National Library of Energy BETA

Sample records for band gap devices

  1. Voltage-matched, monolithic, multi-band-gap devices

    DOE Patents [OSTI]

    Wanlass, Mark W.; Mascarenhas, Angelo

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  2. Voltage-Matched, Monolithic, Multi-Band-Gap Devices

    DOE Patents [OSTI]

    Wanlass, M. W.; Mascarenhas, A.

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  3. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOE Patents [OSTI]

    Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  4. Photovoltaic devices with low band gap polymers Eva Bundgaarda, Sean Shaheenb, David S. Ginleyb, Frederik C. Krebsa

    E-Print Network [OSTI]

    Photovoltaic devices with low band gap polymers Eva Bundgaarda, Sean Shaheenb, David S. Ginleyb, Colorado, USA Abstract Progress in organic photovoltaic devices has recently resulted in reported temperature, active area of the device and molecular weight of the polymer, on the photovoltaic response

  5. Periodic dielectric structure for production of photonic band gap and devices incorporating the same

    DOE Patents [OSTI]

    Ho, Kai-Ming (Ames, IA); Chan, Che-Ting (Ames, IA); Soukoulis, Costas (Ames, IA)

    1994-08-02

    A periodic dielectric structure which is capable of producing a photonic band gap and which is capable of practical construction. The periodic structure is formed of a plurality of layers, each layer being formed of a plurality of rods separated by a given spacing. The material of the rods contrasts with the material between the rods to have a refractive index contrast of at least two. The rods in each layer are arranged with their axes parallel and at a given spacing. Adjacent layers are rotated by 90.degree., such that the axes of the rods in any given layer are perpendicular to the axes in its neighbor. Alternating layers (that is, successive layers of rods having their axes parallel such as the first and third layers) are offset such that the rods of one are about at the midpoint between the rods of the other. A four-layer periocity is thus produced, and successive layers are stacked to form a three-dimensional structure which exhibits a photonic band gap. By virtue of forming the device in layers of elongate members, it is found that the device is susceptible of practical construction.

  6. Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices

    E-Print Network [OSTI]

    Atwater, Harry

    Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices Jeffrey and AZO transparent conductive oxides did not. Applications to novel PV devices incorporating low electron-ray diffraction, zinc compounds. I. INTRODUCTION The growing interest in scalable, thin-film photovoltaics (PV

  7. The energy band gap of a semiconductor material critically influences the operating wavelength in an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important

    E-Print Network [OSTI]

    :00 PM; ERC 490 School for Engineering of Matter, Transport and Energy #12;The energy band gap of a semiconductor material critically influences the operating wavelength for applications such as lasers, light-emitting diodes (LEDs), solar cells, and detectors. New band gaps can

  8. Low band gap polymers Organic Photovoltaics

    E-Print Network [OSTI]

    Low band gap polymers for Organic Photovoltaics Eva Bundgaard Ph.D. Dissertation Risø National Bundgaard Title: Low band gap polymers for Organic photovoltaics Department: The polymer department Report the area of organic photovoltaics are focusing on low band gap polymers, a type of polymer which absorbs

  9. Photonic band gap structure simulator

    DOE Patents [OSTI]

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  10. Narrow band gap amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  11. Special purpose modes in photonic band gap fibers

    DOE Patents [OSTI]

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  12. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  13. Direct band gap narrowing in highly doped Ge

    E-Print Network [OSTI]

    Han, Zhaohong

    Direct band gap narrowing in highly doped n-type Ge is observed through photoluminescence measurements by determining the spectrum peak shift. A linear relationship between the direct band gap emission and carrier concentration ...

  14. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Wednesday, 26 March 2008 00:00 Prospective challengers to...

  15. One-dimensional electromagnetic band gap structures formed by discharge plasmas in a waveguide

    SciTech Connect (OSTI)

    Arkhipenko, V. I.; Simonchik, L. V., E-mail: l.simonchik@dragon.bas-net.by; Usachonak, M. S. [B.I. Stepanov Institute of Physics of the NAS of Belarus, Ave. Nezavisimostsi 68, 220072 Minsk (Belarus); Callegari, Th.; Sokoloff, J. [Université de Toulouse, UPS, INPT, LAPLACE, Laboratoire Plasma et Conversion d'Energie, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France)

    2014-09-28

    We demonstrate the ability to develop one-dimensional electromagnetic band gap structure in X-band waveguide solely by using the positive columns of glow discharges in neon at the middle pressure. Plasma inhomogeneities are distributed uniformly along a typical X-band waveguide with cross section of 23×10 mm². It is shown that electron densities larger than 10¹? cm ?³ are needed in order to create an effective one-dimensional electromagnetic band gap structure. Some applications for using the one-dimensional electromagnetic band gap structure in waveguide as a control of microwave (broadband filter and device for variation of pulse duration) are demonstrated.

  16. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  17. Substrate-induced band gap opening in epitaxial graphene

    E-Print Network [OSTI]

    2008-01-01

    H.A. Electronic states of graphene nanoribbons studied withS.G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev.band-gap engineering of graphene nanoribbons. Phys. Rev.

  18. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic...

  19. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a significant band gap, 0.26 electron volts (eV), an important step toward making graphene useful as a semiconductor. Left: In graphene's electronic band structure, the...

  20. SEMIEMPIRICAL MOLECULAR ORBITAL CALCULATIONS OF BAND GAPS OF CONJUGATED POLYMERS

    E-Print Network [OSTI]

    Goddard III, William A.

    SEMI­EMPIRICAL MOLECULAR ORBITAL CALCULATIONS OF BAND GAPS OF CONJUGATED POLYMERS Tahir Cagin Research and Development Center, Materials Labarotory, Polymer Branch, Wright Patterson AFB, Ohio 45433 geometries and energy band gaps of conjugated polymers. In this study, we used a modified version of semi

  1. Highly dispersive photonic band-gap-edge optofluidic biosensors

    E-Print Network [OSTI]

    Xiao, S; Xiao, Sanshui; Mortensen, Niels Asger

    2006-01-01

    Highly dispersive photonic band-gap-edge optofluidic biosensors are studied theoretically. We demonstrate that these structures are strongly sensitive to the refractive index of the liquid, which is used to tune dispersion of the photonic crystal. The upper frequency band-gap edge shifts about 1.8 nm for dn=0.002, which is quite sensitive. Results from transmission spectra agree well with those obtained from the band structure theory.

  2. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO? and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmore »structural and electrical characterization of SrZrxTi1-xO?-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  3. Spark gap device for precise switching

    DOE Patents [OSTI]

    Boettcher, Gordon E. (Albuquerque, NM)

    1984-01-01

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centrigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations.

  4. Spark gap device for precise switching

    DOE Patents [OSTI]

    Boettcher, G.E.

    1984-10-02

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations. 3 figs.

  5. Synthesis of electromagnetic modes in photonic band gap fibers

    E-Print Network [OSTI]

    Hu, Qichao

    2007-01-01

    In this paper, we report on the successful synthesis of three individual modes, HE11, TEo0, and TE02 for transmission in photonic band gap fibers at near infrared wavelengths. We measure the propagation losses of the HE11 ...

  6. Band Gap Engineering of Poly(p-phenyleneethynylene)s

    E-Print Network [OSTI]

    Myrick, Michael Lenn

    Band Gap Engineering of Poly(p-phenyleneethynylene)s: Cross-Conjugated PPE-PPV Hybrids James N. Reaction of 2 with the aldehydes 3a-f in the presence of sodium hydride in THF furnishes the diiodides 4

  7. Wide band-gap nanowires for light emitting diodes

    E-Print Network [OSTI]

    Chesin, Jordan (Jordan Paul)

    2015-01-01

    Wide band-gap nanowires composed of GaN and ZnO are promising materials for unique designs and potential efficiency improvement of light emitting diodes (LEDs) for solid state lighting. The large surface-to-volume ratio ...

  8. Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier

    E-Print Network [OSTI]

    Nanni, Emilio Alessandro

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and ...

  9. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    SciTech Connect (OSTI)

    Wang, Fenggong Grinberg, Ilya; Rappe, Andrew M.

    2014-04-14

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2?eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.

  10. Band gap engineering for graphene by using Na{sup +} ions

    SciTech Connect (OSTI)

    Sung, S. J.; Lee, P. R.; Kim, J. G.; Ryu, M. T.; Park, H. M.; Chung, J. W., E-mail: jwc@postech.ac.kr [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2014-08-25

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the ?* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}. The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}?0.70?eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.

  11. Prediction of a low band gap oxide ferroelectric

    SciTech Connect (OSTI)

    Xu, Bo [National University of Singapore; Singh, David J [ORNL; Cooper, Valentino R [ORNL; Feng, Yuan Ping [National University of Singapore

    2011-01-01

    A strategy for obtaining low band gap oxide ferroelectrics based on charge imbalance is described and illustrated by first-principles studies of the hypothetical compound Bi{sub 6}Ti{sub 4}O{sub 17}, which is an alternate stacking of the ferroelectric Bi{sub 4}Ti{sub 3}O{sub 12}. We find that this compound is ferroelectric, similar to Bi{sub 4}Ti{sub 3}O{sub 12} although with a reduced polarization. Importantly, calculations of the electronic structure with the recently developed functional of Tran and Blaha yield a much reduced band gap of 1.83 eV for this material compared to Bi{sub 4}Ti{sub 3}O{sub 12}. Therefore, Bi{sub 6}Ti{sub 4}O{sub 17} is predicted to be a low band gap ferroelectric material.

  12. Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals

    E-Print Network [OSTI]

    Vos, Willem L.

    Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals Tijmen on three-dimensional photonic band gap crystals. Switching the Si inverse opal is achieved by optically

  13. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructureInnovation PortalSubstrate-Induced Band-Gap Opening

  14. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructureInnovation PortalSubstrate-Induced Band-Gap

  15. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect (OSTI)

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup ?}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1?x}Cd{sub x}Te, and In{sub 1?x}Ga{sub x}As{sub y}P{sub 1?y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  16. Band-gap grading in Cu(In,Ga)Se2 solar cells M. Gloeckler and J. R. Sites

    E-Print Network [OSTI]

    Sites, James R.

    Band-gap grading in Cu(In,Ga)Se2 solar cells M. Gloeckler and J. R. Sites Department of Physics solar cells, and some researchers have asserted that these fields can enhance performance. The experimental evidence that grading improves device performance, however, has not been compelling, mostly

  17. Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer--Fullerene Solar Cells

    SciTech Connect (OSTI)

    Price, S C; Stuart, Andrew C.; Yang, L; Zhou, H; You, Wei

    2011-01-01

    Recent research advances on conjugated polymers for photovoltaic devices have focused on creating low band gap materials, but a suitable band gap is only one of many performance criteria required for a successful conjugated polymer. This work focuses on the design of two medium band gap (?2.0 eV) copolymers for use in photovoltaic cells which are designed to possess a high hole mobility and low highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels. The resulting fluorinated polymer PBnDT?FTAZ exhibits efficiencies above 7% when blended with [6,6]-phenyl C{sub 61}-butyric acid methyl ester in a typical bulk heterojunction, and efficiencies above 6% are still maintained at an active layer thicknesses of 1 ?m. PBnDT?FTAZ outperforms poly(3-hexylthiophene), the current medium band gap polymer of choice, and thus is a viable candidate for use in highly efficient tandem cells. PBnDT?FTAZ also highlights other performance criteria which contribute to high photovoltaic efficiency, besides a low band gap.

  18. Evidence of surface acoustic wave band gaps in the phononic crystals created on thin plates

    E-Print Network [OSTI]

    Deymier, Pierre

    Evidence of surface acoustic wave band gaps in the phononic crystals created on thin plates Xinya acoustic wave SAW band gaps. In this letter, we report a new type of phononic crystals manufactured Institute of Physics. DOI: 10.1063/1.2167794 The propagation of acoustic waves in periodic composite

  19. Light trapping design for low band-gap polymer solar cells

    E-Print Network [OSTI]

    John, Sajeev

    Light trapping design for low band-gap polymer solar cells Stephen Foster1,* and Sajeev John1,2 1 demonstrate numerically a 2-D nanostructured design for light trapping in a low band-gap polymer solar cell, "Light harvesting improvement of organic solar cells with self- enhanced active layer designs," Opt

  20. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal A New Gap-Opening Mechanism in a Triple-Band Metal Print Wednesday, 23 February 2005 00:00 A "wire" of indium only one or a few...

  1. A Class of Supported Membranes: Formation of Fluid Phospholipid Bilayers on Photonic Band Gap Colloidal Crystals

    E-Print Network [OSTI]

    Parikh, Atul N.

    Colloidal Crystals Adrian M. Brozell, Michelle A. Muha, Babak Sanii, and Atul N. Parikh* Department tunable colloidal crystal with a well-defined photonic band gap. Monodisperse colloids (e.g., silica-defined photonic band gap (PBG).6 The ability to couple membranes with colloidal crystals opens useful optical

  2. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    2012-01-25

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  3. Substrate-induced band gap opening in epitaxial graphene

    E-Print Network [OSTI]

    2008-01-01

    step to make graphene a semiconductor is to dope grapheneDirac points, graphene is a zero gap semiconductor, and howconventional semiconductors. In single layer graphene, the

  4. Robust topology optimization of three-dimensional photonic-crystal band-gap structures

    E-Print Network [OSTI]

    Lee, K. Y. K.

    We perform full 3D topology optimization (in which “every voxel” of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, ...

  5. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying...

  6. Calculation of wakefields in a 17 GHz beam-driven photonic band-gap accelerator structure

    E-Print Network [OSTI]

    Hu, Min

    We present the theoretical analysis and computer simulation of the wakefields in a 17 GHz photonic band-gap (PBG) structure for accelerator applications. Using the commercial code CST Particle Studio, the fundamental ...

  7. Tunable band gap in graphene with a noncentrosymmetric superlattice potential Rakesh P. Tiwari and D. Stroud

    E-Print Network [OSTI]

    Stroud, David

    superlattice TGS or a square graphene superlattice with broken inversion symmetry, and find that a band gap is created at the original and, in the case of a TGS, the "second generation" Dirac point. This gap, which, a triangular graphene superlattice TGS was considered, and a new class of massless Dirac fermions was predicted

  8. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO); Friedman, Daniel J. (Lakewood, CO)

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  9. Indirect-to-direct band gap transition in relaxed and strained Ge{sub 1?x?y}Si{sub x}Sn{sub y} ternary alloys

    SciTech Connect (OSTI)

    Attiaoui, Anis; Moutanabbir, Oussama [Department of Engineering Physics, École Polytechnique de Montréal, Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec H3C 3A7 (Canada)

    2014-08-14

    Sn-containing group IV semiconductors create the possibility to independently control strain and band gap thus providing a wealth of opportunities to develop an entirely new class of low dimensional systems, heterostructures, and silicon-compatible electronic and optoelectronic devices. With this perspective, this work presents a detailed investigation of the band structure of strained and relaxed Ge{sub 1?x?y}Si{sub x}Sn{sub y} ternary alloys using a semi-empirical second nearest neighbors tight binding method. This method is based on an accurate evaluation of the deformation potential constants of Ge, Si, and ?-Sn using a stochastic Monte-Carlo approach as well as a gradient based optimization method. Moreover, a new and efficient differential evolution approach is also developed to accurately reproduce the experimental effective masses and band gaps. Based on this, we elucidated the influence of lattice disorder, strain, and composition on Ge{sub 1?x?y}Si{sub x}Sn{sub y} band gap energy and directness. For 0???x???0.4 and 0???y???0.2, we found that tensile strain lowers the critical content of Sn needed to achieve a direct band gap semiconductor with the corresponding band gap energies below 0.76?eV. This upper limit decreases to 0.43?eV for direct gap, fully relaxed ternary alloys. The obtained transition to direct band gap is given by y?>?0.605?×?x?+?0.077 and y?>?1.364?×?x?+?0.107 for epitaxially strained and fully relaxed alloys, respectively. The effects of strain, at a fixed composition, on band gap directness were also investigated and discussed.

  10. Direct measurements of band gap grading in polycrystalline CIGS solar cells

    E-Print Network [OSTI]

    Heinrich, M P; Zhang, Y; Kiowski, O; Powalla, M; Lemmer, U; Slobodskyy, A

    2010-01-01

    We present direct measurements of depth-resolved band gap variations of CuIn(1-x)Ga(x)Se2 thin-film solar cell absorbers. A new measurement technique combining parallel measurements of local thin-film interference and spectral photoluminescence was developed for this purpose. We find sample-dependent correlation parameters between measured band gap depth and composition profiles, and emphasize the importance of direct measurements. These results bring a quantitative insight into the electronic properties of the solar cells and open a new way to analyze parameters that determine the efficiency of solar cells.

  11. Structural studies and band gap tuning of Cr doped ZnO nanoparticles

    SciTech Connect (OSTI)

    Srinet, Gunjan Kumar, Ravindra Sajal, Vivek

    2014-04-24

    Structural and optical properties of Cr doped ZnO nanoparticles prepared by the thermal decomposition method are presented. X-ray diffraction studies confirmed the substitution of Cr on Zn sites without changing the wurtzite structure of ZnO. Modified form of W-H equations was used to calculate various physical parameters and their variation with Cr doping is discussed. Significant red shift was observed in band gap, i.e., a band gap tuning is achieved by Cr doping which could eventually be useful for optoelectronic applications.

  12. Direct measurements of band gap grading in polycrystalline CIGS solar cells

    E-Print Network [OSTI]

    M. P. Heinrich; Z-H. Zhang; Y. Zhang; O. Kiowski; M. Powalla; U. Lemmer; A. Slobodskyy

    2010-09-20

    We present direct measurements of depth-resolved band gap variations of CuIn(1-x)Ga(x)Se2 thin-film solar cell absorbers. A new measurement technique combining parallel measurements of local thin-film interference and spectral photoluminescence was developed for this purpose. We find sample-dependent correlation parameters between measured band gap depth and composition profiles, and emphasize the importance of direct measurements. These results bring a quantitative insight into the electronic properties of the solar cells and open a new way to analyze parameters that determine the efficiency of solar cells.

  13. Band-gap tailoring of ZnO by means of heavy Al doping

    SciTech Connect (OSTI)

    Sernelius, B.E.; Berggren, K.; Jin, Z.; Hamberg, I.; Granqvist, C.G.

    1988-06-15

    Films of ZnO:Al were produced by weakly reactive dual-target magnetron sputtering. Optical band gaps, evaluated from spectrophotometric data, were widened in proportion to the Al doping. The widening could be quantitatively reconciled with an effective-mass model for n-doped semiconductors, provided the polar character of ZnO was accounted for.

  14. Calculation of band gaps in molecular crystals using hybrid functional theory

    E-Print Network [OSTI]

    Perger, Warren F.

    , pentaerythritol (PE), pentaerythritol tetranitrate (PETN), and cyclotrimethylene trinitramine (RDX). The B3LYP (PETN) , and cyclotrimethylene trinitramine (RDX). Molecular crystals have not been as Preprint, in this case the molecular crystals anthracene, PE, PETN and RDX. In addition to the relevance of the band gap

  15. 2008 IEEE Electrical Performance of Electronic Packaging Suppression of Vertical Coupling using Electromagnetic Band Gap Structures

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    2008 IEEE Electrical Performance of Electronic Packaging Suppression of Vertical Coupling using Electromagnetic Band Gap Structures Nithya Sankaran, Suzanne Huh, Madhavan Swaminathan and Rao Tummala Packaging are presented. I. Introduction Multilayer packaging plays a vital role in producing highly miniaturized, low

  16. Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast

    E-Print Network [OSTI]

    Torquato, Salvatore

    , "Photonic amorphous diamond Structure with a 3D photonic band gap," Phys. Rev. Lett. 100(1), 013901 (2008 design) not limited by crystalline symmetries. ©2013 Optical Society of America OCIS codes: (160.0160) Materials; (160.5293) Photonic bandgap materials; (160.5298) Photonic crystals. References and links 1. S

  17. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys

    SciTech Connect (OSTI)

    Li, Keyan; Kang, Congying [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)] [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China) [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-10-15

    In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1?x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1?x}O and Cd{sub x}Zn{sub 1?x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1?x}O and Ca{sub x}Zn{sub 1?x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereas the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.

  18. Energy Dependence and Scaling Property of Localization Length near a Gapped Flat Band

    E-Print Network [OSTI]

    Ge, Li

    2015-01-01

    Using a tight-binding model for a one-dimensional Lieb lattice, we show that the localization length near a gapped flat band behaves differently from the typical Urbach tail in a band gap: instead of reducing monotonically as the energy E moves away from the flat band energy E_{FB}, the presence of the flat band causes a nonmonotonic energy dependence of the localization length. This energy dependence follows a scaling property when the energy is within the spread (W) of uniformly distributed diagonal disorder, i.e. the localization length is only a function of (E-E_{FB})/W. Several other lattices are compared to distinguish the effect of the flat band on the localization length, where we eliminate, shift, or duplicate the flat band, without changing the dispersion relations of other bands. Using the top right element of the Green's matrix, we derive an analytical relation between the density of states and the localization length, which shines light on these properties of the latter, including a summation rul...

  19. Strain-induced energy band gap opening in two-dimensional bilayered silicon film

    E-Print Network [OSTI]

    Ji, Zhonghang; Voon, Lok C Lew Yan; Zhuang, Yan

    2015-01-01

    This work presents a theoretical study of the structural and electronic properties of bilayered silicon films under in-plane biaxial strain/stress using density functional theory. Atomic structures of the two-dimensional silicon films are optimized by using both the local-density approximation and generalized gradient approximation. In the absence of strain/stress, five buckled hexagonal honeycomb structures of the bilayered silicon film have been obtained as local energy minima and their structural stability has been verified. These structures present a Dirac-cone shaped energy band diagram with zero energy band gaps. Applying tensile biaxial strain leads to a reduction of the buckling height. Atomically flat structures with zero bucking height have been observed when the AA-stacking structures are under a critical biaxial strain. Increase of the strain between 10.7% ~ 15.4% results in a band-gap opening with a maximum energy band gap opening of ~168.0 meV obtained when 14.3% strain is applied. Energy band d...

  20. Photonic band gap of a graphene-embedded quarter-wave stack

    SciTech Connect (OSTI)

    Fan, Yuancheng; Wei, Zeyong; Li, Hongqiang; Chen, Hong; Soukoulis, Costas M

    2013-12-10

    Here, we present a mechanism for tailoring the photonic band structure of a quarter-wave stack without changing its physical periods by embedding conductive sheets. Graphene is utilized and studied as a realistic, two-dimensional conductive sheet. In a graphene-embedded quarter-wave stack, the synergic actions of Bragg scattering and graphene conductance contributions open photonic gaps at the center of the reduced Brillouin zone that are nonexistent in conventional quarter-wave stacks. Such photonic gaps show giant, loss-independent density of optical states at the fixed lower-gap edges, of even-multiple characteristic frequency of the quarter-wave stack. The conductive sheet-induced photonic gaps provide a platform for the enhancement of light-matter interactions.

  1. Band-Gap Engineering of Zinc Oxide Colloids via Lattice Substitution with Sulfur Leading to Materials with Advanced Properties for

    E-Print Network [OSTI]

    Nabben, Reinhard

    Band-Gap Engineering of Zinc Oxide Colloids via Lattice Substitution with Sulfur Leading requires a precise control over electronic properties. Zinc oxide is favorable for large the full inorganic UV protection are made. KEYWORDS: metal oxides, semiconductors, band gap engineering

  2. Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets

    E-Print Network [OSTI]

    Karlický, František; Otyepka, Michal; 10.1063/1.4736998

    2012-01-01

    DFT calculations of the electronic structure of graphane and stoichiometrically halogenated graphene derivatives (fluorographene and other analogous graphene halides) show (i) localized orbital basis sets can be successfully and effectively used for such 2D materials; (ii) several functionals predict that the band gap of graphane is greater than that of fluorographene, whereas HSE06 gives the opposite trend; (iii) HSE06 functional predicts quite good values of band gaps w.r.t benchmark theoretical and experimental data; (iv) the zero band gap of graphene is opened by hydrogenation and halogenation and strongly depends on the chemical composition of mixed graphene halides; (v) the stability of graphene halides decreases sharply with increasing size of the halogen atom - fluorographene is stable, whereas graphene iodide spontaneously decomposes. In terms of band gap and stability, the C2FBr, and C2HBr derivatives seem to be promising materials, e.g., for (opto)electronics applications, because their band gaps a...

  3. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    SciTech Connect (OSTI)

    Henry Hao-Chuan Kang

    2004-12-19

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  4. Band gap tuning in transition metal oxides by site-specific substitution

    DOE Patents [OSTI]

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  5. Pre-Stressed Viscoelastic Composites: Effective Incremental Moduli and Band-Gap Tuning

    SciTech Connect (OSTI)

    Parnell, William J. [School of Mathematics, Alan Turing Building, University of Manchester, Manchester, M13 9PL (United Kingdom)

    2010-09-30

    We study viscoelastic wave propagation along pre-stressed nonlinear elastic composite bars. In the pre-stressed state we derive explicit forms for the effective incremental storage and loss moduli with dependence on the pre-stress. We also derive a dispersion relation for the effective wavenumber in the case of arbitrary frequency, hence permitting a study of viscoelastic band-gap tuning via pre-stress.

  6. Engineering of the band gap and optical properties of thin films of yttrium hydride

    SciTech Connect (OSTI)

    You, Chang Chuan; Mongstad, Trygve; Maehlen, Jan Petter; Karazhanov, Smagul, E-mail: smagulk@ife.no [Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)

    2014-07-21

    Thin films of oxygen-containing yttrium hydride show photochromic effect at room temperature. In this work, we have studied structural and optical properties of the films deposited at different deposition pressures, discovering the possibility of engineering the optical band gap by variation of the oxygen content. In sum, the transparency of the films and the wavelength range of photons triggering the photochromic effect can be controlled by variation of the deposition pressure.

  7. Microwave band gap and cavity mode in spoof-insulator-spoof waveguide with multiscale structured surface

    E-Print Network [OSTI]

    Zhang, Qiang; Han, Dezhuan; Qin, Fei Fei; Zhang, Xiao Ming; Yao, Yong

    2015-01-01

    We propose a multiscale spoof-insulator-spoof (SIS) waveguide by introducing periodic geometry modulation in the wavelength scale to a SIS waveguide made of perfect electric conductor. The MSIS consists of multiple SIS subcells. The dispersion relationship of the fundamental guided mode of the spoof surface plasmon polaritons (SSPPs) is studied analytically within the small gap approximation. It is shown that the multiscale SIS possesses microwave band gap (MBG) due to the Bragg scattering. The "gap maps" in the design parameter space are provided. We demonstrate that the geometry of the subcells can efficiently adjust the effective refraction index of the elementary SIS and therefore further control the width and the position of the MBG. The results are in good agreement with numerical calculations by the finite element method (FEM). For finite-sized MSIS of given geometry in the millimeter scale, FEM calculations show that the first-order symmetric SSPP mode has zero transmission in the MBG within frequency...

  8. Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys

    E-Print Network [OSTI]

    Gong, Xingao

    , most semi- conductor alloys AxB1-x have a nonlinear dependence of its band gap Eg x as a function of the alloy composition x, and the variation is usually described by a parabolic function Eg alloy x = xEg A + 1 - x Eg B - bgx 1 - x , 1 where Eg A and Eg B are the band gaps of A and B at their respective

  9. Effect of silver incorporation in phase formation and band gap tuning of tungsten oxide thin films

    SciTech Connect (OSTI)

    Jolly Bose, R.; Kumar, R. Vinod; Sudheer, S. K.; Mahadevan Pillai, V. P. [Department of Optoelectronics, University of Kerala, Kariyavattom, Thiruvananthapuram, Kerala 695581 (India); Reddy, V. R.; Ganesan, V. [UGC - DAE Consortium for Scientific Research, Khandwa Road, Indore 452017, Madhyapradesh (India)

    2012-12-01

    Silver incorporated tungsten oxide thin films are prepared by RF magnetron sputtering technique. The effect of silver incorporation in micro structure evolution, phase enhancement, band gap tuning and other optical properties are investigated using techniques such as x-ray diffraction, micro-Raman spectroscopy, atomic force microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and UV-Visible spectroscopy. Effect of silver addition in phase formation and band gap tuning of tungsten oxide thin films are investigated. It is found that the texturing and phase formation improves with enhancement in silver content. It is also found that as the silver incorporation enhances the thickness of the films increases at the same time the strain in the film decreases. Even without annealing the desired phase can be achieved by doping with silver. A broad band centered at the wavelength 437 nm is observed in the absorption spectra of tungsten oxide films of higher silver incorporation and this can be attributed to surface plasmon resonance of silver atoms present in the tungsten oxide matrix. The transmittance of the films is decreased with increase in silver content which can be due to increase in film thickness, enhancement of scattering, and absorption of light caused by the increase of grain size, surface roughness and porosity of films and enhanced absorption due to surface plasmon resonance of silver. It is found that silver can act as the seed for the growth of tungsten oxide grains and found that the grain size increases with silver content which in turn decreases the band gap of tungsten oxide from 3.14 eV to 2.70 eV.

  10. High efficiency thin-film multiple-gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1983-01-01

    A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

  11. Ohmic contacts for high-temperature GaP devices 

    E-Print Network [OSTI]

    Van der Hoeven, Willem Bernard

    1981-01-01

    in Table II, heat treatments have also been made by laser. One of the earliest papers that describe laser annealing to obtain ohmic contacts to GaP appeared in 1974 (20] . In this paper, Pounds, Saifi, and Hahm reported to have obtained ohmic contacts...

  12. Analysis of plasma-magnetic photonic crystal with a tunable band gap

    SciTech Connect (OSTI)

    Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A. [Department of Physics and Plasma Research Institute of Tarbiat Moallem University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

    2013-04-15

    In this paper, electromagnetic wave propagation through the one-dimensional plasma-magnetic photonic crystal in the presence of external magnetic field has been analyzed. The dispersion relation, transmission and reflection coefficients have been obtained by using the transfer matrix method. It is investigated how photonic band gap of photonic crystals will be tuned when both dielectric function {epsilon} and magnetic permeability {mu} of the constitutive materials, depend on applied magnetic field. This is shown by one dimensional photonic crystals consisting of plasma and ferrite material layers stacked alternately.

  13. Is it effective to harvest visible light by decreasing the band gap of photocatalytic materials?

    SciTech Connect (OSTI)

    Fu Ning; Tang Xinhu; Li Dongyang [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6 (Canada)

    2012-02-27

    In situ variations in the electron work function and photo-current of TiO{sub 2} nanotubes demonstrate that long-wavelength illumination only has a minor effect on the excitation of electrons in the nanotubes after being exposed to short-wavelength light or when the short-wavelength light coexisted, indicating that the solar spectrum may not be utilized as efficiently as expected by extending the absorption spectrum of the photocatalytic material to visible light range with decreased band gaps.

  14. A new generalized KohnSham method for fundamental band-gaps in solids

    E-Print Network [OSTI]

    Baer, Roi

    known to be rigorously correct for the Fermi level.3,4 The fundamental band-gap of the solid, Eg-state energies, Egs, of the N À 1, N and N + 1 electron systems as follows: Eg ¼ IP À EA ¼ lim N!1 EgsðN À 1Þ À 2 particles and can be expressed as follows: Eg = ÀeN,N + eN + 1,N+1 = (eN,N+1 À eN,N) + DXC (1.2) Where e

  15. Photonic band gaps in three-dimensional network structures with short-range order

    SciTech Connect (OSTI)

    Liew, Seng Fatt; Noh, Heeso; Yang, Jin-Kyu; Schreck, Carl F.; Dufresne, Eric R.; O'Hern, Corey S.; Cao, Hui

    2011-12-15

    We present a systematic study of photonic band gaps (PBGs) in three-dimensional (3D) photonic amorphous structures (PASs) with short-range order. From calculations of the density of optical states (DOS) for PASs with different topologies, we find that tetrahedrally connected dielectric networks produce the largest isotropic PBGs. Local uniformity and tetrahedral order are essential to the formation of PBGs in PASs, in addition to short-range geometric order. This work demonstrates that it is possible to create broad, isotropic PBGs for vector light fields in 3D PASs without long-range order.

  16. Indirect-direct band gap transition through electric tuning in bilayer MoS{sub 2}

    SciTech Connect (OSTI)

    Zhang, Z. Y.; Si, M. S., E-mail: sims@lzu.edu.cn; Wang, Y. H.; Gao, X. P. [Key laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730 000 (China)] [Key laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730 000 (China); Sung, Dongchul; Hong, Suklyun [Graphene Research Institute, Sejong University, Seoul 143 747 (Korea, Republic of)] [Graphene Research Institute, Sejong University, Seoul 143 747 (Korea, Republic of); He, Junjie [Department of Physics, Xiangtan University, Hunan 411 105 (China)] [Department of Physics, Xiangtan University, Hunan 411 105 (China)

    2014-05-07

    We investigate the electronic properties of bilayer MoS{sub 2} exposed to an external electric field by using first-principles calculations. It is found that a larger interlayer distance, referring to that by standard density functional theory (DFT) with respect to that by DFT with empirical dispersion corrections, makes indirect-direct band gap transition possible by electric control. We show that external electric field effectively manipulates the valence band contrast between the K- and ?-valleys by forming built-in electric dipole fields, which realizes an indirect-direct transition before a semiconductor-metal transition happens. Our results provide a novel efficient access to tune the electronic properties of two-dimensional layered materials.

  17. Electro-optic device with gap-coupled electrode

    DOE Patents [OSTI]

    Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.

    2013-08-20

    An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.

  18. Effects of surface termination on the band gap of ultrabright Si29 nanoparticles: Experiments and computational models

    E-Print Network [OSTI]

    Braun, Paul

    Effects of surface termination on the band gap of ultrabright Si29 nanoparticles: Experiments constituting a H-terminated reconstructed Si surface was recently proposed as a structural prototype termination with a N linkage in butylamine and O linkage in pentane . The emission band for N-termination

  19. Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 1. Overview).

    SciTech Connect (OSTI)

    Fujita,E.; Khalifah, P.; Lymar, S.; Muckerman, J.T.; Rodgriguez, J.

    2008-03-18

    The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.

  20. Photonic-band-gap effects in two-dimensional polycrystalline and amorphous structures

    SciTech Connect (OSTI)

    Yang, Jin-Kyu; Noh, Heeso; Liew, Seng-Fatt; Schreck, Carl; Guy, Mikhael I.; O'Hern, Corey S.; Cao, Hui

    2010-11-15

    We study numerically the density of optical states (DOS) in two-dimensional photonic structures with short-range positional order and observe a transition from polycrystalline to amorphous photonic systems. In polycrystals, photonic band gaps (PBGs) are formed within individual domains, which leads to a depletion of the DOS similar to that in periodic structures. In amorphous photonic media, the domain sizes are too small to form PBGs, thus the depletion of the DOS is weakened significantly. The critical domain size that separates the polycrystalline and amorphous regimes is determined by the attenuation length of Bragg scattering, which depends not only on the degree of positional order but also the refractive-index contrast of the photonic material. Even with relatively low-refractive-index contrast, we find that modest short-range positional order in photonic structures enhances light confinement via collective scattering and interference.

  1. Band structure engineering for solar energy applications: ZnO1-xSex films and devices

    E-Print Network [OSTI]

    Mayer, Marie Annette

    2012-01-01

    especially in solar energy conversion. In this dissertationmechanism of solar energy conversion is photosynthesis inusefulness in solar energy conversion. Band gap engineering

  2. The energy band gap in the excitation spectrum is a fundamental characteristic for a broad array of materials. In the 1980's, the "band-gap" problem in semiconductors, the systematic underestimation of

    E-Print Network [OSTI]

    Braun, Paul

    The energy band gap in the excitation spectrum is a fundamental characteristic for a broad array for the electron self energy. I will outline the basic physical ingredients of the modern many-body perturbation for use in photocatalysis. In particular, I will discuss the application to energy level alignment

  3. Calculation of semiconductor band gaps with the M06-L density functional Yan Zhao and Donald G. Truhlara

    E-Print Network [OSTI]

    Truhlar, Donald G

    .3,6,7 However, the computational cost for HF exchange in solid-state physics calculations is very indirect.24 In this paper we calculate the lowest excitation energy whether direct or in- direct by Eq. 1Calculation of semiconductor band gaps with the M06-L density functional Yan Zhao and Donald G

  4. Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials

    E-Print Network [OSTI]

    Deymier, Pierre

    Transmission and dispersion relations of perfect and defect-containing waveguide structures investigate transmission through perfect linear waveguides, waveguides containing a resonant cavity a large frequency range of the band gap by varying the width of the guide. The transmission through

  5. Photonic band gap templating using optical interference lithography Timothy Y. M. Chan, Ovidiu Toader, and Sajeev John

    E-Print Network [OSTI]

    John, Sajeev

    band gap material-based optical microchip, it is necessary to have high quality, three-dimensional 3D dielectric structure of the PBG material, it is possible to guide light through micron-scale, single-mode air, and replication 11,12 have made this paramount goal a near term reality. The optical properties of PBG materials

  6. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics Fenggong Wang, Ilya Grinberg, and Andrew M. Rappe

    E-Print Network [OSTI]

    Rappe, Andrew M.

    Band gap engineering strategy via polarization rotation in perovskite ferroelectrics Fenggong Wang.1063/1.4804367 Strain sensitivity of polarization in perovskite ferroelectrics Appl. Phys. Lett. 93, 122903 (2008); 10.1063/1.2988263 Domain engineering of the transverse piezoelectric coefficient in perovskite ferroelectrics J. Appl. Phys

  7. Method for implantation of high dopant concentrations in wide band gap materials

    DOE Patents [OSTI]

    Usov, Igor (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM)

    2009-09-15

    A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.

  8. Maximum Theoretical Efficiency Limit of Photovoltaic Devices: Effect of Band Structure on Excited State Entropy

    E-Print Network [OSTI]

    Osterloh, Frank

    on the electronic structure of the semiconductor, that is, they are a materials property. They can be calculated. But besides the semiconductor bandgap no other semiconductor properties are considered in the analysis. Here the band gap, no other semiconductor properties are considered in the model. This cannot account

  9. Band gap narrowing in zinc oxide-based semiconductor thin films...

    Office of Scientific and Technical Information (OSTI)

    ABSORPTION; ALUMINIUM COMPOUNDS; BORON COMPOUNDS; CHARGE CARRIERS; CONCENTRATION RATIO; DENSITY; DOPED MATERIALS; ELECTRONIC STRUCTURE; ENERGY GAP; GALLIUM COMPOUNDS; INDIUM...

  10. Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer

    SciTech Connect (OSTI)

    Trifonov, T.; Marsal, L.F.; Pallares, J.; Rodriguez, A.; Alcubilla, R.

    2004-11-15

    We investigate different aspects of the absolute photonic band gap (PBG) formation in two-dimensional photonic structures consisting of rods covered with a thin dielectric film. Specifically, triangular and honeycomb lattices in both complementary arrangements, i.e., air rods drilled in silicon matrix and silicon rods in air, are studied. We consider that the rods are formed of a dielectric core (silicon or air) surrounded by a cladding layer of silicon dioxide (SiO{sub 2}), silicon nitride (Si{sub 3}N{sub 4}), or germanium (Ge). Such photonic lattices present absolute photonic band gaps, and we study the evolution of these gaps as functions of the cladding material and thickness. Our results show that in the case of air rods in dielectric media the existence of dielectric cladding reduces the absolute gap width and may cause complete closure of the gap if thick layers are considered. For the case of dielectric rods in air, however, the existence of a cladding layer can be advantageous and larger absolute PBG's can be achieved.

  11. Halftoning band gap of InAs/InP quantum dots using inductively coupled argon plasma-enhanced intermixing

    SciTech Connect (OSTI)

    Nie, D.; Mei, T.; Xu, C. D.; Dong, J. R.

    2006-09-25

    Inductively coupled argon plasma-enhanced intermixing of InAs/InP quantum dots grown on InP substrate is investigated. Intermixing is promoted by the near-surface defects generated by plasma exposure in annealing at a temperature of 600 deg. C for 30 s. The annealing results in a maximum differential band-gap blueshift of 106 nm but a thermal shift of only 10 nm. Band-gap halftones are obtained by controlling the amount of near-surface defects via wet chemical etching on the plasma-exposed InP cap layer. No degradation of quantum-dot crystal quality due to the process has been observed as evidenced by photoluminescence intensity.

  12. The change in dielectric constant, AC conductivity and optical band gaps of polymer electrolyte film: Gamma irradiation

    SciTech Connect (OSTI)

    Raghu, S., E-mail: dehu2010@gmail.com; Subramanya, K., E-mail: dehu2010@gmail.com; Sharanappa, C., E-mail: dehu2010@gmail.com; Mini, V., E-mail: dehu2010@gmail.com; Archana, K., E-mail: dehu2010@gmail.com; Sanjeev, Ganesh, E-mail: dehu2010@gmail.com; Devendrappa, H., E-mail: dehu2010@gmail.com [Dept. of Physics, Mangalore University, Mangalagangothri-574199 (India)

    2014-04-24

    The effects of gamma (?) irradiation on dielectric and optical properties of polymer electrolyte film were investigated. The dielectric constant and ac conductivity increases with ? dose. Also optical band gap decreased from 4.23 to 3.78ev after irradiation. A large dependence of the polymer properties on the irradiation dose was noticed. This suggests that there is a possibility of improving polymer electrolyte properties on gamma irradiation.

  13. Electronic Structures, Bonding Configurations, and Band-Gap-Opening Properties of Graphene Binding with Low-Concentration Fluorine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duan, Yuhua; Stinespring, Charter D.; Chorpening, Benjamin

    2015-06-18

    To better understand the effects of low-level fluorine in graphene-based sensors, first-principles density functional theory (DFT) with van der Waals dispersion interactions has been employed to investigate the structure and impact of fluorine defects on the electrical properties of single-layer graphene films. The results show that both graphite-2H and graphene have zero band gaps. When fluorine bonds to a carbon atom, the carbon atom is pulled slightly above the graphene plane, creating what is referred to as a CF defect. The lowest-binding energy state is found to correspond to two CF defects on nearest neighbor sites, with one fluorine abovemore »the carbon plane and the other below the plane. Overall this has the effect of buckling the graphene. The results further show that the addition of fluorine to graphene leads to the formation of an energy band (BF) near the Fermi level, contributed mainly from the 2p orbitals of fluorine with a small contribution from the porbitals of the carbon. Among the 11 binding configurations studied, our results show that only in two cases does the BF serve as a conduction band and open a band gap of 0.37 eV and 0.24 eV respectively. The binding energy decreases with decreasing fluorine concentration due to the interaction between neighboring fluorine atoms. The obtained results are useful for sensor development and nanoelectronics.« less

  14. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ? ? 0.5?e, where ?e is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3?e and 0.6?e. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  15. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U

    SciTech Connect (OSTI)

    Zhang, Yubo; Zhang, Jiawei; Wang, Youwei; Gao, Weiwei; Abtew, Tesfaye A.; Zhang, Peihong E-mail: wqzhang@mail.sic.ac.cn; Beijing Computational Science Research Center, Beijing 100084 ; Zhang, Wenqing E-mail: wqzhang@mail.sic.ac.cn; School of Chemistry and Chemical Engineering and Sate Key Laboratory of Coordination Chemistry, Nanjing University, Jiangsu 210093

    2013-11-14

    Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of the mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within ±0.2 eV.

  16. Synthesis, Structure, Thermoelectric Properties, and Band Gaps of Alkali Metal Containing Type I Clathrates: A8Ga8Si38 (A = K, Rb, Cs)

    E-Print Network [OSTI]

    Osterloh, Frank

    Synthesis, Structure, Thermoelectric Properties, and Band Gaps of Alkali Metal Containing Type I were consolidated by Spark Plasma Sintering (SPS) for thermoelectric property characterization. INTRODUCTION Thermoelectric materials have been intensively studied over the past decades as they can recycle

  17. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    SciTech Connect (OSTI)

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450?°C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18??m long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  18. Novel wide band gap materials for highly efficient thin film tandem solar cells

    SciTech Connect (OSTI)

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV�s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

  19. Photonic band gap formation in certain self-organizing systems Kurt Busch and Sajeev John

    E-Print Network [OSTI]

    John, Sajeev

    7 April 1998 We present a detailed study of photonic band structure in certain self frequency are attainable by incom- plete infiltration of an opal with silicon and germanium, respectively are evaluated. We delineate how the PBG is modified by sintering the opal prior to infiltration and by applying

  20. Photonic band gap formation in certain selforganizing systems Kurt Busch and Sajeev John

    E-Print Network [OSTI]

    John, Sajeev

    ~Received 7 April 1998! We present a detailed study of photonic band structure in certain self frequency are attainable by incom­ plete infiltration of an opal with silicon and germanium, respectively are evaluated. We delineate how the PBG is modified by sintering the opal prior to infiltration and by applying

  1. First-principles study of band gap engineering via oxygen vacancy doping in perovskite ABB'O? solid solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qi, Tingting; Curnan, Matthew T.; Kim, Seungchul; Bennett, Joseph W.; Grinberg, Ilya; Rappe, Andrew M.

    2011-12-15

    Oxygen vacancies in perovskite oxide solid solutions are fundamentally interesting and technologically important. However, experimental characterization of the vacancy locations and their impact on electronic structure is challenging. We have carried out first-principles calculations on two Zr-modified solid solutions, Pb(Zn1/3Nb2/3)O? and Pb(Mg1/3Nb2/3)O?, in which vacancies are present. We find that the vacancies are more likely to reside between low-valent cation-cation pairs than high-valent cation-cation pairs. Based on the analysis of our results, we formulate guidelines that can be used to predict the location of oxygen vacancies in perovskite solid solutions. Our results show that vacancies can have a significant impactmore »on both the conduction and valence band energies, in some cases lowering the band gap by ?0.5 eV. The effects of vacancies on the electronic band structure can be understood within the framework of crystal field theory.« less

  2. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 News BelowAsked toUSC-Aiken,A New Gap-Opening

  3. Conductivity and optical band gaps of polyethylene oxide doped with Li{sub 2}SO{sub 4} salt

    SciTech Connect (OSTI)

    Chapi, Sharanappa, E-mail: dehu2010@gmail.com; Raghu, S., E-mail: dehu2010@gmail.com; Subramanya, K., E-mail: dehu2010@gmail.com; Archana, K., E-mail: dehu2010@gmail.com; Mini, V., E-mail: dehu2010@gmail.com; Devendrappa, H., E-mail: dehu2010@gmail.com [Dept. of Physics, Mangalore University, Mangalagangothri-574199 (India)

    2014-04-24

    The conductivity and optical properties of Li{sub 2}SO{sub 4} doped polyethylene oxide (PEO) films were studied. The polymer electrolyte films are prepared using solution casting technique. The material phase change was confirmed by X-ray diffraction (XRD) technique. Optical absorption study was conducted using UV- Vis. Spectroscopy in the wavelength range 190–1100nm on pure and doped PEO films. The direct and indirect optical band gaps were found decreased from 5.81–4.51eV and 4.84–3.43eV respectively with increasing the Li{sub 2}SO{sub 4}. The conductivity found to increases with increasing the dopant concentration due to strong hopping mechanism at room temperature.

  4. Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers

    E-Print Network [OSTI]

    Jalali. Bahram

    Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico optical, electrical, and spectral response characteristics of three-stack InAs/GaAs quantum dot solar

  5. Toward Photochemical Water Splitting Using Band-Gap-Narrowed Semiconductors and Transition-Metal Based Molecular Catalysts

    SciTech Connect (OSTI)

    Muckerman,J.T.; Rodriguez, J.A.; Fujita, E.

    2009-06-07

    We are carrying out coordinated theoretical and experimental studies of toward photochemical water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron molecular water oxidation and hydrogen production catalysts. We focus on the coupling between the materials properties and the H{sub 2}O redox chemistry, with an emphasis on attaining a fundamental understanding of the individual elementary steps in the following four processes: (1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for solar-driven water splitting, including the discovery and characterization of the behavior of such materials at the aqueous interface; (2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal complexes with quinonoid ligands, and the rational search for improved catalysts; (3) Transfer of the design principles learned from the elucidation of the DuBois-type hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen production catalysts for aqueous solution; (4) Combining these three elements to examine the function of oxidation catalysts on BGNSC photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous interface to understand the challenges to the efficient coupling of the materials functions.

  6. Experimental and theoretical studies of band gap alignment in GaAs{sub 1?x}Bi{sub x}/GaAs quantum wells

    SciTech Connect (OSTI)

    Kudrawiec, R. Kopaczek, J.; Polak, M. P.; Scharoch, P.; Gladysiewicz, M.; Misiewicz, J.; Richards, R. D.; Bastiman, F.; David, J. P. R.

    2014-12-21

    Band gap alignment in GaAs{sub 1?x}Bi{sub x}/GaAs quantum wells (QWs) was studied experimentally by photoreflectance (PR) and theoretically, ab initio, within the density functional theory in which the supercell based calculations are combined with the alchemical mixing approximation applied to a single atom in a supercell. In PR spectra, the optical transitions related to the excited states in the QW (i.e., the transition between the second heavy-hole and the second electron subband) were clearly observed in addition to the ground state QW transition and the GaAs barrier transition. This observation is clear experimental evidence that this is a type I QW with a deep quantum confinement in the conduction and valence bands. From the comparison of PR data with calculations of optical transitions in GaAs{sub 1?x}Bi{sub x}/GaAs QW performed for various band gap alignments, the best agreement between experimental data and theoretical calculations has been found for the valence band offset of 52?±?5%. A very similar valence band offset was obtained from ab initio calculations. These calculations show that the incorporation of Bi atoms into GaAs host modifies both the conduction and the valence band. For GaAs{sub 1?x}Bi{sub x} with 0?band shifts lineary at a rate of ?33?meV per % Bi, which only slightly decreases with Bi concentration. Whereas the valance band shift is clearly non-linear. Reducing initially at a rate of ?51?meV per % Bi for low concentrations of Bi and then at a significantly reduced rate of ?20?meV per % Bi near the end of the studied composition range. The overall reduction rate of the band gap is parabolic and the reduction rates change from ?84 to ?53?meV per % Bi for lower and higher Bi concentrations, respectively. The calculated shifts of valence and conduction bands give the variation of valence (conduction) band offset between GaAs{sub 1?x}Bi{sub x} and GaAs in the range of ?60%–40% (?40%–60%), which is in good agreement with our conclusion derived from PR measurements.

  7. Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach H. J. Xiang,1,2,* Bing Huang,2

    E-Print Network [OSTI]

    Gong, Xingao

    silicon (Si) is the leading material in the current solar cell market. However, diamond Si is an indirect phase with quasidirect gaps of 1.55 eV, which is a promising candidate for making thin-film solar cells is the leading material of microelectronic devices. Currently, the majority of solar cells fabricated to date

  8. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  9. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide

    E-Print Network [OSTI]

    Marichy, Catherine; Froufe-Pérez, Luis S; Scheffold, Frank

    2015-01-01

    Photonic crystal materials are based on a periodic modulation of the dielectric constant on length scales comparable to the wavelength of light. These materials can exhibit photonic band gaps; frequency regions for which the propagation of electromagnetic radiation is forbidden due to the depletion of the density of states. In order to exhibit a full band gap, 3D PCs must present a threshold refractive index contrast that depends on the crystal structure. In the case of the so-called woodpile photonic crystals this threshold is comparably low, approximately 1.9 for the direct structure. Therefore direct or inverted woodpiles made of high refractive index materials like silicon, germanium or titanium dioxide are sought after. Here we show that, by combining multiphoton lithography and atomic layer deposition, we can achieve a direct inversion of polymer templates into TiO$_{2}$ based photonic crystals. The obtained structures show remarkable optical properties in the near-infrared region with almost perfect sp...

  10. Structure and red shift of optical band gap in CdO–ZnO nanocomposite synthesized by the sol gel method

    SciTech Connect (OSTI)

    Mosquera, Edgar, E-mail: edemova@ing.uchile.cl [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2069, Santiago (Chile); Pozo, Ignacio del, E-mail: ignacio.dpf@gmail.com [Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago (Chile); Morel, Mauricio, E-mail: mmorel@ing.uchile.cl [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2069, Santiago (Chile)

    2013-10-15

    The structure and the optical band gap of CdO–ZnO nanocomposites were studied. Characterization using X-ray diffraction (XRD), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS) analysis confirms that CdO phase is present in the nanocomposites. TEM analysis confirms the formation of spheroidal nanoparticles and nanorods. The particle size was calculated from Debey–Sherrer?s formula and corroborated by TEM images. FTIR spectroscopy shows residual organic materials (aromatic/Olefinic carbon) from nanocomposites surface. CdO content was modified in the nanocomposites in function of polyvinylalcohol (PVA) added. The optical band gap is found to be red shift from 3.21 eV to 3.11 eV with the increase of CdO content. Photoluminescence (PL) measurements reveal the existence of defects in the synthesized CdO–ZnO nanocomposites. - Graphical abstract: Optical properties of ZnO, CdO and ZnO/CdO nanoparticles. Display Omitted - Highlights: • TEM analysis confirms the presence of spherical nanoparticles and nanorods. • The CdO phase is present in the nanocomposites. • The band gap of the CdO–ZnO nanocomposites is slightly red shift with CdO content. • PL emission of CdO–ZnO nanocomposite are associated to structural defects.

  11. Synthesis of cadmium telluride quantum wires and the similarity of their band gaps to those of equidiameter cadmium telluride quantum dots

    SciTech Connect (OSTI)

    Wang, Lin-Wang; Sun, Jianwei; Wang, Lin-Wang; Buhro, William E.

    2008-07-11

    High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range of 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi-nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure, and grow along the [002] direction (parallel to the c axis). The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire band gaps converge. The origin and magnitude of this threshold diameter is discussed.

  12. Direct band gap optical emission from compressively strained Ge films grown on relaxed Si{sub 0.5}Ge{sub 0.5} substrate

    SciTech Connect (OSTI)

    Aluguri, R.; Manna, S.; Ray, S. K. [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)] [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2013-10-14

    Compressively strained Ge films have been grown on relaxed Si{sub 0.5}Ge{sub 0.5} virtual substrate in ultra high vacuum using molecular beam epitaxy. Structural characterization has shown that the Ge films are compressively strained with partial strain relaxation in a film thicker than 3.0 nm, due to onset of island nucleation. Photoluminescence spectra exhibit the splitting of degenerate Ge valence band into heavy hole and light hole bands with a broad direct band gap emission peak around 0.81 eV. Temperature and excitation power dependent emission characteristics have been studied to investigate the mechanism of luminescence quenching at high temperatures and the role of non-radiative recombination centers.

  13. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    SciTech Connect (OSTI)

    Galatage, R. V. [Department of Electrical Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Zhernokletov, D. M. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Dong, H.; Brennan, B.; Hinkle, C. L. [Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Wallace, R. M. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Vogel, E. M. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-07-07

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  14. Design, Modeling and Numerical Analysis of Microwave and Optical Devices: The Multi-band Patch Antenna, Ultra Wideband Ring Filter and Plasmonic Waveguide Coupler 

    E-Print Network [OSTI]

    Liu, Ya-Chi

    2014-01-14

    In this dissertation, three devices are studied and devised for the applications in microwave and optical communication: (1) Multiband Patch Antenna, (2) Ultra-Wideband Band Pass Ring Filter and (3) Plasmonic Waveguide Coupler with High Coupling...

  15. Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses

    SciTech Connect (OSTI)

    Emmert, Luke A.; Mero, Mark; Rudolph, Wolfgang [Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2010-08-15

    A model for the multiple-pulse laser-induced breakdown behavior of dielectrics is presented. It is based on a critical conduction band (CB) electron density leading to dielectric breakdown. The evolution of the CB electron density during the pulse train is calculated using rate equations involving transitions between band and mid-gap states (native and laser-induced). Using realistic estimations for the trap density and ionization cross-section, the model is able to reproduce the experimentally observed drop in the multiple-pulse damage threshold relative to the single-pulse value, as long as the CB electron density is controlled primarily by avalanche ionization seeded by multiphoton ionization of the traps and the valence band. The model shows that at long pulse duration, the breakdown threshold becomes more sensitive to presence of traps close (within one photon energy) to the CB. The effect of native and laser-induced defects can be distinguished by their saturation behavior. Finally, measurements of the multiple-pulse damage threshold of hafnium oxide films are used to illustrate the application of the model.

  16. Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials

    E-Print Network [OSTI]

    Dowling, Jonathan P.

    2007-01-01

    efficiency of solar cell devices without using concentrators. r 2007 Elsevier B.V. All rights reserved) solar energy conversion systems (or solar cells) are the most widely used power systems. HoweverSolar Energy Materials & Solar Cells 91 (2007) 1599­1610 Improving solar cell efficiency using

  17. Resonant charge transfer of hydrogen Rydberg atoms incident at a Cu(100) projected band-gap surface

    E-Print Network [OSTI]

    Gibbard, J A; Kohlhoff, M; Rennick, C J; So, E; Ford, M; Softley, T P

    2015-01-01

    The charge transfer (ionization) of hydrogen Rydberg atoms (principal quantum number $n=25-34$) incident at a Cu(100) surface is investigated. Unlike fully metallic surfaces, where the Rydberg electron energy is degenerate with the conduction band of the metal, the Cu(100) surface has a projected bandgap at these energies, and only discrete image states are available through which charge transfer can take place. Resonant enhancement of charge transfer is observed at hydrogen principal quantum numbers for which the Rydberg energy matches the energy of one of the image states. The integrated surface ionization signals show clear periodicity as the energies of states with increasing $n$ come in and out of resonance with the image states. The velocity dependence of the surface ionization dynamics is also investigated. Decreased velocity of the incident H atom leads to a greater mean distance of ionization and a lower field required to extract the ion. The surface-ionization profiles (signal versus applied field) ...

  18. Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix

    DOE Patents [OSTI]

    Forrest, Stephen R. (Ann Arbor, MI)

    2008-08-19

    A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.

  19. Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier

    DOE Patents [OSTI]

    Forrest, Stephen R. (Ann Arbor, MI); Wei, Guodan (Ann Arbor, MI)

    2010-07-06

    A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.

  20. Hybrid density functional calculations of the band gap of GaxIn1-xN Xifan Wu,1 Eric J. Walter,2 Andrew M. Rappe,3 Roberto Car,1 and Annabella Selloni1

    E-Print Network [OSTI]

    Rappe, Andrew M.

    Hybrid density functional calculations of the band gap of GaxIn1-xN Xifan Wu,1 Eric J. Walter,2 Andrew M. Rappe,3 Roberto Car,1 and Annabella Selloni1 1Chemistry Department, Princeton University Recent theoretical work has provided evidence that hybrid functionals, which include a fraction of exact

  1. Band-Gap Reduction and Dopant Interaction in Epitaxial La,Cr Co-doped SrTiO3 Thin Films

    SciTech Connect (OSTI)

    Comes, Ryan B.; Sushko, Petr; Heald, Steve M.; Colby, Robert J.; Bowden, Mark E.; Chambers, Scott A.

    2014-12-03

    We show that by co-doping SrTiO3 (STO) epitaxial thin films with equal amounts of La and Cr it is possible to produce films with an optical band gap ~0.9 eV lower than that of undoped STO. Sr1-xLaxTi1-xCrxO3 thin films were deposited by molecular beam epitaxy and characterized using x-ray photoelectron spectroscopy and x-ray absorption near-edge spectroscopy to show that the Cr dopants are almost exclusively in the Cr3+ oxidation state. Extended x-ray absorption fine structure measurements and theoretical modeling suggest that it is thermodynamically preferred for La and Cr dopants to occupy nearest neighbor A- and B-sites in the lattice. Transport measurements show that the material exhibits variable-range hopping conductivity with high resistivity. These results create new opportunities for the use of doped STO films in photovoltaic and photocatalytic applications.

  2. Wide band gap semiconductor templates

    DOE Patents [OSTI]

    Arendt, Paul N. (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); DePaula, Raymond F. (Santa Fe, NM); Usov, Igor O. (Los Alamos, NM)

    2010-12-14

    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  3. Band structure engineering for solar energy applications: ZnO1-xSex films and devices

    E-Print Network [OSTI]

    Mayer, Marie Annette

    2012-01-01

    13078 S. R. Morrison, Electrochemistry at Semiconductor andto semiconductor electrochemistry is followed by flat band,electrochemistry

  4. Band structure engineering for solar energy applications: ZnO1-xSex films and devices

    E-Print Network [OSTI]

    Mayer, Marie Annette

    2012-01-01

    knowledge about semiconductor materials properties grows, wesemiconductor devices are designed around material properties.

  5. Sealing device

    DOE Patents [OSTI]

    Garcia-Crespo, Andres Jose

    2013-12-10

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  6. Structural phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO{sub 3}]{sub 1?x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3??}]{sub x} ferroelectrics

    SciTech Connect (OSTI)

    Zhou, Wenliang; Yang, Pingxiong Chu, Junhao; Deng, Hongmei

    2014-09-15

    Structural phase transition, narrow band gap (E{sub g}), and room-temperature ferromagnetism (RTFM) have been observed in the [KNbO{sub 3}]{sub 1?x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3??}]{sub x} (KBNNO) ceramics. All the samples have single phase perovskite structure, but exhibit a gradual transition behaviour from the orthorhombic to a cubic structure with the increase of x. Raman spectroscopy analysis not only corroborates this doping-induced change in normal structure but also shows the local crystal symmetry for x ? 0.1 compositions to deviate from the idealized cubic perovskite structure. A possible mechanism for the observed specific changes in lattice structure is discussed. Moreover, it is noted that KBNNO with compositions x?=?0.1–0.3 have quite narrow E{sub g} of below 1.5?eV, much smaller than the 3.2?eV band gap of parent KNbO{sub 3} (KNO), which is due to the increasing Ni 3d electronic states within the gap of KNO. Furthermore, the KBNNO materials present RTFM near a tetragonal to cubic phase boundary. With increasing x from 0 to 0.3, the magnetism of the samples develops from diamagnetism to ferromagnetism and paramagnetism, originating from the ferromagnetic–antiferromagnetic competition. These results are helpful in the deeper understanding of phase transitions, band gap tunability, and magnetism variations in perovskite oxides and show the potential role, such materials can play, in perovskite solar cells and multiferroic applications.

  7. Real-structure effects: Band gaps of Mg_xZn_{1-x}O, Cd_xZn_{1-x}O, and n-type ZnO from ab-initio calculations

    SciTech Connect (OSTI)

    Schleife, A; Bechstedt, F

    2012-02-15

    Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical-absorption spectra (including excitonic effects) for several transparent conducting oxides. We discuss HSE+G{sub 0}W{sub 0} results for band structures, fundamental band gaps, and effective electron masses of MgO, ZnO, CdO, SnO{sub 2}, SnO, In{sub 2}O{sub 3}, and SiO{sub 2}. The Bethe-Salpeter equation is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G{sub 0}W{sub 0} approach and the solution of the Bethe-Salpeter equation are very well-suited to describe the electronic structure and the optical properties of various transparent conducting oxides in good agreement with experiment.

  8. Systematic approach for simultaneously correcting the band-gap andp-dseparation errors of common cation III-V or II-VI binaries in density functional theory calculations within a local density approximation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang

    2015-07-31

    We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore »can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less

  9. Quantum-Size Effects on the Pressure-Induced Direct-to-Indirect Band-Gap Transition in InP Quantum Dots

    SciTech Connect (OSTI)

    Fu, H.; Zunger, A.

    1998-06-01

    We predict that the difference in quantum confinement energies of {Gamma} -like and X -like conduction states in a covalent quantum dot will cause the direct-to-indirect transition to occur at substantially lower pressure than in the bulk material. Furthermore, the first-order transition in the bulk is predicted to become, for certain dot sizes, a second-order transition. Measurements of the {open_quotes}anticrossing gap{close_quotes} could thus be used to obtain unique information on the {Gamma}-X- L intervalley coupling, predicted here to be surprisingly large (50{endash}100thinspthinspmeV). {copyright} {ital 1998} {ital The American Physical Society}

  10. Switching of the photonic band gap in three-dimensional film photonic crystals based on opal-VO{sub 2} composites in the 1.3-1.6 {mu}m spectral range

    SciTech Connect (OSTI)

    Pevtsov, A. B. Grudinkin, S. A.; Poddubny, A. N.; Kaplan, S. F.; Kurdyukov, D. A.; Golubev, V. G.

    2010-12-15

    The parameters of three-dimensional photonic crystals based on opal-VO{sub 2} composite films in the 1.3-1.6 {mu}m spectral range important for practical applications (Telecom standard) are numerically calculated. For opal pores, the range of filling factors is established (0.25-0.6) wherein the composite exhibits the properties of a three-dimensional insulator photonic crystal. On the basis of the opal-VO{sub 2} composites, three-dimensional photonic film crystals are synthesized with specified parameters that provide a maximum shift of the photonic band gap in the vicinity of the wavelength {approx}1.5 {mu}m ({approx}170 meV) at the semiconductor-metal transition in VO{sub 2}.

  11. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, David A. (Walnut Creek, CA); Flood, William S. (Berkeley, CA); Arthur, Allan A. (Martinez, CA); Voelker, Ferdinand (Orinda, CA)

    1986-01-01

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  12. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    SciTech Connect (OSTI)

    Bai Xianchen; Zhang Jiande; Yang Jianhua; Jin Zhenxing [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2012-12-15

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of {approx}22 MW, an output power of {approx}230 MW with the power gain of {approx}10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than {+-}15 Degree-Sign in a single shot, and phase jitter of {+-}11 Degree-Sign is obtained within a series of shots with duration of about 40 ns.

  13. Domain walls in gapped graphene

    E-Print Network [OSTI]

    Semenoff, G W; Zhou, Fei

    2015-01-01

    The electronic properties of a particular class of domain walls in gapped graphene are investigated. We show that they can support mid-gap states which are localized in the vicinity of the domain wall and propagate along its length. With a finite density of domain walls, these states can alter the electronic properties of gapped graphene significantly. If the mid-gap band is partially filled,the domain wall can behave like a one-dimensional metal embedded in a semi-conductor, and could potentially be used as a single-channel quantum wire.

  14. Domain walls in gapped graphene

    E-Print Network [OSTI]

    G. W. Semenoff; V. Semenoff; Fei Zhou

    2008-05-31

    The electronic properties of a particular class of domain walls in gapped graphene are investigated. We show that they can support mid-gap states which are localized in the vicinity of the domain wall and propagate along its length. With a finite density of domain walls, these states can alter the electronic properties of gapped graphene significantly. If the mid-gap band is partially filled,the domain wall can behave like a one-dimensional metal embedded in a semi-conductor, and could potentially be used as a single-channel quantum wire.

  15. Red emitting photonic devices using InGaP/InGaAlP material system

    E-Print Network [OSTI]

    Kangude, Yamini

    2005-01-01

    In this thesis, two red emitting photonic devices are presented using the InGaP/InGaAlP material system. InGaP/InGaAlP material system provides large flexibility in the band gap energy while being lattice matched to GaAs ...

  16. Thermovoltaic semiconductor device including a plasma filter

    DOE Patents [OSTI]

    Baldasaro, Paul F. (Clifton Park, NY)

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  17. Effect of Ga content on defect states in CuIn1xGaxSe2 photovoltaic devices

    E-Print Network [OSTI]

    Rockett, Angus

    gaps for single junction solar cells expected to be around 1.4 eV.2 This corresponds to a Ga fraction x 0.6, with x Ga/(In Ga). Higher Ga material would also be useful as a component of multi-junction or graded band gap cells. However, the best devices to date contain material with x 0.2, and it is difficult

  18. Device modeling and simulation of the performance of Cu(In1x,Gax)Se2 solar cells

    E-Print Network [OSTI]

    Anderson, Timothy J.

    -junction Cu(In1Àx,Gax)Se2 (CIGS) solar cells. Increasing the open-circuit voltage (Voc) to improve the overallDevice modeling and simulation of the performance of Cu(In1Àx,Gax)Se2 solar cells Jiyon Song solar cell have been carried out. A variety of graded band-gap structures, including space charge region

  19. Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging

    E-Print Network [OSTI]

    Sargent, Edward H. "Ted"

    Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk-processed photovoltaics. The authors demonstrate quantum size-effect tuning of device band gaps relevant to multijunction solar cells. © 2007 American Institute of Physics. DOI: 10.1063/1.2735674 Low-cost, large-area solar

  20. Band anticrossing in dilute nitrides

    SciTech Connect (OSTI)

    Shan, W.; Yu, K.M.; Walukiewicz, W.; Wu, J.; Ager III, J.W.; Haller, E.E.

    2003-12-23

    Alloying III-V compounds with small amounts of nitrogen leads to dramatic reduction of the fundamental band-gap energy in the resulting dilute nitride alloys. The effect originates from an anti-crossing interaction between the extended conduction-band states and localized N states. The interaction splits the conduction band into two nonparabolic subbands. The downward shift of the lower conduction subband edge is responsible for the N-induced reduction of the fundamental band-gap energy. The changes in the conduction band structure result in significant increase in electron effective mass and decrease in the electron mobility, and lead to a large enhance of the maximum doping level in GaInNAs doped with group VI donors. In addition, a striking asymmetry in the electrical activation of group IV and group VI donors can be attributed to mutual passivation process through formation of the nearest neighbor group-IV donor nitrogen pairs.

  1. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  2. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  3. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  4. Strain-engineered band parameters of graphene-like SiC monolayer

    SciTech Connect (OSTI)

    Behera, Harihar; Mukhopadhyay, Gautam

    2014-10-06

    Using full-potential density functional theory (DFT) calculations we show that the band gap and effective masses of charge carriers in SiC monolayer (ML-SiC) in graphene-like two-dimensional honeycomb structure are tunable by strain engineering. ML-SiC was found to preserve its flat 2D graphene-like structure under compressive strain up to 7%. A transition from indirect-to-direct gap-phase is predicted to occur for a strain value lying within the interval (1.11 %, 1.76%). In both gap-phases band gap decreases with increasing strain, although the rate of decrease is different in the two gap-phases. Effective mass of electrons show a non-linearly decreasing trend with increasing tensile strain in the direct gap-phase. The strain-sensitive properties of ML-SiC, may find applications in future strain-sensors, nanoelectromechanical systems (NEMS) and nano-optomechanical systems (NOMS) and other nano-devices.

  5. Pneumatic gap sensor and method

    DOE Patents [OSTI]

    Bagdal, Karl T. (Middletown, OH); King, Edward L. (Trenton, OH); Follstaedt, Donald W. (Middletown, OH)

    1992-01-01

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.

  6. Pneumatic gap sensor and method

    DOE Patents [OSTI]

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.

  7. Low resistance ohmic contacts on wide band-gap GaN M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. MorkoG

    E-Print Network [OSTI]

    Allen, Leslie H.

    -beam evaporation onto the GaN substrate, and then thermally annealed in a temperature range from 500 to 900 "C as high temperature/high power electrical devices, there still remains much more work to be done on GaN epilayers, Foresi et aL6 used Al and Au contacts with 575 "C anneal cycle. However, the specific

  8. First principles investigation of scaling trends of zirconium silicate interface band offsets

    E-Print Network [OSTI]

    Dutton, Robert W.

    First principles investigation of scaling trends of zirconium silicate interface band offsets out to investigate the scaling trends of band offsets at model silicon/zirconium silicate interfaces. Owing to the d character of zirconium silicate conduction bands, the band gap and band offset are shown

  9. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    SciTech Connect (OSTI)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waalâ??s forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals â?? materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  10. Localization of metal-induced gap states at the metal-insulator interface: Origin of flux noise in SQUIDs and superconducting qubits

    E-Print Network [OSTI]

    Choi, SangKook

    2010-01-01

    density of states. (b) Metal-induced gap states (MIGS) at athe band gap are extended in the metal and evanescent in theLocalization of Metal-Induced Gap States at the Metal-

  11. Equivalent Circuit Description of Non-compensated n-p Codoped TiO2 as Intermediate Band Solar Cells

    E-Print Network [OSTI]

    Tian-Li Feng; Guang-Wei Deng; Yi Xia; Feng-Cheng Wu; Ping Cui; Hai-Ping Lan; Zhen-Yu Zhang

    2010-12-09

    The novel concept of non-compensated n-p codoping has made it possible to create tunable intermediate bands in the intrinsic band gap of TiO2, making the codoped TiO2 a promising material for developing intermediate band solar cells (IBSCs). Here we investigate the quantum efficiency of such IBSCs within two scenarios - with and without current extracted from the extended intermediate band. Using the ideal equivalent circuit model, we find that the maximum efficiency of 57% in the first scenario and 53% in the second are both much higher than the Shockley-Queisser limit from single gap solar cells. We also obtain various key quantities of the circuits, a useful step in realistic development of TiO2 based solar cells invoking device integration. These equivalent circuit results are also compared with the efficiencies obtained directly from consideration of electron transition between the energy bands, and both approaches reveal the intriguing existence of double peaks in the maximum quantum efficiency as a function of the relative location of IBs.

  12. Band Structure of Strain-Balanced GaAsBi/GaAsN Super-lattices on GaAs

    SciTech Connect (OSTI)

    Hwang, J.; Phillips, J. D.

    2011-05-31

    GaAs alloys with dilute content of Bi and N provide a large reduction in band-gap energy with increasing alloy composition. GaAsBi/GaAsN heterojunctions have a type-II band alignment, where superlattices based on these materials offer a wide range for designing effective band-gap energy by varying superlattice period and alloy composition. The miniband structure and effective band gap for strain-balanced GaAsBi/GaAsN superlattices with effective lattice match to GaAs are calculated for alloy compositions up to 5% Bi and N using the k·p method. The effective band gap for these superlattices is found to vary between 0.89 and 1.32 eV for period thickness ranging from 10 to 100 Å. The joint density of states and optical absorption of a 40/40 Å GaAs0.96Bi0.04/GaAs0.98N0.02 superlattice are reported demonstrating a ground-state transition at 1.005 eV and first excited transition at 1.074 eV. The joint density of states is similar in magnitude to GaAs, while the optical absorption is approximately one order of magnitude lower due to the spatially indirect optical transition in the type-II structure. The GaAsBi/GaAsN system may provide a new material system with lattice match to GaAs in a spectral range of high importance for optoelectronic devices including solar cells, photodetectors, and light emitters.

  13. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect (OSTI)

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  14. Optoelectronic device

    DOE Patents [OSTI]

    Bonekamp, Jeffrey E.; Boven, Michelle L.; Gaston, Ryan S.

    2014-09-09

    The invention is an optoelectronic device comprising an active portion which converts light to electricity or converts electricity to light, the active portion having a front side for the transmittal of the light and a back side opposite from the front side, at least two electrical leads to the active portion to convey electricity to or from the active portion, an enclosure surrounding the active portion and through which the at least two electrical leads pass wherein the hermetically sealed enclosure comprises at the front side of the active portion a barrier material which allows for transmittal of light, one or more getter materials disposed so as to not impede the transmission of light to or from the active portion, and a contiguous gap pathway to the getter material which pathway is disposed between the active portion and the barrier material.

  15. Linear Scaling of the Exciton Binding Energy versus the Band...

    Office of Scientific and Technical Information (OSTI)

    Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials This content will become publicly available on August 6, 2016 Prev Next Title:...

  16. Characterization of Novel Semiconductor Alloys for Band Gap Engineering

    E-Print Network [OSTI]

    Broesler, Robert Joseph

    2010-01-01

    et al. High Efficiency InAlN-based solar cells. in PVSC '08.for low-cost and high-efficiency solar cells and efficientyielded the record for solar cell efficiency without lattice

  17. Controlling the band gap energy of cluster-assembled materials

    E-Print Network [OSTI]

    2013-01-01

    Biochemistry and Materials Science & Engineering, UniversityBiochemistry and of Materials Science & Engineering at the

  18. Systematic study of photoluminescence upon band gap excitation...

    Office of Scientific and Technical Information (OSTI)

    sub 12Nasub 12TiOsub 3:Pr (RLa, Gd, Lu, and Y) were synthesized, and their structures, optical absorption and luminescent properties were investigated, and the...

  19. Systematic approach for simultaneously correcting the band-gap...

    Office of Scientific and Technical Information (OSTI)

    Number: Army W911NF-10-1-0524; AC02-05CH11231 Type: Publisher's Accepted Manuscript Journal Name: Physical Review. B, Condensed Matter and Materials Physics Additional Journal...

  20. Characterization of Novel Semiconductor Alloys for Band Gap Engineering

    E-Print Network [OSTI]

    Broesler, Robert Joseph

    2010-01-01

    xAsx Alloys for Multi-junction Solar Cells. in PVSC '10.for single and multi-junction solar cells along with thematerial system multi-junction solar cell [12]. High quality

  1. Characterization of Novel Semiconductor Alloys for Band Gap Engineering

    E-Print Network [OSTI]

    Broesler, Robert Joseph

    2010-01-01

    of Semiconductors: Physics and Materials Properties. 1999,in Properties of Advanced Semiconductor Materials GaN, AlN,Semiconductor Alloys: InAlN, ZnSeO and GaNAs 2 Materials Properties

  2. A 250 GHz photonic band gap gyrotron amplifier

    E-Print Network [OSTI]

    Nanni, Emilio A. (Emilio Alessandro)

    2013-01-01

    This thesis reports the theoretical and experimental investigation of a novel gyrotron traveling-wave-tube (TWT) amplifier at 250 GHz. The gyrotron amplifier designed and tested in this thesis has achieved a peak small ...

  3. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation

  4. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructureInnovation Portal

  5. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructureInnovation PortalSubstrate-Induced

  6. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructureInnovation PortalSubstrate-InducedSubstrate-Induced

  7. Direct band gap electroluminescence from bulk germanium at room temperature

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnectlaser-solidSwitchgrass|FeTe0.55Se0.45 (Journal Article)using an

  8. Systematic study of photoluminescence upon band gap excitation in

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference)Feedback System inStatusandArticle)SystemSystem for(Technical

  9. Method for Creating Photonic Band Gap Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-ProtegeFromGasInnovation

  10. ISM band to U-NII band frequency transverter and method of frequency transversion

    DOE Patents [OSTI]

    Stepp, Jeffrey David (Grandview, MO); Hensley, Dale (Grandview, MO)

    2006-09-12

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz 6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  11. ISM band to U-NII band frequency transverter and method of frequency transversion

    DOE Patents [OSTI]

    Stepp, Jeffrey David (Grandview, MO); Hensley, Dale (Grandview, MO)

    2006-04-04

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz-6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  12. Hetero-junction photovoltaic device and method of fabricating the device

    DOE Patents [OSTI]

    Aytug, Tolga; Christen, David K; Paranthaman, Mariappan Parans; Polat, Ozgur

    2014-02-10

    A hetero-junction device and fabrication method in which phase-separated n-type and p-type semiconductor pillars define vertically-oriented p-n junctions extending above a substrate. Semiconductor materials are selected for the p-type and n-type pillars that are thermodynamically stable and substantially insoluble in one another. An epitaxial deposition process is employed to form the pillars on a nucleation layer and the mutual insolubility drives phase separation of the materials. During the epitaxial deposition process, the orientation is such that the nucleation layer initiates propagation of vertical columns resulting in a substantially ordered, three-dimensional structure throughout the deposited material. An oxidation state of at least a portion of one of the p-type or the n-type semiconductor materials is altered relative to the other, such that the band-gap energy of the semiconductor materials differ with respect to stoichiometric compositions and the device preferentially absorbs particular selected bands of radiation.

  13. Generation gaps in engineering?

    E-Print Network [OSTI]

    Kim, David J. (David Jinwoo)

    2008-01-01

    There is much enthusiastic debate on the topic of generation gaps in the workplace today; what the generational differences are, how to address the apparent challenges, and if the generations themselves are even real. ...

  14. Fiber optic gap gauge

    DOE Patents [OSTI]

    Wood, Billy E. (Livermore, CA); Groves, Scott E. (Brentwood, CA); Larsen, Greg J. (Brentwood, CA); Sanchez, Roberto J. (Pleasanton, CA)

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  15. Co-Evaporated Cu2ZnSnSe4 Films and Devices

    SciTech Connect (OSTI)

    Repins, I.; Beall, C.; Vora, N.; DeHart, C.; Kuciauskas, D.; Dippo, P.; To, B.; Mann, J.; Hsu, W. C.; Goodrich, A.; Noufi, R.

    2012-06-01

    The use of vacuum co-evaporation to produce Cu2ZnSnSe4 photovoltaic devices with 9.15% total-area efficiency is described. These new results suggest that the early success of the atmospheric techniques for kesterite photovoltaics may be related to the ease with which one can control film composition and volatile phases, rather than a fundamental benefit of atmospheric conditions for film properties. The co-evaporation growth recipe is documented, as is the motivation for various features of the recipe. Characteristics of the resulting kesterite films and devices are shown in scanning electron micrographs, including photoluminescence, current-voltage, and quantum efficiency. Current-voltage curves demonstrate low series resistance without the light-dark cross-over seen in many devices in the literature. Band gap indicated by quantum efficiency and photoluminescence is roughly consistent with that expected from first principles calculation.

  16. Momentum dependence of the superconducting gap and in-gap states in MgB2 multiband superconductor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2015-06-29

    We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both ? bands follows a BCS-like variation with temperature with ?0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to kF of the ? band that occur at some locations of the sample surface. As a result, the energy of thismore »excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on ? Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.« less

  17. Inception report and Gap analysis

    E-Print Network [OSTI]

    Inception report and Gap analysis Boiler inspection Riga, June 2004 #12;Inception report and gap analysis ­ boiler inspection Table of Content 1 INTRODUCTION ................................................................................................................................. 3 2 BOILER INSTALLATIONS ­ GAP ANALYSIS

  18. Uncertainties in Gapped Graphene

    E-Print Network [OSTI]

    Eylee Jung; Kwang S. Kim; DaeKil Park

    2012-03-20

    Motivated by graphene-based quantum computer we examine the time-dependence of the position-momentum and position-velocity uncertainties in the monolayer gapped graphene. The effect of the energy gap to the uncertainties is shown to appear via the Compton-like wavelength $\\lambda_c$. The uncertainties in the graphene are mainly contributed by two phenomena, spreading and zitterbewegung. While the former determines the uncertainties in the long-range of time, the latter gives the highly oscillation to the uncertainties in the short-range of time. The uncertainties in the graphene are compared with the corresponding values for the usual free Hamiltonian $\\hat{H}_{free} = (p_1^2 + p_2^2) / 2 M$. It is shown that the uncertainties can be under control within the quantum mechanical law if one can choose the gap parameter $\\lambda_c$ freely.

  19. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen Edward (Pinole, CA); Bourret-Courchesne, Edith (Berkeley, CA); Weber, Marvin J. (Danville, CA); Klintenberg, Mattias K. (Berkeley, CA)

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  20. Dynamically Generated Mott Gap from Holography

    SciTech Connect (OSTI)

    Edalati, Mohammad; Leigh, Robert G.; Phillips, Philip W.

    2011-03-04

    In the fermionic sector of top-down approaches to holographic systems, one generically finds that the fermions are coupled to gravity and gauge fields in a variety of ways, beyond minimal coupling. In this Letter, we take one such interaction--a Pauli, or dipole, interaction--and study its effects on fermion correlators. We find that this interaction modifies the fermion spectral density in a remarkable way. As we change the strength of the interaction, we find that spectral weight is transferred between bands, and beyond a critical value, a gap emerges in the fermion density of states. A possible interpretation of this bulk interaction then is that it drives the dynamical formation of a (Mott) gap, in the absence of continuous symmetry breaking.

  1. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  2. SUPERCONDUCTING DEVICES

    E-Print Network [OSTI]

    Clarke, John

    2014-01-01

    communications. References Superconductor Applications: ~on all aspects of superconducting devices. IEEE Trans.on all aspects vf superconducting devices. The IBM Journal

  3. GAP TESTS; COMPARISON BETWEEN UN GAP TEST AND CARD GAP TEST

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    98-36 GAP TESTS; COMPARISON BETWEEN UN GAP TEST AND CARD GAP TEST by R. BRANKA and C. MICHOT, FRANCE (tel.: 33 3 44 55 65 19, fax: 33 3 44 55 65 10) ABSTRACT: UN gap test, type 1(a) or 2(a), is the recommended test in the acceptance procedure for transport of explosives in class 1. Up to the revision

  4. Phenomenological two-gap model for the specific heat of MgB2

    E-Print Network [OSTI]

    2001-01-01

    two^gap model for the specific heat of MgB F. BOUQUET ' , Y.2 - BCS normalized specific heat (thin line), experimentaldotted lines), and partial specific heat of both bands (full

  5. Insertion Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacuum Chamber The current ID vacuum chamber has a internal vertical aperture of 8 mm allowing for minimum undulator gap of 11 mm The current ID vacuum chamber...

  6. In-situ characterization of growth and interfaces in a-Si:H devices. Final subcontract report, 1 May 1991--31 May 1994

    SciTech Connect (OSTI)

    Collins, R.W.; Wronski, C.R.; An, I.; Lu, Y.; Nguyen, H.V. [Pennsylvania State Univ., University Park, PA (United States)

    1994-07-01

    This report describes work to identify materials parameters that can quantitatively describe the solar cell performance correctly in the initial and stabilized states and are consistent with a microscopic model of the metastable defect site. The objective is to be accomplished by applying results of in-situ analyses of a-Si:H surfaces and the transparent conducting oxide (TCO)/p/i interfaces to complement the present understanding of the electronic properties of materials and devices. A second objective of the program is to demonstrate, characterize, and understand improved doped and undoped ``wide-gap`` materials for use in achieving 15% stabilized photovoltaic modules (``wide-gap`` materials are defined as those materials with a band gap of at least 1.9 eV).

  7. Fundamentals of polycrystalline thin film materials and devices

    SciTech Connect (OSTI)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (USA). Inst. of Energy Conversion)

    1991-01-01

    This report presents the results of a one-year research program on polycrystalline thin-film solar cells. The research was conducted to better understand the limitations and potential of solar cells using CuInSe{sub 2} and CdTe by systematically investigating the fundamental relationships linking material processing, material properties, and device behavior. By selenizing Cu and In layers, we fabricated device-quality CuInSe{sub 2} thin films and demonstrated a CuInSe{sub 2} solar cell with 7% efficiency. We added Ga, to increase the band gap of CuInSe{sub 2} devices to increase the open-circuit voltage to 0.55 V. We fabricated and analyzed Cu(InGa)Se{sub 2}/CuInSe{sub 2} devices to demonstrate the potential for combining the benefits of higher V{sub oc} while retaining the current-generating capacity of CuInSe{sub 2}. We fabricated an innovative superstrate device design with more than 5% efficiency, as well as a bifacial spectral-response technique for determining the electron diffusion length and optical absorption coefficient of CuInSe{sub 2} in an operational cell. The diffusion length was found to be greater than 1 {mu}m. We qualitatively modeled the effect of reducing heat treatments in hydrogen and oxidizing treatments in air on the I-V behavior of CuInSe{sub 2} devices. We also investigated post-deposition heat treatments and chemical processing and used them to fabricate a 9.6%-efficient CdTe/CdS solar cell using physical vapor deposition.

  8. Optical gain from the direct gap transition of Ge-on-Si at room temperature

    E-Print Network [OSTI]

    Liu, Jifeng

    We report direct band gap optical gain of tensile strained n+ epitaxial Ge-on-Si at room temperature, which confirms that band-engineered Ge-on-Si is a promising gain medium for monolithic optical amplifiers and lasers on Si.

  9. Spatially-resolved microstructure in shear banding wormlike micellar solutions

    SciTech Connect (OSTI)

    Helgeson, Matthew E.; Reichert, Matthew D.; Wagner, Norman J.; Kaler, Eric W. [Department of Chemical Engineering, University of Delaware, Newark, DE 19716 (United States)

    2008-07-07

    Recently proposed theories for shear banding in wormlike micellar solutions (WLMs) rely on a shear-induced isotropic-nematic (I-N) phase separation as the mechanism for banding. Critical tests of such theories require spatially-resolved measurements of flow-kinematics and local mesoscale microstructure within the shear bands. We have recently developed such capabilities using a short gap Couette cell for flow-small angle neutron scattering (flow-SANS) measurements in the 1-2 plane of shear with collaborators at the NIST Center for Neutron Research. This work combines flow-SANS measurements with rheology, rheo-optics and velocimetry measurements to present the first complete spatially-resolved study of WLMs through the shear banding transition for a model shear banding WLM solution near the I-N phase boundary. The shear rheology is well-modeled by the Giesekus constitutive equation, with incorporated stress diffusion to predict shear banding. By fitting the stress diffusivity at the onset of banding, the model enables prediction of velocity profiles in the shear banded state which are in quantitative agreement with measured flow-kinematics. Quantitative analysis of the flow-SANS measurements shows a critical segmental alignment for banding and validates the Giesekus model predictions, linking segmental orientation to shear banding and providing the first rigorous evidence for the shear-induced I-N transition mechanism for shear banding.

  10. Daydreaming Devices

    E-Print Network [OSTI]

    Da Ponte, Ana Sofia Lopes

    2008-01-01

    Daydreaming Devices is a project on aspects of daydream and the design of convertible furniture within the context of art. This thesis addresses the concepts and the design of two daydreaming devices developed during my ...

  11. Gapped Domain Walls, Gapped Boundaries and Topological Degeneracy

    E-Print Network [OSTI]

    Tian Lan; Juven Wang; Xiao-Gang Wen

    2014-11-26

    Gapped domain walls, as topological line defects between 2+1D topologically ordered states, are examined. We provide simple criteria to determine the existence of gapped domain walls, which apply to both Abelian and non-Abelian topological orders. Our criteria also determine which 2+1D topological orders must have gapless edge modes, namely which 1+1D global gravitational anomalies ensure gaplessness. Furthermore, we introduce a new mathematical object, the tunneling matrix $\\mathcal W$, whose entries are the fusion-space dimensions $\\mathcal W_{ia}$, to label different types of gapped domain walls. By studying many examples, we find evidence that the tunneling matrices are powerful quantities to classify different types of gapped domain walls. Since a gapped boundary is a gapped domain wall between a bulk topological order and the vacuum, regarded as the trivial topological order, our theory of gapped domain walls inclusively contains the theory of gapped boundaries. In addition, we derive a topological ground state degeneracy formula, applied to arbitrary orientable spatial 2-manifolds with gapped domain walls, including closed 2-manifolds and open 2-manifolds with gapped boundaries.

  12. Band-engineered Ge-on-Si lasers

    E-Print Network [OSTI]

    Liu, Jifeng

    We report optically-pumped Ge-on-Si lasers with direct gap emission near 1600 nm at room temperature. The Ge-on-Si material was band-engineered by tensile strain and n-type doping to compensate the energy difference between ...

  13. The Pennsylvania State University Marching Blue Band Blue Band Office

    E-Print Network [OSTI]

    Maroncelli, Mark

    The Pennsylvania State University Marching Blue Band Press Kit Blue Band Office 101 Blue Band Director vcc2@psu.edu orb1@psu.edu gad157@psu.edu (814) 865 - 3982 #12;History of the Blue Band The Marching Blue Band numbers 310 members which includes: 260 instrumentalists, 34 silks, 14 Touch of Blue

  14. Radiography Device

    Broader source: Energy.gov [DOE]

    This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of a radiography device (Class 7 - Radioactive). This...

  15. Nanotube resonator devices

    DOE Patents [OSTI]

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  16. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    SciTech Connect (OSTI)

    Rourke, D; Ahn, S; Nardes, AM; van de Lagemaat, J; Kopidakis, N; Park, W

    2014-09-21

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer: fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent. (C) 2014 AIP Publishing LLC.

  17. Electrochromic devices

    DOE Patents [OSTI]

    Allemand, Pierre M. (Tucson, AZ); Grimes, Randall F. (Ann Arbor, MI); Ingle, Andrew R. (Tucson, AZ); Cronin, John P. (Tucson, AZ); Kennedy, Steve R. (Tuscon, AZ); Agrawal, Anoop (Tucson, AZ); Boulton, Jonathan M. (Tucson, AZ)

    2001-01-01

    An electrochromic device is disclosed having a selective ion transport layer which separates an electrochemically active material from an electrolyte containing a redox active material. The devices are particularly useful as large area architectural and automotive glazings due to there reduced back reaction.

  18. Triaxial strongly deformed bands in {sup 164}Hf and the effect of elevated yrast line

    SciTech Connect (OSTI)

    Ma Wenchao

    2012-10-20

    Two exotic rotational bands have been identified in {sup 164}Hf and linked to known states. They are interpreted as being associated with the calculated triaxial strongly deformed (TSD) potential energy minimum. The bands are substantially stronger and are located at much lower spins than the previously discovered TSD bands in {sup 168}Hf. In addition to the proton and neutron shell gaps at large trixiality, it was proposed that the relative excitation energy of TSD bands above the yrast line plays an important role in the population of TSD bands.

  19. Crystal and electronic band structure of Cu2ZnSnX4 ,,X=S and Se... photovoltaic absorbers: First-principles insights

    E-Print Network [OSTI]

    Gong, Xingao

    components, and the band gap is usually not optimal for high efficiency CIGS solar cells. Currently, designing and synthesizing novel, high-efficiency, and low cost solar cell absorbers to replace CIGS has.1063/1.3074499 An ideal thin-film solar cell absorber material should have a direct band gap around 1.3­1.5 e

  20. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1984-03-20

    A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

  1. Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon

    SciTech Connect (OSTI)

    Hossain, Nadir; Sweeney, Stephen [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Hosea, Jeff [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK and Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang [Material Sciences Center and Faculty of Physics, Philipps-University, 35032 Marburg (Germany); Kunert, Bernerdette [NAsP III/V GmbH, Am Knechtacker 19, 35041 Marburg (Germany)

    2013-12-04

    We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.

  2. Investigation of crystalline and electronic band alignment properties of GaP/Ge(111) heterostructure

    SciTech Connect (OSTI)

    Dixit, V. K.; Kumar, Shailendra; Singh, S. D.; Khamari, S. K.; Kumar, R.; Tiwari, Pragya; Sharma, T. K.; Oak, S. M. [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Phase, D. M. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore, Madhya Pradesh 452001 (India)

    2014-03-03

    Gallium phosphide (GaP) epitaxial layer and nanostructures are grown on n-Ge(111) substrates using metal organic vapour phase epitaxy. It is confirmed by high resolution x-ray diffraction measurements that the layer is highly crystalline and oriented with the coexistence of two domains, i.e., GaP(111)A and GaP(111)B, with an angle of 60° between them due to the formation of a wurtzite monolayer at the interface. The valence band offset between GaP and Ge is 0.7?±?0.1?eV as determined from the valence band onsets and from Kraut's method. A band alignment diagram for GaP/Ge/GeOx is also constructed which can be used to design monolithic optoelectronic integrated circuits.

  3. Controllable spin-charge transport in strained graphene nanoribbon devices

    SciTech Connect (OSTI)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Guassi, Marcos R. [Institute of Physics, University of Brasília, 70919-970, Brasília-DF (Brazil); Qu, Fanyao [Institute of Physics, University of Brasília, 70919-970, Brasília-DF (Brazil); Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-09-21

    We theoretically investigate the spin-charge transport in two-terminal device of graphene nanoribbons in the presence of a uniform uniaxial strain, spin-orbit coupling, exchange field, and smooth staggered potential. We show that the direction of applied strain can efficiently tune strain-strength induced oscillation of band-gap of armchair graphene nanoribbon (AGNR). It is also found that electronic conductance in both AGNR and zigzag graphene nanoribbon (ZGNR) oscillates with Rashba spin-orbit coupling akin to the Datta-Das field effect transistor. Two distinct strain response regimes of electronic conductance as function of spin-orbit couplings magnitude are found. In the regime of small strain, conductance of ZGNR presents stronger strain dependence along the longitudinal direction of strain. Whereas for high values of strain shows larger effect for the transversal direction. Furthermore, the local density of states shows that depending on the smoothness of the staggered potential, the edge states of AGNR can either emerge or be suppressed. These emerging states can be determined experimentally by either spatially scanning tunneling microscope or by scanning tunneling spectroscopy. Our findings open up new paradigms of manipulation and control of strained graphene based nanostructure for application on novel topological quantum devices.

  4. Multiband semiconductor compositions for photovoltaic devices

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Yu, Kin Man; Wu, Junqiao

    2010-05-04

    The highly mismatched alloy Zn.sub.1-yMn.sub.yO.sub.xTe.sub.1-x, 0.ltoreq.y<1 and 0band of extended states located within the band gap of the Zn.sub.1-yMn.sub.yTe host. With multiple band gaps that fall within the solar energy spectrum, Zn.sub.1-yMn.sub.yO.sub.xTe.sub.1-x is a material perfectly satisfying the conditions for single-junction photovoltaics with the potential for power conversion efficiencies surpassing 50%.

  5. Multiband semiconductor compositions for photovoltaic devices

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Belmont, MA)

    2012-03-06

    The highly mismatched alloy Zn.sub.1-yMn.sub.yO.sub.xTe.sub.1-x, 0.ltoreq.y<1 and 0band of extended states located within the band gap of the Zn.sub.1-yMn.sub.yTe host. With multiple band gaps that fall within the solar energy spectrum, Zn.sub.1-yMn.sub.yO.sub.xTe.sub.1-x is a material perfectly satisfying the conditions for single-junction photovoltaics with the potential for power conversion efficiencies surpassing 50%.

  6. Plasma jet ignition device

    DOE Patents [OSTI]

    McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

    1985-01-15

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  7. (OWC's) ' (heaving devices) (heaving devices)

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    Testing», EU GD Energy, 2002 ­ 2003). ­ Coordination action on Ocean Energy", EU GD Research, 2004 ­ 2007 ` ' : ­ ­ : ­ ­ #12;: : : · : · : . (OWC's) ' (heaving devices University · ­ "Offshore Wave Energy Converters (OWEC1)", EU, GD Research, OULE II, 19931995. ­ LABBUOY

  8. The Case for Mobile Devices in Environmental Observing Systems

    E-Print Network [OSTI]

    to interact with the embedded cyberinfrastructure, such as the sensor network. To bridge this gap, we argue devices such as PDAs and smart phones. We identify several key use cases and user bases, and explain how to be considered. We identify several key use case scenarios and user bases. In order to bridge this gap

  9. Broad Band Photon Harvesting Biomolecules for Photovoltaics

    E-Print Network [OSTI]

    P. Meredith; B. J. Powell; J. Riesz; R. Vogel; D. Blake; I. Kartini; G. Will; S. Subianto

    2004-06-04

    We discuss the key principles of artificial photosynthesis for photovoltaic energy conversion. We demonstrate these principles by examining the operation of the so-called "dye sensitized solar cell" (DSSC) - a photoelectrochemical device which simulates the charge separation process across a nano-structured membrane that is characteristic of natural systems. These type of devices have great potential to challenge silicon semiconductor technology in the low cost, medium efficiency segment of the PV market. Ruthenium charge transfer complexes are currently used as the photon harvesting components in DSSCs. They produce a relatively broad band UV and visible response, but have long term stability problems and are expensive to manufacture. We suggest that a class of biological macromolecules called the melanins may be suitable replacements for the ruthenium complexes. They have strong, broad band absorption, are chemically and photochemically very stable, can be cheaply and easily synthesized, and are also bio-available and bio-compatible. We demonstrate a melanin-based regenerative solar cell, and discuss the key properties that are necessary for an effective broad band photon harvesting system.

  10. Research on high-efficiency, multiple-gap, multijunction, amorphous-silicon-based alloy thin-film solar cells

    SciTech Connect (OSTI)

    Guha, S. )

    1989-06-01

    This report presents results of research on advancing our understanding of amorphous-silicon-based alloys and their use in small-area multijunction solar cells. The principal objectives of the program are to develop a broad scientific base for the chemical, structural, optical, and electronic properties of amorphous-silicon-based alloys; to determine the optimum properties of these alloy materials as they relate to high-efficiency cells; to determine the optimum device configuration for multijunction cells; and to demonstrate proof-of-concept, multijunction, a-Si-alloy-based solar cells with 18% efficiency under standard AM1.5 global insolation conditions and with an area of at least 1 cm{sup 2}. A major focus of the work done during this reporting period was the optimization of a novel, multiple-graded structure that enhances cell efficiency through band-gap profiling. The principles of the operation of devices incorporating such a structure, computer simulations of those, and experimental results for both single- and multijunction cells prepared by using the novel structure are discussed in detail. 14 refs., 35 figs., 7 tabs.

  11. Phenomenological two-gap model for the specific heat of MgB2

    SciTech Connect (OSTI)

    Bouquet, F.; Wang, Y.; Fisher, R.A.; Hinks, D.G.; Jorgensen, J.D.; Junod, A.; Phillips, N.E.

    2001-06-22

    The authors show that the specific heat of the superconductor MgB{sub 2} in zero field, for which significant non-BCS features have been reported, can be fitted, essentially within experimental error, over the entire range of temperature to T{sub c} by a phenomenological two-gap model. The resulting gap parameters agree with previous determinations from band-structure calculations, and from various spectroscopic experiments. The determination from specific heat, a bulk property, shows that the presence of two superconducting gaps in MgB{sub 2} is a volume effect.

  12. Device Physics and Recombination in Polymer:Fullerene Bulk-Heterojunction Solar Cells

    E-Print Network [OSTI]

    Hawks, Steven

    2015-01-01

    Introduction to Polymer:Fullerene OrganicBand tail recombination in polymer:fullerene organic solarSystem . . . . . . . . Device Physics of Polymer:Fullerene

  13. Highly Mismatched Alloys for Intermediate Band Solar Cells

    SciTech Connect (OSTI)

    Walukiewicz, W.; Yu, K.M.; Wu, J.; Ager III, J.W.; Shan, W.; Scrapulla, M.A.; Dubon, O.D.; Becla, P.

    2005-03-21

    It has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a ''stepping stone'' for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band.

  14. Electrochemical device

    DOE Patents [OSTI]

    Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ); Bellows, Richard J. (Westfield, NJ)

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  15. Detection device

    DOE Patents [OSTI]

    Smith, Jay E. (Pittsburgh, PA)

    1984-01-01

    The present invention is directed to a detection device comprising: (1) an entrance chamber, (2) a central chamber, and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  16. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  17. W-Band Sheet Beam Klystron Design

    SciTech Connect (OSTI)

    Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.a Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.; /SLAC

    2011-11-11

    Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons [1]. Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

  18. Towards reproducible, scalable lateral molecular electronic devices

    SciTech Connect (OSTI)

    Durkan, Colm Zhang, Qian

    2014-08-25

    An approach to reproducibly fabricate molecular electronic devices is presented. Lateral nanometer-scale gaps with high yield are formed in Au/Pd nanowires by a combination of electromigration and Joule-heating-induced thermomechanical stress. The resulting nanogap devices are used to measure the electrical properties of small numbers of two different molecular species with different end-groups, namely 1,4-butane dithiol and 1,5-diamino-2-methylpentane. Fluctuations in the current reveal that in the case of the dithiol molecule devices, individual molecules conduct intermittently, with the fluctuations becoming more pronounced at larger biases.

  19. Laser device

    DOE Patents [OSTI]

    Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  20. 1D periodic potentials with gaps vanishing at k=0

    E-Print Network [OSTI]

    O. Zagordi; A. Michelangeli

    2008-10-13

    Appearance of energy bands and gaps in the dispersion relations of a periodic potential is a standard feature of Quantum Mechanics. We investigate the class of one-dimensional periodic potentials for which all gaps vanish at the center of the Brillouin zone. We characterize them through a necessary and sufficient condition. Potentials of the form we focus on arise in different fields of Physics, from supersymmetric Quantum Mechanics, to Korteweg-de Vries equation theory and classical diffusion problems. The O.D.E. counterpart to this problem is the characterisation of periodic potentials for which coexistence occur of linearly independent solutions of the corresponding Schroedinger equation (Hill's equation). This result is placed in perspective of the previous related results available in the literature.

  1. Multiple input electrode gap controller

    DOE Patents [OSTI]

    Hysinger, Christopher L. (Austin, TX); Beaman, Joseph J. (Austin, TX); Melgaard, David K. (Albuquerque, NE); Williamson, Rodney L. (Albuquerque, NE)

    1999-01-01

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows.

  2. Multiple input electrode gap controller

    DOE Patents [OSTI]

    Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

    1999-07-27

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

  3. Scheme for precise correction of orbit variation caused by dipole error field of insertion device

    SciTech Connect (OSTI)

    Nakatani, T.; Agui, A.; Aoyagi, H.; Matsushita, T.; Takao, M.; Takeuchi, M.; Yoshigoe, A.; Tanaka, H.

    2005-05-15

    We developed a scheme for precisely correcting the orbit variation caused by a dipole error field of an insertion device (ID) in a storage ring and investigated its performance. The key point for achieving the precise correction is to extract the variation of the beam orbit caused by the change of the ID error field from the observed variation. We periodically change parameters such as the gap and phase of the specified ID with a mirror-symmetric pattern over the measurement period to modulate the variation. The orbit variation is measured using conventional wide-frequency-band detectors and then the induced variation is extracted precisely through averaging and filtering procedures. Furthermore, the mirror-symmetric pattern enables us to independently extract the orbit variations caused by a static error field and by a dynamic one, e.g., an error field induced by the dynamical change of the ID gap or phase parameter. We built a time synchronization measurement system with a sampling rate of 100 Hz and applied the scheme to the correction of the orbit variation caused by the error field of an APPLE-2-type undulator installed in the SPring-8 storage ring. The result shows that the developed scheme markedly improves the correction performance and suppresses the orbit variation caused by the ID error field down to the order of submicron. This scheme is applicable not only to the correction of the orbit variation caused by a special ID, the gap or phase of which is periodically changed during an experiment, but also to the correction of the orbit variation caused by a conventional ID which is used with a fixed gap and phase.

  4. Valence and conduction band alignment at ScN interfaces with 3C-SiC (111) and 2H-GaN (0001)

    SciTech Connect (OSTI)

    King, Sean W., E-mail: sean.king@intel.com [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Physics, Arizona State University, Tempe, Arizona 85281 (United States); Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2014-08-25

    In order to understand and predict the behavior of future scandium nitride (ScN) semiconductor heterostructure devices, we have utilized in situ x-ray and ultra-violet photoelectron spectroscopy to determine the valence band offset (VBO) present at ScN/3C-SiC (111) and 2H-GaN (0001)/ScN (111) interfaces formed by ammonia gas source molecular beam epitaxy. The ScN/3C-SiC (111) VBO was dependent on the ScN growth temperature and resistivity. VBOs of 0.4?±?0.1 and 0.1?±?0.1?eV were, respectively, determined for ScN grown at 925?°C (low resistivity) and 800?°C (high resistivity). Using the band-gaps of 1.6?±?0.2 and 1.4?±?0.2?eV previously determined by reflection electron energy loss spectroscopy for the 925 and 800?°C ScN films, the respective conduction band offsets (CBO) for these interfaces were 0.4?±?0.2 and 0.9?±?0.2?eV. For a GaN (0001) interface with 925?°C ScN (111), the VBO and CBO were similarly determined to be 0.9?±?0.1 and 0.9?±?0.2?eV, respectively.

  5. Voltage-controlled switching and thermal effects in VO{sub 2} nano-gap junctions

    SciTech Connect (OSTI)

    Joushaghani, Arash; Jeong, Junho; Stewart Aitchison, J.; Poon, Joyce K. S. [Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4 (Canada); Paradis, Suzanne; Alain, David [Defence Research and Development Canada - Valcartier, 2459 Pie-XI Blvd. North, Quebec, Quebec G3J 1X5 (Canada)

    2014-06-02

    Voltage-controlled switching in lateral VO{sub 2} nano-gap junctions with different gap lengths and thermal properties was investigated. The effect of Joule heating on the phase transition was found to be strongly influenced by the device geometry, the contact material, and the current. Our results indicate that the VO{sub 2} phase transition was likely initiated electronically, which was sometimes followed by a secondary thermally induced transition.

  6. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOE Patents [OSTI]

    Carlsten, Bruce E. (Los Alamos, NM); Haynes, William B. (Los Alamos, NM)

    1998-01-01

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used.

  7. Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits

    E-Print Network [OSTI]

    Winkler, Mark Thomas

    We describe a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. We identify the fundamental efficiency ...

  8. Two-Dimensional Ferroelectric Photonic Crystals: Optics and Band Structure

    E-Print Network [OSTI]

    Simsek, Sevket; Ozbay, Ekmel

    2013-01-01

    In this report we present an investigation of the optical properties and band structure calculations for the photonic structures based on the functional materials- ferroelectrics. A theoretical approach to the optical properties of the 2D and 3D photonic crystals which yields further insight in the phenomenon of the reflection from different families of lattice planes in relation to the presence of photonic gaps or photonic bands. We calculate the photonic bands and optical properties of LiNbO3 based photonic crystals. Calculations of reflection and transmission spectra show the features correspond to the onset of diffraction, as well as to additional reflectance structures at large values of the angle of incidence.

  9. Air Gap Effects in LX-17

    SciTech Connect (OSTI)

    Souers, P C; Ault, S; Avara, R; Bahl, K L; Boat, R; Cunningham, B; Gidding, D; Janzen, J; Kuklo, D; Lee, R; Lauderbach, L; Weingart, W C; Wu, B; Winer, K

    2005-09-26

    Three experiments done over twenty years on gaps in LX-17 are reported. For the detonation front moving parallel to the gaps, jets of gas products were seen coming from the gaps at velocities greater than the detonation velocity. A case can be made that the jet velocity increased with gap thickness but the data is scattered. For the detonation front moving transverse to the gap, time delays were seen. The delays roughly increase with gap width, going from 0-70 ns at 'zero gap' to around 300 ns at 0.5-1 mm gap. Larger gaps of up to 6 mm width almost certainly stopped the detonation, but this was not proved. Real-time resolution of the parallel jets and determination of the actual re-detonation or failure in the transverse case needs to be done in future experiments.

  10. GAP

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA. GeographicYucca

  11. Thermoplastic tape compaction device

    DOE Patents [OSTI]

    Campbell, V.W.

    1994-12-27

    A device is disclosed for bonding a thermoplastic tape to a substrate to form a fully consolidated composite. This device has an endless chain associated with a frame so as to rotate in a plane that is perpendicular to a long dimension of the tape, the chain having pivotally connected chain links with each of the links carrying a flexible foot member that extends outwardly from the chain. A selected number of the foot members contact the tape, after the heating thereof, to cause the heated tape to bond to the substrate. The foot members are each a thin band of metal oriented transversely to the chain, with a flexibility and width and length to contact the tape so as to cause the tape to conform to the substrate to achieve consolidation of the tape and the substrate. A biased leaf-type spring within the frame bears against an inner surface of the chain to provide the compliant pressure necessary to bond the tape to the substrate. The chain is supported by sprockets on shafts rotatably supported in the frame and, in one embodiment, one of the shafts has a drive unit to produce rotation such that the foot members in contact with the tape move at the same speed as the tape. Cooling jets are positioned along the frame to cool the resultant consolidated composite. 5 figures.

  12. Thermoplastic tape compaction device

    DOE Patents [OSTI]

    Campbell, Vincent W. (Oak Ridge, TN)

    1994-01-01

    A device for bonding a thermoplastic tape to a substrate to form a fully consolidated composite. This device has an endless chain associated with a frame so as to rotate in a plane that is perpendicular to a long dimension of the tape, the chain having pivotally connected chain links with each of the links carrying a flexible foot member that extends outwardly from the chain. A selected number of the foot members contact the tape, after the heating thereof, to cause the heated tape to bond to the substrate. The foot members are each a thin band of metal oriented transversely to the chain, with a flexibility and width and length to contact the tape so as to cause the tape to conform to the substrate to achieve consolidation of the tape and the substrate. A biased leaf-type spring within the frame bears against an inner surface of the chain to provide the compliant pressure necessary to bond the tape to the substrate. The chain is supported by sprockets on shafts rotatably supported in the frame and, in one embodiment, one of the shafts has a drive unit to produce rotation such that the foot members in contact with the tape move at the same speed as the tape. Cooling jets are positioned along the frame to cool the resultant consolidated composite.

  13. OLED devices

    DOE Patents [OSTI]

    Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

    2011-02-22

    An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

  14. Diversionary device

    DOE Patents [OSTI]

    Grubelich, Mark C. (Albuquerque, NM)

    2001-01-01

    A diversionary device has a housing having at least one opening and containing a non-explosive propellant and a quantity of fine powder packed within the housing, with the powder being located between the propellant and the opening. When the propellant is activated, it has sufficient energy to propel the powder through the opening to produce a cloud of powder outside the housing. An igniter is also provided for igniting the cloud of powder to create a diversionary flash and bang, but at a low enough pressure to avoid injuring nearby people.

  15. Physical properties and band structure of reactive molecular beam epitaxy grown oxygen engineered HfO{sub 2{+-}x}

    SciTech Connect (OSTI)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany)

    2012-12-01

    We have conducted a detailed thin film growth structure of oxygen engineered monoclinic HfO{sub 2{+-}x} grown by reactive molecular beam epitaxy. The oxidation conditions induce a switching between (111) and (002) texture of hafnium oxide. The band gap of oxygen deficient hafnia decreases with increasing amount of oxygen vacancies by more than 1 eV. For high oxygen vacancy concentrations, defect bands form inside the band gap that induce optical transitions and p-type conductivity. The resistivity changes by several orders of magnitude as a function of oxidation conditions. Oxygen vacancies do not give rise to ferromagnetic behavior.

  16. Electronic gap sensor and method

    DOE Patents [OSTI]

    Williams, Robert S. (Fairfield, OH); King, Edward L. (Trenton, OH); Campbell, Steven L. (Middletown, OH)

    1991-01-01

    An apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces.

  17. Electronic gap sensor and method

    DOE Patents [OSTI]

    Williams, R.S.; King, E.L.; Campbell, S.L.

    1991-08-06

    Disclosed are an apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. 5 figures.

  18. Hard-gapped Holographic Superconductors

    E-Print Network [OSTI]

    Pallab Basu; Jianyang He; Anindya Mukherjee; Hsien-Hang Shieh

    2009-12-05

    In this work we discuss the zero temperature limit of a "p-wave" holographic superconductor. The bulk description consists of a non-Abelian SU(2) gauge fields minimally coupled to gravity. We numerically construct the zero temperature solution which is the gravity dual of the superconducting ground state of the "p-wave" holographic superconductors. The solution is a smooth soliton with zero horizon size and shows an emergent conformal symmetry in the IR. We found the expected superconducting behavior. Using the near horizon analysis we show that the system has a "hard gap" for the relevant gauge field fluctuations. At zero temperature the real part of the conductivity is zero for an excitation frequency less than the gap frequency. This is in contrast with what has been observed in similar scalar- gravity-gauge systems (holographic superconductors). We also discuss the low but finite temperature behavior of our solution.

  19. Multiported storage devices 

    E-Print Network [OSTI]

    Grande, Marcus Bryan

    2000-01-01

    and intelligence than the traditional block storage device. A multiported storage device allows application-specific code that we call filter applets to be downloaded to the device while still maintaining the simple block-level interface. The device contains...

  20. Calibration curves for some standard Gap Tests

    SciTech Connect (OSTI)

    Bowman, A.L.; Sommer, S.C.

    1989-01-01

    The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

  1. Integrated device architectures for electrochromic devices

    DOE Patents [OSTI]

    Frey, Jonathan Mack; Berland, Brian Spencer

    2015-04-21

    This disclosure describes systems and methods for creating monolithically integrated electrochromic devices which may be a flexible electrochromic device. Monolithic integration of thin film electrochromic devices may involve the electrical interconnection of multiple individual electrochromic devices through the creation of specific structures such as conductive pathway or insulating isolation trenches.

  2. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  3. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  4. Evidence of Eu{sup 2+} 4f electrons in the valence band spectra of EuTiO{sub 3} and EuZrO{sub 3}

    SciTech Connect (OSTI)

    Kolodiazhnyi, T.; Valant, M.; Williams, J. R.; Bugnet, M.; Botton, G. A.; Ohashi, N.; Sakka, Y.

    2012-10-15

    We report on optical band gap and valence electronic structure of two Eu{sup 2+}-based perovskites, EuTiO{sub 3} and EuZrO{sub 3} as revealed by diffuse optical scattering, electron energy loss spectroscopy, and valence-band x-ray photoelectron spectroscopy. The data show good agreement with the first-principles studies in which the top of the valence band structure is formed by the narrow Eu 4f{sup 7} electron band. The O 2p band shows the features similar to those of the Ba(Sr)TiO{sub 3} perovskites except that it is shifted to higher binding energies. Appearance of the Eu{sup 2+} 4f{sup 7} band is a reason for narrowing of the optical band gap in the title compounds as compared to their Sr-based analogues.

  5. Stability of S and Se induced reconstructions on GaP(001)(2×1) surface

    SciTech Connect (OSTI)

    Li , D. F.; Guo, Zhi C.; Xiao, Hai Yan; Zu, Xiaotao T.; Gao, Fei

    2010-10-15

    The structural and electronic properties of S- and Se- passivated GaP(001)(2×1) surfaces were studied using first-principles simulations. Our calculations showed that the most stable structure consists of a single chalcogen atom (S or Se) in the first crystal layer, which is bonded to two Ga atoms of the second layer, and the third P layer replaced by chalcogen atoms, similar to the passivation of GaAs(001)(2×1) surface by chalcogen atoms. The structural parameters were determined and the surface band characters and the local density of states were also analyzed. The results showed that the preferable structure has no surface states in the bulk band gap, but the energy band gaps of the S- and Se-adsorbed GaP(001) surfaces are 1.83eV and 1.63eV, respectively. The passivation effects for the S- and Se-adsorbed surfaces are similar to each other.

  6. Laser device

    DOE Patents [OSTI]

    Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  7. Laser device

    DOE Patents [OSTI]

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  8. Technical Standards, MELCOR - Gap Analysis - May 3, 2004 | Department...

    Office of Environmental Management (EM)

    MELCOR - Gap Analysis - May 3, 2004 Technical Standards, MELCOR - Gap Analysis - May 3, 2004 May 3, 2004 Software Quality Assurance Improvement Plan: MELCOR Gap Analysis This...

  9. MI Gap Clearing Kicker Magnet Design Review

    SciTech Connect (OSTI)

    Jensen, Chris; /Fermilab

    2008-10-01

    The kicker system requirements were originally conceived for the NOvA project. NOvA is a neutrino experiment located in Minnesota. To achieve the desired neutrino flux several upgrades are required to the accelerator complex. The Recycler will be used as a proton pre-injector for the Main Injector (MI). As the Recycler is the same size as the MI, it is possible to do a single turn fill ({approx}11 {micro}sec), minimizing the proton injection time in the MI cycle and maximizing the protons on target. The Recycler can then be filled with beam while the MI is ramping to extract beam to the target. To do this requires two new transfer lines. The existing Recycler injection line was designed for 10{pi} pbar beams, not the 20{pi} proton beams we anticipate from the Booster. The existing Recycler extraction line allows for proton injection through the MI, while we want direct injection from the Booster. These two lines will be decommissioned. The new injection line from the MI8 line into the Recycler will start at 848 and end with injection kickers at RR104. The new extraction line in the RR30 straight section will start with a new extraction kicker at RR232 and end with new MI injection kickers at MI308. Finally, to reduce beam loss activation in the enclosure, a new gap clearing kicker will be used to extract uncaptured beam created during the slip stack injection process down the existing dump line. It was suggested that the MI could benefit from this type of system immediately. This led to the early installation of the gap clearing system in the MI, followed by moving the system to Recycler during NOvA. The specifications also changed during this process. Initially the rise and fall time requirements were 38 ns and the field stability was {+-}1%. The 38 ns is based on having a gap of 2 RF buckets between injections. (There are 84 RF buckets that can be filled from the Booster for each injection, but 82 would be filled with beam. MI and Recycler contain 588 RF buckets.) A rough cost/benefit analysis showed that increasing the number of empty buckets to 3 decreased the kicker system cost by {approx}30%. This could be done while not extending the running time since this is only a 1% reduction in protons per pulse, hence the rise and fall time are now 57 ns. Additionally, the {+-}1% tolerance would have required a fast correction kicker while {+-}3% could be achieved without this kicker. The loosened tolerance was based on experience on wide band damping systems in the MI. A higher power wideband damping system is a better use of the resources as it can be used to correct for multiple sources of emittance growth. Finally, with the use of this system for MI instead of Recycler, the required strength grew from 1.2 mrad to 1.7 mrad. The final requirements for this kicker are listed.

  10. Gap solitons in rocking optical lattices and waveguides with undulating gratings

    SciTech Connect (OSTI)

    Mayteevarunyoo, Thawatchai; Malomed, Boris A.

    2009-07-15

    We report results of a systematic analysis of the stability of one-dimensional solitons in a model including the self-repulsive or attractive cubic nonlinearity and a linear potential represented by a periodically shaking lattice, which was recently implemented in experiments with Bose-Einstein condensates. In optics, the same model applies to undulated waveguiding arrays, which are also available to the experiment. In the case of the repulsive nonlinearity, stability regions are presented, in relevant parameter planes, for fundamental gap solitons and their two-peak and three-peak bound complexes, in the first and second finite band gaps. In the model with the attractive nonlinearity, stability regions are produced for fundamental solitons and their bound states populating the semi-infinite gap. In the first finite and semi-infinite gaps, unstable solitons gradually decay into radiation, while, in the second finite band gap, they are transformed into more complex states, which may represent new species of solitons. For a large amplitude of the rocking-lattice drive, the model is tantamount to that with a 'flashing' lattice potential, which is controlled by periodic sequences of instantaneous kicks. Using this correspondence, we explain generic features of the stability diagrams for the solitons. We also derive a limit case of the latter system, in the form of coupled-mode equations with a 'flashing' linear coupling.

  11. Influence of Al doping on the critical fields and gap values in magnesium diboride single crystals T. Klein,1,2 L. Lyard,1 J. Marcus,1 C. Marcenat,3 P. Szab,4 Z. Hol'anov,4 P. Samuely,4 B. W. Kang,5 H-J. Kim,5

    E-Print Network [OSTI]

    Boyer, Edmond

    that MgB2 belongs to an origi- nal class of superconductors in which two weakly coupled bands with very the existence of two distinct superconducting gaps. One of the main consequence of this two-band superconduc of the superconducting gaps with Al doping remains controversial. Whereas Gonnelli et al.15 sug- gested that the small

  12. Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence

    E-Print Network [OSTI]

    Russell, Kasey

    of the optical gap and Burstein-Moss shift in CdO thin films: A consequence of extended misuse of 2-versusNarrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence-like opto-electronic properties Appl. Phys. Lett. 99, 141917 (2011) Oxygen enhanced ferromagnetism in Cr-doped

  13. Goncu, JASA-EL Exploiting pattern transformation to tune phononic band

    E-Print Network [OSTI]

    Luding, Stefan

    -dimensional granular crystal composed of silicone rubber and polytetrafluoroethylene (PTFE) cylinders is investigated by the pattern transformation which induces new band gaps. Replacement of PTFE particles with rubber ones reveals) silicone rubber and small (and stiff) polyte- trafluoroethylene (PTFE) cylinders14 . In the undeformed

  14. Band-dropping via coupled photonic crystal Mehmet Bayindir and Ekmel Ozbay

    E-Print Network [OSTI]

    Ozbay, Ekmel

    and links 1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light. Kim, "Two- dimensional photonic band-gap defect mode laser," Science 284, 1819­1821 (1999). 7. S. Noda by a single defect in a photonic bandgap structure," Nature 407, 608­610 (2000). 16. B. E. Nelson, M. Gerken

  15. GAPS IN THE GD-1 STAR STREAM

    SciTech Connect (OSTI)

    Carlberg, R. G. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Grillmair, C. J., E-mail: carlberg@astro.utoronto.ca, E-mail: carl@ipac.caltech.edu [Spitzer Science Center, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2013-05-10

    GD-1 is a long, thin, Milky Way star stream that has readily visible density variations along its length. We quantify the locations, sizes, and statistical significance of the density structure, i.e., gaps, using a set of scaled filters. The shapes of the filters are based on the gaps that develop in simulations of dark matter sub-halos crossing a star stream. The high Galactic latitude 8.4 kpc long segment of GD-1 that we examine has 8 {+-} 3 gaps of 99% significance or greater, with the error estimated on the basis of tests of the gap-filtering technique. The cumulative distribution of gaps more than three times the width of the stream is in good agreement with predictions for dark matter sub-halo encounters with cold star streams. The number of gaps narrower than three times the width of the GD-1 stream falls well below the cold stream prediction which is taken into account for the gap creation rate integrated over all sizes. Simple warm stream simulations scaled to GD-1 show that the falloff in gaps is expected for sub-halos below a mass of 10{sup 6} M{sub Sun }. The GD-1 gaps requires 100 sub-halos >10{sup 6} M{sub Sun} within 30 kpc, the apocenter of GD-1 orbit. These results are consistent with LCDM sub-halo predictions but further improvements in stream signal-to-noise and gap modeling will be welcome.

  16. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA)

    2012-07-31

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  17. Dilute group III-V nitride intermediate band solar cells with contact blocking layers

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2015-02-24

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  18. The effect of spin-orbit coupling in band structure of few-layer graphene

    SciTech Connect (OSTI)

    Sahdan, Muhammad Fauzi Darma, Yudi

    2014-03-24

    Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.

  19. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    SciTech Connect (OSTI)

    Dickinson, J. T.

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  20. Photonic Band Gaps Based on Tetragonal Lattices of Slanted Pores Ovidiu Toader,1

    E-Print Network [OSTI]

    John, Sajeev

    ) concept [1,2], one of the holy grails of the subject has been the design and synthesis of high quality

  1. Generation of color centers by femtosecond laser pulses in wide band gap materials

    E-Print Network [OSTI]

    Dickinson, J. Thomas

    reactions restore a rather large fraction of the transparency lost during irradiation. In the case of soda is easily accomplished. 2. EXPERIMENT Femtosecond laser pulses were produced by a Spectra Physics Hurricane

  2. Anomalous composition dependence of the band gap pressure coefficients in In-containing nitride semiconductors

    E-Print Network [OSTI]

    Svane, Axel Torstein

    . Svane5 1 Institute of High Pressures Physics, Polish Academy of Sciences, Warsaw, Poland 2Institute of Physics, Polish Academy of Sciences, Warsaw, Poland 3CRHEA-CNRS, Sophia Antipolis, Valbonne, France 4 Institute of Condensed Matter Physics, �cole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne

  3. Attenuation of optical transmission within the band gap of thin twodimensional macroporous silicon photonic crystals

    E-Print Network [OSTI]

    John, Sajeev

    solution and illuminated from the wafer backside. If applied to a polished silicon wafer, the pore@physics.utoronto.ca b# Present address: Institute for Theory of Condensed Matter, University of Karlsruhe, P.O. Box 6980

  4. Final Report: Tunable Narrow Band Gap Absorbers For Ultra High Efficiency Solar Cells

    SciTech Connect (OSTI)

    Bedair, Salah M.; Hauser, John R.; Elmasry, Nadia; Colter, Peter C.; Bradshaw, G.; Carlin, C. Z.; Samberg, J.; Edmonson, Kenneth

    2012-07-31

    We report on a joint research program between NCSU and Spectrolab to develop an upright multijunction solar cell structure with a potential efficiency exceeding the current record of 41.6% reported by Spectrolab. The record efficiency Ge/GaAs/InGaP triple junction cell structure is handicapped by the fact that the current generated by the Ge cell is much higher than that of both the middle and top cells. We carried out a modification of the record cell structure that will keep the lattice matched condition and allow better matching of the current generated by each cell. We used the concept of strain balanced strained layer superlattices (SLS), inserted in the i-layer, to reduce the bandgap of the middle cell without violating the desirable lattice matched condition. For the middle GaAs cell, we have demonstrated an n-GaAs/i-(InGaAs/GaAsP)/p-GaAs structure, where the InxGa1-xAs/GaAs1-yPy SLS is grown lattice matched to GaAs and with reduced bandgap from 1.43 eV to 1.2 eV, depending upon the values of x and y.

  5. Optimized dipole antennas on photonic band gap crystals S. D. Chenga)

    E-Print Network [OSTI]

    Ozbay, Ekmel

    efficiencies larger than antennas on other conventional dielectric substrates. © 1995 American Institute . A three-cylinder structure with diamond symmetry fabricated by drilling techniques first demonstrated3; an efficient directional antenna. Conventional integrated circuit antennas on a semi-infinite semiconductor

  6. Tunable micro-cavities in photonic band-gap yarns and optical fibers

    E-Print Network [OSTI]

    Benoit, Gilles, Ph. D. Massachusetts Institute of Technology

    2006-01-01

    The vision behind this work is the fabrication of high performance innovative fiber-based optical components over kilometer length-scales. The optical properties of these fibers derive from their multilayer dielectric ...

  7. Comment on "Direct space-time observation of pulse tunneling in an electromagnetic band gap"

    E-Print Network [OSTI]

    G. Nimtz; A. A. Stahlhofen

    2008-01-13

    The investigation presented by Doiron, Hache, and Winful [Phys. Rev. A 76, 023823 (2007)] is not valid for the tunneling process as claimed in the paper.

  8. Bispyridinium-phenylene-based copolymers: low band gap n-type alternating copolymers

    E-Print Network [OSTI]

    Swager, Timothy Manning

    Bispyridinium-phenylene-based conjugated donor–acceptor copolymers were synthesized by a Stille cross-coupling and cyclization sequence. These polyelectrolytes are freely soluble in organic solvents and display broad optical ...

  9. Band gap gratings using quantum well intermixing for quasi-phase-matching

    E-Print Network [OSTI]

    ,b D. C. Hutchings,b J. S. Aitchison, and J. H. Marshc Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada, correlated photon pair sources, and cascaded Kerr-like nonlinearities, only to name a few. Particularly

  10. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ionAAEngineEIA'sA NewA New

  11. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ionAAEngineEIA'sA NewA NewA New

  12. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ionAAEngineEIA'sA NewA NewA NewA

  13. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ionAAEngineEIA'sA NewA NewA

  14. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ionAAEngineEIA'sA NewA NewAA New

  15. Robotic end gripper with a band member to engage object

    DOE Patents [OSTI]

    Pollard, R.E.; Robinson, S.C.; Thompson, W.F.; Couture, S.A.; Sutton, B.J.

    1994-05-10

    An end effector for use with robotic arms and like devices is described that utilizes a flexible band to draw an object against an anvil having a concave surface. One typical convex surface is created by a V-block, with an apex of the V being centrally located. If an object to be grasped is fragile, the contour of the concave surface closely matches the surface of the object. Typically the movement of the band is effected by a linear actuator, with the anvil remaining fixed relative to a support base. Several embodiments are described that utilize variations in drawing the band toward the anvil, with one of these embodiments described in detail in the form of a fabricated unit. One embodiment includes a cover element that can be moved over an object after the grasping thereof, with this cover potentially serving various functions. Movement of the cover can be effected with a second linear actuator. 8 figures.

  16. Robotic end gripper with a band member to engage object

    DOE Patents [OSTI]

    Pollard, Roy E. (Maryville, TN); Robinson, Samuel C. (Knoxville, TN); Thompson, William F. (Oak Ridge, TN); Couture, Scott A. (Knoxville, TN); Sutton, Bill J. (Powell, TN)

    1994-01-01

    An end effector for use with robotic arms and like devices that utilizes a flexible band to draw an object against an anvil having a concave surface. One typical convex surface is created by a V-block, with an apex of the V being centrally located. If an object to be grasped is fragile, the contour of the concave surface closely matches the surface of the object. Typically the movement of the band is effected by a linear actuator, with the anvil remaining fixed relative to a support base. Several embodiments are described that utilize variations in drawing the band toward the anvil, with one of these embodiments described in detail in the form of a fabricated unit. One embodiment includes a cover element that can be moved over an object after the grasping thereof, with this cover potentially serving various functions. Movement of the cover can be effected with a second linear actuator.

  17. Connector device for building integrated photovoltaic device

    DOE Patents [OSTI]

    Keenihan, James R.; Langmaid, Joe A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleerman, Robert J.; Gaston, Ryan S.

    2015-11-10

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  18. Connector device for building integrated photovoltaic device

    SciTech Connect (OSTI)

    Keenihan, James R.; Langmaid, Joseph A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleereman, Robert J.; Gaston, Ryan S.

    2014-06-03

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  19. Topological edge states in two-gap unitary systems: A transfer matrix approach

    E-Print Network [OSTI]

    Clément Tauber; Pierre Delplace

    2015-09-17

    We construct and investigate a family of two-band unitary systems living on a cylinder geometry and presenting localized edge states. Using the transfer matrix formalism, we solve and investigate in details such states in the thermodynamic limit. Analitycity considerations then suggest the construction of a family of Riemman surfaces associated to the band structure of the system. In this picture, the corresponding edge states naturally wind around non contractile loops, defining by the way a topological invariant associated to each gap of the system.

  20. Topological edge states in two-gap unitary systems: A transfer matrix approach

    E-Print Network [OSTI]

    Clément Tauber; Pierre Delplace

    2015-10-23

    We construct and investigate a family of two-band unitary systems living on a cylinder geometry and presenting localized edge states. Using the transfer matrix formalism, we solve and investigate in details such states in the thermodynamic limit. Analitycity considerations then suggest the construction of a family of Riemman surfaces associated to the band structure of the system. In this picture, the corresponding edge states naturally wind around non contractile loops, defining by the way a topological invariant associated to each gap of the system.

  1. Gap between active and passive solar heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  2. An efficient atomistic quantum mechanical simulation on InAs band-to-band tunneling field-effect transistors

    SciTech Connect (OSTI)

    Wang, Zhi [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, Xiang-Wei; Li, Shu-Shen [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Lin-Wang, E-mail: lwwang@lbl.gov [Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-24

    We have presented a fully atomistic quantum mechanical simulation method on band-to-band tunneling (BTBT) field-effect transistors (FETs). Our simulation approach is based on the linear combination of bulk band method with empirical pseudopotentials, which is an atomist method beyond the effective-mass approximation or k.p perturbation method, and can be used to simulate real-size devices (?10{sup 5} atoms) efficiently (?5 h on a few computational cores). Using this approach, we studied the InAs dual-gate BTBT FETs. The I-V characteristics from our approach agree very well with the tight-binding non-equilibrium Green's function results, yet our method costs much less computationally. In addition, we have studied ways to increase the tunneling current and analyzed the effects of different mechanisms for that purpose.

  3. FAQS Gap Analysis Qualification Card – Criticality Safety

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  4. FAQS Gap Analysis Qualification Card – Construction Management

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  5. FAQS Gap Analysis Qualification Card – Mechanical Systems

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  6. FAQS Gap Analysis Qualification Card – Emergency Management

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  7. FAQS Gap Analysis Qualification Card – Radiation Protection

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  8. Band offsets of n-type electron-selective contacts on cuprous oxide (Cu[subscript 2]O) for photovoltaics

    E-Print Network [OSTI]

    Brandt, Riley E.

    The development of cuprous oxide (Cu [subscript 2]O) photovoltaics (PVs) is limited by low device open-circuit voltages. A strong contributing factor to this underperformance is the conduction-band offset between Cu ...

  9. Gap Assessment (FY 13 Update)

    SciTech Connect (OSTI)

    Getman, Dan

    2013-09-30

    To help guide its future data collection efforts, The DOE GTO funded a data gap analysis in FY2012 to identify high potential hydrothermal areas where critical data are needed. This analysis was updated in FY2013 and the resulting datasets are represented by this metadata. The original process was published in FY 2012 and is available here: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2013/Esposito.pdf Though there are many types of data that can be used for hydrothermal exploration, five types of exploration data were targeted for this analysis. These data types were selected for their regional reconnaissance potential, and include many of the primary exploration techniques currently used by the geothermal industry. The data types include: 1. well data 2. geologic maps 3. fault maps 4. geochemistry data 5. geophysical data To determine data coverage, metadata for exploration data (including data type, data status, and coverage information) were collected and catalogued from nodes on the National Geothermal Data System (NGDS). It is the intention of this analysis that the data be updated from this source in a semi-automated fashion as new datasets are added to the NGDS nodes. In addition to this upload, an online tool was developed to allow all geothermal data providers to access this assessment and to directly add metadata themselves and view the results of the analysis via maps of data coverage in Geothermal Prospector (http://maps.nrel.gov/gt_prospector). A grid of the contiguous U.S. was created with 88,000 10-km by 10-km grid cells, and each cell was populated with the status of data availability corresponding to the five data types. Using these five data coverage maps and the USGS Resource Potential Map, sites were identified for future data collection efforts. These sites signify both that the USGS has indicated high favorability of occurrence of geothermal resources and that data gaps exist. The uploaded data are contained in two data files for each data category. The first file contains the grid and is in the SHP file format (shape file.) Each populated grid cell represents a 10k area within which data is known to exist. The second file is a CSV (comma separated value) file that contains all of the individual layers that intersected with the grid. This CSV can be joined with the map to retrieve a list of datasets that are available at any given site. The attributes in the CSV include: 1. grid_id : The id of the grid cell that the data intersects with 2. title: This represents the name of the WFS service that intersected with this grid cell 3. abstract: This represents the description of the WFS service that intersected with this grid cell 4. gap_type: This represents the category of data availability that these data fall within. As the current processing is pulling data from NGDS, this category universally represents data that are available in the NGDS and are ready for acquisition for analytic purposes. 5. proprietary_type: Whether the data are considered proprietary 6. service_type: The type of service 7. base_url: The service URL

  10. Conformal GaP layers on Si wire arrays for solar energy applications Adele C. Tamboli,a

    E-Print Network [OSTI]

    Kimball, Gregory

    silicon wire arrays using Cu- catalyzed vapor-liquid-solid growth.3 Multijunction wire ar- ray solar cells multijunction cells will require conformal growth of a lattice-matched wider band- gap material, such as Ga represent a new avenue for attaining higher efficiencies in wire array solar cells than are achievable

  11. Graphene quantum dots formed by a spatial modulation of the Dirac gap G. Giavaras1,a

    E-Print Network [OSTI]

    Nori, Franco

    /2 f1 r exp i m -1 ,if2 r exp im , where m=0, 1,... is the angular momentum quantum number. The radial functions f1 and f2 satisfy V - E + f1 + U + d dr f2 = 0, 2 U - d dr f1 + V - E - f2 = 0, 3 with U= 2m-1 /2r to con- fined states.4,5 It is experimentally possible to engineer an energy gap in graphene's band

  12. Transistor roadmap projection using predictive full-band atomistic modeling

    SciTech Connect (OSTI)

    Salmani-Jelodar, M., E-mail: m.salmani@gmail.com; Klimeck, G. [Network for Computational Nanotechnology and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Kim, S. [Intel Corporation, 2501 Northwest 229th Avenue, Hillsboro, Oregon 97124 (United States); Ng, K. [Semiconductor Research Corporation (SRC), 1101 Slater Rd, Durham, North Carolina 27703 (United States)

    2014-08-25

    In this letter, a full band atomistic quantum transport tool is used to predict the performance of double gate metal-oxide-semiconductor field-effect transistors (MOSFETs) over the next 15?years for International Technology Roadmap for Semiconductors (ITRS). As MOSFET channel lengths scale below 20?nm, the number of atoms in the device cross-sections becomes finite. At this scale, quantum mechanical effects play an important role in determining the device characteristics. These quantum effects can be captured with the quantum transport tool. Critical results show the ON-current degradation as a result of geometry scaling, which is in contrast to previous ITRS compact model calculations. Geometric scaling has significant effects on the ON-current by increasing source-to-drain (S/D) tunneling and altering the electronic band structure. By shortening the device gate length from 20?nm to 5.1?nm, the ratio of S/D tunneling current to the overall subthreshold OFF-current increases from 18% to 98%. Despite this ON-current degradation by scaling, the intrinsic device speed is projected to increase at a rate of at least 8% per year as a result of the reduction of the quantum capacitance.

  13. Tetracene air-gap single-crystal field-effect transistors Yu Xia, Vivek Kalihari, and C. Daniel Frisbiea

    E-Print Network [OSTI]

    Rogers, John A.

    Tetracene air-gap single-crystal field-effect transistors Yu Xia, Vivek Kalihari, and C. Daniel FETs utilizing an air or vacuum gap as the gate dielectric. The linear mobility of the device can be as high as 1.6 cm2 /V s in air, with a subthreshold slope lower than 0.5 V nF/decade cm2 . By changing

  14. Drop short control of electrode gap

    DOE Patents [OSTI]

    Fisher, Robert W. (Albuquerque, NM); Maroone, James P. (Albuquerque, NM); Tipping, Donald W. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM)

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  15. Gas mixtures for spark gap closing switches

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); McCorkle, Dennis L. (Knoxville, TN); Hunter, Scott R. (Oak Ridge, TN)

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  16. Gas mixtures for spark gap closing switches

    DOE Patents [OSTI]

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  17. Elliptically polarizing adjustable phase insertion device

    DOE Patents [OSTI]

    Carr, R.

    1995-01-17

    An insertion device for extracting polarized electromagnetic energy from a beam of particles is disclosed. The insertion device includes four linear arrays of magnets which are aligned with the particle beam. The magnetic field strength to which the particles are subjected is adjusted by altering the relative alignment of the arrays in a direction parallel to that of the particle beam. Both the energy and polarization of the extracted energy may be varied by moving the relevant arrays parallel to the beam direction. The present invention requires a substantially simpler and more economical superstructure than insertion devices in which the magnetic field strength is altered by changing the gap between arrays of magnets. 3 figures.

  18. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H. (Albuquerque, NM); El-Kady, Ihab F. (Albuquerque, NM); McCormick, Frederick (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Albuquerque, NM)

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  19. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  20. Investigation of band inversion in (Pb,Sn)Te alloys using ab initio calculations Xing Gao and Murray S. Daw

    E-Print Network [OSTI]

    Daw, Murray S.

    - ductors occurs at the point. Also, the order of the band gap Eg PbS Eg PbTe Eg PbSe and the order and the L6 - state forming the valence band edge. The change in Eg with alloying is ascribed to the dif is consistent with the observed variation of Eg with x and the change in the sign of the temperature

  1. Device-to-Device Assisted Video Transmission

    E-Print Network [OSTI]

    Shen, Y; Zhou, W; Wu, P; Toni, L; Cosman, P C; Milstein, L B

    2013-01-01

    Equipment (UE) radio transmission and reception (3GPP TSand Mobile Ad Hoc Networks: Transmission-Capacity Tradeoff”,Device Assisted Video Transmission Yichao Shen, Wenwen Zhou,

  2. Shear Banding of Complex Fluids

    E-Print Network [OSTI]

    Thibaut Divoux; Marc A. Fardin; Sébastien Manneville; Sandra Lerouge

    2015-03-13

    Even in simple geometries many complex fluids display non-trivial flow fields, with regions where shear is concentrated. The possibility for such shear banding has been known since several decades, but the recent years have seen an upsurge of studies offering an ever more precise understanding of the phenomenon. The development of new techniques to probe the flow on multiple scales and with increasing spatial and temporal resolution has opened the possibility for a synthesis of the many phenomena that could only have been thought of separately before. In this review, we bring together recent research on shear banding in polymeric and on soft glassy materials, and highlight their similarities and disparities.

  3. Extended investigation of superdeformed bands in {sup 151,152}Tb nuclei

    SciTech Connect (OSTI)

    Robin, J.; Byrski, Th.; Duchene, G.; Beck, F. A.; Curien, D.; Dubray, N.; Dudek, J.; Courtin, S.; Dorvaux, O.; France, G. de; Gall, B.; Joshi, P.; Nourredine, A.; Pachoud, E.; Piqueras, I.; Vivien, J. P.; Gozdz, A.; Odahara, A.; Schunck, N.; Adimi, N.

    2008-01-15

    A detailed study of known and new SD bands in Tb isotopes has been performed with the use of the EUROBALL IV {gamma}-ray array. The high-statistics data set has allowed for the extension of known SD bands at low and high spins by new {gamma}-ray transitions. These transitions, as it turns out, correspond to the rotational frequencies where the principal superdeformed gaps (Z=66,N=86) close giving rise to up- or down-bending mechanisms. This enables to attribute the underlying theoretical configurations with much higher confidence as compared to the previous identifications. Five new SD bands have been discovered, three of them assigned to the {sup 152}Tb and the two others to the {sup 151}Tb nuclei. Nuclear mean-field calculations have been used to interpret the structure of known SD bands as well as of the new ones in terms of nucleonic configurations.

  4. Dynamic Beam Shaping Using a Dual-Band Metasurface-Inspired Electronically Tunable Reflectarray Antenna

    E-Print Network [OSTI]

    Tayebi, Amin; Paladhi, Pavel Roy; Udpa, Lalita; Udpa, Satish; Rothwell, Edward

    2015-01-01

    An electronically reconfigurable dual-band-reflectarray antenna is presented in this paper. The tunable unit cell, a ring loaded square patch with a single varactor diode connected across the gap between the ring and the patch, is modeled using both a full-wave solver and an equivalent circuit. The parameters of the equivalent circuit are calculated independently of the simulation and experiment using analysis techniques employed in frequency selective surfaces. The reflection phase of the proposed unit cell is shown to provide an excellent phase range of 335$^{\\circ}$ in F band and 340$^{\\circ}$ in S band. Results from the analysis are used to design and build a 10x10 element reflectarray antenna. The high tuning phase range of each element allows the fabricated reflectarray to demonstrate a very broad steering range of up to $\\pm$60$^{\\circ}$ in both frequency bands.

  5. Diffraction limited focusing and routing of gap plasmons by a

    Office of Scientific and Technical Information (OSTI)

    Nanoscale Science and Technology. 42 ENGINEERING electro-optical devices; integrated optics devices; optical microelectromechanical devices; plasmonics; nanophotonics and...

  6. Engine piston having an insulating air gap

    DOE Patents [OSTI]

    Jarrett, Mark Wayne (Washington, IL); Hunold,Brent Michael (Apex, NC)

    2010-02-02

    A piston for an internal combustion engine has an upper crown with a top and a bottom surface, and a lower crown with a top and a bottom surface. The upper crown and the lower crown are fixedly attached to each other using welds, with the bottom surface of the upper crown and the top surface of the lower crown forming a mating surface. The piston also has at least one centrally located air gap formed on the mating surface. The air gap is sealed to prevent substantial airflow into or out of the air gap.

  7. Refractive Indices of Semiconductors from Energy gaps

    E-Print Network [OSTI]

    Tripathy, S K

    2015-01-01

    An empirical relation based on energy gap and refractive index data has been proposed in the present study to calculate the refractive index of semiconductors. The proposed model is then applied to binary as well as ternary semiconductors for a wide range of energy gap. Using the relation, dielectric constants of some III-V group semiconductors are calculated. The calculated values for different group of binary semiconductors, alkali halides and ternary semiconductors fairly agree with other calculations and known values over a wide range of energy gap. The temperature variation of refractive index for some binary semiconductors have been calculated.

  8. Chiral gap effect in curved space

    E-Print Network [OSTI]

    Antonino Flachi; Kenji Fukushima

    2015-05-29

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum, a mass-gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass-gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  9. Refractive Indices of Semiconductors from Energy gaps

    E-Print Network [OSTI]

    S. K. Tripathy

    2015-07-16

    An empirical relation based on energy gap and refractive index data has been proposed in the present study to calculate the refractive index of semiconductors. The proposed model is then applied to binary as well as ternary semiconductors for a wide range of energy gap. Using the relation, dielectric constants of some III-V group semiconductors are calculated. The calculated values for different group of binary semiconductors, alkali halides and ternary semiconductors fairly agree with other calculations and known values over a wide range of energy gap. The temperature variation of refractive index for some binary semiconductors have been calculated.

  10. L-asparagine crystals with wide gap semiconductor features: Optical absorption measurements and density functional theory computations

    SciTech Connect (OSTI)

    Zanatta, G.; Gottfried, C.; Silva, A. M.; Caetano, E. W. S.; Sales, F. A. M.; Freire, V. N.

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences ?a, ?b, ?c between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z???? and Z???? transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to ?3 ???, ?1 ???, and ?2 ??? transitions, respectively. ?-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p–carboxyl, C 2p–side chain, and C 2p–carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical anisotropy for the absorption and complex dielectric function, with more structured curves for incident light polarized along the 100 and 101 directions.

  11. The History of Cranfills Gap ISD 

    E-Print Network [OSTI]

    Rudd, Charla J

    2013-05-06

    afforded sufficient education, community members took risks financially to establish and maintain the school. The reform movement to standardize education at the dawn of the Industrial Revolution propelled Cranfills Gap into providing a local high school...

  12. SELF-APPLICATION DEVICES FOR CATTLE INSECT CONTROL Ralph E. Williams, Extension Entomologist

    E-Print Network [OSTI]

    Pittendrigh, Barry

    SELF-APPLICATION DEVICES FOR CATTLE INSECT CONTROL Ralph E. Williams, Extension Entomologist flies, face flies and lice are major pests of cattle in Indiana. These insects not only annoy cattle-application devices be situated so that cattle will use them daily. They should be placed in such locations as gaps

  13. Adaptive RF Transient Reduction for HIGH Intensity Beams with Gaps

    E-Print Network [OSTI]

    Tückmantel, Joachim

    2006-01-01

    When a high-intensity beam with bunch-trains and gaps passes a cavity with a high-gain vector feedback enforcing a constant voltage, large transients appear, stressing the RF high power hardware and increasing the trip rate. By modulating the cavity voltage with a varying periodic waveform (set-function), the RF power can be made constant while still preserving the high feedback gain. The average cavity voltage is conserved but bunches have to settle at slightly shifted positions. A method is derived to obtain this set-function in practice while making no assumptions or measurements of the beam or RF parameters. Adiabatic iterations are made including the whole machine as an analog computing device, using all parameters as they are. A computer simulation shows the success of the method.

  14. Light transmission through a triangular air gap

    E-Print Network [OSTI]

    Silvania A. Carvalho; Stefano De Leo

    2013-05-31

    Due to the recent interest in studying propagation of light through triangular air gaps, we calculate, by using the analogy between optics and quantum mechanics and the multiple step technique, the transmissivity through a triangular air gap surrounded by an homogeneous dielectric medium. The new formula is then compared with the formula used in literature. Starting from the qualitative and quantitative differences between these formulas, we propose optical experiments to test our theoretical results.

  15. Gap between jets at the LHC

    SciTech Connect (OSTI)

    Royon, Christophe

    2013-04-15

    We describe a NLL BFKL calculation implemented in the HERWIG MC of the gap between jets cross section, that represent a test of BFKL dynamics. We compare the predictions with recent measurements at the Tevatron and present predictions for the LHC. We also discuss the interesting process of looking for gap between jets in diffractive events when protons are detected in the ATLAS Forward Physics (AFP) detectors.

  16. Technical Standards, MACCS2, Gap Analysis - May 3, 2004 | Department...

    Office of Environmental Management (EM)

    MACCS2, Gap Analysis - May 3, 2004 Technical Standards, MACCS2, Gap Analysis - May 3, 2004 May 3, 2004 Software Quality Assurance Improvement Plan: MACCS2 Gap Analysis The MACCS2...

  17. Technical Standards, ALOHA-Gap Analysis - May 3, 2004 | Department...

    Office of Environmental Management (EM)

    ALOHA-Gap Analysis - May 3, 2004 Technical Standards, ALOHA-Gap Analysis - May 3, 2004 May 3, 2004 DOE-EH-4.2.1.3-ALOHA-Gap Analysis, Software Quality Assurance Improvement Plan:...

  18. The Space Between: Superconductor Energy Gap Structures | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy gap-an energy range forbidden to electrons. CeCoIn5 is believed to have an energy-momentum structure with d-wave gap symmetry. This d-wave gap symmetry is shaped...

  19. THE PAL 5 STAR STREAM GAPS

    SciTech Connect (OSTI)

    Carlberg, R. G.; Hetherington, Nathan [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Grillmair, C. J., E-mail: carlberg@astro.utoronto.ca, E-mail: hetherington@astro.utoronto.ca, E-mail: carl@ipac.caltech.edu [Spitzer Science Center, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2012-11-20

    Pal 5 is a low-mass, low-velocity-dispersion, globular cluster with spectacular tidal tails. We use the Sloan Digital Sky Survey Data Release 8 data to extend the density measurements of the trailing star stream to 23 deg distance from the cluster, at which point the stream runs off the edge of the available sky coverage. The size and the number of gaps in the stream are measured using a filter which approximates the structure of the gaps found in stream simulations. We find 5 gaps that are at least 99% confidence detections with about a dozen gaps at 90% confidence. The statistical significance of a gap is estimated using bootstrap resampling of the control regions on either side of the stream. The density minimum closest to the cluster is likely the result of the epicyclic orbits of the tidal outflow and has been discounted. To create the number of 99% confidence gaps per unit length at the mean age of the stream requires a halo population of nearly a thousand dark matter sub-halos with peak circular velocities above 1 km s{sup -1} within 30 kpc of the galactic center. These numbers are a factor of about three below cold stream simulation at this sub-halo mass or velocity but, given the uncertainties in both measurement and more realistic warm stream modeling, are in substantial agreement with the LCDM prediction.

  20. Measurement-device-independent quantum cryptography

    E-Print Network [OSTI]

    Feihu Xu; Marcos Curty; Bing Qi; Hoi-Kwong Lo

    2015-01-07

    In theory, quantum key distribution (QKD) provides information-theoretic security based on the laws of physics. Owing to the imperfections of real-life implementations, however, there is a big gap between the theory and practice of QKD, which has been recently exploited by several quantum hacking activities. To fill this gap, a novel approach, called measurement-device-independent QKD (mdiQKD), has been proposed. It can remove all side-channels from the measurement unit, arguably the most vulnerable part in QKD systems, thus offering a clear avenue towards secure QKD realisations. Here, we review the latest developments in the framework of mdiQKD, together with its assumptions, strengths and weaknesses.

  1. Bipolar thermoelectric devices

    E-Print Network [OSTI]

    Pipe, Kevin P. (Kevin Patrick), 1976-

    2004-01-01

    The work presented here is a theoretical and experimental study of heat production and transport in bipolar electrical devices, with detailed treatment of thermoelectric effects. Both homojunction and heterojunction devices ...

  2. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  3. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  4. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  5. Articulating feedstock delivery device

    DOE Patents [OSTI]

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  6. Organic photosensitive devices

    DOE Patents [OSTI]

    Rand, Barry P; Forrest, Stephen R

    2013-11-26

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  7. Band-to-band tunneling in silicon diodes and tunnel transistors

    E-Print Network [OSTI]

    Teherani, James Towfik

    2010-01-01

    This work studies the effect of mechanically applied uniaxial strain on reverse-bias band-to-band tunneling current in n+/p+ vertical silicon diodes fabricated on {100} and {110} substrate orientations. The Band Structure ...

  8. Summary of Gaps and Barriers for Implementing Residential Building...

    Energy Savers [EERE]

    Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies...

  9. Code Gaps and Future Research Needs of Combustion Safety: Building...

    Energy Savers [EERE]

    Code Gaps and Future Research Needs of Combustion Safety: Building America Expert Meeting Update Code Gaps and Future Research Needs of Combustion Safety: Building America Expert...

  10. Bridging the Gap between Fundamental Physics and Chemistry and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for...

  11. Active terahertz metamaterial devices

    DOE Patents [OSTI]

    Chen, Houtong (Los Alamos, NM); Padilla, Willie John (Newton, MA); Averitt, Richard Douglas (Newton, MA); O'Hara, John F. (Los Alamos, NM); Lee, Mark (Albuquerque, NM)

    2010-11-02

    Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Each element within an array of metamaterial (MM) elements comprises multiple loops and at least one gap. The MM elements may comprise resonators with conductive loops and insulated gaps, or the inverse in which insulated loops are present with conductive gaps; each providing useful transmissive control properties. The metamaterial elements are fabricated on a semiconducting substrate configured with a means of enhancing or depleting electrons from near the gaps of the MM elements. An on to off transmissivity ratio of about 0.5 is achieved with this approach. Embodiments are described in which the MM elements incorporated within a Quantum Cascade Laser (QCL) to provide surface emitting (SE) properties.

  12. Optical plasma microelectronic devices

    E-Print Network [OSTI]

    Forati, Ebrahim; Dill, Thyler; Sievenpiper, Dan

    2015-01-01

    The semiconductor channel in conventional microelectronic devices was successfully replaced with an optically triggered gas plasma channel. The combination of DC and laser-induced gas ionizations controls the conductivity of the channel, enabling us to realize different electronic devices such as transistors, switches, modulators, etc. A special micro-scale metasurface was used to enhance the laser-gas interaction, as well as combining it with DC ionization properly. Optical plasma devices benefit form the advantages of plasma/vacuum electronic devices while preserving most of the integrablity of semiconductor based devices.

  13. Unitary lens semiconductor device

    DOE Patents [OSTI]

    Lear, Kevin L. (Albuquerque, NM)

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  14. Portable data collection device

    DOE Patents [OSTI]

    French, P.D.

    1996-06-11

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time. 7 figs.

  15. Portable data collection device

    DOE Patents [OSTI]

    French, Patrick D. (Aurora, CO)

    1996-01-01

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time.

  16. Skyrmion Dynamics for Spintronic Devices

    E-Print Network [OSTI]

    Liu, Yizhou

    2013-01-01

    Skyrmion Dynamics for Spintronic Devices A Thesis submittedSkyrmion Dynamics for Spintronic Devices by Yizhou Liua candidate for future spintronic devices. However, Skyrmion

  17. Location Management for Mobile Devices

    E-Print Network [OSTI]

    Wilde, Erik

    2008-01-01

    general, and wireless and mobile devices in particular. Thelocation-enabled mobile devices and location-based services.information from mobile devices and making it available to

  18. Narrow-band optical transmission of metallic nanoslit arrays

    SciTech Connect (OSTI)

    Sun Zhijun; Yang Ying; Zuo Xiaoliu

    2012-10-22

    Metallic nanoslit arrays usually demonstrate wide transmission bands for transverse-magnetic-polarized incidence light. Here, we show that by introducing multi-dielectric layers underneath the metallic structure layer on the substrate, a narrow peak is formed, whose bandwidth can be down to a few nanometers. Three types of resonance modes in the region under the metal layer are identified responsible for the formation of the peak, i.e., a two-dimensional cavity resonance mode, which supports optical transmission, and two in-plane hybrid surface plasmon resonance modes locating on both sides of the peak that suppresses the transmission. Such structures can be applied in advanced photonic devices.

  19. Megawatt-klystron amplifiers in L-band

    SciTech Connect (OSTI)

    Schaffer, G.

    1989-01-01

    The purpose of this note is to serve as a short guide for the SSC-Linac Injector Workshop. It contains a general overview of historical development and of modern design of L-band klystron amplifiers in the range of about 1 to 30 Megawatt output (CW or pulse). Absolute power limits, efficiency, modulation characteristics, protection devices and typical application examples are briefly considered. It should be mentioned that this overview is not restricted to specific needs of the SSC-Injector Linac. 14 refs., 12 figs., 2 tabs.

  20. Annual Banding Summary Rio Mesa Center

    E-Print Network [OSTI]

    Tipple, Brett

    , 2014. Head bander: Laura Doll. Banding volunteers: Jason Socci, Christopher Henderson and Jenna Mc ­ October 9th , 2014. Head bander: Laura Doll. Banding volunteers: Alan Moss and Kaitlin Harrigan. Sixteen

  1. Magnetism and interaction-induced gap opening in graphene with vacancies or hydrogen adatoms: Quantum Monte Carlo study

    E-Print Network [OSTI]

    Ulybyshev, M V

    2015-01-01

    We study electronic properties of graphene with finite concentration of vacancies or other resonant scatterers by a straightforward lattice Quantum Monte Carlo calculations. Taking into account realistic long-range Coulomb interaction we calculate distribution of spin density associated to midgap states and demonstrate antiferromagnetic ordering. Energy gap are open due to the interaction effects, both in the bare graphene spectrum and in the vacancy/impurity bands. In the case of 5 % concentration of resonant scatterers the latter gap is estimated as 0.7 eV and 1.1 eV for graphene on boron nitride and freely suspended graphene, respectively.

  2. Magnetism and interaction-induced gap opening in graphene with vacancies or hydrogen adatoms: Quantum Monte Carlo study

    E-Print Network [OSTI]

    M. V. Ulybyshev; M. I. Katsnelson

    2015-05-22

    We study electronic properties of graphene with finite concentration of vacancies or other resonant scatterers by a straightforward lattice Quantum Monte Carlo calculations. Taking into account realistic long-range Coulomb interaction we calculate distribution of spin density associated to midgap states and demonstrate antiferromagnetic ordering. Energy gaps are open due to the interaction effects, both in the bare graphene spectrum and in the vacancy/impurity bands. In the case of 5 % concentration of resonant scatterers the latter gap is estimated as 0.7 eV and 1.1 eV for graphene on boron nitride and freely suspended graphene, respectively.

  3. Bridging The Gap 2012 | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Tech Overview Technology Presentations: Low-cost Nanomaterials for PV Devices Wireless Charging High Performance Mesoporus Titanium Oxide Anode Based Lithium Ion Batteries...

  4. Tamper-indicating device having a glass body

    DOE Patents [OSTI]

    Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM)

    2003-04-29

    A tamper-indicating device is described. The device has a first glass body member and a second glass body member that are attached to each other through a hasp. The glass body members of the device can be tempered. The body members can be configured with hollow volumes into which powders, microparticles, liquids, gels, or combinations thereof are sealed. The choice, the amount, and the location of these materials can produce a visible, band pattern to provide each body member with a unique fingerprint identifier, which makes it extremely difficult to repair or replace once it is damaged in order to avoid tamper detection.

  5. The effect of spin-orbit coupling in band structure and edge states of bilayer graphene

    SciTech Connect (OSTI)

    Sahdan, Muhammad Fauzi; Darma, Yudi

    2015-04-16

    Topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of bilayer grapheme and also its edge states by using this model with analytical approach. The results of our calculation show that the gap opening occurs at K and K’ point in bilayer graphene.In addition, a pair of gapless edge modes occurs both in the zigzag and arm-chair configurations are no longer exist. There are gap created at the edge even though thery are very small.

  6. High-Efficiency X-Band MMIC GaN Power Amplifiers Operating as Rectifiers

    E-Print Network [OSTI]

    Popovic, Zoya

    High-Efficiency X-Band MMIC GaN Power Amplifiers Operating as Rectifiers Michael Litchfield, Scott two 10 x 100j.Lm power combined devices. The MMICs exhibit 67% and 56% power added efficiency at VDD a RF-to-DC efficiency of 64%. The output powers of the two MMIC PAs are around 3.2W. In rectifier mode

  7. Banding in single crystals during plastic deformation

    E-Print Network [OSTI]

    Mahesh, Sivasambu

    Banding in single crystals during plastic deformation M. Arul Kumar a Sivasambu Mahesh a,b a. India. Abstract A rigid-plastic rate-independent crystal plasticity model capable of capturing band- ing such as dense dislocation walls. Key words: crystal plasticity, single crystal, macroscopic shear band, regular

  8. Organic electronic devices using phthalimide compounds

    DOE Patents [OSTI]

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  9. Organic electronic devices using phthalimide compounds

    DOE Patents [OSTI]

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  10. Organic electronic devices using phthalimide compounds

    DOE Patents [OSTI]

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  11. Variation in band offsets at ZnO/Sn:In2O3 (ITO) heterojunctions measured by x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Kaspar, Tiffany C.; Droubay, Timothy C.

    2012-07-01

    Rational design and optimization of efficient photovoltaics requires fundamental knowledge of both the materials properties of the individual components and the conduction and valence band alignments at the materials interfaces. Efficient collection of electrons photogenerated in the absorber material requires a small or zero conduction band offset at both the absorber/n-type semiconductor and the n-type semiconductor/electrode interfaces. Negative conduction band offsets result in an energy barrier to electron injection, while large positive conduction band offsets (a “cliff” arrangement) result in too much energy lost during injection. However, it is difficult to predict heterojunction band offsets from bulk materials properties. Experimental band alignments of semiconductor heterojunctions rarely conform to the Anderson model,1 which assumes the band alignments are determined solely by differences in the electron affinity of the two semiconductors. Chemical bonds at the heterojunction interface give rise to an interfacial dipole which influences the interfacial band alignment. Thus, the complex interplay between electron affinity differences, Fermi level matching, interface-induced gap states, and band bending determine heterojunction band alignments.2-5 Band alignments can also be modified by doping, point defects, or control of non-stoichiometry at the interface; since these parameters can be affected by processing conditions, they offer a mechanism to modify the band alignments of a given heterojunction system.

  12. Dynamics of regeneration gaps following harvest of aspen stands

    E-Print Network [OSTI]

    Macdonald, Ellen

    tremuloides Michx.). The pattern of gap development over time was determined from analysis of air photographs

  13. Below gap optical absorption in GaAs driven by intense, single-cycle coherent transition radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goodfellow, J.; Fuchs, M.; Daranciang, D.; Ghimire, S.; Chen, F.; Loos, H.; Reis, D. A.; Fisher, A. S.; Lindenberg, A. M.

    2014-01-01

    Single-cycle terahertz fields generated by coherent transition radiation from a relativistic electron beam are used to study the high field optical response of single crystal GaAs. Large amplitude changes in the sub-band-gap optical absorption are induced and probed dynamically by measuring the absorption of a broad-band optical beam generated by transition radiation from the same electron bunch, providing an absolutely synchronized pump and probe geometry. This modification of the optical properties is consistent with strong-field-induced electroabsorption. These processes are pertinent to a wide range of nonlinear terahertz-driven light-matter interactions anticipated at accelerator-based sources.

  14. Multi-gap superfluidity in nuclear matter

    E-Print Network [OSTI]

    A. I. Akhiezer; A. A. Isayev; S. V. Peletminsky; A. A. Yatsenko

    2000-12-25

    It is shown that under lowering density or temperature a nucleon Fermi superfluid can undergo a phase transition to a new superfluid state corresponding to superposition of states with singlet-triplet (ST) and triplet-singlet (TS) pairing of nucleons (in spin and isospin spaces). Such states arise as a result of branching from one-gap solution of the self-consistent equations, describing ST pairing of nucleons. The density and temperature dependence of the order parameters for new two-gap solutions is determined in the model with Skyrme effective forces.

  15. Natural Gas Engine Development Gaps (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.T.

    2014-03-01

    A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

  16. Homolumo gap from dynamical energy levels

    SciTech Connect (OSTI)

    Andric, I.; Jonke, L.; Jurman, D.; Nielsen, H. B.

    2009-11-15

    We introduce a dynamical matrix model where the matrix is interpreted as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show how a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest eigenvalue of the occupied single-fermion states and the lowest eigenvalue of the unoccupied single-fermion states. We describe the development of the gap in both the strong and weak coupling regimes, while for the intermediate coupling strength we expect formation of homolumo kinks.

  17. RESEARCH ARTICLE Broad-band versus narrow-band irradiance for estimating

    E-Print Network [OSTI]

    Klimley, A. Peter

    RESEARCH ARTICLE Broad-band versus narrow-band irradiance for estimating latitude by archival tags of irradiance to estimate the latitude of archival tags was evaluated. These tags are placed on fishes in order irradiance with and without a cosine collector and narrow-band irradiance of seven narrow bands with 50

  18. Bayesian fusion of multi-band image fusion Bayesian fusion of multi-band image fusion

    E-Print Network [OSTI]

    Tourneret, Jean-Yves

    Bayesian fusion of multi-band image fusion Bayesian fusion of multi-band image fusion Beyond for Latent Variables", Feb. 2-4 2015 1 / 64 #12;Bayesian fusion of multi-band image fusion Context Multi School "Search for Latent Variables", Feb. 2-4 2015 2 / 64 #12;Bayesian fusion of multi-band image fusion

  19. Barrier breaching device

    DOE Patents [OSTI]

    Honodel, C.A.

    1983-06-01

    A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

  20. High efficiency photovoltaic device

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi C. (Troy, MI); Xu, Xi Xiang (Findlay, OH)

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  1. Interconnected semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P. (White Bear Lake, MN); Paulson, Kenneth R. (North St. Paul, MN); Gilbert, James R. (St. Paul, MN)

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  2. GaNPAs Solar Cells Lattice-Matched To GaP: Preprint

    SciTech Connect (OSTI)

    Geisz, J. F.; Friedman, D. J.; Kurtz, S.

    2002-05-01

    This conference paper describes the III-V semiconductors grown on silicon substrates are very attractive for lower-cost, high-efficiency multijunction solar cells, but lattice-mismatched alloys that result in high dislocation densities have been unable to achieve satisfactory performance. GaNxP1-x-yAsy is a direct-gap III-V alloy that can be grown lattice-matched to Si when y= 4.7x - 0.1. We propose the use of lattice-matched GaNPAs on silicon for high-efficiency multijunction solar cells. We have grown GaNxP1-x-yAsy on GaP (with a similar lattice constant to silicon) by metal-organic chemical vapor phase epitaxy with direct band-gaps in the range of 1.5 to 2.0 eV. We demonstrate the performance of single-junction GaNxP1-x-yAsy solar cells grown on GaP substrates and discuss the prospects for the development of monolithic high-efficiency multijunction solar cells based on silicon substrates.

  3. Ion Implanted Ge:B Far Infrard Blocked Impurity BandDetectors

    SciTech Connect (OSTI)

    Beeman, J.W.; Goyal, S.; Reichertz, L.A.; Haller, E.E.

    2006-06-12

    Ge Blocked Impurity Band (BIB) photoconductors have the potential to replace stressed Ge:Ga photoconductors for far-infrared astronomical observations. A novel planar BIB device has been fabricated in which ion-implanted boron is used to form the blocking and absorbing layers of necessary purity and compensation. The effect of doping in the infrared active layer on the far-infrared photoconductive response has been studied, and the optimum doping concentration is found to be {approx} 4 x 10{sup 16} cm{sup -3}. Devices doped near this concentration show good blocking characteristics with low dark currents. The spectral response extends to {approx} 45 cm{sup -1}, clearly showing the formation of an impurity band. Under low background testing conditions these devices attain a responsivity of 0.12 A/W and NEP of 5.23 x 10{sup -15} W/Hz{sup -1/2}.

  4. A novel coaxial Ku-band transit radiation oscillator without external guiding magnetic field

    SciTech Connect (OSTI)

    Ling, Junpu, E-mail: lingjunpu@163.com; Zhang, Jiande; He, Juntao; Jiang, Tao [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)] [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-02-15

    A novel coaxial transit radiation oscillator without external guiding magnetic field is designed to generate high power microwave at Ku-band. By using a coaxial structure, the space-charge potential energy is suppressed significantly, that is good for enhancing efficient beam-wave interaction. In order to improve the transmission stability of the unmagnetized intense relativistic electron beam, a Pierce-like cathode is employed in the novel device. By contrast with conventional relativistic microwave generators, this kind of device has the advantages of high stability, non-guiding magnetic field, and high efficiency. Moreover, with the coaxial design, it is possible to improve the power-handing capacity by increasing the radial dimension of the Ku-band device. With a 550?keV and 7.5?kA electron beam, a 1.25?GW microwave pulse at 12.08?GHz has been obtained in the simulation. The power conversion efficiency is about 30%.

  5. Narrow band wavelength selective filter using grating assisted single ring resonator

    SciTech Connect (OSTI)

    Prabhathan, P. Murukeshan, V. M.

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ?60 nm and side band rejection ratio >15 dB.

  6. Superconducting gap evolution in overdoped BaFe?(As1-xPx)? single crystals through nanocalorimetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campanini, D.; Diao, Z.; Fang, L.; Kwok, W.-K.; Welp, U.; Rydh, A.

    2015-06-01

    We report on specific heat measurements on clean overdoped BaFe?(As1-xPx)? single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature ?r=C/T|T?0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave ? model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of ??~5.3 me V, corresponding to ??/kBTc ~ 2.2. Increasing the phosphorus concentration x, the main gap reduces till a value of ?? ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on ?r, all samples however show similar behavior [?r(H) - ?r (H = 0)? Hn, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.

  7. Superconducting gap evolution in overdoped BaFe?(As1-xPx)? single crystals through nanocalorimetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campanini, D.; Diao, Z.; Fang, L.; Kwok, W.-K.; Welp, U.; Rydh, A.

    2015-06-01

    We report on specific heat measurements on clean overdoped BaFe?(As1-xPx)? single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature ?r=C/T|T?0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave ? model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of ??~5.3 me V, corresponding to ??/kBTc ~ 2.2. Increasing the phosphorus concentration x, the main gap reduces tillmore »a value of ?? ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on ?r, all samples however show similar behavior [?r(H) - ?r (H = 0)? Hn, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.« less

  8. Gapped spin Hamiltonian motivated by quantum teleportation

    E-Print Network [OSTI]

    Ari Mizel

    2014-10-07

    We construct a Hamiltonian whose ground state encodes a time-independent emulation of quan- tum teleportation. We calculate properties of the Hamiltonian, using exact diagonalization and a mean-field theory, and argue that it has a gap. The system exhibits an illuminating relationship to the well-known AKLT (Affleck, Lieb, Kennedy and Tasaki) model.

  9. FINAL REPORT ON GDE GAP CELL

    SciTech Connect (OSTI)

    Herman, D.; Summers, W.; Danko, E.

    2009-09-28

    A project has been undertaken to develop an electrochemical cell and support equipment for evaluation of a gas diffusion electrode-based, narrow-electrolyte-gap anode for SO{sub 2} oxidation in the hydrogen production cycle of the hybrid sulfur (HyS) process. The project supported the HyS development program at the Savannah River National Lab (SRNL). The benefits of using a gas diffusion electrode in conjunction with the narrow anolyte gap are being determined through electrochemical polarization testing under a variety conditions, and by comparison to results produced by SRNL and others using anode technologies that have no anolyte gap. These test results indicate that the NGA cell has low resistance suitable for use in the HyS electrolyzer, exhibits good efficiency at high current densities compared to the direct feed HyS electrolyzer, and indicates robust performance in extended testing over 65 hours. Seepage episodes were mostly caused by port clogging, which can be mitigated in future designs through minor modifications to the hardware. Significant reductions in sulfur crossover have not yet been demonstrated in the NGA configuration compared to in-house direct feed testing, but corroborative sulfur layer analysis is as yet incomplete. Further testing in a single-pass anolyte configuration is recommended for complete evaluation of steady-state electrochemical efficiency and SO{sub 2} crossover in the narrow gap configuration.

  10. THE DYNAMICS OF STAR STREAM GAPS

    SciTech Connect (OSTI)

    Carlberg, R. G., E-mail: carlberg@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)

    2013-10-01

    A massive object crossing a narrow stream of stars orbiting in the halo of the galaxy induces velocity changes both along and transverse to the stream that can lead to the development of a visible gap. For a stream narrow relative to its orbital radius, the stream crossing time is sufficiently short that the impact approximation can be used to derive the changes in angular momenta and radial actions along the star stream. The epicyclic approximation is used to calculate the evolution of the density of the stream as it orbits around in a galactic potential. Analytic expressions are available for a point mass, however, the general expressions are easily numerically evaluated for perturbing objects with arbitrary density profiles. With a simple allowance for the velocity dispersion of the stream, moderately warm streams can be modeled. The predicted evolution agrees well with the outcomes of simulations of stellar streams for streams with widths up to 1% of the orbital radius of the stream. The angular momentum distribution within the stream shears out gaps with time, further reducing the visibility of streams, although the size of the shear effect requires more detailed simulations that account for the creation of the stream. An illustrative model indicates that shear will set a lower limit of a few times the stream width for the length of gaps that persist. In general, the equations are useful for dynamical insights into the development of stream gaps and their measurement.

  11. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-Print Network [OSTI]

    SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING US EPA Project Meeting April 7 2011April 7, 2011/Titan Uranium, VP Development · Deborah LebowAal/EPA Region 8 Air Program Introduction to Titan Uranium USA;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C

  12. Chiral plasmon in gapped Dirac systems

    E-Print Network [OSTI]

    Kumar, Anshuman; Fung, Kin Hung; Hanson, George; Fang, Nicholas X; Low, Tony

    2015-01-01

    We study the electromagnetic response and surface electromagnetic modes in a generic gapped Dirac material under pumping with circularly polarized light. The valley imbalance due to pumping leads to a net Berry curvature, giving rise to a finite transverse conductivity. We discuss the appearance of nonreciprocal chiral edge modes, their hybridization and waveguiding in a nanoribbon geometry, and giant polarization rotation in nanoribbon arrays.

  13. Mobile Device Management Android Device Enrollment

    E-Print Network [OSTI]

    to manage your device. c. Enter your password. #12;d. Accept the Terms and Conditions e. You have completed. 2. Get Touchdown from Google Play a. Open up the Google Play Store. b. Search for Touchdown. c. Use the application. #12;3. Get Citrix Mobile Connect from Google Play a. Open up the Google Play Store. b. Search

  14. Solar tracking device

    SciTech Connect (OSTI)

    Wyland, R.R.

    1981-01-20

    A solar tracking device having a plurality of reflector banks for reflecting the sun rays onto collector tubes and heating a fluid circulated therethrough. The reflector banks synchronized to follow the sun during the daily and yearly cycle of the earth as the earth orbits around the sun. The device by accurately following the sun provides a more efficient means of collecting solar energy.

  15. Capillary interconnect device

    DOE Patents [OSTI]

    Renzi, Ronald F

    2013-11-19

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  16. Device for cutting protrusions

    DOE Patents [OSTI]

    Bzorgi, Fariborz M. (Knoxville, TN)

    2011-07-05

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  17. Fluidic nanotubes and devices

    DOE Patents [OSTI]

    Yang, Peidong (Berkeley, CA); He, Rongrui (El Cerrito, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yiying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  18. Fluidic nanotubes and devices

    DOE Patents [OSTI]

    Yang, Peidong (El Cerrito, CA); He, Rongrui (El Cerrito, CA); Goldberger, Joshua (Berkeley, CA); Fan, Rong (El Cerrito, CA); Wu, Yiying (Albany, CA); Li, Deyu (Albany, CA); Majumdar, Arun (Orinda, CA)

    2010-01-10

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  19. Method and device for tensile testing of cable bundles

    DOE Patents [OSTI]

    Robertson, Lawrence M; Ardelean, Emil V; Goodding, James C; Babuska, Vit

    2012-10-16

    A standard tensile test device is improved to accurately measure the mechanical properties of stranded cables, ropes, and other composite structures wherein a witness is attached to the top and bottom mounting blocks holding the cable under test. The witness is comprised of two parts: a top and a bottom rod of similar diameter with the bottom rod having a smaller diameter stem on its upper end and the top rod having a hollow opening in its lower end into which the stem fits forming a witness joint. A small gap is present between the top rod and the larger diameter portion of the bottom rod. A standard extensometer is attached to the top and bottom rods of the witness spanning this small witness gap. When a force is applied to separate the mounting blocks, the gap in the witness expands the same length that the entire test specimen is stretched.

  20. WHY DO DIFFERENCES BETWEEN STATE-MEASURED ACHIEVEMENT GAPS AND NATIONALLY-MEASURED ACHIEVEMENT GAPS EXIST?

    E-Print Network [OSTI]

    Courtney, Christina Leigh

    2014-08-31

    of difference, the differential quotient, is determined. For the purposes of this dissertation, I calculated the reported achievement gaps between white and black fourth graders for the years 2005, 2007, and 2009 on the individual state reading and math...

  1. Engineering Dilute Nitride Semiconductor Alloys for Intermediate Band Solar Cells

    E-Print Network [OSTI]

    Luce, Alexander Vallejo

    2015-01-01

    Shockley-Queisser limit 2 Intermediate band solar cells 2.1for viable intermediate band solar cells . . . . 2.6for intermediate band solar cell. (a) Schematic band diagram

  2. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  3. X-BAND KLYSTRON DEVELOPMENT AT SLAC

    SciTech Connect (OSTI)

    Vlieks, Arnold E.; /SLAC

    2009-08-03

    The development of X-band klystrons at SLAC originated with the idea of building an X-band Linear Collider in the late 1980's. Since then much effort has been expended in developing a reliable X-band Power source capable of delivering >50 MW RF power in pulse widths >1.5 {micro}s. I will report on some of the technical issues and design strategies which have led to the current SLAC klystron designs.

  4. Soboba Band of Luiseno Indians- 2011 Project

    Broader source: Energy.gov [DOE]

    The Soboba Band of Luiseno Indians would like to begin to focus on renewable sources for electricity and to actively target lowering the energy usage of the community.

  5. Multi-band high efficiency power amplifier

    E-Print Network [OSTI]

    Besprozvanny, Randy-Alexander Randolph

    2011-01-01

    power levels associated with the design objective. There are two switchingPower Gain and PAE CHAPTER 8 Multi-Band Shunt Switching Networks The previous design

  6. Device for conversion of electromagnetic radiation into electrical current

    DOE Patents [OSTI]

    Blakeslee, A.E.; Mitchell, K.W.

    1980-03-25

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  7. Device for conversion of electromagnetic radiation into electrical current

    DOE Patents [OSTI]

    Blakeslee, A. Eugene (Golden, CO); Mitchell, Kim W. (Indian Hill, CO)

    1981-01-01

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  8. Chemical potential and the gap equation

    E-Print Network [OSTI]

    Huan Chen; Wei Yuan; Lei Chang; Yu-Xin Liu; Thomas Klahn; Craig D. Roberts

    2008-07-17

    In general the kernel of QCD's gap equation possesses a domain of analyticity upon which the equation's solution at nonzero chemical potential is simply obtained from the in-vacuum result through analytic continuation. On this domain the single-quark number- and scalar-density distribution functions are mu-independent. This is illustrated via two models for the gap equation's kernel. The models are alike in concentrating support in the infrared. They differ in the form of the vertex but qualitatively the results are largely insensitive to the Ansatz. In vacuum both models realise chiral symmetry in the Nambu-Goldstone mode and in the chiral limit, with increasing chemical potential, exhibit a first-order chiral symmetry restoring transition at mu~M(0), where M(p^2) is the dressed-quark mass function. There is evidence to suggest that any associated deconfinement transition is coincident and also of first-order.

  9. Rain sampling device

    DOE Patents [OSTI]

    Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

    1991-05-14

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

  10. Rain sampling device

    DOE Patents [OSTI]

    Nelson, Danny A. (Richland, WA); Tomich, Stanley D. (Richland, WA); Glover, Donald W. (Prosser, WA); Allen, Errol V. (Benton City, WA); Hales, Jeremy M. (Kennewick, WA); Dana, Marshall T. (Richland, WA)

    1991-01-01

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of said precipitation from said chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device.

  11. Wireless device monitoring systems and monitoring devices, and associated methods

    DOE Patents [OSTI]

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  12. Negative band gap bowing in epitaxial InAsGaAs alloys and predicted band offsets of the strained binaries and alloys on various substrates

    E-Print Network [OSTI]

    Hart, Gus

    As , alloy superlattices or quantum wells (InxGa1 xAs)p / InP q , and GaAs-embedded InAs quantum dots strained on InP or GaAs. We predict that while Ec(x) bows downward for relaxed bulk alloys, it bows upward constituents, bulk alloys InxGa1 xAs, epitaxial alloys that are coherently grown on a substrate InP or Ga

  13. Multimaterial rectifying device fibers

    E-Print Network [OSTI]

    Orf, Nicholas D

    2009-01-01

    Electronic and optoelectronic device processing is commonly thought to be incompatible with much simpler thermal drawing techniques used in optical fiber production. The incorporation of metals, polymer insulators, and ...

  14. Vehicle Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C.; Buttner, W.; Rivkin, C.

    2010-02-01

    This report identifies gaps in vehicle codes and standards and recommends ways to fill the gaps, focusing on six alternative fuels: biodiesel, natural gas, electricity, ethanol, hydrogen, and propane.

  15. To Bridge LEDs' Green Gap, Scientists Think Small

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To Bridge LEDs' Green Gap, Scientists Think Small To Bridge LEDs' Green Gap, Scientists Think Small Nanostructures Half a DNA Strand-Wide Show Promise for Efficient LEDs April 4,...

  16. Minding the Gap Makes for More Efficient Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minding the Gap Makes for More Efficient Solar Cells Minding the Gap Makes for More Efficient Solar Cells Print Thursday, 19 December 2013 11:01 Using novel materials to develop...

  17. Electronic security device

    DOE Patents [OSTI]

    Eschbach, Eugene A. (Richland, WA); LeBlanc, Edward J. (Kennewick, WA); Griffin, Jeffrey W. (Kennewick, WA)

    1992-01-01

    The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

  18. Electronic security device

    DOE Patents [OSTI]

    Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

    1992-03-17

    The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs.

  19. IEEE ELECTRON DEVICE LETTERS, VOL. 22, NO. 5, MAY 2001 233 Interface Traps at High Doping Drain Extension

    E-Print Network [OSTI]

    Fu, Li Ming

    to induce the thermal-trap-tunneling process of electron transition from the conduction band to the valence the conduction band, and the arrow NT indicates the net process of electron tunneling from traps to the valenceIEEE ELECTRON DEVICE LETTERS, VOL. 22, NO. 5, MAY 2001 233 Interface Traps at High Doping Drain

  20. Apparatus for loading a band saw blade

    DOE Patents [OSTI]

    Reeves, S.R.

    1990-03-20

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials. 2 figs.

  1. Apparatus for loading a band saw blade

    DOE Patents [OSTI]

    Reeves, Steven R. (49 Williams Ave., West Valley, NY 14171)

    1990-01-01

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials.

  2. Intelligent Assistants for Filling Critical Gaps in GIS

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Intelligent Assistants for Filling Critical Gaps in GIS A Research Program April 1992 David Lanter, Intelligent Assistants for Filling Critical Gaps In GIS, was sponsored by Southern California Edison Company: · An analysis of critical gaps in current geographic information systems (GIS) that impede their use for spatial

  3. Active and passive plasmonic devices

    E-Print Network [OSTI]

    Pourabdollah Nezhad, Maziar

    2007-01-01

    G. Mattiussi, and P. Berini, "Passive integrated opticsCALIFORNIA, SAN DIEGO Active and Passive Plasmonic Devices ADISSERTATION Active and Passive Plasmonic Devices by Maziar

  4. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ?0.5more »eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.« less

  5. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    SciTech Connect (OSTI)

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ?0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.

  6. Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures

    E-Print Network [OSTI]

    Harding, Philip J; Mosk, Allard P; Vos, Willem L

    2014-01-01

    We study a hybrid system consisting of a narrowband atomic optical resonance and the long-range periodic order of an opaline photonic nanostructure. To this end, we have infiltrated atomic cesium vapor in a thin silica opal photonic crystal. With increasing temperature, the frequencies of the opal's reflectivity peaks shift down by >20% due to chemical reduction of the silica. Simultaneously, the photonic bands and gaps shift relative to the fixed near-infrared cesium D1 transitions. As a result the narrow atomic resonances with high finesse (f/df=8E5) dramatically change shape from a usual dispersive shape at the blue edge of a stop gap, to an inverted dispersion lineshape at the red edge of a stop gap. The lineshape, amplitude, and off-resonance reflectivity are well modeled with a transfer-matrix model that includes the dispersion and absorption of Cs hyperfine transitions and the chemically-reduced opal. An ensemble of atoms in a photonic crystal is an intriguing hybrid system that features narrow defect-...

  7. Quantum chaos and thermalization in gapped systems

    SciTech Connect (OSTI)

    Rigol, Marcos [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Santos, Lea F. [Department of Physics, Yeshiva University, New York, New York 10016 (United States)

    2010-07-15

    We investigate the onset of thermalization and quantum chaos in finite one-dimensional gapped systems of hard-core bosons. Integrability in these systems is broken by next-nearest-neighbor repulsive interactions, which also generate a superfluid to insulator transition. By employing full exact diagonalization, we study chaos indicators and few-body observables. We show that with increasing system size, chaotic behavior is seen over a broader range of parameters and, in particular, deeper into the insulating phase. Concomitantly, we observe that, as the system size increases, the eigenstate thermalization hypothesis extends its range of validity inside the insulating phase and is accompanied by the thermalization of the system.

  8. Turbine blade tip gap reduction system

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  9. Judith Gap Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California)JointJosephine, Texas:Gap Wind Farm Jump

  10. Point the Gap | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue MountainSchoolPrairie Jump to: navigation,the Gap

  11. Spectral tailoring device

    DOE Patents [OSTI]

    Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.

    1987-08-05

    A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.

  12. Electrical apparatus lockout device

    SciTech Connect (OSTI)

    Gonzales, Rick (Chesapeake, VA)

    1999-01-01

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.

  13. Electrical apparatus lockout device

    SciTech Connect (OSTI)

    Gonzales, R.

    1999-10-12

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.

  14. Properties of Wide-Gap Chalcopyrite Semiconductors for Photovoltaic Applications: Final Report, 8 July 1998 -- 17 October 2001

    SciTech Connect (OSTI)

    Rockett, A.

    2003-07-01

    The objectives of this project were to obtain a fundamental understanding of wide-gap chalcopyrite semiconductors and photovoltaic devices. Information to be gathered included significant new fundamental materials data necessary for accurate modeling of single- and tandem-junction devices, basic materials science of wider-gap chalcopyrite semiconductors to be used in next-generation devices, and practical information on the operation of devices incorporating these materials. Deposition used a hybrid sputtering and evaporation method shown previously to produce high-quality epitaxial layers of Cu(In,Ga)Se2 (CIGS). Materials analysis was also provided to assist members of the National CIS Team, of which, through this contract, we were a member. Solar cells produced from resulting single-crystal epitaxial layers in collaboration with various members of the CIS Team were used to determine the factors limiting performance of the devices based on analysis of the results. Because epitaxial growth allows us to determine the surface orientation of our films specifically by choice of the substrate surface on which the film is grown, a major focus of the project concerned the nature of (110)-oriented CIGS films and the performance of solar cells produced from these films. We begin this summary with a description of the results for growth on (110) GaAs, which formed a basis for much of the work ultimately conducted under the program.

  15. Prediction of a strain-induced conduction-band minimum in embedded quantum dots

    SciTech Connect (OSTI)

    Williamson, A.J.; Zunger, A.; Canning, A.

    1998-02-01

    Free-standing InP quantum dots have previously been theoretically and experimentally shown to have a direct band gap across a large range of experimentally accessible sizes. We demonstrated that when these dots are embedded coherently within a GaP barrier material, the effects of quantum confinement in conjunction with coherent strain suggest there will be a critical diameter of dot ({approx}60 {Angstrom}), above which the dot is direct, type I, and below which it is indirect, type II. However, the strain in the system acts to produce another conduction state with an even lower energy, in which electrons are localized in small pockets at the interface between the InP dot and the GaP barrier. Since this conduction state is GaP X{sub 1c} derived and the highest occupied valence state is InP, {Gamma} derived, the fundamental transition is predicted to be indirect in both real and reciprocal space ({open_quotes}type II{close_quotes}) for all dot sizes. This effect is peculiar to the strained dot, and is absent in the freestanding dot. {copyright} {ital 1998} {ital The American Physical Society}

  16. Pendulum detector testing device

    DOE Patents [OSTI]

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  17. Fragment capture device

    DOE Patents [OSTI]

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  18. Biochip scanner device

    DOE Patents [OSTI]

    Perov, Alexander (Troitsk, RU); Belgovskiy, Alexander I. (Mayfield Heights, OH); Mirzabekov, Andrei D. (Darien, IL)

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  19. Nonaqueous Electrical Storage Device

    DOE Patents [OSTI]

    McEwen, Alan B. (Melrose, MA); Evans, David A. (Seekonk, MA); Blakley, Thomas J. (Woburn, MA); Goldman, Jay L. (Mansfield, MA)

    1999-10-26

    An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.

  20. Regenerative combustion device

    DOE Patents [OSTI]

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  1. Electrochromic optical switching device

    DOE Patents [OSTI]

    Lampert, Carl M. (El Sobrante, CA); Visco, Steven J. (Berkeley, CA)

    1992-01-01

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source.

  2. Electrochromic optical switching device

    DOE Patents [OSTI]

    Lampert, C.M.; Visco, S.J.

    1992-08-25

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source. 3 figs.

  3. Extended Supersymmetry in Gapped and Superconducting Graphene

    E-Print Network [OSTI]

    V. K. Oikonomou

    2015-06-27

    In view of the many quantum field theoretical descriptions of graphene in $2+1$ dimensions, we present another field theoretical feature of graphene, in the presence of defects. Particularly, we shall be interested in gapped graphene in the presence of a domain wall and also for superconducting graphene in the presence of a vortex. As we explicitly demonstrate, the gapped graphene electrons that are localized on the domain wall are associated with four $N=2$ one dimensional supersymmetries, with each pair combining to form an extended $N=4$ supersymmetry with non-trivial topological charges. The case of superconducting graphene is more involved, with the electrons localized on the vortex being associated with $n$ one dimensional supersymmetries, which in turn combine to form an $N=2n$ extended supersymmetry with no-trivial topological charges. As we shall prove, all supersymmetries are unbroken, a feature closely related to the number of the localized fermions and also to the exact form of the associated operators. In addition, the corresponding Witten index is invariant under compact and odd perturbations.

  4. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect (OSTI)

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  5. Precision positioning device

    DOE Patents [OSTI]

    McInroy, John E.

    2005-01-18

    A precision positioning device is provided. The precision positioning device comprises a precision measuring/vibration isolation mechanism. A first plate is provided with the precision measuring mean secured to the first plate. A second plate is secured to the first plate. A third plate is secured to the second plate with the first plate being positioned between the second plate and the third plate. A fourth plate is secured to the third plate with the second plate being positioned between the third plate and the fourth plate. An adjusting mechanism for adjusting the position of the first plate, the second plate, the third plate, and the fourth plate relative to each other.

  6. Dielectrophoretic columnar focusing device

    DOE Patents [OSTI]

    James, Conrad D. (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Derzon, Mark S. (Tijeras, NM)

    2010-05-11

    A dielectrophoretic columnar focusing device uses interdigitated microelectrodes to provide a spatially non-uniform electric field in a fluid that generates a dipole within particles in the fluid. The electric field causes the particles to either be attracted to or repelled from regions where the electric field gradient is large, depending on whether the particles are more or less polarizable than the fluid. The particles can thereby be forced into well defined stable paths along the interdigitated microelectrodes. The device can be used for flow cytometry, particle control, and other process applications, including cell counting or other types of particle counting, and for separations in material control.

  7. Precision alignment device

    DOE Patents [OSTI]

    Jones, Nelson E. (Huntington Beach, CA)

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  8. Precision alignment device

    DOE Patents [OSTI]

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  9. Phononic crystal devices

    DOE Patents [OSTI]

    El-Kady, Ihab F. (Albuquerque, NM); Olsson, Roy H. (Albuquerque, NM)

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  10. Fano Resonance in an Electrically Driven Plasmonic Device

    E-Print Network [OSTI]

    Vardi, Yuval; Shalem, Guy; Bar-Joseph, Israel

    2016-01-01

    We present an electrically driven plasmonic device consisting of a gold nanoparticle trapped in a gap between two electrodes. The tunneling current in the device generates plasmons, which decay radiatively. The emitted spectrum extends up to an energy that depends on the applied voltage. Characterization of the electrical conductance at low temperatures allows us to extract the voltage drop on each tunnel barrier and the corresponding emitted spectrum. In several devices we find a pronounced sharp asymmetrical dip in the spectrum, which we identify as a Fano resonance. Finite-difference time-domain (FDTD) calculations reveal that this resonance is due to interference between the nanoparticle and electrodes dipolar fields, and can be conveniently controlled by the structural parameters.

  11. Performance characteristics of a perforated shadow band under clear sky conditions

    SciTech Connect (OSTI)

    Brooks, Michael J.

    2010-12-15

    A perforated, non-rotating shadow band is described for separating global solar irradiance into its diffuse and direct normal components using a single pyranometer. Whereas shadow bands are normally solid so as to occult the sensor of a pyranometer throughout the day, the proposed band has apertures cut from its circumference to intermittently expose the instrument sensor at preset intervals. Under clear sky conditions the device produces a saw tooth waveform of irradiance data from which it is possible to reconstruct separate global and diffuse curves. The direct normal irradiance may then be calculated giving a complete breakdown of the irradiance curves without need of a second instrument or rotating shadow band. This paper describes the principle of operation of the band and gives a mathematical model of its shading mask based on the results of an optical ray tracing study. An algorithm for processing the data from the perforated band system is described and evaluated. In an extended trial conducted at NREL's Solar Radiation Research Laboratory, the band coupled with a thermally corrected Eppley PSP produced independent curves for diffuse, global and direct normal irradiance with low mean bias errors of 5.6 W/m{sup 2}, 0.3 W/m{sup 2} and -2.6 W/m{sup 2} respectively, relative to collocated reference instruments. Random uncertainties were 9.7 W/m{sup 2} (diffuse), 17.3 W/m{sup 2} (global) and 19.0 W/m{sup 2} (direct). When the data processing algorithm was modified to include the ray trace model of sensor exposure, uncertainties increased only marginally, confirming the effectiveness of the model. Deployment of the perforated band system can potentially increase the accuracy of data from ground stations in predominantly sunny areas where instrumentation is limited to a single pyranometer. (author)

  12. Ultrafast all-optical switching of 3D photonic band gap crystals. T.G. Euser,1,*

    E-Print Network [OSTI]

    Vos, Willem L.

    , Minnesota 55455, USA. 4 Optoelectronics Research Centre (ORC), Tampere University of Technology, Tampere

  13. Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap

    E-Print Network [OSTI]

    Herbold, E. B.; Kim, J.; Nesterenko, V. F.; Wang, S. Y.; Daraio, C.

    2009-01-01

    as it was demonstrated for PTFE and stainless steel basedusing chains composed of PTFE spheres and stainless steela periodic arrangement of PTFE spheres and stainless steel

  14. Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap

    E-Print Network [OSTI]

    Herbold, E. B.; Kim, J.; Nesterenko, V. F.; Wang, S. Y.; Daraio, C.

    2009-01-01

    of nonlinear compression pulses in granular media. Prikl.Lindenberg, K. : Short-pulse dynamics in strongly nonlinearQ.M. : In?uence of loading pulse duration on dynamic load

  15. Forbidden Band Gaps in the Spin-Wave Spectrum of a Two-Dimensional Bicomponent Magnonic Crystal

    E-Print Network [OSTI]

    Grundler, Dirk

    del CNR (CNR-IOM), Unita` di Peru ia, c/o Dipartimento di Fisica, Via A. Pascoli, I-06123 Perugia periodically arranged in a dielectric film have been a powerful concept to induce the Bragg reflection of light

  16. Attenuation of optical transmission within the band gap of thin two-dimensional macroporous silicon photonic crystals

    E-Print Network [OSTI]

    Van Driel, Henry M.

    and illuminated from the wafer backside. If applied to a polished silicon wafer, the pore arrangement becomes address: Institute for Theory of Condensed Matter, University of Karlsruhe, P.O. Box 6980, D-76128

  17. Exploring Visible-Light-Responsive Photocatalysts for Water Splitting Based on Novel Band-gap Engineering Strategies

    E-Print Network [OSTI]

    Liu, Jikai

    2013-01-01

    B 4.3 C before and after photocatalysis reaction (top) and BC 2 before and after photocatalysis reaction (bottom). PageB 4.3 C before and after photocatalysis reaction (top) and B

  18. Light Exiting from Real Photonic Band Gap Crystals is Diffuse and Strongly Directional A. Femius Koenderink* and Willem L. Vos

    E-Print Network [OSTI]

    Vos, Willem L.

    , as it is governed by elastic scattering due to weak disorder [13]. In this Letter we report strongly frequency by this disorder in strongly photonic crystals. Peculiar non-Lambertian distributions occur as a function are tainted by unintentional disorder. Two- and three-dimensional photonic crystals alike suffer from

  19. Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap

    E-Print Network [OSTI]

    Herbold, E. B.; Kim, J.; Nesterenko, V. F.; Wang, S. Y.; Daraio, C.

    2009-01-01

    J. , Seppa, H. : Microelectromechanical delay lines withusing a slow-wave microelectromechanical delay line in a

  20. DESIGN, GROWTH, FABRICATION AND CHARACTERIZATION OF HIGH-BAND GAP InGaN/GaN SOLAR CELLS

    E-Print Network [OSTI]

    Honsberg, Christiana

    photovoltaic efficiency of 39% at 236 suns is achieved by a triple-junction GaInP- GaInAs-Ge tandem solar cell [1]. While the achievable efficiency of triple-junction tandem solar cells is restricted to about 40% [2], modeling results show that a tandem solar cell of five junctions or greater, or an equivalent

  1. Wide-band-gap InAlAs solar cell for an alternative multijunction approach Marina S. Leite,1,a

    E-Print Network [OSTI]

    Atwater, Harry

    an alternative InP- based approach for a triple junction solar cell formed by a combination of InAlAs 1.47 eV /In-free InxAl1-xAs alloyed layers were used to fabricate the single junction solar cell. PhotoluminescenceGaAs triple junction cells with efficiencies higher than 30% under 1-sun illumination.7 Additionally

  2. PHYSICAL REVIEW B 84, 245206 (2011) First-principles study of band gap engineering via oxygen vacancy doping

    E-Print Network [OSTI]

    Rappe, Andrew M.

    2011-01-01

    vacancies can play a beneficial role. For example, in solid oxide fuel cells, oxygen vacancies enable for photovoltaic applications.6­8 Despite the technological relevance of oxygen vacancies in ferroelectric solutions are fundamentally interesting and technologically important. However, experimental

  3. Band Gap Energy of Chalcopyrite Thin Film Solar Cell Absorbers Determined by Soft X-Ray Emission and Absorption Spectroscopy

    E-Print Network [OSTI]

    Bar, M.

    2010-01-01

    OF CHALCOPYRITE THIN FILM SOLAR CELL ABSORBERS DETERMINED BYchalcopyrite thin film solar cell absorbers significantlyof chalcopyrite thin film solar cell absorbers. excitation

  4. First principles electronic band structure and phonon dispersion curves for zinc blend beryllium chalcogenide

    SciTech Connect (OSTI)

    Dabhi, Shweta, E-mail: venu.mankad@gmail.com; Mankad, Venu, E-mail: venu.mankad@gmail.com; Jha, Prafulla K., E-mail: venu.mankad@gmail.com [Department of Physics, Maharaja Krishnakumasinhji Bhavnagar University, Bhavnagar-364001 (India)

    2014-04-24

    A detailed theoretical study of structural, electronic and Vibrational properties of BeX compound is presented by performing ab-initio calculations based on density-functional theory using the Espresso package. The calculated value of lattice constant and bulk modulus are compared with the available experimental and other theoretical data and agree reasonably well. BeX (X = S,Se,Te) compounds in the ZB phase are indirect wide band gap semiconductors with an ionic contribution. The phonon dispersion curves are represented which shows that these compounds are dynamically stable in ZB phase.

  5. Recent experimental results from a long-pulse J-band relativistic klystron amplifier developmental effort

    SciTech Connect (OSTI)

    Kato, K.G.; Crouch, D.D.; Sar, D.R.; Speciale, R.A.; Carlsten, B.E.; Fazio, M.V.; Haynes, W.B.; Stringfield, R.M.

    1994-12-31

    Recent experimental results, supporting simulations, and design modeling are presented from a developmental effort to a produce a long pulse ({approximately}1{mu}s) J-band (5.85-8.2 GHz) relativistic klystron amplifier (RKA) of the high current NRL genealogy. This RKA is designed to operate at approximately 6.6 GHz, with a desired RF output {approximately}700 MW. Conversion of electron beam energy to microwave energy is obtained by a mock magnetically insulated coaxial converter which, in various incarnations, can be made to be either a cavity gap extractor or an inverse cathode.

  6. Quantum confinement, carrier dynamics and interfacial processes in nanostructured direct/indirect-gap semiconductor-glass composites

    SciTech Connect (OSTI)

    Joseph H. Simmons

    2002-08-13

    The behavior of semiconductor clusters precipitated in an insulated matrix was investigated. Semiconductor compositions of CdTe, Si and Ge were studies and the insulating matrix was amorphous SiO2. As a function of size, quantum confinement effects were observed in all three composite systems. However significant differences were observed between the direct-gap column 2-6 semiconductors and the indirect-gap column 4 semiconductors. As observed by others, the direct-gap 2-6 semiconductors showed a distinct saturation in the energy-gap blue shift with decreasing size. Theoretical studies using a 20-band k dot p calculation of the electronic and valence bands for a 3-dimensionally confined CdTe semiconductor showed that mixing of the conduction band states leads to a flattening of the central valley. This increases the electron mass drastically and saturates the size dependent blue shift in the bandgap. In contrast, the blue shift in the Si and Ge nanocrystals showed no sign of saturation and increased drastically with decreasing size. In fact, Si and Ge crystals were formed with blue shift values that moved the bandgap to the near UV region. We examined the absorption curves to determine whether the bandgap was direct or indirect in the quantum dots. The results are that the absorption shows an indirect gap for all but the smallest Si crystals and an indirect gap for all Ge crystals. Raman studies showed negligible size dependence due to a lack of phonon confinement in the matrix embedded clusters. Exciton saturation and recovery times were found to be very short (of the order of 400fs) and are the fastest reported for any quantum dot system. Work to examine the type of confinement obtained in a matrix that consists of a transparent conductor is under way. Studies of the photoinduced absorption change in GeSe glasses showed a significant effect of photodarkening, regardless of composition. The photodarkening effect appears to be composed of permanent and transient effects, presumed to be associated with photo-induced structural changes in the glass. The transient effects appear to have recovery times in at least two different time scales--one in minutes and one in less than a microsecond. Time-resolved studies are under way to determine the structural origin of each photodarkening effect.

  7. Cascaded thermoacoustic devices

    DOE Patents [OSTI]

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2003-12-09

    A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.

  8. Liquid mixing device

    SciTech Connect (OSTI)

    O'Leary, R. P.

    1985-08-06

    A mixing device for mixing at least two liquids to produce a homogenous mixture. The device includes an elongated chamber in which a vertically oriented elongated mixing cavity is located. The cavity is sealed at its lower end and it is open at its upper end and in communication with the interior of the chamber. An elongated conduit extends the length of the cavity and is adapted to receive liquids to be mixed. The conduit includes a plurality of ports located at longitudinally spaced positions therealong and which ports are directed in different directions. The ports create plural streams of liquid which interact and mix with one another within the cavity. The mixed liquids overflow the cavity and out its top end into the chamber 24. The chamber 24 includes an outlet from which the mixed liquids are withdrawn. In accordance with the preferred embodiment gas eductor means are provided in the inlet to the conduit to introduce gas bubbles within the cavity. Gas vent means are also provided in the device to vent any introduced gases from the device so that only the mixed liquids flow out the outlet.

  9. Solar Innovator | Alta Devices

    ScienceCinema (OSTI)

    Mattos, Laila; Le, Minh

    2013-05-29

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  10. Condensate removal device

    DOE Patents [OSTI]

    Maddox, James W. (Newport News, VA); Berger, David D. (Alexandria, VA)

    1984-01-01

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  11. Device Oriented Project Controller

    SciTech Connect (OSTI)

    Dalesio, Leo; Kraimer, Martin

    2013-11-20

    This proposal is directed at the issue of developing control systems for very large HEP projects. A de-facto standard in accelerator control is the Experimental Physics and Industrial Control System (EPICS), which has been applied successfully to many physics projects. EPICS is a channel based system that requires that each channel of each device be configured and controlled. In Phase I, the feasibility of a device oriented extension to the distributed channel database was demonstrated by prototyping a device aware version of an EPICS I/O controller that functions with the current version of the channel access communication protocol. Extensions have been made to the grammar to define the database. Only a multi-stage position controller with limit switches was developed in the demonstration, but the grammar should support a full range of functional record types. In phase II, a full set of record types will be developed to support all existing record types, a set of process control functions for closed loop control, and support for experimental beam line control. A tool to configure these records will be developed. A communication protocol will be developed or extensions will be made to Channel Access to support introspection of components of a device. Performance bench marks will be made on both communication protocol and the database. After these records and performance tests are under way, a second of the grammar will be undertaken.

  12. Solar Innovator | Alta Devices

    SciTech Connect (OSTI)

    Mattos, Laila; Le, Minh

    2012-01-01

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  13. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOE Patents [OSTI]

    Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2015-09-08

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  14. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    SciTech Connect (OSTI)

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  15. Control Banding and Nanotechnology Synergist

    SciTech Connect (OSTI)

    Zalk, D; Paik, S

    2009-12-15

    The average Industrial Hygienist (IH) loves a challenge, right? Okay, well here is one with more than a few twists. We start by going through the basics of a risk assessment. You have some chemical agents, a few workers, and the makings of your basic exposure characterization. However, you have no occupational exposure limit (OEL), essentially no toxicological basis, and no epidemiology. Now the real handicap is that you cannot use sampling pumps, cassettes, tubes, or any of the media in your toolbox, and the whole concept of mass-to-dose is out the window, even at high exposure levels. Of course, by the title, you knew we were talking about nanomaterials (NM). However, we wonder how many IHs know that this topic takes everything you know about your profession and turns it upside down. It takes the very foundations that you worked so hard in college and in the field to master and pulls it out from underneath you. It even takes the gold standard of our profession, the quantitative science of exposure assessment, and makes it look pretty darn rusty. Now with NM there is the potential to get some aspect of quantitative measurements, but the instruments are generally very expensive and getting an appropriate workplace personal exposure measurement can be very difficult if not impossible. The potential for workers getting exposures, however, is very real, as evidenced by a recent publication reporting worker exposures to polyacrylate nanoparticles in a Chinese factory (Song et al. 2009). With something this complex and challenging, how does a concept as simple as Control Banding (CB) save the day? Although many IHs have heard of CB, most of their knowledge comes from its application in the COSHH Essentials toolkit. While there is conflicting published research on COSHH Essentials and its value for risk assessments, almost all of the experts agree that it can be useful when no OELs are available (Zalk and Nelson 2008). It is this aspect of CB, its utility with uncertainty, that attracted international NM experts to recommend this qualitative risk assessment approach for NM. However, since their CB recommendation was only in theory, we took on the challenge of developing a working toolkit, the CB Nanotool (see Zalk et al. 2009 and Paik et al. 2008), as a means to perform a risk assessment and protect researchers at the Lawrence Livermore National Laboratory. While it's been acknowledged that engineered NM have potentially endless benefits for society, it became clear to us that the very properties that make nanotechnology so useful to industry could also make them dangerous to humans and the environment. Among the uncertainties and unknowns with NM are: the contribution of their physical structure to their toxicity, significant differences in their deposition and clearance in the lungs when compared to their parent material (PM), a lack of agreement on the appropriate indices for exposure to NM, and very little background information on exposure scenarios or populations at risk. Part of this lack of background information can be traced to the lack of risk assessments historically performed in the industry, with a recent survey indicating that 65% of companies working with NM are not doing any kind of NM-specific risk assessment as they focus on traditional PM methods for IH (Helland et al. 2009). The good news is that the amount of peer-reviewed publications that address environmental, health and safety aspects of NM has been increasing over the last few years; however, the percentage of these that address practical methods to reduce exposure and protect workers is orders of magnitude lower. Our intent in developing the CB Nanotool was to create a simplified approach that would protect workers while unraveling the mysteries of NM for experts and non-experts alike. Since such a large part of the toxicological effects of both the physical and chemical properties of NM were unknown, not to mention changing logarithmically as new NM research continues growing, we needed to account for this lack of information as part of the CB Nano

  16. CURRENT STATUS OF INSERTION DEVICE DEVELOPMENT AT THE NSLS-II AND ITS FUTURE PLANS

    SciTech Connect (OSTI)

    Tanabe, T.; Chubar, O.; Corwin, T.; Harder, D.A.; He, P.; Kitegi, C.; Rank, J.; Rhein, C.; Rakowsky, G.; Spataro, C.

    2011-03-28

    National Synchrotron Light Source-II (NSLS-II) project is currently under construction. Procurement of various insertion devices (IDs) has begun. This ring assumes a very high beam stability requirement which imposes tighter field specifications on insertion devices (IDs) compared to the rings of previous generation. The state of the art ID Magnetic Measurement Facility is being set up in order to be able to certify the stringent requirements on the magnetic field of NSLS-II IDs. The IDs in the project baseline scope include six 3.5m long damping wigglers (DWs) with 100mm period length and 15mm pole gap, two 2.0m Elliptically Polarizing Undulator (EPU) with 49mm period and 11.5mm minimum magnetic gap, two 3.0m long 20mm period and one 1.5m long 21mm period IVU, which the minimum gap of these is 5mm and 5.5mm, respectively. Recently a special device for inelastic X-ray scattering (IXS) beamline has been added to the collection of baseline devices. Three pole wigglers with a 28mm magnetic gap and a peak field over 1 Tesla will be utilized to accommodate the users of the type of radiation which is currently produced with bending magnets at the NSLS.

  17. ormon crickets and juvenile locusts form huge migratory bands --

    E-Print Network [OSTI]

    Gwynne, Darryl T.

    radiotelemetrytoovercometheseproblems. The mormon cricket, Anabrus simplex, is a flightless katydid6 , native to western North America migratory bands with that of individuals transplanted from the band to nearby sites; mormon- cricket bands

  18. Study of transmission line attenuation in broad band millimeter wave frequency range

    SciTech Connect (OSTI)

    Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.

    2013-10-15

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

  19. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Gary, S. Peter; Hospodarsky, George B.; Kletzing, Craig; Kurth, William; Larsen, Brian A.; Liu, Kaijun; et al

    2014-10-22

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ?r e, where ?e is the electron cyclotron frequency, and a characteristic spectral gap at ?r ? ?e/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a bandedmore »chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~?e/2 is a natural consequence of the growth of two whistler modes with different properties.« less

  20. NATURE MATERIALS | VOL 13 | MARCH 2014 | www.nature.com/naturematerials 233 hotovoltaic devices --which convert abundant, free solar

    E-Print Network [OSTI]

    Sargent, Edward H. "Ted"

    that provide a nanoparticle-size-dependent band- gap -- offer an avenue to tandem and multi-junction solar the simultaneous combination of low cost and high efficiency. Si-based solar cells1 , vapour-phase-processed thin-film solar cells such as CdS/CdTe (ref. 2) and next-generation solution- processed solar cells based

  1. A WIDE-BAND MEASURING SYSTEM FOR STUDYING CHARGE-COUPLED DEVICE CHARACTERISTICS

    E-Print Network [OSTI]

    Leskovar, Branko

    2011-01-01

    2 Four-phase generator output timing diagram. HIGH-TO-LOWh i p between the generator output s i g - nals. High-to-Low

  2. Modeling fluid flow in deformation bands with stabilized localization...

    Office of Scientific and Technical Information (OSTI)

    Modeling fluid flow in deformation bands with stabilized localization mixed finite elements. Citation Details In-Document Search Title: Modeling fluid flow in deformation bands...

  3. Non- contacting capacitive diagnostic device

    DOE Patents [OSTI]

    Ellison, Timothy

    2005-07-12

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  4. Packaging of solid state devices

    DOE Patents [OSTI]

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  5. Course Information --EE 531 Semiconductor Devices and Device Simulation

    E-Print Network [OSTI]

    Hochberg, Michael

    of Semiconductor Devices" by Hess "Si Processing for the VLSI Era: Vol. 3-- The Submicron MOSFET" by Wolf "Advanced: 20% Exam 1: 30% Exam 2: 30% Project: 20% Prerequisite: Semiconductor Devices (EE 482) or equivalent

  6. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard; Perez, Danielle

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  7. The Nuclear Pairing Gap -- How Low Can It Go?

    E-Print Network [OSTI]

    B. Alex Brown

    2013-08-16

    The pairing gap for $^{53}$Ca obtained from new experimental data on the masses of $^{52-54}$Ca has the smallest value yet observed. This is explained in the framework of the nuclear shell model with schematic and realistic Hamiltonians as being due to shell gaps around the low-$ j $ orbital $ 1p_{1/2} $. Minima in the pairing gaps for all nuclei are shown and discussed

  8. Organic photosensitive devices

    DOE Patents [OSTI]

    Peumans, Peter; Forrest, Stephen R.

    2013-01-22

    A photoactive device is provided. The device includes a first electrode, a second electrode, and a photoactive region disposed between and electrically connected to the first and second electrodes. The photoactive region further includes an organic donor layer and an organic acceptor layer that form a donor-acceptor heterojunction. The mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region are different by a factor of at least 100, and more preferably a factor of at least 1000. At least one of the mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region is greater than 0.001 cm.sup.2/V-sec, and more preferably greater than 1 cm.sup.2/V-sec. The heterojunction may be of various types, including a planar heterojunction, a bulk heterojunction, a mixed heterojunction, and a hybrid planar-mixed heterojunction.

  9. Support and maneuvering device

    DOE Patents [OSTI]

    Wood, R.L.

    1987-03-23

    A support and maneuvering device includes an elongated flexible inflatable enclosure having a fixed end and a movable end. The movable end is collapsible toward the fixed end to a contracted position when the enclosure is in a noninflated condition. Upon inflation, the movable end is movable away from the fixed end to an extended position. The movable end includes means for mounting an article such as a solar reflector thereon. The device also includes a plurality of position controlling means disposed about the movable end to effect adjusting movement of portions thereof by predetermined amounts and for controlling an angle at which the article disposed at the movable end is oriented. The plurality of position controlling means limits a suitable number degrees of freedom of the movable end for transmitting a steering motion thereto and for controlling the position thereof. 9 figs.

  10. Microelectromechanical safe arm device

    SciTech Connect (OSTI)

    Roesler, Alexander W. (Tijeras, NM)

    2012-06-05

    Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.

  11. Dielectrokinetic chromatography devices

    DOE Patents [OSTI]

    Chirica, Gabriela S; Fiechtner, Gregory J; Singh, Anup K

    2014-12-16

    Disclosed herein are methods and devices for dielectrokinetic chromatography. As disclosed, the devices comprise microchannels having at least one perturber which produces a non-uniformity in a field spanning the width of the microchannel. The interaction of the field non-uniformity with a perturber produces a secondary flow which competes with a primary flow. By decreasing the size of the perturber the secondary flow becomes significant for particles/analytes in the nanometer-size range. Depending on the nature of a particle/analyte present in the fluid and its interaction with the primary flow and the secondary flow, the analyte may be retained or redirected. The composition of the primary flow can be varied to affect the magnitude of primary and/or secondary flows on the particles/analytes and thereby separate and concentrate it from other particles/analytes.

  12. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  13. Wire brush fastening device

    DOE Patents [OSTI]

    Meigs, R.A.

    1995-09-19

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus. 13 figs.

  14. Wire brush fastening device

    DOE Patents [OSTI]

    Meigs, Richard A. (East Concord, NY)

    1995-01-01

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

  15. Regenerative braking device

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI)

    1982-01-12

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  16. Quick stop device

    DOE Patents [OSTI]

    Hipwell, Roger L. (35 Hounds Ditch La., Duxbury, MA 02332); Hazelton, Andrew J. (3877 Army St., San Francisco, CA 94131)

    1996-01-01

    A quick stop device for abruptly interrupting the cutting of a workpiece by a cutter is disclosed. The quick stop device employs an outer housing connected to an inner workpiece holder by at least one shear pin. The outer housing includes an appropriate shank designed to be received in the spindle of a machine, such as a machine tool. A cutter, such as a drill bit, is mounted in a stationary position and the workpiece, mounted to the workpiece holder, is rotated during engagement with the cutter. A trigger system includes at least one spring loaded punch disposed for movement into engagement with the workpiece holder to abruptly stop rotation of the workpiece holder. This action shears the shear pin and permits continued rotation of the spindle and outer housing without substantially disturbing the chip root formed during cutting.

  17. Production of Fast Neutron With Plasma Focus Device

    E-Print Network [OSTI]

    Moshe Gai

    2006-05-05

    Before its demise DIANA Hi-TECH, LLC, demonstrated the use of two 50 kJoule Plasma Focus devices for the copius production of fast neutrons, x-rays and radio-isotopes. Such a device is suitable for fast neutron non invasive interogation of contra-band materials including hidden nuclear materials. It could be particularly useful for a fast and fail safe interogation of large cargo containers, or in merchant marine port of entries. The performance and fast neutron production (2.5 or 14 MeV at 10^11 or 10^13 neutrons per pulse, respectively) of the two PF50 Plasma Focus devices produced by DIANA HiTECH, LLC, are discussed.

  18. FAQS Gap Analysis Qualification Card – General Technical Base

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  19. Combined Heat and Power: Connecting the Gap between Markets and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices (Part I) Susanne Brooks, Brent Elswick, and R. Neal Elliott March 2006...

  20. Development of Low Energy Gap and Fully Regioregular Polythienylenevin...

    Office of Scientific and Technical Information (OSTI)

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of...

  1. FAQS Gap Analysis Qualification Card – Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  2. FAQS Gap Analysis Qualification Card – Fire Protection Engineering

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  3. Catalysis by Design: Bridging the Gap between Theory and Experiments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between Theory and Experiments Catalysis by Design: Bridging the Gap between Theory and Experiments Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research...

  4. Catalysis by Design: Bridging the Gap Between Theory and Experiments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Between Theory and Experiments at Nanoscale Level Catalysis by Design: Bridging the Gap Between Theory and Experiments at Nanoscale Level Studies on a simple platinum-alumina...

  5. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M. (Peralta, NM)

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  6. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Sohns, Carl W. (Oak Ridge, TN)

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  7. Hybrid electroluminescent devices

    DOE Patents [OSTI]

    Shiang, Joseph John (Niskayuna, NY); Duggal, Anil Raj (Niskayuna, NY); Michael, Joseph Darryl (Schenectady, NY)

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  8. Operated device estimation framework 

    E-Print Network [OSTI]

    Rengarajan, Janarthanan

    2009-05-15

    time on recloser slow curve Tl Point on the maximum equivalent lockout curve of recloser TRj Maximum clearing time at the chosen current for the jth operation TC Total Clearing TCC Time Current Characteristic V Volts / Voltage viii TABLE... to trip open. Sectionalizer setting should be one less than lockout setting of upstream protective device. The third factor is that sectionalizer?s memory time must be no longer than the cumulative tripping and reclosing time intervals of the upstream...

  9. Thermophotovoltaic energy conversion device

    DOE Patents [OSTI]

    Charache, G.W.; Baldasaro, P.F.; Egley, J.L.

    1998-05-19

    A thermophotovoltaic device and a method for making the thermophotovoltaic device are disclosed. The device includes an n-type semiconductor material substrate having top and bottom surfaces, a tunnel junction formed on the top surface of the substrate, a region of active layers formed on top of the tunnel junction and a back surface reflector (BSR). The tunnel junction includes a layer of heavily doped n-type semiconductor material that is formed on the top surface of the substrate and a layer of heavily doped p-type semiconductor material formed on the n-type layer. An optional pseudomorphic layer can be formed between the n-type and p-type layers. A region of active layers is formed on top of the tunnel junction. This region includes a base layer of p-type semiconductor material and an emitter layer of n-type semiconductor material. An optional front surface window layer can be formed on top of the emitter layer. An optional interference filter can be formed on top of the emitter layer or the front surface window layer when it is used. 1 fig.

  10. Sectional device handling tool

    DOE Patents [OSTI]

    Candee, Clark B. (Monroeville, PA)

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  11. Thermophotovoltaic energy conversion device

    DOE Patents [OSTI]

    Charache, Greg W. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY); Egley, James L. (Burnt Hills, NY)

    1998-01-01

    A thermophotovoltaic device and a method for making the thermophotovoltaic device. The device includes an n-type semiconductor material substrate having top and bottom surfaces, a tunnel junction formed on the top surface of the substrate, a region of active layers formed on top of the tunnel junction and a back surface reflector (BSR). The tunnel junction includes a layer of heavily doped n-type semiconductor material that is formed on the top surface of the substrate and a layer of heavily doped p-type semiconductor material formed on the n-type layer. An optional pseudomorphic layer can be formed between the n-type and p-type layers. A region of active layers is formed on top of the tunnel junction. This region includes a base layer of p-type semiconductor material and an emitter layer of n-type semiconductor material. An optional front surface window layer can be formed on top of the emitter layer. An optional interference filter can be formed on top of the emitter layer or the front surface window layer when it is used.

  12. Multimode imaging device

    DOE Patents [OSTI]

    Mihailescu, Lucian; Vetter, Kai M

    2013-08-27

    Apparatus for detecting and locating a source of gamma rays of energies ranging from 10-20 keV to several MeV's includes plural gamma ray detectors arranged in a generally closed extended array so as to provide Compton scattering imaging and coded aperture imaging simultaneously. First detectors are arranged in a spaced manner about a surface defining the closed extended array which may be in the form a circle, a sphere, a square, a pentagon or higher order polygon. Some of the gamma rays are absorbed by the first detectors closest to the gamma source in Compton scattering, while the photons that go unabsorbed by passing through gaps disposed between adjacent first detectors are incident upon second detectors disposed on the side farthest from the gamma ray source, where the first spaced detectors form a coded aperture array for two or three dimensional gamma ray source detection.

  13. Energy Band Model Based on Effective Mass

    E-Print Network [OSTI]

    Viktor Ariel

    2012-09-06

    In this work, we demonstrate an alternative method of deriving an isotropic energy band model using a one-dimensional definition of the effective mass and experimentally observed dependence of mass on energy. We extend the effective mass definition to anti-particles and particles with zero rest mass. We assume an often observed linear dependence of mass on energy and derive a generalized non-parabolic energy-momentum relation. The resulting non-parabolicity leads to velocity saturation at high particle energies. We apply the energy band model to free relativistic particles and carriers in solid state materials and obtain commonly used dispersion relations and experimentally confirmed effective masses. We apply the model to zero rest mass particles in graphene and propose using the effective mass for photons. Therefore, it appears that the new energy band model based on the effective mass can be applied to relativistic particles and carriers in solid state materials.

  14. High power W-band klystrons

    SciTech Connect (OSTI)

    Caryotakis, George; Scheitrum, Glenn; Jongewaard, Erik; Vlieks, Arnold; Fowkes, Randy [Stanford Linear Accelerator Center, Menlo Park, California 94025 (United States); Li, Jeff [University of California Davis, Davis, California 95616 (United States)

    1999-05-01

    The development of W-band klystrons is discussed. Modeling of the klystron performance predicts 100 kW output power from a single klystron. The permanent magnet focusing and small size of the circuit permit combination of multiple klystrons in a module. A six-klystron module in a single vacuum envelope is expected to produce 500 kW peak power and up to 5 kW average power. The critical issues in the W-band klystron development are the electron beam transport and the fabrication of the klystron circuit. Two microfabrication techniques, EDM and LIGA, are being evaluated to produce the W-band circuit. {copyright} {ital 1999 American Institute of Physics.}

  15. Wireless Communications Device Policy & Procedures

    E-Print Network [OSTI]

    Wireless Communications Device Policy & Procedures Effective Date: October 1, 2012 Page 1 Revised staff eligibility for a wireless communication device b. Define the process for obtaining a wireless Wireless devices and plans will be provided by StFX for the following employees: 1. President, Vice

  16. Surface functionalization of graphene devices

    E-Print Network [OSTI]

    Zhang, Xu, S.M. Massachusetts Institute of Technology

    2012-01-01

    Graphene, a zero-gap semiconductor with massless charge carriers, is emerging as an amazing material for future electronics, due to its outstanding electrical and mechanical performances. However, the lack of a bandgap ...

  17. Nanoscale Josephson Devices

    E-Print Network [OSTI]

    Bell, Chris

    , ferromagnetically (aligned ferromagnetic layers) FIB Focused Ion Beam GL Ginzburg-Landau GPIB General Purpose Interface Bus GMR Giant Magnetoresistance HTS High Temperature Superconductor I Insulator LED Light Emitting Diode LTS Low Temperature Superconductor MR... . The fabrication of intrinsic Josephson junctions in the high temperature superconductor Tl2Ba2CaCu2O8 will then be discussed, as well as Nb/MoSi2/Nb junctions, superconducting quantum interference devices, and finally GaN light emitting diodes. The work on Tl2Ba2...

  18. Micro environmental sensing device

    DOE Patents [OSTI]

    Polosky, Marc A. (Tijeras, NM); Lukens, Laurance L. (Tijeras, NM)

    2006-05-02

    A microelectromechanical (MEM) acceleration switch is disclosed which includes a proof mass flexibly connected to a substrate, with the proof mass being moveable in a direction substantially perpendicular to the substrate in response to a sensed acceleration. An electrode on the proof mass contacts one or more electrodes located below the proof mass to provide a switch closure in response to the sensed acceleration. Electrical latching of the switch in the closed position is possible with an optional latching electrode. The MEM acceleration switch, which has applications for use as an environmental sensing device, can be fabricated using micromachining.

  19. Stretchable and foldable electronic devices

    DOE Patents [OSTI]

    2013-10-08

    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  20. Stretchable and foldable electronic devices

    DOE Patents [OSTI]

    Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong

    2014-12-09

    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.