Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Lithic Fragments In The Bandelier Tuff, Jemez Mountains, New Mexico | Open  

Open Energy Info (EERE)

Lithic Fragments In The Bandelier Tuff, Jemez Mountains, New Mexico Lithic Fragments In The Bandelier Tuff, Jemez Mountains, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Lithic Fragments In The Bandelier Tuff, Jemez Mountains, New Mexico Details Activities (2) Areas (1) Regions (0) Abstract: Lithic fragments are a highly varied but significant component of the Bandelier Tuff, Jemez Mountains, New Mexico. Lithic material occurs in concentrations from trace amounts to 30 wt.%, and within the Otowi Member of the tuff has a total volume of 10 km3. Approximately 90% of the fragments are Cenozoic volcanic rocks of the Jemez volcanic field, 10% are Paleozoic sedimentary rocks, and only trace amounts are Precambrian basement. The large volume of lithic material and predominance of shallowly

2

Crust and upper mantle P wave velocity structure beneath Valles caldera, New Mexico: Results from the Jemez teleseismic tomography experiment  

Science Conference Proceedings (OSTI)

New results are presented from the teleseismic component of the Jemez Tomography Experiment conducted across Valles caldera in northern New Mexico. We invert 4872 relative {ital P} wave arrival times recorded on 50 portable stations to determine velocity structure to depths of 40 km. The three principle features of our model for Valles caldera are: (1) near-surface low velocities of {minus}17{percent} beneath the Toledo embayment and the Valle Grande, (2) midcrustal low velocities of {minus}23{percent} in an ellipsoidal volume underneath the northwest quadrant of the caldera, and (3) a broad zone of low velocities ({minus}15{percent}) in the lower crust or upper mantle. Crust shallower than 20 km is generally fast to the northwest of the caldera and slow to the southeast. Near-surface low velocities are interpreted as thick deposits of Bandelier tuff and postcaldera volcaniclastic rocks. Lateral variation in the thickness of these deposits supports increased caldera collapse to the southeast, beneath the Valle Grande. We interpret the midcrustal low-velocity zone to contain a minimum melt fraction of 10{percent}. While we cannot rule out the possibility that this zone is the remnant 1.2 Ma Bandelier magma chamber, the eruption history and geochemistry of the volcanic rocks erupted in Valles caldera following the Bandelier tuff make it more likely that magma results from a new pulse of intrusion, indicating that melt flux into the upper crust beneath Valles caldera continues. The low-velocity zone near the crust-mantle boundary is consistent with either partial melt in the lower crust or mafic rocks without partial melt in the upper mantle. In either case, this low-velocity anomaly indicates that underplating by mantle-derived melts has occurred. {copyright} 1998 American Geophysical Union

Steck, Lee K.; Fehler, Michael C.; Roberts, Peter M.; Baldridge, W. Scott; Stafford, Darrik G. [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Lutter, William J.; Sessions, Robert [Department of Geology and Geophysics, University of Wisconsin-Madison (United States)

1998-10-01T23:59:59.000Z

3

Magnetotellurics At Jemez Pueblo Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Magnetotellurics At Jemez Pueblo Area (DOE GTP) Exploration Activity Details Location Jemez Pueblo Area Exploration Technique Magnetotellurics Activity Date Usefulness not...

4

Reflection Survey At Jemez Pueblo Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Reflection Survey At Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Jemez Pueblo Area (DOE GTP)...

5

Development Wells At Jemez Pueblo Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Development Wells At Jemez Pueblo Area (DOE GTP) Exploration Activity Details Location Jemez Pueblo Area Exploration Technique Development Wells Activity Date Usefulness not...

6

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area (Redirected from Jemez Pueblo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

7

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

8

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

9

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

10

Jemez Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Springs Geothermal Area Jemez Springs Geothermal Area (Redirected from Jemez Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.77166667,"lon":-106.69,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

Jemez Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Springs Geothermal Area Jemez Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.77166667,"lon":-106.69,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

Geology, Water Geochemistry And Geothermal Potential Of The Jemez...  

Open Energy Info (EERE)

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

13

Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) | Open...  

Open Energy Info (EERE)

Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) Exploration Activity Details Location Jemez Springs Area Exploration Technique Water Sampling Activity Date Usefulness not...

14

Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) | Open...  

Open Energy Info (EERE)

Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) Exploration Activity Details Location Jemez Springs Area Exploration Technique Water Sampling Activity Date Usefulness not...

15

Flow Test At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Jemez Pueblo Area (DOE GTP) Exploration Activity Details Location Jemez Pueblo Area...

16

Tracer Testing At Jemez Pueblo Area (DOE GTP) | Open Energy Informatio...  

Open Energy Info (EERE)

Tracer Testing At Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Jemez Pueblo Area (DOE GTP)...

17

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Details Activities (5) Areas (2) Regions (0) Abstract: Studies of the geology, geochemistry of thermal waters, and of one exploratory geothermal well show that two related hot spring systems discharge in Canon de San Diego at Soda Dam (48°C) and Jemez Springs (72°C). The hot springs discharge from separate strands of the Jemez fault zone which trends northeastward towards the center of Valles Caldera. Exploration drilling to Precambrian basement beneath Jemez Springs

18

Cuttings Analysis At Jemez Mountain Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area (1976) Jemez Mountain Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Jemez Mountain Geothermal Area (1976) Exploration Activity Details Location Jemez Mountain Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Jemez_Mountain_Geothermal_Area_(1976)&oldid=473910

19

A study of bat populations at Los Alamos National Laboratory and Bandelier National Monument, Jemez Mountains, New Mexico: FY95--97 report to Los Alamos National Laboratory and Bandelier National Monument  

SciTech Connect

In 1995, a three-year study was initiated to assess the current status of bat species of concern, elucidate distribution and relative abundance, and obtain information on roosting sites of bats. The authors captured and released 1532 bats of 15 species (Myotis californicus, M. ciliolabrum, M. evotis, M. thysanodes, M. volans, M. yumanensis, Lasiurus cinereus, Lasionycteris noctivagans, Pipistrellus hesperus, Eptesicus fuscus, Euderma maculatum, Corynorhinus townsendii, Antrozous pallidus, Tadarida brasiliensis, and Nyctinomops macrotis) and followed 32 bats of eight species (M. evotis, M. thysanodes, M. volans, E. fuscus, E. maculatum, C. townsendii, A. pallidus, and N. macrotis) to 51 active diurnal roosts. The most abundant species were L. noctivagans, E. fuscus, L. cinereus, M. evotis, M. volans, and M. ciliolabrum. Most of these species are typical inhabitants of ponderosa pine-mixed coniferous forests.

Bogan, M.A.; O`Shea, T.J.; Cryan, P.M.; Ditto, A.M.; Schaedla, W.H.; Valdez, E.W.; Castle, K.T.; Ellison, L. [Univ. of New Mexico, Albuquerque, NM (United States)] [Univ. of New Mexico, Albuquerque, NM (United States)

1998-12-31T23:59:59.000Z

20

Jemez Mountains Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountains Elec Coop, Inc Jemez Mountains Elec Coop, Inc Jump to: navigation, search Name Jemez Mountains Elec Coop, Inc Place New Mexico Utility Id 9699 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Power Service Industrial Large Power Service-TOU Industrial Municipal Service and Small School Service Commercial Municipal Service and Small School Service TOU Commercial Residential Service Residential Residential Time of Use Rates Residential Small Commercial Service Residential

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bathhouse Pool & Spa Low Temperature Geothermal Facility Bathhouse Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal Facility Facility Jemez Springs Bathhouse Sector Geothermal energy Type Pool and Spa Location Jemez Springs, New Mexico Coordinates 35.7686356°, -106.692258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

22

Pueblo of Jemez Geothermal Feasibility Study Fianl Report  

DOE Green Energy (OSTI)

This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Madera Limestone, the most likely host for a major geothermal reservoir.

S.A. Kelley; N. Rogers; S. Sandberg; J. Witcher; J. Whittier

2005-03-31T23:59:59.000Z

23

Innovative Exploration Techniques for Geothermal Assessment at Jemez  

Open Energy Info (EERE)

Exploration Techniques for Geothermal Assessment at Jemez Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This collaborative project will perform the following tasks to fully define the nature and extent of the geothermal reservoir underlying the Jemez Reservation: - Conduct 1-6,000-scale geologic mapping of 6 mi2 surrounding the Indian Springs area. - Using the detailed geologic map, locate one N-S and two E-W seismic lines and run a seismic survey of 4 mi2; reduce and analyze seismic data using innovative high-resolution seismic migration imaging techniques developed by LANL, and integrate with 3-D audio-frequency MT/MT data acquired at the same area for fault and subsurface structure imaging and resource assessment.

24

Jemez Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Jemez Springs Sector Geothermal energy Type Space Heating Location Jemez Springs, New Mexico Coordinates 35.7686356°, -106.692258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

25

Field Mapping At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Jemez Pueblo Area (DOE GTP) Field Mapping At Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Jemez Pueblo Area (DOE GTP) Exploration Activity Details Location Jemez Pueblo Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Jemez_Pueblo_Area_(DOE_GTP)&oldid=510743" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863638471

26

Slim Holes At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Slim Holes At Jemez Pueblo Area (DOE GTP) Slim Holes At Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Jemez Pueblo Area (DOE GTP) Exploration Activity Details Location Jemez Pueblo Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes 1 well References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Slim_Holes_At_Jemez_Pueblo_Area_(DOE_GTP)&oldid=402648" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

27

Isotopic Analysis At Jemez Springs Area (Goff & Janik, 2002) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis At Jemez Springs Area (Goff & Janik, 2002) Isotopic Analysis At Jemez Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Jemez Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Jemez Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Jemez_Springs_Area_(Goff_%26_Janik,_2002)&oldid=687458"

28

Compound and Elemental Analysis At Jemez Springs Area (Goff & Janik, 2002)  

Open Energy Info (EERE)

Janik, 2002) Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Jemez Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Jemez Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Jemez_Springs_Area_(Goff_%26_Janik,_2002)&oldid=510418" Categories: Exploration Activities

29

Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Jemez Springs Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Jemez Springs Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

30

Regional geology and geophysics of the Jemez Mountains  

DOE Green Energy (OSTI)

The western margin of the Rocky Mountain tectonic belt is the initial site for the Los Alamos Geothermal Project. lgneous activity in the area culminated with the formation of a collapsed volcanic caldera and the deposition of thick beds of tuff. Geophysical studies indicate that the region is one of relatively highterrestrial heat flow, low-crustal density, low-crustal seismic velocities, low-crustal magnetoelectric impedance, and thin crust. 34 references. (auth)

West, F.G.

1973-08-01T23:59:59.000Z

31

Geologic evolution of the Jemez Mountains and their potential for future volcanic activity  

Science Conference Proceedings (OSTI)

Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10/sup -9//km/sup 2//y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10/sup -7//y.

Burton, B.W.

1982-01-01T23:59:59.000Z

32

Hydrothermal systems in two areas of the Jemez volcanic field: Sulphur Springs and the Cochiti mining district  

DOE Green Energy (OSTI)

K/Ar dates and oxygen isotope data were obtained on 13 clay separates (<2 ..mu..m) of thermally altered mafic and silicic rocks from the Cochiti mining district (SE Jemez Mountains) and Continental Scientific Drilling Project (CSDP) core hole VC-2A (Sulphur Springs, Valles caldera). Illite with K/sub 2/O contents of 6.68%--10.04% is the dominant clay in the silicic rocks, whereas interstratified illite/smectites containing 1.4%--5.74% K/sub 2/O constitute the altered andesites. Two hydrothermal alteration events are recognized at the Cochiti area (8.07 m.y., n = 1, and 6.5--5.6 m.y., n = 6). The older event correlates with the waning stages of Paliza Canyon Formation andesite volcanism (greater than or equal to13 to less than or equal to8.5 m.y.), whereas the younger event correlates with intrusions and gold- and silver-bearing quartz veins associated with the Bearhead Rhyolite (7.54--5.8 m.y.). The majority of K/Ar dates in the hydrothermally altered, caldera-fill rocks of core hole VC-2A (0.83--0.66 m.y., n = 4) indicate that hydrothermal alteration developed contemporaneously with resurgence and ring fracture Valles Rhyolite domes (0.89--0.54 m.y.). One date of 0 +- 0.10 m.y. in acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole probably correlates with Holocene hydrothermal activity possibly associated with the final phases of the Valles Rhyolite (0.13 m.y.).

WoldeGabriel, G.

1989-03-01T23:59:59.000Z

33

Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico |  

Open Energy Info (EERE)

Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Details Activities (2) Areas (1) Regions (0) Abstract: Large, young calderas possess immense geothermal potential due to the size of shallow magma bodies that underlie them. Through the example of the Valles and Toledo calderas, New Mexico, and older, more deeply eroded and exposed calderas, it is possible to reconstruct a general view of geothermal environments associated with such magmatic systems. Although a zone of anomalous heat flow extends well beyond caldera margins, high- to moderate-temperature hydrothermal systems appear to be restricted to zones

34

Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Jemez Springs Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

35

Seismic and magneto-telluric imaging for geothermal exploration at Jemez pueblo in New Mexico  

Science Conference Proceedings (OSTI)

A shallow geothermal reservoir in the Pueblo of Jemez in New Mexico may indicate a commercial-scale geothermal energy potential in the area. To explore the geothermal resource at Jemez Pueblo, seismic surveys are conducted along three lines for the purpose of imaging complex subsurface structures near the Indian Springs fault zone. A 3-D magneto-telluric (MT) survey is also carried out in the same area. Seismic and MT imaging can provide complementary information to reveal detailed geologic formation properties around the fault zones. The high-resolution seismic images will be used together with MT images, geologic mapping, and hydrogeochemistry, to explore the geothermal resource at Jemez Pueblo, and to determine whether a conunercial-scale geothermal resource exists for power generation or direct use applications after drilling and well testing.

Huang, Lianjie [Los Alamos National Laboratory; Albrecht, Michael [LOS ALAMOS GEOTHERMAL

2011-01-25T23:59:59.000Z

36

Toward assessing the geothermal potential of the Jemez Mountains volcanic complex: a telluric-magnetotelluric survey  

DOE Green Energy (OSTI)

Telluric-magnetotelluric studies were performed in the Jemez Mountains of north-central New Mexico to characterize the total geothermal system of the Valles Caldera and to be integrated with an east-west regional survey supported by the United States Geological Survey. The data from the regional survey indicate that electrically the San Juan Basin to the west of the Jemez Mountains is rather homogeneous in contrast to the eastern side near Las Vegas where the presence of a broad heterogeneous structure is clearly sensed. The data from the Jemez Mountain area are strikingly similar to other Rio Grande rift data and suggest a conducting layer at a depth of approximately 15 km. The telluric data indicate that the hydrothermal system in the area is of a localized nature.

Hermance, J.F.

1979-02-01T23:59:59.000Z

37

Radionuclide concentrations in soils and produce from Cochiti, Jemez, Taos, and San Ildefonso Pueblo Gardens  

SciTech Connect

Radionuclide ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, and total uranium) concentrations were determined in soils and produce collected from Cochiti, Jemez, Taos, and San Ildefonso Pueblo gardens. All radionuclides in soils from Pueblo areas were within or just above regional statistical (natural and/or worldwide fallout) reference levels. Similarily, the average levels of radionuclides in produce collected from Cochiti, Jemez, Taos, and San Ildefonso Pueblo gardens were not significantly different in produce collected from regional (background) locations. The effective (radiation) dose equivalent from consuming 352 lb of produce from Cochiti, Jemez, Taos, and San Ildefonso, after natural background has been subtracted, was 0.036 ({+-}0.016), 0.072 ({+-}0.051), 0.012 ({+-}0.027), and 0.110 ({+-}0.102) mrem/yr, respectively. The highest calculated dose, based on the mean + 2 std dev (95% confidence level), was 0.314 mrem/yr; this was <0.4% of the International Commission on Radiological Protection permissible dose limit for protecting members of the public.

Fresquez, P.R.; Armstrong, D.R.; Salazar, J.G.

1995-05-01T23:59:59.000Z

38

Imaging Faults with Reverse-Time Migration for Geothermal Exploration at Jemez Pueblo in New Mexico  

SciTech Connect

The fault zones at Jemez Pueblo may dominate the flow paths of hot water, or confine the boundaries of the geothermal reservoir. Therefore, it is crucial to image the geometry of these fault zones for geothermal exploration in the area. We use reverse-time migration with a separation imaging condition to image the faults at Jemez Pueblo. A finite-difference full-wave equation method with a perfectly-matching-layer absorbing boundary condition is used for backward propagation of seismic reflection data from receivers and forward propagation of wavefields from sources. In the imaging region, the wavefields are separated into the upgoing and downgoing waves, and leftgoing and rightgoing waves. The upgoing and downgoing waves are used to obtain the downward-looking image, and the leftgoing and rightgoing waves are used to form the left-looking image and right-looking image from sources. The left-looking and right-looking images are normally weaker than the downward-looking image because the reflections from the fault zones are much weaker than those from sedimentary layers, but these migration results contain the images of the faults. We apply our reverse-time migration with a wavefield separation imaging condition to seismic data acquired at Jemez Pueblo, and our preliminary results reveal many faults in the area.

Huang, Lianjie [Los Alamos National Laboratory; Albrecht, Michael [TBA Power; Kaufman, Greg [Jemez Purblo; Kelley, Shari [NM Bureau of Geology and Mineral Researces; Rehfeldt, Kenneth [Los Alamos National Laboratory; Zhang, Zhifu [EES-17 visitor

2011-01-01T23:59:59.000Z

39

Laboratory studies of radionuclide migration in tuff  

SciTech Connect

The movement of selected radionuclides has been observed in crushed tuff, intact tuff, and fractured tuff columns. Retardation factors and dispersivities were determined from the elution profiles. Retardation factors have been compared with those predicted on the basis of batch sorption studies. This comparison forms a basis for either validating distribution coefficients or providing evidence of speciation, including colloid formation. Dispersivities measured as a function of velocity provide a means of determining the effect of sorption kinetics or mass transfer on radionuclide migration. Dispersion is also being studied in the context of scaling symmetry to develop a basis for extrapolating from the laboratory scale to the field. 21 refs., 6 figs., 2 tabs.

Rundberg, R.S.; Mitchell, A.J.; Ott, M.A.; Thompson, J.L.; Triay, I.R.

1989-10-01T23:59:59.000Z

40

Hydrogeochemical data for thermal and nonthermal waters and gases of the Valles Caldera- southern Jemez Mountains region, New Mexico  

DOE Green Energy (OSTI)

This report presents field, chemical, gas, and isotopic data for thermal and nonthermal waters of the southern Jemez Mountains, New Mexico. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, north of San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near-surface meteoric waters; (2) acid-sulfate waters at Sulphur Springs (Valles Caldera); (3) thermal meteoric waters in the ring fracture zone (Valles Caldera); (4) deep geothermal waters of the Baca geothermal field and derivative waters in the Soda Dam and Jemez Springs area (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. Data in this report will help in interpreting the geothermal potential of the Jemez Mountains region and will provide background for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

Shevenell, L.; Goff, F.; Vuataz, F.; Trujillo, P.E. Jr.; Counce, D.; Janik, C.J.; Evans, W.

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermal data for 95 thermal and nonthermal waters of the Valles Caldera - southern Jemez Mountains region, New Mexico  

DOE Green Energy (OSTI)

Field, chemical, and isotopic data for 95 thermal and nonthermal waters of the southern Jemez Mountains, New Mexico are presented. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, near San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near surface meteoric waters; (2) acid-sulfate waters (Valles Caldera); (3) thermal meteoric waters (Valles Caldera); (4) deep geothermal and derivative waters (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. The object of the data is to help interpret geothermal potential of the Jemez Mountains region and to provide background data for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

Goff, F.; McCormick, Trujillo, P.E. Jr.; Counce, D.; Grigsby, C.O.

1982-05-01T23:59:59.000Z

42

BandelierDirections2011  

NLE Websites -- All DOE Office Websites (Extended Search)

g h c a n y o n Bradbury Science Museum 1 From CENTRAL AVE., turn south at light on 15th STREET 2 Turn RIGHT at light on TRINITY DRIVE - go 1.1 miles 3 Turn LEFT on DIAMOND DRIVE...

43

Hydraulic characterization of hydrothermally altered Nopal tuff  

SciTech Connect

Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow.

Green, R.T.; Meyer-James, K.A. [Southwest Research Institute, San Antonio, TX (United States); Rice, G. [George Rice and Associates, San Antonio, TX (United States)

1995-07-01T23:59:59.000Z

44

Characterizing unsaturated diffusion in porous tuff gravel  

SciTech Connect

Evaluation of solute diffusion in unsaturated porous gravel is very important for investigations of contaminant transport and remediation, risk assessment, and waste disposal (for example, the potential high-level nuclear waste repository at Yucca Mountain, Nevada). For a porous aggregate medium such as granular tuff, the total water content is comprised of surface water and interior water. The surface water component (water film around grains and pendular water between the grain contacts) could serve as a predominant diffusion pathway. To investigate the extent to which surface water films and contact points affect solute diffusion in unsaturated gravel, we examined the configuration of water using x-ray computed tomography in partially saturated gravel, and made quantitative measurements of diffusion at multiple water contents using two different techniques. In the first, diffusion coefficients of potassium chloride in 2-4 mm granular tuff at multiple water contents were calculated from electrical conductivity measurements using the Nernst-Einstein equation. In the second, we used laser ablation with inductively coupled plasma-mass spectrometry to perform micro-scale mapping, allowing the measurement of diffusion coefficients for a mixture of chemical tracers for tuff cubes and tetrahedrons having two contact geometries (cube-cube and cube-tetrahedron). The x-ray computed tomography images show limited contact between grains, and this could hinder the pathways for diffusive transport. Experimental results show the critical role of surface water in controlling transport pathways and hence the magnitude of diffusion. Even with a bulk volumetric water content of 1.5%, the measured solute diffusion coefficient is as low as 1.5 x 10{sup -14} m{sup 2}/s for tuff gravel. Currently used diffusion models relating diffusion coefficients to total volumetric water content inadequately describe unsaturated diffusion behavior in porous gravel at very low water contents.

Hu, Qinhong; Kneafsey, Timothy J.; Roberts, Jeffery J.; Tomutsa, Liviu; Wang, Joseph, S.Y.

2003-11-12T23:59:59.000Z

45

Borehole stability in densely welded tuffs  

SciTech Connect

The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs.

Fuenkajorn, K.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (United States). Dept. of Mining and Geological Engineering

1992-07-01T23:59:59.000Z

46

Isotopic and trace element characteristics of rhyolites from the Valles Caldera, New Mexico. Final technical report  

DOE Green Energy (OSTI)

This report is a summary of work supported by DOE grant No. DE-FGO5-87ER13795 that was completed or is still in progress. The stated purpose of this grant was to collect geochemical information (trace element, radiogenic isotope and stable oxygen and hydrogen isotope) on samples from core holes VC-I and VC-2a in the Valles caldera in order to establish a consistent detailed intracaldera stratigraphy and relate this to extracaldera volcanic rock units of the Jemez Mountains. Careful stratigraphic control of the intracaldera units is necessary to evaluate models of caldera formation, ignimbrite deposition, and resurgence. Combined stable and radiogenic isotope and trace element data will also provide major insights to petrogenesis of the Bandelier magma system. The composition of non-hydrothermally altered samples from outflow units of the Bandelier Tuff and related volcanics must be known to assess isotopic variations of intracaldera ignimbrite samples. On detailed examination of the VC-2a core samples, it became apparent that hydrothermal alteration is so extensive that no geochemical information useful for stratigraphic fingerprinting or petrogenesis could be obtained, and that correlation with other intracaldera units and extracaldera units must be made on the basis of stratigraphic position and gross lithologic characteristics. Accordingly, we emphasize geochemical data from the extracaldera Bandelier Tuffs and related units which will be useful for comparison with proposed drill hole VC-4 and for any future studies of the region. The stable isotope, radiogenic isotope and trace element data obtained from this project, combined with existing major and trace element data for volcanic rocks from this area, provide an extensive data base essential to future Continental Scientific Drilling Program projects in the Jemez Mountains of New Mexico.

Self, S.; Sykes, M.L. [Hawaii Univ., Honolulu, HI (United States). Dept. of Geology and Geophysics; Wolff, J.A. [Texas Univ., Arlington, TX (United States). Dept. of Geology; Skuba, C.E. [McMaster Univ., Hamilton, ON (Canada). Dept. of Geology

1991-09-01T23:59:59.000Z

47

Geothermal test-well drilling program for the Village of Jemez Springs, New Mexico. Final technical report, January 1, 1979-June 30, 1981  

DOE Green Energy (OSTI)

The geothermal resources located during test drilling at Jemez Springs, New Mexico are described and the feasibility of utilizing this low-temperature resource for a space heating demonstration project at the Town Hall and Fire Department Building is discussed. A test well was drilled to a depth of 824 feet that penetrated water-producing zones at 80 feet with a water temperature of approximately 150 to 155/sup 0/F and at 500 feet with waters of approximately 120 to 125/sup 0/F. After a number of repairs to the Jemez Springs Well Number 1, the project was ended having completed a well capable of producing a flow of approximately 20 gpm at 150 to 155/sup 0/F. A follow-up demonstration heating project is planned.

Armenta, E.; Icerman, L.; Starkey, A.H.

1981-09-01T23:59:59.000Z

48

Evaluation of tuff as a medium for a nuclear waste repository: interim status report on the properties of tuff  

Science Conference Proceedings (OSTI)

This report is the second in a series of summary briefings to the National Academy of Science`s (NAS) Committee on Radioactive Waste Management dealing with feasibility of disposal of heat-producing radioactive waste in silicic tuff. The interim status of studies of tuff properties determined on samples obtained from Yucca Mountain and Rainier Mesa (G-tunnel) located on the Nevada Test Site (NTS) are discussed. In particular, progress is described on resolving issues identified during the first briefing to the NAS which include behavior of water in tuff when heated, the effect of the presence or absence of water and joints on the thermal/physical properties of tuff and the detailed/complex sorptive properties of highly altered and unaltered tuff. Initial correlations of thermal/physical and sorptive properties with the highly variable porosity and mineralogy are described. Three in-situ, at-depth field experiments, one nearly completed and two just getting underway are described. In particular, the current status of mineralogy and petrology, geochemistry, thermal and mechanical, radiation effects and water behavior studies are described. The goals and initial results of a Mine Design Working Group are discussed. Regional factors such as seismicity, volcanism and hydrology are not discussed.

Johnstone, J.K.; Wolfsberg, K. (eds.)

1980-07-01T23:59:59.000Z

49

Waterproofing and Strengthening Volcanic Tuff in Waste Repositories  

Science Conference Proceedings (OSTI)

Waste repositories from surface trenches and shafts at Los Alamos to drilled tunnels at Yucca Mountain are being built in volcanic Tuff, a soft compacted material that is permeable to water and air. US Department of Energy documents on repository design identify the primary design goal of 'preventing water from reaching the waste canisters, dissolving the canisters and carrying the radioactive waste particles away from the repository'. Designers expect to achieve this by use of multiple barriers along with careful placement of the repository both well above the water table and well above the ground level in a mountain. Though repositories are located in areas that have a historically dry climate to minimize the impact of rainfall infiltration, global warming phenomena may have the potential to alter regional climate patterns - potentially leading to higher infiltration rates. Conventional methods of sealing fractures within volcanic tuff may not be sufficiently robust or long lived to isolate a repository shaft from water for the required duration. A new grouting technology based on molten wax shows significant promise for producing the kind of long term sealing performance required. Molten wax is capable of permeating a significant distance through volcanic tuff, as well as sealing fractures by permeation that is thermally dependent instead of chemically or time dependent. The wax wicks into and saturates tuff even if no fractures are present, but penetrates and fills only the heated area. Heated portions of the rock fill like a vessel. The taffy-like wax has been shown to waterproof the tuff, and significantly increase its resistance to fracture. This wax was used in 2004 for grouting of buried radioactive beryllium waste at the Idaho National Laboratory, chiefly to stop the water based corrosion reactions of the waste. The thermoplastic material contains no water and does not dry out or change with age. Recent studies indicate that this kind of wax material may be inherently resistant to bio-degradation. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

50

The Hydrogeologic Character of the Lower Tuff Confining Unit and the Oak Springs Butte Confining Unit in the Tuff Pile Area of Central Yucca Flat  

SciTech Connect

The lower tuff confining unit (LTCU) in the Yucca Flat Corrective Action Unit (CAU) consists of a monotonous sequence of pervasively zeolitized volcanic tuff (i.e., mostly bedded with lesser nonwelded to poorly welded tuff; not fractured) (Bechtel Nevada, 2006). The LTCU is an important confining unit beneath Yucca Flat because it separates the alluvial and volcanic aquifers, where many underground nuclear tests were conducted, from the regional lower carbonate aquifer. Recent sub-CAU-scale modeling by Los Alamos National Laboratory in the Tuff Pile area of Yucca Flat (Boryta, et al., in review) includes postulated low-porosity, high-permeability zones (i.e., fractured welded-tuff aquifers) within the LTCU. This scenario indicates that such postulated low-porosity, high-permeability zones could provide fast-path lateral conduits to faults, and eventually to the lower carbonate aquifer. A fractured and faulted lower carbonate aquifer is postulated to provide a flow path(s) for underground test-derived contaminants to potential offsite receptors. The ramifications of such a scenario are obvious for groundwater flow and contaminant migration beneath Yucca Flat. This paper describes the reasoning for not including postulated low-porosity, high-permeability zones within the LTCU in the Tuff Pile area or within the LTCU in the Yucca Flat CAU-scale model. Both observational and analytical data clearly indicate that the LTCU in the Tuff Pile area consists of pervasively zeolitic, nonwelded to poorly welded tuffs that are classified as tuff confining units (i.e., high-porosity, low-permeability). The position regarding the LTCU in the Tuff Pile area is summarized as follows: The LTCU in the Tuff Pile area consists of a monotonous sequence of predominantly zeolitic nonwelded to poorly welded tuffs, and thus is accurately characterized hydrogeologically as a tuff confining unit (aquitard) in the Yucca Flat-Climax Mine hydrostratigraphic framework model (Bechtel Nevada, 2006). No welded-tuff (or lava-flow aquifers), referred to as low-porosity, high-permeability zones in Boryta et al. (in review), are present within the LTCU in the Tuff Pile area. Fractures within the LTCU are poorly developed, a characteristic of zeolitic tuffs; and fracture distributions are independent of stratigraphic and lithologic units (Prothro, 2008). Groundwater flow and radionuclide transport will not be affected by laterally extensive zones of significantly higher permeability within the LTCU in the Tuff Pile area. Although not the primary focus of this report, the hydrogeologic character of the Oak Spring Butte confining unit (OSBCU), located directly below the LTCU, is also discussed. The OSBCU is lithologically more diverse, and does include nonwelded to partially welded ash-flow tuffs. However, these older ash-flow tuffs are poorly welded and altered (zeolitic to quartzofeldspathic), and consequently, would tend to have properties similar to a tuff confining unit rather than a welded-tuff aquifer.

Sigmund L. Drellack, Jr., Lance B. Prothro, Jose L. Gonzales, and Jennifer M. Mercadante

2010-07-30T23:59:59.000Z

51

RTEV Inc Ruff Tuff Electric Vehicles | Open Energy Information  

Open Energy Info (EERE)

RTEV Inc Ruff Tuff Electric Vehicles RTEV Inc Ruff Tuff Electric Vehicles Jump to: navigation, search Name RTEV Inc. (Ruff & Tuff Electric Vehicles) Place Winnsboro, South Carolina Zip 29180 Sector Vehicles Product Electric vehicle company that has developed low speed electric vehicles and recreational electric vehicles. Currently developing a full speed electric vehicle. Coordinates 32.957805°, -95.290203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.957805,"lon":-95.290203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Measuring and Modeling Flow in Welded Fractured Tuffs  

SciTech Connect

We have carried out a series of in situ liquid-release experiments in conjunction with a numerical modeling study to examine the effect of the rock matrix on liquid flow and transport occurring primarily through the fracture network. Field experiments were conducted in the highly fractured Topopah Spring welded tuff at a site accessed from the Exploratory Studies Facility (ESFS), an underground laboratory in the unsaturated zone at Yucca Mountain, Nevada. During the experiment, wetting-front movement, flow-field evolution, and drainage of fracture flow paths were evaluated. Modeling was used to aid in experimental design, predict experimental results, and study the physical processes accompanying liquid flow through unsaturated fractured welded tuff. Field experiments and modeling suggest that it may not be sufficient to conceptualize the fractured tuff as consisting of a single network of high-permeability fractures embedded in a low-permeability matrix. The need to include a secondary fracture network is demonstrated by comparison to the liquid flow observed in the field.

R. Salve; C. Doughty; J.S. Wang

2001-10-03T23:59:59.000Z

53

Repository site data report for unsaturated tuff, Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

1985-11-01T23:59:59.000Z

54

Bond strength of cementitious borehole plugs in welded tuff  

Science Conference Proceedings (OSTI)

Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

Akgun, H.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (USA). Dept. of Mining and Geological Engineering

1991-02-01T23:59:59.000Z

55

G-tunnel welded tuff mining experiment preparations  

SciTech Connect

Designers and analysts of radioactive waste repositories must be able to predict the mechanical behavior of the host rock. Sandia National Laboratories elected to conduct a mine-by in welded tuff so that predictive-type information could be obtained regarding the response of the rock to a drill and blast excavation process, where smooth blasting techniques were used. Included in the study were evaluations of and recommendations for various measurement systems that might be used in future mine-by efforts. This report summarizes the preparations leading to the recording of data. 17 refs., 27 figs., 5 tabs.

Zimmerman, R.M. [Sandia National Labs., Albuquerque, NM (USA); Bellman, R.A. Jr.; Mann, K.L. [Science Applications International Corp., Las Vegas, NV (USA); Zerga, D.P. [Parsons, Brinckerhoff, Quade and Douglas, Inc., San Francisco, CA (USA)

1991-01-01T23:59:59.000Z

56

Environmental effects on corrosion in the Tuff repository  

SciTech Connect

Cortest Columbus is investigating the long-term performance of container materials used for high-level waste packages as part of the information needed by the Nuclear Regulatory Commission to assess the Department of Energy`s application to construct a geologic repository for high-level radioactive waste. The scope of work consists of employing short-term techniques, to examine a wide range of possible failure modes. Long-term tests are being used to verify and further examine specific failure modes identified as important by the short-term studies. The original focus of the program was on the salt repository but the emphasis was shifted to the Tuff repository. This report summarizes the results of a literature survey performed under Task 1 of the program. The survey focuses on the influence of environmental variables on the corrosion behavior of candidate container materials for the Tuff repository. Environmental variables considered include: radiation, thermal and microbial effects. 80 refs., 44 figs., 44 tabs.

Beavers, J.A.; Thompson, N.G. [Cortest Columbus, Inc., OH (USA)

1990-02-01T23:59:59.000Z

57

Moisture Retention Curves of Topopah Spring Tuff at Elevated Temperatures  

SciTech Connect

Knowledge of unsaturated flow and transport in porous media is critical for understanding the movement of water and solute through the unsaturated zone. The suction potential of rock determines the imbibition of water and, therefore, the moisture retention in the matrix. That, in turn, affects the relative importance of matrix flow and fracture flow, and their interaction, because greater suction potential moves more water from fractures into the matrix and therefore retards fracture flow. The moisture content as a function of the suction potential is called a moisture retention curve or a characteristic curve. Moisture-retention data are important input for numerical models of water movement in unsaturated porous media. Also important are the effect of sample history on the moisture-retention curves and whether there is significant hysteresis between wetting and drying measurements. The Yucca Mountain Site Characterization Project (YMP) of the U.S. Department of Energy is studying the suitability of the tuffaceous rock at Yucca Mountain, Nevada, for a potential high-level nuclear waste repository. The potential repository horizon will be in the unsaturated zone of the Topopah Spring member (densely welded) of the Paintbrush Tuff unit at Yucca Mountain. This unit is highly fractured. Therefore, transport of water within the near field of the nuclear waste package in the repository is strongly influenced by the suction potential of the repository host rocks at elevated temperatures. In a high-level nuclear waste repository, the rock mass around the waste packages will become dry because of the thermal load of the waste but will then re-wet during the cool-down period as the thermal output of the waste packages declines. Much of this process will occur at temperatures above ambient temperature. The goal of our work is to determine the importance of temperature and the wetting-drying hysteresis on the measured moisture retention curves of the densely welded tuff. For Topopah Spring tuff the suction potential is assumed to be primary due to the matric potential.

Lin, W.; Roberts, J.; Carlberg, E.; Ruddle, D.; Pletcher, R.

2001-11-30T23:59:59.000Z

58

Hydrothermal brecciation in the Jemez Fault zone, Valles Caldera, New Mexico: Results from CSDP (Continental Scientific Drilling Program) corehole VC-1  

DOE Green Energy (OSTI)

Paleozoic and Precambrian rocks intersected deep in Continental Scientific Drilling Program corehole VC-1, adjacent to the late Cenozoic Valles caldera complex, have been disrupted to form a spectacular breccia sequence. The breccias are of both tectonic and hydrothermal origin, and probably formed in the Jemez fault zone, a major regional structure with only normal displacement since mid-Miocene. Tectonic breccias are contorted, crushed, sheared, and granulated; slickensides are commmon. Hydrothermal breccias, by contrast, lack these frictional textures, but arej commonly characterized by fluidized matrix foliation and prominent clast rounding. Fluid inclusions in the hydrothermal breccias are dominantly two-phase, liquid-rich at room temperature, principally secondary, and form two distinctly different compositional groups. Older inclusions, unrelated to brecciation, are highly saline and homogenize to the liquid phase in the temperature range 189 to 246/sup 0/C. Younger inclusions, in part of interbreccia origin, are low-salinity and homogenize (also to liquid) in the range 230 to 283/sup 0/C. Vapor-rich inclusions locally trapped along with these dilute liquid-rich inclusions document periodic boiling. These fluid-inclusion data, together with alteration assemblages and textures as well as the local geologic history, have been combined to model hydrothermal brecciation at the VC-1 site.

Hulen, J.B.; Nielson, D.L.

1987-06-01T23:59:59.000Z

59

Infiltration/ground water linkage in the southwest: Response of shallow ground water to interannual variations of precipitation, Jemez Mountains, New Mexico  

DOE Green Energy (OSTI)

Hydraulic gradients, residence times and the hydrochemistry of shallow ground water are linked to the episodic precipitation and recharge events characteristic of the arid southwest. In this region, the amount of precipitation, and corresponding biomass, is dependant upon altitude with greater frequency and duration in the montane highlands and less in the desert lowlands. Results from a four-year study at the Rio Calaveras research site in the Jemez Mountains of northern New Mexico show a strong correlation between the physical and hydrochemical properties of shallow ground water and variations of seasonal precipitation and infiltration. For example, the water table shows a dramatic response to snowmelt infiltration during years of abundant snow pack (El Nifio) and diminished response during years of reduced snow pack (La Niiia). The chemical structure of shallow ground water is also affected by the precipitation regime, primarily by variations in the flux of reductants (organic carbon) and oxidants (dissolved oxygen) from the vadose zone to the water table. Generally, oxic conditions persist during spring snowmelt infiltration shifting to anoxic conditions as biotic and abiotic processes transform dissolved oxygen. Other redox-sensitive constituents (ferrous iron, manganese, sulfate, nitrate, and nitrite) show increasing and decreasing concentrations as redox fluctuates seasonally and year-to-year. The cycling of these redox sensitive solutes in the subsurface depends upon the character of the aquifer materials, the biomass at the surface, moisture and temperature regime of the vadose zone, and frequency of infiltration events.

Groffman, A. R. (Armand R.)

2002-01-01T23:59:59.000Z

60

Preliminary survey of tuff distribution in Esmeralda, Nye, and Lincoln Counties, Nevada  

Science Conference Proceedings (OSTI)

This report inventories the surface distribution of silicic tuffs in Nye, Esmeralda, and Lincoln Counties, NV, based on a review of available literature. The inventory was taken to provide a data base in evaluating tuff sites for the disposal of high-level nuclear waste. Silicic ash-flow tuffs that are about 11 to 34 million years (my) old are widespread in these counties. These rocks are locally deformed by right-lateral movement along Walker Lane and the Las Vegas Shear Zone, and left-lateral movement along a zone from near the Nevada Test Site (NTS) to the Utah border, and are commonly offset by steeply dipping normal faults. The normal faults that bound horsts, grabens, and tilted-fault blocks of the Basin-and-Range Province began to form 30 my ago; some are still active. Tuff distribution is discussed on a regional basis. Tuff thicknesses and alterations, structural complexity, and proximity to recent faulting, recent volcanism, and mineral resources are discussed for each area. Although the literature on which it is based is often incomplete and sketchy, this report is intended to serve as a basis for future, more detailed work that includes initial field inspection, detailed field and laboratory studies, and extrapolations to the subsurface.

Smith, G.V.; Pink, T.S.; Lawrence, J.R.; Woodward, L.A.; Keil, K.; Lappin, A.R.

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thermal conductivity of silicic tuffs: predictive formalism and comparison with preliminary experimental results  

Science Conference Proceedings (OSTI)

Performance of both near- and far-field thermomechanical calculations to assess the feasibility of waste disposal in silicic tuffs requires a formalism for predicting thermal conductivity of a broad range of tuffs. This report summarizes the available thermal conductivity data for silicate phases that occur in tuffs and describes several grain-density and conductivity trends which may be expected to result from post-emplacement alteration. A bounding curve is drawn that predicts the minimum theoretical matrix (zero-porosity) conductivity for most tuffs as a function of grain density. Comparison of experimental results with this curve shows that experimental conductivities are consistently lower at any given grain density. Use of the lowered bounding curve and an effective gas conductivity of 0.12 W/m{sup 0}C allows conservative prediction of conductivity for a broad range of tuff types. For the samples measured here, use of the predictive curve allows estimation of conductivity to within 15% or better, with one exception. Application and possible improvement of the formalism are also discussed.

Lappin, A. R.

1980-07-01T23:59:59.000Z

62

Solid earth geosciences research activities at LASL. Progress report, January 1--June 30, 1975  

DOE Green Energy (OSTI)

The geoscience group at the Los Alamos Scientific Laboratory (LASL) supports existing geoscience-related programs and conducts a basic research program related to energy and earth resources. Projects supporting the dry hot-rock geothermal energy program include study of drill cores, seismic activity associated with hydraulic fracturing at the drill site, and the thermal state of the Valles Caldera. Research in igneous processes includes the modeling of large-scale volcanic eruptions such as the one which deposited the Bandelier Tuff around the Jemez Mountains, the petrology of those tuffs, and the dimensions of the magma chamber below the Valles Caldera. Recent activity at Mt. Baker, WA, presented an opportunity to observe increasing fumarolic activity which may precede an eruption. The activity is continuously monitored by two sequence cameras. Samples of the tephra from around the vent have been studied, temperatures were measured, and ground observations were made of the new fumaroles. Every three months a flight is made over the volcano for aerial photography and infrared scanning. Field studies in the Southern Cascade Mountains were begun to determine the petrochemistry, mode of eruption, and volume of erupted materials for the last 0.5 million years. This study will be used to evaluate the present thermal state and composition of magmas below the range. Investigations ofactive volcanoes and their eruptions will provide data for geothermal research on the physical properties of the magma. (auth)

Heiken, G. (comp.)

1975-11-01T23:59:59.000Z

63

Assessment report on the kinetics of radionuclide adsorption on Yucca Mountain tuff  

SciTech Connect

The kinetics of sorption was measured by observing the uptake of radionuclides by tuff wafers and crushed tuff as a function of time. In addition, the broadening of breakthrough curves for cations eluted through crushed-tuff columns was interpreted in terms of adsorption kinetics. The results of these measurements are consistent with a diffusion-limited adsorption mechanism for simple cations, such as strontium, cesium, and barium. The adsorption kinetics for these simple cations is sufficiently fast so that equilibrium can be assumed for the retardation of these chemical species in the groundwater velocities that would be reasonable for most release scenarios. The actinides, in particular plutonium, exhibited a slow time dependence for adsorption. 23 refs., 61 figs., 12 tabs.

Rundberg, R.S.

1987-07-01T23:59:59.000Z

64

Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada  

Science Conference Proceedings (OSTI)

A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

K.J. Halford; R.J. Laczniak; D.L. Galloway

2005-10-07T23:59:59.000Z

65

In-situ tuff water migration/heater experiment: experimental plan  

Science Conference Proceedings (OSTI)

Tuffs on the Nevada Test Site (NTS) are currently under investigation as a potential isolation medium for heat-producing nuclear wastes. The National Academy of Sciences has concurred in our identification of the potentially large water content ({le}40 vol %) of tuffs as one of the important issues affecting their suitability for a repository. This Experimental Plan describes an in-situ experiment intended as an initial assessment of water generation/migration in response to a thermal input. The experiment will be conducted in the Grouse Canyon Welded Tuff in Tunnel U12g (G-Tunnel) located in the north-central region of the NTS. While the Grouse Canyon Welded Tuff is not a potential repository medium, it has physical, thermal, and mechanical properties very similar to those tuffs currently under consideration and is accessible at depth (400 m below the surface) in an existing facility. Other goals of the experiment are to support computer-code and instrumentation development, and to measure in-situ thermal properties. The experimental array consists of a central electrical heater, 1.2 m long x 10.2 cm diameter, surrounded by three holes for measuring water-migration behavior, two holes for measuring temperature profiles, one hole for measuring thermally induced stress in the rock, and one hole perpendicular to the heater to measure displacement with a laser. This Experimental Plan describes the experimental objectives, the technical issues, the site, the experimental array, thermal and thermomechanical modeling results, the instrumentation, the data-acquisition system, posttest characterization, and the organizational details.

Johnstone, J.K.

1980-08-01T23:59:59.000Z

66

G-Tunnel Welded Tuff Mining Experiment instrumentation evaluations; Yucca Mountain Site Characterization Project  

SciTech Connect

Designers and analysts of radioactive waste repositories must be able to predict the mechanical behavior of the host rock. Sandia National Laboratory has conducted a mine-by experiment in welded tuff so that information could be obtained regarding the response of the rock to a drill and blast excavation process, where smooth-blasting techniques were used. This report describes the results of the evaluations of nine different instrument or measurement systems used in conjunction with these mining activities.

Zimmerman, R.M. [Sandia National Labs., Albuquerque, NM (United States); Bellman, R.A. Jr.; Mann, K.L.; Thompson, T.W. [Science Applications International Corp., Las Vegas, NV (United States)

1992-04-01T23:59:59.000Z

67

Bench-scale experimental determination of the thermal diffusivity of crushed tuff  

Science Conference Proceedings (OSTI)

A bench-scale experiment was designed and constructed to determine the effective thermal diffusivity of crushed tuff. Crushed tuff particles ranging from 12.5 mm to 37.5 mm (0.5 in. to 1.5 in.) were used to fill a cylindrical volume of 1.58 m{sup 3} at an effective porosity of 0.48. Two iterations of the experiment were completed; the first spanning approximately 502 hours and the second 237 hours. Temperatures near the axial heater reached 700 degrees C, with a significant volume of the test bed exceeding 100 degrees C. Three post-test analysis techniques were used to estimate the thermal diffusivity of the crushed tuff. The first approach used nonlinear parameter estimation linked to a one dimensional radial conduction model to estimate thermal diffusivity from the first 6 hours of test data. The second method used the multiphase TOUGH2 code in conjunction with the first 20 hours of test data not only to estimate the crushed tuffs thermal diffusivity, but also to explore convective behavior within the test bed. Finally, the nonlinear conduction code COYOTE-II was used to determine thermal properties based on 111 hours of cool-down data. The post-test thermal diffusivity estimates of 5.0 x 10-7 m{sup 2}/s to 6.6 x 10-7 m{sup 2}/s were converted to effective thermal conductivities and compared to estimates obtained from published porosity-based relationships. No obvious match between the experimental data and published relationships was found to exist; however, additional data for other particle sizes and porosities are needed.

Ryder, E.E.; Finley, R.E.; George, J.T.; Ho, C.K.; Longenbaugh, R.S. [Sandia National Labs., Albuquerque, NM (United States); Connolly, J.R. [New Mexico Univ., Albuquerque, NM (United States)

1996-06-01T23:59:59.000Z

68

Silica Deposition in Field and Laboratory Thermal Tests of Yucca Mountain Tuff  

SciTech Connect

A field thermal test was conducted by the Yucca Mountain Site Characterization Project to observe changes in the Topopah Spring Tuff middle nonlithophysal zone geohydrologic system due to thermal loading. A laboratory-scale crushed-tuff hydrothermal column test was used to investigate the tuff as a potential construction material within a nuclear-waste repository. Results of similar column tests have been cited as indications that silica deposition would plug the rock fractures above a repository and create unfavorable drainage conditions. Data from field and laboratory tests are used here to predict the magnitude of fracture sealing. For the crushed-tuff column test, a one-meter-high column was packed with crushed tuff to a porosity of about 50%. Water filling the lowermost 10 cm of the column was boiled and the vapor condensed at the top of the column, percolating down to the boiling zone. After 100 days, intergranular pore space in the saturated portion of the column was almost filled with amorphous silica. The Drift Scale Test at Yucca Mountain is a heating test in the unsaturated zone. It consists of a four-year heating phase, now complete, followed by a four-year cooling phase. Heaters in a 60-m-long drift and in the adjacent rock have heated the drift walls to 200 C. As the rock was heated, fluids naturally present in the rock migrated away from the heat sources. A boiling zone now separates an inner dry-out zone from an outer condensation zone. A heat-pipe region exists in the outer margin of the boiling zone above the heated drift. Amorphous silica coatings up to a few micrometers thick were deposited in this region. Deposits were observed in less than 10% of the fractures in the heat pipe region. Drift-scale test results yield a silica deposition rate of about 250 {micro}m/1000 years in 10% of the fractures in the heat-pipe region. We did not calculate deposition rates from our column test, but a rate of 9.1 mm/1000 years in all fractures of the heat-pipe region is predicted by Sun and Rimstidt (2002) from the results of a similar test. We believe the rate based on field-test observations is a better prediction because the field test more closely resembles the expected environment in a repository. Rates based on column-test results may be reasonable for local zones of preferred fluid flow.

S.S. Levy; S.J. Chipera; M.G. Snow

2002-08-30T23:59:59.000Z

69

Preliminary one-dimensional thermal analysis of waste emplacement in tuffs  

SciTech Connect

One-dimensional calculations of near-field temperatures resulting from waste emplacement in a multiple-layered tuff stratigraphy are presented. Results indicate a marked sensitivity of peak temperatures to assignment of in-situ fluid pressure, geothermal-heat flux, waste type, and location of waste relative to a specific stratigraphic discontinuity. Under the criterion that allowable initial-power densities are limited by the occurrence of boiling at a distance of 10 m from emplaced waste, allowable power densities are calculated to range up to 150 kW/acre or more, depending upon geothermal heat flux and waste type.

Bulmer, B.M.; Lappin, A.R.

1980-04-01T23:59:59.000Z

70

Stress-corrosion-cracking studies on candidate container alloys for the Tuff Repository  

SciTech Connect

Cortest Columbus Technologies, Inc. (CC Technologies) investigated the long-term performance of container materials used for high-level waste package as part of the information needed by the Nuclear Regulatory Commission (NRC) to assess the Department of Energy`s application to construct to geologic repository for high-level radioactive waste. At the direction of the NRC, the program focused on the Tuff Repository. This report summarizes the results of Stress-Corrosion-Cracking (SCC) studies performed in Tasks 3, 5, and 7 of the program. Two test techniques were used; U-bend exposures and Slow-Strain-Rate (SSR) tests. The testing was performed on two copper-base alloys (Alloy CDA 102 and Alloy CDA 175) and two Fe-Cr-Ni alloys (Alloy 304L and Alloy 825) in simulated J-13 groundwater and other simulated solutions for the Tuff Repository. These solutions were designed to simulate the effects of concentration and irradiation on the groundwater composition. All SCC testing on the Fe-Cr-Ni Alloys was performed on solution-annealed specimens and thus issues such as the effect of sensitization on SCC were not addressed.

Beavers, J.A.; Durr, C.L. [Cortest Columbus Technologies, Inc., OH (United States)

1992-05-01T23:59:59.000Z

71

Selection of candidate canister materials for high-level nuclear waste containment in a tuff repository  

Science Conference Proceedings (OSTI)

A repository located at Yucca Mountain at the Nevada Test Site is a potential site for permanent geological disposal of high-level nuclear waste. The repository can be located in a horizon in welded tuff, a volcanic rock, which is above the static water level at this site. The environmental conditions in this unsaturated zone are expected to be air and water vapor dominated for much of the containment period. Type 304L stainless steel is the reference material for fabricating canisters to contain the solid high-level wastes. Alternative stainless alloys are considered because of possible susceptibility of 304L to localized and stress forms of corrosion. For the reprocessed glass wastes, the canisters serve as the recipient for pouring the glass with the result that a sensitized microstructure may develop because of the times at elevated temperatures. Corrosion testing of the reference and alternative materials has begun in tuff-conditioned water and steam environments. 21 references, 8 figures, 8 tables.

McCright, R.D.; Weiss, H.; Juhas, M.C.; Logan, R.W.

1983-11-01T23:59:59.000Z

72

Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site  

SciTech Connect

The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

Lance Prothro

2008-03-01T23:59:59.000Z

73

Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project  

SciTech Connect

The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J. [Colorado School of Mines, Golden, CO (United States). Earth Mechanics Inst.

1992-09-01T23:59:59.000Z

74

Preliminary numerical modeling for the G-Tunnel welded tuff mining experiment; Yucca Mountain site characterization project  

Science Conference Proceedings (OSTI)

Yucca Mountain, located in Southern Nevada, is to be considered as a potential site for a nuclear waste repository. Located in Rainier Mesa on the Nevada Test Site, G-Tunnel has been the site of a series of experiments, part of whose purpose is to evaluate measurement techniques for rock mechanics before testing in the Exploratory Shaft. Rainier Mesa is composed of welded and nonwelded tuffs that have thermal and mechanical properties and stress states similar to those of tuffs expected to be encountered at Yucca Mountain. A series of finite element calculations were performed to aid in designing instrumentation for the experiments in G-Tunnel and later to correlate with measured data. In this report are presented the results of the preliminary finite element calculations performed in conjunction with experimental measurements of drift convergence, or closure, and rock mass relaxation zones made before, during, and after completing the welded tuff mining experiment in G-Tunnel. Tape extensometer measurements of drift convergences and measurements determined by multiple point borehole extensometers are compared with corresponding calculated values using linear elastic and jointed rock material models. 9 refs., 25 figs., 7 tabs.

Johnson, R.L.; Bauer, S.J.

1991-09-01T23:59:59.000Z

75

Mineralogic Zonation Within the Tuff Confining Unit, Yucca Flat, Nevada Test Site  

SciTech Connect

Recently acquired mineralogic data from drill hole samples in Yucca Flat show that the tuff confining unit (TCU) can be subdivided into three mineralogic zones based on the relative abundances of primary and secondary mineral assemblages. These zones are (1) an upper zone characterized by the abundance of the zeolite mineral clinoptilolite with lesser amounts of felsic and clay minerals; (2) a middle zone with felsic minerals dominant over clinoptilolite and clay minerals; and (3) a basal argillic zone where clay minerals are dominant over felsic minerals and clinoptilolite. Interpretation of the mineralogic data, along with lithologic, stratigraphic, and geophysical data from approximately 500 drill holes, reveals a three-layer mineralogic model for the TCU that shows all three zones are extensive beneath Yucca Flat. The mineralogic model will be used to subdivide the TCU in the Yucca Flat hydrostratigraphic framework model, resulting in a more accurate and versatile framework model. In addition, the identification of the type, quantity, and distribution of minerals within each TCU layer will permit modelers to better predict the spatial distribution and extent of contaminant transport from underground tests in Yucca Flat, at both the level of the hydrologic source term and the corrective action unit.

Lance Prothro

2005-09-01T23:59:59.000Z

76

Recent developments in stochastic modeling and upscaling of hydrologic properties in tuff  

Science Conference Proceedings (OSTI)

A set of detailed geostatistical simulations of porosity has been produced for a layered stratigraphic sequence of welded and nonwelded volcanic tuffs at Yucca Mountain, Nevada. The simulations are produced using a composite. model of spatial continuity and they are highly conditioned to abundant drill hole (core) information. A set of derivative simulations of saturated hydraulic conductivity has been produced, in the absence of conditioning data, using a cross-variable relationship developed from similar data elsewhere. The detailed simulations reproduce both the major stratigraphic units and finer scale layering indicated by the drill hole data. These simulations have been scaled up several order of magnitude to represent block-scale effective hydrologic properties suitable for use in numerical modeling of groundwater flow and transport. The upscaling process involves the reformulation of a previously reported method that iteratively adapts an initial arbitrary grid to ``homogenize`` the detailed hydraulic properties contained within the adjusted cell limits and to minimize the size of cell in highly heterogeneous regions. Although the computation of the block-effective property involves simple numerical averaging, the blocks over which these averages are computed are relatively homogeneous, which reduces the numerical difficulties involved in averaging non-additive properties, such as permeability. The entire process of simulation and upscaling is rapid and computationally efficient compared with alterative techniques. It is thus suitable for the Monte Carlo evaluation of the uncertainty in site characterization as it affects the results of groundwater flow and transport calculations.

Rautman, C.A. [Sandia National Labs., Albuquerque, NM (United States); Robey, T.H. [Spectra Research Inst., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

77

A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Givens, C.A.; Carney, B.C. [IT Corp., Albuquerque, NM (United States)

1994-04-01T23:59:59.000Z

78

Observation and analysis of a pronounced permeability and porosity scale-effect in unsaturated fractured tuff  

SciTech Connect

Over 270 single-hole (Guzman et d., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-Role tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nonind support scale of about 1 m. The corresponding log permeability data exhibit. spatial behavior characteristic of a random fractal and yield a kriged estimate (Fig. 1) of how these 1-m scale log permeabilities vary in three-dimemional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a thee-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure 1n:ccirds from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach mounts to three-tlimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock volume (Fig.2). These tomographic images are compwable to those obtained by the kriging of 1-rn scale log permeability data from single-hole tests (Fig. 1). The results reveal a highly pronounced scale effect in permeability and porosity at the ALRS. We analyze the scaling of permeability at the site on ihe basis of a recent theory, which is consistent with our representation of the rack as a random fractal.

Illman, W. A. (Walter A.); Hyun, Y. (Yunjung); Neuman, S. P.; Di Federico, V. (Vittorio); Tartakovsky, D. M. (Daniel M.); Vesselinov, V. V. (Velimir V.)

2001-01-01T23:59:59.000Z

79

Radionuclide Migration Experiments in Tuff Blocks/Underunsaturated and Saturated Conditions at a Scale of Up to 1 Metre  

Science Conference Proceedings (OSTI)

To complement migration experiments with non-radioactive tracers in the Busted Butte experimental facility (BBTF) at the Nevada Test Site, an exploratory migration experiment has been performed under unsaturated conditions in a {approx}0.3m x {approx}0.3m x {approx}0.3m block of tuff. Longer term migration experiments, up to 600 days, under unsaturated and saturated conditions in {approx}1 m3 blocks of tuff have recently been completed. Na-fluorescein, 3H (as tritiated water), 22Na, 60Co, 95mTc and/or 99Tc (as the pertechnetate anion), 137Cs, and 237Np were used as tracers in all three experiments. Under unsaturated conditions, Tc is transported slightly faster than 3H, while under saturated conditions, the chemical conditions became highly reducing, leading to significant retardation of Tc along the flow field. If chemically reducing conditions can be demonstrated to exist in the saturated zone downstream from the proposed repository, the geological formations underlying the proposed repository horizon can potentially act as a geological barrier to the transport of some multivalent radionuclides.

Vandergraaf, T. T.; Drew, D. J.; Ticknor, K. V.; Hamon, C. J.; Seddon, W. A.

2003-02-25T23:59:59.000Z

80

URANIUM-SERIES DISEQUILIBRIUM IN TUFF AND GRANITE:HYDROGEOLOGICAL IMPLICATIONS  

SciTech Connect

Uranium occurs naturally at trace levels in the major rock-forming minerals (quartz, feldspars, micas) in volcanic and plutonic rocks and is concentrated in accessory minerals (zircon, sphene, apatite). It may attain concentrations as high as 1000 ppm in the accessory minerals. Radiometric age determinations on zircon and sphene have shown that uranium migration from these minerals is generally negligible over prolonged periods of geologic time. Zircon grains separated from highly weathered igneous rocks have been found to retain most of their uranium. In contrast, the uranium fixed onto mineral grain boundaries or present in less-resistant minerals such as biotite or hornblende can be readily leached by groundwater. The ubiquitous presence of uranium in a rock makes it an ideal ''natural analogue'' for understanding the mobility of uranium at a potential site for nuclear fuel waste disposal and one that is easily overlooked in the search for suitable analogues for a disposal site. Several of the intermediate radionuclides in the decay series of the two long-lived isotopes of uranium ({sup 238}U and {sup 235}U) have half-lives greater than one year and are, therefore, of geological interest. In a sealed rock mass with no water-rock interactions, all intermediate radionuclides attain radioactive equilibrium with one another within a maximum 1-2 million years. Because rocks of the Yucca Mountain area and the Canadian Shield (both potential sites for nuclear waste disposal in the United States and Canadian programs, respectively) are considerably older, this condition (known as secular equilibrium) should exist in these rocks, and all daughter/parent radionuclide activity ratios should equal unity (1.000). If the ratios are found not to equal unity, then the rock has been disturbed, probably by groundwater transport of more soluble radionuclides into or away from the rock. How recently this migration has occurred can be determined from the half-life of the radionuclide involved. Depending on the analytical precision obtained, the observation of a {sup 234}U/{sup 238}U activity ratio that is less than or greater than 1.000 clearly shows that an isotope of uranium has migrated within the rock in the last 1-2 million years. Other daughter/parent activity ratios can be used to detect radionuclide migration over shorter time-scales, such as {sup 230}Th/{sup 234}U (300,000 years) and {sup 226}Ra/{sup 230}Th (8,000 years). Uranium-series disequilibrium is, therefore, a useful technique for application to site evaluation for nuclear fuel waste disposal because it can be used to: (1) show that so-called ''intact rock'' is indeed intact (i.e. radionuclides are in secular equilibrium and are immobile), (2) determine the principal flow regimes in a rock mass by analysis of rock matrix, fracture material, etc., (3) estimate the time period of recent radionuclide migration in the rock, and (4) proxy as a natural analogue for the potential mobility of uranium at the site. Several examples of these applications have been reported. This paper describes the use of uranium-series disequilibrium in the comparison of two North American sites: the water-saturated Lac du Bonnet granite batholith on the Canadian Shield and the unsaturated tuffs from the Exploratory Studies Facility (ESF) and Cross-Drift Tunnels at Yucca Mountain, Nevada. In particular, the fact that unfractured rock should be at secular equilibrium is applied to both sites to determine if the rock matrix is a significant flow path for groundwater.

M. Gasscoyne; N.H. Miller

2000-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Theoretical and experimental determination of matrix diffusion and related solute transport properties of fractured tuffs from the Nevada Test Site  

SciTech Connect

Theoretical and experimental studies of the chemical and physical factors which affect molecular diffusion of dissolved substances from fractures into a tuffaceous rock matrix have been made on rocks from G-Tunnel and Yucca Mountain at the Nevada Test Site (NTS). A variety of groundwater tracers, which may be useful in field tests at the NTS, have also been developed and tested. Although a number of physical/chemical processes may cause nonconvective transport of dissolved species from fractures into the tuff matrix, molecular diffusion seems to be the most important process. Molecular diffusion in these rocks is controlled by the composition of the groundwater through multicomponent effects and several rock properties. The porosities of the samples studied ranged from about 0.1 to 0.4. The constrictivity-tortuosity parameter ranged from 0.1 and 0.3 and effective matrix-diffusion coefficients were measured to be between 2 to 17. x 10{sup -7} c,{sup 2}/s for sodium halides and sodium pentafluorobenzoate. Total porosity was found to be the principle factor accounting for the variation in effective diffusion coefficients. The constrictivity-tortuosity factor was found to have a fair correlation (r = 0.75) with the median pore diameters measured by mercury intrusion. Measurements of bulk-rock electrical impedance changes with frequency indicate that the constrictivity factor has a maximum value of 0.8 to 1, but may be smaller. If the larger values are correct, then the diffusion paths in tuff are more tortuous than in granular media. Computation of the full diffusion-coefficient matrix for various tracers in J-13 well water from the NTS indicates coupling of the diffusion fluxes of all ionic species. These effects are being incorporated into a numerical model of multicomponent-matrix diffusion.

Walter, G.R.

1982-10-01T23:59:59.000Z

82

Colloid Transport and Deposition in Water-Saturated and Unsaturated Sand and Yucca Mountain Tuff: Effect of Ionic Strength and Moisture Saturation  

Science Conference Proceedings (OSTI)

Colloid-aided radionuclide transport has been considered a potentially important mechanism for the candidate spent fuel and high level waste (HLW) repository at Yucca Mountain. This mechanism, however, has not been treated in Yucca Mountain Total System Performance Assessments (TSPAs) until recently. Even then there has been little discussion of possible colloid retention in the unsaturated zone. This report summarizes investigations of potential colloid retention in sand and Yucca Mountain tuff as a fun...

1999-12-03T23:59:59.000Z

83

Evaluation of past and future alterations in tuff at Yucca Mountain, Nevada, based on the clay mineralogy of drill cores USW G-1, G-2, and G-3  

SciTech Connect

The tuffs at Yucca Mountain in south-central Nevada are being studied by the Yucca Mountain Project (YMP) to determine their suitability for a high-level radioactive waste repository. For predictive purposes, it is important to understand the alteration history of Yucca Mountain and to know how the minerals in Yucca Mountain tuffs respond to changing conditions such as elevated temperatures. The clay mineralogy of these tuffs has been examined using x-ray powder diffraction, and approximation temperatures of alteration have been determined using available clay mineral data and fluid inclusion analyses. Also, several illites from drill holes USW G-1 and G-2 have been dated using K/Ar techniques, yielding ages of about 11 Myr. The clay mineral in Yucca Mountain tuffs are predominantly interstratified illite/smectites, with minor amounts of chloride, kaolinite, and interstratified chlorite/smectite at depth in USW G-1 and G-2. The reactions observed for these illite/smectites are similar to those observed in pelitic rocks. With depths, the illite/smectites transform from random interstratifications (R = 0) through ordered intermediates (R = 1) to illite in USW G-2 and to Kalkberg (R {ge} 3) interstratifications in USW G-1. The illite/smectites in USW G-3 have not significantly transformed. It appears that the illites in deeper rock results from hydrothermal and diagenetic reactions of earlier-formed smectites. These data demonstrate that the rocks at depth in the northern end of Yucca Mountain were significantly altered about 11 Myr ago. Both clay mineralogy and fluid inclusions suggest that the rocks at depth in USW G-2 have been subjected to postdepositional temperatures of at least 275{degree}C, those in USW G-1 have reached 200{degree}C, and USW G-3 rocks probably have not exceeded 100{degree}C. 64 refs., 9 figs., 3 tabs.

Bish, D.L.

1989-03-01T23:59:59.000Z

84

A Measurement System for Systematic Hydrological Characterization of Unsaturated Fractured Welded Tuff in a Mined Underground Tunnel  

SciTech Connect

A field investigation of unsaturated flow through a lithophysal unit of fractured welded tuff containing lithophysal cavities has been initiated. To characterize flow in this spatially heterogeneous medium, a systematic approach has been developed to perform tests in boreholes drilled at regular intervals in an underground tunnel (drift). In this paper, we describe the test equipment system that has been built for this purpose. Since the field-scale measurements, of liquid flow in the unsaturated, fractured rocks, require continuous testing for periods of days to weeks, the control of test equipment has been fully automated, allowing operation with no human presence at the field site. Preliminary results from the first set of tests are described. These tests give insight into the role of the matrix (perhaps also lithophysal cavities) as potential storage during the initial transient flow prior to the breakthrough of water at the drift crown, as well as the role of connected fractures that provide the subsequent quasi-steady flow. These tests also reveal the impact of evaporation on seepage into the drift.

R. J. Cook; R. Salve; B.M. Freifeld; Y.W. Tsang

2001-11-21T23:59:59.000Z

85

Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report  

SciTech Connect

This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literature survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.

Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P. [Babcock and Wilcox Co., Lynchburg, VA (USA). Nuclear Power Div.]|[Babcock and Wilcox Co., Alliance, OH (USA). Research and Development Div.

1990-09-01T23:59:59.000Z

86

Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results  

SciTech Connect

This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

Rechard, R.P. [ed.

1995-03-01T23:59:59.000Z

87

Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff; Data report: Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

Four series of cyclic direct-shear experiments were conducted on several replicas of three natural fractures and a tensile fracture of welded tuff from Yucca Mountain. The objective of these tests was to examine the effect of cyclic loading on joint shear behavior under different boundary conditions. The shear tests were performed under either different levels of constant normal load ranging between 0.6 and 25.6 kips (2.7 and 113.9 kN) or constant normal stiffness ranging between 14.8 and 187.5 kips/in (25.9 and 328.1 kn/cm) . Bach test in the two categories consisted of five cycles of forward and reverse shear. Normal compression tests were also performed both before and after each shear experiment to measure changes in joint normal deformability. In order to quantify fracture surface damage during shear, fracture-surface fractal dimensions were obtained from measurements before and after shear.

Wibowo, J.; Amadei, B.; Sture, S.; Robertson, A.B. [Colorado Univ., Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering; Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

1993-09-01T23:59:59.000Z

88

Mass Transfer Constraints On The Chemical Evolution Of An Active  

Open Energy Info (EERE)

Mass Transfer Constraints On The Chemical Evolution Of An Active Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System, Valles Caldera, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System, Valles Caldera, New Mexico Details Activities (4) Areas (2) Regions (0) Abstract: Partial equilibrium conditions occur between fluids and secondary minerals in the Valles hydrothermal system, contained principally in the Tertiary rhyolitic Bandelier Tuff. The mass transfer processes are governed by reactive phase compositions, surface areas, water-rock ratios, reaction rates, and fluid residence times. Experimental dissolution of the vitric phase of the tuff was congruent with respect to Cl in the solid and

89

Preferential Flow in Fractured Welded Tuffs  

E-Print Network (OSTI)

matrix properties, Yucca Mountain, Nevada, U.S. Geologicalprocesses at Yucca Mountain, Journal of ContaminantGroup exposed at Yucca Mountain, Nevada. , U.S. Geol. Surv.

Salve, Rohit

2004-01-01T23:59:59.000Z

90

Characterizing unsaturated diffusion in porous tuff gravel  

E-Print Network (OSTI)

report on the kinetics of radionuclide adsorption on Yuccaand synthesis report on radionuclide retardation for thecross section) to contain radionuclide transport. The invert

Hu, Qinhong; Kneafsey, Timothy J.; Roberts, Jeffery J.; Tomutsa, Liviu; Wang, Joseph, S.Y.

2003-01-01T23:59:59.000Z

91

Density Log at Valles Caldera - Redondo Area (Wilt & Haar, 1986) | Open  

Open Energy Info (EERE)

Valles Caldera - Redondo Area (Wilt & Haar, 1986) Valles Caldera - Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density at Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Density Log Activity Date Usefulness not indicated DOE-funding Unknown Notes The density log indicates three major density units within the well section : a surface layer of caldera fill, lake deposits, and other recent alluvium (2.12 g/cm3); the Bandelier Tuff and underlying volcanic and sedimentary units (2.3--2.5 g/cm3); and the basement unit, consisting of the lower Paleozoic and the upper Precambrian (2.65 g/cm3). There are, of course, significant density variations within each unit, but for modeling

92

Located in historic Los Alamos, New Mexico against the backdrop of the lush Jemez Mountains, Los Alamos National Laboratory (LANL)  

E-Print Network (OSTI)

Apprentice Consolidated Electrical Distributors, Inc. X X Management Trainee County of Sonoma X X X X A list

93

Nuclear dynamics consequence analysis of SNF disposed in volcanic tuff  

SciTech Connect

This paper describes criticality analyses for spent nuclear fuels in a geologic repository. The analyses investigated criticality potential, criticality excursion consequences, and the probability frequency for nuclear criticality. Key findings include: expected number of fissions per excursion range from 10{sup 17} to 10{sup 20}, repeated rate of criticalities range from 3 to 30 per year, and the probability frequency for criticality initiators (based on rough-order-of-magnitude calculations) is 7{times}10{sup {minus}7}. Overall results indicate that criticality consequences are a minor contribution to the biological hazards caused by the disposal of spent nuclear material.

Sanchez, L.C.; Cochrane, K. [Sandia National Labs., Albuquerque, NM (United States); Rath, J.S. [New Mexico Engineering Research Inst., Albuquerque, NM (United States); Taylor, L.L. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

1998-05-01T23:59:59.000Z

94

Geochemical and sedimentological investigations of Youngest Toba Tuff ashfall deposits  

E-Print Network (OSTI)

. Equivalent gal Fan, the i-welded pyro is colossal ive outflow een Prapa m in thickn and Ghaz ) caldera fill ported to -6). YTT as ; Acharyya l., 1998; We r et al., 1991 material h South Chin clastic density eruption a sheet, and d t and Porse ess... . Equivalent gal Fan, the i-welded pyro is colossal ive outflow een Prapa m in thickn and Ghaz ) caldera fill ported to -6). YTT as ; Acharyya l., 1998; We r et al., 1991 material h South Chin clastic density eruption a sheet, and d t and Porse ess...

Gatti, Emma

2013-03-12T23:59:59.000Z

95

U.S. DEPART]\\.1ENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

RECIPIENT: Pueblo of Jemez STATE: NM PROJECT Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico TITLE: Funding Opportunity Announcement...

96

Water quality in the vicinity of Fenton Hill: Progress report, 1983 and 1984  

DOE Green Energy (OSTI)

Water quality data have been collected since 1974 from established surface and groundwater stations at and in the vicinity of Fenton Hill (Hot Dry Rock Geothermal Demonstration Site) located in the Jemez Mountains. This is part of a continued program of environmental studies. There has been a slight variation in chemical quality of water from the surface and groundwater stations; however, these variations are within normal seasonal fluctuations. Water supply at the site is pumped from the aquifer in the Abiquiu Tuff. Cumulative production from 1976 through 1984 has been 41.5 x 10/sup 6/ gal. The water level in the supply well declined from 365 ft in 1976 to 379 ft in 1984.

Purtymun, W.D.; Ferenbaugh, R.W.; Becker, N.M.; Williams, M.C.; Maes, M.

1987-01-01T23:59:59.000Z

97

Modeling Unsaturated Flow and Transport Processes in Fractured Tuffs of Yucca Mountain  

E-Print Network (OSTI)

zone site-scale model, Yucca Mountain Site Characterizationsite-scale model, Yucca Mountain Project Milestone 3GLM105M,unsaturated zone, Yucca Mountain, Nevada. Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

98

Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing  

E-Print Network (OSTI)

are .pres or .pres_cal for pressure data files and .rtdor .rtd_cal for temperature data files. The files withC. Subroutines PRESSUREDATA and RTD are called upon next to

Freifeld, Barry

2001-01-01T23:59:59.000Z

99

Geothermal: Sponsored by OSTI -- Hydrogeochemical data for thermal...  

Office of Scientific and Technical Information (OSTI)

Hydrogeochemical data for thermal and nonthermal waters and gases of the Valles Caldera- southern Jemez Mountains region, New Mexico Geothermal Technologies Legacy Collection Help...

100

School Supply Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

SAV Associates, LLC Staples 2013 school district partners Adelante (Santa Fe Public Schools) Chama Public Schools Cochiti Elementary School Espanola Public Schools Jemez...

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

LANL Laces  

NLE Websites -- All DOE Office Websites (Extended Search)

shoes for elementary school children 2013 LANL Laces Phase 1 Chama Valley Independent Schools Espanola Public Schools Jemez Mountain School District Las Vegas City Schools Los...

102

Located in historic Los Alamos, New Mexico against the backdrop...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Mexico against the backdrop of the lush Jemez Mountains, Los Alamos National Laboratory (LANL) offers its education program participants hands-on experience and a wealth of...

103

A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain  

E-Print Network (OSTI)

to Fault Zones at Yucca Mountain, Nevada, International2003c. Calibration of Yucca Mountain Unsaturated Zone FlowUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

104

THE PROVENANCE OF EOCENE TUFF BEDS IN THE FOSSIL BUTTE MEMBER OF THE GREEN RIVER FORMATION, WYOMING: RELATION TO THE  

E-Print Network (OSTI)

Analysisofrecursivestochastic algorithms IEEE Trona. Aulo. Control AC-22 551-75 MscKay D J and Miller K D 1990Analyea of

Seamons, Kent E.

105

Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project  

SciTech Connect

This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

1993-05-01T23:59:59.000Z

106

A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain  

E-Print Network (OSTI)

development and analysis of radionuclide transport in theinvestigate fluid flow and radionuclide transport processeson moisture flow and radionuclide transport within or near

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

107

Ecological Impacts of the Cerro Grande Fire: Predicting Elk Movement and Distribution Patterns in Response to Vegetative Recovery through Simulation Modeling October 2005  

DOE Green Energy (OSTI)

In May 2000, the Cerro Grande Fire burned approximately 17,200 ha in north-central New Mexico as the result of an escaped prescribed burn initiated by Bandelier National Monument. The interaction of large-scale fires, vegetation, and elk is an important management issue, but few studies have addressed the ecological implications of vegetative succession and landscape heterogeneity on ungulate populations following large-scale disturbance events. Primary objectives of this research were to identify elk movement pathways on local and landscape scales, to determine environmental factors that influence elk movement, and to evaluate movement and distribution patterns in relation to spatial and temporal aspects of the Cerro Grande Fire. Data collection and assimilation reflect the collaborative efforts of National Park Service, U.S. Forest Service, and Department of Energy (Los Alamos National Laboratory) personnel. Geographic positioning system (GPS) collars were used to track 54 elk over a period of 3+ years and locational data were incorporated into a multi-layered geographic information system (GIS) for analysis. Preliminary tests of GPS collar accuracy indicated a strong effect of 2D fixes on position acquisition rates (PARs) depending on time of day and season of year. Slope, aspect, elevation, and land cover type affected dilution of precision (DOP) values for both 2D and 3D fixes, although significant relationships varied from positive to negative making it difficult to delineate the mechanism behind significant responses. Two-dimensional fixes accounted for 34% of all successfully acquired locations and may affect results in which those data were used. Overall position acquisition rate was 93.3% and mean DOP values were consistently in the range of 4.0 to 6.0 leading to the conclusion collar accuracy was acceptable for modeling purposes. SAVANNA, a spatially explicit, process-oriented ecosystem model, was used to simulate successional dynamics. Inputs to the SAVANNA included a land cover map, long-term weather data, soil maps, and a digital elevation model. Parameterization and calibration were conducted using field plots. Model predictions of herbaceous biomass production and weather were consistent with available data and spatial interpolations of snow were considered reasonable for this study. Dynamic outputs generated by SAVANNA were integrated with static variables, movement rules, and parameters developed for the individual-based model through the application of a habitat suitability index. Model validation indicated reasonable model fit when compared to an independent test set. The finished model was applied to 2 realistic management scenarios for the Jemez Mountains and management implications were discussed. Ongoing validation of the individual-based model presented in this dissertation provides an adaptive management tool that integrates interdisciplinary experience and scientific information, which allows users to make predictions about the impact of alternative management policies.

S.P. Rupp

2005-10-01T23:59:59.000Z

108

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University FOR GEOTHERMAL EXPLORATION AT JEMEZ PUEBLO IN NEW MEXICO Lianjie Huang1 and Michael Albrecht2 1 Los Alamos Geothermal Technology Center 4200 West Jemez Road, Suite 301-13 Los Alamos, NM 87544, USA e-mail: michael

Stanford University

109

CX-003493: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93: Categorical Exclusion Determination 93: Categorical Exclusion Determination CX-003493: Categorical Exclusion Determination Recovery Act: Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico CX(s) Applied: B3.1 Date: 08/17/2010 Location(s): New Mexico Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Pueblo of Jemez (Jemez) proposes to use Department of Energy (DOE) and cost share funding to develop and demonstrate geothermal resource on the Pueblo of Jemez Reservation. In Phase I (Exploration), Jemez would characterize the initial state of the reservoir, obtain the baseline data required to develop, and characterize the geothermal resource using geologic mapping. At this time, the DOE is now evaluating Task 2, Geophysical Surveys. DOCUMENT(S) AVAILABLE FOR DOWNLOAD

110

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NM-TRIBE-JEMEZ PUEBLO NM-TRIBE-JEMEZ PUEBLO Location: Tribe NM-TRIBE-JEMEZ NM PUEBLO American Recovery and Reinvestment Act: Proposed Action or Project Description: The Jemez Pueblo of New Mexico proposes to 1) conduct energy audits of tribal facilities and member homes which would form the basis for its proposed energy efficiency and renewable energy plan and, if needed, hire a technical consultant to assist with preparation of the plan; and 2) purchase and install energy efficient appliances for Jemez Pueblo tribal members. Conditions: None Categorical Exclusion(s) Applied: A1, A9, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21 This action would not: threaten a violation of applicable statutory, regulatory, or permit requirements for environment, safety, and health,

111

CX-000662: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

62: Categorical Exclusion Determination 62: Categorical Exclusion Determination CX-000662: Categorical Exclusion Determination Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico CX(s) Applied: B3.1 Date: 02/09/2010 Location(s): New Mexico Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Jemez Pueblo would complete a Geothermal Energy study on the Jemez Pueblo reservation. The goal of this project is to research and develop possible geothermal energy sources on the Jemez Pueblo reservation. Field work would take place on the Jemez Pueblo reservation in New Mexico. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-000662.pdf More Documents & Publications CX-003493: Categorical Exclusion Determination CX-006853: Categorical Exclusion Determination CX-008227

112

TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1  

E-Print Network (OSTI)

mineralogic model of Yucca Mountain, Nevada, Rev 2.0 . , Losfrom tuffs at Yucca Mountain, Nevada, USA. Geochim.in zeolitized tuffs at Yucca Mountain, Nevada, USA. Geochim.

Xu, Tianfu

2008-01-01T23:59:59.000Z

113

--No Title--  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

To facilitate disposal of unusable tuff tanks with a rad use history, Spent Fuel Projects personnel will absorb any residual water contained in tuff tanks, separate the plastic...

114

VEHICLE ACCESS PORTALS  

NLE Websites -- All DOE Office Websites (Extended Search)

East Jemez Road (Map 1) East Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffic Lane 1: Closed except for emergencies and maintenance operations. Traffic Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identification to Protective Force officers. Drivers may proceed upon direction of the officers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs during non-work hours (between 7

115

Progress report on the results of testing advanced conceptual design metal barrier materials under relevant environmental conditions for a tuff repository  

SciTech Connect

This report discusses the performance of candidate metallic materials envisioned for fabricating waste package containers for long-term disposal at a possible geological repository at Yucca Mountain, Nevada. Candidate materials include austenitic iron-base to nickel-base alloy (AISI 304L, AISI 316L, and Alloy 825), high-purity copper (CDA 102), and copper-base alloys (CDA 613 and CDA 715). Possible degradation modes affecting these container materials are identified in the context of anticipated environmental conditions at the repository site. Low-temperature oxidation is the dominant degradation mode over most of the time period of concern (minimum of 300 yr to a maximum of 1000 yr after repository closure), but various forms of aqueous corrosion will occur when water infiltrates into the near-package environment. The results of three years of experimental work in different repository-relevant environments are presented. Much of the work was performed in water taken from Well J-13, located near the repository, and some of the experiments included gamma irradiation of the water or vapor environment. The influence of metallurgical effects on the corrosion and oxidation resistance of the material is reviewed; these effects result from container fabrication, welding, and long-term aging at moderately elevated temperatures in the repository. The report indicates the need for mechanisms to understand the physical/chemical reactions that determine the nature and rate of the different degradation modes, and the subsequent need for models based on these mechanisms for projecting the long-term performance of the container from comparatively short-term laboratory data. 91 refs., 17 figs., 16 tabs.

McCright, R.D.; Halsey, W.G.; Van Konynenburg, R.A.

1987-12-01T23:59:59.000Z

116

Update to Assessment of Direct Disposal in Unsaturated Tuff of Spent Nuclear Fuel and High-Level Waste Owned by U.S. Department of Energy  

SciTech Connect

The overall purpose of this study is to provide information and guidance to the Office of Environmental Management of the U.S. Department of Energy (DOE) about the level of characterization necessary to dispose of DOE-owned spent nuclear fuel (SNF). The disposal option modeled was codisposal of DOE SNF with defense high-level waste (DHLW). A specific goal was to demonstrate the influence of DOE SNF, expected to be minor, in a predominately commercial repository using modeling conditions similar to those currently assumed by the Yucca Mountain Project (YMP). A performance assessment (PA) was chosen as the method of analysis. The performance metric for this analysis (referred to as the 1997 PA) was dose to an individual; the time period of interest was 100,000 yr. Results indicated that cumulative releases of 99Tc and 237Np (primary contributors to human dose) from commercial SNF exceed those of DOE SNF both on a per MTHM and per package basis. Thus, if commercial SNF can meet regulatory performance criteria for dose to an individual, then the DOE SNF can also meet the criteria. This result is due in large part to lower burnup of the DOE SNF (less time for irradiation) and to the DOE SNF's small percentage of the total activity (1.5%) and mass (3.8%) of waste in the potential repository. Consistent with the analyses performed for the YMP, the 1997 PA assumed all cladding as failed, which also contributed to the relatively poor performance of commercial SNF compared to DOE SNF.

P. D. Wheatley (INEEL POC); R. P. Rechard (SNL)

1998-09-01T23:59:59.000Z

117

Uranium potential of southwestern New Mexico (southern Hidalgo County), including observations on crystallization history of lavas and ash tuffs and the release of uranium from them. Final report  

SciTech Connect

Geological environments present in southwestern New Mexico include thick sequences of sedimentary rock including limestone, conglomerates, sandstone, and shale: igneous intrusions with associated metal deposits; caldera centers, margins, and outflow facies; and basins with marginal faults and thick late Cenozoic sedimentary fillings. Predominant rock types are Paleozoic carbonates, Mesozoic terrigeneous rocks and carbonates, and Cenozoic volcanic rocks and basin-filling terrigeneous rocks. Consideration of information available in Preliminary Reconnaissance Reports and in Hydrogeochemical and Stream Reconnaissance Reports together with 347 new whole rock chemical analyses points to three areas of anomalous uranium abundance in Hidalgo County, New Mexico. The area has experienced three major periods of igneous activity in Phanerozoic time: one associated with the Laramide cycle of the Late Cretaceous and early Tertiary, mid-Tertiary cycle of silicic volcanism with abundant calderas, and a late Tertiary cycle of mafic volcanism. Silicic volcanic rocks are the most common exposed rock type in the area, and the most enriched in uranium (range, 0.4 to 19 ppM). The most likely source for any uranium ore-forming solutions lies with this cycle of volcanism. Solutions might have been introduced during volcanism or formed later by groundwater leaching of cooled volcanic rocks. Results indicate that groundwater leaching of cooled volcanic rocks was not an effective means of mobilizing uranium in the area. Study of several rhyolite lava flows indicates that they were emplaced in supercooled condition and may have crystallized completely at temperatures well below their liquids, or they may have warmed as crystallization released latent heat. Statistical comparison of the uranium concentration revealed no differences between vitrophyres and associated felsites.

Walton, A.W.; Salter, T.L.; Zetterlund, D.

1980-08-01T23:59:59.000Z

118

The Diurnal Path of the Sun: Ideology and Interregional Interaction in Ancient Northwest Mesoamerica and the American Southwest  

E-Print Network (OSTI)

A second San Diego Polychrome jar recovered at a Jemez sitethat encircle the neck of the jar (ibid. : fig. 4.24a-b). Inuntil it filled four water jars. These four water jars may

Mathiowetz, Michael Dean

2011-01-01T23:59:59.000Z

119

Los Alamos National Laboratory sponsors 15th Hazmat Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy...

120

Los Alamos imager aboard IBEX space mission  

NLE Websites -- All DOE Office Websites (Extended Search)

on the emerging scientific field of quantitative biology. October 17, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez...

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Where do dogs come from?  

NLE Websites -- All DOE Office Websites (Extended Search)

on the emerging scientific field of quantitative biology. October 16, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez...

122

Intelligence team given national honor  

NLE Websites -- All DOE Office Websites (Extended Search)

with the Department of Energy Exceptional Service Award. February 28, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez...

123

Laboratory announces 2008 Fellows  

NLE Websites -- All DOE Office Websites (Extended Search)

Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as...

124

International science conferences in Santa Fe  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation of Radiation Effects in Solids. June 22, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as...

125

November  

NLE Websites -- All DOE Office Websites (Extended Search)

technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as...

126

Los Alamos observatory fingers cosmic ray 'hot spots'  

NLE Websites -- All DOE Office Websites (Extended Search)

magnetic fields near our solar system. November 24, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as...

127

October  

NLE Websites -- All DOE Office Websites (Extended Search)

technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as...

128

____________________________________________________________...  

National Nuclear Security Administration (NNSA)

9B. DATED (SEE ITEM 11) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Los Alamos National Security, LLC 4200 West Jemez Road Suite 400 10A....

129

Part III - List of Documents, Exhibits, and Other Attachments  

National Nuclear Security Administration (NNSA)

BY If other than Item 6) CODE 05003 NNSALos Alamos Site Office U. S . Department of Energy Los Alamos Site Office 3747 West Jemez Road Los Alamos NM 87544 8. NAME AND ADDRESS OF...

130

NUCLEAR WASTE ISOLATION IN THE UNSATURATED ZONE OF ARID REGIONS  

E-Print Network (OSTI)

on thm Properties of Tuff, Sandia National Laboratory Reportthe Properties of Tuff, Sandia Nat. Lab. Rpfc. SANDtO-1464 (the Properties of Toff, sandia Hat. Lab. Rapt. SANDSO-1464 (

Wollenberg, H.A.

2010-01-01T23:59:59.000Z

131

A Darcian integral approximation to interblock hydraulic conductivity means in vertical infiltration  

Science Conference Proceedings (OSTI)

Keywords: Yucca Mountain tuff, elliptic boundary value problem, numerical method, piecewise steady-state flow, simulation model, unsaturated flow

Donald L. Baker

2000-06-01T23:59:59.000Z

132

CX-008197: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

97: Categorical Exclusion Determination 97: Categorical Exclusion Determination CX-008197: Categorical Exclusion Determination New Mexico TRIBE-JEMEZ PUEBLO CX(s) Applied: A1, A9, B5.1 Date: 04/03/2012 Location(s): New Mexico Offices(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant. The Jemez Pueblo of New Mexico proposes to 1) conduct energy audits of tribal facilities and member homes which would form the basis for its proposed energy efficiency and renewable energy plan and, if needed, hire a technical consultant to assist with preparation of the plan; and 2) purchase and install energy efficient appliances for Jemez Pueblo tribal members. U.S. Department of Energy NEPA Categorical Exclusion Determination Form More Documents & Publications CX-000662: Categorical Exclusion Determination

133

New funding will stimulate alternative energy research  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative energy research Alternative energy research New funding will stimulate alternative energy research The Laboratory recently received notice that it has received ARRA funding to participate in four geothermal projects with Pueblo of Jemez, New Mexico Tech, and the University of Utah. November 16, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

134

Forest fire near Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Forest fire near Los Alamos National Laboratory Forest fire near Los Alamos National Laboratory Forest fire near Los Alamos National Laboratory The Las Conchas fire burning in the Jemez Mountains approximately 12 miles southwest of the boundary of LANL has not entered Lab property at this time. June 26, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

135

Scaillet et al. -Ar/Ar dating of the Green Tuff, Pantelleria (p.1/40) JQSR-D-13-00063 Millennial-scale phase relationships between ice-core and  

E-Print Network (OSTI)

-scale phase relationships between ice-core and Mediterranean marine records: insights from high-precision 40-00063 Abstract With the advent of annually-resolved polar ice records extending back to 70 ka, marine of this study. This improved estimate enables potential phase lags and leads to be studied between deep

Recanati, Catherine

136

Dialogs by Yuri V. Dublyansky regarding ``Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, tuffs: Environment of formation``. Special report number 15, Contract number 94/96.0003  

SciTech Connect

This report is a review of a paper published in the 5th Annual International Conference on High Level Radioactive Wastes. The paper dealt with fluid inclusion studies of calcite veins from Yucca Mountain. This paper is included with this report. The author of this report analyzes the paper`s theory of the origin of these calcite deposits as dissolution and precipitation of carbonate materials from simple rainwater infiltration. The author reviews some of the methods utilized in the original research and the problems with thermometry of fluid inclusions in calcite. The author also expresses concerns over other laboratory procedures utilized to calculate various compositional values.

NONE

1994-07-01T23:59:59.000Z

137

Discernment of two opposing reports on the hydrological effects of a hydrothermal power plant  

DOE Green Energy (OSTI)

Two evaluations to determine the hydrological effects of a 50-megawatt hydrothermal power plant in the Jemez Mountains give dramatically different results. One shows little effect; the other, a large one. The treatments agree on some thermal-zone water supplies to the Jemez River but not on the expected changes in these flows. The primary areas of disagreement appear to be the total volume of water in the reservoir and the movement of this water to the point of withdrawal. The author (a nonhydrologist) has compared these reports but leaves final judgment of the accuracy of either evaluation for some erudite hydrologists, as some experimental data and model development are needed.

Williams, J.M.

1986-06-01T23:59:59.000Z

138

Studies of digital seismic data obtained in geothermal and volcanic regions. Progress report  

DOE Green Energy (OSTI)

Progress is reported in the following research areas: (1) study of tremor waveforms recorded at Mount St. Helens during 1980; (2) study of seismicity recorded during 1981 at Mount St. Helens; and (3) the monitoring of seismicity accompanying hydrofracturing experiments carried out in the Jemez Mountains of New Mexico. (ACR)

Fehler, M.

1982-08-10T23:59:59.000Z

139

Proceedings of ICRC 2001: 1 c Copernicus Gesellschaft 2001 Status of the Milagro Gamma Ray Observatory  

E-Print Network (OSTI)

, active galactic nuclei (AGN), and gamma ray bursts (GRB). In addition, more exotic sources like Gamma Ray Observatory, located at an altitude of 8,600 feet in the Jemez Mountains of New Mexico for sources of TeV gamma rays. It is uniquely capable of search- ing for transient sources of VHE gamma rays

California at Santa Cruz, University of

140

Draft Supplemental Programmatic Environmental Impact Statement on Stockpile Stewardship and Management for a Modern Pit Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modern Pit Facility Draft Environmental Impact Statement Modern Pit Facility Draft Environmental Impact Statement xii ACRONYMS AND ABBREVIATIONS AC/MC Analytical Chemistry and Materials Characterization ACHP Advisory Council on Historic Preservation ALARA as low as reasonably achievable ALOHA Aerial Location of Hazardous Atmospheres AQCR Air Quality Control Region ARF airborne release fraction Bison-m Biota Information System of New Mexico BLM Bureau of Land Management BLS Bureau of Labor Statistics BNM Bandelier National Monument CAA Clean Air Act CAIRS Computerized Accident/Incident Reporting System CD-0 critical decision on mission need CEQ Council on Environmental Quality CFR Code of Federal Regulations CGTO Consolidated Group of Tribes and Organizations

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Summary report on the geochemistry of Yucca Mountain and environs  

Science Conference Proceedings (OSTI)

This report gives a detailed description of work at Los Alamos that will help resolve geochemical issues pertinent to siting a high-level nuclear waste repository in tuff at Yucca Mountain, Nevada. It is necessary to understand the properties and setting of the host tuff because this rock provides the first natural barrier to migration of waste elements from a repository. The geochemistry of tuff is being investigated with particular emphasis on retardation processes. This report addresses the various aspects of sorption by tuff, physical and chemical makeup of tuff, diffusion processes, tuff/groundwater chemistry, waste element chemistry under expected repository conditions, transport processes involved in porous and fracture flow, and geochemical and transport modeling.

Daniels, W.R.; Wolfsberg, K.; Rundberg, R.S.

1982-12-01T23:59:59.000Z

142

Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes...  

Open Energy Info (EERE)

oxygen isotope compositions of cores and cuttings from Long Valley exploration wells show that the Bishop Tuff has been an important reservoir for both fossil and active...

143

A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories  

E-Print Network (OSTI)

emplacement drift at Yucca Mountain. Journal of Contaminantniches in tuff units at Yucca Mountain. Proceedings of thetunnels, similar to the Yucca Mountain repository concept in

Rutqvist, Jonny

2008-01-01T23:59:59.000Z

144

An integrated methodology for characterizing flow and transport processes in fractured rock  

E-Print Network (OSTI)

Unsaturated Zone, Yucca Mountain, Nevada. Water-Resourcesof the unsaturated zone of Yucca Mountain, NV from three-in fractured tuffs of Yucca Mountain, Vadose Zone Journal,

Wu, Yu-Shu

2007-01-01T23:59:59.000Z

145

Experimental and numerical simulation of dissolution and precipitation: Implications for fracture sealing at Yucca Mountain, Nevada  

E-Print Network (OSTI)

FRACTURE SEALING AT YUCCA MOUNTAIN, NEVADA Patrick F. Dobsonpotential repository at Yucca Mountain, Nevada, would reducewas flowed through crushed Yucca Mountain tuff at 94C. The

Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

2001-01-01T23:59:59.000Z

146

Preclosure Monitoring and Performance Confirmation at Yucca Mountain: Applicability of Geophysical, Geohydrological, and Geochemical Methods  

E-Print Network (OSTI)

Repository, Vol. II: Tuff, NUREG/CR-4161 Gregory, A.R. ,Repository Performance, NUREG/CR-2547 (1982). Tsang, C. F

Tsang, C.F.

2010-01-01T23:59:59.000Z

147

ASSESSMENT OF ABORIGINAL SMALLHOLDER SOILS FOR  

E-Print Network (OSTI)

interbed- ded shales, and granitic intrusions. Tointerbedded tuffs and shales of the same age. The Mendoi-terraces, the quartzite and shale-derived soils on the high

Kurt A. Schwabe

2006-01-01T23:59:59.000Z

148

BioMed Central Page 1 of 24  

E-Print Network (OSTI)

), as well as isotopes of uranium (U), plutonium (Pu), and americium (Am). These radionuclides have been,353 19 166 Vitric tuff 400 0 526 3.17 29 Zeolitic tuff 430 0 22 3 2 Plutonium Alluvium 24 230 21,000 4 of plutonium is affected by a number of competing variables, and Pu is observed to coexist in multiple valence

Hu, Qinhong "Max"

149

Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping  

Science Conference Proceedings (OSTI)

The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristics of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer3, lower clastic confining unit1, and Mesozoic granite confining unit).

Drellack, S.L.; Prothro, L.B.; Townsend, M.J.; Townsend, D.R.

2011-02-01T23:59:59.000Z

150

Charles McMillan to lead Los Alamos National Laboratory's Weapons Program  

NLE Websites -- All DOE Office Websites (Extended Search)

McMillan to Lead Weapons Program McMillan to Lead Weapons Program Charles McMillan to lead Los Alamos National Laboratory's Weapons Program He will provide oversight and direction for the nuclear weapons program at Los Alamos to accomplish the Laboratory's core mission. July 28, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

151

Smithsonian's Museum Day at Bradbury Science Museum  

NLE Websites -- All DOE Office Websites (Extended Search)

Smithsonian's Museum Day Smithsonian's Museum Day Smithsonian's Museum Day at Bradbury Science Museum Museum Day is when museums and cultural institutions across the nation open their doors free of charge to Smithsonian magazine subscribers and Smithsonian.com visitors. September 22, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

152

March  

NLE Websites -- All DOE Office Websites (Extended Search)

March March /newsroom/_assets/images/newsroom-icon.jpg March We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Carbon nanostructures-elixir or poison? A LANL toxicologist and a team of researchers have documented potential cellular damage from "fullerenes"-soccer-ball-shaped, cage-like molecules composed of 60 carbon atoms. - 3/31/10 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

153

LANL breaks ground on key sediment control project  

NLE Websites -- All DOE Office Websites (Extended Search)

Sediment control project Sediment control project LANL breaks ground on key sediment control project Called "grade-control" structures, the approximately $2 million features are up to eight feet high and made of rocks packed tightly into wire enclosures. November 5, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

154

LANL announces new senior leadership position, associated organizational  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL announces new senior leadership position LANL announces new senior leadership position LANL announces new senior leadership position, associated organizational restructuring Paul Henry named principal associate director for capital projects. March 18, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Communications Office

155

Los Alamos wins 2008 Pollution Prevention awards  

NLE Websites -- All DOE Office Websites (Extended Search)

2008 Pollution Prevention awards 2008 Pollution Prevention awards Los Alamos wins 2008 Pollution Prevention awards Winner of two Best-in-Class Pollution Prevention awards and six Environmental Stewardship awards from the National Nuclear Security Administration. February 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

156

Scientists use world's fastest supercomputer to explore magnetic  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputer to explore magnetic reconnection Supercomputer to explore magnetic reconnection Scientists use world's fastest supercomputer to explore magnetic reconnection The focus is to understand the three-dimensional evolution of thin electrical current layers where magnetic reconnection initially develops. October 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

157

Lab completes record year for environmental cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Record year for environmental cleanup Record year for environmental cleanup Lab completes record year for environmental cleanup Personnel conducted more field investigations and cleanup campaigns than ever and completed a record number of Lab shipments to WIPP. December 16, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

158

Los Alamos National Laboratory receives Recovery Act funds  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act funds Recovery Act funds Los Alamos National Laboratory receives Recovery Act funds Recovery Act funds will go toward environmental compliance and cleaning up Cold War-era buildings slated for demolition. July 21, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Fred deSousa Communications Office

159

The quest for a new class of superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

New class of superconductors New class of superconductors The quest for a new class of superconductors Research teams from Los Alamos National Laboratory, the University of Edinburgh and Cambridge University are suggesting another mechanism for the still-mysterious phenomenon. December 20, 2007 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

160

Los Alamos names new head of stockpile manufacturing and support  

NLE Websites -- All DOE Office Websites (Extended Search)

New head of stockpile manufacturing and support New head of stockpile manufacturing and support Los Alamos names new head of stockpile manufacturing and support Carl Beard is the new associate director for stockpile manufacturing and support. Beard has held this position in an acting capacity since June 2007. January 22, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Quality New Mexico recognizes Community Programs Office  

NLE Websites -- All DOE Office Websites (Extended Search)

CPO receives Piñon recognition CPO receives Piñon recognition Quality New Mexico recognizes Community Programs Office LANL has received 14 Piñon and Roadrunner recognitions from Quality New Mexico since 1997. March 6, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Steve Sandoval Communications Office

162

Los Alamos National Laboratory earns three R&D 100 awards  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL earns three R&D 100 awards LANL earns three R&D 100 awards LANL earns three R&D 100 awards The technologies include a molecular beacon that targets specific nucleic acids, a spacer fluid for oil wells that shrinks when heated, and a better way to produce thorium. June 22, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

163

Los Alamos National Laboratory cosponsors 30th Expanding Your Horizons  

NLE Websites -- All DOE Office Websites (Extended Search)

Expanding your horizons conference Expanding your horizons conference Los Alamos National Laboratory cosponsors 30th Expanding Your Horizons conference The young women will participate in hands-on activities related to fields, such as astronomy, aerospace, chemistry, and earth science. March 16, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

164

Los Alamos Biosafety committee will hold meeting June 10  

NLE Websites -- All DOE Office Websites (Extended Search)

Biosafety committee meeting June 10 Biosafety committee meeting June 10 Los Alamos Biosafety Committee will hold meeting June 10 The committee is responsible for reviewing and approving all proposals, activities, and experiments involving an organism or product of an organism that presents a risk to humans. June 5, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

165

Scientists produce transparent, light-harvesting material  

NLE Websites -- All DOE Office Websites (Extended Search)

Transparent, light-harvesting material Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman Communications Office (505) 665-9203

166

Los Alamos National Laboratory attracts record number of students this  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL attracts record number of students LANL attracts record number of students Los Alamos National Laboratory attracts record number of students this summer More than 1,300 students interned in both technical and nontechnical fields. September 7, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Steve Sandoval

167

Los Alamos National Security invests in Santa Fe Community College  

NLE Websites -- All DOE Office Websites (Extended Search)

Santa Fe Community College Foundation Santa Fe Community College Foundation Los Alamos National Security invests in Santa Fe Community College Foundation The new center is an educational and training facility for alternative energy and green jobs. July 16, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Steve Sandoval

168

Scientists use world's fastest supercomputer to model origins of the  

NLE Websites -- All DOE Office Websites (Extended Search)

Origins of the unseen universe Origins of the unseen universe Scientists use world's fastest supercomputer to model origins of the unseen universe The model aims to look at galaxy-scale mass concentrations above and beyond quantities seen in state-of-the-art sky surveys. October 26, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

169

Laboratory employees collect backpacks, school supplies for area school  

NLE Websites -- All DOE Office Websites (Extended Search)

School supplies for children School supplies for children Laboratory employees collect backpacks, school supplies for area school children Employees donated more than 1,000 backpacks and thousands of school supplies, including pencils, pens, and notebooks. August 20, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

170

New companies get boost from Los Alamos National Security  

NLE Websites -- All DOE Office Websites (Extended Search)

New companies get boost from LANS New companies get boost from LANS New companies get boost from Los Alamos National Security Mustomo, Inc., IX Power, Synfolia and Tape-Ease are the latest recipients of $165,000 in Venture Acceleration Fund (VAF) awards. November 19, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

171

June  

NLE Websites -- All DOE Office Websites (Extended Search)

June June /newsroom/_assets/images/newsroom-icon.jpg June We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Laboratory issues statement on Los Alamos Historical Document Retrieval and Assessment report This is an important document, and we take it seriously. - 6/25/09 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

172

Los Alamos National Laboratory's Quality and Performance Assurance  

NLE Websites -- All DOE Office Websites (Extended Search)

Quality New Mexico Quality New Mexico Los Alamos National Laboratory's Quality and Performance Assurance Division receives Piñon Recognition from Quality New Mexico The Lab and its support service contractors have received 31 Piñon and Roadrunner recognitions since 1997. April 17, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

173

Climate researcher McDowell receives Fulbright Scholar Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Fulbright Scholar Award Fulbright Scholar Award Climate researcher McDowell receives Fulbright Scholar Award The Fulbright Program is designed to "increase mutual understanding between the people of the United States and the people of other countries." August 31, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

174

Part III - List of Documents, Exhibits, and Other Attachments  

National Nuclear Security Administration (NNSA)

0241 See Block 16C 0241 See Block 16C 6. ISSUED BY CODE 05003 NNSA/Los Alamos Site Office U.S. Department of Energy NNSA/Los Alamos Site Office 3747 West Jemez Road Los Alamos NM 87544 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, State and ZIP Code) L A p L OS ALAMOS NATIONAL SECURITY, ttn: STEVE K. SHOOK .0. BOX 1663, MS P222 OS ALAMOS NM 875450001 CODE 175252894 LLC FACILITY CODE 11 CONTRACT ID CODE I PAGE OF PAGES i I 2 4. REQUISITION/PURCHASE REQ NO. 15. PROJECT NO. (If applicable) 7. ADMINISTERED BY (ff other than Item 6) coDE 105003 NNSA/Los Alamos Site Office U.S. Department of Energy Los Alamos Site Off ice 3747 West Jemez Road Los Alamos NM 87544 (x) 9A. AMENDMENT OF SOLICITATION NO. f - - 9B. DATED (SEE ITEM 11) 10A. MODIFICATION OF CONTRACT/ORDER NO.

175

Carbon nanostructures-elixir or poison?  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon nanostructures-elixir or poison? Carbon nanostructures-elixir or poison? Carbon nanostructures-elixir or poison? A LANL toxicologist and a team of researchers have documented potential cellular damage from "fullerenes"-soccer-ball-shaped, cage-like molecules composed of 60 carbon atoms. March 31, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

176

LANL Medal recipient George Cowan, 90, presents memoirs at talk, book  

NLE Websites -- All DOE Office Websites (Extended Search)

George Cowan presents memoirs at talk George Cowan presents memoirs at talk LANL Medal recipient George Cowan, 90, presents memoirs at talk, book signing February 25 in Los Alamos Scientist, businessman, and philanthropist George Cowan will talk about his new book, Manhattan Project to the Santa Fe Institute. February 17, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

177

July  

NLE Websites -- All DOE Office Websites (Extended Search)

July July /newsroom/_assets/images/newsroom-icon.jpg July We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Security creates mentor-protégé agreements with two veteran-owned businesses New mentor-protégé agreements with SDV Construction and Trillacorpe Construction. - 7/30/09 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

178

Astronomy days lectures begin July 8 at Bradbury Science Museum  

NLE Websites -- All DOE Office Websites (Extended Search)

Astronomy days lectures begin July 8 Astronomy days lectures begin July 8 Astronomy Days lectures begin July 8 at Bradbury Science Museum Didier Saumon leads off the series with a talk about extrasolar planets and brown dwarf stars. July 2, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Communications Office

179

Laboratory disputes citizens' lawsuit  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab disputes ctizens' lawsuit Lab disputes ctizens' lawsuit Laboratory disputes citizens' lawsuit Lab officials expressed surprise to a lawsuit alleging noncompliance with the federal Clean Water Act filed today by citizens groups. February 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman

180

Frontiers in Science Lectures focus on saving energy through  

NLE Websites -- All DOE Office Websites (Extended Search)

Frontiers in Science Lectures Frontiers in Science Lectures Frontiers in Science Lectures focus on saving energy through superconductivity Dean Peterson discusses the science of high-temperature superconductivity in a series of Frontiers in Science lectures. June 12, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Los Alamos scientists see new mechanism for superconductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

New mechanism for superconductivity New mechanism for superconductivity Los Alamos scientists see new mechanism for superconductivity Researchers have posited an explanation for superconductivity that may open the door to the discovery of new, unconventional forms of superconductivity. November 24, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

182

Los Alamos National Laboratory sponsors 14th Hazmat Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL sponsors 14th Hazmat Challenge LANL sponsors 14th Hazmat Challenge Los Alamos National Laboratory sponsors 14th Hazmat Challenge The challenge provides hazardous materials responders the opportunity to network and learn new techniques under realistic conditions in a safe environment. July 22, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

183

Lookman and Moore named 2009 LANL Fellows Prize recipients  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 LANL Fellows Prize recipients 2009 LANL Fellows Prize recipients Lookman and Moore named 2009 LANL Fellows Prize recipients The Fellows organization includes some of the Laboratory's most prominent scientists. November 23, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Communications Office (505) 667-7000

184

Los Alamos National Laboratory's Safety Short program wins Department of  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Award Innovation Award Los Alamos National Laboratory's Safety Short program wins Department of Energy Innovation Award The Lab's Safety Short products address practices that promote the well-being of every Lab worker throughout each day, both at work and at home. October 7, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

185

Los Alamos National Laboratory names new head of weapons programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory names new head of weapons programs Laboratory names new head of weapons programs Los Alamos National Laboratory names new head of weapons programs Bret Knapp has been acting in that position since June 2011. December 1, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Kevin Roark Communications Office (505) 665-9202

186

Algal Biology Program at Los Alamos gets a star  

NLE Websites -- All DOE Office Websites (Extended Search)

Algal Biology Program gets a star Algal Biology Program gets a star Algal Biology Program at Los Alamos gets a star Richard Sayre, one of the nation's top specialists in algae and energy-producing plant research, has joined LANL to help boost cutting-edge research. October 11, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

187

Homesteading on the Pajarito Plateau topic of inaugural lecture at Los  

NLE Websites -- All DOE Office Websites (Extended Search)

Homesteading On The Pajarito Plateau Homesteading On The Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory The lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. January 4, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

188

U.S. DEPART]\.1ENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPART]\.1ENT OF ENERGY DEPART]\.1ENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERI\IINATION RECIPIENT: Pueblo of Jemez STATE: NM PROJECT Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0000109 DE-EE0002841 GFO-0002841 -003 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description : A9 Information gathering (including, but not limited to, literature surveys. inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies. analytical energy supply and

189

Oxygen detected in atmosphere of Saturn's moon Dione  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of molecular oxygen ions in the upper-most atmosphere of Dione. March 3, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

190

Lab receives $25,000 for Math and Science Academy from Chevron Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab receives $25,000 for Math and Science Academy Lab receives $25,000 for Math and Science Academy Lab receives $25,000 for Math and Science Academy from Chevron Energy Technology Company The program is conducted by LANL in cooperation with its regional education, business, and government partners. November 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

191

Reorganization bolsters nuclear nonproliferation capability  

NLE Websites -- All DOE Office Websites (Extended Search)

Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability LANL has strengthened its capability in a key aspect of nuclear nonproliferation by combining two groups within its Global Security organization. June 27, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

192

Christmas burst reveals neutron star collision  

NLE Websites -- All DOE Office Websites (Extended Search)

Christmas burst reveals neutron star collision Christmas burst reveals neutron star collision Christmas burst reveals neutron star collision Called the Christmas Burst, GRB 101225A was freakishly lengthy and it produced radiation at unusually varying wavelengths. December 1, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

193

Second highest-ranking U.S. military officer gets classified briefings  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. military officer gets classified briefings U.S. military officer gets classified briefings Second highest-ranking U.S. military officer gets classified briefings Winnefield was at Los Alamos to receive a wide variety of classified briefings that covered the broad spectrum of national security science at the Lab. November 17, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

194

Los Alamos National Laboratory to host robot rodeo  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL to host robot rodeo LANL to host robot rodeo Los Alamos National Laboratory to host robot rodeo Teams compete in events and simulations that may include having their robots remove bombs from the inside of aircraft, rescuing injured first responders and navigating obstacle courses. May 21, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

195

LANL to certify automated influenza surveillance system  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL to certify automated influenza surveillance system LANL to certify automated influenza surveillance system LANL to certify automated influenza surveillance system A compact automated system for surveillance and screening of potential pandemic strains of influenza and other deadly infectious diseases is a step closer to reality. January 31, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

196

Los Alamos National Laboratory, LANS develop new mentor-protégé  

NLE Websites -- All DOE Office Websites (Extended Search)

New mentor-protégé agreements New mentor-protégé agreements Los Alamos National Laboratory, LANS develop new mentor-protégé agreements LANS, LLC recently entered into mentor-protégé agreements with North Wind, Inc. and Performance Maintenance Inc. July 8, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

197

Los Alamos National Security supports community nonprofits  

NLE Websites -- All DOE Office Websites (Extended Search)

LANS supports community nonprofits LANS supports community nonprofits Los Alamos National Security supports community nonprofits Nonprofit organizations are receiving more than $80,300 as a result of the volunteer efforts of LANL employees and retirees. June 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

198

Hydrogen storage gets new hope  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable hydrogen-based vehicles. September 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman

199

Los Alamos technologies help scientists detect, record & interpret  

NLE Websites -- All DOE Office Websites (Extended Search)

March » March » 'Monster' burst of gamma rays Los Alamos technologies help scientists detect, record & interpret 'monster' burst of gamma rays The burst was detected by NASA's Swift satellite. March 21, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Nancy Ambrosiano Communications Office

200

Los Alamos National Laboratory names six scientists as 2009 Fellows  

NLE Websites -- All DOE Office Websites (Extended Search)

Six scientists named 2009 Fellows Six scientists named 2009 Fellows Los Alamos National Laboratory names six scientists as 2009 Fellows Antoinette "Toni" Taylor, Stephen Becker, Joachim Birn, Lowell Brown, Patrick Colestock, and Samuel "Tom" Picraux have been designated 2009 LANL Fellows. November 5, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Brain teasers traveling exhibit opens at Los Alamos National Laboratory's  

NLE Websites -- All DOE Office Websites (Extended Search)

Brain teasers exhibit opens at museum Brain teasers exhibit opens at museum Brain Teasers traveling exhibit opens at Los Alamos National Laboratory's Bradbury Science Museum The interactive exhibit is a collection of more than 20 puzzles and mind benders. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

202

Media advisory: breakfast and brilliance . . .  

NLE Websites -- All DOE Office Websites (Extended Search)

Creating our tomorrows, LDRD Day 2012 Creating our tomorrows, LDRD Day 2012 Media advisory: breakfast and brilliance . . . Media are invited to the annual celebration of Laboratory Directed Research and Development (LDRD) projects on October 23. October 17, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Nancy Ambrosiano

203

Stopping executions, saving computers with new malware detection tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Saving computers with new malware detection tool Saving computers with new malware detection tool Stopping executions, saving computers with new malware detection tool A computer tool that allows the machine to identify malicious executable files without being exposed to their harmful actions. October 21, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

204

Lab wins six NNSA Pollution Prevention awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab wins six NNSA Pollution Prevention awards Lab wins six NNSA Pollution Prevention awards Lab wins six NNSA Pollution Prevention awards The Laboratory has captured awards for projects ranging from energy savings to creating fuels from algae. March 7, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Fred deSousa Communications Office

205

Los Alamos Neutron Science Center gets capacity boost  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science Center capacity boost Neutron Science Center capacity boost Los Alamos Neutron Science Center gets capacity boost The facility can simulate the effects of hundreds or thousands of years of cosmic-ray-induced neutrons in a single hour. December 2, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

206

Scientists model brain structure to help computers recognize objects  

NLE Websites -- All DOE Office Websites (Extended Search)

Do you see what I see? Do you see what I see? Scientists model brain structure to help computers recognize objects The team tried developing a computer model based on human neural structure and function, to do what we do, and possibly do it better. December 20, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

207

Five selected as Los Alamos National Laboratory Fellows  

NLE Websites -- All DOE Office Websites (Extended Search)

Five selected LANL Fellows Five selected LANL Fellows Five selected as Los Alamos National Laboratory Fellows The five researchers are Brenda Dingus, William (Bill) Louis, John Sarrao, Dipen Sinha and Giday Woldegabriel. November 16, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman

208

"Artificial" brains, electrical grids, and disease modeling: Los Alamos  

NLE Websites -- All DOE Office Websites (Extended Search)

Science discoveries unveiled Science discoveries unveiled "Artificial" brains, electrical grids, and disease modeling: Los Alamos science discoveries unveiled September 15 The event is an opportunity for business leaders and community members to learn about where science is heading, as well as for students to discover potential new career directions. September 8, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

209

Laboratory to change vehicle traffic-screening regimen at vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Changes to vehicle traffic-screening Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and won't be staffed by a Laboratory protective force officer. September 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

210

September  

NLE Websites -- All DOE Office Websites (Extended Search)

September September /newsroom/_assets/images/newsroom-icon.jpg September We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. LANL demolishes first containment dome at disposal area It once housed thousands of drums of radioactive waste that have been shipped to the Waste Isolation Pilot Plant for disposal. - 9/30/09 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

211

Top-secret super-secure vault declassified  

NLE Websites -- All DOE Office Websites (Extended Search)

Top-secret super-secure vault declassified Top-secret super-secure vault declassified Top-secret super-secure vault declassified Located in Los Alamos canyon at Technical Area 41, the Tunnel Vault was built between 1948 and 1949. July 23, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Kevin Roark Communications Office

212

Earth Day event showcases LANL energy work  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth Day showcases energy work Earth Day showcases energy work Earth Day event showcases LANL energy work The public is invited to learn about projects in energy conservation, generation, research, and management at an Energy Town Hall April 21. April 19, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

213

Artificial molecules that switch "handedness" at light-speed  

NLE Websites -- All DOE Office Websites (Extended Search)

Artificial molecules that switch "handedness" Artificial molecules that switch "handedness" Artificial molecules that switch "handedness" at light-speed Researchers create the first artificial molecules whose chirality can be rapidly switched from a right-handed to a left-handed orientation with a beam of light. July 10, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

214

Solar wind samples give insight into birth of solar system  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar wind samples Solar wind samples Solar wind samples give insight into birth of solar system Most of the Genesis payload consisted of fragile solar-wind collectors, which had been exposed to the solar particles over a period of two years. June 23, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

215

Lab obtains approval to begin design on new radioactive waste staging  

NLE Websites -- All DOE Office Websites (Extended Search)

New radioactive waste staging facility New radioactive waste staging facility Lab obtains approval to begin design on new radioactive waste staging facility The 4-acre complex will include multiple staging buildings plus an operations center and a concrete pad for mobile waste characterization equipment. September 1, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

216

Battling bird flu by the numbers  

NLE Websites -- All DOE Office Websites (Extended Search)

May » May » Battling bird flu by the numbers Battling bird flu by the numbers Lab theorists have developed a mathematical tool that could help health experts and crisis managers determine in real time whether an emerging infectious disease such as avian influenza H5N1 is poised to spread globally. May 27, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

217

Los Alamos National Laboratory employees, Lab contractor pledge record $2.5  

NLE Websites -- All DOE Office Websites (Extended Search)

United Way pledge record United Way pledge record Los Alamos National Laboratory employees, Lab contractor pledge record $2.5 million to local United Way organizations, other nonprofits The Laboratory employee contributions will fund a number of United Way agencies and programs as well as other eligible nonprofit organizations. November 18, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

218

LANL spinoff receives NIH grant for respiratory disease diagnostic device  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL spinoff receives NIH grant LANL spinoff receives NIH grant LANL spinoff receives NIH grant for respiratory disease diagnostic device Mesa Tech has been awarded a grant to develop an inexpensive, instrument-free, nucleic-acid testing device to diagnose various respiratory diseases in record time. October 19, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

219

LANL exceeds Early Recovery Act recycling goals  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

220

Mimicking the Moon's surface in the basement  

NLE Websites -- All DOE Office Websites (Extended Search)

Mimicking the Moon's surface Mimicking the Moon's surface Mimicking the Moon's surface in the basement The table-top simulation helped confirm that the Moon is inherently dry. August 4, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman Communications Office (505) 665-9203 Email "It's the first completion of Recovery Act work at the Lab, and I'm

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electronic structure of superconductivity refined  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic structure of superconductivity refined Electronic structure of superconductivity refined Electronic structure of superconductivity refined A team of physicists propose a new model that expands on a little understood aspect of the electronic structure in high-temperature superconductors. July 10, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

222

The drive toward hydrogen vehicles just got shorter  

NLE Websites -- All DOE Office Websites (Extended Search)

The drive toward hydrogen vehicles just got shorter The drive toward hydrogen vehicles just got shorter The drive toward hydrogen vehicles just got shorter Researchers have revealed a new single-stage method for recharging the hydrogen storage compound ammonia borane. March 21, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

223

Christina Behr-Andres named science advisor to governor  

NLE Websites -- All DOE Office Websites (Extended Search)

Science advisor to governor Science advisor to governor Christina Behr-Andres named science advisor to governor Behr-Andres will aid indevelopment and promotion of science and technology policies for economic and educational opportunities. June 9, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James Rickman

224

Los Alamos National Laboratory again top contributor to United Way of Santa  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL top contributor LANL top contributor Los Alamos National Laboratory again top contributor to United Way of Santa Fe County Employees and LANS, LLC donated $113,000 to the United Way of Santa Fe County's giving campaign. July 1, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Steve Sandoval

225

Director's commitment to diversity recognized  

NLE Websites -- All DOE Office Websites (Extended Search)

Director's commitment to diversity recognized Director's commitment to diversity recognized Director's commitment to diversity recognized Profiles in Diversity Journal is recognizing Director Michael Anastasio for his commitment to workplace diversity. March 11, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Communications Office

226

LANL to play key role in biofuel development  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuel development Biofuel development LANL to play key role in biofuel development LANL to create a proof-of-concept system for commercializing algae-based biofuels or other advanced biofuels that can be transported and sold using the nation's existing fueling infrastructure. January 14, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

227

News Releases - 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

/newsroom/_assets/images/newsroom-icon.jpg News Releases - 2011 We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory announces top 10 science stories of 2011 Stories include alternative energy research, magnetic fields, disease tracking, the study of Mars, climate change, fuel cells, solar wind, and magnetic reconnection. - 12/23/11 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

228

Collaboration yields 'The Right Glasses' for observing mystery behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Observing mystery behavior In electrons Observing mystery behavior In electrons Collaboration yields 'The Right Glasses' for observing mystery behavior in electrons The research may lead to a better understanding of superconductors or development of better materials for powering high-speed electronics. December 13, 2007 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

229

LANL demolishes first containment dome at disposal area  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL Demolishes First Containment Dome LANL Demolishes First Containment Dome LANL demolishes first containment dome at disposal area It once housed thousands of drums of radioactive waste that have been shipped to the Waste Isolation Pilot Plant for disposal. September 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

230

Area schools get new computers through Los Alamos National Laboratory, IBM  

NLE Websites -- All DOE Office Websites (Extended Search)

Area schools get new computers Area schools get new computers Area schools get new computers through Los Alamos National Laboratory, IBM partnership Northern New Mexico schools are recipients of fully loaded desktop and laptop computers. May 8, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Steve Sandoval

231

Search for Earth-like planets includes LANL star analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Search for earth-like planets Search for earth-like planets Search for Earth-like planets includes LANL star analysis The mission will not only be able to search for planets around other stars, but also yield new insights into the parent stars themselves. March 6, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

232

Lab scientists shed light on heavy electrons, suggest new view of  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists shed light on heavyd electrons Scientists shed light on heavyd electrons Lab scientists shed light on heavy electrons Their findings hold the potential to provide new insight into superconductivity that could dramatically change the efficiency, for example, of power generation and storage. July 31, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

233

LANL sponsors Recovery Act Job Fair  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Job Fair Recovery Act Job Fair LANL sponsors Recovery Act Job Fair The fair was aimed at filling current and future positions with subcontractors working on environmental cleanup under the American Recovery and Reinvestment Act. October 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

234

Laboratory program helps small businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory program helps small businesses Laboratory program helps small businesses Laboratory program helps small businesses The NMSBA allows for-profit small businesses to request technical assistance that capitalizes on the unique expertise and capabilities of Los Alamos and Sandia national laboratories. June 23, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

235

Satellite stories featured in Lab lecture series  

NLE Websites -- All DOE Office Websites (Extended Search)

February » February » Satellite stories featured Satellite stories featured in Lab lecture series Space adventures will be featured in the upcoming Frontiers in Science lecture series "Small Satellites on a Shoestring: The LANL Experience." February 14, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

236

Los Alamos instrument to shine light on Mars habitability  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrument to shine light on Mars habitability Instrument to shine light on Mars habitability Los Alamos instrument to shine light on Mars habitability The robust ChemCam system is one of 10 instruments mounted on the mission's rover vehicle, named Curiosity. November 28, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

237

Los Alamos National Laboratory ships last of high-activity drums to WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

ships last ff high-activity drums to WIPP ships last ff high-activity drums to WIPP Los Alamos National Laboratory ships last of high-activity drums to WIPP The November shipment was the final delivery this year to the Carlsbad plant, which is scheduled to undergo facility maintenance through mid-January. November 25, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

238

Los Alamos National Laboratory purchases nearly $1 billion in goods and  

NLE Websites -- All DOE Office Websites (Extended Search)

Goods and services purchases Goods and services purchases Los Alamos National Laboratory purchases nearly $1 billion in goods and services last fiscal year The Laboratory also exceeded its goals for purchases made by small businesses in Northern New Mexico, the state and the country. December 6, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

239

Biomedical device potential for robust, implantable product  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-emitting nanocrystal diodes go ultraViolet Light-emitting nanocrystal diodes go ultraViolet Light-emitting nanocrystal diodes go ultraviolet A team of scientists has developed a process for creating glass-based, inorganic light-emitting diodes (LEDs) that produce light in the ultraviolet range. February 24, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

240

Los Alamos, Sandia National labs recognize New Mexico small businesses for  

NLE Websites -- All DOE Office Websites (Extended Search)

12th annual innovation celebration 12th annual innovation celebration Los Alamos, Sandia National labs recognize New Mexico small businesses for innovation The program was created in 2000 to bring national laboratory technology and expertise to small businesses in New Mexico and promote economic development with an emphasis on rural areas. April 3, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Investor and entrepreneur visits Los Alamos for open coffee  

NLE Websites -- All DOE Office Websites (Extended Search)

Investor and entrepreneur visits for open coffee Investor and entrepreneur visits for open coffee Investor and entrepreneur visits Los Alamos for open coffee Brad Feld, a renowned early-stage investor and entrepreneur, will attend a meeting of the Open Coffee Club networking event. March 29, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

242

Los Alamos National Laboratory board renews plan for education, economic  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL board renews giving plan LANL board renews giving plan Los Alamos National Laboratory board renews plan for education, economic development, charitable giving The Los Alamos National Security, LLC Board of Governors last week approved a $3.1 million extension to the company's giving plan in Northern New Mexico. September 18, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

243

Plutonium less mysterious with nuclear magnetic resonance  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium less mysterious with nuclear magnetic resonance Plutonium less mysterious with nuclear magnetic resonance Plutonium less mysterious with nuclear magnetic resonance For more than 50 years, chemists and physicists have been searching for the plutonium-239 magnetic resonance signal. May 21, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

244

Fast pandemic detection tool ready to fight flu  

NLE Websites -- All DOE Office Websites (Extended Search)

Fast pandemic detection tool ready to fight flu Fast pandemic detection tool ready to fight flu Fast pandemic detection tool ready to fight flu Researchers are developing new tools for rapidly characterizing biological pathogens that could give rise to potentially deadly pandemics such as Influenza A (H1N1). June 9, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

245

Understanding of solar wind structure might be wrong  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar wind structure misunderstood Solar wind structure misunderstood Understanding of solar wind structure might be wrong The plasma particles flowing from the Sun and blasting past the Earth might be configured more as a network of tubes than a river-like stream. September 7, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

246

Los Alamos scientists detect and track single molecules with nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanotube "glowsticks" transform surface science tool kit Nanotube "glowsticks" transform surface science tool kit Los Alamos scientists detect and track single molecules with nanoscale carbon cylinders Researchers have now shown that semiconducting carbon nanotubes have the potential to detect and track single molecules in water. January 10, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

247

LANL open to badge holders only  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL open to badge holders only LANL open to badge holders only LANL open to badge holders only Badges will be physically checked at the Laboratory's vehicle access points. Those without badges will be directed around the Laboratory via New Mexico Route 4. August 6, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

248

Los Alamos National Lab awards $753 million in contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL awards $753 million in contracts LANL awards $753 million in contracts Los Alamos National Lab awards $753 million in contracts These subcontract awards for products and professional services demonstrate the Laboratory's continued investment in New Mexico small businesses. April 16, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

249

News Releases - 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

/newsroom/_assets/images/newsroom-icon.jpg News Releases - 2008 We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. New airport liquid analysis system undergoes testing at Albuquerque International Sunport A new tool that distinguishes potential-threat liquids from the harmless shampoos and sodas a regular traveler might take aboard an aircraft. - 12/16/08 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

250

Los Alamos National Laboratory employees and LANS partner to record $2  

NLE Websites -- All DOE Office Websites (Extended Search)

Record $2 million for United Way Record $2 million for United Way Los Alamos National Laboratory employees and LANS partner to record $2 million in pledges for local United Way programs The employee contributions along with the LANS match support the United Way of Northern New Mexico, United Way of Santa Fe County and other qualifying nonprofit organizations. November 20, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

251

Laboratory adds a sixth R&D 100 award to its 2009 count  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D 100 awards R&D 100 awards Laboratory adds a sixth R&D 100 award to its 2009 count This year's awards bring the Los Alamos total to 113 since the Laboratory first entered the competition in 1978. November 4, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Communications Office

252

Los Alamos National Laboratory technologies capture prestigious R&D 100  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL technologies capture R&D 100 awards LANL technologies capture R&D 100 awards Los Alamos National Laboratory technologies capture prestigious R&D 100 awards Winning Laboratory projects are the 3-D Tracking Microscope and Laser-Weave technology. July 3, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

253

Science at the petascale: Roadrunner results unveiled  

NLE Websites -- All DOE Office Websites (Extended Search)

October » October » Roadrunner results unveiled Science at the petascale: Roadrunner results unveiled The Roadrunner system is now beginning its transition to classified computing to assure the safety, security, and reliability of the U.S. nuclear deterrent. October 26, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

254

Los Alamos National Laboratory to work on nuclear design, plutonium  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab to work on nuclear design, plutonium research Lab to work on nuclear design, plutonium research Los Alamos National Laboratory to work on nuclear design, plutonium research and development, and supercomputing LANL selected as preferred alternative site for plutonium research, development, and limited manufacturing, along with nuclear weapons design and engineering, and supercomputing. December 18, 2007 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and

255

Preliminary study assesses potential impact of seismic event at Los Alamos  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary study assesses potential impact of seismic event at Los Preliminary study assesses potential impact of seismic event at Los Alamos Preliminary study assesses potential impact of seismic event at Los Alamos New or proposed facilities are designed to meet the latest seismic response criteria. April 15, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

256

Awards recognize outstanding LANL Tech Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Outstanding Tech Transfer awards Outstanding Tech Transfer awards Awards recognize outstanding LANL Tech Transfer Awards were given for distinguished accomplishments in patenting, copyright, licensing, programmatic impact, and regional impact during fiscal year 2009. August 23, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

257

Recovery Act milestone: Excavation begins at Manhattan Project landfill  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act milestone Recovery Act milestone Recovery Act milestone: Excavation begins at Manhattan Project landfill The six-acre site contains a series of trenches used from 1944 to 1948 to dispose of hazardous and non-hazardous trash from Manhattan Project labs and buildings. July 1, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

258

News Releases - 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

/newsroom/_assets/images/newsroom-icon.jpg News Releases - 2009 We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Science satellites seek Santa Los Alamos scientists will use two advanced science satellites to mark the course taken by the elfin traveler. - 12/16/09 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

259

Los Alamos National Security creates mentor-protégé agreements with two  

NLE Websites -- All DOE Office Websites (Extended Search)

Agreements with veteran-owned businesses Agreements with veteran-owned businesses Los Alamos National Security creates mentor-protégé agreements with two veteran-owned businesses New mentor-protégé agreements with SDV Construction and Trillacorpe Construction. July 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

260

Los Alamos National Laboratory accounts for nearly $3 billion of New  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL accounts for nearly $3 billion of New Mexico's economy LANL accounts for nearly $3 billion of New Mexico's economy Los Alamos National Laboratory accounts for nearly $3 billion of New Mexico's economy The Lab directly injected $1.6 billion into New Mexico's economy, with an additional $1.3 billion resulting from indirect economic spending. April 27, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Lab begins demolition of Cold War-era buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Demolition begins of cold War-Era buildings Demolition begins of cold War-Era buildings Lab begins demolition of Cold War-era buildings More than 165,000 square feet of former research, production, and office buildings will be demolished. December 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Communications Office

262

Milestone reached: Waste shipment leaves Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste shipment leaves LANL Waste shipment leaves LANL Milestone reached: Waste shipment leaves Los Alamos National Laboratory The material, known as "remote-handled transuranic waste" (RH-TRU), has been stored at the Laboratory since 1995. June 2, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

263

Lab captures five R&D100 awards for 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Five R&D awards for 2012 Five R&D awards for 2012 Lab captures five R&D100 awards for 2010 Technologies include a greener explosive, superconducting and ultraconducting wires, a super high-speed camera, and a way to get fuel from algae with sound waves. July 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

264

LANL names new head of Plutonium Science and Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Jeff Yarbrough joins Los Alamos from B&W Pantex Jeff Yarbrough joins Los Alamos from B&W Pantex LANL names new head of Plutonium Science and Manufacturing Jeff Yarbrough joins Los Alamos from the B&W Pantex plant in Amarillo, Texas. March 2, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Kevin Roark Communications Office

265

Los Alamos achieves world-record pulsed magnetic field  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos achieves world-record pulsed magnetic field Los Alamos achieves world-record pulsed magnetic field Los Alamos achieves world-record pulsed magnetic field Researchers have set a new world record for the strongest magnetic field produced by a nondestructive magnet. August 23, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

266

Los Alamos identifies internal material control issue  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal material control issue Internal material control issue Los Alamos identifies internal material control issue The error relates to internal inventory and accounting that documents movement of sensitive materials within a small portion of Technical Area 55. February 26, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

267

Lab completes Recovery Act-funded demolition  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act-funded demolition completed Recovery Act-funded demolition completed Lab completes Recovery Act-funded demolition The building was the largest of the 24 demolished at LANL's historic Technical Area 21. January 19, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Fred deSousa Communications Office (505) 665-3430

268

Los Alamos National Laboratory employees, Lab contractor pledge record $2.3  

NLE Websites -- All DOE Office Websites (Extended Search)

Local United Way organizations Local United Way organizations Los Alamos National Laboratory employees, Lab contractor pledge record $2.3 million to local United Way organizations, other nonprofits The Laboratory employee contributions will fund a number of United Way agencies and programs as well as other eligible nonprofit organizations. December 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

269

Los Alamos researchers create 'map of science'  

NLE Websites -- All DOE Office Websites (Extended Search)

Map of science Map of science Los Alamos researchers create 'Map of Science' A high-resolution graphic depiction of the virtual trails scientists leave behind when they retrieve information from online services. March 11, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman

270

Laboratory awards subcontracts to small businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Subcontracts awarded to small businesses Subcontracts awarded to small businesses Laboratory awards subcontracts to small businesses A company owned and operated by Ohkay Owingeh Pueblo will soon be providing custodial support services to the Lab. October 15, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Steve Sandoval

271

Bret Knapp to head combined Weapons Engineering, Weapons Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapons Engineering, Weapons Physics Directorates Weapons Engineering, Weapons Physics Directorates Bret Knapp to head combined Weapons Engineering, Weapons Physics Directorates at Los Alamos National Laboratory New leadership position will allow for greater integration in the planning and execution of the stockpile stewardship program. August 18, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

272

Los Alamos researchers unravel the mystery of quantum dot blinking  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers unravel the mystery of quantum dot blinking Researchers unravel the mystery of quantum dot blinking Los Alamos researchers unravel the mystery of quantum dot blinking Most exciting is that the Los Alamos researchers have shown that blinking can be controlled and even completely suppressed electrochemically. November 9, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

273

LANL announces top 10 science stories of 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Top 10 science stories of 2009 Top 10 science stories of 2009 LANL announces top 10 science stories of 2009 Top 10 Laboratory science stories of 2009 based on global viewership of online media content and major programmatic milestones. January 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Communications Office

274

Zurek awarded Albert Einstein professorship prize  

NLE Websites -- All DOE Office Websites (Extended Search)

Einstein professorship prize Einstein professorship prize Zurek awarded Albert Einstein professorship prize Prize honors Ulm's connection with Albert Einstein, who was born in the city in 1879. July 30, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman Communications Office (505) 665-9203

275

Standards for a new genomic era  

NLE Websites -- All DOE Office Websites (Extended Search)

Standards for new genomic era Standards for new genomic era Standards for a new genomic era A team of geneticists has recently proposed a set of standards designed to elucidate the quality of publicly available genetic sequencing information. October 21, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

276

Earth Week event all about energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth Week event all about energy Earth Week event all about energy Earth Week event all about energy People all across Northern New Mexico can learn about how they can play a role in energy research and energy and fuel conservation at an upcoming Energy Town Hall. April 16, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

277

Final remote-handled waste canister leaves Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Remote-handled waste canister leaves LANL Remote-handled waste canister leaves LANL Final remote-handled waste canister leaves Los Alamos National Laboratory The Laboratory began shipping the canisters exactly one month ago and averaged four shipments per week. July 2, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

278

Scientists use world's fastest computer to understand nonlinear physics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonlinear physics of high-power lasers Nonlinear physics of high-power lasers Scientists use world's fastest computer to understand nonlinear physics of high-power lasers To achieve fusion scientists must put as much laser energy on target as possible. October 28, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

279

AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT  

National Nuclear Security Administration (NNSA)

CONTRACT ID CODE j PAGE OF PAGES 1 I 2 2 AMENDMENT/MODIFICATION NO 3. EFFECTIVE DATE 4 REQUISITION/PURCHASE REO NO. 15. PROJECT NO. (II applicable) 220 See Block 16C 6 ISSUED BY CODE 05003 7 ADMINISTERED BY (lfolherthan Item 6) CODE 105003 NNSA/Los Alamos Sile Office NNSA/Los Alamos Site Office u.s. Department of Energy u.s. Department of Energy Los Alamos Site Office Los Alamos Site Office 3747 West Jemez Road 3747 West Jemez Road Los Alamos Los Alamos NM 87544 NM 87544 8. NAME AND ADDRESS OF CONTRACTOR (No .. street. county State and ZIP Code) ~ 9A. AMENDMENT OF SOLICITATION NO. LOS ALAMOS NATIONAL SECURITY, LLC A ttn: STEVE K. SHOOK 98 DATED (SEE ITEM 11) P.O. BOX 1663' MS P222 L OS ALAMOS Nt1 875450001 10A. MODIFICATION OF CONTRACT/ORDER NO

280

AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT ID CODE  

National Nuclear Security Administration (NNSA)

l PAGE 1 OF 3PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE 4. REQUISITION/PURCHASE REQ. NO. I 5. PROJECT NO. (If applicable) 180 See Block 16 C 6.1SSUEDBY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Los Alamos Site Office 3747 West Jemez Road Los Alamos, NM 87544 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 9A. AMENDMENT OF SOLICITATION NO. Los Alamos National Security, LLC 4200 West Jemez Road 9B. DATED (SEE ITEM 11) Suite 400 10A. MODIFICATION OF Los Alamos, NM 87544 CONTRACT/ORDER NO. DE-AC52-06NA25396 CODE FACILITY CODE 10B. DATED (SEE ITEM 13) December 21, 2005 -~ - - 11. THIS ITEM ONLY APPLIES TO AMENDMENTS OF SOLICITATIONS

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

At LANL-sponsored networking forum, businesses make their pitch for  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act work Recovery Act work At LANL-sponsored networking forum, businesses make their pitch for Recovery Act work One key goal of the Recovery Act is to provide jobs and opportunities for Northern New Mexicans. October 22, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Fred deSousa

282

New LANL scholarship supports returning students  

NLE Websites -- All DOE Office Websites (Extended Search)

New scholarship supports returning students New scholarship supports returning students New LANL scholarship supports returning students Scholarship for students who plan to return to formal education after taking a break. January 24, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Communications Office (505) 667-7000

283

Security enhanced with increased vehicle inspections  

NLE Websites -- All DOE Office Websites (Extended Search)

Security enhanced with increased vehicle inspections Security enhanced with increased vehicle inspections Security measures increase as of March: vehicle inspections won't delay traffic New increased security procedures meet LANL's security objectives while minimizing impacts on local businesses and tourists. March 23, 2012 The most prominent change is the increase of random inspections of all vehicles transiting the Laboratory, to include West and East Jemez Roads and roadways leading to the main Laboratory administrative area, Technical Area 3 Expect random inspections of all vehicles transiting the Laboratory, to include West and East Jemez Roads and roadways leading to the main Laboratory administrative area, Technical Area 3. Contact Kevin Roark Communications Office (505) 665-9202 Email "We're doing our best to meet our security objectives while minimizing

284

Washington Post editor David E. Hoffman talks about new book, The Dead Hand  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington Post editor talks about new book Washington Post editor talks about new book Washington Post editor David E. Hoffman talks about new book, The Dead Hand The Dead Hand tells, from both the American and the Russian perspectives, of the end of the Cold War arms race and its legacy of peril. March 22, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

285

Seven Los Alamos scientists earn AAAS honors  

NLE Websites -- All DOE Office Websites (Extended Search)

Seven Los Alamos scientists earn AAAS honors Seven Los Alamos scientists earn AAAS honors Seven Los Alamos scientists earn AAAS honors The Fellows are Richard Sayre, John Gordon, Jeanne Robinson, Jaqueline Kiplinger, Bryon Goldstein, Alexander Balatsky and Quanxi Jia. December 15, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

286

Scientists ratchet up understanding of cellular protein factory  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding of cellular protein factory Understanding of cellular protein factory Scientists ratchet up understanding of cellular protein factory The research could aid in development of new antibiotics used to fight multidrug resistant superbugs such as MRSA found in many U.S. hospitals. December 2, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

287

Stellar science unveiled at space conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Stellar science unveiled at space conference Stellar science unveiled at space conference Stellar science unveiled at space conference The Laboratory will be represented in more than 20 papers to be given at the 42nd Lunar and Planetary Science Conference in Houston. March 8, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

288

LANL awards Recovery Act contract worth up to $100 million  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL Awards Recovery Act contract LANL Awards Recovery Act contract LANL awards Recovery Act contract worth up to $100 million TerranearPMC, LLC will haul demolition debris and soils from LANL's Recovery Act cleanup projects for disposal in licensed facilities. March 10, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

289

Science satellites seek Santa  

NLE Websites -- All DOE Office Websites (Extended Search)

Science satellites seek Santa Science satellites seek Santa Science satellites seek Santa Los Alamos scientists will use two advanced science satellites to mark the course taken by the elfin traveler. December 16, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Nancy Ambrosiano Communications Office

290

Los Alamos National Laboratory acknowledged for progress in safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress in safety excellence Progress in safety excellence Los Alamos National Laboratory acknowledged for progress in safety excellence by Department of Energy Merit is a status for DOE contractors with highly effective safety programs who commit themselves to attain Star status within a five-year period. August 4, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

291

Los Alamos National Laboratory medical plan to cover PMC services  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical plan to cover PMC services Medical plan to cover PMC services Los Alamos National Laboratory medical plan to cover PMC services United Healthcare has agreed to retroactively treat Physicians Medical Center of Santa Fe (PMC) as an in-network facility. March 13, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

292

Approaches to renewable energy storage focus of Frontiers in Science talk  

NLE Websites -- All DOE Office Websites (Extended Search)

Frontiers in Science Talk Frontiers in Science Talk Approaches to renewable energy storage focus of Frontiers in Science talk Albert Migliori will give the series of public talks, titled, "Use It, Lose It, or Save It: The Science of Renewable Energy Storage." August 21, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

293

Los Alamos National Laboratory sponsors Hazmat Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Hazmat Challenge Hazmat Challenge Los Alamos National Laboratory sponsors Hazmat Challenge The challenge provides hazardous materials responders the opportunity to network and learn new techniques under realistic conditions in a safe environment. July 27, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

294

Water quality in vicinity of Fenton Hill Site, 1975  

DOE Green Energy (OSTI)

Water quality at 9 surface water stations, 14 ground water stations, and drilling and testing operations at the Fenton Hill Site has been studied as a measure of the environmental impact on the Los Alamos Scientific Laboratory's geothermal site in the Jemez Mountains. Slight variations in the chemical quality of the water at individual stations were observed during the year. Predominant ions and total dissolved solids in the surface and ground water declined slightly in comparison to previous data. These variations in quality are not considered significant considering seasonal and annual stream flow variations. Surface water discharge records from three U.S. Geological Survey gaging stations on the Rio Guadalupe and Jemez River were analyzed to provide background data for the impact study. Direct correlations were determined between mean annual discharge at each of two stations in the upper reach of the drainage and at the station in the lower reach.

Purtymun, W.D.; Adams, W.H.; Stoker, A.K.; West, F.G.

1976-09-01T23:59:59.000Z

295

Water quality in vicinity of Fenton Hill Site, 1974  

DOE Green Energy (OSTI)

The water quality at nine surface water stations, eight ground water stations, and the drilling operations at the Fenton Hill Site have been studied as a measure of the environmental impact of the Los Alamos Scientific Laboratory geothermal experimental studies in the Jemez Mountains. Surface water quality in the Jemez River drainage area is affected by the quality of the inflow from thermal and mineral springs. Ground water discharges from the Cenozoic Volcanics are similar in chemical quality. Water in the main zone of saturation penetrated by test hole GT-2 is highly mineralized, whereas water in the lower section of the hole, which is in granite, contains a higher concentration of uranium. (auth)

Purtymun, W.D.; Adams, W.H.; Owens, J.W.

1975-09-01T23:59:59.000Z

296

Los Alamos National Laboratory launches 70th anniversary app for iPhone,  

NLE Websites -- All DOE Office Websites (Extended Search)

70th anniversary app for iPhone, iPads 70th anniversary app for iPhone, iPads Los Alamos National Laboratory launches 70th anniversary app for iPhone, iPads The free application is available from the Apple Store (search for Los Alamos National Lab). June 5, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Steve Sandoval

297

Los Alamos National Laboratory names cleanup subcontractors  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanup subcontractors named Cleanup subcontractors named Los Alamos National Laboratory names cleanup subcontractors The three companies are Los Alamos Technical Associates (LATA), Portage Inc., and ARSEC Environmental, LLC (ARSEC). August 14, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Fred deSousa

298

Nature Climate Change features Los Alamos forest research  

NLE Websites -- All DOE Office Websites (Extended Search)

Nature Climate Change Features Forest Research Nature Climate Change Features Forest Research Nature Climate Change features Los Alamos forest research The print issue features as its cover story the tree-stress research of LANL scientist A. Park Williams and partners from the U.S. Geological Survey, University of Arizona and several other organizations. February 27, 2013 Burned trees in the Jemez Mountains of New Mexico after the 2011 Las Conchas fire. Image by Craig D. Allen, USGS. Burned trees in the Jemez Mountains of New Mexico after the 2011 Las Conchas fire. Image by Craig D. Allen, USGS. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email New print edition of journal tags tree-stress project for cover story LOS ALAMOS, N.M., Feb. 27, 2013-The print issue of the journal Nature Climate Change released this week features as its cover story the

299

Laboratory awards final Recovery Act demolition contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act demolition contracts Recovery Act demolition contracts Laboratory awards final Recovery Act demolition contracts The two winning bidders will each demolish a portion of the remaining unused buildings at the Lab's historic Technical Area 21. April 20, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

300

Los Alamos National Laboratory communicators capture numerous awards from  

NLE Websites -- All DOE Office Websites (Extended Search)

Society for Technical Communication Awards Society for Technical Communication Awards Los Alamos National Laboratory communicators capture numerous awards from Society for Technical Communication Three Los Alamos entries garnered Distinguished Technical Communication awards, the competition's highest award category. April 15, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Computer modeling reveals how surprisingly potent hepatitis C drug works  

NLE Websites -- All DOE Office Websites (Extended Search)

Hepatitis C computer modeling Hepatitis C computer modeling Computer modeling reveals how surprisingly potent hepatitis C drug works A study reveals how daclatasvir targets one of its proteins and causes the fastest viral decline ever seen with anti-HCV drugs - within 12 hours of treatment. February 19, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

302

LANL completes high-priority flood and erosion control work  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab completes priority erosion controls Lab completes priority erosion controls LANL completes high-priority flood and erosion control work Crews installed 600 feet of water diversion barriers and removed more than 1,200 cubic yards of sediment in anticipation of flash flooding. July 11, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

303

Los Alamos scientists monitor Santa's magical journey  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists monitor Santa's magical journey Scientists monitor Santa's magical journey Los Alamos scientists monitor Santa's magical journey Los Alamos trackers will use state-of-the-art technology to mark the course taken by St. Nick and his eight tiny and highly efficient reindeer. December 21, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

304

LANL closes road, trails for safety reasons; flooding and erosion control  

NLE Websites -- All DOE Office Websites (Extended Search)

Road, trails closed for safety reasons Road, trails closed for safety reasons LANL closes road, trails for safety reasons; flooding and erosion control work under way Closure is in response to the increased fire risk and danger of flash flooding. July 8, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Fred deSousa

305

March  

NLE Websites -- All DOE Office Websites (Extended Search)

March March /newsroom/_assets/images/newsroom-icon.jpg March We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials The drive toward hydrogen vehicles just got shorter Researchers have revealed a new single-stage method for recharging the hydrogen storage compound ammonia borane. - 3/21/11 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

306

USDA awards $1 million eor e. coli research by Los Alamos National  

NLE Websites -- All DOE Office Websites (Extended Search)

Early detection and multiple-sample capability are focus of team's Early detection and multiple-sample capability are focus of team's efforts USDA awards $1 million for E. coli research by LANL and New Mexico Consortium Researchers received a portion of a recent $25 million grant from the U.S. Department of Agriculture to study E. coli in the beef industry. February 29, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

307

Los Alamos National Laboratory participates in National Lab Day to increase  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL participates in National Lab Day LANL participates in National Lab Day Los Alamos National Laboratory participates in National Lab Day to increase awareness of science across the nation Connecting teachers and students with scientists, engineers, mathematicians, and industry professionals across the country is the goal of National Lab Day. April 29, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

308

Los Alamos National Laboratory to host Robot Rodeo  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL to host Robot Rodeo LANL to host Robot Rodeo Los Alamos National Laboratory to host Robot Rodeo Hazardous devices teams from around the Southwest will wrangle their bomb squad robots at the sixth annual Robot Rodeo. June 18, 2012 Sixth annual Robot Rodeo at LANL Sixth annual Robot Rodeo at LANL Contact Steve Sandoval Communications Office (505) 665-9206 Email Events test skills of hazardous devices teams from around the Southwest LOS ALAMOS, New Mexico, June 18, 2012-Hazardous devices teams from around the Southwest will wrangle their bomb squad robots at the sixth annual Robot Rodeo beginning Tuesday, June 19 at Los Alamos National Laboratory (LANL). The rodeo gets under way at 8 a.m. in Technical Area 49, a remote section of Laboratory property near the entrance to Bandelier National Monument.

309

Microsoft Word - Chapter 04.doc  

National Nuclear Security Administration (NNSA)

poorly welded tuff layer. This would reduce the number of trucks transporting concrete mix from the batch plant to the Modified CMRR-NF. While the total number of trucks would be...

310

Application of natural analogues in the Yucca Mountain project - overview  

E-Print Network (OSTI)

Contractor) 2000. Yucca Mountain Site Description. TDR-CRW-in silicic tuff from Yucca Mountain, Nevada. Clays and ClayHazard Analysis for Yucca Mountain, Nevada. BA0000000-01717-

Simmons, Ardyth M.

2003-01-01T23:59:59.000Z

311

???? 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuff) Depth: ca.2.7km Rate: > 100k tonyr Max. press: 44MPa R2 R1 * 1 capture site (Oil refinery) * Transport: pipeline * 2 injection wells * 2 monitoring wells * 2...

312

Pena Blanca Natural Analogue Project: Summary of activities  

E-Print Network (OSTI)

Seepage at the Nopal I Uranium Mine, Chihuahua, Mexico,The inactive Nopal I uranium mine in silicic tuff north ofsurface of the mine. 12,13,14 The uranium is associated with

Levy, S.

2011-01-01T23:59:59.000Z

313

South Carolina's 5th congressional district: Energy Resources...  

Open Energy Info (EERE)

South Carolina's 5th congressional district AQUA Products BB Hobbs Inc RTEV Inc Ruff Tuff Electric Vehicles Retrieved from "http:en.openei.orgwindex.php?titleSouthCarolina%27...

314

Complexation and redox interactions between aqueous plutonium and manganese oxide interfaces  

E-Print Network (OSTI)

The Chemistry of Plutonium (American Nuclear Society,XAS studies with sorbed plutonium on tuff, J. Synch. Rad.state determination of plutonium aquo ions using x-ray

2001-01-01T23:59:59.000Z

315

CX-000821: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Disposal of Unusable Tuff TanksCX(s) Applied: B6.1Date: 12/01/2009Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

316

Geotechnical studies of geothermal reservoirs  

DOE Green Energy (OSTI)

It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot Springs, Utah, (4) Bacca Ranch, Valle Grande, New Mexico, (5) Jemez Caldera, New Mexico, (6) Raft River, Idaho, and (7) Marysville, Montona. (MHR)

Pratt, H.R.; Simonson, E.R.

1976-01-01T23:59:59.000Z

317

Seismic Imaging and Monitoring  

SciTech Connect

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

318

Selected data fron continental scientific drilling core holes VC-1 and VC-2a, Valles Caldera, New Mexico  

DOE Green Energy (OSTI)

This report presents geochemical and isotopic data on rocks and water and wellbore geophysical data from the Continental Scientific Drilling Program core holes VC-1 and VC-2a, Valles Caldera, New Mexico. These core holes were drilled as a portion of a broader program that seeks to answer fundamental questions about magma, water/rock interactions, ore deposits, and volcanology. The data in this report will assist the interpretation of the hydrothermal system in the Jemez Mountains and will stimulate further research in magmatic processes, hydrothermal alteration, ore deposits, hydrology, structural geology, and hydrothermal solution chemistry. 37 refs., 36 figs., 28 tabs.

Musgrave, J.A.; Goff, F.; Shevenell, L.; Trujillo, P.E. Jr.; Counce, D.; Luedemann, G.; Garcia, S.; Dennis, B.; Hulen, J.B.; Janik, C.; Tomei, F.A.

1989-02-01T23:59:59.000Z

319

Environmental sampling and mud sampling program of CSDP (Continental Scientific Drilling Program) core hole VC-2B, Valles Caldera, New Mexico  

DOE Green Energy (OSTI)

An environmental sampling and drilling mud sampling program was conducted during the drilling operations of Continental Scientific Drilling Program (CSDP) core hole VC-2B, Valles caldera, New Mexico. A suite of four springs and creeks in the Sulphur Springs area were monitored on a regular basis to ensure that the VC-2B drilling program was having no environmental impact on water quality. In addition, a regional survey of springs in and around the Jemez Mountains was conducted to provide background data for the environmental monitoring. A drilling mud monitoring program was conducted during the operations to help identify major fluid entries in the core hole. 32 refs., 14 figs., 7 tabs.

Meeker, K.; Goff, F.; Gardner, J.N.; Trujillo, P.E.; Counce, D.

1990-03-01T23:59:59.000Z

320

Seismic Imaging and Monitoring  

SciTech Connect

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geologic Results from the Long Valley Exploratory Well  

Science Conference Proceedings (OSTI)

As a deep well in the center of a major Quaternary caldera, the Long Valley Exploratory Well (LVEW) provides a new perspective on the relationship between hydrothermal circulation and a large crustal magma chamber. It also provides an important test of models for the subsurface structure of active continental calderas. Results will impact geothermal exploration, assessment, and management of the Long Valley resource and should be applicable to other igneous-related geothermal systems. Our task is to use the cuttings and core from LVEW to interpret the evolution of the central caldera region, with emphasis on evidence of current hydrothermal conditions and circulation. LVEW has reached a depth of 2313 m, passing through post-caldera extrusives and the intracaldera Bishop Tuff to bottom in the Mt. Morrison roof pendant of the Sierran basement. The base of the section of Quaternary volcanic rocks related to Long Valley Caldera was encountered at 1800 m of which 1178 m is Bishop Tuff. The lithologies sampled generally support the classic view of large intercontinental calderas as piston-cylinder-like structures. In this model, the roof of the huge magma chamber, like an ill-fitting piston, broke and sank 2 km along a ring fracture system that simultaneously and explosively leaked magma as Bishop Tuff. Results from LVEW which support this model are the presence of intact basement at depth at the center of the caldera, the presence of a thick Bishop Tuff section, and textural evidence that the tuff encountered is not near-vent despite its central caldera location. An unexpected observation was the presence of rhyolite intrusions within the tuff with a cumulative apparent thickness in excess of 300 m. Chemical analyses indicate that these are high-silica, high-barium rhyolites. Preliminary {sup 40}Ar/{sup 39}Ar analyses determined an age of 626 {+-} 38 ka (this paper). These observations would indicate that the intrusions belong to the early post-collapse episode of volcanism and are contemporaneous with resurgence of the caldera floor. If they are extensive sills rather than dikes, a possibility being investigated through relogging of core from neighboring wells, they were responsible for resurgence. A {sup 40}Ar/{sup 39}Ar age of 769 {+-} 14 ka from Bishop Tuff at 820 m depth conforms with tuff ages from outside the caldera and indicates an absence of shallow hydrothermal activity (>300 C) persisting after emplacement. Work is proceeding on investigating hydrothermal alteration deeper in the well. This alteration includes sulfide+quartz fracture fillings, calcite+quartz replacement of feldspars, and disseminated pyrite in both the tuff and basement. Electron microprobe analysis of phases are being conducted to determine initial magmatic and subsequent hydrothermal conditions.

McConnell, Vicki S.; Eichelberger, John C.; Keskinen, Mary J.; Layer, Paul W.

1992-03-24T23:59:59.000Z

322

Fourier grain shape analysis: a means for correlating alluvial deposits at the Nevada Test Site  

SciTech Connect

Quartz sand derived from alluvial fans that drain different lithologies at the Nevada Test Site can be distinguished on the basis of grain shape as described by the Fourier series in closed form. Specifically, we examined tuff units from the Piapi Canyon and Indian Trail Formations as well as carbonate-bearing clastic units from the Eleana Formation. Discrimiation between rock types was accomplished by examining the mean harmonic amplitude spectra and the grain shape frequency distributions at those harmonics that exhibit significant chi-square values. The results of these analyses indicate that the tuffs can be easily distinguished from the clastics. However, differences between samples from genetically similar rock types are not as prominent. Grain shape frequency distributions of tuffs and clastics show such strong differences that they can be characterized by standardized distributions. By comparing the shape frequency distributions of mixed sediment samples, it is possible to determine the relative contribution of tuff and clastics to any sediment sample taken within the drainage network. The Piapi Canyon, Indian Trail, and Eleana Formations have produced the thick alluvium sequence in the Rainier Mesa region of Yucca Flat. We believe it is likely that these grain shape relationships can also be applied to subsurface samples. Not only would this extended application enable more accurate correlation of alluvial layers, but more precise determination of the clastic-tuff contact within the alluvium sequence might also be possible.

Grothaus, B.T.; Hage, G.L.

1978-10-18T23:59:59.000Z

323

Simulating silicic eruptions at Long Valley, California as a method to understand processes that influence eruption phenomena associated with caldera formation. IGPP progress report, October 1, 1993--August 31, 1994  

DOE Green Energy (OSTI)

There are two primary objectives of this project. The first objective consists of developing a complete data set of physical parameters from Long Valley caldera and the Bishop Tuff to constrain the initial and boundary conditions for numerical simulations. The second objective will be the completion of a series of numerical simulations that will provide explicit and testable models constraining the evolution of the caldera eruption that formed the Long Valley caldera and associated pyroclastic deposits (Bishop Tuff). Achieving the proposed objectives will require two steps. First, a comprehensive analysis of the intracaldera Bishop Tuff will be performed using high precision micro-beam analytical techniques on melt inclusions found in quartz phenocrysts. Second, data obtained from the analysis of the intracaldera Bishop Tuff together with data obtained from other studies will be used to constrain the initial and boundary conditions of the numerical simulations. Preliminary simulations based on initial and boundary conditions defined by the caldera structure and volatile concentrations found in the intracaldera Bishop Tuff indicate that erupted pyroclastic material would not have the required momentum to escape the caldera depression.

Papike, J.J.; Servilla, M.S. [New Mexico Univ., Albuquerque, NM (United States). Inst. of Meteoritics; Wohletz, K.H. [Los Alamos National Lab., NM (United States)

1994-12-31T23:59:59.000Z

324

The Valles natural analogue project  

Science Conference Proceedings (OSTI)

The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a highlevel waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, X-ray diffraction; and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 4O} isotopic composition. Overall,the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 meters of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

Stockman, H.; Krumhansl, J.; Ho, C. [Sandia National Labs., Albuquerque, NM (United States); McConnell, V. [Alaska Univ., Fairbanks, AK (United States). Geophysical Inst.

1994-12-01T23:59:59.000Z

325

November  

NLE Websites -- All DOE Office Websites (Extended Search)

November November /newsroom/_assets/images/newsroom-icon.jpg November We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory ships last of high-activity drums to WIPP The November shipment was the final delivery this year to the Carlsbad plant, which is scheduled to undergo facility maintenance through mid-January. - 11/25/08 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

326

AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT  

National Nuclear Security Administration (NNSA)

1. 1. CONTRACT 10 CODE PAGE 1 OF 2 PAGES 2. AMENDMENT/MODIFICATION NO. 13. EFFECTIVE DATE 4. REQUISITION/PURCHASE REQ. NO. 15. PROJECT NO. (If applicable) M058 See Block 16 C 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security Administration Manager, Los Alamos Site Office 3747 West Jemez Road, Building 1410, TA-3 Los Alamos, NM 87544 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 9A. AMENDMENT OF SOLICITATION NO. Los Alamos National Security, LLC 4200 West Jemez Road 9B. DATED (SEE ITEM 11) Suite 400 Los Alamos, NM 87544 10A. MODIFICATION OF CONTRACT/ORDER NO. DE-AC52-06NA25396 CODE FACILITY CODE 10B. DATED (SEE ITEM 13) December 21, 2005 11. THIS ITEM ONLY APPLIES TO AMENDMENTS OF SOLICITATIONS o The above numbered solicitation is amended as set forth in Item 14. The hour and date specified for receipt

327

Core Analysis At Long Valley Caldera Area (Smith & Suemnicht, 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Smith & Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Sample for the present investigation consist of drill core and cuttings from all lithologic units identified in LVEW, cuttings from volcanic rocks in LV 13-21, core samples of Early Rhyolite and Bishop Tuff from LV13-26 and core samples of Bishop Tuff from SF38-32, LV48-29 and LV66-28 (Figs. 1 and 2). Surface samples of Early Rhyolite, Bishop Tuff and Paleozoic metasediments (Fig. 1) were also selected for comparative analysis and processed by the same procedures as the well samples. This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid

328

Cuttings Analysis At Long Valley Caldera Area (Smith & Suemnicht, 1991) |  

Open Energy Info (EERE)

Long Valley Caldera Area (Smith Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Cuttings Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Sample for the present investigation consist of drill core and cuttings from all lithologic units identified in LVEW, cuttings from volcanic rocks in LV 13-21, core samples of Early Rhyolite and Bishop Tuff from LV13-26 and core samples of Bishop Tuff from SF38-32, LV48-29 and LV66-28 (Figs. 1 and 2). Surface samples of Early Rhyolite, Bishop Tuff and Paleozoic metasediments (Fig. 1) were also selected for comparative analysis and processed by the same procedures as the well samples. This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid

329

Petrologic studies of drill cores USW-G2 and UE25b-1H, Yucca Mountain, Nevada  

SciTech Connect

The tuffs of the Nevada Test Site are currently under investigation as a possible deep geologic site for high-level radioactive waste disposal. This report characterizes tuff retrieved in core from two drill holes, USW-G2 and UE25b-1H, at the Yucca Mountain block. The USW-G2 drill core is from the northernmost extent of the block, whereas UE25b-1H is adjacent to an earlier drill hole, UE25a-1. The drill cores USW-G2 and UE25b-1H bottomed at 6000 and 4200 ft, respectively. Petrographic and x-ray diffraction studies of the two drill cores are presented in this report and indicate that tuffs (composed primarily of variably welded ash flows) are partially recrystallized to secondary minerals. Correlations of stratigraphy are also made with previous drill cores from Yucca Mountain.

Caporuscio, F.; Vaniman, D.; Bish, D.; Broxton, D.; Arney, B.; Heiken, G.; Byers, F.; Gooley, R.; Semarge, E.

1982-07-01T23:59:59.000Z

330

Unsaturated flow and transport through fractured rock related to high-level waste repositories; Final report, Phase 3  

SciTech Connect

Research results are summarized for a US Nuclear Regulatory Commission contract with the University of Arizona focusing on field and laboratory methods for characterizing unsaturated fluid flow and solute transport related to high-level radioactive waste repositories. Characterization activities are presented for the Apache Leap Tuff field site. The field site is located in unsaturated, fractured tuff in central Arizona. Hydraulic, pneumatic, and thermal characteristics of the tuff are summarized, along with methodologies employed to monitor and sample hydrologic and geochemical processes at the field site. Thermohydrologic experiments are reported which provide laboratory and field data related to the effects conditions and flow and transport in unsaturated, fractured rock. 29 refs., 17 figs., 21 tabs.

Evans, D.D.; Rasmussen, T.C. [Arizona Univ., Tucson, AZ (USA). Dept. of Hydrology and Water Resources

1991-01-01T23:59:59.000Z

331

Geohydrologic data and models of Rainier Mesa and their implications to Yucca Mountain  

Science Conference Proceedings (OSTI)

The geohydrologic data collected at Rainier Mesa provide the only extensive observations in tunnels presently available on flow and transport in tuff units similar to those of a potential nuclear waste repository at Yucca Mountain. This information can, therefore, be of great value in planning the Exploratory Studies Facility (ESF) testing in underground drifts at Yucca Mountain. In this paper, we compare the geohydrologic characteristics of tuff units of these two sites and summarize the hydrochemical data indicating the presence of nearly meteoric water in Rainier Mesa tunnels. A simple analytic model is used to evaluate the possibility of propagating transient pulses of water along fractures or faults through the Paintbrush nonwelded tuff unit to reach the tunnel beds below. The results suggest that fast flow could occur without significant mixing between meteoric fracture water and matrix pore water. The implications of these findings on planning for the ESF Calico Hills study at Yucca Mountain are discussed.

Wang, J.S.Y.; Cook, N.G.W.; Wollenberg, H.A.; Carnahan, C.L.; Javandel, I.; Tsang, C.F.

1993-01-01T23:59:59.000Z

332

Assessment of the geothermal potential of southwestern New Mexico. Final report, July 1, 1978-April 30, 1980  

DOE Green Energy (OSTI)

Results are reported of geologic mapping of geothermal anomalies in the Gila Hot Springs KGRA/Mimbres Hot Springs area, Grant County. They suggest that both hot-spring occurrences are structurally controlled by the intersection of a major Basin and Range fault and the disturbed margin of an ash-flow tuff cauldron. Hydrothermal alteration in both areas is related to mid-Tertiary volcanism, not to modern hot springs. At Gila Hot Springs, the geothermal aquifer is a zone at the contact between the unwelded top of a major ash-flow tuff sheet (Bloodgood Canyon Rhyolite Tuff) and a succession of interlayered vesicular basaltic andesite flows and thin sandstone beds (Bearwallow Mountain Formation). Scattered groups of natural hot springs occur at intersections of this zone and the faults bordering the northeastern side of the Gila Hot Springs graben. Hydrothermal alteration of Bloodgood Canyon Rhyolite Tuff near major faults seems to have increased its permeability. At Mimbres Hot Springs, a single group of hot springs is controlled by the intersection of the Mimbres Hot Springs fault and a fractured welded ash-flow tuff that fills the Emory cauldron (Kneeling Nun Tuff). Gila Hot Springs and Mimbres Hot Springs do not seem to be connected by throughgoing faults. At both localities, hot spring water is used locally for space heating and domestic hot water; at Gila Hot Springs, water of 65.6/sup 0/C (150/sup 0/F) is used to generate electricity by means of a 10 kw freon Rankine Cycle engine. This is the first such application in New Mexico.

Elston, W.E.

1981-07-01T23:59:59.000Z

333

Text for Mechanical and bulk properties in support of ESF design issues  

Science Conference Proceedings (OSTI)

An intensive laboratory investigation is being performed to determine the mechanical properties of tuffs for the Yucca Mountain Site Characterization Project (YMP). Most recently, experiments are being performed on tuff samples from a series of drill holes along the proposed alignment of the Exploratory Study Facilities (ESF) north ramp. Unconfined compression and indirect tension experiments are being performed and the results are being analyzed with the help of bulk property information. The results on samples from five of the drill holes are presented here. In general, the properties vary widely, but are highly dependent on the sample porosity.

Price, R.H. [Sandia National Labs., Albuquerque, NM (United States); Martin, R.J.; Boyd, P.J.; Noel, J.S. [New England Research, Inc., White River Junction, VT (United States)

1994-07-01T23:59:59.000Z

334

Paleomagnetic and structural evidence for middle Tertiary counterclockwise block rotation in the Dixie Valley region, west-central Nevada  

Science Conference Proceedings (OSTI)

Paleomagnetic data from late Oligocene to early Miocene ash-flow tuffs at four localities in the northern Dixie Valley region, west-central Nevada, indicate that parts of the crust have rotated counterclockwise by at least 25/sup 0/ and perhaps significantly more in late Cenozoic time. Field relations in White Rock Canyon, Stillwater Range, suggest that rotation (1) was accommodated by right-lateral slip on northwest-trending faults, (2) spanned ash-flow tuff emplacement, and (3) probably ceased before eruption of overlying middle Miocene basalts. Accurate estimates of Cenozoic extension, as well as evaluation of earlier Mesozoic structures, must include the strain partitioned into rotation in the area.

Hudson, M.R.; Geissman, J.W.

1987-07-01T23:59:59.000Z

335

U.S. Nuclear Waste Technical Review Board Correspondence with  

E-Print Network (OSTI)

Chapter 2 Unsaturated Zone I. Overview If the Yucca Mountain site is deemed suitable for re of the extent of welding, the tuffs within the UZ at Yucca Mountain are grouped informally into hydrogeologic Yucca Mountain is illustrated in Figure 2-1 on page 14. A. Why UZ Was Chosen Initial studies of Yucca

336

BREAKOUT GROUP 3: HIGH TEMP (SOFC) SYSTEM AND BOP PARTICIPANTS  

E-Print Network (OSTI)

· Objective: Develop an improved SOFC for APUs ­ SOFC advantages · High power density and efficiency · Fuel versatility/simplified fuel processing · Well-suited to duty cycle of APU ­ SOFC issues · Startup time;Metallic Bipolar-Plate-Supported SOFC Design (TuffCell) Fuel flow field (metal) Air flow field (metal

337

Energy related studies utilizing microcline thermochronology: Progress report, May 1, 1987-April 30, 1988  

DOE Green Energy (OSTI)

Rock samples from the Salton Sea Geothermal Field (sandstone, tuff, granite) and from accretionary prism sediments along the convergent margins in southeast Alaska and southwest Japan have been dated by the /sup 40/Ar/sup 39/Ar method. Paleotemperatures have been calculated. (ACR

Not Available

1988-04-30T23:59:59.000Z

338

Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico  

E-Print Network (OSTI)

seepage at the Nopal I Uranium mine, Chihuahua, Mexico. In:mine adit are composed of welded tuffs that host the uraniumuranium isotopic systematics, we have made additional measurements of U concentrations and 234 U/ 238 U ratios in waters from the mine

Ku, T. L.

2010-01-01T23:59:59.000Z

339

Chemical evolution of a high-level magma system: the Black Mountain volcanic center, southern Nevada  

DOE Green Energy (OSTI)

A comprehensive study of stratigraphically controlled samples of both lavas and ash-flow tuffs from the Black Mountain volcanic center enables us to evaluate magmatic processes. The results of this study are used to: (1) determine how this high-level magma system developed; (2) compare this system with other similar systems; and (3) correlate ash-flow sheets using their chemical characteristics.

Vogel, T.A.; Noble, D.C.; Younker, L.W.

1983-09-01T23:59:59.000Z

340

Bull Valcanol (1987) 49:765-775 Voliaology Springer-Verlag 1987 Variation in peperite textures associated with differing  

E-Print Network (OSTI)

masses of the basaltic intrusions up to 1 m in size were dispersed for distances up to 3 m into host pipes in tuff breccia above the lower sill provides evidence for meter-scale fluidization of the host. The contact zone between the basaltic magma and the shelly micrite host resembles a mixture of two viscous

Busby, Cathy

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

PROCEEDINGS OF WORKSHOP ON THERMOMECHANICAL-HYDROCHEMICAL MODELING FOR A HARDROCK WASTE REPOSITORY. JULY 29-31, 1980. MARRIOTT INN, BERKELEY, CA  

E-Print Network (OSTI)

testing was begun ; n tuff on the Nevada Test Site (NTS) inNTS and in basalt at the Hanford Site have, for all practical purposes, just beguno Essentially, in situ testingtesting is an integral part of rock mass characteri zat i on from the vi ewpoi nts

Authors, Various

2010-01-01T23:59:59.000Z

342

THERMAL IMPACT OF WASTE EMPLACEMENT AND SURFACE COOLING ASSOCIATED WITH GEOLOGIC DISPOSAL OF NUCLEAR WASTE  

E-Print Network (OSTI)

47 W/m (190 kW/acre , and shale a t 30 W/m (120 kW/acre) assalt, granite, basalt, shale, tuff, and dry alluvium aret r e s s nonlinearly, and shale shrinks above t h e b o i l

Wang, J.S.Y.

2010-01-01T23:59:59.000Z

343

U.S. Department of the Interior U.S. Geological Survey  

E-Print Network (OSTI)

­5294 Geology and Resources of Some World Oil-Shale Deposits #12;Cover. Left: New Paraho Co. experimental oil specimen of Green River oil shale interbedded with gray layers of volcanic tuff from the Mahogany zone. Bottom right: Block diagram of the oil shale resources in the Mahogany zone in about 1,100 square miles

Laughlin, Robert B.

344

The hydrology of Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr(-1) under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (similar to 300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominantly through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

Flint, A.L.; Flint, L.E.; Bodvarsson, G.S.; Kwicklis, E.M.; Fabryka-Martin, J.M.

2000-12-04T23:59:59.000Z

345

Experiment and analysis comparison in support of the Yucca Mountain Project  

SciTech Connect

Sandia National Laboratories, as a participant in the Yucca Mountain Project, administered by the Nevada Operations Office of the US Department of Energy, is in the process of evaluating a proposed site for geologic disposal of high-level nuclear wastes in the volcanic tuffs at Yucca Mountain, Nevada. In a repository, loads will be imposed on the rock mass as a result of excavation of the openings and heating of the rock by the nuclear waste. In an attempt to gain a better understanding of the thermal, mechanical, and thermomechanical response of fractured tuff, a series of experiments have been performed, and measurements have been taken in the welded and nonwelded tuffs at the G-Tunnel underground test facility at Rainier Mesa, Nevada. Comparisons between measured and calculated data of the G-Tunnel High-Pressure Flatjack Development Experiment are presented in this investigation. Calculated results were obtained from two dimensional finite element analysis using a recently developed compliant-joint rock-mass model. The purpose of this work was to assess the predictive capability of the model based on limited material property data for the G-Tunnel welded tuff. The results of this evaluation are discussed.

Chen, E.P.; Bauer, S.J.; Costin, L.S.; Hansen, F.D.

1991-01-01T23:59:59.000Z

346

Natural gels in the Yucca Mountain Area, Nevada, USA  

SciTech Connect

Relict gels at Yucca Mountain include pore- and fracture-fillings of silica and zeolite related to diagenetic and hydrothermal alteration of vitric tuffs. Water-rich free gels in fractures at Rainier Mesa consist of smectite with or without silica-rich gel fragments. Gels are being studied for their potential role in transport of radionuclides from a nuclear-waste repository.

Levy, S.S.

1991-12-31T23:59:59.000Z

347

Categorical Exclusion Determinations: Office of Energy Efficiency and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-005304: Categorical Exclusion Determination California-City-Simi Valley CX(s) Applied: A1, B2.5, B5.1 Date: 03/03/2011 Location(s): Simi Valley, California Office(s): Energy Efficiency and Renewable Energy March 2, 2011 CX-005447: Categorical Exclusion Determination Vermont Biofuels Initiative: University of Vermont and State Agricultural College, Oilseed Crop and Perennial Grass Research CX(s) Applied: B3.1, B5.1 Date: 03/02/2011 Location(s): Alburgh, Vermont Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 2, 2011 CX-005416: Categorical Exclusion Determination Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico CX(s) Applied: A9 Date: 03/02/2011 Location(s): New Mexico Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

348

STGWG Meeting Minutes for May 3, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting Summary-Nashville 2010 Page 1 Meeting Summary-Nashville 2010 Page 1 State and Tribal Government Working Group Meeting Notes May 3, 2010 Doubletree Downtown Nashville Nashville, Tennessee TRIBAL EXECUTIVE SESSION (closed session) 9:00am-10:15am Attendees: Vice Chairman Brooklyn Baptiste, Gabe Bohnee, Rico Cruz, Greg Kaufman, Governor Joshua Madalena, Brooke Oleen Tieperman, Willie Preacher, Michael Sobotta and John Stanfill. Neil Weber and Peter Chestnut-participated by conference call. Governor Madalena of the Jemez Pueblo (NM) delivered the invocation. Gabe Bohnee, Tribal Issues Committee Co-Chairman, welcomed the group and introductions were made. The first item of business was to elect a Tribal Co-Chair for the Integration and Disposition (I&D) Committee. Dr. Rico Cruz with the Confederated Tribes of the

349

McCauley Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

McCauley Hot Spring Pool & Spa Low Temperature Geothermal Facility McCauley Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name McCauley Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility McCauley Hot Spring Sector Geothermal energy Type Pool and Spa Location Jemez Springs, New Mexico Coordinates 35.7686356°, -106.692258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

350

New-Hire Packet  

NLE Websites -- All DOE Office Websites (Extended Search)

Packet Packet New-Hire Packet All foreign nationals including students and postdocs must complete this process. Contact (505) 665-7158 Email Review electronic version of new-hire packet New-Hire Checklist (pdf) New-Hire Orientation Agenda (pdf) New-Hire Orientation Satisfaction Survey Forms See Required Documents Occupational Medicine Division Packet Occupational Medicine Location, Building 1411 (pdf) (look for the red star) Medical and Occupational History (doc) Informational Resources Security Smart: Foreign National Access into LANL Buildings (pdf) Security Smart: Piggybacking Prohibition (pdf) LANL Calendar (pdf) P761 Work Schedules (pdf) Important LANL Directions and Contacts (pdf) East Jemez Road: Vehicle Access Portals Brochure (pdf) LANL Organizational Chart (pdf)

351

UC-66b  

NLE Websites -- All DOE Office Websites (Extended Search)

1 0923-OBES 1 0923-OBES UC-66b Issued: March 1987 I I I Hydrogeochemical Data for Thermal and Nonthermal Waters and Gases of the Valles Caldera- Southern Jemez Mountains Region, New Mexico Lisa Shevenell Dale Counce Fraser Goff Cathy J. Janik** FranGois Vuataf William Evans** P. E. Trujillo, Jr. / - - - - - - - - - - - - - - - - - LA--IOgZ 3-OBES DE87 007722 This report was prcpatcd as an account of work sponsored by an agency o f the United States Gov~mmcnt. Neither the United States Government nor any agency thereof, nor any of their emPloYecs, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or , ptocess disclosed, or represents that its use would not infringe privately own4 rights. Refer-

352

Contact Us | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us Home > Field Offices > Welcome to the Los Alamos Field Office > Contact Us Contact Us Contact the NNSA Los Alamos Field Office NNSA Los Alamos Field Office (NA-00-LA) 3747 West Jemez Road Los Alamos, NM 87544 (505) 667-6691 Please send any comments, questions, or feedback to Toni Chiri Featured Links LANL Phonebook National Nuclear Security Administration Los Alamos National Laboratory Los Alamos County USA Gov Department of Energy (DOE) New Mexico Environmental Department - LANL U.S. Department of Homeland Security Printer-friendly version Printer-friendly version Facebook Twitter Youtube Flickr General Information About Los Alamos Field Office Contact Us Employee Concerns Program LANS Contract Los Alamos Field Office Emergency Public Information Related Links

353

DOE STGWG Group  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STGWG Group STGWG Group The State and Tribal Government Working Group (STGWG) is one of the intergovernmental organizations with which the DOE EM office works with. They meet twice yearly for updates to the EM projects. They were formed in 1989. It is comprised of several state legislators and tribal staff and leadership from states in proximity to DOE's environmental cleanup sites of the following states: New York, South Carolina, Ohio, Washington, New Mexico, Idaho, California, Colorado, Georgia, Illinois, Kentucky, Missouri, Nevada, Oregon, Tennessee and Texas. The tribal membership is composed of the Confederated Tribes of the Umatilla Indian Reservation, the Isleta Pueblo, Jemez Pueblo, Navajo Nation, Nez Perce Tribe, Santa Clara Pueblo, Pueblo de San Ildefonso, Seneca Nation of Indians, Shoshone-Bannock Tribes, and the

354

Categorical Exclusion Determinations: A9 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 11, 2012 April 11, 2012 CX-008227: Categorical Exclusion Determination Recovery Act: Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico CX(s) Applied: A9 Date: 04/11/2012 Location(s): New Mexico Offices(s): Golden Field Office April 11, 2012 CX-008226: Categorical Exclusion Determination Catalytic Upgrading of Thermochemical Intermediates to Hydrocarbons CX(s) Applied: A9, B3.6 Date: 04/11/2012 Location(s): Massachusetts Offices(s): Golden Field Office April 11, 2012 CX-008212: Categorical Exclusion Determination Development of Project on North Unit Irrigation District's Main Canal at Monroe Drop CX(s) Applied: A9 Date: 04/11/2012 Location(s): Oregon Offices(s): Golden Field Office April 10, 2012 CX-008187: Categorical Exclusion Determination

355

Property:Geothermal/Partner5Website | Open Energy Information  

Open Energy Info (EERE)

Partner5Website Partner5Website Jump to: navigation, search Property Name Geothermal/Partner5Website Property Type URL Description Partner 5 Website (URL) Pages using the property "Geothermal/Partner5Website" Showing 6 pages using this property. A Alum Innovative Exploration Project Geothermal Project + http://www.westerngeco.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.thermasource.com/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://- + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.utah.edu/portal/site/uuhome/ +

356

Data:A87b7912-cd7e-4295-a4c2-fc2d6ead4459 | Open Energy Information  

Open Energy Info (EERE)

12-cd7e-4295-a4c2-fc2d6ead4459 12-cd7e-4295-a4c2-fc2d6ead4459 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: 2006/04/29 End date if known: Rate name: Large Power Service-TOU Sector: Industrial Description: See Source. Source or reference: http://www.jemezcoop.org/Energy/rates.cfm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

357

High-tech tool predicts fire behavior in bark beetle-ravaged forests  

NLE Websites -- All DOE Office Websites (Extended Search)

Better computer models Better computer models High-tech tool predicts fire behavior in bark beetle-ravaged forests A high-tech computer model called HIGRAD/FIRETEC provides insights that are essential for front-line fire fighters. August 9, 2012 Researchers from LANL and the French Space Agency examine data from the Mars Science Laboratory Curiosity rover from inside the ChemCam Operations Center at NASA's Jet Propulsion Laboratory on Monday, Aug. 6, 2012, less than a day after the rover landed on Mars. The ChemCam team received signals indicating that the instrument is healthy and all systems are ready to go. During the Las Conchas fire of 2011, a Los Alamos resident watches the Jemez Mountains burn just a few miles west of town and near LANL. Contact Nancy Ambrosiano Communications Office

358

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al.,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown References Fraser E. Goff, Charles O. Grigsby, Pat E. Trujillo Jr, Dale Counce, Andrea Kron (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff,_Et_Al.,_1981)&oldid=692519

359

Data:72eccd30-274e-4fea-aa30-e21e4be8a690 | Open Energy Information  

Open Energy Info (EERE)

eccd30-274e-4fea-aa30-e21e4be8a690 eccd30-274e-4fea-aa30-e21e4be8a690 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: 2005/11/23 End date if known: Rate name: Municipal Service and Small School Service Sector: Commercial Description: See Source Source or reference: http://www.jemezcoop.org/Energy/rates.cfm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

360

Planning, drilling, logging, and testing of energy extraction hole EE-1, Phases I and II  

DOE Green Energy (OSTI)

Energy Extraction Hole No. 1 (EE-1) is the second deep hole drilled into the Precambrian-age granitic rocks of the Jemez Mountains of north-central New Mexico. EE-1 was drilled to intersect a hydraulic fracture extending outward from near the bottom of previously drilled hole GT-2, thus completing the underground circulation loop required for the hot dry rock geothermal energy extraction experiment. Directional drilling techniques were used to intersect the fracture zone. In addition, high-temperature instrumentation and equipment development, hydraulic fracturing experiments, pressure-flow testing of the fracture systems, and fracture mapping and borehole-ranging technique activities were conducted. The drilling, logging, and testing operations in EE-1 are described.

Pettitt, R.A.

1977-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Rock failure during massive hydraulic stimulation of the Baca location geothermal reservoir  

DOE Green Energy (OSTI)

The analyses of microearthquake signals occurring during hydraulic stimulation provide an estimate of the size and location of the fractures thus produced. Studies of microearthquakes occurring during two large (> 10/sup 3/m/sup 3/) hydraulic stimulations of the hydrothermal reservoir at the Baca Location in the Jemez Mountains of northeastern New Mexico are reported. Both stimulations consisted of water, viscosity enhancer, and proppant. The microearthquake event rate was low but variable throughout most of the treatment. Rock failure as indicated by the distribution of the microearthquakes' foci appeared restricted to a nearly vertical NE striking zone. This orientation is in good agreement with the local earth stresses inferred from geological considerations. The second stimulation which occurred in a neighboring well was similar to the first except for a larger injected volume. The lateral extent of the detected fracture system was 600 m in both stimulations.

Pearson, C.; Keppler, H.; Albright, J.; Potter, R.

1982-01-01T23:59:59.000Z

362

POST 10/Truck Inspection Station (Map 3  

NLE Websites -- All DOE Office Websites (Extended Search)

POST 10/Truck Inspection Station (Map 3) POST 10/Truck Inspection Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded by NM Highway 4 and Diamond Drive) must stop at Post 10 for truck inspections. Drivers will then need to present time-stamped inspection passes from Post 10 to protective force officers stationed at the Pajarito Corridor. (Drivers exiting Post 10 should (1) turn right and proceed west on the Truck Route; (2) turn left onto West Jemez Road; (3) proceed to Lane 7; (4) STOP and present the inspection pass to the protective force officer; (5) turn left onto Diamond

363

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Details Activities (5) Areas (2) Regions (0) Abstract: Two hot dry rock (HDR) geothermal energy reservoirs have been created by hydraulic fracturing of Precambrian granitic rock between two wells on the west flank of the Valles Caldera in the Jemez Mountains of northern New Mexico. Heat is extracted by injecting water into one well,

364

Site Programs & Cooperative Agreements: Los Alamos and National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos and National Los Alamos and National Laboratory Site Programs & Cooperative Agreements: Los Alamos and National Laboratory Los Alamos and National Laboratory (LANL) The Los Alamos Pueblos Project (LAPP), comprised of four New Mexico pueblo governments (Santa Clara Pueblo, Pueblo of Cochiti, Pueblo of Jemez, and Pueblo de San Ildefonso), has individual cooperative agreements to develop and maintain environmental monitoring programs. The LAPP is funded by both EM and National Nuclear Security Administration/Defense Programs (NNSA). Funds provided vary from one Pueblo to another. In addition, EM funds the Santa Fe Indian School to work with the LAPP pueblos. Provisions of the agreements allow LAPP tribal program personnel to obtain the necessary training to monitor and sample soil, air, groundwater, and

365

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 9650 of 28,905 results. 41 - 9650 of 28,905 results. Article Department of Energy Completes Five Recovery Act Projects- Moves Closer to Completing Recovery Act Funded Work at Oak Ridge Site OAK RIDGE, Tenn. - The U.S. Department of Energy's (DOE) Environmental Management (EM) program recently completed five projects at the Oak Ridge site funded through the American Recovery and Reinvestment Act. http://energy.gov/em/articles/department-energy-completes-five-recovery-act-projects-moves-closer-completing-recovery Page Site Programs & Cooperative Agreements: Los Alamos and National Laboratory The Los Alamos Pueblos Project (LAPP), comprised of four New Mexico pueblo governments (Santa Clara Pueblo, Pueblo of Cochiti, Pueblo of Jemez, and Pueblo de San Ildefonso), has individual...

366

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 24780 of 26,764 results. 71 - 24780 of 26,764 results. Download Before the Subcommittee on Oversight and Investigations Subject: Solyndra Loan Guarantee By: Steven Chu, Secretary of Energy http://energy.gov/congressional/downloads/subcommittee-oversight-and-investigations Download DOE F 42210.10 Congressional, Public and Intergovernmental Affairs Notification http://energy.gov/cio/downloads/doe-f-4221010-congressional-public-and-intergovernmental-affairs-notification Download CX-006853: Categorical Exclusion Determination Validation of Innovative Exploration Technologies CX(s) Applied: A9, B3.1, B5.1 Date: 09/20/2011 Location(s): Pueblo of Jemez Reservation, New Mexico Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-006853-categorical-exclusion-determination

367

Property:Geothermal/Partner6Website | Open Energy Information  

Open Energy Info (EERE)

Partner6Website Partner6Website Jump to: navigation, search Property Name Geothermal/Partner6Website Property Type URL Description Partner 6 Website (URL) Pages using the property "Geothermal/Partner6Website" Showing 4 pages using this property. C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.sensortran.com/ + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.pitt.edu/ + S Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project + http://www.sercel.com/ + T The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project + http://www.icdp-online.org/contenido/icdp/front_content.php +

368

REClPIENT:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pueblo of Jemez US. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CNTER NFPA DETERMINATION PROJ£Cf TITLE: Validation of Innovative Exploration Technologies Page 1 of2 STATE : NM Funding Opportunity Announcement Number Procurt'ment Instrument Number NEPA Control Number CID Number DE-FOA-OOOO109 EEOOO2841 GF0-0002641-004 0 Based on my review or the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 45 I. IA), I have made the (ollowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 83.1 Dnsile and offsite site characterization and environmental monitoring. including siting, construction (or modification), operation, and dismantlement or closing (abandonment) of characterization and monitoring devices and siting,

369

Microsoft Word - Summary.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Summary To submit questions regarding this CMRR-NF SEIS, or to request a copy, please contact: AVAILABILITY OF THE FINAL SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT FOR THE NUCLEAR FACILITY PORTION OF THE CHEMISTRY AND METALLURGY RESEARCH BUILDING REPLACEMENT PROJECT AT LOS ALAMOS NATIONAL LABORATORY, LOS ALAMOS, NEW MEXICO (CMRR-NF SEIS) Printed with soy ink on recycled paper John Tegtmeier, EIS Document Manager Los Alamos Site Office National Nuclear Security Administration U.S. Department of Energy 3747 West Jemez Road Los Alamos, NM 87544 Telephone: 505-665-0113 Conceptual Drawing CMRR Facility Past Present Future Past Final Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project

370

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken &  

Open Energy Info (EERE)

Heiken & Heiken & Goff, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken & Goff, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Development of a geologically-based model of the thermal and hydrothermal potential of the Fenton Hill HDR area. References Grant Heiken, Fraser Goff (1983) Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Fenton_Hill_Hdr_Geothermal_Area_(Heiken_%26_Goff,_1983)&oldid=511328

371

Data:30b12651-4181-477b-973c-d85f2da0208b | Open Energy Information  

Open Energy Info (EERE)

651-4181-477b-973c-d85f2da0208b 651-4181-477b-973c-d85f2da0208b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: 2011/11/24 End date if known: Rate name: Small Commercial Service Sector: Residential Description: see source. Source or reference: http://www.jemezcoop.org/Energy/rates.cfm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

372

Categorical Exclusion Determinations: Golden Field Office | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-003402: Categorical Exclusion Determination Corrugated Membrane and Fuel Cell Structures CX(s) Applied: B3.6 Date: 08/16/2010 Location(s): New Castle, Delaware Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 17, 2010 CX-003497: Categorical Exclusion Determination Research on Fuel Cell Powered by Hydrogen from Biomass to Provide Clean Energy for Remote Farms away from Electric Grid CX(s) Applied: A9 Date: 08/17/2010 Location(s): Farmingdale, New York Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 17, 2010 CX-003493: Categorical Exclusion Determination Recovery Act: Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico CX(s) Applied: B3.1 Date: 08/17/2010 Location(s): New Mexico

373

Data:516f04ef-b729-43be-b140-a4b7233dc292 | Open Energy Information  

Open Energy Info (EERE)

ef-b729-43be-b140-a4b7233dc292 ef-b729-43be-b140-a4b7233dc292 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: 2005/11/23 End date if known: Rate name: Street and Security Lighting Service-175 W MV Sector: Lighting Description: See Source. Source or reference: http://www.jemezcoop.org/News/currentRates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

374

Google Earth  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Home > Long-Term Environmental Stewardship & Sustainability Strategy › Home About the Strategy Environmental Grand Challenges Vision & Mission Contacts | Information Environment at LANL Clean the Past › Introduction Tour: Environmental Cleanup Protections: Cleanup › Protections: Cleanup Cleanup 101 Protections = Defenses in Depth Protection #1: Remove the Source Example Cleanup: Hillside 140 American Recovery and Reinvestment Act Example Demolition: TA-21 Example Excavation: MDA B What waters does LANL protect? › What waters does LANL protect? Tour: Waters LANL Protects Jemez Mountains Headwaters Watersheds Rio Grande Buckman Direct Diversion Groundwater in the Regional Aquifer How did contaminants get there? › How did contaminants get there? Tour: How contaminants got there

375

News Releases - 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

/newsroom/_assets/images/newsroom-icon.jpg News Releases - 2010 We are your source for reliable, up-to-date news and information; our scientists and engineers can provide technical insights on our innovations for a secure nation. Bradbury Science Museum Bradbury Science Museum announces winter opening hours Museum will be closed on Christmas Day (December 25) and New Year's Day (January 1, 2011). - 12/21/10 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. LANL announces Top 10 science & technology developments of 2010 Top 10 developments based on major programmatic milestones, strategic

376

DOE/EIS-0380  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 FISCAL YEAR 2011 MITIGATION ACTION PLAN ANNUAL REPORT FOR THE 2008 LOS ALAMOS NATIONAL LABORATORY SITE-WIDE ENVIRONMENTAL IMPACT STATEMENT APRIL 2012 LOS ALAMOS SITE OFFICE 3747 West Jemez Road, MS A-316 Los Alamos, New Mexico 87545 DISCLAIMER: This document was prepared by Los Alamos National Security, LLC (LANS) in their role as management and operations (M&O) contractor for the Los Alamos National Laboratory, under contract to DOE/NNSA (Contract Number DE-AC52-06NA25396). DOE/NNSA LASO has reviewed this document for content and accuracy. The National Environmental Policy Act (NEPA) Compliance Officer for DOE/NNSA LASO concurs with this document. LA-UR-11-06159 Approved for public release; distribution is unlimited.

377

Data:19741bcd-9dde-4aa4-8b61-ecab1abecec4 | Open Energy Information  

Open Energy Info (EERE)

dde-4aa4-8b61-ecab1abecec4 dde-4aa4-8b61-ecab1abecec4 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: 2005/11/23 End date if known: Rate name: Street and Security Lighting Service-250 W SV Sector: Lighting Description: See Source. Source or reference: http://www.jemezcoop.org/News/currentRates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

378

Data:Dd6a03eb-8b03-4eaf-a09e-9a7158d21eb9 | Open Energy Information  

Open Energy Info (EERE)

eb-8b03-4eaf-a09e-9a7158d21eb9 eb-8b03-4eaf-a09e-9a7158d21eb9 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: 2005/11/23 End date if known: Rate name: Street and Security Lighting Service-100 W SV Sector: Lighting Description: See Source. Source or reference: http://www.jemezcoop.org/News/currentRates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

379

New-Hire Packet  

NLE Websites -- All DOE Office Websites (Extended Search)

Packet Packet New-Hire Packet All foreign nationals, including students and postdocs, must select the foreign nationals employment category to complete the new-hire process. Contact (505) 665-7158 Email Review electronic version of new-hire packet New-Hire Checklist (pdf) New-Hire Orientation Agenda (pdf) New-Hire Orientation Satisfaction Survey Forms See Required Documents Occupational Medicine Division Packet Occupational Medicine Location, Building 1411 (pdf) (look for the red star) Medical and Occupational History (doc) Informational Resources Security Smart: Proof of Citizenship for the Badge Office (pdf) Security Smart: Piggybacking Prohibition (pdf) LANL Calendar (pdf) P761 Work Schedules (pdf) Important LANL Directions and Contacts (pdf) East Jemez Road: Vehicle Access Portals Brochure (pdf)

380

EIS-0350-S1: Amended Record of Decision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

350-S1: Amended Record of Decision 350-S1: Amended Record of Decision EIS-0350-S1: Amended Record of Decision Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos, NM For more information: Mr. George J. Rael Assistant Manager Environmental Operations NEPA Compliance Officer U.S. Department of Energy National Nuclear Security Administration Los Alamos Site Office 3747 West Jemez Road, Los Alamos, NM 87544 Telephone: 505-606-0397 Electronic mail: NEPALASO@doeal.gov The National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) is issuing this Amended Record of Decision (AROD) for the Nuclear Facility portion of the Chemistry and Metallurgy Research Building Replacement (CMRR) Project at the Los Alamos National Laboratory (LANL) in

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Accommodations  

NLE Websites -- All DOE Office Websites (Extended Search)

Accommodations Accommodations Accommodations Los Alamos National Laboratory is situated on a mesatop on the eastern side of the Jemez Mountains, an impressive series of ancient volcanoes with extensive views of the Sangre de Cristo Mountains in the east, where sunsets turn the western slopes a vibrant red. We hope you enjoy your stay in the Land of Enchantment. Update: The La Fonda is now full. Reservations can be made at the overflow hotel, La Posada, which is a short walk from the conference hotel: Contact reservations at 1-855-278-5276 OR Book via the web at be.genares.net/10054 Use group code is GSFAF to obtain the group rate of only $83 per night Rooms must be booked by April 30. La Fonda The Sequencing, Finishing and Analysis in the Future meeting is sponsored and hosted by DOE's Los Alamos National Laboratory. No registration fee is

382

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-000660: Categorical Exclusion Determination Northern Mid-Atlantic Provider of Solar Instructor Training CX(s) Applied: A9, A11 Date: 02/09/2010 Location(s): Pennsylvania Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 9, 2010 CX-000661: Categorical Exclusion Determination Southern Mid-Atlantic Provider of Solar Instructor Training CX(s) Applied: A9, A11, B5.1 Date: 02/09/2010 Location(s): North Carolina Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 9, 2010 CX-000662: Categorical Exclusion Determination Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico CX(s) Applied: B3.1 Date: 02/09/2010 Location(s): New Mexico Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

383

Conceptual Drawing CMRR Facility Past  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volume 1 Volume 1 Chapters 1 through 10 Appendices A through D To submit questions regarding this CMRR-NF SEIS, or to request a copy, please contact: AVAILABILITY OF THE FINAL SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT FOR THE NUCLEAR FACILITY PORTION OF THE CHEMISTRY AND METALLURGY RESEARCH BUILDING REPLACEMENT PROJECT AT LOS ALAMOS NATIONAL LABORATORY, LOS ALAMOS, NEW MEXICO (CMRR-NF SEIS) Printed with soy ink on recycled paper John Tegtmeier, EIS Document Manager Los Alamos Site Office National Nuclear Security Administration U.S. Department of Energy 3747 West Jemez Road Los Alamos, NM 87544 Telephone: 505-665-0113 Conceptual Drawing CMRR Facility Past Present Future Past Final Supplemental Environmental Impact Statement for the

384

EIS-0350-S1: Amended Record of Decision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amended Record of Decision Amended Record of Decision EIS-0350-S1: Amended Record of Decision Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos, NM For more information: Mr. George J. Rael Assistant Manager Environmental Operations NEPA Compliance Officer U.S. Department of Energy National Nuclear Security Administration Los Alamos Site Office 3747 West Jemez Road, Los Alamos, NM 87544 Telephone: 505-606-0397 Electronic mail: NEPALASO@doeal.gov The National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) is issuing this Amended Record of Decision (AROD) for the Nuclear Facility portion of the Chemistry and Metallurgy Research Building Replacement (CMRR) Project at the Los Alamos National Laboratory (LANL) in

385

Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of  

Open Energy Info (EERE)

Of Electromagnetic Methods Applied In Active Volcanic Areas Of Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States Details Activities (7) Areas (2) Regions (0) Abstract: A better understanding of active volcanic areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations by governmental, industrial, and academic agencies include (but are not limited to) mapping of the Cascades. Long Valley/Mono area, the Jemez volcanic field, Yellowstone Park, and an area in Colorado. For one example - Mt. Konocti in the Mayacamas Mountains, California - gravity,

386

Elastomechanical methods in the exploration of the Valles Caldera, New Mexico. Final report, June 8, 1981-October 8, 1981  

DOE Green Energy (OSTI)

The Valles caldera in the Jemez Mountains of New Mexico is a case of an active caldera that is an object for a comprehensive ground tilt field program to map both elastic and rheic discontinuities. Based on a rather comprehensive theoretical development that is outlined in five separate Essays, estimates of the amplitudes of some of the possible ground tilt signals were obtained. Based on the results, the strongest signals of the order of 100 to 200 nanoradians would appear to result from the purely elastic response of the caldera fill to a barometric forcing. Moreover, assuming a magmatic underplate below the Valles, barometric forcing may lead to a flexure of the upper crust that could generate tilt signals of a similar magnitude. Present data material is insufficient to allow a useful estimate to be made of the possible tilt signals due to the rheic properties of a Valles pluton that may be in the state of partial fusion.

Bodvarsson, G.

1981-01-01T23:59:59.000Z

387

Drilling, Completing, and Maintaining Geothermal Wells in Baca, New Mexico  

DOE Green Energy (OSTI)

A 55-MWe power plant is planned for development in the Baca location in the Jemez Mountains of New Mexico. Union Geothermal has contracted to provide the steam for the power plant. This paper uses Baca Well No. 13 as a case history to describe the drilling methods, casing program, cementing program, and completion methods used by Union. The discussion includes aerated-water drilling and the methods of solving corrosion problems in aerated water. lost circulation control in mud drilling and its effect on the subsequent casing cementing program are discussed. The paper also includes a case history of scale removal methods used in Baca Well No. 11, including drilling the scale out with a turbo-drill and attempts at chemical inhibition.

Pye, S.

1981-01-01T23:59:59.000Z

388

Los Alamos National Laboratory: Long-Term Environmental Stewardship and  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean the Past Clean the Past PreviousNext How does LANL protect human health and the environment from the impacts of contamination released over the last 60 years? Clean the Past LANL removes and stabilizes contaminants as one of three defenses in depth to protect human health and the environment. Map of Los Alamos townsite bordered by Pueblo and Los Alamos Canyons Los Alamos townsite bordered by Pueblo and Los Alamos Canyons Historic liquid discharges and outfalls Ashley Pond TA-21 High Explosives Testing History of Regulatory Oversight at LANL Protections = Defenses in Depth Remove the Source Cleanup 101 TA-21 MDA B Hillside 140 Buckman Direct Diversion Project Jemez Mountains Watersheds Groundwater Rio Grande Thousands of yards of contaminants were removed in 2011 and 2012.

389

Directions and Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions & Maps Directions & Maps Plan Your Visit Visit About the Museum Museum Hours Directions & Maps When to Visit Arrange for a Visit Around Los Alamos Contact Us invisible utility element Directions and Maps Aerial View of Los Alamos Aerial approach to the Los Alamos airport Where we're located Los Alamos (elevation 7,355 feet) is perched high atop the Pajarito Plateau in the Jemez Mountains, 35 miles northwest of Santa Fe. The Bradbury Science Museum is located in downtown Los Alamos at the corner of Central Avenue and 15th Street. If you're driving here and using GPS navigation, our address is 1350 Central Avenue, Los Alamos, NM 87544. How to get here From Albuquerque take I-25 north to Santa Fe (take NM 599 for most direct route), then US 84/285 north to Pojoaque. At Pojoaque take the NM 502 exit

390

Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste  

SciTech Connect

Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

J.S. Stuckless; D. O'Leary

2006-09-25T23:59:59.000Z

391

Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site  

Science Conference Proceedings (OSTI)

This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworked zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain.

Connolly, J.R.; Keil, K.; Mansker, W.L.; Allen, C.C.; Husler, J.; Lowy, R.; Fortney, D.R.; Lappin, A.R.

1984-10-01T23:59:59.000Z

392

Geological control on the reservoir characteristics of Olkaria West Geothermal Field, Kenya  

SciTech Connect

The reservoir of the West Olkaria Geothermal Field is hosted within tuffs and the reservoir fluid is characterized by higher concentrations of reservoir CO{sub 2} (10,000-100,000 mg/kg) but lower chloride concentrations of about 200 mg/kg than the East and North East Fields. The West Field is in the outflow and main recharge area of the Olkaria geothermal system. Permeability is generally low in the West Field and its distribution is strongly controlled by the structures. Fault zones show higher permeability with wells drilled within the structures havin larger total mass outputs. However, N-S and NW-SE faults are mainly channels for cold water downflow into the reservoir. Well feeder zones occur mostly at lava-tuff contacts; within fractured lava flows and at the contacts of intrusives and host rocks.

Omenda, Peter A.

1994-01-20T23:59:59.000Z

393

Heat pipe effects in nuclear waste isolation: a review  

SciTech Connect

The existence of fractures favors heat pipe development in a geologic repository as does a partially saturated medium. A number of geologic media are being considered as potential repository sites. Tuff is partially saturated and fractured, basalt and granite are saturated and fractured, salt is unfractured and saturated. Thus the most likely conditions for heat pipe formation occur in tuff while the least likely occur in salt. The relative permeability and capillary pressure dependences on saturation are of critical importance for predicting thermohydraulic behavior around a repository. Mineral redistribution in heat pipe systems near high-level waste packages emplaced in partially saturated formations may significantly affect fluid flow and heat transfer processes, and the chemical environment of the packages. We believe that a combined laboratory, field, and theoretical effort will be needed to identify the relevant physical and chemical processes, and the specific parameters applicable to a particular site. 25 refs., 1 fig.

Doughty, C.; Pruess, K.

1985-12-01T23:59:59.000Z

394

Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site  

Science Conference Proceedings (OSTI)

The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15 to 19 mg C/L) compared to samples with DOM removed (Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.

Zhao, P; Zavarin, M; Leif, R; Powell, B; Singleton, M; Lindvall, R; Kersting, A

2007-12-17T23:59:59.000Z

395

Elevated weathering rates in the Rocky Mountains during the Early Eocene  

E-Print Network (OSTI)

primarily of trona (NaHCO3·Na2CO3·2H2O) and halite (NaCl) and were mapped from over 200 exploratory Tuff 10 m Qm F L Bedrock Alluvium KP Qm Bedrock Alluvium Trona bed Union Pacific El Paso core WPM) Trona volume (km3) 0 2 4 6 Derived from Phanerozoic strata Figure 2 Early Eocene strata in the GGRB. a

Smith, Michael Elliot

396

Evidence for a tektosilicate structure and dominance of Fe(III) over Fe(II) in silicic volcanic glasses of the Nevada Test Site  

SciTech Connect

More than 400 individual analyses have been obtained by electron microprobe for silicic glasses in 58 samples of tuff and lava from the Nevada Test Site (NTS). These samples comprise a wide range in chemical and petrographic types, including calc-alkaline and peralkaline rock types, and include most of the volcanic units of the NTS. Locations and brief petrographic descriptions are given for representative samples.

Warren, R.G.

1983-01-01T23:59:59.000Z

397

Thermal analysis of Yucca Mountain commercial high-level waste packages  

Science Conference Proceedings (OSTI)

The thermal performance of commercial high-level waste packages was evaluated on a preliminary basis for the candidate Yucca Mountain repository site. The purpose of this study is to provide an estimate for waste package component temperatures as a function of isolation time in tuff. Several recommendations are made concerning the additional information and modeling needed to evaluate the thermal performance of the Yucca Mountain repository system.

Altenhofen, M.K. [Altenhofen (M.K.), Richland, WA (United States); Eslinger, P.W. [Pacific Northwest Lab., Richland, WA (United States)

1992-10-01T23:59:59.000Z

398

Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site  

SciTech Connect

The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15 to 19 mg C/L) compared to samples with DOM removed (< 0.4 mg C/L) or samples with naturally low DOM (0.2 mg C/L). In contrast, Np(V) and U(VI) sorption to zeolitized tuff was much less affected by the presence of DOM. The Np(V) and U(VI) sorption Kds were low under all conditions. Importantly, the DOM was not found to significantly sorb to the zeolitized tuff during these experiment. The concentration of DOM in groundwater affects the transport behavior of actinides in the subsurface. The mobility of Am(III) and Pu(IV) is significantly higher in groundwater with elevated levels of DOM resulting in potentially enhanced transport. To accurately model the transport behavior of actinides in groundwater at Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.

Zhao, P; Zavarin, M; Leif, R; Powell, B; Singleton, M; Lindvall, R; Kersting, A

2007-12-17T23:59:59.000Z

399

Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility; Yucca Mountain Site Characterization Project  

SciTech Connect

The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area.

Dunn, E.; Sobolik, S.R.

1993-12-01T23:59:59.000Z

400

THE PENA BLANCA NATURAL ANALOGUE PERFORMANCE ASSESSMENT MODEL  

SciTech Connect

The Nopal I uranium mine in the Sierra Pena Blanca, Chihuahua, Mexico serves as a natural analogue to the Yucca Mountain repository. The Pena Blanca Natural Analogue Performance Assessment Model simulates the mobilization and transport of radionuclides that are released from the mine and transported to the saturated zone. The Pena Blanca Natural Analogue Performance Assessment Model uses probabilistic simulations of hydrogeologic processes that are analogous to the processes that occur at the Yucca Mountain site. The Nopal I uranium deposit lies in fractured, welded, and altered rhyolitic ash-flow tuffs that overlie carbonate rocks, a setting analogous to the geologic formations at the Yucca Mountain site. The Nopal I mine site has the following analogous characteristics as compared to the Yucca Mountain repository site: (1) Analogous source--UO{sub 2} uranium ore deposit = spent nuclear fuel in the repository; (2) Analogous geology--(i.e. fractured, welded, and altered rhyolitic ash-flow tuffs); (3) Analogous climate--Semiarid to arid; (4) Analogous setting--Volcanic tuffs overlie carbonate rocks; and (5) Analogous geochemistry--Oxidizing conditions Analogous hydrogeology: The ore deposit lies in the unsaturated zone above the water table.

G. Saulnier and W. Statham

2006-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Pore Connectivity Effects on Solute Transport in Rocks  

SciTech Connect

Retardation of nuclear contaminants in rock matrices can lead to long retention times, allowing substantial radionuclide decay prior to eventual release. Imbibition and diffusion into the rock matrix can move contaminants away from an active fracture, thereby contributing to their retardation. However, diffusive transport in some rocks may behave anomalously because of their sparsely connected porespace, in contrast to diffusion in rocks with denser pore connections. We examined imbibition of weakly sorbing tracers into welded tuff and Indiana sandstone, and water imbibition into metagraywacke and Berea sandstone. Tuff samples were initially equilibrated to 12% and 76% water (v/v) within controlled humidity chambers, while the other rocks were air-dried. For imbibition, one face was exposed to water, with or without tracer, and uptake was measured over time. Following imbibition, tracer concentration measurements were made at fine (1 mm) increments. Three anomalous results were observed: (1) Indiana sandstone and metagraywacke showed mass of imbibed water scaling as time{sup 0.26}, while tuff and Berea sandstone showed the more classical scaling with time{sup 0.05}; (2) tracer movement into dry (2% initial saturation) Indiana sandstone showed a dispersion pattern similar to that expected during tracer movement into moist (76% initial saturation) tuft and (3) tracer concentrations at the inlet face of the tuff sample were approximately twice those deeper inside the sample. The experiment was then modeled using random walk methods on a 3-D lattice with different values of pore coordination. Network model simulations that used a pore coordination of 1.49 for Indiana sandstone and 1.56 for metagraywacke showed similar temporal scaling, a result of their porespace being close to the percolation threshold. Tracer concentration profiles in Indiana sandstone and tuff were closely matched by simulations that used pore coordinations of 1.49 and 1.68, respectively, because of how low connectivity alters the accessible porosity in the vicinity of the inlet face. The study supports pore connectivity as a coherent explanation for the observed anomalies and demonstrates the utility of pore-scale modeling in elucidating mechanisms critical to radionuclide retardation in geological repositories.

Oinhong Hu

2001-12-05T23:59:59.000Z

402

EMPLACEMENT DRIFT INVERT-LOW STEEL EVALUATION  

SciTech Connect

This technical report evaluates and develops options for reducing the amount of steel in the emplacement drift invert. Concepts developed in the ''Invert Configuration and Drip Shield Interface'' were evaluated to determine material properties required for the proposed invert concepts. Project requirements documents prescribe the use of a carbon steel frame for the invert with a granular material of crushed tuff as ballast. The ''Invert Configuration and Drip Shield Interface'' developed three concepts: (1) All-Ballast Invert; (2) Modified Steel Invert with Ballast; and (3) Steel Tie with Ballast Invert. Analysis of the steel frame members, runway beams, and guide beams, for the modified steel invert with ballast, decreased the quantity of steel in the emplacement drift invert, however a substantial steel support frame for the gantry and waste package/pallet assembly is still required. Use of one of the other two concepts appears to be an alternative to the steel frame and each of the concepts uses considerably less steel materials. Analysis of the steel tie with ballast invert shows that the bearing pressure on the ballast under the single steel tie, C 9 x 20, loaded with the waste package/pallet assembly, drip shield, and backfill exceeds the upper bound of the allowable bearing capacity for tuff used in this study. The single tie, C 10 x 20, will also fail for the same loading condition except for the tie length of 4.2 meters and longer. Analysis also shows that with two ties, C 9 or 10 x 20's, the average ballast pressure is less than the allowable bearing capacity. Distributing the waste package/pallet, drip shield, and backfill loads to two steel ties reduces the contact bearing pressure. Modifying the emplacement pallet end beams to a greater width, reducing the tie spacing, and increasing the width of the ties would ensure that the pallet beams are always supported by two steel ties. Further analysis is required to determine compatible tie size and spacing and pallet beam width. Testing is also required to determine the bearing capacity of the tuff materials. Analysis of the all-ballast invert shows that the waste package/pallet assembly, as currently designed, can be supported by the compacted crushed tuff. The drip shield and related backfill loads cannot be supported by the compacted crushed tuff because of the narrow base angle that currently supports the drip shield. Increasing the width of the base angle of the drip shield will better distribute the drip shield and backfill load to the compacted crushed tuff. Testing is required to determine the bearing capacity of the tuff materials. Emplacement/retrieval equipment will also require analysis and development to be compatible with the all-ballast invert.

M. E. Taylor and D. H. Tang

2000-09-29T23:59:59.000Z

403

Data:7b43a172-76f9-480a-802a-f052de2e26cf | Open Energy Information  

Open Energy Info (EERE)

a172-76f9-480a-802a-f052de2e26cf a172-76f9-480a-802a-f052de2e26cf No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: 2005/11/23 End date if known: Rate name: Street and Security Lighting Service-400 W MV dual/steel pole Sector: Lighting Description: See Source. Source or reference: http://www.jemezcoop.org/News/currentRates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category:

404

Data:D9d7c21e-f67b-413d-90d0-4f65a95923ff | Open Energy Information  

Open Energy Info (EERE)

d7c21e-f67b-413d-90d0-4f65a95923ff d7c21e-f67b-413d-90d0-4f65a95923ff No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: 2005/11/23 End date if known: Rate name: Street and Security Lighting Service-250 W SV lamp/steel pole Sector: Lighting Description: See Source. Source or reference: http://www.jemezcoop.org/News/currentRates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category:

405

Data:957ec156-bbe9-4d2c-925e-dc1880dc481d | Open Energy Information  

Open Energy Info (EERE)

ec156-bbe9-4d2c-925e-dc1880dc481d ec156-bbe9-4d2c-925e-dc1880dc481d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: End date if known: Rate name: Residential Time of Use Rates Sector: Residential Description: In order to benefit from Time of Use you MUST be able to coordinate most of your electric usage during the Off-Peak Hours. This means using your major appliances such as Electric Thermal Storage Heating Units, baseboard heating (if possible), electric clothes dryers, electric ovens, irons, compressors, power tools, etc. during the Off-Peak hours. Also placing timers on electric appliances like water heaters, hot tubs, saunas and freezers to only use power during Off-Peak hours will help. Any appliance you can operate during the Off-Peak hours will lower your electric utility bill.

406

AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT  

National Nuclear Security Administration (NNSA)

AMENDMENT/MODIFICATION NO AMENDMENT/MODIFICATION NO . 3. EFFECTIVE DATE 0232 See Block 16C 6. ISSUED BY CODE 05003 NNSA/Los Al amos Si t e Office U. S . Dep a rtme nt of Ene r gy Los Alamo s Sit e Off i ce 3747 We st Jemez Road Los Al a mos NM 87544 8. NAME AND ADDRESS OF CONTRACTOR (No. , street, county, State and ZIP Code) L A OS ALAMOS NAT I ONAL SECURI TY, ttn : STEVE K. SHOOK P.O . BOX 1663 , M S P222 L OS ALAMOS NM 875450001 CODE 175252894 LLC FACILITY CODE 11 . CONTRACT ID CODE I PAGE OF PAGES 1 I 2 4. REQUISITION/PURCHASE REQ. NO. 15. PROJECT NO. (ff applicable) 7. ADMINISTERED BY (ff other than Item 6) CODE 1 05003 NNSA/ Los Alamos S i te Office U. S . Departme n t of Energy Los Alamos Site Off ice 3747 W est J e me z Ro a d Los Alamos NM 875 4 4 (x) 9A. AMENDMENT OF SOLICITATION NO. - 9B. DATED (SEE ITEM 11)

407

Los Alamos hot dry rock geothermal energy experiment  

DOE Green Energy (OSTI)

Recent heat flow data indicates that about 95,000 sq. mi. in 13 western U.S. states is underlain, at a depth of 5 km (16,400 ft) by hot dry rock at temperatures above 290/sup 0/C (440/sup 0/F.). Therefore a geothermal energy development program was undertaken to develop methods from extracting thermal energy from hot rock in the earth crust by man-made underground circulation systems; demonstrate the commercial feasibility of such systems; and encourage use of this technology. Experiments performed on the Jemez Plateau in New Mexico are described with information on the drilling of boreholes, hydraulic fracturing of hot rocks, well logging, and environmental monitoring to establish base line data and define the potential effects of the project. The technical achievements of the project include boreholes were drilled to 3k (10,000 ft) with bottomhole temperatures of approximately 200/sup 0/C (390/sup 0/F); hydraulic fracturing produced fractured regions with 150 m (500 ft) radii; at least 90 percent of the water injected was recovered; and data was obtained on geologic conditions, seismic effects, and thermal, fracturing, and chemical properties of the downhole rocks. A geothermal power-production system model was formulated for evaluating the total cost of developing power production using a hot-dry-rock geothermal energy source. (LCL)

Pettitt, R.A.

1976-01-01T23:59:59.000Z

408

Data:50b7a5b7-ac18-40a9-84d0-54bde4826d66 | Open Energy Information  

Open Energy Info (EERE)

a5b7-ac18-40a9-84d0-54bde4826d66 a5b7-ac18-40a9-84d0-54bde4826d66 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: 2011/11/24 End date if known: Rate name: Small commercial Service-TOU Sector: Residential Description: see source Source or reference: http://www.jemezcoop.org/News/currentRates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

409

Artificial geothermal reservoirs in hot volcanic rock  

SciTech Connect

S>Some recent results from the Los Alamos program in which hydraulic fracturing is used for the recovery of geothermal energy are discussed. The location is about 4 kilometers west and south of the ring fault of the enormous Jemez Caldera in the northcentral part of New Mexico. It is shown that geothermal energy may be extracted from hot rock that does not contain circulating hot water or steam and is relatively impermeable. A fluid is pumped at high pressure into an isolated section of a wellbore. If the well is cased the pipe in this pressurized region is perforated as it is in the petroleum industry, so that the pressure may be applied to the rock, cracking it. A second well is drilled a few hundred feet away from the first. Cold water is injected through the first pipe, circulates through the crack, and hot water returns to the surface through the second pipe. Results are described and circumstances are discussed under which artiflcial geothermal reservoirs might be created in the basaltic rock of Hawaii. (MCW)

Aamodt, R.L.

1974-02-08T23:59:59.000Z

410

Water quality in the vicinity of Fenton Hill. Progress report 1981 and 1982  

DOE Green Energy (OSTI)

As part of a continuing program of environmental studies, water quality data have been collected from established surface and ground water stations and from ponds and pond discharges at Fenton Hill Site located in the Jemez Mountains. Most of these stations were established in 1973, and water quality data have been collected since that time. There have been slight variations in the chemical quality of water from the surface and ground water locations; however, these variations are within normal seasonal fluctuations. The discharge from ponds at Fenton Hill infiltrates into canyon alluvium within 400 m of the site. Monitoring surface and spring discharge downgradient from the ponds failed to detect any effects resulting from water released from the ponds. Total dissolved solids and calcium have increased in water from well FH-1, which furnishes the water supply for the site. This increase is caused by the decreasing water level in the well resulting in yield from beds with a slightly different quality than has been found in previous years.

Purtymun, W.D.; Ferenbaugh, R.W.; Becker, N.M.; Adams, W.H.; Maes, M.N.

1983-09-01T23:59:59.000Z

411

Summary of environmental surveillance at Los Alamos during 1995  

SciTech Connect

Linking the Rio Grande Valley and the Jemez Mountains, New Mexico`s Pajarito Plateau is home to a world-class scientific institution. Los Alamos National Laboratory (or the Laboratory), managed by the Regents of the University of California, is a government-owned, Department of Energy-supervised complex investigating all areas of modern science for the purposes of national defense, health, conservation, and ecology. The Laboratory was founded in 1943 as part of the Manhattan Project, whose members assembled to create the first nuclear weapon. Occupying the campus of the Los Alamos Ranch School, American and British scientists gathered on the isolated mesa tops to harness recently discovered nuclear power with the hope of ending World War II. In July 1945, the initial objective of the Laboratory, a nuclear device, was achieved in Los Alamos and tested in White Sands, New Mexico. Today the Laboratory continues its role in defense, particularly in nuclear weapons, including developing methods for safely handling weapons and managing waste. For the past twenty years, the Laboratory has published an annual environmental report. This pamphlet offers a synopsis that briefly explains important concepts, such as radiation and provides a summary of the monitoring results and regulatory compliance status that are explained at length in the document entitled Environmental Surveillance at Los Alamos during 1995.

NONE

1996-10-01T23:59:59.000Z

412

BACA Project: geothermal demonstration power plant. Final report  

DOE Green Energy (OSTI)

The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

Not Available

1982-12-01T23:59:59.000Z

413

Unique aspects of drilling and completing hot-dry-rock geothermal wells  

DOE Green Energy (OSTI)

Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

1983-01-01T23:59:59.000Z

414

Water quality in the vicinity of Fenton Hill, 1985 and 1986: Progress report  

DOE Green Energy (OSTI)

Water quality data have been collected since 1974 from established surface and groundwater stations at and in the vicinity of Fenton Hill (Hot Dry Rock Geothermal Demonstration Site) located in the Jemez Mountains. This is part of a continuing program of environmental studies. Data on chemical quality of water were determined for samples collected from 13 surface water and 19 groundwater stations in 1985 and 1986. There were slight variations in the chemical quality of the ground and surface water in 1985 and 1986 as compared with previous analyses; however, these variations are within normal seasonal fluctuations. Chemical uptake in soil, roots, and foliage is monitored in the canyon, which receives intermittent effluent release of water from tests in the geothermal circulation loop and occasional fluids from drilling operations. The chemical concentrations found in soil, roots, and vegetation as the result of effluent release have shown a decrease in concentration down-canyon and also have decreased in concentration with time since the larger releases that took place in the late 1970s and early 1980s. 18 refs., 7 figs., 9 tabs.

Purtymun, W.D.; Ferenbaugh, R.W.; Williams, M.C.; Maes, M.N.

1988-03-01T23:59:59.000Z

415

Geophysical study of the crust and upper mantle beneath the central Rio Grande rift and adjacent Great Plains and Colorado Plateau  

Science Conference Proceedings (OSTI)

As part of the national hot dry rock (HDR) geothermal program conducted by Los Alamos Scientific Laboratory, a regional deep magnetotelluric (MT) survey of Arizona and New Mexico was performed. The main objective of the MT project was to produce a regional geoelectric contour map of the pervasive deep electrical conductor within the crust and/or upper mantle beneath the Colorado Plateau, Basin and Range Province, and Rio Grande rift. Three MT profiles cross the Jemez lineament. Preliminary one-dimensional analysis of the data suggest the lineament is associated with anomalously high electrical conductivity very shallow in the crust. An MT/audiomagnetotelluric (AMT) study of a 161 km/sup 2/ HDR prospect was performed on the Zuni Indian Reservation, New Mexico. Two-dimensional gravity modeling of a 700-km gravity profile at 34/sup 0/30'N latitude was used to study the crust and upper mantle beneath the Rio Grande rift. Several models of each of three consecutive layers were produced using all available geologic and geophysical constraints. Two short-wavelength anomalies along the gravity profile were analyzed using linear optimization techniques.

Ander, M.E.

1981-03-01T23:59:59.000Z

416

Results of fluid-circulation experiments: LASL hot dry rock geothermal project  

DOE Green Energy (OSTI)

The first large-scale field experiment to investigate the extraction of heat from hot dry rock is now in progress on the Jemez Plateau in northern New Mexico. The experimental system consists of two holes about 3 km deep, from each of which hydraulic fractures have been made. The two major fractures appear to be approximately vertical and parallel, and separated by about 9 m of granodiorite through which fluid is transmitted probably along a distributed set of secondary fractures. Experiments to this point have demonstrated that the surface area of each hydraulic fracture is sufficient to accomplish effective heat transfer from the rock, at about 200/sup 0/C, to water circulated through the system; that there is no significant short-circuiting of the water within the fractures; but that the impedance to fluid flow through the rock between the fractures is too high to permit the rate of heat extraction (initially about 10 MWt) desired of the experimental system. An attempt to reduce impedance by leaching with dilute sodium carbonate solution was unsuccessful. Therefore an attempt is now being made to reduce it by re-drilling from near the bottom of one hole in order to produce a simple system geometry in which the two holes are connected directly through a single hydraulic fracture.

Smith, M.C.

1977-01-01T23:59:59.000Z

417

Data:098e3cd7-0a2b-4b62-84d8-76ae54e55fbc | Open Energy Information  

Open Energy Info (EERE)

e3cd7-0a2b-4b62-84d8-76ae54e55fbc e3cd7-0a2b-4b62-84d8-76ae54e55fbc No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: 2005/11/23 End date if known: Rate name: Municipal Service and Small School Service TOU Sector: Commercial Description: See Source. Source or reference: http://www.jemezcoop.org/Energy/rates.cfm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring:

418

Data:375bef41-63c2-4f7b-b4db-c2c0c35e64e5 | Open Energy Information  

Open Energy Info (EERE)

bef41-63c2-4f7b-b4db-c2c0c35e64e5 bef41-63c2-4f7b-b4db-c2c0c35e64e5 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jemez Mountains Elec Coop, Inc Effective date: 2005/11/23 End date if known: Rate name: Street and Security Lighting Service-400 W MV Sector: Lighting Description: See Source. Source or reference: http://www.jemezcoop.org/News/currentRates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring:

419

The Large Scale Cosmic-Ray Anisotropy as Observed with Milagro  

E-Print Network (OSTI)

Results are presented of a harmonic analysis of the large scale cosmic-ray anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field-of-view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven year data sample consisting of more than 95 billion events. We observe an anisotropy with a magnitude around 0.1% for cosmic rays with a median energy of 6 TeV. The dominant feature is a deficit region of depth (-2.85 +/- 0.06 stat. +/- 0.08 syst.)x10^(-3) in the direction of the Galactic North Pole with a range in declination of -10 to 45 degrees and 150 to 225 degrees in right ascension. We observe a steady increase ...

Abdo, A A; Aune, T; Berley, D; Casanova, S; Chen, C; Dingus, B L; Ellsworth, R W; Fleysher, L; Fleysher, R; Gonzlez, M M; Goodman, J A; Hoffman, C M; Hopper, B; Hntemeyer, P H; Kolterman, B E; Lansdell, C P; Linnemann, J T; McEnery, J E; Mincer, A I; Nmethy, P; Noyes, D; Ryan, J M; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Sullivan, G W; Vasileiou, V; Walker, G P; Williams, D A; Yodh, G B

2008-01-01T23:59:59.000Z

420

Stratigraphy of the PB-1 well, Nopal I uranium deposit, Sierra Pena Blanca, Chihuahua, Mexico  

SciTech Connect

The Nopal I site in the Pena Blanca uranium district has a number of geologic and hydrologic similarities to the proposed high-level radioactive waste repository at Yucca Mountain, making it a useful analogue to evaluate process models for radionuclide transport. The PB-1 well was drilled in 2003 at the Nopal I uranium deposit as part of a DOE-sponsored natural analogue study to constrain processes affecting radionuclide transport. The well penetrates through the Tertiary volcanic section down to Cretaceous limestone and intersects the regional aquifer system. The well, drilled along the margin of the Nopal I ore body, was continuously cored to a depth of 250 m, thus providing an opportunity to document the local stratigraphy. Detailed observations of these units were afforded through petrographic description and rock-property measurements of the core, together with geophysical logs of the well. The uppermost unit encountered in the PB-1 well is the Nopal Formation, a densely welded, crystal-rich, rhyolitic ash-flow tuff. This cored section is highly altered and devitrified, with kaolinite, quartz, chlorite, and montmorillonite replacing feldspars and much of the groundmass. Breccia zones within the tuff contain fracture fillings of hematite, limonite, goethite, jarosite, and opal. A zone of intense clay alteration encountered in the depth interval 17.45-22.30 m was interpreted to represent the basal vitrophyre of this unit. Underlying the Nopal Formation is the Coloradas Formation, which consists of a welded lithic-rich rhyolitic ash-flow tuff. The cored section of this unit has undergone devitrification and oxidation, and has a similar alteration mineralogy to that observed in the Nopal tuff. A sharp contact between the Coloradas tuff and the underlying Pozos Formation was observed at a depth of 136.38 m. The Pozos Formation consists of poorly sorted conglomerate containing clasts of subangular to subrounded fragments of volcanic rocks, limestone, and chert. Three thin (2-6 m) intervals of intercalated pumiceous tuffs were observed within this unit. The contact between the Pozos Formation and the underlying Cretaceous limestone basement was observed at a depth of 244.40 m. The water table is located at a depth of {approx}223 m. Several zones with elevated radioactivity in the PB-1 core are located above the current water table. These zones may be associated with changes in redox conditions that could have resulted in the precipitation of uraninite from downward flowing waters transporting U from the overlying Nopal deposit. All of the intersected units have low (typically submillidarcy) matrix permeability, thus fluid flow in this area is dominated by fracture flow. These stratigraphic and rock-property observations can be used to constrain flow and transport models for the Pena Blanca natural analogue.

Dobson, P.; Fayek, M.; Goodell, P.; Ghezzehei, T.; Melchor, F.; Murrell, M.; Oliver, R.; Reyes-Cortes, I.A.; de la Garza, R.; Simmons, A.

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995  

SciTech Connect

Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M. [and others

1996-12-31T23:59:59.000Z

422

Completion Report for Well ER-18-2  

SciTech Connect

Well ER-18-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well, located on Buckboard Mesa in the western part of the Nevada Test Site, was drilled in the spring of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to the depth 408.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 762.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 369.7 meters approximately two months after the completion string was installed. One completion string with three isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 15 sidewall samples taken at various depths below 420 meters, supplemented by geophysical log data and results of detailed chemical and mineralogical studies of rock samples. The upper part of the well penetrated Tertiary-age basalt, underlain by tuffaceous moat-filling sediments interbedded with ash-flow tuff units of the Thirsty Canyon Group and the Beatty Wash Formation. The lower half of the drill hole penetrated ash-flow tuff of the mafic-rich Ammonia Tanks Tuff. The geologic interpretation of data from Well ER-18-2 indicates that this site is located inside the structural margin of the Ammonia Tanks caldera.

Bechtel Nevada

2003-09-01T23:59:59.000Z

423

Design, construction, and initial operation of the Los Alamos National Laboratory salt-gradient solar pond  

DOE Green Energy (OSTI)

A 232 m/sup 2/ solar pond was constructed at Los Alamos National Laboratory for the purpose of studying pond hydrodynamics on a large scale and to complement the flow visualization and one-dimensional pond simulator experiments that are ongoing at the Laboratory. Design methods and construction techniques, some of which are unique to this pond, are described in detail. The pond was excavated from a soft volcanic rock known as tuff; such rock forms a large fraction of the Los Alamos area surface geology. Because tuff has a small thermal conductivity, little insulation was required to reduce perimeter energy losses. In addition, the strength of tuff permitted the pond to be built with vertical side walls; this design eliminated local side wall convection in the gradient zone that is possible with sloping side walls. Instrumentation in the pond consists of traversing and fixed rakes of thermometers and salinity probes, an underwater pyranometer, and a weather station. The traversing rake is a wheeled trolley driven vertically on a rectangular rail. Installed on the trolley are coplanar platinum RTDs, a point conductivity probe, and an induction salinometer. The stationary rake supports 28 thermocouples and 28 sample-fluid withdrawal taps located every 10 cm. About 127 T of sodium chloride has been introduced and is nearly dissolved. A 120-cm-thick salinity gradient was established and the pond is heating. Preliminary results indicate a lower-convective-zone heating rate of 1.2/sup 0/C/day during the pond's first month of operation. Recommendations on pond design, construction, and instrumentation are presented.

Jones, G.F.; Meyer, K.A.; Hedstrom, J.C.; Dreicer, J.S.; Grimmer, D.P.

1983-01-01T23:59:59.000Z

424

Pre-Shot Simulations of Far-Field Ground Motions for the Source Physics Experiment (SPE) Explosions at the Climax Stock, Nevada National Security Site  

SciTech Connect

The Source Physics Experiment (SPE) will involve a series of explosions in various geologic and emplacement conditions to validate numerical simulation methods to predict behavior of seismic wave excitation and propagation for nuclear test monitoring. The first SPE's currently underway involve explosions in the Climax Stock (granitic geology) at the Nevada National Security Site (NNSS). Detailed geologic data and published material properties for the major lithologic units of the NNSS and surrounding region were used to build three-dimensional models for seismic wave propagation simulations. The geologic structure near the SPE shot point is quite varied including granitic, carbonate, tuff and alluvium lithologies. We performed preliminary ground motion simulations for a near-source domain covering 8 km x 8 km at the surface centered on the shot point to investigate various source and propagation effects using WPP, LLNL's anelastic seismic wave finite difference code. Simulations indicate that variations in wave propagation properties of the sub-surface will generate strongly path-dependent response once the energy has left the relatively small granitic geology of the near-surface Climax Stock near the SPE shot point. Rough topography to the north and west of SPE shot point causes additional complexity in the signals including energy on the transverse components. Waves propagate much faster through the granitic and carbonate formations and slower through the tuff and alluvium. Synthetic seismograms for a pure explosion source in a 3D geologic structure show large amplitudes on transverse component. For paths to the south sampling the granite, tuff and alluvium lithologies transverse component amplitudes are as high as 50% of that on the vertical and radial components.

Rodgers, A J; Wagoner, J; Petersson, N A; Sjogreen, B

2010-11-07T23:59:59.000Z

425

Evaporative evolution of a NaClNO 3KCaSO 4MgSi brine at 95 C: Experiments and modeling relevant to Yucca Mountain, Nevada  

E-Print Network (OSTI)

A synthetic Topopah Spring Tuff water representative of one type of pore water at Yucca Mountain, NV was evaporated at 95 C in a series of experiments to determine the geochemical controls for brines that may form on, and possibly impact upon the long-term integrity of waste containers and drip shields at the designated high-level, nuclear-waste repository. Solution chemistry, condensed vapor chemistry, and precipitate mineralogy were used to identify important chemical divides and to validate geochemical calculations of evaporating water chemistry using a high temperature Pitzer thermodynamic database. The water evolved toward a complex sulfate type brine that contained

Maureen Alai; A Mark Sutton; Susan Carroll

2004-01-01T23:59:59.000Z

426

Final Report - Hydraulic Conductivity with Depth for Underground Test Area (UGTA) Wells  

SciTech Connect

Hydraulic conductivity with depth has been calculated for Underground Test Area (UGTA) wells in volcanic tuff and carbonate rock. The following wells in volcanic tuff are evaluated: ER-EC-1, ER-EC-2a, ER-EC-4, ER-EC-5, ER-5-4#2, ER-EC-6, ER-EC-7, and ER-EC-8. The following wells in carbonate rock are evaluated: ER-7-1, ER-6-1, ER-6-1#2, and ER-12-3. There are a sufficient number of wells in volcanic tuff and carbonate rock to associate the conductivity values with the specific hydrogeologic characteristics such as the stratigraphic unit, hydrostratigraphic unit, hydrogeologic unit, lithologic modifier, and alteration modifier used to describe the hydrogeologic setting. Associating hydraulic conductivity with hydrogeologic characteristics allows an evaluation of the data range and the statistical distribution of values. These results are relevant to how these units are considered in conceptual models and represented in groundwater models. The wells in volcanic tuff illustrate a wide range of data values and data distributions when associated with specific hydrogeologic characteristics. Hydraulic conductivity data within a hydrogeologic characteristic can display normal distributions, lognormal distributions, semi-uniform distribution, or no identifiable distribution. There can be multiple types of distributions within a hydrogeologic characteristic such as a single stratigraphic unit. This finding has implications for assigning summary hydrogeologic characteristics to hydrostratigraphic and hydrogeologic units. The results presented herein are specific to the hydrogeologic characteristic and to the wells used to describe hydraulic conductivity. The wells in carbonate rock are associated with a fewer number of hydrogeologic characteristics. That is, UGTA wells constructed in carbonate rock have tended to be in similar hydrogeologic materials, and show a wide range in hydraulic conductivity values and data distributions. Associations of hydraulic conductivity and hydrogeologic characteristics are graphically presented even when there are only a few data. This approach benchmarks what is currently known about the association of depth-specific hydraulic conductivity and hydrogeologic characteristics.

P. Oberlander; D. McGraw; C. Russell

2007-10-31T23:59:59.000Z

427

Engineered waste-package-system design specification  

Science Conference Proceedings (OSTI)

This report documents the waste package performance requirements and geologic and waste form data bases used in developing the conceptual designs for waste packages for salt, tuff, and basalt geologies. The data base reflects the latest geotechnical information on the geologic media of interest. The parameters or characteristics specified primarily cover spent fuel, defense high-level waste, and commercial high-level waste forms. The specification documents the direction taken during the conceptual design activity. A separate design specification will be developed prior to the start of the preliminary design activity.

Not Available

1983-05-01T23:59:59.000Z

428

Pena Blanca Natural Analogue Project: Summary of activities  

Science Conference Proceedings (OSTI)

The inactive Nopal I uranium mine in silicic tuff north of Chihuahua City, Chihuahua, Mexico, was studied as a natural analogue for an underground nuclear-waste repository in the unsaturated zone. Site stratigraphy was confirmed from new drill cores. Data from site studies include chemical and isotopic compositions of saturated- and unsaturated-zone waters. A partial geochronology of uranium enrichment and mineralization was established. Evidence pertinent to uranium-series transport in the soil zone and changing redox conditions was collected. The investigations contributed to preliminary, scoping-level performance assessment modeling.

Levy, S.; Goldstein, S.; Dobson, P.F.; Goodell, P.; Ku, T.-L.; Abdel-Fattah, A.; Saulnier, G.; Fayek, M.; de la Garza, R.

2011-02-01T23:59:59.000Z

429

Pena blanca natural analogue project: summary of activities  

Science Conference Proceedings (OSTI)

The inactive Nopal I uranium mine in silicic tuff north of Chihuahua City, Chihuahua, Mexico, was studied as a natural analogue for an underground nuclear-waste repository in the unsaturated zone. Site stratigraphy was confirmed from new drill core. Datafrom site studies include chemical and isotopic compositions of saturated- and unsaturated-zone waters. A partial geochronology of uranium enrichment and mineralization was established. Evidence pertinent to uranium-series transport in the soil zone and changing redox conditions was collected. The investigations contributed to preliminary, scoping-level performance assessment modeling.

Levy, Schon S [Los Alamos National Laboratory; Goldstein, Steven J [Los Alamos National Laboratory; Abdel - Fattah, Amr I [Los Alamos National Laboratory

2010-12-08T23:59:59.000Z

430

Application of rock melting to construction of storage holes for nuclear waste  

Science Conference Proceedings (OSTI)

Rock melting technology can provide in-situ glass liners in nuclear waste package emplacement holes to reduce permeability and increase borehole stability. Reduction of permeability would reduce the time and probability of groundwater contacting the waste packages. Increasing the stability of the storage boreholes would enhance the retrievability of the nuclear waste packages. The rock melting hole forming technology has already been tested in volcanic tuff similar to the geology at the proposed nuclear waste repository at Yucca Mountain, Nevada. 6 refs., 5 figs., 2 tabs.

Neudecker, J.W. Jr.

1988-12-31T23:59:59.000Z

431

CONTAINED NUCLEAR DETONATIONS IN FOUR MEDIA-GEOLOGICAL FACTORS IN CAVITY AND CHIMNEY FORMATION  

SciTech Connect

Underground nuclear tests in tuff, alluvium, rock salt, and granite have yielded data essential to the evaluation of the effects of contained nuclear detonations. The data indicate that for these mediums the cavity radius is predictable within plus or minus 20% without regard to the physical or chemical properties of the rock in the immediate shot environment. Properties of the chimney of broken rock resulting from collapse of the cavity, on the other hand, were found to be related to the physical properties of the rock and to preshot structural weaknesses within the rock. (auth)

Boardman, C.R.; Rabb, D.D.; McArthur, R.D.

1964-02-01T23:59:59.000Z

432

The geological, isotopic, botanical, invertebrate, and lower vertebrate contexts for aripithecus ramidus  

SciTech Connect

Sediments containing Ardipithecus ramidus were deposited 4.4 million years ago on an alluvial floodplain in Ethiopia's western Afar rift. The Lower Aramis Member hominid-bearing unit, now exposed across a >9-kilometer structural arc, is sandwiched between two volcanic tuffs that have nearly identical {sup 40}Ar/{sup 39}Ar ages. Geological data presented here, along with floral, invertebrate, and vertebrate paleontological and taphonomic evidence associated with the hominids, suggest that they occupied a wooded biotope over the western three-fourths of the paleotransect. Phytoliths and oxygen and carbon stable isotopes of pedogenic carbonates provide evidence of humid cool woodlands with a grassy substrate.

Woldegabriel, Giday [Los Alamos National Laboratory; Ambrose, Stanley H [UNIV OF ILLINOIS; Barboni, Doris [CEREGE, FRANCE; Bonneffille, Raymond [CEREGE, FRANCE; Bremond, Laurent [MONTPELLIER, FRANCE; Currie, Brian [MIAMI UNIV, OXFORD, OHIO; Degusta, David [STANFORD UNIV.; Hart, William K [MIAMI UNIV, OXFORD, OHIO; Murray, Alison M [UNIV OF ALBERTA; Renne, Paul R [UC/BERKELEY; Jolly - Saad, M C [NANTERRE, FRANCE; Stewart, Kathlyn M [CANADA; White, Tim D [UC/BERKELEY

2009-01-01T23:59:59.000Z

433

Characterization of porosity in support of mechanical property analysis  

SciTech Connect

Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sample tested. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results.

Price, R.H. [Sandia National Labs., Albuquerque, NM (United States); Martin, R.J. III; Boyd, P.J. [New England Research, Inc., White River Junction, VT (United States)

1992-12-31T23:59:59.000Z

434

Numerical analyses of the G-tunnel mining evaluations experiment  

SciTech Connect

The displacements resulting from excavation of a drift in layered tuffs at Rainier Mesa, Nevada, have been analyzed. Also, a series of two-dimensional finite-element analyses of the excavation sequence using linear elastic and nonlinear compliant joint material models has been made. Measured displacements were on the order of millimeters and show vertical and horizontal closure. Calculated displacements are also on the order of millimeters; vertical and horizontal closure is predicted in some of the analyses performed. 5 refs., 3 figs., 3 tabs.

Bauer, S.J.; Costin, L.S. [Sandia National Labs., Albuquerque, NM (USA); Johnson, R.L. [New Mexico Univ., Albuquerque, NM (USA)

1990-05-01T23:59:59.000Z

435

Review of DOE Waste Package Program. Semiannual report, October 1984-March 1985. Volume 8  

SciTech Connect

A large number of technical reports on waste package component performance were reviewed over the last year in support of the NRC`s review of the Department of Energy`s (DOE`s) Environmental Assessment reports. The intent was to assess in some detail the quantity and quality of the DOE data and their relevance to the high-level waste repository site selection process. A representative selection of the reviews is presented for the salt, basalt, and tuff repository projects. Areas for future research have been outlined. 141 refs.

Davis, M.S. (ed.)

1985-12-01T23:59:59.000Z

436

Wall-rock alteration and uranium mineralization in parts of Thomas Range Mining District, San Juan County, Utah, and its significance in mineral exploration  

SciTech Connect

Several important uranium deposits associated with fluorspar and beryllium are located in parts of Thomas Range area. the mineralization is found in dolomites and dolomitic limestones of Paleozoic age and sandstones, tuffs, and rhyolites belonging to the Tertiary Spor Mountain and Topaz Mountain Formations. The pipes, veins, and nodules of fluorspar are replaced by uranium. Veins and disseminations of radioactive fluorspar and opal and overgrowths of secondary minerals are found in rhyolites, tuffs, carbonate rocks, and breccias. The radioactivity in sandstones and conglomerates emanates from weeksite, beta-uranophane, zircon, gummite, and zircon. It also occurs as highly oxidized rare aphanitic grains disseminated in a few ore deposits. The results of the present investigations may influence the initiation of future exploration programs in the Thomas Range mining district. Hydrothermal fluids of deep-seated magmatic origin rich in U, V, Th, Be, and F reacted with the country rocks. The nature and sequence of wall-rock alteration and its paragenetic relationship with the ores have been determined. The mineralization is confined to the altered zones. The ore bodies in the sedimentary rocks and the breccias are located in the fault zones. More than 1000 faults are present in the area, greatly complicating mineral prospecting. The wall-rock alteration is very conspicuous and can be used as a valuable tool in mineral exploration.

Mohammad, H.

1985-05-01T23:59:59.000Z

437

PHASE ANALYSES OF URANIUM-BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO  

SciTech Connect

The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions.

M. Ren; P. Goodell; A. Kelts; E.Y. Anthony; M. Fayek; C. Fan; C. Beshears

2005-07-11T23:59:59.000Z

438

A conceptual model and preliminary estimate of potential tritium migration from the Benham (U-20c) site, Pahute Mesa, Nevada Test Site  

Science Conference Proceedings (OSTI)

U-20c is the site of a large below-water-table nuclear test near the Nevada Test Site boundary. A conceptual model of potential groundwater migration of tritium from U-20c is constructed and quantitatively evaluated in this report. The lower portion of the collapse chimney at Benham is expected to intersect 200 m of permeable rhyolite lava, overlain by similar thicknesses of low-permeability zeolitized bedded tuff, then permeable welded tuff. Vertical groundwater flow through the chimney is predicted to be minimal, horizontal transport should be controlled by the regional groundwater flow. Analytic solutions treating only advective transport indicate 1 to 2 km of tritium movement (95% confidence interval 0.7--2.5 km) within 5 years after test-related pressure-temperature transients have dissipated. This point lies at the axis of a potentiometric surface trough along the west edge of Area 20, Nevada Test Site. Within 25 years, movement is predicted to extend to 3 km (95% confidence interval 2--5 km) approximately to the intersection of the trough and the Nevada Test Site boundary. Considering the effects of radioactive decay, but not dispersion, plume concentration would fall below Safe Drinking Water Act standards by 204 years, at a predicted distance of 11 km (95% confidence interval 7--31 km). This point is located in the eastern portion of the Timber Mountain Caldera moat within the Nellis Air Force Range (military bombing range).

Brikowski, T.; Mahin, G. [Nevada Univ., Reno, NV (United States). Water Resources Center

1993-08-01T23:59:59.000Z

439

Contact zones and hydrothermal systems as analogues to repository conditions  

SciTech Connect

Radioactive waste isolation efforts in the US are currently focused on examining basalt, tuff, salt, and crystalline rock as candidate rock types to encompass waste repositories. As analogues to near-field conditions, the distributions of radio- and trace-elements have been examined across contacts between these rocks and dikes and stocks that have intruded them. The intensive study of the Stripa quartz monzonite has also offered the opportunity to observe the distribution of uranium and its daughters in groundwater and its relationship to U associated with fracture-filling and alteration minerals. Investigations of intrusive contact zones to date have included (1) a tertiary stock into Precambrian gneiss, (2) a stock into ash flow tuff, (3) a rhyodacite dike into Columbia River basalt, and (4) a kimberlite dike into salt. With respect to temperature and pressure, these contact zones may be considered "worst-case scenario" analogues. Results indicate that there has been no appreciable migration of radioelements from the more radioactive intrusives into the less radioactive country rocks, either in response to the intrusions or in the fracture-controlled hydrological systems that developed following emplacement. In many cases, the radioelements are locked up in accessory minerals, suggesting that artificial analogues to these would make ideal waste forms. Emphasis should now shift to examination of active hydrothermal systems, studying the distribution of key elements in water, fractures, and alteration minerals under pressure and temperature conditions most similar to those expected in the near-field environment of a repository. 14 refs.

Wollenberg, H.A.; Flexser, S.

1984-10-01T23:59:59.000Z

440

Preliminary geological and geophysical evaluation of the Castle Dome HDR geothermal prospect, Southwestern Arizona  

DOE Green Energy (OSTI)

The Castle Dome HDR geothermal prospect is located in Yuma County, Arizona, in a region centered about 80 km north of Yuma along US Rte. 95. The area of interest is broadly defined by a negative residual Bouguer gravity anomaly which is about 45 km across, steep-sided in many places, and as much as 30 mgals in magnitude. The geology of this Basin and Range area is poorly known, but the few published reports and current Los Alamos Scientific Laboratory (LASL) field studies indicate that the Castle Dome Mountains and adjacent ranges are chiefly a thick pile of welded ash-flow tuffs of probable mid-Tertiary age. The tuffs rest unconformably on Mesozoic metasedimentary rocks exposed only outside steep edges of the gravity low. This gravity anomaly may reflect the presence of a large caldera. A regional magnetotelluric study now in progress will define the depths to electrical conductors within the crust and upper mantle and contribute to understanding of crustal structure, the gravity anomaly, and the Hot Dry Rock (HDR) geothermal potential of the Castle Dome area.

Gutmann, J.T.; Aiken, C.L.V.; Ander, M.E.; Laney, R.T.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bandelier tuff jemez" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Progress in evaluation of radionuclide geochemical information developed by DOE high-level nuclear waste repository site projects: report for January-March 1985. Volume 2  

Science Conference Proceedings (OSTI)

Geochemical information relevant to the retention of radionuclides by the Hanford Site (in basalt) and the Yucca Mountain site (in tuff), candidate high-level nuclear waste geologic repositories being developed by US Department of Energy (DOE) projects, is being evaluated by Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission (NRC). Our evaluation of the sorption of technetium by basalt/groundwater systems was essentially completed this quarter and the results summarized; we conclude that the experimental methodology and results reported by the DOE for the Hanford Site have not conclusively established that significant retardation of technetium migration may be provided by phases present in the basalts of the Hanford Site. We have shown that sodium boltwoodite is the saturating uranium solid phase in two basalt/groundwater systems. Because thermodynamic data are not available for sodium boltwoodite, calculated solubilities for uranium are erroneous in these systems. Results of radionuclide solubility/speciation calculations, published by the DOE for the Yucca Mountain site, were evaluated this quarter under our geochemical modeling task. We express concerns relative to the inherent limitations of such calculations. Samples of Yucca Mountain tuff and J-13 well water were received for use in our planned radionuclide sorption/solubility experiments. These Yucca Mountain materials will be used to evaluate radionuclide sorption and apparent concentration limit values published by the Nevada Nuclear Waste Storage Investigations (NNWSI) project. 40 refs., 5 figs., 16 tabs.

Kelmers, A.D.; Seeley, F.G.; Arnold, W.D.; Blencoe, J.G.; Meyer, R.E.; Jacobs, G.K.; Whatley, S.K.

1985-09-01T23:59:59.000Z

442

Criticality issues with highly enriched fuels in a repository environment  

SciTech Connect

This paper presents preliminary analysis of a volcanic tuff repository containing a combination of low enrichment commercial spent nuclear fuels (SNF) and DOE-owned SNF packages. These SNFs were analyzed with respect to their criticality risks. Disposal of SNF packages containing significant fissile mass within a geologic repository must comply with current regulations relative to criticality safety during transportation and handling within operational facilities. However, once the repository is closed, the double contingency credits for criticality safety are subject to unremediable degradation, (e.g., water intrusion, continued presence of neutron absorbers in proximity to fissile material, and fissile material reconfiguration). The work presented in this paper focused on two attributes of criticality in a volcanic tuff repository for near-field and far-field scenarios: (1) scenario conditions necessary to have a criticality, and (2) consequences of a nuclear excursion that are components of risk. All criticality consequences are dependent upon eventual water intrusion into the repository and subsequent breach of the disposal package. Key criticality parameters necessary for a critical assembly are: (1) adequate thermal fissile mass, (2) adequate concentration of fissile material, (3) separation of neutron poison from fissile materials, and (4) sufficient neutron moderation (expressed in units of moderator to fissile atom ratios). Key results from this study indicated that the total energies released during a single excursion are minimal (comparable to those released in previous solution accidents), and the maximum frequency of occurrence is bounded by the saturation and temperature recycle times, thus resulting in small criticality risks.

Taylor, L.L. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Sanchez, L.C.; Rath, J.S. [Sandia National Labs., Albuquerque, NM (United States)

1998-03-01T23:59:59.000Z

443

Middle-Miocene counterclockwise rotation of rocks from west-central Nevada; implications for Basin and Range extension  

Science Conference Proceedings (OSTI)

Drilling and geophysical data from Dixie Valley and Fallon Basin of west-central Nevada have shown that dip-slip normal faults accommodated post-Miocene Basin and Range extension in this area, but the presence of an earlier, less-understood phase of Basin and Range deformation is suggested in the adjacent West Humboldt, Stillwater, and Clan Alpine Ranges where the late-Miocene basalts lie in angular unconformity on Oligocene to early-Miocene ash-flow tuffs. Paleomagnetic components obtained from the tuffs and underlying gabbroic and basaltic rocks of the Jurassic Humboldt Lopolith have declinations that are statistically different and counterclockwise from the expected Oligo-Miocene and Jurassic directions for the area. Paleomagnetic components from the late-Miocene basalts statistically overlap their expected direction. These data imply that the rocks were rotated counterclockwise during middle-Miocene. The common association of such rotations with strike-slip faulting suggests that this earlier phase of Basin and Range extension was largely a strike-slip faulting deformation. If so, the total amount of extension in the area may be significantly larger than estimates based solely on the moderate tilts (<30/sup 0/) of the ranges.

Hudson, M.R.; Geissman, J.W.

1985-01-01T23:59:59.000Z

444

Geology of the Pavana geothermal area, Departamento de Choluteca, Honduras, Central America: Field report  

DOE Green Energy (OSTI)

The Pavana geothermal area is located in southern Honduras near the Gulf of Fonseca. This region is underlain by late Tertiary volcanic rocks. Within ranges near the geothermal manifestations, the rock sequences is characterized by intermediate to mafic laharic breccias and lavas overlain by silicic tuffs and lavas, which are in turn overlain by intermediate to mafic breccias, lavas, and tuffs. The nearest Quaternary volcanoes are about 40 km to the southwest, where the chain of active Central American volcanoes crosses the mouth of the Gulf of Fonseca. Structure of the Pavana area is dominated by generally northwest-trending, southwest-dipping normal faults. This structure is topographically expressed as northwest-trending escarpments that bound blocks of bedrock separated by asymmetric valleys that contain thin alluvial deposits. Thermal waters apparently issue from normal faults and are interpreted as having been heated during deep circulation along fault zones within a regional environment of elevated heat flow. Natural outflow from the main thermal area is about 3000 l/min of 60/sup 0/C water. Geothermometry of the thermal waters suggests a reservoir base temperature of about 150/sup 0/C.

Eppler, D.B.; Heiken, G.; Wohletz, K.; Flores, W.; Paredes, J.R.; Duffield, W.A.

1987-09-01T23:59:59.000Z

445

Results of pressurized-slot measurements in the G-Tunnel underground facility  

SciTech Connect

A rock-mechanics field-testing program is underway at Sandia National Laboratories (SNL) as part of the YMP. SNL has the responsibility for assessing the repository design and performance as well as characterizing the geomechanical behavior of the rock. SNL has conducted field experiments in G-Tunnel in Rainier Mesa at the NTS, where tuffs similar to those at Yucca Mountain, the potential repository site, are found. Later experiments are planned as part of the YMP Exploratory Shaft investigations at Yucca Mountain. Major geomechanical factors in repository developments are determinations of the stress state and the deformability of the rock mass (described by the modulus of deformation). One feature of SNL`s rock-mechanics program was the development of a testing program for cutting thin slots in a jointed welded tuff and utilizing flatjacks for pressurizing these thin-slots on a relatively, large scale. Objectives in the pressurized-slot testing in G-Tunnel have been to apply and possibly improve methods for (1) utilizing the flatjack cancellation (FC) method for measuring stresses normal to the slot and (2) measuring the modulus of deformation of the jointed rock surrounding the slot. This paper discusses the results of field measurements in and around a single slot and evaluates potential applications and limitations. 10 refs., 1 fig., 4 tabs.

Zimmerman, R.M.; Mann, K.L.; Dodds, D.J.

1989-02-01T23:59:59.000Z

446

Appraisal of nuclear waste isolation in the vadose zone in arid and semiarid regions (with emphasis on the Nevada Test Site)  

SciTech Connect

An appraisal was made of the concept of isolating high-level radioactive waste in the vadose zone of alluvial-filled valleys and tuffaceous rocks of the Basin and Range geomorphic province. Principal attributes of these terranes are: (1) low population density, (2) low moisture influx, (3) a deep water table, (4) the presence of sorptive rocks, and (5) relative ease of construction. Concerns about heat effects of waste on unsaturated rocks of relatively low thermal conductivity are considered. Calculations show that a standard 2000-acre repository with a thermal loading of 40 kW/acre in partially saturated alluvium or tuff would experience an average temperature rise of less than 100{sup 0}C above the initial temperature. The actual maximum temperature would depend strongly on the emplacement geometry. Concerns about seismicity, volcanism, and future climatic change are also mitigated. The conclusion reached in this appraisal is that unsaturated zones in alluvium and tuff of arid regions should be investigated as comprehensively as other geologic settings considered to be potential repository sites.

Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

1983-05-01T23:59:59.000Z

447

Nevada Nuclear-Waste-Storage Investigations. Quarterly report, April-June 1982  

SciTech Connect

The Nevada Nuclear Waste Storage Investigations (NNWSI) are studying the Nevada Test Site (NTS) area to establish whether it would qualify as a licensable location for a commercial nuclear waste repository; determining whether specific underground rock masses in the NTS area are technically acceptable for permanently disposing of highly radioactive solid wastes; and developing and demonstrating the capability to safely handle and store commercial spent reactor fuel and high-level waste. Progress reports for the following eight tasks are presented: systems; waste package; site; repository; regulatory and institutional; test facilities; land acquisition; and program management. Some of the highlights are: A code library was established to provide a central location for documentation of repository performance assessment codes. A two-dimensional finite element code, SAGUARO, was developed for modeling saturated/unsaturated groundwater flow. The results of an initial experiment to determine canister penetration rates due to corrosion indicate the expected strong effect of toxic environmental conditions on the corrosion rate of carbon steel in tuff-conditioned water. Wells USW-H3 and USW-H4 at Yucca Mountain have been sampled for groundwater analysis. A summary characterizing and relating the mineralogy and petrology of Yucca Mountain tuffs was compiled from the findings of studies of core samples from five drill holes.

None

1982-09-01T23:59:59.000Z

448

Validation studies for assessing unsaturated flow and transport through fractured rock  

SciTech Connect

*The objectives of this contract are to examine hypotheses and conceptual models concerning unsaturated flow and transport through heterogeneous fractured rock and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models. Important new information is presented such as the application and evaluation of procedures for estimating hydraulic, pneumatic, and solute transport coefficients for a range of thermal regimes. A field heater experiment was designed that focused on identifying the suitability of existing monitoring equipment to obtain required data. A reliable method was developed for conducting and interpreting tests for air permeability using a straddle-packer arrangement. Detailed studies of fracture flow from Queen Creek into the Magina Copper Company ore haulage tunnel have been initiated. These studies will provide data on travel time for transport of water and solute in unsaturated tuff. The collection of rainfall runoff, and infiltration data at two small watersheds at the Apache Leap Tuff Site enabled us to evaluate the quantity and rate of water infiltrating into the subsurface via either fractures or matrix. Characterization methods for hydraulic parameters relevant to Weigh-level waste transport, including fracture apertures, transmissivity, matrix porosity, and fracture wetting front propagation velocities, were developed.

Bassett, R.L.; Neuman, S.P.; Rasmussen, T.C.; Guzman, A.; Davidson, G.R.; Lohrstorfer, C.F. [Arizona Univ., Tucson, AZ (United States). Dept. of Hydrology and Water Resources

1994-08-01T23:59:59.000Z

449

Economic factors relevant for electric power produced from hot dry rock geothermal resources: a case study for the Fenton Hill, New Mexico, area  

SciTech Connect

The case study described here concerns an HDR system which provides geothermal fluids for a hypothetical electric plant located in the Fenton Hill area in New Mexico's Jemez Mountains. Primary concern is focused on the implications of differing drilling conditions, as reflected by costs, and differing risk environments for the potential commercialization of an HDR system. Drilling costs for best, medium and worst drilling conditions are taken from a recent study of drilling costs for HDR systems. Differing risk environments are represented by differing rate-of-return requirements on stocks and interest on bonds which the HDR system is assumed to pay; rate of return/interest combinations considered are 6%/3%, 9%/6%, 12%/9% and 15%/12%. The method of analysis used here is that of determining the minimum busbar cost for electricity for this case study wherein all costs are expressed in annual equivalent terms. The minimum cost design for the electric generating plant is determined jointly with the minimum cost design for the HDR system. The interdependence between minimum cost designs for the plant and HDR system is given specific attention; the optimum design temperature for the plant is shown here to be lower than one might expect for conventional power plants - in the range 225/sup 0/ to 265/sup 0/C. Major results from the analyses of HDR-produced electricity in the Fenton Hill area are as follows. With real, inflation-free debt/equity rates of 6% and 9%, respectively, the minimum busbar cost is shown to lie in the range 18 to 29 mills/kwh. When real debt/equity rates rise to 12% and 15%, busbar costs rise to 24 to 39 mills/kwh.

Cummings, R.G.; Morris, G.; Arundale, C.J.; Erickson, E.L.

1979-12-01T23:59:59.000Z

450

In situ heat transfer in man-made geothermal energy reservoirs  

DOE Green Energy (OSTI)

Two hot dry rock geothermal energy reservoirs were created by hydraulic fracturing of Precambrian granitic rock on the west flank of the Valles Caldera, a dormant volcanic complex, in the Jemez Mountains of northern New Mexico. Heat was extracted in a closed-loop mode of operation, injecting water into one well and extracting the heated water from a separate production well. The first reservoir was produced by fracturing the injection well at a depth of 2.75 km (9020 ft) where the indigenous rock temperature was 185/sup 0/C. The relatively rapid thermal drawdown of the water produced from the first reservoir, 100/sup 0/C in 74 days, indicated that its effective fracture radius was about 60 m (200 ft). Average thermal power extracted was 4 MW. A second, larger reservoir was created by refracturing the injection well 180 m (600 ft) deeper. Downhole measurements of the water temperature at the reservoir outlet as well as temperatures inferred from chemical geothermometry showed that the thermal drawdown of this reservoir was negligible; the effective heat transfer area of the new reservoir must be at least 45,000 m/sup 2/ (480,000 ft/sup 2/), nearly six times larger than the first reservoir. In addition reservoir residence time studies employing visible dye tracers indicated that the mean volume of the second reservoir is nine times larger. Other measurements showed that flow impedances were low, downhole water losses from these reservoirs should be manageable, that the geochemistry of the produced water was essentially benign, with no scaling problems apparent, and that the level of induced seismic activity was insignificantly small.

Murphy, H.D.; Tester, J.W.; Grigsby, C.O.; Potter, R.M.

1980-01-01T23:59:59.000Z

451

BACA Project: geothermal demonstration power plant. Final report  

SciTech Connect

The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

1982-12-01T23:59:59.000Z

452

Evidence for the existence of a stable, highly fluidized-pressurized region of deep, jointed crystalline rock from Fenton Hill hot dry rock test data  

DOE Green Energy (OSTI)

It has been demonstrated several times at Los Alamos National Laboratory`s Fenton Hill hot dry rock (HDR) geothermal test site, that large volumes of naturally jointed Precambrian crystalline rock can be stably maintained at pressures considerably above the least principal earth stress in the surrounding rock mass. In particular, for the deeper, larger, and tighter of the two HDR reservoirs tested at this site in the Jemez Mountains of north-central New Mexico, testing was carried out for a cumulative period of 11 months without evidence of fracture extension at the boundaries of the pressure-stimulated region, even though a very high reservoir inlet circulating pressure of 27.3 MPa (3960 psi) above hydrostatic was maintained throughout the testing, considerably in excess of the least principal stress in the surrounding rock mass of about 10 MPa above hydrostatic at a depth of 3500 m. The author reviews and summarizes information concerning the earth stresses at depth and the test data relative to the containment of pressurized fluid, particularly the data showing the declining rate of water loss and the absence of microseismicity--the two principal indicators of a stable, pressurized reservoir region. The author then provides a coherent and concise evaluation of this and other evidence supporting his assertion that one can indeed maintain large volumes of jointed rock at pressures considerably in excess of the least principal earth stress. In addition, a discussion is presented concerning the initial state of stress at depth beneath Fenton Hill and then possible changes to the stress state resulting from the very large volumes of injected high-pressure water and the accompanying shear displacements--and shear dilation--associated with these pressurizations.

Brown, D.W.

1999-06-01T23:59:59.000Z

453

Thermal conductivity of rocks associated with energy extraction from hot dry rock geothermal systems  

DOE Green Energy (OSTI)

Results of thermal conductivity measurements are given for 14 drill core rock samples taken from two exploratory HDR geothermal wellbores (maximum depth of 2929 m (9608 ft) drilled into Precambrian granitic rock in the Jemez Mountains of northern New Mexico. These samples have been petrographically characterized and in general represent fresh competent Precambrian material of deep origin. Thermal conductivities, modal analyses, and densities are given for all core samples studied under dry and water-saturated conditions. Additional measurements are reported for several sedimentary rocks encountered in the upper 760 m (2500 ft) of that same region. A cut-bar thermal conductivity comparator and a transient needle probe were used for the determinations with fused quartz and Pyroceram 9606 as the standards. The maximum temperature range of the measurements was from the ice point to 250/sup 0/C. The measurements on wet, water-saturated rock were limited to the temperature range below room temperature. Conductivity values of the dense core rock samples were generally within the range from 2 to 2.9 W/mK at 200/sup 0/C. Excellent agreement was achieved between these laboratory measurements of thermal conductivity and those obtained by in situ measurements used in the HDR wellbores. By using samples of sufficient thickness to provide a statistically representative heat flow path, no difference between conductivity values and their temperature coefficients for orthogonal directions (heat flow parallel or perpendicular to core axis) was observed. This isotropic behavior was even found for highly foliated gneissic specimens. Estimates of thermal conductivity based on a composite dispersion analysis utilizing pure minerallic phase conductivities and detailed modal analyses usually agreed to within 9 percent of the experimental values.

Sibbitt, W.L.; Dodson, J.G.; Tester, J.W.

1978-01-01T23:59:59.000Z

454

Water quality in the vicinity of Fenton Hill, 1987 and 1988. [Fenton Hill site  

DOE Green Energy (OSTI)

Water-quality data have been collected since 1974 from established surface- and ground-water stations at, and in the vicinity of, Fenton Hill (site of the Laboratory's Hot Dry Rock Geothermal Project). The site is located on the southwest edge of the Valles Caldera in the Jemez Mountains. To determine the chemical quality of water, data were collected in 1987 and 1988 from 13 surface-water stations and 19 ground-water stations. The classification of the water quality is made on the basis of predominated ions and total dissolved solids. There are four classifications of surface water (sodium and chloride, calcium and bicarbonate, calcium and sulfate, and sodium and bicarbonate) and three classifications of ground water (sod