGY STAR Challenge to improve the energy efficiency of America's buildings by 10 percent or more y Measuring the energy performance in tens of thousands of buildings y Achieving energy savings across millions of square feet y Designating more than 4,000 efficient buildings and facilities with the ENERGY STAR label ENERGY STAR partners are building tremendous momentum for energy efficiency and seeing important

466

Charting a Path to Net Zero Energy: Public-Private Sector Perspectives of the Commercial Buildings Consortium  

E-Print Network (OSTI)

Transforming the commercial buildings market to become "net-zero-energy-capable" will require dramatically lower levels of energy use sector wide. A comprehensive and concerted industry effort, partnering with utilities and government, must...

Harris, J.

2011-01-01T23:59:59.000Z

467

Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors  

E-Print Network (OSTI)

This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet...

Hasanbeigi, A.; Hasanabadi, A.; Abdorrazaghi, M.

2011-01-01T23:59:59.000Z

468

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

469

Detection and Analysis of Threatsto the Energy Sector (DATES), March 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, , March 2010 Detection and Analysis of Threatsto the Energy Sector (DATES), March 2010 A security monitoring capability featuring multiple detection algorithms and cross-domain event correlation for defense against cyber attacks on energy control systems. DATES is a detection and security information/event management (SIEM) solution enabling asset owners to protect their energy control systems at the network, host, and device level from cyber attacks. DATES complements traditional, signature-based detection with multiple detection algorithms, including modelbased and flow anomaly detection and cross-site attack correlation. The DATES detection and SIEM solution gives operators succinct and intuitive attack visualization, with attacks prioritized as to their

470

Table 3. 2010 state energy-related carbon dioxide emissions by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by sector " 2010 state energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportation","Total" "Alabama",2.103862865,76.71236863,2.835897119,17.71721059,33.37693698,132.7462762 "Alaska",2.497277997,3.042968925,1.789261448,16.61816292,14.7795124,38.72718369 "Arizona",2.373783271,54.37078005,2.325955921,4.76376875,32.07874715,95.91303514 "Arkansas",2.566776983,32.30865878,2.320262268,8.646911643,20.27679552,66.11940519 "California",15.93482613,43.49564577,28.92778352,67.46363514,213.9882899,369.8101805 "Colorado",4.150125234,39.85763155,7.82954551,14.90850811,29.73188961,96.47770002

471

AIJ in the Non-Energy Sector in India: Opportunities and Concerns  

SciTech Connect

Although the U.N. Framework Convention on Climate Change (FCCC) has been signed and ratified by 168 countries, global greenhouse gas (GHG) emissions have increased substantially since the 1992 Rio Summit. In both developing countries (DCs) and industrialized countries (ICs), there has been a need to find mechanisms to facilitate environmentally sound mitigation strategies. This need led to the formation of Activities Implemented Jointly (AIJ) at the first Conference-of the Parties (COP) in 1995. In Article 4A, para 2D, the COP established an AIJ pilot phase in which Annex I (IC) countries would enter into agreements to implement activities jointly with non-Annex I parties. DCs would engage in AIJ on a purely voluntary basis and all AIJ projects should be compatible with and supportive of national environment and development goals. AIJ does not imply GHG reduction commitments by DCs. Neither do all projects undertaken during the pilot phase qualify as a fulfillment of current commitment s of Annex I parties under the COP. The current pilot phase for AIJ ends in the year 2000, a date which may be extended. Current AIJ activities are largely focused on the energy sector. The Nordic countries, for example, feel that the most important potential areas for cooperation in AIJ are fuel conversion, more effective energy production, increased energy efficiency, and reforms in energy-intensive industry (Nordic Council of Ministers, 1995). Denmark does not want to include non-energy sector projects such as carbon sink enhancement projects in the pilot phase (Nordic Council of Ministers, 1995). However, other countries, including the US, have already funded a number of forestry sector projects (Development Alternatives, 1997). Moreover, energy-sector projects involving high technology or capital-intensive technology are often a source of controversy between DCs and ICs regarding the kind of technology transferred and sharing of costs and benefits. Further, the pilot phase provide s an opportunity for capacity-building and learning about methods of planning, implementation, and monitoring of GHG abatement in land-based non-energy sector projects.

Ravindranath, N.H.; Meili, A.; Anita, R.

1998-11-01T23:59:59.000Z

472

The composition of a quad of buildings sector energy: Physical, economic, and environmental quantities  

SciTech Connect

In an analysis conducted for the US Department of Energy Office of Building Technologies (OBT), the Pacific Northwest Laboratory examined the fuel type composition of energy consumed in the US buildings sector. Numerical estimates were developed for the physical quantities of fuel consumed, as well as of the fossil fuel emissions (carbon dioxide, sulfur dioxide, nitrogen oxides) and nuclear spent fuel byproducts associated with that consumption. Electric generating requirements and the economic values associated with energy consumption also were quantified. These variables were quantified for a generic quad (1 quadrillion Btu) of primary energy for the years 1987 and 2010, to illustrate the impacts of a fuel-neutral reduction in buildings sector energy use, and for specific fuel types, to enable meaningful comparisons of benefits achievable through various OBT research projects or technology developments. Two examples are provided to illustrate how these conversion factors may be used to quantify the impacts of energy savings potentially achievable through OBT building energy conservation efforts. 18 refs., 6 figs., 16 tabs.

Secrest, T.J.; Nicholls, A.K.

1990-07-01T23:59:59.000Z

473

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Summary - Natural Gas Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity Jeffrey Logan, Garvin Heath, and Jordan Macknick National Renewable Energy Laboratory Elizabeth Paranhos and William Boyd University of Colorado Law School Ken Carlson Colorado State University Technical Report NREL/TP-6A50-57702 January 2013 The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy's National Renewable Energy Laboratory, the University of Colorado-Boulder, the Colorado School of Mines, the Colorado State University, the Massachusetts Institute of Technology, and Stanford University. JISEA ® and all JISEA-based marks are trademarks or registered trademarks of the Alliance for

474

Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas and the Natural Gas and the Transformation of the U.S. Energy Sector: Electricity Jeffrey Logan, Garvin Heath, and Jordan Macknick National Renewable Energy Laboratory Elizabeth Paranhos and William Boyd University of Colorado Law School Ken Carlson Colorado State University Technical Report NREL/TP-6A50-55538 November 2012 The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy's National Renewable Energy Laboratory, the University of Colorado-Boulder, the Colorado School of Mines, the Colorado State University, the Massachusetts Institute of Technology, and Stanford University. JISEA ® and all JISEA-based marks are trademarks or registered trademarks of the Alliance for

475

South Africa-The World Bank Partnership for Market Readiness (PMR) | Open  

Open Energy Info (EERE)

South Africa-The World Bank Partnership for Market Readiness (PMR) South Africa-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: South Africa-The World Bank Partnership for Market Readiness (PMR) Name South Africa-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

476

Costa Rica-The World Bank Partnership for Market Readiness (PMR) | Open  

Open Energy Info (EERE)

Costa Rica-The World Bank Partnership for Market Readiness (PMR) Costa Rica-The World Bank Partnership for Market Readiness (PMR) Jump to: navigation, search Logo: Costa Rica-The World Bank Partnership for Market Readiness (PMR) Name Costa Rica-The World Bank Partnership for Market Readiness (PMR) Agency/Company /Organization World Bank Partner Australia, Denmark, EC, Germany, Japan, Netherlands, Norway Spain, Switzerland, UK, and US Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Goods and Materials, Greenhouse Gas, Grid Assessment and Integration, Industry, Offsets and Certificates, People and Policy, Transportation Topics Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, Market analysis, Policies/deployment programs

477

AEO2011: Energy Consumption by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

478

AEO2011: Energy Consumption by Sector and Source - New England | OpenEI  

Open Energy Info (EERE)

New England New England Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption New England Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - New England- Reference Case (xls, 297.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

479

AEO2011: Energy Consumption by Sector and Source - West South Central |  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 7, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption West South Central Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - West South Central- Reference Case (xls, 297.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

480

AEO2011: Energy Consumption by Sector and Source - East South Central |  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 6, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Commercial East South Central EIA Electric Power Energy Consumption Industrial Residential transportation Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - East South Central- Reference Case (xls, 297.5 KiB) Quality Metrics Level of Review Peer Reviewed

Note: This page contains sample records for the topic "bank sector energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Interacting dark energy: the role of microscopic feedback in the dark sector  

E-Print Network (OSTI)

We investigate the impact on the classical dynamics of dark matter particles and dark energy of a non-minimal coupling in the dark sector, assuming that the mass of the dark matter particles is coupled to a dark energy scalar field. We show that standard results can only be recovered if the space-time variation of the dark energy scalar field is sufficiently smooth on the characteristic length scale of the dark matter particles, and we determine the associated constraint dependent on both the mass and radius of the dark matter particles and the coupling to the dark energy scalar field. We further show, using field theory numerical simulations, that a violation of such constraint results in a microscopic feedback effect strongly affecting the dynamics of dark matter particles, with a potential impact on structure formation and on the space-time evolution of the dark energy equation of state.

Avelino, P P

2015-01-01T23:59:59.000Z