National Library of Energy BETA

Sample records for band axis orientation

  1. High Current-Carrying Capability in c -Axis-Oriented Superconducting...

    Office of Scientific and Technical Information (OSTI)

    High Current-Carrying Capability in c -Axis-Oriented Superconducting MgBsub 2 Thin Films Citation Details In-Document Search Title: High Current-Carrying Capability in c ...

  2. Tracking formulas and strategies for a receiver oriented dual-axis tracking toroidal heliostat

    SciTech Connect (OSTI)

    Guo, Minghuan; Wang, Zhifeng; Liang, Wenfeng; Zhang, Xiliang; Zang, Chuncheng; Lu, Zhenwu; Wei, Xiudong

    2010-06-15

    A 4 m x 4 m toroidal heliostat with receiver oriented dual-axis tracking, also called spinning-elevation tracking, was developed as an auxiliary heat source for a hydrogen production system. A series of spinning-elevation tracking formulas have been derived for this heliostat. This included basic tracking formulas, a formula for the elevation angle for heliostat with a mirror-pivot offset, and a more general formula for the biased elevation angle. This paper presents the new tracking formulas in detail and analyzes the accuracy of applying a simplifying approximation. The numerical results show these receiver oriented dual-axis tracking formula approximations are accurate to within 2.5 x 10{sup -6} m in image plane. Some practical tracking strategies are discussed briefly. Solar images from the toroidal heliostat at selected times are also presented. (author)

  3. Highly c-axis oriented GaN films grown on free-standing diamond substrates for high-power devices

    SciTech Connect (OSTI)

    Zhang, D. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Bian, J.M., E-mail: jmbian@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Qin, F.W.; Wang, J.; Pan, L. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Zhao, J.M. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Zhao, Y.; Bai, Y.Z. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Du, G.T. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2011-10-15

    Highlights: {yields} GaN films are deposited on diamond substrates by ECR-PEMOCVD. {yields} Influence of deposition temperature on the properties of samples is investigated. {yields} Properties of GaN films are dependent on the deposition temperature. -- Abstract: GaN films with highly c-axis preferred orientation are deposited on free-standing thick diamond films by low temperature electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition (ECR-PEMOCVD). The TMGa and N{sub 2} are applied as precursors of Ga and N, respectively. The quality of as-grown GaN films are systematically investigated as a function of deposition temperature by means of X-ray diffraction (XRD) analysis, Hall Effect measurement (HL), room temperature photoluminescence (PL) and atomic force microscopy (AFM). The results show that the dense and uniformed GaN films with highly c-axis preferred orientation are successfully achieved on free-standing diamond substrates under optimized deposition temperature of 400 {sup o}C, and the room temperature PL spectra of the optimized GaN film show a intense ultraviolet near band edge emission and a weak yellow luminescence. The obtained GaN/diamond structure has great potential for the development of high-power semiconductor devices due to its excellent heat dissipation nature.

  4. Near-resonant second-order nonlinear susceptibility in c-axis oriented ZnO nanorods

    SciTech Connect (OSTI)

    Liu, Weiwei; Wang, Kai; Long, Hua; Wang, Bing Lu, Peixiang; Chu, Sheng

    2014-08-18

    Near-resonant second-harmonic generation (SHG) in c-axis oriented ZnO nanorods is studied under the femtosecond laser with wavelength from 780?nm to 810?nm. A highly efficient SHG is obtained, which is attributed to the d{sub 131} component of the second-order nonlinear susceptibility. The largest d{sub 131} value is estimated to be 10.2?pm/V at the pumping wavelength of 800?nm, which indicates a large SHG response of the c-axis oriented ZnO nanorods in the near-resonant region. Theoretical calculation based on finite-difference time-domain simulation suggests a four-fold local-field enhancement of the SHG.

  5. Magnetic rotation (MR) band crossing in N=78 odd-Z nuclei: Tilted axis cranking (TAC) calculations to explore the role of nucleons

    SciTech Connect (OSTI)

    Kumar, Suresh

    2014-08-14

    Magnetic Rotation (MR) band crossing is studied systematically in N=78 isotones (La, Pr, Pm and Eu) using Tilted Axis Cranking (TAC) model. The observables such as I(h) vs h?, excitation energy E(MeV) vs spin I(h), and the B(M1)/B(E2) vs I(h) were considered to pinpoint MR crossing in these nuclei. The results of tilted axis cranking were compared with these experimental observables. The B(M1) and B(E2) values were also reported and used to understand the crossing behaviour of these MR bands. The systematic evolution of this phenomenon in N=78 odd-Z istotones leads to understand the role of nucleons in MR band crossing.

  6. Epitaxial c-axis oriented BaTiO{sub 3} thin films on SrTiO{sub 3}-buffered Si(001) by atomic layer deposition

    SciTech Connect (OSTI)

    Ngo, Thong Q.; McDaniel, Martin D.; Ekerdt, John G., E-mail: ekerdt@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Posadas, Agham B.; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Hu, Chengqing; Yu, Edward T. [Department of Electrical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Bruley, John [IBM Research Division, Yorktown Heights, New York 10593 (United States)

    2014-02-24

    Atomic layer deposition (ALD) of epitaxial c-axis oriented BaTiO{sub 3} (BTO) on Si(001) using a thin (1.6?nm) buffer layer of SrTiO{sub 3} (STO) grown by molecular beam epitaxy is reported. The ALD growth of crystalline BTO films at 225??C used barium bis(triisopropylcyclopentadienyl), titanium tetraisopropoxide, and water as co-reactants. X-ray diffraction (XRD) reveals a high degree of crystallinity and c-axis orientation of as-deposited BTO films. Crystallinity is improved after vacuum annealing at 600??C. Two-dimensional XRD confirms the tetragonal structure and orientation of 720-nm thick films. The effect of the annealing process on the BTO structure is discussed. A clean STO/Si interface is found using in-situ X-ray photoelectron spectroscopy and confirmed by cross-sectional scanning transmission electron microscopy. The capacitance-voltage characteristics of 720?nm-thick BTO films are examined and show an effective dielectric constant of ?660 for the heterostructure.

  7. Synthesis and characterization of 10?nm thick piezoelectric AlN films with high c-axis orientation for miniaturized nanoelectromechanical devices

    SciTech Connect (OSTI)

    Zaghloul, Usama; Piazza, Gianluca

    2014-06-23

    The scaling of piezoelectric nanoelectromechanical systems (NEMS) is challenged by the synthesis of ultrathin and high quality piezoelectric films on very thin electrodes. We report the synthesis and characterization of the thinnest piezoelectric aluminum nitride (AlN) films (10?nm) ever deposited on ultrathin platinum layers (25?nm) using reactive sputtering. X-ray diffraction, high-resolution transmission electron microscopy, and fast Fourier transform analyses confirmed the proper crystal orientation, fine columnar texture, and the continuous lattice structure within individual grains in the deposited AlN nanometer thick films. The average extracted d{sub 31} piezoelectric coefficient for the synthesized films is ?1.73 pC/N, which is comparable to the reported values for micron thick and highly c-axis oriented AlN films. The 10?nm AlN films were employed to demonstrate two different types of optimized piezoelectric nanoactuators. The unimorph actuators exhibit vertical displacements as large as 1.1??m at 0.7?V for 25??m long and 30?nm thick beams. These results have a great potential to realize miniaturized NEMS relays with extremely low voltage, high frequency resonators, and ultrasensitive sensors.

  8. The impact of argon admixture on the c-axis oriented growth of direct current magnetron sputtered Sc{sub x}Al{sub 1?x}N thin films

    SciTech Connect (OSTI)

    Mayrhofer, P. M.; Bittner, A.; Schmid, U.; Eisenmenger-Sittner, C.; Stger-Pollach, M.

    2014-05-21

    The piezoelectric properties of wurtzite aluminium nitride (w-AlN) are enhanced by alloying with scandium (Sc), thus offering superior properties for applications in micro electro-mechanical systems devices. Sc{sub x}Al{sub 1?x}N thin films have been prepared by DC reactive magnetron sputtering on Si (100) substrates from a single target. When targeting a concentration range from x?=?0 up to x?=?0.15, the preparation conditions have been optimized by varying the Ar/N{sub 2} ratio in the sputtering gas. To incorporate an increasing Sc concentration, a higher Ar/N{sub 2} ratio has to be applied during the deposition process. Hence, the argon concentration in the sputtering gas becomes a crucial parameter for microstructure-related parameters. To determine phase purity, degree of c-axis orientation, lattice parameter, and grain size, the Sc{sub x}Al{sub 1?x}N thin films were investigated by techniques, such as scanning electron microscopy, transmission electron microscopy, and X-ray diffraction.

  9. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (OSTI)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  10. Angular Distributions of Fragments Originating from the Spontaneous Fission of Oriented Nuclei and Problem of the Conservation of the Spin Projection onto the Symmetry Axis of a Fissile Nucleus

    SciTech Connect (OSTI)

    Kadmensky, S.G.; Rodionova, L.V. [Voronezh State University, Universitetskaya pl. 1, Voronezh, 394693 (Russian Federation)

    2005-09-01

    The concept of transition fission states, which was successfully used to describe the angular distributions of fragments for the spontaneous and low-energy induced fission of axisymmetric nuclei, proves to be correct if the spin projection onto the symmetry axis of a fissile nucleus is an integral of the motion for the external region from the descent of the fissile nucleus from the external fission barrier to the scission point. Upon heating a fissile nucleus in this region to temperatures of T {approx_equal} 1 MeV (this is predicted by many theoretical models of the fission process), the Coriolis interaction uniformly mixes the possible projections of the fissile-nucleus spin for the case of low spin values, this leading to the loss of memory about transition fission states in the asymptotic region where the angular distributions of fragments are formed. Within quantum-mechanical fission theory, which takes into account deviations from A. Bohr's formula, the angular distributions of fragments are calculated for spontaneously fissile nuclei aligned by an external magnetic field at ultralow temperatures, and it is shown that an analysis of experimental angular distributions of fragments would make it possible to solve the problem of spin-projection conservation for fissile nuclei in the external region.

  11. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  12. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  13. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  14. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  15. Resistive band for turbomachine blade

    DOE Patents [OSTI]

    Roberts, Herbert Chidsey; Taxacher, Glenn Curtis

    2015-08-25

    A turbomachine system includes a rotor that defines a longitudinal axis of the turbomachine system. A first blade is coupled to the rotor, and the first blade has first and second laminated plies. A first band is coupled to the first blade and is configured to resist separation of the first and second laminated plies.

  16. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  17. Optical orientation of holes in strained nanostructures

    SciTech Connect (OSTI)

    Averkiev, N. S.; Sablina, N. I.

    2008-03-15

    A theory describing the optical orientation and Hanle effect for holes in quantum wells or quantum dots based on cubic semiconductors is developed. It is demonstrated that the presence of internal or external strain in quantum-confinement heterostructures leads to the dependence of the Hanle effect on the orientation of the magnetic field with respect to the heterostructure growth axis.

  18. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    SciTech Connect (OSTI)

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    2015-09-10

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impeded hydrogen diffusion across the banded pearlite.

  19. Vertical axis wind turbine airfoil

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  20. Two-axis angular effector

    DOE Patents [OSTI]

    Vaughn, Mark R. (Albuquerque, NM); Robinett, III, Rush D. (Tijeras, NM); Phelan, John R. (Albuquerque, NM); Van Zuiden, Don M. (Albuquerque, NM)

    1997-01-21

    A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.

  1. Three axis velocity probe system

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV); Smith, Jr., Nelson S. (Morgantown, WV); Utt, Carroll E. (Morgantown, WV)

    1992-01-01

    A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

  2. Structural and band alignment properties of Al{sub 2}O{sub 3} on epitaxial Ge grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy

    SciTech Connect (OSTI)

    Hudait, M. K.; Zhu, Y.; Maurya, D.; Priya, S.; Patra, P. K.; Ma, A. W. K.; Aphale, A.; Macwan, I.

    2013-04-07

    Structural and band alignment properties of atomic layer Al{sub 2}O{sub 3} oxide film deposited on crystallographically oriented epitaxial Ge grown in-situ on (100), (110), and (111)A GaAs substrates using two separate molecular beam epitaxy chambers were investigated using cross-sectional transmission microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). High-resolution triple axis x-ray measurement demonstrated pseudomorphic and high-quality Ge epitaxial layer on crystallographically oriented GaAs substrates. The cross-sectional TEM exhibited a sharp interface between the Ge epilayer and each orientation of the GaAs substrate as well as the Al{sub 2}O{sub 3} film and the Ge epilayer. The extracted valence band offset, {Delta}E{sub v}, values of Al{sub 2}O{sub 3} relative to (100), (110), and (111) Ge orientations using XPS measurement were 3.17 eV, 3.34 eV, and 3.10 eV, respectively. Using XPS data, variations in {Delta}E{sub v} related to the crystallographic orientation were {Delta}E{sub V}(110)Ge>{Delta}E{sub V}(100)Ge{>=}{Delta}E{sub V}(111)Ge and the conduction band offset, {Delta}E{sub c}, related to the crystallographic orientation was {Delta}E{sub c}(111)Ge>{Delta}E{sub c}(110)Ge>{Delta}E{sub c}(100)Ge using the measured {Delta}E{sub v}, bandgap of Al{sub 2}O{sub 3} in each orientation, and well-known Ge bandgap of 0.67 eV. These band offset parameters are important for future application of Ge-based p- and n-channel metal-oxide field-effect transistor design.

  3. Design of a Thermal Imaging Diagnostic Using 90-Degree, Off-Axis, Parabolic Mirrors

    SciTech Connect (OSTI)

    Malone, Robert M.; Becker, Steven A.; Dolan, Daniel H.; Hacking, Richard G.; Hickman, Randy J.; Kaufman, Morris I.; Stevens, Gerald D.; Turley, William D.

    2006-09-01

    Thermal imaging is an important, though challenging, diagnostic for shockwave experiments. Shock-compressed materials undergo transient temperature changes that cannot be recorded with standard (greater than ms response time) infrared detectors. A further complication arises when optical elements near the experiment are destroyed. We have designed a thermal-imaging system for studying shock temperatures produced inside a gas gun at Sandia National Laboratories. Inexpensive, diamond-turned, parabolic mirrors relay an image of the shocked target to the exterior of the gas gun chamber through a sapphire vacuum port. The 30005000-nm portion of this image is directed to an infrared camera which acquires a snapshot of the target with a minimum exposure time of 150 ns. A special mask is inserted at the last intermediate image plane, to provide dynamic thermal background recording during the event. Other wavelength bands of this image are split into high-speed detectors operating at 9001700 nm, and at 17003000 nm for timeresolved pyrometry measurements. This system incorporates 90-degree, off-axis parabolic mirrors, which can collect low f/# light over a broad spectral range, for high-speed imaging. Matched mirror pairs must be used so that aberrations cancel. To eliminate image plane tilt, proper tip-to-tip orientation of the parabolic mirrors is required. If one parabolic mirror is rotated 180 degrees about the optical axis connecting the pair of parabolic mirrors, the resulting image is tilted by 60 degrees. Different focal-length mirrors cannot be used to magnify the image without substantially sacrificing image quality. This paper analyzes performance and aberrations of this imaging diagnostic.

  4. Dual Axis Radiographic Hydrodynamic Test Facility | National...

    National Nuclear Security Administration (NNSA)

    Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security ... Home About Us Our Programs Defense Programs Research, Development, Test, and ...

  5. Flexible helical-axis stellarator

    DOE Patents [OSTI]

    Harris, Jeffrey H. (Oak Ridge, TN); Hender, Timothy C. (Abingdon, GB2); Carreras, Benjamin A. (Oak Ridge, TN); Cantrell, Jack L. (Oak Ridge, TN); Morris, Robert N. (Oak Ridge, TN)

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  6. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    2015-09-10

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  7. Photonic band gap structure simulator

    DOE Patents [OSTI]

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  8. Effect of strain along C-axis NbS{sub 2}

    SciTech Connect (OSTI)

    Singh, Tapender Kumar, Jagdish Sastri, O. S. K. S.

    2015-05-15

    We have studied electronic properties of double layered hexagonal structure of the Niobium Di-Sulphide (2H-NbS{sub 2}) superconductor for various strains introduced along the c-axis using ab-initio calculations. The DFT calculations based on Full Potential Linearized Augmented Plane Wave (FPLAPW) method are performed using the ELK code. The total energy curve (E vs a), Density of States (DOS) and the Band structure calculations obtained in this work are matching with the earlier reports. The Pressure-Volume (P-V) diagram for 2H-NbS{sub 2} was obtained using the Equation of State(EOS) calculations, which provides the relationship between the pressure and strain applied along the c-axis. The band structures for various strains ranging from 0 percent to 10 percent along c-axis in steps of 2 percent are obtained. We note that there are increasing number of bands crossing over the Fermi energy level with increase in strain. Thus, we conclude that with increasing strain along c-axis, number of conduction bands crossing the E{sub F} increases, which gives rise to more conduction states and hence higher conductivity.

  9. Helical axis stellarator with noninterlocking planar coils

    DOE Patents [OSTI]

    Reiman, Allan (Princeton, NJ); Boozer, Allen H. (Rocky Hill, NJ)

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  10. Dual Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deputy Group Leader Tim Ferris (505) 665-2179 Email Hydrotests are critical in assessing nuclear weapons in nation's stockpile Dual Axis Radiographic Hydrodynamic Test facility ...

  11. Method and sample spinning apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOE Patents [OSTI]

    Pines, Alexander (Berkeley, CA); Samoson, Ago (Tallinn, SU)

    1990-01-01

    An improved NMR apparatus and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus spins the sample about an axis. The angle of the axis is mechanically varied such that the time average of two or more Legendre polynomials are zero.

  12. InfiniBand Interconnects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPICH2 MVAPICH2 Equipment InfiniBand 4x 10 GigE Fujitsu switch NetEffect NIC Equipment & Benchmarks Latency Results Bandwidth Results Bidirectional Bandwidth...

  13. ARM Orientation: Overview and History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Orientation: ARM Orientation: Overview and History Overview and History Mar 2007 ARM Orientation 2 ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement ...

  14. Actuator assembly including a single axis of rotation locking member

    DOE Patents [OSTI]

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  15. User's manual for the vertical axis wind turbine performance...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: User's manual for the vertical axis wind turbine performance computer code darter Citation Details In-Document Search Title: User's manual for the vertical axis...

  16. User's manual for the vertical axis wind turbine performance...

    Office of Scientific and Technical Information (OSTI)

    User's manual for the vertical axis wind turbine performance computer code darter Citation Details In-Document Search Title: User's manual for the vertical axis wind turbine...

  17. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to...

  18. Crystal surface symmetry from zone-axis patterns in reflection high-energy-electron diffraction

    SciTech Connect (OSTI)

    Shannon, M.D.; Eades, J.A.; Meichle, M.E.; Turner, P.S.; Buxton, B.F.

    1984-11-26

    New experimental techniques, sensitive to crystal surface symmetry, for reflection high-energy-electron diffraction have been developed and applied to the (001) surface of MgO. The techniques map the variation of the intensity of one or more diffracted beams as a function of the incident-beam orientation. The symmetry of these surface zone-axis patterns has been studied theoretically and confirmed experimentally. The techniques are expected to provide a sensitive means of surface characterization.

  19. Enclosed, off-axis solar concentrator

    DOE Patents [OSTI]

    Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

    2013-11-26

    A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

  20. Modular off-axis solar concentrator

    DOE Patents [OSTI]

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  1. Feasibility and optical performance of one axis three positions sun-tracking polar-axis aligned CPCs for photovoltaic applications

    SciTech Connect (OSTI)

    Tang, Runsheng; Yu, Yamei

    2010-09-15

    A new design concept, called one axis three positions sun-tracking polar-axis aligned CPCs (3P-CPCs, in short), was proposed and theoretically studied in this work for photovoltaic applications. The proposed trough-like CPC is oriented in the polar-axis direction, and the aperture is daily adjusted eastward, southward, and westward in the morning, noon and afternoon, respectively, by rotating the CPC trough, to ensure efficient collection of beam radiation nearly all day. To investigate the optical performance of such CPCs, an analytical mathematical procedure is developed to estimate daily and annual solar gain captured by such CPCs based on extraterrestrial radiation and monthly horizontal radiation. Results show that the acceptance half-angle of 3P-CPCs is a unique parameter to determine their optical performance according to extraterrestrial radiation, and the annual solar gain stays constant if the acceptance half-angle, {theta}{sub a}, is less than one third of {omega}{sub 0,min}, the sunset hour angle in the winter solstice, otherwise decreases with the increase of {theta}{sub a}. For 3P-CPCs used in China, the annual solar gain, depending on the climatic conditions in site, decreased with the acceptance half-angle, but such decrease was slow for the case of {theta}{sub a}{<=}{omega}{sub 0,min}/3, indicating that the acceptance half-angle should be less than one third of {omega}{sub 0,min} for maximizing annual energy collection. Compared to fixed east-west aligned CPCs (EW-CPCs) with a yearly optimal acceptance half-angle, the fixed south-facing polar-axis aligned CPCs (1P-CPCs) with the same acceptance half-angle as the EW-CPCs annually collected about 65-74% of that EW-CPCs did, whereas 3P-CPCs annually collected 1.26-1.45 times of that EW-CPCs collected, indicating that 3P-CPCs were more efficient for concentrating solar radiation onto their coupling solar cells. (author)

  2. High payload six-axis load sensor

    DOE Patents [OSTI]

    Jansen, John F. (Knoxville, TN); Lind, Randall F. (Knoxville, TN)

    2003-01-01

    A repairable high-payload six-axis load sensor includes a table, a base, and at least three shear-pin load transducers removably mounted between the table and the base. Removable mounting permits easy replacement of damaged shear pins. Preferably, the shear-pin load transducers are responsive to shear forces imparted along the two axes perpendicular to an axis of minimum sensitivity characteristic of the transducer. Responsive to an applied shear force, each shear-pin load transducer can produce an electrical signal proportional to the reaction force. The load sensor can further include a structure for receiving the proportional electrical signals and computing the applied load corresponding to the proportional electrical signals. The computed load can be expressed in terms of a three-dimensional XYZ Cartesian coordinate system.

  3. Passive orientation apparatus

    DOE Patents [OSTI]

    Spletzer, Barry L. (Albuquerque, NM); Fischer, Gary J. (Albuquerque, NM); Martinez, Michael A. (Albuquerque, NM)

    2001-01-01

    An apparatus that can return a payload to a known orientation after unknown motion, without requiring external power or complex mechanical systems. The apparatus comprises a faceted cage that causes the system to rest in a stable position and orientation after arbitrary motion. A gimbal is mounted with the faceted cage and holds the payload, allowing the payload to move relative to the stable faceted cage. The payload is thereby placed in a known orientation by the interaction of gravity with the geometry of the faceted cage, the mass of the system, and the motion of the payload and gimbal. No additional energy, control, or mechanical actuation is required. The apparatus is suitable for use in applications requiring positioning of a payload to a known orientation after arbitrary or uncontrolled motion, including remote sensing and mobile robot applications.

  4. ARM Orientation Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding Finding " " Stuff Stuff " " from from ARM Web Site and Data ARM Web Site and Data Archive Archive Orientation for new Science Team Members Topics Topics Navigating ARM web ...

  5. Three-axis asymmetric radiation detector system

    DOE Patents [OSTI]

    Martini, Mario Pierangelo (Oak Ridge, TN); Gedcke, Dale A. (Oak Ridge, TN); Raudorf, Thomas W. (Oak Ridge, TN); Sangsingkeow, Pat (Knoxville, TN)

    2000-01-01

    A three-axis radiation detection system whose inner and outer electrodes are shaped and positioned so that the shortest path between any point on the inner electrode and the outer electrode is a different length whereby the rise time of a pulse derived from a detected radiation event can uniquely define the azimuthal and radial position of that event, and the outer electrode is divided into a plurality of segments in the longitudinal axial direction for locating the axial location of a radiation detection event occurring in the diode.

  6. W-band free-electron masers

    SciTech Connect (OSTI)

    Freund, H. P. [Science Applications International Corp., McLean, Virginia 22102 (United States); Jackson, R. H.; Danly, B. G.; Levush, B. [Naval Research Laboratory, Washington, District of Columbia 20375 (United States)

    1999-05-07

    Theoretical analyses of high power W-band (i.e., {approx_equal}94 GHz) free-electron maser amplifiers are presented for a helical wiggler/cylindrical waveguide configuration using the three-dimensional slow-time-scale ARACHNE simulation code [9]. The geometry treated by ARACHNE is that of an electron beam propagating through the cylindrical waveguide subject to a helical wiggler and an axial guide magnetic field. Two configurations are discussed. The first is the case of a reversed-guide field geometry where the guide field is oriented antiparallel to the helicity of the wiggler field. Using a 330 kV/20 A electron beam, efficiencies of the order of 7% are calculated with a bandwidth (FWHM) of 5 GHz. The second example employs a strong guide field of 20 kG oriented parallel to the helicity of the wiggler. Here, efficiencies of greater than 8% are possible with a FWHM bandwidth of 4.5 GHz using a 300 kV/20 A electron beam. A normalized emittance of 95 mm-mrad is assumed in both cases, and no beam losses are observed for either case. Both cases assume interaction with the fundamental TE{sub 11} mode, which has acceptably low losses in the W-band.

  7. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    SciTech Connect (OSTI)

    Wang, Fenggong Grinberg, Ilya; Rappe, Andrew M.

    2014-04-14

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2?eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.

  8. Broad band waveguide spectrometer

    DOE Patents [OSTI]

    Goldman, Don S. (Folsom, CA)

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  9. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect (OSTI)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  10. Vertical-Axis Wind Turbine Mesh Generator

    SciTech Connect (OSTI)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.

  11. Two-axis tracking solar collector mechanism

    DOE Patents [OSTI]

    Johnson, K.C.

    1992-12-08

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.

  12. Two-axis tracking solar collector mechanism

    DOE Patents [OSTI]

    Johnson, Kenneth C. (201 W. California Ave. #705, Sunnyvale, CA 94086)

    1992-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  13. Two-axis tracking solar collector mechanism

    DOE Patents [OSTI]

    Johnson, Kenneth C. (201 W. California Ave., #401, Sunnyvale, CA 94086)

    1990-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  14. Vertical-Axis Wind Turbine Mesh Generator

    Energy Science and Technology Software Center (OSTI)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitatesmore » specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.« less

  15. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic Hydrodynamic Test Facility, or DARHT,

  16. Three-axis particle impact probe

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV); Smith, Jr., Nelson S. (Morgantown, WV); Utt, Carroll E. (Morgantown, WV)

    1992-01-01

    Three-axis particle impact probes detect particle impact vectors along x-, y-, and z-axes by spherical probe head mounted on the outer end of a shaft that is flexibly mounted in silicone rubber at the top of a housing so as to enable motion imparted to the head upon impact to be transmitted to a grounded electrode secured to the shaft within the housing. Excitable electrodes are mounted in the housing in a fixed position, spaced apart from the ground electrode and forming, with the ground electrode, capacitor pairs. Movement of the ground electrode results in changes in capacitance, and these difference in capacitance are used for measurement or derivation of momentum vectors along each of the three axes. In one embodiment, the ground electrode is mounted at the base of the shaft and is secured to a silicone rubber layer at the top of the housing, providing for cantilevered movement. In another embodiment, the shaft is mounted at its mid point in a flexible bushing so that it undergoes pivotal movement around that point.

  17. Control system for a vertical axis windmill

    DOE Patents [OSTI]

    Brulle, Robert V. (St. Louis County, MO)

    1983-10-18

    A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  18. Yaw dynamics of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Hansen, A.C. )

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  19. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy ... Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ...

  20. MHK Technologies/Horizontal Axis Logarithmic Spiral Turbine ...

    Open Energy Info (EERE)

    Horizontal Axis Logarithmic Spiral Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Golden...

  1. Bertram Brockhouse, the Triple-axis Spectrometer, and Neutron...

    Office of Scientific and Technical Information (OSTI)

    Bertram Brockhouse, the Triple-axis Spectrometer, and Neutron Spectroscopy Resources with Additional Information Bertram Brockhouse Courtesy of McMaster University Bertram...

  2. Solasta aka The Eagle Axis | Open Energy Information

    Open Energy Info (EERE)

    Zip: 2458 Sector: Efficiency, Solar Product: Start-up planning to produce high-efficiency solar cells using nanoscale elements. References: Solasta (aka The Eagle Axis)1 This...

  3. Oxygen A-band Exploitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ? scatteringreflection diagnostics of media permeated with gas Hi-res O 2 A-band Spectroscopy, I: Cloud products are statistical cross-section density...

  4. Spin-stabilized magnetic levitation without vertical axis of rotation

    DOE Patents [OSTI]

    Romero, Louis (Albuquerque, NM); Christenson, Todd (Albuquerque, NM); Aaronson, Gene (Albuquerque, NM)

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  5. Band anticrossing in dilute nitrides

    SciTech Connect (OSTI)

    Shan, W.; Yu, K.M.; Walukiewicz, W.; Wu, J.; Ager III, J.W.; Haller, E.E.

    2003-12-23

    Alloying III-V compounds with small amounts of nitrogen leads to dramatic reduction of the fundamental band-gap energy in the resulting dilute nitride alloys. The effect originates from an anti-crossing interaction between the extended conduction-band states and localized N states. The interaction splits the conduction band into two nonparabolic subbands. The downward shift of the lower conduction subband edge is responsible for the N-induced reduction of the fundamental band-gap energy. The changes in the conduction band structure result in significant increase in electron effective mass and decrease in the electron mobility, and lead to a large enhance of the maximum doping level in GaInNAs doped with group VI donors. In addition, a striking asymmetry in the electrical activation of group IV and group VI donors can be attributed to mutual passivation process through formation of the nearest neighbor group-IV donor nitrogen pairs.

  6. Better Buildings Residential Network Orientation Webinar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    11, 2014. Call Slides and Discussion Summary More Documents & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network Orientation...

  7. Oriented niobate ferroelectric thin films for electrical and optical devices

    DOE Patents [OSTI]

    Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Chicago, IL)

    2001-01-01

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  8. Off-axis illumination direct-to-digital holography

    DOE Patents [OSTI]

    Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.

    2004-06-08

    Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.

  9. Orientation filtering for crystalline films

    DOE Patents [OSTI]

    Smith, H.I.; Atwater, H.A.; Thompson, C.V.; Geis, M.W.

    1986-12-30

    A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations. 7 figs.

  10. Orientation filtering for crystalline films

    DOE Patents [OSTI]

    Smith, Henry I. (Sudbury, MA); Atwater, Harry A. (Somerville, MA); Thompson, Carl V. (Watertown, MA); Geis, Michael W. (Acton, MA)

    1986-12-30

    A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations.

  11. ARM Orientation: Overview and History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Warren Wiscombe ARM Chief Scientist Brookhaven & NASA ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement 2 Mar 2006 ARM Orientation You want me to be Chief ...

  12. Resonant spin tunneling in randomly oriented nanospheres of Mn?? acetate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lendinez, S.; Billinge, S. J. L.; Zarzuela, R.; Tejada, J.; Terban, M. W.; Espin, J.; Imaz, I.; Maspoch, D.; Chudnovsky, E. M.

    2015-01-06

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn?? acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn?? acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amoresingle crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn?? acetate. Our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.less

  13. EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

  14. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    SciTech Connect (OSTI)

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  15. A multichannel magnetic probe system for analysing magnetic fluctuations in helical axis plasmas

    SciTech Connect (OSTI)

    Haskey, S. R.; Blackwell, B. D.; Seiwald, B.; Hole, M. J.; Pretty, D. G.; Howard, J.; Wach, J. [Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)] [Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2013-09-15

    The need to understand the structure of magnetic fluctuations in H-1NF heliac [S. Hamberger et al., Fusion Technol. 17, 123 (1990)] plasmas has motivated the installation of a sixteen former, tri-axis helical magnetic probe Mirnov array (HMA). The new array complements two existing poloidal Mirnov arrays by providing polarisation information, higher frequency response, and improved toroidal resolution. The helical placement is ideal for helical axis plasmas because it positions the array as close as possible to the plasma in regions of varying degrees of favourable curvature in the magnetohydrodynamic sense, but almost constant magnetic angle. This makes phase variation with probe position near linear, greatly simplifying the analysis of the data. Several of the issues involved in the design, installation, data analysis, and calibration of this unique array are presented including probe coil design, frequency response measurements, mode number identification, orientation calculations, and mapping probe coil positions to magnetic coordinates. Details of specially designed digitally programmable pre-amplifiers, which allow gains and filters to be changed as part of the data acquisition initialisation sequence and stored with the probe signals, are also presented. The low shear heliac geometry [R. Jimnez-Gmez et al., Nucl. Fusion 51, 033001 (2011)], flexibility of the H-1NF heliac, and wealth of information provided by the HMA create a unique opportunity for detailed study of Alfvn eigenmodes, which could be a serious issue for future fusion reactors.

  16. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect (OSTI)

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  17. Dipole bands in high spin states of {sub 57}{sup 135}La{sub 78}

    SciTech Connect (OSTI)

    Garg, Ritika; Kumar, S.; Saxena, Mansi; Goyal, Savi; Siwal, Davinder; Verma, S.; Mandal, S.; Palit, R.; Saha, Sudipta; Sethi, J.; Sharma, Sushil K.; Trivedi, T.; Jadav, S. K.; Donthi, R.; Naidu, B. S.

    2014-08-14

    High spin states of {sup 135}La have been investigated using the reaction {sup 128}Te({sup 11}B,4n){sup 135}La at a beam energy of 50.5 MeV. Two negative parity dipole bands (?I = 1) have been established. Crossover E2 transitions have been observed for the first time in one of the dipole bands. For the Tilted Axis Cranking (TAC) calculations, a three-quasiparticle (3qp) configuration ?(h{sub 11/2}){sup 1}??(h{sub 11/2}){sup ?2} and a five-quasiparticle (5qp) configuration ?(h{sub 11/2}){sup 1}(g{sub 7/2}/d{sub 5/2}){sup 2}??(h{sub 11/2}){sup ?2} have been taken for the two negative parity dipole bands. The comparison of experimental observables with TAC calculations supports the configuration assignments for both the dipole bands.

  18. Freely oriented portable superconducting magnet

    DOE Patents [OSTI]

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  19. Position and orientation tracking system

    DOE Patents [OSTI]

    Burks, B.L.; DePiero, F.W.; Armstrong, G.A.; Jansen, J.F.; Muller, R.C.; Gee, T.F.

    1998-05-05

    A position and orientation tracking system presents a laser scanning apparatus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle. 14 figs.

  20. Position and orientation tracking system

    DOE Patents [OSTI]

    Burks, Barry L.; DePiero, Fred W.; Armstrong, Gary A.; Jansen, John F.; Muller, Richard C.; Gee, Timothy F.

    1998-01-01

    A position and orientation tracking system presents a laser scanning appaus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle.

  1. ARM Orientation: Overview and History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mar 2007 ARM Orientation 14 Where did ARM come from? Where did ARM come from? A nutshell history A nutshell history ICRCCM-1: Intercomparison of Radiation Codes in Climate Models...

  2. NTSF Newcomers' Orientation | Department of Energy

    Office of Environmental Management (EM)

    Newcomers' Orientation NTSF Newcomers' Orientation A brief history and overview of the Transportation External Coordination Working Group (TEC) and NTSF. PDF icon Newcomers' Orientation More Documents & Publications Overview for Newcomers Overview for Newcomers National Transportation Stakeholders Forum (NTSF) Charter

  3. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, David A. (Walnut Creek, CA); Flood, William S. (Berkeley, CA); Arthur, Allan A. (Martinez, CA); Voelker, Ferdinand (Orinda, CA)

    1986-01-01

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  4. Anisotropy and crystal orientation of silicon--application to the modeling of a bent mirror

    SciTech Connect (OSTI)

    Zhang Lin

    2010-06-23

    Matrix formula and MATLAB algorithm are proposed to calculate the stiffness coefficient matrix C, the Young's modulus, shear modulus and Poisson ratio for the silicon crystal in any orientation. Results for Si(110) and Si(311) are given as an example. The anisotropic material properties of the silicon have been used in the mirror width profile optimization for the nano-imaging end-station ID22NI at the ESRF. As the Si(110) is used as the substrate of this multilayer coated KB mirror, the silicon crystal axis [0 0 1] is proposed to orient to the mirror axis. This is the case to have low stress in the mirror and low bending forces from actuators.

  5. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

    SciTech Connect (OSTI)

    Sano-Furukawa, A. Hattori, T.; Arima, H.; Yamada, A.; Tabata, S.; Kondo, M.; Nakamura, A.; Kagi, H.; Yagi, T.

    2014-11-15

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  6. Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  7. DARHT Axis-I Diode Simulations II: Geometrical Scaling

    SciTech Connect (OSTI)

    Ekdahl, Carl A. Jr.

    2012-06-14

    Flash radiography of large hydrodynamic experiments driven by high explosives is a venerable diagnostic technique in use at many laboratories. Many of the largest hydrodynamic experiments study mockups of nuclear weapons, and are often called hydrotests for short. The dual-axis radiography for hydrodynamic testing (DARHT) facility uses two electron linear-induction accelerators (LIA) to produce the radiographic source spots for perpendicular views of a hydrotest. The first of these LIAs produces a single pulse, with a fixed {approx}60-ns pulsewidth. The second axis LIA produces as many as four pulses within 1.6-{micro}s, with variable pulsewidths and separation. There are a wide variety of hydrotest geometries, each with a unique radiographic requirement, so there is a need to adjust the radiographic dose for the best images. This can be accomplished on the second axis by simply adjusting the pulsewidths, but is more problematic on the first axis. Changing the beam energy or introducing radiation attenuation also changes the spectrum, which is undesirable. Moreover, using radiation attenuation introduces significant blur, increasing the effective spot size. The dose can also be adjusted by changing the beam kinetic energy. This is a very sensitive method, because the dose scales as the {approx}2.8 power of the energy, but it would require retuning the accelerator. This leaves manipulating the beam current as the best means for adjusting the dose, and one way to do this is to change the size of the cathode. This method has been proposed, and is being tested. This article describes simulations undertaken to develop scaling laws for use as design tools in changing the Axis-1 beam current by changing the cathode size.

  8. All-Optical Molecular Orientation

    SciTech Connect (OSTI)

    Oda, Keita; Hita, Masafumi; Minemoto, Shinichirou; Sakai, Hirofumi [Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2010-05-28

    We report clear evidence of all-optical orientation of carbonyl sulfide molecules with an intense nonresonant two-color laser field in the adiabatic regime. The technique relies on the combined effects of anisotropic hyperpolarizability interaction and anisotropic polarizability interaction and does not rely on the permanent dipole interaction with an electrostatic field. It is demonstrated that the molecular orientation can be controlled simply by changing the relative phase between the two wavelength fields. The present technique brings researchers a new steering tool of gaseous molecules and will be quite useful in various fields such as electronic stereodynamics in molecules and ultrafast molecular imaging.

  9. New Employee Orientation | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources Jefferson Lab Run Around Jefferson Lab's activities group holds an annual road race for employees, users and their families during the spring. A D D I T I O N A L L I N K S: Orientation Home Directions What To Bring Benefits Training Employee Relations top-right bottom-left-corner bottom-right-corner New Employee Orientation There is much to know at Jefferson Lab. It's a creative, diverse, energizing place uniting more than 800 staff and 1,300 user scientists representing all 50

  10. MOOSE: Multiphysics Object-Oriented Simulation Environment

    ScienceCinema (OSTI)

    Gaston, Derek

    2014-05-30

    An overview of Idaho National Laboratory's MOOSE: Multiphysics Object-Oriented Simulation Environment

  11. Better Buildings Residential Network Orientation Webinar

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Orientation Webinar, call slides and discussion summary, September 11, 2014.

  12. Better Buildings Residential Network Orientation Webinar

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Orientation Webinar, call slides and discussion summary, May 14, 2015.

  13. Vertical-axis wind turbines -- The current status of an old technology

    SciTech Connect (OSTI)

    Berg, D.E.

    1996-12-31

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  14. Wide band gap semiconductor templates

    DOE Patents [OSTI]

    Arendt, Paul N. (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); DePaula, Raymond F. (Santa Fe, NM); Usov, Igor O. (Los Alamos, NM)

    2010-12-14

    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  15. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    SciTech Connect (OSTI)

    Zhang, Xiaozhi; Yue, Zhenxing Meng, Siqin; Yuan, Lixin

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup }0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80?W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s} of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup }0)//?-Fe{sub 2}O{sub 3}(112{sup }0)//Al{sub 2}O{sub 3}(112{sup }0)

  16. Campo Band of Mission Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    The Campo Band of Mission Indians ("Band") goal is to develop a 300 MW wind energy project ("Kumeyaay Wind II") in two phases over the next two to five years.

  17. Process and apparatus for making oriented crystal layers

    DOE Patents [OSTI]

    Springer, Robert W.

    2002-01-01

    Thin films of single crystal-like materials are made by using flow-through ion beam deposition during specific substrate rotation around an axis in a clocking action. The substrate is quickly rotated to a selected deposition position, paused in the deposition position for ionized material to be deposited, then quickly rotated to the next selected deposition position. The clocking motion can be achieved by use of a lobed cam on the spindle with which the substrate is rotated or by stopping and starting a stepper motor at long and short intervals. Other symmetries can be programmed into the process, allowing virtually any oriented inorganic crystal to be grown on the substrate surface.

  18. VERSATILE TWO-AXIS OPEN-LOOP SOLAR TRACKER CONTROLLER*

    SciTech Connect (OSTI)

    Ward, Christina D; Maxey, L Curt; Evans III, Boyd Mccutchen; Lapsa, Melissa Voss

    2008-01-01

    A versatile single-board controller for two-axis solar tracking applications has been developed and tested on operating solar tracking systems with over two years of field experience. The operating experience gained from the two systems and associated modifications are discussed as representative examples of the practical issues associated with implementing a new two-axis solar tracker design. In this research, open and closed loop control methods were evaluated; however, only the open loop method met the 0.125 tracking accuracy requirement and the requirement to maintain pointing accuracy in hazy and scattered cloudy skies. The open loop algorithm was finally implemented in a microcontroller-based tracking system. Methods of applying this controller hardware to different tracker geometries and hardware are discussed along with the experience gained to date.

  19. Tuning the DARHT Axis-II linear induction accelerator focusing

    SciTech Connect (OSTI)

    Ekdahl, Carl A.

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an accelerator cell to replace a failed solenoid in March of 2012. We took advantage of this opportunity to improve the design of the focusing tune with better models of the remaining partially failed solenoids, better estimates of beam initial conditions, and better values for pulsed-power voltages. As with all previous tunes for Axis-II, this one incorporates measures to mitigate beam-breakup (BBU) instability, image displacement instability (IDI), corkscrew (sweep), and emittance growth. Section II covers the general approach to of design of focusing solenoid tunes for the DARHT Axis-2 LIA. Section III explains the specific requirements and simulations needed to design the tune for the injector, which includes the thermionic electron source, diode, and six induction cells. Section IV explains the requirements and simulations for tuning the main accelerator, which consists of 68 induction cells. Finally, Section V explores sensitivity of the tune to deviations of parameters from nominal, random variations, and uncertainties in values. Four appendices list solenoid settings for this new tune, discuss comparisons of different simulation codes, show halo formation in mismatched beams, and present a brief discussion of the beam envelope equation, which is the heart of the method used to design LIA solenoid tunes.

  20. On the spin-axis dynamics of a Moonless Earth

    SciTech Connect (OSTI)

    Li, Gongjie; Batygin, Konstantin

    2014-07-20

    The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficient as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.

  1. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  2. Off-Axis Parabola Inserter - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Axis Parabola Inserter - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser

  3. Molecular orientation in soft matter thin films studied by resonant soft x-ray reflectivity

    SciTech Connect (OSTI)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B; Valvidares, Manuel; Gullikson, Eric M; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-04-05

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft x-ray reflectivity using linear s and p polarization. It combines the chemical sensitivity of near-edge x-ray absorption fine structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of x-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft x-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and is independent of the film thickness.

  4. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect (OSTI)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  5. Highly Oriented Crystals in Polythiophenes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly Oriented Crystals in Polythiophenes Conjugated polymers are being developed as the active semiconductor in devices such as light-emitting diodes, photovoltaic cells, and thin-film transistors (TFTs) for large-area and low-cost electronics. Vacuum deposited amorphous silicon is currently used in the TFTs that drive the active matrix liquid crystal displays (AM-LCDs) on laptops, computer monitors and televisions. TFTs are also used in disposable electronics such as radiofrequency

  6. Torque ripple in a Darrieus, vertical axis wind turbine

    SciTech Connect (OSTI)

    Reuter, R.C. Jr.

    1980-09-01

    Interaction between a steady wind and a rotating, Darrieus, vertical axis wind turbine produces time periodic aerodynamic loads which cause time dependent torque variations, referred to as torque ripple, to occur in the mechanical link between the turbine and the electrical generator. There is concern for the effect of torque ripple upon fatigue life of drive train components and upon power quality. An analytical solution characterizing the phenomenon of torque ripple has been obtained which is based upon a Fourier expansion of the time dependent features of the problem. Numerical results for torque ripple, some experimental data, determination of acceptable levels and methods of controlling it, are presented and discussed.

  7. Axis-1 diode simulations I: standard 2-inch cathode

    SciTech Connect (OSTI)

    Ekdahl, Carl [Los Alamos National Laboratory

    2011-01-11

    The standard configuration of the DARHT Axis-I diode features a 5.08-cm diameter velvet emitter mounted in the flat surface of the cathode shroud. The surface of the velvet is slightly recessed {approx}2.5 mm. This configuration produces a 1.75 kA beam when a 3.8-MV pulse is applied to the anode-cathode (AK) gap. This note addresses some of the physics of this diode through the use of finite-element simulations.

  8. Object-oriented concurrent programming

    SciTech Connect (OSTI)

    Yonezawa, A.; Tokoro, M.

    1986-01-01

    This book deals with a major theme of the Japanese Fifth Generation Project, which emphasizes logic programming, parallelism, and distributed systems. It presents a collection of tutorials and research papers on a new programming and design methodology in which the system to be constructed is modeled as a collection of abstract entities called ''objects'' and concurrent messages passing among objects. The book includes proposals for programming languages that support this methodology, as well as the applications of object-oriented concurrent programming to such areas as artificial intelligence, software engineering, music synthesis, office information systems, and system programming.

  9. An object oriented design for high performance linear algebra on distributed memory architectures

    SciTech Connect (OSTI)

    Dongarra, J.J. |; Walker, D.W.; Pozo, R.

    1993-12-31

    We describe the design of ScaLAPACK++, an object oriented C++ library for implementing linear algebra computations on distributed memory multicomputers. This package, when complete, will support distributed dense, banded, sparse matrix operations for symmetric, positive-definite, and non-symmetric cases. In ScaLAPACK++ we have employed object oriented design methods to enchance scalability, portability, flexibility, and ease-of-use. We illustrate some of these points by describing the implementation of a right-looking LU factorization for dense systems in ScaLAPACK++.

  10. Initial assessment of an airborne Ku-band polarimetric SAR.

    SciTech Connect (OSTI)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940's. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analyst's understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  11. Band structure engineering and thermoelectric properties of

    Office of Scientific and Technical Information (OSTI)

    charge-compensated filled skutterudites (Journal Article) | SciTech Connect Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites Citation Details In-Document Search Title: Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the

  12. X-BAND KLYSTRON DEVELOPMENT AT SLAC

    SciTech Connect (OSTI)

    Vlieks, Arnold E.; /SLAC

    2009-08-03

    The development of X-band klystrons at SLAC originated with the idea of building an X-band Linear Collider in the late 1980's. Since then much effort has been expended in developing a reliable X-band Power source capable of delivering >50 MW RF power in pulse widths >1.5 {micro}s. I will report on some of the technical issues and design strategies which have led to the current SLAC klystron designs.

  13. Lifting surface performance analysis for horizontal axis wind turbines

    SciTech Connect (OSTI)

    Kocurek, D.

    1987-06-01

    This report describes how numerical lifting-surface theory is applied to the calculation of a horizontal-axis wind turbine's aerodynamic characteristics and performance. The report also describes how such an application is implemented as a computer program. The method evolved from rotary-wing and helicopter applications and features a detailed, prescribed wake. The wake model extends from a hovering-rotor experimental generalization to include the effect of the windmill brake state on the radial and axial displacement rates of the trailing vortex system. Performance calculations are made by coupling the lifting-surface circulation solution to a blade-element analysis that incorporates two-dimensional airfoil characteristics as functions of angle of attack and Reynolds number. Several analytical stall models are also provided to extend the airfoil characteristics beyond the limits of available data. Although this work focuses on the steady-performance problem, the method includes ways to investigate the effects of wind-shear profile, tower shadow, and off-axis shaft alignment. Correlating the method to measured wind-turbine performance, and comparing it to blade-element momentum theory calculations, validate and highlight the extreme sensitivity of predictions to the quality of early post-stall airfoil behavior.

  14. RF generation in the DARHT Axis-II beam dump

    SciTech Connect (OSTI)

    Ekdahl, Carl A. Jr.

    2012-05-03

    We have occasionally observed radio-frequency (RF) electromagnetic signals in the downstream transport (DST) of the second axis linear induction accelerator (LIA) at the dual-axis radiographic hydrodynamic testing (DARHT) facility. We have identified and eliminated some of the sources by eliminating the offending cavities. However, we still observe strong RF in the range 1 GHz t0 2 GHz occurring late in the {approx}2-{micro}s pulse that can be excited or prevented by varying the downstream tune. The narrow frequency width (<0.5%) and near exponential growth at the dominant frequency is indicative of a beam-cavity interaction, and electro-magnetic simulations of cavity structure show a spectrum rich in resonances in the observed frequency range. However, the source of beam produced RF in the cavity resonance frequency range has not been identified, and it has been the subject of much speculation, ranging from beam-plasma or beam-ion instabilities to unstable cavity coupling.

  15. Eight Pulse Performance of DARHT Axis II - Preliminary Results

    SciTech Connect (OSTI)

    Schulze, Martin E.

    2015-12-08

    The DARHT-II accelerator produces a 1.65-kA, 17-MeV beam in a 1600-ns pulse. Standard operation of the DARHT Axis II accelerator involves extracting four short pulses from the 1.6 us long macro-pulse produced by the LIA. The four short pulses are extracted using a fast kicker in combination with a quadrupole septum magnet and then transported for several meters to a high-Z material target for conversion to x-rays for radiography. The ability of the DARHT Axis 2 kicker to produce more than the standard four pulse format has been previously demonstrated. This capability was developed to study potential risks associated with beam transport during an initial commissioning phase at low energy (8 MeV) and low current (1.0 kA).The ability of the kicker to deliver more than four pulses to the target has been realized for many years. This note describes the initial results demonstrating this capability.

  16. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1984-03-20

    A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

  17. Soboba Band of Luiseno Indians- 2011 Project

    Broader source: Energy.gov [DOE]

    The Soboba Band of Luiseno Indians would like to begin to focus on renewable sources for electricity and to actively target lowering the energy usage of the community.

  18. Aroostook Band of Micmac Indians- 2005 Project

    Broader source: Energy.gov [DOE]

    The goal of the project is to develop a strategic energy plan in order to reduce energy costs in the Aroostook Band of Micmacs' government buildings and homes.

  19. Eastern Band of Cherokee Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    The Eastern Band of Cherokee Indians (EBCI) is using the grant funds from the Department of Energy to complete the Energy Efficiency Improvements to seven EBCI facilities.

  20. Local strain effect on the band gap engineering of graphene by a first-principles study

    SciTech Connect (OSTI)

    Gui, Gui; Booske, John; Ma, Zhenqiang E-mail: mazq@engr.wisc.edu; Morgan, Dane; Zhong, Jianxin E-mail: mazq@engr.wisc.edu

    2015-02-02

    We have systematically investigated the effect of local strain on electronic properties of graphene by first-principles calculations. Two major types of local strain, oriented along the zigzag and the armchair directions, have been studied. We find that local strain with a proper range and strength along the zigzag direction results in opening of significant band gaps in graphene, on the order of 10{sup ?1?}eV; whereas, local strain along the armchair direction cannot open a significant band gap in graphene. Our results show that appropriate local strain can effectively open and tune the band gap in graphene; therefore, the electronic and transport properties of graphene can also be modified.

  1. Dual axis translation apparatus and system for translating an optical beam and related method

    DOE Patents [OSTI]

    Cassidy, Kelly (Manteca, CA)

    1991-01-01

    A dual axis translation device and system in accordance with this invention, for translating an optical beam along both an x-axis and a y-axis which are perpendicular to one another, has a beam directing means acting on said optical beam for directing the beam along a particular path transverse to said x and y axes. An arrangement supporting said beam directing means for movement in the x and y direction within a given plane is provided. The arrangement includes a first means for translating said beam directing means along the x-axis in said given plane in order to translate the beam along said x-axis. The arrangement comprises a second means for translating said beam directing means along the y-axis in said given plane in order to translate the beam along said y-axis.

  2. RCRA orientation manual, 1990 edition

    SciTech Connect (OSTI)

    Clay, D.R.

    1990-01-01

    The U.S. Environmental Protection Agency (EPA) developed the manual to provide introductory information on the solid and hazardous waste management programs under the Resource Conservation and Recovery Act (RCRA). The manual outlines the basic framework of the regulatory program for new EPA and State employees, those persons new to RCRA assignments, and others interested in the Act. The manual is not, however, meant to replace in-depth analysis of the statute and its associated regulations and Agency guidance. The manual is an update of the original RCRA Orientation Manual issued in 1986. Revisions contained in the update reflect the many regulatory changes that have resulted from both the Hazardous and Solid Waste Amendments (HSWA) of 1984 and the Medical Waste Tracking Act of 1988 (RCRA Subtitle J).

  3. Apparatus for loading a band saw blade

    DOE Patents [OSTI]

    Reeves, Steven R. (49 Williams Ave., West Valley, NY 14171)

    1990-01-01

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials.

  4. Apparatus for loading a band saw blade

    DOE Patents [OSTI]

    Reeves, S.R.

    1990-03-20

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials. 2 figs.

  5. Nonlinear characterization of a single-axis acoustic levitator

    SciTech Connect (OSTI)

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fbio T. A.; Adamowski, Julio C.

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  6. Dual-axis resonance testing of wind turbine blades

    SciTech Connect (OSTI)

    Hughes, Scott; Musial, Walter; White, Darris

    2014-01-07

    An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

  7. Narrow band gap amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  8. Study of the formation of adiabatic shear bands in mild steel under dynamic loading

    SciTech Connect (OSTI)

    Costin, L.S.

    1982-01-01

    The conditions of strain and temperature under which adiabatic shear bands form were examined using a torsional Kolsky (split-Hopkinson) bar apparatus. Thin walled tubular specimens of 1018 cold rolled steel were tested at an approximately constant strain rate in one of two strain rate regimes. In addition, the initial test temperature was varied from 173/sup 0/K to 300/sup 0/K. The total specimen strain was varied from test to test in order to determine the strain at which localized deformation begins at a given strain-rate and temperature. Using a series of fine lines scribed along the inner surface of the tube parallel to its axis, the strain distribution along the gage length of the specimen was determined by post-test examination. In this way it was determined whether the deformation was homogeneous or localized into a shear band.

  9. IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors

    SciTech Connect (OSTI)

    Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan

    2008-09-02

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 15004500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera arrays sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  10. Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films

    DOE Patents [OSTI]

    Wessels, B.W.; Nystrom, M.J.

    1998-05-19

    Sr{sub x}Ba{sub 1{minus}x}Nb{sub 2}O{sub 6}, where x is greater than 0.25 and less than 0.75, and KNbO{sub 3} ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface are disclosed. Such films can be used in electronic, electro-optic, and frequency doubling components. 8 figs.

  11. Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films

    DOE Patents [OSTI]

    Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Germantown, MD)

    1998-01-01

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  12. Biaxially oriented film on flexible polymeric substrate

    DOE Patents [OSTI]

    Finkikoglu, Alp T. (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM)

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  13. THE CURIOUS MORPHOLOGY AND ORIENTATION OF ORION PROPLYD HST-10

    SciTech Connect (OSTI)

    Shuping, R. Y.; Kassis, Marc; Bally, John; Morris, Mark R.

    2014-02-01

    HST-10 is one of the largest proplyds in the Orion Nebula and is located approximately 1' SE of the Trapezium. Unlike other proplyds in Orion, however, the long-axis of HST-10 does not align with ?{sup 1}C, but is instead aligned with the rotational axis of the HST-10 disk. This cannot be easily explained using current photoevaporation models. In this Letter, we present high spatial resolution near-infrared images of the Orion proplyd HST-10 using Keck/NIRC2 with the Laser Guide Star Adaptive Optics system, along with multi-epoch analysis of HH objects near HST-10 using Hubble Space Telescope (HST) WFPC2 and Advanced Camera for Surveys cameras. Our narrowband near-IR images resolve the proplyd ionization front (IF) and circumstellar disk down to 23AU at the distance to Orion in Br ?, He I, H{sub 2}, and polycyclic aromatic hydrocarbon (PAH) emission. Br ? and He I emission primarily trace the IF (with the disk showing prominently in silhouette), while the H{sub 2} and PAH emission trace the surface of the disk itself. PAH emission also traces small dust grains within the proplyd envelope which is asymmetric and does not coincide with the IF. The curious morphology of the PAH emission may be due to UV heating by both ?{sup 1}COri and ?{sup 2} AOri. Multi-epoch HST images of the HST-10 field show proper motion of three knots associated with HH 517, clearly indicating that HST-10 has a jet. We postulate that the orientation of HST-10 is determined by the combined ram pressure of this jet and the FUV-powered photo-ablation flow from the disk surface.

  14. Better Buildings Residential Network Orientation Webinar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    May 14, 2015. Call Slides and Discussion Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network...

  15. Better Buildings Residential Network Orientation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Summary, March 27, 2014. Call Slides and Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network...

  16. New Employee Orientation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Employee Orientation New Employee Orientation Welcome to the Department of Energy's (DOE) orientation website. As a newly appointed Federal and/or DOE employee, you are required to attend a one day New Employee Orientation (NEO) session on the first day that you report to work. There are several mandatory forms that you will need to complete and bring with you. This site enables you to access all the mandatory forms. Please complete the forms and bring them with you to your NEO session. This

  17. ARM - Campaign Instrument - s-band-profiler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentss-band-profiler Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA S-band (2835 Mhz) Profiler (S-BAND-PROFILER) Instrument Categories Atmospheric Profiling, Cloud Properties Campaigns CRYSTAL-FACE [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2002.06.26 - 2002.08.01 Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers [ Download Data ] Southern Great

  18. Multiphysics Object Oriented Simulation Environment

    Energy Science and Technology Software Center (OSTI)

    2014-02-12

    The Multiphysics Object Oriented Simulation Environment (MOOSE) software library developed at Idaho National Laboratory is a tool. MOOSE, like other tools, doesn’t actually complete a task. Instead, MOOSE seeks to reduce the effort required to create engineering simulation applications. MOOSE itself is a software library: a blank canvas upon which you write equations and then MOOSE can help you solve them. MOOSE is comparable to a spreadsheet application. A spreadsheet, by itself, doesn’t do anything.more » Only once equations are entered into it will a spreadsheet application compute anything. Such is the same for MOOSE. An engineer or scientist can utilize the equation solvers within MOOSE to solve equations related to their area of study. For instance, a geomechanical scientist can input equations related to water flow in underground reservoirs and MOOSE can solve those equations to give the scientist an idea of how water could move over time. An engineer might input equations related to the forces in steel beams in order to understand the load bearing capacity of a bridge. Because MOOSE is a blank canvas it can be useful in many scientific and engineering pursuits.« less

  19. Phonon mean free path of graphite along the c-axis

    SciTech Connect (OSTI)

    Wei, Zhiyong; Yang, Juekuan; Chen, Weiyu; Bi, Kedong; Chen, Yunfei, E-mail: yunfeichen@seu.edu.cn [Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096 (China); Li, Deyu, E-mail: deyu.li@vanderbilt.edu [Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1592 (United States)

    2014-02-24

    Phonon transport in the c-axis direction of graphite thin films has been studied using non-equilibrium molecular dynamics (MD) simulation. The simulation results show that the c-axis thermal conductivities for films of thickness ranging from 20 to 500 atomic layers are significantly lower than the bulk value. Based on the MD data, a method is developed to construct the c-axis thermal conductivity as an accumulation function of phonon mean free path (MFP), from which we show that phonons with MFPs from 2 to 2000?nm contribute ?80% of the graphite c-axis thermal conductivity at room temperature, and phonons with MFPs larger than 100?nm contribute over 40% to the c-axis thermal conductivity. These findings indicate that the commonly believed value of just a few nanometers from the simple kinetic theory drastically underestimates the c-axis phonon MFP of graphite.

  20. Control Banding and Nanotechnology Synergist

    SciTech Connect (OSTI)

    Zalk, D; Paik, S

    2009-12-15

    The average Industrial Hygienist (IH) loves a challenge, right? Okay, well here is one with more than a few twists. We start by going through the basics of a risk assessment. You have some chemical agents, a few workers, and the makings of your basic exposure characterization. However, you have no occupational exposure limit (OEL), essentially no toxicological basis, and no epidemiology. Now the real handicap is that you cannot use sampling pumps, cassettes, tubes, or any of the media in your toolbox, and the whole concept of mass-to-dose is out the window, even at high exposure levels. Of course, by the title, you knew we were talking about nanomaterials (NM). However, we wonder how many IHs know that this topic takes everything you know about your profession and turns it upside down. It takes the very foundations that you worked so hard in college and in the field to master and pulls it out from underneath you. It even takes the gold standard of our profession, the quantitative science of exposure assessment, and makes it look pretty darn rusty. Now with NM there is the potential to get some aspect of quantitative measurements, but the instruments are generally very expensive and getting an appropriate workplace personal exposure measurement can be very difficult if not impossible. The potential for workers getting exposures, however, is very real, as evidenced by a recent publication reporting worker exposures to polyacrylate nanoparticles in a Chinese factory (Song et al. 2009). With something this complex and challenging, how does a concept as simple as Control Banding (CB) save the day? Although many IHs have heard of CB, most of their knowledge comes from its application in the COSHH Essentials toolkit. While there is conflicting published research on COSHH Essentials and its value for risk assessments, almost all of the experts agree that it can be useful when no OELs are available (Zalk and Nelson 2008). It is this aspect of CB, its utility with uncertainty, that attracted international NM experts to recommend this qualitative risk assessment approach for NM. However, since their CB recommendation was only in theory, we took on the challenge of developing a working toolkit, the CB Nanotool (see Zalk et al. 2009 and Paik et al. 2008), as a means to perform a risk assessment and protect researchers at the Lawrence Livermore National Laboratory. While it's been acknowledged that engineered NM have potentially endless benefits for society, it became clear to us that the very properties that make nanotechnology so useful to industry could also make them dangerous to humans and the environment. Among the uncertainties and unknowns with NM are: the contribution of their physical structure to their toxicity, significant differences in their deposition and clearance in the lungs when compared to their parent material (PM), a lack of agreement on the appropriate indices for exposure to NM, and very little background information on exposure scenarios or populations at risk. Part of this lack of background information can be traced to the lack of risk assessments historically performed in the industry, with a recent survey indicating that 65% of companies working with NM are not doing any kind of NM-specific risk assessment as they focus on traditional PM methods for IH (Helland et al. 2009). The good news is that the amount of peer-reviewed publications that address environmental, health and safety aspects of NM has been increasing over the last few years; however, the percentage of these that address practical methods to reduce exposure and protect workers is orders of magnitude lower. Our intent in developing the CB Nanotool was to create a simplified approach that would protect workers while unraveling the mysteries of NM for experts and non-experts alike. Since such a large part of the toxicological effects of both the physical and chemical properties of NM were unknown, not to mention changing logarithmically as new NM research continues growing, we needed to account for this lack of information as part of the CB Nano

  1. Preferred orientation in experimentally deformed stishovite: implications

    Office of Scientific and Technical Information (OSTI)

    for deformation mechanisms (Journal Article) | SciTech Connect Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms Citation Details In-Document Search Title: Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms Authors: Kaercher, Pamela M. ; Zepeda-Alarcon, Eloisa ; Prakapenka, Vitali B. ; Kanitpanyacharoen, Waruntora ; Smith, Jesse S. ; Sinogeikin, Stanislav ; Wenk, Hans-Rudolf [1] ; CIW) [2] ;

  2. Radiative Heating in Underexplored Bands Campaign (RHUBC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bands that are opaque at the surface * Approximately 40% of the OLR comes from the far-IR * Until recently, the observational tools were not available to evaluate the accuracy of...

  3. Dipole Bands in {sup 196}Hg

    SciTech Connect (OSTI)

    Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.

    2011-10-28

    High spin states in {sup 196}Hg have been populated in the {sup 198}Pt({alpha},6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.

  4. Ramona Band of Cahuilla Mission Indians

    Energy Savers [EERE]

    RAMONA RAMONA BAND BAND OF OF CAHUILLA CAHUILLA INDIANS INDIANS Concept and Design for the Ramona Concept and Design for the Ramona Eco Eco - - Tourism Center Tourism Center Tribal History Tribal History The Reservation was established on The Reservation was established on February 10, 1893. February 10, 1893. Ramona is part of the Bear Clan of the Ramona is part of the Bear Clan of the Cahuilla Nation and are descendents of the Cahuilla Nation and are descendents of the Apapatcem Apapatcem

  5. Eastern Band of Cherokee - Strategic Energy Planning

    Office of Environmental Management (EM)

    Eastern Band of Cherokee Indians Strategic Energy Plan Funded By: Department of Energy Technical Support: SCIES at Clemson University Project Manager - Damon Lambert Eastern Band of Cherokee Indians Technical Support - Robert Leitner Associate Director South Carolina Institute for Energy Studies - Clemson University 2 EBCI Tribal Government * Three-branch Government * There are over 13,725 enrolled members of the Tribe today * 8,200+ members live on the land held in trust for the ECBI by the US

  6. Static-stress analysis of dual-axis confinement vessel

    SciTech Connect (OSTI)

    Bultman, D.H.

    1992-11-01

    This study evaluates the static-pressure containment capability of a 6-ft-diameter, spherical vessel, made of HSLA-100 steel, to be used for high-explosive (HE) containment. The confinement vessel is designed for use with the Dual-Axis Radiographic Hydrotest Facility (DARHT) being developed at Los Alamos National Laboratory. Two sets of openings in the vessel are covered with x-ray transparent covers to allow radiographic imaging of an explosion as it occurs inside the vessel. The confinement vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, and the Welding Research Council Bulletin, WRC-107. Combined stresses resulting from internal pressure and external loads on nozzles are calculated and compared with the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzles of the confinement vessel are adequately designed to safely contain the maximum residual pressure of 1675 psi that would result from an HE charge of 24.2 kg detonated in a vacuum. Shell stresses at the shell-to-nozzle interface, produced from external loads on the nozzles, were less than 400 psi. The maximum combined stress resulting from the internal pressure plus external loads was 16,070 psi, which is less than half the allowable stress of 42,375 psi for HSLA-100 steel.

  7. Static-stress analysis of dual-axis safety vessel

    SciTech Connect (OSTI)

    Bultman, D.H.

    1992-11-01

    An 8-ft-diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high-explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the shellto-nozzle interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.

  8. Control system for a vertical-axis windmill

    DOE Patents [OSTI]

    Brulle, R.V.

    1981-09-03

    A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  9. MHK ISDB/Instruments/AXYS HydroLevel Buoy | Open Energy Information

    Open Energy Info (EERE)

    AXYS HydroLevel Buoy < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help...

  10. ISM band to U-NII band frequency transverter and method of frequency transversion

    DOE Patents [OSTI]

    Stepp, Jeffrey David (Grandview, MO); Hensley, Dale (Grandview, MO)

    2006-09-12

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz 6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  11. ISM band to U-NII band frequency transverter and method of frequency transversion

    DOE Patents [OSTI]

    Stepp, Jeffrey David (Grandview, MO); Hensley, Dale (Grandview, MO)

    2006-04-04

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz-6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  12. Characterization of a multi-axis ion chamber array

    SciTech Connect (OSTI)

    Simon, Thomas A.; Kozelka, Jakub; Simon, William E.; Kahler, Darren; Li, Jonathan; Liu, Chihray

    2010-11-15

    Purpose: The aim of this work was to characterize a multi-axis ion chamber array (IC PROFILER; Sun Nuclear Corporation, Melbourne, FL USA) that has the potential to simplify the acquisition of LINAC beam data. Methods: The IC PROFILER (or panel) measurement response was characterized with respect to radiation beam properties, including dose, dose per pulse, pulse rate frequency (PRF), and energy. Panel properties were also studied, including detector-calibration stability, power-on time, backscatter dependence, and the panel's agreement with water tank measurements [profiles, fractional depth dose (FDD), and output factors]. Results: The panel's relative deviation was typically within ({+-}) 1% of an independent (or nominal) response for all properties that were tested. Notable results were (a) a detectable relative field shape change of {approx}1% with linear accelerator PRF changes; (b) a large range in backscatter thickness had a minimal effect on the measured dose distribution (typically less than 1%); (c) the error spread in profile comparison between the panel and scanning water tank (Blue Phantom, CC13; IBA Schwarzenbruck, DE) was approximately ({+-}) 0.75%. Conclusions: The ability of the panel to accurately reproduce water tank profiles, FDDs, and output factors is an indication of its abilities as a dosimetry system. The benefits of using the panel versus a scanning water tank are less setup time and less error susceptibility. The same measurements (including device setup and breakdown) for both systems took 180 min with the water tank versus 30 min with the panel. The time-savings increase as the measurement load is increased.

  13. Better Buildings Residential Network Orientation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Orientation Better Buildings Residential Network Orientation Better Buildings Residential Network (BBRN) Orientation Call Slides and Summary, March 27, 2014. PDF icon Call Slides and Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network Orientation Webinar How Can the Network Meet Your Needs?

  14. Creating orbiting vorticity vectors in magnetic particle suspensions through field symmetry transitions–a route to multi-axis mixing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martin, James E.; Solis, Kyle Jameson

    2015-11-09

    It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude ofmore » the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.« less

  15. Creating orbiting vorticity vectors in magnetic particle suspensions through field symmetry transitions–a route to multi-axis mixing

    SciTech Connect (OSTI)

    Martin, James E.; Solis, Kyle Jameson

    2015-11-09

    It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude of the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.

  16. IR Spectral Bands and Performance | Open Energy Information

    Open Energy Info (EERE)

    2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for IR Spectral Bands and Performance Citation Chris Douglass. IR Spectral Bands...

  17. Band Excitation Method Applicable to Scanning Probe Microscopy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter...

  18. Modeling fluid flow in deformation bands with stabilized localization...

    Office of Scientific and Technical Information (OSTI)

    Modeling fluid flow in deformation bands with stabilized localization mixed finite elements. Citation Details In-Document Search Title: Modeling fluid flow in deformation bands...

  19. Turtle Mountain Band of Chippewa Indians - Development of a Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turtle Mountain Band of Chippewa Indians "First Steps to Implement Strategic Energy Plan" Turtle Mountain Band of Chippewa Indians "First Steps to Implement Strategic Energy Plan" ...

  20. NOX: An Object-Oriented Nonlinear Solver

    Energy Science and Technology Software Center (OSTI)

    2002-11-15

    NOX is a C++ object-oriented library for the solving nonlinear equations. It can be used with an linear algebra package and includes interfaces to Epetra and PETSc.

  1. Object-Oriented Programming in Fortran 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Object-Oriented Programming in Fortran 2003 DamianR5x Damian Rouson March 26-28, 2012 Berkeley, CA and repeated on April 10-12, 2012 Oakland, CA Fortran 2003 explicitly supports...

  2. High power W-band klystrons

    SciTech Connect (OSTI)

    Caryotakis, George; Scheitrum, Glenn; Jongewaard, Erik; Vlieks, Arnold; Fowkes, Randy [Stanford Linear Accelerator Center, Menlo Park, California 94025 (United States); Li, Jeff [University of California Davis, Davis, California 95616 (United States)

    1999-05-01

    The development of W-band klystrons is discussed. Modeling of the klystron performance predicts 100 kW output power from a single klystron. The permanent magnet focusing and small size of the circuit permit combination of multiple klystrons in a module. A six-klystron module in a single vacuum envelope is expected to produce 500 kW peak power and up to 5 kW average power. The critical issues in the W-band klystron development are the electron beam transport and the fabrication of the klystron circuit. Two microfabrication techniques, EDM and LIGA, are being evaluated to produce the W-band circuit. {copyright} {ital 1999 American Institute of Physics.}

  3. New Supervisor Orientation Classes Offered | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supervisor Orientation Classes Offered JLab has provided training for its supervisors and managers for many years but, until recently, we lacked a comprehensive approach geared specifically to employees new to supervising others. In 2015, we launched a program aimed at this key target audience. The Supervisor Orientation curriculum offers useful skills to any supervisor or manager and is mandated for anyone supervising for the first time. Now, it is linked to both the Skill Requirements List

  4. Structural Design and Analysis for a Double-Band Cold Mass Support of the MICE Coupling Magnet

    SciTech Connect (OSTI)

    Green, Michael A; Wu, Hong; Liu, X. K.; Wang, Li; Li, S. Y.; Guo, XingLong; Pan, Heng; Xu, FengYu

    2009-07-01

    The cooling channel of Muon Ionization Cooling Experiment (MICE) consists of eighteen superconducting solenoid coils, which are magnetically hooked together. A pair ofcoupling magnets operating at 4 K is applied to produce up to .6 T magnetic field on the magnet centerline to keep muon beam within the RF cavity windows. The peak magnetic force on the coupling magnet from other magnets in the MICE channel is up to 500 kN inlongitudinal direction, and the requirements for magnet center and axis azimuthal angle at 4 K are stringent. A self-centered double-band cold mass support system with intermediatethermal interruption is applied for the coupling magnet. The physical center of the magnet does not change as it is cooled down from 300 K to 4.2 K with this support system. In this paper the design parameters of the support system are discussed. The integral analysis of the support system using FEA method was carried out to etermine the tension forces in bands when various loads are applied. The magnet centre displacement and concentricity deviation form the axis of the warm bore are obtained, and the peak tension in support bands is also determined according to the simulation results.

  5. Rigorous theory of molecular orientational nonlinear optics

    SciTech Connect (OSTI)

    Kwak, Chong Hoon Kim, Gun Yeup

    2015-01-15

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.

  6. Embedded sensor having an identifiable orientation

    DOE Patents [OSTI]

    Bennett, Thomas E. (31 Portola Ct., Danville, CA 94506); Nelson, Drew V. (840 Cabot Ct., San Carlos, CA 94070)

    2002-01-01

    An apparatus and method is described wherein a sensor, such as a mechanical strain sensor, embedded in a fiber core, is "flagged" to identify a preferred orientation of the sensor. The identifying "flag" is a composite material, comprising a plurality of non-woven filaments distributed in a resin matrix, forming a small planar tab. The fiber is first subjected to a stimulus to identify the orientation providing the desired signal response, and then sandwiched between first and second layers of the composite material. The fiber, and therefore, the sensor orientation is thereby captured and fixed in place. The process for achieving the oriented fiber includes, after identifying the fiber orientation, carefully laying the oriented fiber onto the first layer of composite, moderately heating the assembled layer for a short period in order to bring the composite resin to a "tacky" state, heating the second composite layer as the first, and assembling the two layers together such that they merge to form a single consolidated block. The consolidated block achieving a roughly uniform distribution of composite filaments near the embedded fiber such that excess resin is prevented from "pooling" around the periphery of the fiber.

  7. Band filling effects on temperature performance of intermediate band quantum wire solar cells

    SciTech Connect (OSTI)

    Kunets, Vas. P. Furrow, C. S.; Ware, M. E.; Souza, L. D. de; Benamara, M.; Salamo, G. J.; Mortazavi, M.

    2014-08-28

    Detailed studies of solar cell efficiency as a function of temperature were performed for quantum wire intermediate band solar cells grown on the (311)A plane. A remotely doped one-dimensional intermediate band made of self-assembled In{sub 0.4}Ga{sub 0.6}As quantum wires was compared to an undoped intermediate band and a reference p-i-n GaAs sample. These studies indicate that the efficiencies of these solar cells depend on the population of the one-dimensional band by equilibrium free carriers. A change in this population by free electrons under various temperatures affects absorption and carrier transport of non-equilibrium carriers generated by incident light. This results in different efficiencies for both the doped and undoped intermediate band solar cells in comparison with the reference GaAs p-i-n solar cell device.

  8. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOE Patents [OSTI]

    Ozbay, Ekmel (Ames, IA); Tuttle, Gary (Ames, IA); Michel, Erick (Ames, IA); Ho, Kai-Ming (Ames, IA); Biswas, Rana (Ames, IA); Chan, Che-Ting (Ames, IA); Soukoulis, Costas (Ames, IA)

    1995-01-01

    A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.

  9. The effect of spin-orbit coupling in band structure of few-layer graphene

    SciTech Connect (OSTI)

    Sahdan, Muhammad Fauzi Darma, Yudi

    2014-03-24

    Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.

  10. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOE Patents [OSTI]

    Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.

    1995-04-11

    A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.

  11. Orient Green Power Company Ltd OGPL | Open Energy Information

    Open Energy Info (EERE)

    Orient Green Power Company Ltd OGPL Jump to: navigation, search Name: Orient Green Power Company Ltd (OGPL) Place: Chennai, Tamil Nadu, India Zip: 600 095 Sector: Biomass, Hydro,...

  12. Cabazon Band of Mission Indians- 2011 Project

    Broader source: Energy.gov [DOE]

    The Cabazon Band of Mission Indians' long-range goals are to become energy self-sufficient, foster economic diversity, grow jobs, and improve the well-being of members of the tribe as well as those in its region of Southern California.

  13. The Role of Anti-Phase Domains in InSb-Based Structures Grown on On-Axis and Off-Axis Ge Substrates

    SciTech Connect (OSTI)

    Debnath, M. C.; Mishima, T. D.; Santos, M. B.; Hossain, K.; Holland, O. W.

    2011-12-26

    Anti-phase domains form in InSb epilayers and InSb/Al{sub 0.20}In{sub 0.80}Sb single quantum wells when grown upon on-axis (001) Ge substrates by molecular beam epitaxy. Domain formation is partially suppressed through growth on Ge substrates with surfaces that are several degrees off the (001) or (211) axis. By using off-axis Ge substrates, room-temperature electron mobilities increased to {approx}60,000 cm{sup 2}/V-s and {approx}14,000 cm{sup 2}/V-s for a 4.0-{mu}m-thick InSb epilayer and a 25-nm InSb quantum well, respectively.

  14. X-Band Photoinjector Beam Dynamics

    SciTech Connect (OSTI)

    Zhou, Feng; Adolphsen, Chris; Ding, Yuantao; Li, Zenghai; Vlieks, Arnold; /SLAC

    2011-12-13

    SLAC is studying the feasibility of using an X-band RF photocathode gun to produce low emittance bunches for applications such as a mono-energetic MeV {gamma} ray source (in collaboration with LLNL) and a photoinjector for a compact FEL. Beam dynamics studies are being done for a configuration consisting of a 5.5-cell X-band gun followed by several 53-cell high-gradient X-band accelerator structures. A fully 3D program, ImpactT, is used to track particles taking into account space charge forces, short-range longitudinal and transverse wakefields, and the 3D rf fields in the structures, including the quadrupole component of the couplers. The effect of misalignments of the various elements, including the drive-laser, gun, solenoid and accelerator structures, are evaluated. This paper presents these results and estimates of the expected bunch emittance vs cathode gradient, and the effects of mixing between the fundamental and off-frequency longitudinal modes. An X-band gun at SLAC has been shown to operate reliably with a 200 MV/m acceleration gradient at the cathode, which is nearly twice the 115 MV/m acceleration gradient in the LCLS gun. The higher gradient should roughly balance the space charge related transverse emittance growth for the same bunch charge but provide a 3-4 times shorter bunch length. The shorter length would make the subsequent bunch compression easier and allow for a more effective use of emittance exchange. Such a gun can also be used with an X-band linac to produce a compact FEL or g ray source that would require rf sources of only one frequency for beam generation and acceleration. The feasibility of using an X-band rf photocathode gun and accelerator structures to generate high quality electron beams for compact FELs and g ray sources is being studied at SLAC. Results from the X-band photoinjector beam dynamics studies are reported in this paper.

  15. Dual-Axis Resonance Testing of Wind Turbine Blades - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Wind Energy Wind Energy Find More Like This Return to Search Dual-Axis Resonance Testing of Wind Turbine Blades National Renewable Energy Laboratory Contact NREL About This Technology <em>Dual-axis testing can concurrently test edgewise and flapwise blade stability which is significant in reducing the amount of time needed to fatigue test wind turbine blades. </em><br /> Dual-axis testing can concurrently test edgewise and flapwise blade stability which is

  16. Influence of lattice orientation on growth and structure of graphene on Cu(001)

    SciTech Connect (OSTI)

    Wofford, Joseph M.; Nie, Shu; Thrmer, Konrad; McCarty, Kevin F.; Dubon, Oscar D.

    2015-03-31

    We have used low-energy electron microscopy (LEEM) and diffraction (LEED) to examine the significance of lattice orientation in graphene growth on Cu(0 0 1). Individual graphene domains undergo anisotropic growth on the Cu surface, and develop into lens shapes with their long axes roughly aligned with Cu <1 0 0> in-plane directions. Furthermore, the long axis of a lens-shaped domain is only rarely oriented along a C <1 1> direction, suggesting that carbon attachment at zigzag graphene island edges is unfavorable. A kink-mediated adatom attachment process is consistent with the behavior observed here and reported in the literature. Likewise, the details of the ridged moir pattern formed by the superposition of the graphene lattice on the (0 0 1) Cu surface also evolve with the graphene lattice orientation, and are predicted well by a simple geometric model. Managing the kink-mediated growth mode of graphene on Cu(0 0 1) will be necessary for the continued improvement of this graphene synthesis technique.

  17. Influence of lattice orientation on growth and structure of graphene on Cu(001)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wofford, Joseph M.; Nie, Shu; Thürmer, Konrad; McCarty, Kevin F.; Dubon, Oscar D.

    2015-03-31

    We have used low-energy electron microscopy (LEEM) and diffraction (LEED) to examine the significance of lattice orientation in graphene growth on Cu(0 0 1). Individual graphene domains undergo anisotropic growth on the Cu surface, and develop into lens shapes with their long axes roughly aligned with Cu <1 0 0> in-plane directions. Furthermore, the long axis of a lens-shaped domain is only rarely oriented along a C <1 1> direction, suggesting that carbon attachment at “zigzag” graphene island edges is unfavorable. A kink-mediated adatom attachment process is consistent with the behavior observed here and reported in the literature. Likewise, themore » details of the ridged moiré pattern formed by the superposition of the graphene lattice on the (0 0 1) Cu surface also evolve with the graphene lattice orientation, and are predicted well by a simple geometric model. Managing the kink-mediated growth mode of graphene on Cu(0 0 1) will be necessary for the continued improvement of this graphene synthesis technique.« less

  18. Content-based fused off-axis object illumination direct-to-digital holography

    DOE Patents [OSTI]

    Price, Jeffery R.

    2006-05-02

    Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object the object beam incident upon the object at the illumination angle; focusing the reference beam and the object beam at a focal plane of a digital recorder to from the content-based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording the content based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  19. Off-axis variable focus and aberration control mirrors and method

    DOE Patents [OSTI]

    Himmer, Phillip A.; Dickensheets, David L.

    2009-02-24

    An optical element with multi-layer composites that deforms to reduce optical aberrations in off-axis optic. Methods are also described in relation to the optical element.

  20. Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO{sub 4}

    SciTech Connect (OSTI)

    Lynch, David M.; Zhu, Bin; Ast, Dieter G.; Thompson, Michael O.; Levin, Barnaby D. A.; Muller, David A.; Greene, Raymond G.

    2014-12-29

    Crystallinity and texturing of RF sputtered c-axis aligned crystal InGaZnO{sub 4} (CAAC IGZO) thin films were quantified using X-ray diffraction techniques. Above 190?C, nanocrystalline films with an X-ray peak at 2??=?30 (009 planes) developed with increasing c-axis normal texturing up to 310?C. Under optimal conditions (310?C, 10% O{sub 2}), films exhibited a c-axis texture full-width half-maximum of 20. Cross-sectional high-resolution transmission electron microscopy confirmed these results, showing alignment variation of 9 over a 15 15?nm field of view and indicating formation of much larger aligned domains than previously reported. At higher deposition temperatures, c-axis alignment was gradually lost as polycrystalline films developed.

  1. The Use of a Beryllium Hopkinson Bar to Characterize In-Axis and Cross-Axis Accelerometer Response in Shock Environments

    SciTech Connect (OSTI)

    Bateman, V.I.; Brown, F.A.

    1999-01-01

    The characteristics of a piezoresistive accelerometer in shock environments have been studied at Sandia National Laboratories in the Mechanical Shock Laboratory. A beryllium Hopkinson bar capability with diameters of 0.75 in. and 2.0 in has been developed to extend our understanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. The in-axis performance of the piezoresistive accelerometer determined from measurements with a beryllium Hopkinson bar and a certified laser doppler vibrometer as the reference measurement is presented. The cross-axis performance of the accelerometer subjected to static compression on a beryllium cylinder, static strain on a steel beam, dynamic strain on a steel beam (ISA-RP 37.2, Paragraph 6.6), and compressive shocks in a split beryllium Hopkinson bar configuration is also presented. The performance of the accelerometer in a combined in-axis and cross-axis shock environment is shown for one configuration. Finally, a failure analysis conducted in cooperation with ENDEVCO gives a cause for the occasional unexplained failures that have occurred in some applications.

  2. X-Band RF Gun Development

    SciTech Connect (OSTI)

    Vlieks, Arnold; Dolgashev, Valery; Tantawi, Sami; Anderson, Scott; Hartemann, Fred; Marsh, Roark; /LLNL, Livermore

    2012-06-22

    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into the structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

  3. S-Band Loads for SLAC Linac

    SciTech Connect (OSTI)

    Krasnykh, A.; Decker, F.-J.; LeClair, R.; /INTA Technologies, Santa Clara

    2012-08-28

    The S-Band loads on the current SLAC linac RF system were designed, in some cases, 40+ years ago to terminate 2-3 MW peak power into a thin layer of coated Kanthal material as the high power absorber [1]. The technology of the load design was based on a flame-sprayed Kanthal wire method onto a base material. During SLAC linac upgrades, the 24 MW peak klystrons were replaced by 5045 klystrons with 65+ MW peak output power. Additionally, SLED cavities were introduced and as a result, the peak power in the current RF setup has increased up to 240 MW peak. The problem of reliable RF peak power termination and RF load lifetime required a careful study and adequate solution. Results of our studies and three designs of S-Band RF load for the present SLAC RF linac system is discussed. These designs are based on the use of low conductivity materials.

  4. Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis

    Office of Scientific and Technical Information (OSTI)

    Power Density (Technical Report) | SciTech Connect Technical Report: Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis Power Density Citation Details In-Document Search Title: Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis Power Density Heat load on beamline optics is a serious problem to generate pure linearly polarized photons in the third generation synchrotron radiation facilities. For permanent magnet undulators, this problem can be overcome

  5. Design and analysis of a vertical axis ocean current power plant

    SciTech Connect (OSTI)

    Richard, C.C.; Hartzog, J.R.; Sorge, R.V.; Quigley, J.V.; Adams, G.R.

    1981-01-01

    This paper discusses a calculation of the power generated by a vertical axis ocean current power plant. An analytical model is presented and a computer solution described. Results of the calculation show the optimum angles of the blades about the vertical axis to maximize power output, as well as the total extractable power of the plant for various ocean current velocities. Tow tank tests are described for a scale model of the plant.

  6. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis

    Office of Scientific and Technical Information (OSTI)

    Tidal Current Turbine Under Operational Condition (Journal Article) | SciTech Connect Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition Citation Details In-Document Search Title: Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its

  7. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOE Patents [OSTI]

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2012-09-11

    Method and system for uniformly spacing particles in a flowing system comprising suspending particles in an elongated fluid filled cavity; exposing said cavity to an axial acoustic standing wave field, wherein said axial acoustic standing wave field drives said particles to nodal and anti-nodal positions along the center axis of said cavity to result in uniformly spaced particles; and focusing said particles to the center axis of said cavity.

  8. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOE Patents [OSTI]

    Goddard, Gregory R; Kaduchak, Gregory; Jett, James H; Graves, Steven W

    2015-01-13

    Method and system for uniformly spacing particles in a flowing system comprising suspending particles in an elongated fluid filled cavity; exposing said cavity to an axial acoustic standing wave field, wherein said axial acoustic standing wave field drives said particles to nodal and anti-nodal positions along the center axis of said cavity to result in uniformly spaced particles; and focusing said particles to the center axis of said cavity.

  9. Fabrication of photonic band gap materials

    DOE Patents [OSTI]

    Constant, Kristen (Ames, IA); Subramania, Ganapathi S. (Ames, IA); Biswas, Rana (Ames, IA); Ho, Kai-Ming (Ames, IA)

    2002-01-15

    A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.

  10. Agua Caliente Band - Strategic Energy Plan Development

    Office of Environmental Management (EM)

    STRATEGIC ENERGY PLAN DEVELOPMENT Agua Caliente Band of Cahuilla Indians Agua Caliente Indian Reservation Program Overview GOALS * Establishment of a Comprehensive Tribal Energy Policy * Incorporate Energy Efficiency, Renewable Resources into Tribal Economic Development Framework * Capture Economic and Environmental Benefits While Maintaining Respect for Tribal Culture and Traditions PROGRAM OVERVIEW Goals * Create a Living Document That Will Be Responsive to the Planning Needs of the Tribe *

  11. Permanent magnet focused X-band photoinjector

    DOE Patents [OSTI]

    Yu, David U. L. (Rancho Palos Verdes, CA); Rosenzweig, James (Los Angeles, CA)

    2002-09-10

    A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.

  12. Manzanita Band of Mission Indians- 2002 Project

    Broader source: Energy.gov [DOE]

    The Manzanita Band of Mission Indians ("the tribe") has long recognized that its reservation has an abundant wind resource that could be commercially utilized to its benefit. The tribe is now investigating the feasibility of commercial scale development of a wind power project on tribal lands. The proposed project is a joint effort between the tribe and its subcontractor and consultant, SeaWest Consulting.

  13. Pay-banding | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Pay-banding | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  14. Residual orientation in micro-injection molded parts

    SciTech Connect (OSTI)

    Healy, John; Edward, Graham H.; Knott, Robert B. (Monash); (ANSTO)

    2008-06-30

    The residual orientation following micro-injection molding of small rectangular plates with linear polyethylene has been examined using small-angle neutron scattering, and small- and wide-angle X-ray scattering. The effect of changing the molding conditions has been examined, and the residual chain orientation has been compared to the residual orientation of the crystallites as a function of position in the sample. This study has found that, for micromoldings, the orientation of the crystallites decreases with increasing injection speed and increasing mold thickness. The combined data suggest that the majority of the orientation present comes from oriented crystal growth rather than residual chain orientation.

  15. W-Band Sheet Beam Klystron Simulation

    SciTech Connect (OSTI)

    Colby, E.R.; Caryotakis, G.; Fowkes, W.R.; /SLAC; Smithe, D.N.; /Mission Res., Newington

    2005-09-12

    With the development of ever higher energy particle accelerators comes the need for compactness and high gradient, which in turn require very high frequency high power rf sources. Recent development work in W-band accelerating techniques has spurred the development of a high-power W-band source. Axisymmetric sources suffer from fundamental power output limitations (P{sub sat} {approx} {lambda}{sup 2}) brought on by the conflicting requirements of small beam sizes and high beam current. The sheet beam klystron allows for an increase in beam current without substantial increase in the beam current density, allowing for reduced cathode current densities and focusing field strengths. Initial simulations of a 20:1 aspect ratio sheet beam/cavity interaction using the 3 dimensional particle-in-cell code Magic3D have demonstrated a 35% beam-power to RF power extraction efficiency. Calculational work and numerical simulations leading to a prototype W-band sheet beam klystron will be presented, together with preliminary cold test structure studies of a proposed RF cavity geometry.

  16. W-band sheet beam klystron simulation

    SciTech Connect (OSTI)

    Colby, E.R.; Caryotakis, G.; Fowkes, W.R. [Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Smithe, D.N. [Mission Research Corporation, 8560 Cinderbed Road, Ste. 700, Newington, Virginia 22122 (United States)

    1999-05-01

    With the development of ever higher energy particle accelerators comes the need for compactness and high gradient, which in turn require very high frequency high power rf sources. Recent development work in W-band accelerating techniques has spurred the development of a high-power W-band source. Axisymmetric sources suffer from fundamental power output limitations (P{sub sat}{approximately}{lambda}{sup 2}) brought on by the conflicting requirements of small beam sizes and high beam current. The sheet beam klystron allows for an increase in beam current without substantial increase in the beam current density, allowing for reduced cathode current densities and focussing field strengths. Initial simulations of a 20:1 aspect ratio sheet beam/cavity interaction using the 3 dimensional particle-in-cell code Magic3D have demonstrated a 35{percent} beam-power to RF power extraction efficiency. Calculational work and numerical simulations leading to a prototype W-band sheet beam klystron will be presented, together with preliminary cold test structure studies of a proposed RF cavity geometry. {copyright} {ital 1999 American Institute of Physics.}

  17. Magnetism and electronic structure of (001)- and (111)-oriented LaTiO{sub 3} bilayers sandwiched in LaScO{sub 3} barriers

    SciTech Connect (OSTI)

    Weng, Yakui; Dong, Shuai

    2015-05-07

    In this study, the magnetism and electronic structure of LaTiO{sub 3} bilayers along both the (001) and (111) orientations are calculated using the density functional theory. The band insulator LaScO{sub 3} is chosen as the barrier layer and substrate to obtain the isolating LaTiO{sub 3} bilayer. For both the (001)- and (111)-oriented cases, LaTiO{sub 3} demonstrates the G-type antiferromagnetism as the ground state, similar to the bulk material. However, the electronic structure is significantly changed. The occupied bands of Ti are much narrower in the (111) case, giving a nearly flat band. As a result, the exchange coupling between nearest-neighbor Ti ions is reformed in these superlattices, which will affect the Nel temperature significantly.

  18. Fused off-axis object illumination direct-to-digital holography with a plurality of illumination sources

    DOE Patents [OSTI]

    Price, Jeffery R.; Bingham, Philip R.

    2005-11-08

    Systems and methods are described for rapid acquisition of fused off-axis illumination direct-to-digital holography. A method of recording a plurality of off-axis object illuminated spatially heterodyne holograms, each of the off-axis object illuminated spatially heterodyne holograms including spatially heterodyne fringes for Fourier analysis, includes digitally recording, with a first illumination source of an interferometer, a first off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording, with a second illumination source of the interferometer, a second off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  19. Project Reports for Campo Band of Mission Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    The Campo Band of Mission Indians ("Band") goal is to develop a 300 MW wind energy project ("Kumeyaay Wind II") in two phases over the next two to five years.

  20. Cabazon Band of Mission Indians- 2003 Project

    Broader source: Energy.gov [DOE]

    Strategic energy planning effort to assist in achieving the tribe's primary goals of economic diversity, economic self-sufficiency, and protecting the health and welfare of tribal members. The Cabazon Band Reservation, located on four sections of non-contiguous land on the eastern half of the Coachella Valley in Riverside County is approximately 25 miles east of Palm Springs, comprises 1500 acres and currently has the seventh highest residential electricity rates among U.S. Native American reservations. The Strategic Energy Plan will enable the tribe to make informed decisions in creating and conducting an effective energy management program for their people.

  1. W-Band Sheet Beam Klystron Design

    SciTech Connect (OSTI)

    Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.a Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.; /SLAC

    2011-11-11

    Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons [1]. Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

  2. Universal EUV in-band intensity detector

    DOE Patents [OSTI]

    Berger, Kurt W.

    2004-08-24

    Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.

  3. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect (OSTI)

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup ?}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1?x}Cd{sub x}Te, and In{sub 1?x}Ga{sub x}As{sub y}P{sub 1?y} lattice matched to InP, as example of IIIV compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  4. Morongo Band of Cahuilla Mission Indians- 2006 Project

    Broader source: Energy.gov [DOE]

    The Southwest Tribal Energy Consortium, represented by the Morongo Band, is comprised of tribes in California, Arizona and New Mexico.

  5. The use of a beryllium Hopkinson bar to characterize in-axis and cross-axis accelerometer response in shock environments

    SciTech Connect (OSTI)

    Bateman, V.I.; Brown, F.A.

    1997-05-01

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A beryllium Hopkinson bar capability has been developed to extend the understanding of the piezoresistive accelerometer, in two mechanical configurations and with and without mechanical isolation, in the high frequency, high shock environments where measurements are being made. In this paper, recent measurements with beryllium single and split-Hopkinson bar configurations are described. The in axis performance of the piezoresistive accelerometer in mechanical isolation for frequencies of dc-30 kHz and shock magnitudes of up to 6,000 g as determined from measurements with a beryllium Hopkinson bar with a certified laser doppler vibrometer as the reference measurement are presented. Results of characterizations of the accelerometers subjected to cross axis shocks in a split beryllium Hopkinson bar configuration are also presented.

  6. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    SciTech Connect (OSTI)

    Hall, G. N. Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L.

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  7. Excitation of Banded Whistler Waves in the Magnetosphere

    SciTech Connect (OSTI)

    Gary, S. Peter; Liu, Kaijun; Winske, Dan

    2012-07-13

    Banded whistler waves can be generated by the whistler anisotropy instability driven by two bi-Maxwellian electron components with T{sub {perpendicular}}/T{sub {parallel}} > 1 at different T{sub {parallel}} For typical magnetospheric condition of 1 < {omega}{sub e}/{Omega}{sub e} < 5 in regions associated with strong chorus, upper-band waves can be excited by anisotropic electrons below {approx} 1 keV, while lower-band waves are excited by anisotropic electrons above {approx} 10 keV. Lower-band waves are generally field-aligned and substantially electromagnetic, while upper-band waves propagate obliquely and have quasi-electrostatic fluctuating electric fields. The quasi-electrostatic feature of upper-band waves suggests that they may be more easily identified in electric field observations than in magnetic field observations. Upper-band waves are liable to Landau damping and the saturation level of upperband waves is lower than lower-band waves, consistent with observations that lower-band waves are stronger than upper-band waves on average. The oblique propagation, the lower saturation level, and the more severe Landau damping together would make upper-band waves more tightly confined to the geomagnetic equator (|{lambda}{sub m}| < {approx}10{sup o}) than lower-band waves.

  8. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V.

    2015-08-04

    Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.

  9. Controlled placement and orientation of nanostructures

    DOE Patents [OSTI]

    Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M

    2014-04-08

    A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.

  10. Microsoft Word - ISDAC_orientation_pkt.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORIENTATION PACKAGE ISDAC Field Campaign March 29 - May 2 Fairbanks, Alaska 1 Welcome to Alaska! This information package is to help you become familiar with the area and answer some questions you might have as you arrive. If you have any questions please feel free to contact Debbie at 509.392.1854. Contents Cell Phone Numbers Fairbanks * Campaign Info Site Locations in Fairbanks Badging and Access Mission Schedule Safety Network and Communications Office Equipment * Local Information * Map Cell

  11. Development of a Multi Megawatt Circulator for X Band

    SciTech Connect (OSTI)

    Neilson, J.; Ives, L.; Tantawi, S.G.; /Calabazas Creek Res., Saratoga /SLAC

    2008-03-24

    Research is in progress on a TeV-scale linear collider that will operate at 5-10 times the energy of present-generation accelerators. This will require development of high power RF sources generating of 50-100 MW per source. Transmission of power at this level requires overmoded waveguide to avoid breakdown. In particular, the TE{sub 01} circular waveguide mode is currently the mode of choice for waveguide transmission at Stanford Linear Accelerator Center (SLAC) in the Multimode Delay Line Distribution System (MDLDS). A common device for protecting an RF source from reflected power is the waveguide circulator. A circulator is typically a three-port device that allows low loss power transmission from the source to the load, but diverts power coming from the load (reflected power) to a third terminated port. To achieve a low loss, matched, three port junction requires nonreciprocal behavior. This is achieved using ferrites in a static magnetic field which introduces a propagation constant dependent on RF field direction relative to the static magnetic field. Circulators are currently available at X-Band for power levels up to 1 MW in fundamental rectangular waveguide; however, the next generation of RF sources for TeV-level accelerators will require circulators in the 50-100 MW range. Clearly, conventional technology is not capable of reaching the power level required. In this paper, we discuss the development of an X-Band circulator operating at multi-megawatt power levels in overmoded waveguide. The circulator will employ an innovative coaxial geometry using the TE{sub 01} mode. Difficulties in maintaining mode purity in oversized rectangular guide preclude increasing guide area to allow increasing the power level to the desired 50-100 MW range. The TE{sub 01} mode in circular waveguide is very robust mode for transmission of high power in overmoded waveguide. The mode is ideal for transmission of high power microwaves because of its low-losses, zero tangential field on the guide (which minimizes arcing problems) and reduced propensity for mode conversion compared to non-asymmetric circular waveguide modes. Unfortunately, no current designs exist for circulators using the circular TE{sub 01} mode. The basic building block for all low-loss circulators and isolators is a nonreciprocal element with a phase shift dependent on the propagation direction in the guide. Such an element can be constructed by placement of a hollow ferrite rod in a cylindrical waveguide. An inner conductor placed inside the ferrite rod conducts a current pulse that induces an azimuthal magnetic field inside the ferrite. This configuration is depicted in Figure 1a. An alternate configuration using permanent magnets is shown in Figure 1b. Either of these configurations will create a different phase shift for waves propagating in opposite directions along the waveguide axis. This feature can be used to develop a high power circulator. We are currently testing a TE{sub 01} nonreciprocal phase shifter in a 50 MW test stand. This device is in the configuration shown in Figure 1a. The induced differential phase shift and loss will be measured and compared to calculations.

  12. Oriented Nanostructures for Energy Conversion and Storage

    SciTech Connect (OSTI)

    Liu, Jun; Cao, Guozhong H.; Yang, Zhenguo; Wang, Donghai; DuBois, Daniel L.; Zhou, Xiao Dong; Graff, Gordon L.; Pederson, Larry R.; Zhang, Jiguang

    2008-08-28

    Recently the role of nanostructured materials in addressing the challenges in energy and natural resources has attracted wide attention. In particular, oriented nanostructures have demonstrated promising properties for energy harvesting, conversion and storage. The purpose of the paper is to review the synthesis and application of oriented nanostructures in a few key areas of energy technologies, namely photovoltaics, batteries, supercapacitors and thermoelectrics. Although the applications differ from field to field, one of the fundamental challenges is to improve the generation and transport of electrons and ions. We will first briefly review the several major approaches to attain oriented nanostructured films that are applicable for energy applications. We will then discuss how such controlled nanostructures can be used in photovoltaics, batteries, capacitors, thermoelectrics, and other unconventional ways of energy conversion. We will highlight the role of high surface area to maximize the surface activity, and the importance of optimum dimension and architecture, controlled pore channels and alignment of the nanocrystalline phase to optimize the electrons and ion transport. Finally, the paper will discuss the challenges in attaining integrated architectures to achieve the desired performance. Brief background information will be provided for the relevant technologies, but the emphasis is focused mainly on the nanoeffects of mostly inorganic based materials and devices.

  13. In-Axis and Cross-Axid Accelerometer Response in Shock Environments

    SciTech Connect (OSTI)

    Bateman, V.I.; Brown, F.A.

    1999-03-10

    The characteristics of a piezoresistive accelerometer in shock environments have been studied at Sandia National Laboratories (SNL) in the Mechanical Shock Testing Laboratory for ten years The SNL Shock Laboratory has developed a capability to characterize accelerometers and other transducers with shocks aligned with the transducer's sensing axis and perpendicular to the transducer's sensing axis. This unique capability includes Hopkinson bars made of aluminum, steel, titanium, and beryllium. The bars are configured as both single and split Hopkinson bars. Four different areas that conclude this study are summarized in this paper: characterization of the cross-axis response of the accelerometer in the four environments of static compression, static strain on a beam, dynamic strain, and mechanical shock, the accelerometer's response on a titanium Hopkinson bar with two 45{degree} flats on the end of the bar; failure analysis of the accelerometer; and measurement of the accelerometer's self-generating cable response in a shock environment.

  14. Magnetic field and field orientation dependence of the critical current density in Bi-2212 round wires and other HTS conductors

    SciTech Connect (OSTI)

    Willis, J.O.; Holesinger, T.G.; Coulter, J.Y.; Maley, M.P.

    1996-10-01

    The authors have performed measurements of the magnetic field dependence of the critical current density J{sub c} of Bi-2212/Ag round wire produced by isothermal melt processing. In contrast to the case for flat tape, there is very little dependence of J{sub c} on the direction of the magnetic field as it is rotated normal to the wire axis, which is the direction of the nominal current flow. However, when the angle of the magnetic field direction is rotated from normal to the wire axis to parallel to that axis, J{sub c} at 64 K and 0.2 T increases by more than a factor of four. Again, this is in contrast to the results observed for Bi-2212/Ag and Bi-2223/Ag flat tapes, which show no anisotropy under similar experimental conditions. They can explain these differences in angular anisotropy by referring to the microstructure of these two conductor types, which have distinctly different types of grain alignment. They discuss the general behavior of the dependence of J{sub c} on the orientation of a magnetic field for high temperature superconductors.

  15. Fine structure on the green band in ZnO

    SciTech Connect (OSTI)

    Reynolds, D. C.; Look, D. C.; Jogai, B.

    2001-06-01

    An emission band at 2.4 eV, called the green band, is observed in most ZnO samples, no matter what growth technique is used. Sometimes this band includes fine structure, which consists mainly of doublets, repeated with a longitudinal-optical-phonon-energy spacing (72 meV). We have developed a vibronic model for the green band, based on transitions from two separate shallow donors to a deep acceptor. The donors, at energies 30 and 60 meV from the conduction-band edge, respectively, are also found from Hall-effect measurements. {copyright} 2001 American Institute of Physics.

  16. Hybrid Band effects program (Lockheed Martin shared vision CRADA)

    SciTech Connect (OSTI)

    Bacon, L. D.

    2012-03-01

    Hybrid Band{trademark} (H-band) is a Lockheed Martin Missiles and Fire Control (LMMFC) designation for a specific RF modulation that causes disruption of select electronic components and circuits. H-Band enables conventional high-power microwave (HPM) effects (with a center frequency of 1 to 2 GHz, for example) using a higher frequency carrier signal. The primary technical objective of this project was to understand the fundamental physics of Hybrid Band{trademark} Radio Frequency effects on electronic systems. The follow-on objective was to develop and validate a Hybrid Band{trademark} effects analysis process.

  17. A two-dimensional matrix correction for off-axis portal dose prediction errors

    SciTech Connect (OSTI)

    Bailey, Daniel W.; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Podgorsak, Matthew B.

    2013-05-15

    Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ['An effective correction algorithm for off-axis portal dosimetry errors,' Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As in the 1D correction case, the 2D algorithm leaves the portal dosimetry process virtually unchanged in the central portion of the detector, and thus these correction algorithms are not needed for centrally located fields of moderate size (at least, in the case of 6 MV beam energy).Conclusion: The 2D correction improves the portal dosimetry results for those fields for which the 1D correction proves insufficient, especially in the inplane, off-axis regions of the detector. This 2D correction neglects the relatively smaller discrepancies that may be caused by backscatter from nonuniform machine components downstream from the detecting layer.

  18. Off-axis sawteeth and double-tearing reconnection in reversed magnetic shear plasmas in TFTR

    SciTech Connect (OSTI)

    Chang, Z.; Park, W.; Fredrickson, E.D.

    1996-06-01

    Off-axis sawteeth are often observed in reversed magnetic shear plasmas when the minimum safety factor q is near or below 2. Fluctuations with m/n = 2/1 (m and n are the poloidal and toroidal mode numbers) appear before and after the crashes. Detailed comparison has been made between the measured T{sub e} profile evolution during the crash and a nonlinear numerical magnetohydrodynamics (MHD) simulation. The good agreement between the observation and simulation indicates that the off-axis sawteeth are due to a double-tearing magnetic reconnection process.

  19. Multi-Axis Foot Reaction Force/Torque Sensor for Biomedical Applications

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Multi-Axis Foot Reaction Force/Torque Sensor for Biomedical Applications Citation Details In-Document Search Title: Multi-Axis Foot Reaction Force/Torque Sensor for Biomedical Applications No abstract prepared. Authors: Lind, Randall F [1] ; Love, Lonnie J [1] ; Rowe, John C [1] ; Pin, Francois G [1] + Show Author Affiliations ORNL [ORNL Publication Date: 2009-01-01 OSTI Identifier: 966106 DOE Contract Number: DE-AC05-00OR22725 Resource Type:

  20. Shock margin testing of a one-axis MEMS accelerometer. (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technical Report: Shock margin testing of a one-axis MEMS accelerometer. Citation Details In-Document Search Title: Shock margin testing of a one-axis MEMS accelerometer. Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline

  1. SAF 114O Laser Safety Orientation Training | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAF 114O Laser Safety Orientation Training For staff and students: Course: SAF 114O Laser Safety Orientation Date: Tuesday, July 14, 2015 Time: 10:30 - noon Location: CEBAF Center,...

  2. DOE Challenge Home: Orientation Training – October 2012

    Broader source: Energy.gov [DOE]

    A publication of the U.S. Department of Energy Challenge Home program: Orientation Training – October 2012.

  3. Eastern Band of Cherokee Strategic Energy Plan

    SciTech Connect (OSTI)

    Souther Carolina Institute of energy Studies-Robert Leitner

    2009-01-30

    The Eastern Band of Cherokee Indians was awarded a grant under the U.S. Department of Energy Tribal Energy Program (TEP) to develop a Tribal Strategic Energy Plan (SEP). The grant, awarded under the First Steps phase of the TEP, supported the development of a SEP that integrates with the Tribes plans for economic development, preservation of natural resources and the environment, and perpetuation of Tribal heritage and culture. The Tribe formed an Energy Committee consisting of members from various departments within the Tribal government. This committee, together with its consultant, the South Carolina Institute for Energy Studies, performed the following activities: Develop the Tribes energy goals and objectives Establish the Tribes current energy usage Identify available renewable energy and energy efficiency options Assess the available options versus the goals and objectives Create an action plan for the selected options

  4. Mississippi Band of Choctaw Indians- 2002 Project

    Broader source: Energy.gov [DOE]

    The Mississippi Band of Choctaw Indians (MBCI) always seeks new opportunities to diversify its economy and create new career opportunities for tribal members, which is the purpose of this feasibility study. The MBCI will study the feasibility of locating a renewable energy installation on tribal lands. The technologies to be utilized in the renewable energy installation will be those that can readily handle poultry litter, either alone or in combination with wood residues. The purpose of the study is to determine whether such an installation can be both economically sustainable and consistent with the cultural, social, and economic goals of the tribe. The feasibility study will result in the development of a thorough business plan that will allow the MBCI to make an informed decision regarding this project.

  5. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  6. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  7. Resonant spin tunneling in randomly oriented nanospheres of Mn12 acetate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lendínez, S.; Zarzuela, R.; Tejada, J.; Terban, M. W.; Billinge, S. J. L.; Espin, J.; Imaz, I.; Maspoch, D.; Chudnovsky, E. M.

    2015-01-06

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less

  8. New Employee Orientation - Forms Checklist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forms Checklist New Employee Orientation - Forms Checklist Listing of the forms to be issued and collected at a new employee's orientation. Please review the checklist to ensure that you bring all of the needed forms. PDF icon NEO - Forms Checklist More Documents & Publications New Employee Orientation - Ethics Briefing Certification Rights and Benefits of Reservists Called to Active Duty Handbook on Overseas Assignments

  9. Biomimetic processing of oriented crystalline ceramic layers

    SciTech Connect (OSTI)

    Cesarano, J.; Shelnutt, J.A.

    1997-10-01

    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  10. Rotation Angle for the Optimum Tracking of One-Axis Trackers

    SciTech Connect (OSTI)

    Marion, W. F.; Dobos, A. P.

    2013-07-01

    An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

  11. A lightweight high performance dual-axis gimbal for space applications

    SciTech Connect (OSTI)

    Pines, D.J.; Hakala, D.B.; Malueg, R.

    1995-05-05

    This paper describes the design, development and performance of a lightweight precision gimbal with dual-axis slew capability to be used in a closed-loop optical tracking system at Lawrence Livermore National Laboratory-LLNL. The motivation for the development of this gimbal originates from the need to acquire and accurately localize warm objects (T{approximately}500 K) in a cluttered background. The design of the gimbal is centered around meeting the following performance requirements: pointing accuracy with control < 35 {mu}rad-(1-{omega}); slew capability > 0.2 rad/sec; mechanical weight < 5 kg. These performance requirements are derived by attempting to track a single target from multiple satellites in low Earth orbit using a mid-wave infrared camera. Key components in the gimbal hardware that are essential to meeting the performance objectives include a nickel plated beryllium mirro, an accurate lightweight capacitive pickoff device for angular measurement about the elevation axis, a 16-bit coarse/fine resolver for angular measurement about the azimuth axis, a toroidally wound motor with low hysteresis for providing torque about the azimuth axis, and the selection of beryllium parts to insure high stiffness to weight ratios and more efficient thermal conductivity. Each of these elements are discussed in detail to illustrate the design trades performed to meet the tracking and slewing requirements demanded. Preliminary experimental results are also given for various commanded tracking maneuvers.

  12. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOE Patents [OSTI]

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2013-09-10

    One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel. At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.

  13. The interaction of two coronal mass ejections: Influence of relative orientation

    SciTech Connect (OSTI)

    Lugaz, N.; Farrugia, C. J.; Schwadron, N.; Manchester IV, W. B.

    2013-11-20

    We report on a numerical investigation of two coronal mass ejections (CMEs) that interact as they propagate in the inner heliosphere. We focus on the effect of the orientation of the CMEs relative to each other by performing four different simulations with the axis of the second CME rotated by 90 from one simulation to the next. Each magnetohydrodynamic simulation is performed in three dimensions with the Space Weather Modeling Framework in an idealized setting reminiscent of solar minimum conditions. We extract synthetic satellite measurements during and after the interaction and compare the different cases. We also analyze the kinematics of the two CMEs, including the evolution of their widths and aspect ratios. We find that the first CME contracts radially as a result of the interaction in all cases, but the amount of subsequent radial expansion depends on the relative orientation of the two CMEs. Reconnection between the two ejecta and between the ejecta and the interplanetary magnetic field determines the type of structure resulting from the interaction. When a CME with a high inclination with respect to the ecliptic overtakes one with a low inclination, it is possible to create a compound event with a smooth rotation in the magnetic field vector over more than 180. Due to reconnection, the second CME only appears as an extended 'tail', and the event may be mistaken for a glancing encounter with an isolated CME. This configuration differs significantly from the one usually studied of a multiple-magnetic-cloud event, which we found to be associated with the interaction of two CMEs with the same orientation.

  14. DC 12m telescope. Preliminary calculations. Investigation of elevation axis position.

    SciTech Connect (OSTI)

    Guarino, V. J.; High Energy Physics

    2009-12-18

    This paper examines some simple calculations of a 2D model of a telescope in order to understand how different design parameters affect the design. For the design of a telescope it is assumed that they need a design that minimizes deflections of the dish and also minimizes the size of the motors and torques needed to rotate in elevation. A common belief is that a lighter dish and minimum counterweight is desirable. However, these calculations show this is not necessarily true. The torque needed for rotation depends on the moment of inertia and if the telescope is balanced about the elevation axis. A light dish with no CW requires that the elevation axis be several meters in front of the dish (8-9m) in order to be balanced. This is not practical from a structural point of view. If the elevation axis is only 2m in front of the dish and there is no counterweight then the telescope will be unbalanced and the toruqes required will be very high - much higher than the torques needed only to overcome inertia. A heavy dish though can act as its own counterweight and the elevation axis only has to be 2-3m in front of the dish in order to achieve a balanced telescope. Also the struts that support the camera from the dish place a load on the dish which will put a bending moment on the dish. This bending moment will deform the dish and require it to be stiffer. A counterweight structure performs two functions. First, it allows the telescope to be balanced about the elevation axis. Second, it applies a force on the dish that opposes the forces from the camera struts, thereby reducing the bending moment and deformations of the dish.

  15. Object-oriented Geographic Information System Framework

    Energy Science and Technology Software Center (OSTI)

    2003-03-01

    JeoViewer is an intelligent object-oriented geographic information system (GIS) framework written in Java that provides transparent linkage to any object’s data, behaviors, and optimized spatial geometry representation. Tools are provided for typical GIS functionality, data ingestion, data export, and integration with other frameworks. The primary difference between Jeo Viewer and traditional GIS systems is that traditional GIS systems offer static views of geo-spatial data while JeoViewer can be dynamically coupled to models and live datamore » streams which dynamically change the state of the object which can be immediately represented in JeoViewer. Additionally, JeoViewer’s object-oriented paradigm provides a more natural representation of spatial data. A rich layer hierarchy allows arbitrary grouping of objects based on any relationship as well as the traditional GIS vertical ordering of objects. JeoViewer can run as a standalone product, extended with additional analysis functionality, or embedded in another framework.« less

  16. Orienting members in a preselected rotary alignment

    DOE Patents [OSTI]

    Williams, Ray E. (Los Alamos, NM)

    1987-01-01

    An apparatus for orienting members and for maintaining their rotary alignment during orienting members. The apparatus comprises first and second cylindrical elements, a rotation prevention element, a collar and a retainer. Each element has an outside wall, and first and second ends, each end having an outside edge. The first element has portions defining a first plurality of notches located at the outside edge of its first end. An external threaded portion is on the outside wall of the first element and next to the first plurality of notches. The second element has portions defining a second plurality of notches located at the outside edge of its first end. The first plurality has a different number than the second plurality. The first ends of the first and second tubes have substantially the same outside diameter and are abutted during connection so that a cavity is formed whenever first and second tube notches substantially overlap. A rotation prevention element is placed in the cavity to prevent rotation of the first and second elements. A collar with an internal threaded portion is slidably disposed about the second element. The internal threaded portion engages the external threaded portion of the first element to connect the elements. A lip connected to the collar prevents separation of the collar from the second element.

  17. Determining orientation and direction of DNA sequences

    DOE Patents [OSTI]

    Goodwin, Edwin H. (Los Alamos, NM); Meyne, Julianne (Los Alamos, NM)

    2000-01-01

    Determining orientation and direction of DNA sequences. A method by which fluorescence in situ hybridization can be made strand specific is described. Cell cultures are grown in a medium containing a halogenated nucleotide. The analog is partially incorporated in one DNA strand of each chromatid. This substitution takes place in opposite strands of the two sister chromatids. After staining with the fluorescent DNA-binding dye Hoechst 33258, cells are exposed to long-wavelength ultraviolet light which results in numerous strand nicks. These nicks enable the substituted strand to be denatured and solubilized by heat, treatment with high or low pH aqueous solutions, or by immersing the strands in 2.times.SSC (0.3M NaCl+0.03M sodium citrate), to name three procedures. It is unnecessary to enzymatically digest the strands using Exo III or another exonuclease in order to excise and solubilize nucleotides starting at the sites of the nicks. The denaturing/solubilizing process removes most of the substituted strand while leaving the prereplication strand largely intact. Hybridization of a single-stranded probe of a tandem repeat arranged in a head-to-tail orientation will result in hybridization only to the chromatid with the complementary strand present.

  18. Agua Caliente Band of Cahuilla Indians - 2010 Project | Department of

    Office of Environmental Management (EM)

    Energy Agua Caliente Band of Cahuilla Indians - 2010 Project Agua Caliente Band of Cahuilla Indians - 2010 Project Summary The Agua Caliente Band of Cahuilla Indians (ACBCI) will conduct a feasibility and predevelopment study of potential solar projects on its lands in southern California. The project will focus on evaluating opportunities for solar power at larger ACBCI facilities and on its lands and allow ACBCI to complete its next logical step in implementing its Strategic Energy Plan,

  19. Germanium blocked impurity band infrared detectors

    SciTech Connect (OSTI)

    Rossington, C.S.; Haller, E.E.

    1988-08-01

    Germanium blocked impurity band (BIB) photoconductors have been fabricated and characterized for responsivity, dark current, and noise equivalent power. BIB photoconductors theoretically provide an extension of the spectral response, a reduction in sensitivity to cosmic radiation and a reduction in noise characteristics compared with conventional photoconductors. Silicon BIB detectors have been successfully developed by researchers at Rockwell International, which do indeed meet their theoretical potential. In the proper configuration, these same Si BIB detectors are capable of continuous detection of individual photons in the wavelength range from 0.4 to 28 ..mu..m. Until the BIB concept was developed, detection of individual photons was only possible with photomultiplier tubes which detected visible light. Due to the successes of the Si BIB detectors, it seemed natural to extend this concept to Ge detectors, which would then allow an extension of the spectral response over conventional Ge detectors from /approximately/100 ..mu..m to /approximately/200 ..mu..m. 8 refs., 2 figs.

  20. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect (OSTI)

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  1. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic...

  2. Project Reports for Eastern Band of Cherokee Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    The Eastern Band of Cherokee Indians (EBCI) is using the grant funds from the Department of Energy to complete the Energy Efficiency Improvements to seven EBCI facilities.

  3. Project Reports for Soboba Band of Luiseno Indians- 2011 Project

    Broader source: Energy.gov [DOE]

    The Soboba Band of Luiseno Indians would like to begin to focus on renewable sources for electricity and to actively target lowering the energy usage of the community.

  4. Ramona Band of Cahuilla Mission Indians- 1999 Project

    Broader source: Energy.gov [DOE]

    The Ramona Band of Cauhilla Indians is establishing an ecotourism facility on their Reservation at the southern end of the San Bernardino National Forest in southern California.

  5. Project Reports for Aroostook Band of Micmac Indians- 2005 Project

    Broader source: Energy.gov [DOE]

    The goal of the project is to develop a strategic energy plan in order to reduce energy costs in the Aroostook Band of Micmacs' government buildings and homes.

  6. Project Reports for Agua Caliente Band of Cahuilla Indians -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Agua Caliente Band of Cahuilla Indians (ACBCI) will conduct a feasibility and predevelopment study of potential solar projects on its lands in southern California. Learn more ...

  7. Minnesota Chippewa Tribe: White Earth Band- 2003 Project

    Broader source: Energy.gov [DOE]

    Several northern Minnesota tribes interested in building a common foundation for strategic tribal energy capacity have banded together for strategic energy resource planning.

  8. Battle Mountain Band - Te-Moak: Solar Energy Park

    Office of Environmental Management (EM)

    Battle Mountain Band - Te-Moak Chairman Joseph Holley and Vice-chairman Mark Oppenhein, Members Donna Hill, Delbert Holley, Lydia Johnson, and Lydell Oppenhein Solar Energy Park ...

  9. Independently tunable dual-band perfect absorber based on graphene...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies Citation Details In-Document Search Title: Independently tunable ...

  10. Santa Ynez Band of Chumash Indians- 2011 Project

    Broader source: Energy.gov [DOE]

    The Santa Ynez Band of Chumash Indians (SYBCI) will prepare a comprehensive, strategic energy plan that incorporates energy efficiency, renewable energy, and other energy management and development options.

  11. Distributed Object Oriented Geographic Information System

    Energy Science and Technology Software Center (OSTI)

    1997-02-01

    This interactive, object-oriented, distributed Geographic Information System (GIS) uses the World Wibe Web (WWW) as application medium and distribution mechanism. The software provides distributed access to multiple geo-spatial databases and presents them as if they came from a single coherent database. DOOGIS distributed access comes not only in the form of multiple geo-spatial servers but can break down a single logical server into the constituent physical servers actually storing the data. The program provides formore » dynamic protocol resolution and content handling allowing unknown objects from a particular server to download their handling code. Security and access privileges are negotiated dynamically with each server contacted and each access attempt.« less

  12. Magneto-transport properties of oriented Mn{sub 2}CoAl films sputtered on thermally oxidized Si substrates

    SciTech Connect (OSTI)

    Xu, G. Z.; Du, Y.; Zhang, X. M.; Liu, E. K.; Wang, W. H. Wu, G. H.; Zhang, H. G.

    2014-06-16

    Spin gapless semiconductors are interesting family of materials by embracing both magnetism and semiconducting due to their unique band structure. Its potential application in future spintronics requires realization in thin film form. In this Letter, we report fabrication and transport properties of spin gapless Mn{sub 2}CoAl films prepared on thermally oxidized Si substrates by magnetron sputtering deposition. The films deposited at 673 K are well oriented to (001) direction and display a uniform-crystalline surface. Magnetotransport measurements on the oriented films reveal a semiconducting-like resistivity, small anomalous Hall conductivity, and linear magnetoresistance representative of the transport signatures of spin gapless semiconductors. The magnetic properties of the films have also been investigated and compared to that of bulk Mn{sub 2}CoAl, showing small discrepancy induced by the composition deviation.

  13. Interrogation of Surface, Skin, and Core Orientation in Thermotropic Liquid-Crystalline Copolyester Moldings by Near-Edge X-ray Absorption Fine Structure and Wide-Angle X-ray Scattering

    SciTech Connect (OSTI)

    Rendon,S.; Bubeck, R.; Thomas, L.; Burghardt, W.; Hexemer, A.; Fischer, D.

    2007-01-01

    Injection molding thermotropic liquid-crystalline polymers (TLCPs) usually results in the fabrication of molded articles that possess complex states of orientation that vary greatly as a function of thickness. 'Skin-core' morphologies are often observed in TLCP moldings. Given that both 'core' and 'skin' orientation states may often differ both in magnitude and direction, deconvolution of these complex orientation states requires a method to separately characterize molecular orientation in the surface region. A combination of two-dimensional wide-angle X-ray scattering (WAXS) in transmission and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to probe the molecular orientation in injection molded plaques fabricated from a 4,4'-dihydroxy-{alpha}-methylstilbene (DH{alpha}MS)-based thermotropic liquid crystalline copolyester. Partial electron yield (PEY) mode NEXAFS is a noninvasive ex situ characterization tool with exquisite surface sensitivity that samples to a depth of 2 nm. The effects of plaque geometry and injection molding processing conditions on surface orientation in the regions on- and off- axis to the centerline of injection molded plaques are presented and discussed. Quantitative comparisons are made between orientation parameters obtained by NEXAFS and those from 2D WAXS in transmission, which are dominated by the microstructure in the skin and core regions. Some qualitative comparisons are also made with 2D WAXS results from the literature.

  14. Axi-symmetrical flow reactor for .sup.196 Hg photochemical enrichment

    DOE Patents [OSTI]

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, .sup.196 Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired .sup.196 Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith.

  15. Axi-symmetrical flow reactor for [sup 196]Hg photochemical enrichment

    DOE Patents [OSTI]

    Grossman, M.W.

    1991-04-30

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, [sup 196]Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired [sup 196]Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith. 10 figures.

  16. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    SciTech Connect (OSTI)

    Riley, Daniel; Hansen, Clifford W.

    2014-12-30

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam onto the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.

  17. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at μg/ √Hz and μrad/s/ √Hz levels, making thismore » a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.« less

  18. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    SciTech Connect (OSTI)

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at ?g/ ?Hz and ?rad/s/ ?Hz levels, making this a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.

  19. Single-Axis Three-Beam Amplitude Monopulse Antenna-Signal Processing Issues

    SciTech Connect (OSTI)

    Doerry, Armin W.; Bickel, Douglas L.

    2015-05-01

    Typically, when three or more antenna beams along a single axis are required, the answer has been multiple antenna phase-centers, essentially a phase-monopulse system. Such systems and their design parameters are well-reported in the literature. Less appreciated is that three or more antenna beams can also be generated in an amplitude-monopulse fashion. Consequently, design guidelines and performance analysis of such antennas is somewhat under-reported in the literature. We provide discussion herein of three beams arrayed in a single axis with an amplitude-monopulse configuration. Acknowledgements The preparation of this report is the result of an unfunded research and development activity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administ ration under contract DE-AC04-94AL85000.

  20. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Riley, Daniel; Hansen, Clifford W.

    2014-12-30

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less

  1. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  2. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen (Knoxville, TN) [Knoxville, TN; Kalinin, Sergei V. (Knoxville, TN) [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  3. The electronic structure of heavy fermions: Narrow temperature independent bands

    SciTech Connect (OSTI)

    Arko, A.J.; Joyce, J.J.; Smith, J.L.; Andrews, A.B.

    1996-08-01

    The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow temperature independent bands. There is no evidence from photoemission for a collective phenomenon normally referred to as the Kondo resonance. In uranium compounds a small dispersion of the bands is easily measurable.

  4. Method and apparatus for maintaining equilibrium in a helical axis stellarator

    DOE Patents [OSTI]

    Reiman, Allan (Princeton, NJ); Boozer, Allen (Rocky Hill, NJ)

    1987-01-01

    Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellerator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.

  5. Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Torque from Wind Conference Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power &

  6. Method and apparatus for maintaining equilibrium in a helical axis stellarator

    DOE Patents [OSTI]

    Reiman, A.; Boozer, A.

    1984-10-31

    Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellarator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.

  7. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    SciTech Connect (OSTI)

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-15

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  8. Annual collectible energy of a two-axis tracking flat-plate solar collector

    SciTech Connect (OSTI)

    Attalage, R.A.; Reddy, T.A. )

    1992-01-01

    A correlation for annual collectible energy of a two-axis tracking flat-plate solar collector has been developed using simulated results based on typical meteorological year (TMY) data for 26 US locations. A preliminary validation of this correlation has been carried out with data from four Australian locations. With the advent of increasing interest in photovoltaic systems, there are a number of advantages of using a two-axis flat-plate collector. Since the tracking system is generally much cheaper than the collector panel, such a mode permits the incident solar radiation to be collected more efficiently. Incidence angle effects are minimized and, moreover, contrary to concentrating collectors, such a mode enables both the diffuse and beam components of solar radiation to be collected. In tropical locations where the diffuse fraction is generally high, this may be a great advantage. The objective of this study was to develop a correlation for the annual collectible energy of a two-axis tracking flat-plate collector.

  9. Surface modifications and optical variations of (?1 1 1) lattice oriented CuO nanofilms for solar energy applications

    SciTech Connect (OSTI)

    Dhanasekaran, V.; Mahalingam, T.

    2013-09-01

    Graphical abstract: - Highlights: The films are grown using a low cost SILAR method. The pH value is found to play a significant role in the property of the resulting films. The fabrication of band pass filters between 450 nm and 1000 nm is envisaged. Electrical conductivity and optical band gap values were found to be 68.1 10{sup ?3} ?{sup ?1} cm{sup ?1} and 1.08 eV. Coating may aid the small band of frequencies could pave way for enhancing the efficiency. - Abstract: This paper reports on the preparation and characterization of Successive Ionic Layer by Adsorption and Reaction (SILAR) grown CuO thin films. The films were deposited onto glass substrates at various solution pH values. The thickness of the film is increased with increase of solution pH values. X-ray diffraction analysis revealed that the prepared films exhibited the monoclinic structure with (?1 1 1) predominant orientation. The optimized pH value is 11 0.1. The microstructure, morphology, optical and electrical properties are studied and reported. The transmission spectra (T) at normal incidence revealed that the films exhibit indirect transitions and may be tailored for passing selected bands of frequencies in visible near IR range. The activation energy is estimated to be about 0.29 eV.

  10. The influence of molecular orientation on organic bulk heterojunction solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells The influence of molecular orientation on organic bulk heterojunction solar cells The influence of molecular orientation on organic bulk heterojunction solar cells Print Monday, 28 April 2014 09:03 Work done on ALS Beamlines 11.0.1.2, 7.3.3, and 5.3.2.2. reveals that preferential orientation of polymer chains with respect to the fullerene domain leads to a high photovoltaic performance. Featured on the cover of Nature Photonics 8. Article link

  11. Highly Mismatched Alloys for Intermediate Band Solar Cells

    SciTech Connect (OSTI)

    Walukiewicz, W.; Yu, K.M.; Wu, J.; Ager III, J.W.; Shan, W.; Scrapulla, M.A.; Dubon, O.D.; Becla, P.

    2005-03-21

    It has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a ''stepping stone'' for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band.

  12. A Target-Oriented Magnetotelluric Inversion Approach For Characterizin...

    Open Energy Info (EERE)

    Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Target-Oriented Magnetotelluric Inversion Approach For...

  13. The influence of field-free orientation on the predissociation...

    Office of Scientific and Technical Information (OSTI)

    on the predissociation dynamics is studied in detail. We calculate the radial and angular distributions, the molecular orientation degrees, and the time-dependent populations...

  14. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    angle and thus dominated by contributions from the PEMair surface contained well-defined spots, indicating the presence of hydrophilic channels oriented perpendicular to the...

  15. Qinhuangdao Orient Science and Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Science and Technology Co Ltd Jump to: navigation, search Name: Qinhuangdao Orient Science and Technology Co., Ltd Place: Qinhuangdao, Hebei Province, China Zip: 660004 Product:...

  16. Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors

    SciTech Connect (OSTI)

    Shih, Chun-Hsing Dang Chien, Nguyen

    2014-01-28

    Low-bandgap semiconductors, such as InAs and InSb, are widely considered to be ideal for use in tunnel field-effect transistors to ensure sufficient on-current boosting at low voltages. This work elucidates the physical and mathematical considerations of applying conventional band-to-band tunneling models in low-bandgap semiconductors, and presents a new analytical alternative for practical use. The high-bandgap tunneling generates most at maximum field region with shortest tunnel path, whereas the low-bandgap generations occur dispersedly because of narrow tunnel barrier. The local electrical field associated with tunneling-electron numbers dominates in low-bandgap materials. This work proposes decoupled electric-field terms in the pre-exponential factor and exponential function of generation-rate expressions. Without fitting, the analytical results and approximated forms exhibit great agreements with the sophisticated forms both in high- and low-bandgap semiconductors. Neither nonlocal nor local field is appropriate to be used in numerical simulations for predicting the tunneling generations in a variety of low- and high-bandgap semiconductors.

  17. Fast, narrow-band computer model for radiation calculations

    SciTech Connect (OSTI)

    Yan, Z.; Holmstedt, G.

    1997-01-01

    A fast, narrow-band computer model, FASTNB, which predicts the radiation intensity in a general nonisothermal and nonhomogeneous combustion environment, has been developed. The spectral absorption coefficients of the combustion products, including carbon dioxide, water vapor, and soot, are calculated based on the narrow-band model. FASTNB provides an accurate calculation at reasonably high speed. Compared with Grosshandler`s narrow-band model, RADCAL, which has been verified quite extensively against experimental measurements, FASTNB is more than 20 times faster and gives almost exactly the same results.

  18. Soboba Band of Luiseno Indians - Strategic Tribal Energy Planning Project

    Energy Savers [EERE]

    Tribal Energy Program Review Denver, CO November, 2 012 By: Erica Helms---Schenk, Environmental Director Soboba Energy Efficiency and ConservaKon Project Soboba Band of Luiseño Indians Soboba Band of Luiseño Indians Soboba Band of Luiseño Indians Our Champions - Who is Involved? Gerald Wilson Soboba Tribal Environmental & Brian McDonald - Department our SCE RepresentaKves Soboba Tribal Council IT --- Steven Nino Public Works - Ken McLaughlin and Summer Willis Project Goals and ObjecKves

  19. Oriented nanotube electrodes for lithium ion batteries and supercapacitors

    DOE Patents [OSTI]

    Frank, Arthur J.; Zhu, Kai; Wang, Qing

    2013-03-05

    An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

  20. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    SciTech Connect (OSTI)

    Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel

    2015-06-07

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  1. Structural study of growth, orientation and defects characteristics in the

    Office of Scientific and Technical Information (OSTI)

    functional microelectromechanical system material aluminium nitride (Journal Article) | SciTech Connect Structural study of growth, orientation and defects characteristics in the functional microelectromechanical system material aluminium nitride Citation Details In-Document Search Title: Structural study of growth, orientation and defects characteristics in the functional microelectromechanical system material aluminium nitride The real structure and morphology of piezoelectric aluminum

  2. Agua Caliente Band's Pursuit of Energy Self-Sufficiency Gains...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photo from Larry Fossum, Agua Caliente Band of Cahuilla Indians. In 2011, DOE student intern Chelsea Chee, a member of the Navajo Nation, published a report highlighting how the ...

  3. Agua Caliente Band of Cahuilla Indians- 2005 Project

    Broader source: Energy.gov [DOE]

    The Agua Caliente Band of Cahuilla Indians will establish a comprehensive energy strategic plan that captures economic and environmental benefits while continuing to respect tribal cultural practices and traditions.

  4. Agua Caliente Band of Cahuilla Indians- 2012 Project

    Broader source: Energy.gov [DOE]

    The Agua Caliente Band of Cahuilla Indians (ACBCI) plans to complete a feasibility study to evaluate a combined wind/solar power generation project on its Whitewater Ranch trust lands in southern California.

  5. Systematic study of photoluminescence upon band gap excitation...

    Office of Scientific and Technical Information (OSTI)

    Systematic study of photoluminescence upon band gap excitation in perovskite-type titanates R sub 12Nasub 12TiOsub 3:Pr (RLa, Gd, Lu, and Y) Citation Details In-Document ...

  6. An X-Band Gun Test Area at SLAC

    SciTech Connect (OSTI)

    Limborg-Deprey, C.; Adolphsen, C.; Chu, T.S.; Dunning, M.P.; Jobe, R.K.; Jongewaard, E.N.; Hast, C.; Vlieks, A.E.; Wang, F.; Walz, D.R.; Marsh, R.A.; Anderson, S.G.; Hartemann, F.V.; Houck, T.L.; /LLNL, Livermore

    2012-09-07

    The X-Band Test Area (XTA) is being assembled in the NLCTA tunnel at SLAC to serve as a test facility for new RF guns. The first gun to be tested will be an upgraded version of the 5.6 cell, 200 MV/m peak field X-band gun designed at SLAC in 2003 for the Compton Scattering experiment run in ASTA. This new version includes some features implemented in 2006 on the LCLS gun such as racetrack couplers, increased mode separation and elliptical irises. These upgrades were developed in collaboration with LLNL since the same gun will be used in an injector for a LLNL Gamma-ray Source. Our beamline includes an X-band acceleration section which takes the electron beam up to 100 MeV and an electron beam measurement station. Other X-Band guns such as the UCLA Hybrid gun will be characterized at our facility.

  7. Fractional quantum spin Hall effect in flat-band checkerboard...

    Office of Scientific and Technical Information (OSTI)

    Title: Fractional quantum spin Hall effect in flat-band checkerboard lattice model Authors: Li, Wei ; Sheng, D. N. ; Ting, C. S. ; Chen, Yan Publication Date: 2014-08-04 OSTI ...

  8. Linear Scaling of the Exciton Binding Energy versus the Band...

    Office of Scientific and Technical Information (OSTI)

    Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials This content will become publicly available on August 6, 2016 Prev Next Title:...

  9. ARM - Publications: Science Team Meeting Documents: W-Band ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Pacific Northwest National Laboratory The W-Band ARM Cloud Radar (WACR) is a dual polarization 95 GHz radar that will be deployed at the SGP CART site in the spring of...

  10. Little River Band of Ottawa Indians- 2011 Project

    Broader source: Energy.gov [DOE]

    he main purpose of this project is to increase human capacity of the Little River Band of Ottawa Indians (LRBOI) to understand the components of renewable energy and the importance of energy efficiency.

  11. Scotts Valley Band of Pomo Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    The Scotts Valley Band of Pomo Indians in Lakeport, California, will establish a Tribal Multi-County Weatherization Energy Program to provide training, outreach, and education on energy assistance and conservation to low-income families.

  12. ARM - Field Campaign - Radiative Heating in Underexplored Bands...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsRadiative Heating in Underexplored Bands Campaign (RHUBC) Campaign Links RHUBC Website ARM Data Discovery Browse Data Comments? We would love to hear from you Send us...

  13. Three axis electronic flight motion simulator real time control system design and implementation

    SciTech Connect (OSTI)

    Gao, Zhiyuan; Miao, Zhonghua Wang, Xiaohua; Wang, Xuyong

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  14. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Wednesday, 26 March 2008 00:00 Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest

  15. Ramona Band of Cahuilla Mission Indians- 2002 Project

    Broader source: Energy.gov [DOE]

    The Ramona Band of Cahuilla Mission Indians ("Ramona Band" or "tribe") will be the first tribe to develop its entire reservation off-grid, using renewable energy as the primary power source. The tribe will purchase and install the primary components for a 65-80 kilowatt-hours per day central wind/PV/propane generator hybrid system that will power the reservation's housing, offices, ecotourism, and training businesses. The electricity is planned to be distributed through an underground mini-grid.

  16. Method for Creating Photonic Band Gap Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Creating Photonic Band Gap Materials Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Innovative microstructures that can direct light in a manner similar to the way semiconductors can influence electrons can be produced by creating what is termed a photonic band gap. These microstructures have the potential to change the way optoelectronic devices, such as photodiodes, LEDs, and integrated optical circuit elements, are designed and used. Ames Laboratory

  17. AN H-BAND SPECTROSCOPIC METALLICITY CALIBRATION FOR M DWARFS

    SciTech Connect (OSTI)

    Terrien, Ryan C.; Mahadevan, Suvrath; Bender, Chad F.; Deshpande, Rohit; Ramsey, Lawrence W.; Bochanski, John J., E-mail: rct151@psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-03-10

    We present an empirical near-infrared (NIR) spectroscopic method for estimating M dwarf metallicities, based on features in the H band, as well as an implementation of a similar published method in the K band. We obtained R {approx} 2000 NIR spectra of a sample of M dwarfs using the NASA IRTF-SpeX spectrograph, including 22 M dwarf metallicity calibration targets that have FGK companions with known metallicities. The H-band and K-band calibrations provide equivalent fits to the metallicities of these binaries, with an accuracy of {+-}0.12 dex. We derive the first empirically calibrated spectroscopic metallicity estimate for the giant planet-hosting M dwarf GJ 317, confirming its supersolar metallicity. Combining this result with observations of eight other M dwarf planet hosts, we find that M dwarfs with giant planets are preferentially metal-rich compared to those that host less massive planets. Our H-band calibration relies on strongly metallicity-dependent features in the H band, which will be useful in compositional studies using mid- to high-resolution NIR M dwarf spectra, such as those produced by multiplexed surveys like SDSS-III APOGEE. These results will also be immediately useful for ongoing spectroscopic surveys of M dwarfs.

  18. Continuous wavelength tunable laser source with optimum positioning of pivot axis for grating

    DOE Patents [OSTI]

    Pushkarsky, Michael; Amone, David F.

    2010-06-08

    A laser source (10) for generating a continuously wavelength tunable light (12) includes a gain media (16), an optical output coupler (36F), a cavity collimator (38A), a diffraction grating (30), a grating beam (54), and a beam attacher (56). The diffraction grating (30) is spaced apart from the cavity collimator (38A) and the grating (30) cooperates with the optical output coupler (36F) to define an external cavity (32). The grating (30) includes a grating face surface (42A) that is in a grating plane (42B). The beam attacher (56) retains the grating beam (54) and allows the grating beam (54) and the grating (30) to effectively pivot about a pivot axis (33) that is located approximately at an intersection of a pivot plane (50) and the grating plane (42B). As provided herein, the diffraction grating (30) can be pivoted about the unique pivot axis (33) to move the diffraction grating (30) relative to the gain media (16) to continuously tune the lasing frequency of the external cavity (32) and the wavelength of the output light (12) so that the output light (12) is mode hop free.

  19. Aerodynamic analysis of a 10 kW horizontal-axis windmill

    SciTech Connect (OSTI)

    Figard, R.L.

    1980-01-01

    An aerodynamic study of the performance and the flowfield in the vicinity of the rotor of a three bladed 10 kW, horizontal-axis windmill is presented. The windmill has a 6.38 m (20.92 ft) diameter rotor and is rated at 10 kW in a 13.41 m/s (44.0 fps) wind. Three basic approaches are utilized. First, field measurements of the performance and the axial velocity and turbulence behind the rotor were conducted. Second, wind tunnel tests of a 1:5 scale model were performed. Third, theoretical analyses of the windmill were made. This included performance predictions with a computerized, modified blade element (vortex theory) analysis and the development and utilization of a numerical procedure employing the full Navier-Stokes equations in axi-symmetric form to examine the wake development in detail. In that effort the rotor is modeled by an actuator disk in a uniform flow, a simple turbulence transport model based on an integrated TKE equation is applied, and the equations of motion are taken in terms of the stream function, one vorticity component, and the peripheral velocity. The results of each of the three approaches shows agreement within 10 to 15% with the other two approaches.

  20. Simulation of winds as seen by a rotating vertical axis wind turbine blade

    SciTech Connect (OSTI)

    George, R.L.

    1984-02-01

    The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

  1. Development of a MEMS dual-axis differential capacitance floating element shear stress sensor

    SciTech Connect (OSTI)

    Barnard, Casey; Griffin, Benjamin

    2015-09-01

    A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 ?Pa at 100 Hz and 120 ?Pa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds ranging up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.

  2. Orientation-dependent binding energy of graphene on palladium

    SciTech Connect (OSTI)

    Kappes, Branden B.; Ebnonnasir, Abbas; Ciobanu, Cristian V. [Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401 (United States)] [Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401 (United States); Kodambaka, Suneel [Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States)] [Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2013-02-04

    Using density functional theory calculations, we show that the binding strength of a graphene monolayer on Pd(111) can vary between physisorption and chemisorption depending on its orientation. By studying the interfacial charge transfer, we have identified a specific four-atom carbon cluster that is responsible for the local bonding of graphene to Pd(111). The areal density of such clusters varies with the in-plane orientation of graphene, causing the binding energy to change accordingly. Similar investigations can also apply to other metal substrates and suggests that physical, chemical, and mechanical properties of graphene may be controlled by changing its orientation.

  3. Nonadiabatic molecular orientation by polarization-gated ultrashort laser pulses

    SciTech Connect (OSTI)

    Chen Cheng; Wu Jian; Zeng Heping [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2010-09-15

    We show that the nonadiabatic orientation of diatomic polar molecules can be controlled by polarization-gated ultrashort laser pulses. By finely adjusting the time interval between two circularly polarized pulses of different wavelengths but the same helicity, the orientation direction of the molecules can be twirled. A cloverlike potential is created by using two circularly polarized laser pulses of different wavelengths and opposite helicity, leading to multidirectional molecular orientation along the potential wells, which can be well revealed by a high-order statistics metric of <>.

  4. Simultaneous orientation and thickness mapping in transmission electron microscopy

    SciTech Connect (OSTI)

    Tyutyunnikov, Dmitry; zdl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and compared to those of other techniques available.

  5. The influence of molecular orientation on organic bulk heterojunction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on organic bulk heterojunction solar cells The influence of molecular orientation on organic bulk heterojunction solar cells Print Monday, 28 April 2014 09:03 Work done on ALS...

  6. On the predictability of the orientation of protein domains joined...

    Office of Scientific and Technical Information (OSTI)

    On the predictability of the orientation of protein domains joined by a spanning alpha-helical linker Citation Details In-Document Search Title: On the predictability of the...

  7. SAF 114O Laser Safety Orientation Training | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Safety Orientation (SAF114 O) training opportunity. Date: Friday, October 23 Time: 10:30 - noon Location: CEBAF Center Room A110 Read JLab EH&S Manual Chapter 6410 Laser...

  8. Ultrasound image guided acetabular implant orientation during total hip replacement

    DOE Patents [OSTI]

    Chang, John; Haddad, Waleed; Kluiwstra, Jan-Ulco; Matthews, Dennis; Trauner, Kenneth

    2003-08-19

    A system for assisting in precise location of the acetabular implant during total hip replacement. The system uses ultrasound imaging for guiding the placement and orientation of the implant.

  9. In-plane orientation effects on the electronic structure stability...

    Office of Scientific and Technical Information (OSTI)

    In-plane orientation effects on the electronic structure stability and Raman scattering of monolayer graphene on Ir(111). Citation Details In-Document Search Title: In-plane...

  10. Geologic and thermochronologic constraints on the initial orientation...

    Open Energy Info (EERE)

    and thermochronologic constraints on the initial orientation of the Raft River detachment and footwall shear zone Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  11. Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian Reservation Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian ...

  12. DOE ZERH Orientation Webinar: Better Business for Builders | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Orientation Webinar: Better Business for Builders DOE ZERH Orientation Webinar: Better Business for Builders Watch the video or view the presentation slides below The DOE Zero Energy Ready Home represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings, comfort, health, and durability. This webinar will provide an overview of the Challenge Home program including the business case and how to be recognized as an industry

  13. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Wednesday, 27 January 2010 00:00 Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the

  14. Grain Rotation and Development of Orientation Spread in Deforming

    Office of Scientific and Technical Information (OSTI)

    Polycrystals. (Conference) | SciTech Connect Grain Rotation and Development of Orientation Spread in Deforming Polycrystals. Citation Details In-Document Search Title: Grain Rotation and Development of Orientation Spread in Deforming Polycrystals. Abstract not provided. Authors: Buchheit, Thomas Edward ; Lim, Hojun ; Carroll, Jay ; Clark, Blythe ; Battaile, Corbett Chandler. ; Boyce, Brad Lee Publication Date: 2014-02-01 OSTI Identifier: 1140310 Report Number(s): SAND2014-1263C 499256 DOE

  15. Grain orientation dependence of lattice strains and intergranular damage

    Office of Scientific and Technical Information (OSTI)

    rates in polycrystals under cyclic loading (Journal Article) | SciTech Connect Grain orientation dependence of lattice strains and intergranular damage rates in polycrystals under cyclic loading Citation Details In-Document Search Title: Grain orientation dependence of lattice strains and intergranular damage rates in polycrystals under cyclic loading Authors: Zheng, Lili [1] ; Gao, Yanfei [2] ; Wang, Yandong [3] ; Stoica, Alexandru Dan [4] ; An, Ke [4] ; Wang, Xun-Li [4] + Show Author

  16. Orientational Analysis of Molecules in Thin Films | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Orientational Analysis of Molecules in Thin Films Monday, September 17, 2012 - 10:00am SSRL Bldg. 137, room 226 Daniel Kaefer The synchrotron-based X-ray absorption spectroscopy is a very powerful tool to unravel the orientation of organic molecules on surfaces or in thin films. This information on the alignment of - most often - highly anisotropic molecules can become crucial if an epitaxial or even crystalline organic growth is desired, if such thin film should serve

  17. DOE ZERH Orientation Webinar: Better Business for Builders | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ZERH Orientation Webinar: Better Business for Builders DOE ZERH Orientation Webinar: Better Business for Builders Watch the webinar video or view presentation slides below Description: The DOE Zero Energy Ready Home represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings, comfort, health, and durability. This webinar will provide an overview of the Challenge Home program including the business case and how to be

  18. Theoretical and experimental power from large horizontal-axis wind turbines

    SciTech Connect (OSTI)

    Viterna, L A; Janetzke, D C

    1982-09-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-O (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  19. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  20. Robotic end gripper with a band member to engage object

    DOE Patents [OSTI]

    Pollard, R.E.; Robinson, S.C.; Thompson, W.F.; Couture, S.A.; Sutton, B.J.

    1994-05-10

    An end effector for use with robotic arms and like devices is described that utilizes a flexible band to draw an object against an anvil having a concave surface. One typical convex surface is created by a V-block, with an apex of the V being centrally located. If an object to be grasped is fragile, the contour of the concave surface closely matches the surface of the object. Typically the movement of the band is effected by a linear actuator, with the anvil remaining fixed relative to a support base. Several embodiments are described that utilize variations in drawing the band toward the anvil, with one of these embodiments described in detail in the form of a fabricated unit. One embodiment includes a cover element that can be moved over an object after the grasping thereof, with this cover potentially serving various functions. Movement of the cover can be effected with a second linear actuator. 8 figures.

  1. Robotic end gripper with a band member to engage object

    DOE Patents [OSTI]

    Pollard, Roy E.; Robinson, Samuel C.; Thompson, William F.; Couture, Scott A.; Sutton, Bill J.

    1994-01-01

    An end effector for use with robotic arms and like devices that utilizes a flexible band to draw an object against an anvil having a concave surface. One typical convex surface is created by a V-block, with an apex of the V being centrally located. If an object to be grasped is fragile, the contour of the concave surface closely matches the surface of the object. Typically the movement of the band is effected by a linear actuator, with the anvil remaining fixed relative to a support base. Several embodiments are described that utilize variations in drawing the band toward the anvil, with one of these embodiments described in detail in the form of a fabricated unit. One embodiment includes a cover element that can be moved over an object after the grasping thereof, with this cover potentially serving various functions. Movement of the cover can be effected with a second linear actuator.

  2. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    SciTech Connect (OSTI)

    Reynolds, D.B.; Seib, D.H.; Stetson, S.B.; Herter, T.; Rowlands, N.; Schoenwald, J.

    1989-02-01

    High-performance infrared hybrid focal plane arrays using 10 x 50 element Si:As Blocked-Impurity-Band (BIB) detectors (cut-off wavelength = 28 ..mu..m) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity band conduction technology provides detectors which are nuclear radiation hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in this paper is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increase quantum efficiency (particular at short wavelength infrared), obtained by varying the Blocked-Impurity-Band detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Read noise and dark current for different temperatures have been measured and are also described. The hybrid array performance achieved clearly demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  3. Numerical method for shear bands in ductile metal with inclusions

    SciTech Connect (OSTI)

    Plohr, Jee Yeon N [Los Alamos National Laboratory; Plohr, Bradley J [Los Alamos National Laboratory

    2010-01-01

    A numerical method for mesoscale simulation of high strain-rate loading of ductile metal containing inclusions is described. Because of small-scale inhomogeneities, such a composite material is prone to localized shear deformation (adiabatic shear bands). The modeling framework is the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. /27-139, 1992], which ensures that the micromechanical response of the material is reflected in the behavior of the composite at the mesoscale. To calculate the effective plastic strain rate when shear bands are present, the analytic and numerical analysis of shear bands by Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31-41, 1996] is adapted and extended.

  4. Amorphous copper tungsten oxide with tunable band gaps

    SciTech Connect (OSTI)

    Chen Le; Shet, Sudhakar; Tang Houwen; Wang Heli; Yan Yanfa; Turner, John; Al-Jassim, Mowafak; Ahn, Kwang-soon

    2010-08-15

    We report on the synthesis of amorphous copper tungsten oxide thin films with tunable band gaps. The thin films are synthesized by the magnetron cosputtering method. We find that due to the amorphous nature, the Cu-to-W ratio in the films can be varied without the limit of the solubility (or phase separation) under appropriate conditions. As a result, the band gap and conductivity type of the films can be tuned by controlling the film composition. Unfortunately, the amorphous copper tungsten oxides are not stable in aqueous solution and are not suitable for the application of photoelectrochemical splitting of water. Nonetheless, it provides an alternative approach to search for transition metal oxides with tunable band gaps.

  5. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  6. Special purpose modes in photonic band gap fibers

    DOE Patents [OSTI]

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  7. Structure of dipole bands in {sup 106}In

    SciTech Connect (OSTI)

    Deo, A. Y.; Palit, R.; Naik, Z.; Joshi, P. K.; Mazumdar, I.; Sihotra, S.; Mehta, D.; Kumar, S.; Chakrabarti, R.; Kshetri, R.

    2009-06-15

    High spin states in neutron-deficient {sup 106}In were investigated using {sup 78}Se({sup 32}S,p3n) reaction at 125 MeV. The level scheme is extended up to 7 MeV of excitation energy for the negative parity states constituting four dipole bands, and the positive parity states which mainly exhibit single-particle excitations are extended up to 5 MeV. Projected deformed Hartree-Fock calculations were carried out to understand the configurations of different bands in this nucleus.

  8. Center for Inverse Design: Modality 1 - Inverse Band Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Inverse Band Structure Modality 1 applies to cases where we have a single material system, but an astronomical number of configurations, and where the target properties can be calculated on the fly. The approach is also called Inverse Band Structure (IBS). The IBS approach began a dozen years ago within the Solid-State Theory group at the National Renewable Energy Laboratory (NREL), under support from the U.S. Department of Energy's Office of Basic Energy Sciences. Imagine that you have a

  9. Electronic band structure of magnetic bilayer graphene superlattices

    SciTech Connect (OSTI)

    Pham, C. Huy; Nguyen, T. Thuong

    2014-09-28

    Electronic band structure of the bilayer graphene superlattices with ?-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  10. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  11. Synthesis of cadmium telluride quantum wires and the similarity of their band gaps to those of equidiameter cadmium telluride quantum dots

    SciTech Connect (OSTI)

    Wang, Lin-Wang; Sun, Jianwei; Wang, Lin-Wang; Buhro, William E.

    2008-07-11

    High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range of 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi-nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure, and grow along the [002] direction (parallel to the c axis). The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire band gaps converge. The origin and magnitude of this threshold diameter is discussed.

  12. Energy distribution of nonequilibrium electrons and optical phonons in GaAs under band-to-band pumping by intense short pulses of light

    SciTech Connect (OSTI)

    Altybaev, G. S.; Kumekov, S. E. Mahmudov, A. A.

    2009-03-15

    Deviation from the Fermi distribution of nonequilibrium electrons and distribution of 'hot' optical phonons in GaAs under band-to-band pumping by picosecond pulses of light are calculated.

  13. Agua Caliente Band of Cahuilla Indians- 2015 Project

    Broader source: Energy.gov [DOE]

    The Agua Caliente Band of Cahuilla Indians is seeking to install a 76.9-kilowatt (kW) solar photovoltaic (PV) system to offset the energy costs of the Tribal Education and Family Services offices located at the Heritage Plaza office building.

  14. Project Reports for Cabazon Band of Mission Indians- 2011 Project

    Broader source: Energy.gov [DOE]

    The Cabazon Band of Mission Indians' long-range goals are to become energy self-sufficient, foster economic diversity, grow jobs, and improve the well-being of members of the tribe as well as those in its region of Southern California.

  15. Grand Traverse Band of Ottawa and Chippewa Indians- 2005 Project

    Broader source: Energy.gov [DOE]

    The Grand Traverse Band of Ottawa and Chippewa Indians (GTB) will conduct a feasibility study to determine the cost effectiveness and other economic, environmental, cultural, and social benefits of maximizing the diversity of energy sources used at GTB facilities. This includes an assessment of energy conservation measures as well as renewable energy sources such as wind, solar, and biomass.

  16. Mesa Grande Band of Mission Indians- 2004 Project

    Broader source: Energy.gov [DOE]

    The Mesa Grande Band of Mission Indians, located in northern San Diego County, will conduct a study of the feasibility of reducing air pollution generated on the reservation by an over-reliance on wood-burning stoves, kerosene heaters, and gasoline generators, and to identify the types of renewable energy systems that could be used for residential structures and well-pump systems.

  17. Evidence for hybrid surface metallic band in (4??4) silicene on Ag(111)

    SciTech Connect (OSTI)

    Tsoutsou, D. Xenogiannopoulou, E.; Golias, E.; Tsipas, P.; Dimoulas, A.

    2013-12-02

    The electronic band structure of monolayer (4??4) silicene on Ag(111) is imaged by angle resolved photoelectron spectroscopy. A dominant hybrid surface metallic band is observed to be located near the bulk Ag sp-band which is also faintly visible. The two-dimensional character of the hybrid band has been distinguished against the bulk character of the Ag(111) sp-band by means of photon energy dependence experiments. The surface band exhibits a steep linear dispersion around the K{sup }{sub Ag} point and has a saddle point near the M{sup }{sub Ag} point of Ag(111) resembling the ?-band dispersion in graphene.

  18. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    SciTech Connect (OSTI)

    Lee, Gwang-Se; Cheong, Cheolung

    2014-12-15

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  19. Simultaneous orientation and thickness mapping in transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and comparedmore » to those of other techniques available.« less

  20. Origin of banded iron formations : oceanic crust leaching & self-organized

    Office of Scientific and Technical Information (OSTI)

    mineral banding. (Journal Article) | SciTech Connect Journal Article: Origin of banded iron formations : oceanic crust leaching & self-organized mineral banding. Citation Details In-Document Search Title: Origin of banded iron formations : oceanic crust leaching & self-organized mineral banding. No abstract prepared. Authors: Wang, Yifeng ; Konishi, Hiromi [1] ; Merino, Enrique [2] ; Xu, Huifang [1] + Show Author Affiliations (University of Wisconsin, Madison, WI) (Indiana

  1. Structural Investigations of Surfaces and Orientation-SpecificPhenomena in Nanocrystals and Their Assemblies

    SciTech Connect (OSTI)

    Aruguete, Deborah Michiko

    2006-06-17

    Studies of colloidal nanocrystals and their assemblies are presented. Two of these studies concern the atomic-level structural characterization of the surfaces, interfaces, and interiors present in II-VI semiconductor nanorods. The third study investigates the crystallographic arrangement of cobalt nanocrystals in self-assembled aggregates. Crystallographically-aligned assemblies of colloidal CdSe nanorods are examined with linearly-polarized Se-EXAFS spectroscopy, which probes bonding along different directions in the nanorod. This orientation-specific probe is used, because it is expected that the presence of specific surfaces in a nanorod might cause bond relaxations specific to different crystallographic directions. Se-Se distances are found to be contracted along the long axis of the nanorod, while Cd-Se distances display no angular dependence, which is different from the bulk. Ab-initio density functional theory calculations upon CdSe nanowires indicate that relaxations on the rod surfaces cause these changes. ZnS/CdS-CdSe core-shell nanorods are studied with Se, Zn, Cd, and S X-ray absorption spectroscopy (XAS). It is hypothesized that there are two major factors influencing the core and shell structures of the nanorods: the large surface area-to-volume ratio, and epitaxial strain. The presence of the surface may induce bond rearrangements or relaxations to minimize surface energy; epitaxial strain might cause the core and shell lattices to contract or expand to minimize strain energy. A marked contraction of Zn-S bonds is observed in the core-shell nanorods, indicating that surface relaxations may dominate the structure of the nanorod (strain might otherwise drive the Zn-S lattice to accommodate the larger CdS or CdSe lattices via bond expansion). EXAFS and X-ray diffraction (XRD) indicate that Cd-Se bond relaxations might be anisotropic, an expected phenomenon for a rod-shaped nanocrystal. Ordered self-assembled aggregates of cobalt nanocrystals are examined with transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SAED patterns from multilayered assemblies show that the nanocrystals have preferred crystallographic orientations. It is proposed that the nanocrystals are organized in a vortex-like or ''loop-closing'' arrangement, possibly due to magnetism. SAED and dark-field imaging used to investigate this hypothesis are presented, along with the data analysis. The effects of magnetism and nanocrystal faceting are discussed.

  2. Optical-diffraction method for determining crystal orientation

    DOE Patents [OSTI]

    Sopori, B.L.

    1982-05-07

    Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.

  3. Continuous method for manufacturing grain-oriented magnetostrictive bodies

    DOE Patents [OSTI]

    Gibson, Edwin D. (Ames, IA); Verhoeven, John D. (Ames, IA); Schmidt, Frederick A. (Ames, IA); McMasters, O. Dale (Ames, IA)

    1988-01-01

    The invention comprises a continuous casting and crystallization method for manufacturing grain-oriented magnetostrictive bodies. A magnetostrictive alloy is melted in a crucible having a bottom outlet. The melt is discharged through the bottom of the crucible and deposited in an elongated mold. Heat is removed from the deposited melt through the lower end portion of the mold to progressively solidify the melt. The solid-liquid interface of the melt moves directionally upwardly from the bottom to the top of the mold, to produce the axial grain orientation.

  4. Dual axis radiographic hydrodynamic test facility. Final environmental impact statement, Volume 2: Public comments and responses

    SciTech Connect (OSTI)

    1995-08-01

    On May 12, 1995, the U.S. Department of Energy (DOE) issued the draft Dual Axis Radiographic Hydrodynamic Test Facility Environmental Impact Statement (DARHT EIS) for review by the State of New Mexico, Indian Tribes, local governments, other Federal agencies, and the general public. DOE invited comments on the accuracy and adequacy of the draft EIS and any other matters pertaining to their environmental reviews. The formal comment period ran for 45 days, to June 26, 1995, although DOE indicated that late comments would be considered to the extent possible. As part of the public comment process, DOE held two public hearings in Los Alamos and Santa Fe, New Mexico, on May 31 and June 1, 1995. In addition, DOE made the draft classified supplement to the DARHT EIS available for review by appropriately cleared individuals with a need to know the classified information. Reviewers of the classified material included the State of New Mexico, the U.S. Environmental Protection Agency, the Department of Defense, and certain Indian Tribes. Volume 2 of the final DARHT EIS contains three chapters. Chapter 1 includes a collective summary of the comments received and DOE`s response. Chapter 2 contains the full text of the public comments on the draft DARHT EIS received by DOE. Chapter 3 contains DOE`s responses to the public comments and an indication as to how the comments were considered in the final EIS.

  5. NASTRAN-based computer program for structural dynamic analysis of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Lobitz, D.W.

    1984-01-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWTs). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower and rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWTs driven by turbulent winds.

  6. Precision tool holder with flexure-adjustable, three degrees of freedom for a four-axis lathe

    DOE Patents [OSTI]

    Bono, Matthew J. (Pleasanton, CA); Hibbard, Robin L. (Livermore, CA)

    2008-03-04

    A precision tool holder for precisely positioning a single point cutting tool on 4-axis lathe, such that the center of the radius of the tool nose is aligned with the B-axis of the machine tool, so as to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-.mu.m accuracy on a four-axis lathe. The device is designed to fit on a commercial diamond turning machine and can adjust the cutting tool position in three orthogonal directions with sub-micrometer resolution. In particular, the tool holder adjusts the tool position using three flexure-based mechanisms, with two flexure mechanisms adjusting the lateral position of the tool to align the tool with the B-axis, and a third flexure mechanism adjusting the height of the tool. Preferably, the flexures are driven by manual micrometer adjusters. In this manner, this tool holder simplifies the process of setting a tool with sub-.mu.m accuracy, to substantially reduce the time required to set the tool.

  7. Itinerant ferromagnetism in the As 4p conduction band of Ba0.6K0.4Mn2As2 identified by x-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ueland, B. G.; Pandey, Abhishek; Lee, Y.; Sapkota, A.; Choi, Y.; Haskel, D.; Rosenberg, R. A.; Lang, J. C.; Harmon, B. N.; Johnston, D. C.; et al

    2015-05-27

    In this study, x-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba0.6K0.4Mn2As2 show that the ferromagnetism below TC ≈ 100 K arises in the As 4p conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below TC, however, a clear XMCD signal is found at the As K edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic c axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that themore » previously reported itinerant ferromagnetism is associated with the As 4p conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature.« less

  8. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    SciTech Connect (OSTI)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tome, Wolfgang A.

    2012-08-15

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  9. Broad-band characteristics of circular button pickups

    SciTech Connect (OSTI)

    Barry, W.C.

    1992-10-01

    A broad-band.theory of the circular button pickup is presented. Expressions for the longitudinal and transverse transfer impedance of a pair of such pickups are derived in the frequency domain. The broad-band expressions are shown to reduce to the standard electrostatic transfer functions for wavelengths large compared to the button diameter. The theory is shown to be in reasonable agreement with measurements performed on standard LEP button electrodes. In particular, the theory explains a resonance in the response of the LEP buttons which made them unsuitable, in standard form, for their intended application as pickups in the LBL Advanced Light Source feedback system. The buttons were modified to suppress the resonance and subsequently incorporated into the feedback system.

  10. Systematic study of photoluminescence upon band gap excitation in

    Office of Scientific and Technical Information (OSTI)

    perovskite-type titanates R {sub 1/2}Na{sub 1/2}TiO{sub 3}:Pr (R=La, Gd, Lu, and Y) (Journal Article) | SciTech Connect Systematic study of photoluminescence upon band gap excitation in perovskite-type titanates R {sub 1/2}Na{sub 1/2}TiO{sub 3}:Pr (R=La, Gd, Lu, and Y) Citation Details In-Document Search Title: Systematic study of photoluminescence upon band gap excitation in perovskite-type titanates R {sub 1/2}Na{sub 1/2}TiO{sub 3}:Pr (R=La, Gd, Lu, and Y) Pr{sup 3+}-doped perovskites R

  11. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  12. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  13. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  14. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  15. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  16. Project Reports for Manzanita Band of Mission Indians- 2002 Project

    Broader source: Energy.gov [DOE]

    The Manzanita Band of Mission Indians ("the tribe") has long recognized that its reservation has an abundant wind resource that could be commercially utilized to its benefit. The tribe is now investigating the feasibility of commercial scale development of a wind power project on tribal lands. The proposed project is a joint effort between the tribe and its subcontractor and consultant, SeaWest Consulting.

  17. Red Lake Band of Chippewa Indians- 2003 Project

    Broader source: Energy.gov [DOE]

    The Red Lake Band of Chippewa Indians, located in the northwest corner of Minnesota near the Canadian border, will assess the potential to expand the use of biomass resources for energy autonomy and economic development on tribal lands. Specifically, the tribe will evaluate the technical, market, financial, and cultural aspects of using its extensive, forested lands to create a sustainable bioproducts-based business and will develop a business plan to guide tribal industry development.

  18. ARM - Radiative Heating in Underexplored Bands Campaign (RHUBC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links RHUBC Home NSA Home ARM Data Discovery Browse Data Experiment Planning RHUBC Proposal Abstract Full Proposal (pdf, 420kb) Science Plan (pdf) Operations Plan (pdf, 144kb) Instruments Contacts News ARM Press Release (Feb. 26, 2007) Images flickr_dots Radiative Heating in Underexplored Bands Campaign (RHUBC) Now available: RHUBC-II website Between February and March 2007 at the ACRF North Slope of Alaska site in Barrow, high-spectral-resolution observations were collected by two

  19. Lac Courte Oreilles Band of Lake Superior Ojibwe

    Office of Environmental Management (EM)

    Oreilles Band of Lake Superior Ojibwe Leslie Isham, Director/Assistant Director Lac Courte Oreilles Energy Project Lac Courte Oreilles Public works Department First Steps towards Tribal Weatherization Assessing the Feasibility of the Hydro Dam About Lac Courte Oreilles (LCO) * Located in Upper Northwest Wisconsin * 76,000 acres and 15 miles wide * 90 miles from Duluth 100 miles from Eau Claire 10 miles from Hayward * Close to 6,000 members, 50% live on or near the reservation * 68% unemployment

  20. Lac Courte Oreilles Lake Superior Band of Ojibwe Energy Projects

    Office of Environmental Management (EM)

    OdaawaaZaga'iganing or Lac Courte Oreilles Lake Superior Band Of Ojibwe LCO Energy Department Staff: Director: Leslie Isham Coordinator: Denise Johnson Energy Projects: Assessing Hydro Dam First Steps Toward Tribal Weatherization Lac Courte Oreilles's Mission We, the Anishinaabeg, the people of OdaawaaZaaga'iganing, the Lac Courte Oreilles Tribe, will sustain our heritage by preserving our past, strengthening our present and embracing our future. We will defend our inherent sovereign rights and

  1. Eastern Band of Cherokee Indians - Facility Retrofit Project

    Office of Environmental Management (EM)

    Eastern Band of Cherokee Indians EBCI Facility Retrofit Project 2 Project Overview * Energy efficient implementations * Seven Tribally owned/leased facilities * Modified to cover 9 Buildings * Reduction of energy consumption by at least 30% * Reduction of air pollutants and GHG emissions 3 Cherokee Fairgrounds & Exhibit Building 545 Tsali Boulevard Cherokee, NC 4 Implementations *Replacement of HVAC units *Routine HVAC maintenance schedule *Install programmable thermostats *Adjust insulation

  2. Eastern Band of Cherokee Indians - Strategic Energy Planning

    Office of Environmental Management (EM)

    - FY07 Program Review Meeting - 5-8 Nov 2007 Eastern Band of Cherokee Indians First Steps Project Project Manager - Damon Lambert Tribal Planner/Grant Writer Planning & Development Department Technical Support - Robert Leitner Associate Director South Carolina Institute for Energy Studies - Clemson University 2 Tribal Energy Program - FY07 Program Review Meeting - 5-8 Nov 2007 Demographics * The modern EBCI are descendents of those Cherokee who avoided the forced removal to Oklahoma in the

  3. X-band photoinjector for a chirped-pulse FEL

    SciTech Connect (OSTI)

    Landahl, E. C.; Alvis, R. M.; Troha, A. L.; Hartemann, F. V.; Baldis, H. A. [Applied Science Department, University of California, Davis California 95616 (United States); Institute for Laser Science and Applications, LLNL, Livermore, California 94550 (United States); Le Sage, G. P.; White, W. E. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bennett, C. V. [Electrical Engineering Department, University of California, Los Angeles, California 90024 (United States); Li, K.; Heritage, J. P. [Electrical and Computer Engineering Department, University of California, Davis, California (United States); Ho, C. H. [Synchrotron Radiation Research Center, Taiwan (China); Luhmann, N. C. Jr. [Applied Science Department, University of California, Davis California 95616 (United States)

    1999-05-07

    The phase noise and jitter characteristics of the laser and rf systems of a high gradient X-band photoinjector have been measured experimentally. The laser oscillator is a self-modelocked Titanium:Sapphire system operating at the 108th subharmonic of the rf gun. The X-band signal is produced from the laser by a phase-locked dielectric resonance oscillator, and amplified by a pulsed TWT and klystron. A comparison between the klystron and TWT amplifier phase noise and the fields excited in the rf gun demonstrates the filtering effect of the high Q structure, thus indicating that the rf gun can be used as a master oscillator, and could be energized by either a rf oscillator such as a magnetron or a compact source such as a cross-field amplifier. In particular, the rf gun can play the role of a pulsed rf clock to synchronize the photocathode laser system: direct drive of a synchronously modelocked AlGaAs quantum well laser has been achieved using the X-band gun rf fields. This novel, GHz repetition rate, laser system is being developed to replace the more conventional femtosecond Ti:Al{sub 2}O{sub 3} system. Some advantages include pumping this laser with a stabilized current source instead of a costly, low efficiency pump laser. Finally, dark current measurements and initial photoelectron measurements are reported.

  4. X-band photoinjector for a chirped-pulse FEL

    SciTech Connect (OSTI)

    Landahl, E.C.; Alvis, R.M.; Troha, A.L.; Hartemann, F.V.; Baldis, H.A.; Luhmann, N.C. Jr. [Applied Science Department, University of California, Davis , California 95616 (United States); Landahl, E.C.; Alvis, R.M.; Troha, A.L.; Hartemann, F.V.; Baldis, H.A. [Institute for Laser Science and Applications, LLNL, Livermore, California 94550 (United States); Le Sage, G.P.; White, W.E. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bennett, C.V. [Electrical Engineering Department, University of California, Los Angeles, California 90024 (United States); Li, K.; Heritage, J.P. [Electrical and Computer Engineering Department, University of California, Davis, California (United States); Ho, C.H. [Synchrotron Radiation Research Center (Taiwan)

    1999-05-01

    The phase noise and jitter characteristics of the laser and rf systems of a high gradient X-band photoinjector have been measured experimentally. The laser oscillator is a self-modelocked Titanium:Sapphire system operating at the 108th subharmonic of the rf gun. The X-band signal is produced from the laser by a phase-locked dielectric resonance oscillator, and amplified by a pulsed TWT and klystron. A comparison between the klystron and TWT amplifier phase noise and the fields excited in the rf gun demonstrates the filtering effect of the high Q structure, thus indicating that the rf gun can be used as a master oscillator, and could be energized by either a rf oscillator such as a magnetron or a compact source such as a cross-field amplifier. In particular, the rf gun can play the role of a pulsed rf clock to synchronize the photocathode laser system: direct drive of a synchronously modelocked AlGaAs quantum well laser has been achieved using the X-band gun rf fields. This novel, GHz repetition rate, laser system is being developed to replace the more conventional femtosecond Ti:Al{sub 2}O{sub 3} system. Some advantages include pumping this laser with a stabilized current source instead of a costly, low efficiency pump laser. Finally, dark current measurements and initial photoelectron measurements are reported. {copyright} {ital 1999 American Institute of Physics.}

  5. Wide band focusing x-ray spectrograph with spatial resolution

    SciTech Connect (OSTI)

    Pikuz, S. A.; Douglass, J. D.; Shelkovenko, T. A.; Sinars, D. B.; Hammer, D. A.

    2008-01-15

    A new, wide spectral bandwidth x-ray spectrograph, the wide-bandwidth focusing spectrograph with spatial resolution (WB-FSSR), based on spherically bent mica crystals, is described. The wide bandwidth is achieved by combining three crystals to form a large aperture dispersive element. Since the WB-FSSR covers a wide spectral band, it is very convenient for application as a routine diagnostic tool in experiments in which the desired spectral coverage is different from one test to the next. The WB-FSSR has been tested in imploding wire-array experiments on a 1 MA pulsed power machine, and x-ray spectra were recorded in the 1-20 A spectral band using different orders of mica crystal reflection. Using a two mirror-symmetrically placed WB-FSSR configuration, it was also possible to distinguish between a real spectral shift and a shift of recorded spectral lines caused by the spatial distribution of the radiating plasma. A spectral resolution of about 2000 was demonstrated and a spatial resolution of {approx}100 {mu}m was achieved in the spectral band of 5-10 A in second order of mica reflection. A simple method of numerical analysis of spectrograph capability is proposed.

  6. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  7. Thin film with oriented cracks on a flexible substrate

    DOE Patents [OSTI]

    Feng, Bao; McGilvray, Andrew; Shi, Bo

    2010-07-27

    A thermoelectric film is disclosed. The thermoelectric film includes a substrate that is substantially electrically non-conductive and flexible and a thermoelectric material that is deposited on at least one surface of the substrate. The thermoelectric film also includes multiple cracks oriented in a predetermined direction.

  8. Optical method for the determination of grain orientation in films

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2001-01-01

    A method for the determination of grain orientation in a film sample is provided comprising the steps of measuring a first transient optical response of the film and determining the contribution to the transient optical response arising from a change in the energy distribution of the electrons in the sample, determining the contribution to the transient optical response arising from a propagating strain pulse within the sample, and determining the contribution to the transient optical response arising from a change in sample temperature of the sample. The grain orientation of the sample may be determined using the contributions to the transient optical response arising from the change in the energy distribution of the electrons, the propagating strain pulse, and the change in sample temperature. Additionally, a method for determination of the thickness of a film sample is provided. The grain orientation of the sample is first determined. The grain orientation, together with the velocity of sound and a propagation time of a strain pulse through the sample are then used to determine the thickness of the film sample.

  9. Use of Oriented Crystals at High-Energy Accelerators

    SciTech Connect (OSTI)

    Kotov, V.I.; Afonin, A.G.; Baranov, V.T.; Biryukov, V.M.; Ivanov, Yu.M.; Kardash, A.A.; Maisheev, V.A.; Terekhov, V.I.; Troyanov, E.F.; Fedotov, Yu.S.; Chepegin, V.N.; Chesnokov, Yu.A.

    2005-06-01

    The application of bent crystals for extracting accelerated beams from high-energy accelerators is reviewed. The results of realizing highly efficient extraction of protons from the IHEP accelerator are presented. Proposals on using oriented crystals for designing efficient positron sources at linear colliders and on developing new undulators are discussed.

  10. Single Particle Orientation and Rotational Tracking (SPORT) in biopysical studies

    SciTech Connect (OSTI)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-08-02

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.

  11. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, Luiz B. (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Fitch, Joseph P. (Livermore, CA); Everett, Matthew J. (Pleasanton, CA); Colston, Billy W. (Livermore, CA); Stone, Gary F. (Livermore, CA)

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  12. Fabrication of oriented zeolite L monolayer via covalent molecular linkers

    SciTech Connect (OSTI)

    Wang Yige; Li Huanrong Liu Binyuan; Gan Quanying; Dong Qinglin; Calzaferri, Gion; Sun Zheng

    2008-09-15

    For the first time, 1,4-diisocyanatobutane (DICB) was used as the covalent molecular linker in this study to prepare the uniformly oriented zeolite L monolayer with relatively high coverage degree and close packing degree. This could be ascribed to substantial amounts of DICB self-assemble and standing on the substrate surface instead of folding up into a U-shape. This point has been further verified by the quality of oriented zoelite L monolayers obtained from the procedure involving DICB, 1, 4-bis (triethoxysilyl) benzene (BTSEB) and 1,2-bis(trimethoxysilyl)ethane (BTMSE) as covalent molecular linkers. - Graphical abstract: 1, 4-diisocyanatobutane (DICB) was used as the covalent molecular linker in this study to prepare the uniformly oriented zeolite L monolayer with a relatively high coverage degree and close packing degree. This could be ascribed to substantial amounts of DICB self-assemble and standing on the substrate surface instead of folding up into a U-shape. This point has been further verified by the quality of oriented zoelite L monolayers obtained from the procedure involving DICB, 1, 4-bis (triethoxysilyl) benzene (BTSEB) and 1,2-bis(trimethoxysilyl)ethane (BTMSE) as covalent molecular linkers.

  13. Optical method for the determination of grain orientation in films

    DOE Patents [OSTI]

    Maris, Humphrey J.

    2003-05-13

    A method for the determination of grain orientation in a film sample is provided comprising the steps of measuring a first transient optical response of the film and determining the contribution to the transient optical response arising from a change in the energy distribution of the electrons in the sample, determining the contribution to the transient optical response arising from a propagating strain pulse within the sample, and determining the contribution to the transient optical response arising from a change in sample temperature of the sample. The grain orientation of the sample may be determined using the contributions to the transient optical response arising from the change in the energy distribution of the electrons, the propagating strain pulse, and the change in sample temperature. Additionally, a method for determination of the thickness of a film sample is provided. The grain orientation of the sample is first determined. The grain orientation, together with the velocity of sound and a propagation time of a strain pulse through the sample are then used to determine the thickness of the film sample.

  14. Performance Models for the Spike Banded Linear System Solver

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Manguoglu, Murat; Saied, Faisal; Sameh, Ahmed; Grama, Ananth

    2011-01-01

    With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part of this design process is the development of performance models capable of predicting performance and providing accurate cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the iterative solvers themselves. In this paper, we investigate the problem of characterizing performance and scalability of banded preconditioners. Recent work has demonstrated the superior convergence properties and robustness of banded preconditioners,more » compared to state-of-the-art ILU family of preconditioners as well as algebraic multigrid preconditioners. Furthermore, when used in conjunction with efficient banded solvers, banded preconditioners are capable of significantly faster time-to-solution. Our banded solver, the Truncated Spike algorithm is specifically designed for parallel performance and tolerance to deep memory hierarchies. Its regular structure is also highly amenable to accurate performance characterization. Using these characteristics, we derive the following results in this paper: (i) we develop parallel formulations of the Truncated Spike solver, (ii) we develop a highly accurate pseudo-analytical parallel performance model for our solver, (iii) we show excellent predication capabilities of our model – based on which we argue the high scalability of our solver. Our pseudo-analytical performance model is based on analytical performance characterization of each phase of our solver. These analytical models are then parameterized using actual runtime information on target platforms. An important consequence of our performance models is that they reveal underlying performance bottlenecks in both serial and parallel formulations. All of our results are validated on diverse heterogeneous multiclusters – platforms for which performance prediction is particularly challenging. Finally, we provide predict the scalability of the Spike algorithm using up to 65,536 cores with our model. In this paper we extend the results presented in the Ninth International Symposium on Parallel and Distributed Computing.« less

  15. IONIZATION SOURCE OF A MINOR-AXIS CLOUD IN THE OUTER HALO OF M82

    SciTech Connect (OSTI)

    Matsubayashi, K.; Taniguchi, Y.; Kajisawa, M.; Shioya, Y.; Sugai, H.; Shimono, A.; Hattori, T.; Ozaki, S.; Yoshikawa, T.; Nagao, T.; Bland-Hawthorn, J.

    2012-12-10

    The M82 ''cap'' is a gas cloud at a projected radius of 11.6 kpc along the minor axis of this well-known superwind source. The cap has been detected in optical line emission and X-ray emission and therefore provides an important probe of the wind energetics. In order to investigate the ionization source of the cap, we observed it with the Kyoto3DII Fabry-Perot instrument mounted on the Subaru Telescope. Deep continuum, H{alpha}, [N II]{lambda}6583/H{alpha}, and [S II]{lambda}{lambda}6716,6731/H{alpha} maps were obtained with subarcsecond resolution. The superior spatial resolution compared to earlier studies reveals a number of bright H{alpha} emitting clouds within the cap. The emission line widths ({approx}< 100 km s{sup -1} FWHM) and line ratios in the newly identified knots are most reasonably explained by slow to moderate shocks velocities (v{sub shock} 40-80 km s{sup -1}) driven by a fast wind into dense clouds. The momentum input from the M82 nuclear starburst region is enough to produce the observed shock. Consequently, earlier claims of photoionization by the central starburst are ruled out because they cannot explain the observed fluxes of the densest knots unless the UV escape fraction is very high (f{sub esc} > 60%), i.e., an order of magnitude higher than observed in dwarf galaxies to date. Using these results, we discuss the evolutionary history of the M82 superwind. Future UV/X-ray surveys are expected to confirm that the temperature of the gas is consistent with our moderate shock model.

  16. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    SciTech Connect (OSTI)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  17. Measurements of television interference caused by a vertical-axis wind machine. Final subcontract report

    SciTech Connect (OSTI)

    Sengupta, D L; Senior, T B.A.; Ferris, J E

    1983-01-01

    The electromagnetic interference to television reception caused by the 17 m Darreius at Albuquerque, NM, has been studied by carrying out measurements at a number of sites in the vicinity of the VAWT. The rf sources used were the commercial vhf and uhf TV signals available in the area. Ambient field-strength measurements showed that the signals on all TV channels except one were strong, and provided good reception at all test sites. With the antenna (properly) oriented for maximum direct signal, unacceptable interference was observed on some channels at sites out to 33 m from the WT in the forward and backward regions. With the antenna beam directed at the WT, interference varying from slight to violent were observed at all sites on some or all TV channels. A simple theoretical model has been developed for analyzing the TVI produced by a VAWT like the Darrieus. Using the model in conjunction with measured data, an approximate expression for the equivalent scattering area A of the Darrieus has been developed. It is found that A is wavelength (lambda) dependent and varies as lambda/sup 1/2/.

  18. s d 2 Graphene: Kagome Band in a Hexagonal Lattice (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    s d 2 Graphene: Kagome Band in a Hexagonal Lattice Citation Details In-Document Search Title: s d 2 Graphene: Kagome Band in a Hexagonal Lattice Authors: Zhou, Miao ; Liu, Zheng ;...

  19. s d 2 Graphene: Kagome Band in a Hexagonal Lattice (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    s d 2 Graphene: Kagome Band in a Hexagonal Lattice Prev Next Title: s d 2 Graphene: Kagome Band in a Hexagonal Lattice Authors: Zhou, Miao ; Liu, Zheng ; Ming, Wenmei ; Wang,...

  20. High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier Management High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier Management Higher-Efficiency...

  1. Determination of Band Offsets between the High-k Dielectric LaAlO3...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    found that band gaps of high-k dielectric films are also significantly affected by film growth conditions. Therefore, we can not rely on previously published LaAlO3 band gap...

  2. X-band photoinjector for a chirped-pulse FEL

    SciTech Connect (OSTI)

    Luhmann, Jr., N. C.; Alvis, R. M.; Baldis, H. A.; Hartemann, F. V; Heritage, J. P.; Ho, C. H.; Landahl, E. C.; Li, K.; Troha,A. L.; White, W. E.

    1998-12-15

    The phase noise and jitter characteristics of the laser and rf systems of a high gradient X-band photoinjector have been measured experimentally. When > 100 coherently phased 5 MeV electron bunches are produced in bursts, the photoinjector should be an ideal electron source for a pulsed, pre-bunched free-electron laser (FEL) operating at 100 GHz. The laser oscillator is a self-modelocked Titanium:Sapphire system operating at the 108th subharmonic of the rf gun. The X-band signal is produced from the laser by a phase-locked dielectric resonance oscillator, and amplified by a pulsed TWT and klystron. A comparison between the klystron and TWT amplifier phase noise and the fields excited in the rf gun demonstrates the filtering effect of the high Q structure, thus indicating that the rf gun can be used as a master oscillator, and could be energized by either a rf oscillator such as a magnetron or a compact source such as a cross-field amplifier. In particular, the rf gun can play the role of a pulsed rf clock to synchronize the photocathode laser system: direct drive of a synchronously mode-locked AlGaAs quantum well laser has been achieved using the X0-band gun rf fields. This novel, GHz repetition rate, sub-picosecond laser system is being developed to replace the more conventional femtosecond Ti: Al2O3 system. Some advantages include pumping this laser with a stabilized current source instead of a costly, low efficiency pump laser. Finally, dark current measurements and initial photoelectron measurements are reported.

  3. Deep z-band observations of the coolest Y dwarf

    SciTech Connect (OSTI)

    Kopytova, Taisiya G.; Crossfield, Ian J. M.; Deacon, Niall R.; Brandner, Wolfgang; Buenzli, Esther; Bayo, Amelia; Schlieder, Joshua E.; Manjavacas, Elena; Kopon, Derek; Biller, Beth A.

    2014-12-10

    WISE J085510.83-071442.5 (hereafter, WISE 0855-07) is the coolest Y dwarf known to date and is located at a distance of 2.31 0.08 pc, giving it the fourth largest parallax of any known star or brown dwarf system. We report deep z-band observations of WISE 0855-07 using FORS2 on UT1/Very Large Telescope. We do not detect any counterpart to WISE 0855-07 in our z-band images and estimate a brightness upper limit of AB mag > 24.8 (F {sub ?} < 0.45 ?Jy) at 910 65 nm with 3? confidence. We combine our z-band upper limit with previous near- and mid-infrared photometry to place constraints on the atmospheric properties of WISE 0855-07 via comparison to models which implement water clouds in the atmospheres of T {sub eff} < 300 K substellar objects. We find that none of the available models that implement water clouds can completely reproduce the observed spectral energy distribution of WISE 0855-07. Every model significantly disagrees with the (3.6 ?m/4.5 ?m) flux ratio and at least one other bandpass. Since methane is predicted to be the dominant absorber at 3-4 ?m, these mismatches might point to an incorrect or incomplete treatment of methane in current models. We conclude that (a) WISE0855-07 has T {sub eff} ? 200-250 K, (b) <80% of its surface is covered by clouds, and (c) deeper observations, and improved models of substellar evolution, atmospheres, clouds, and opacities will be necessary to better characterize this object.

  4. History and Evolution of Control Banding: A Review

    SciTech Connect (OSTI)

    Zalk, D; Nelson, D

    2006-07-19

    Control Banding (CB) strategies offer simplified solutions for controlling worker exposures to constituents often encountered in the workplace. The original CB model was developed within the pharmaceutical industry; however, the modern movement involves models developed for non-experts to input hazard and exposure potential information for bulk chemical processes, receiving control advice as a result. The CB approach utilizes these models for the dissemination of qualitative and semi-quantitative risk assessment tools being developed to complement the traditional industrial hygiene model of air sampling and analysis. It is being applied and tested in small and medium size enterprises (SMEs) within developed countries and industrially developing countries; however, large enterprises (LEs) have also incorporated these strategies within chemical safety programs. Existing research of the components of the most available CB model, the Control of Substances Hazardous to Health (COSHH) Essentials, has shown that exposure bands do not always provide adequate margins of safety, that there is a high rate of under-control errors, that it works better with dusts than with vapors, that there is an inherent inaccuracy in estimating variability, and that when taken together the outcomes of this model may lead to potentially inappropriate workplace confidence in chemical exposure reduction in some operations. Alternatively, large-scale comparisons of industry exposure data to this CB model's outcomes have indicated more promising results with a high correlation seen internationally. With the accuracy of the toxicological ratings and hazard band classification currently in question, their proper reevaluation will be of great benefit to the reliability of existing and future CB models. The need for a more complete analysis of CB model components and, most importantly, a more comprehensive prospective research process remains and will be important in understanding implications of the model's overall effectiveness. Since the CB approach is now being used worldwide with an even broader implementation in progress, further research toward understanding its strengths and weaknesses will assist in its further refinement and confidence in its ongoing utility.

  5. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  6. Narrow-band optical transmission of metallic nanoslit arrays

    SciTech Connect (OSTI)

    Sun Zhijun; Yang Ying; Zuo Xiaoliu

    2012-10-22

    Metallic nanoslit arrays usually demonstrate wide transmission bands for transverse-magnetic-polarized incidence light. Here, we show that by introducing multi-dielectric layers underneath the metallic structure layer on the substrate, a narrow peak is formed, whose bandwidth can be down to a few nanometers. Three types of resonance modes in the region under the metal layer are identified responsible for the formation of the peak, i.e., a two-dimensional cavity resonance mode, which supports optical transmission, and two in-plane hybrid surface plasmon resonance modes locating on both sides of the peak that suppresses the transmission. Such structures can be applied in advanced photonic devices.

  7. Project Reports for Cabazon Band of Mission Indians- 2003 Project

    Broader source: Energy.gov [DOE]

    Strategic energy planning effort to assist in achieving the tribe's primary goals of economic diversity, economic self-sufficiency, and protecting the health and welfare of tribal members. The Cabazon Band Reservation, located on four sections of non-contiguous land on the eastern half of the Coachella Valley in Riverside County is approximately 25 miles east of Palm Springs, comprises 1500 acres and currently has the seventh highest residential electricity rates among U.S. Native American reservations. The Strategic Energy Plan will enable the tribe to make informed decisions in creating and conducting an effective energy management program for their people.

  8. Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-03-06

    The Ka-band ARM zenith radar (KAZR) is a zenith-pointing Doppler cloud radar operating at approximately 35 GHz. The KAZR is an evolutionary follow-on radar to ARM's widely successful millimeter-wavelength cloud radar (MMCR). The main purpose of the KAZR is to provide vertical profiles of clouds by measuring the first three Doppler moments: reflectivity, radial Doppler velocity, and spectra width. At the sites where the dual-polarization measurements are made, the Doppler moments for the cross-polarization channel are also available. In addition to the moments, velocity spectra are also continuously recorded for each range gate.

  9. Intermediate band solar cells: Recent progress and future directions

    SciTech Connect (OSTI)

    Okada, Y. Tamaki, R.; Farrell, D. J.; Yoshida, K.; Ahsan, N.; Shoji, Y.; Sogabe, T.; Ekins-Daukes, N. J. Yoshida, M.; Pusch, A.; Hess, O.; Phillips, C. C.; Kita, T.; Guillemoles, J.-F.

    2015-06-15

    Extensive literature and publications on intermediate band solar cells (IBSCs) are reviewed. A detailed discussion is given on the thermodynamics of solar energy conversion in IBSCs, the device physics, and the carrier dynamics processes with a particular emphasis on the two-step inter-subband absorption/recombination processes that are of paramount importance in a successful implementation high-efficiency IBSC. The experimental solar cell performance is further discussed, which has been recently demonstrated by using highly mismatched alloys and high-density quantum dot arrays and superlattice. IBSCs having widely different structures, materials, and spectral responses are also covered, as is the optimization of device parameters to achieve maximum performance.

  10. Campo Band of Mission Indians - Renewable Energy Update

    Office of Environmental Management (EM)

    Connolly Miskwish November 16, 2012 — Campo is one of twelve Bands o — 50 megawatt facility comprised of 25 2---MW turbines — 25 year lease — Outside owner with tribe receiving a royalty based on gross output — Lease negotiated in 2004 — 160 MW project — Project development began in 2006 MW---hour California Market Price Referent 140 120 100 80 60 40 20 0 2007 2008 2009 2010 2011 2012 2013 — More direct involvement by tribal government — Less reliance on

  11. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, Isidoro E. (Newport News, VA)

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  12. Conductive layer for biaxially oriented semiconductor film growth

    DOE Patents [OSTI]

    Findikoglu, Alp T. (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM)

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  13. Project Reports for Morongo Band of Cahuilla Mission Indians: Southwest Tribal Energy Consortium- 2006 Project

    Broader source: Energy.gov [DOE]

    The Southwest Tribal Energy Consortium, represented by the Morongo Band, is comprised of tribes in California, Arizona and New Mexico.

  14. Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar

    SciTech Connect (OSTI)

    Suzanne McSawby, Project Director Steve Smiley, Principle Investigator Grand Traverse Resort, Cost Sharing Partner

    2008-12-31

    Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

  15. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  16. Morongo Band of Cahuilla Mission Indians: Southwest Tribal Energy Consortium- 2006 Project

    Broader source: Energy.gov [DOE]

    The Southwest Tribal Energy Consortium, represented by the Morongo Band, is comprised of tribes in California, Arizona and New Mexico.

  17. Nanomembrane structures having mixed crystalline orientations and compositions

    DOE Patents [OSTI]

    Lagally, Max G.; Scott, Shelley A.; Savage, Donald E.

    2014-08-12

    The present nanomembrane structures include a multilayer film comprising a single-crystalline layer of semiconductor material disposed between two other single-crystalline layers of semiconductor material. A plurality of holes extending through the nanomembrane are at least partially, and preferably entirely, filled with a filler material which is also a semiconductor, but which differs from the nanomembrane semiconductor materials in composition, crystal orientation, or both.

  18. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  19. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  20. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  1. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  2. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  3. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  4. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  5. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  6. Orientation Visit to the Portsmouth Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    HSS Independent Activity Report - Rev. 0 Report Number: HIAR-PORTS-2011-08-03 Site: Portsmouth Gaseous Diffusion Plant Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Orientation Visit to the Portsmouth Gaseous Diffusion Plant Dates of Activity : 08/01/2011 - 08/03/2011 Report Preparer: Joseph P. Drago Activity Description/Purpose: The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the

  7. Laser Safety Orientation SAF 114O Training Opportunity | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Safety Orientation SAF 114O Training Opportunity Date: Thursday, January 14, 2016 Time: 10:30 - Noon Location: CEBAF Center, Room A110 Prerequisites: 1. Schedule an Eye Exam for Laser Safety - MED 02 Contact Occupational Medicine - ext. 7539 2. Review JLab EH&S Manual Chapter 6410 Laser Safety Program https://www.jlab.org/ehs/ehsmanual/manual/6410.html Any questions contact Bert Manzlak, ext. 7556 Submitted: Tuesday, January 5, 2016 - 3:38pm

  8. Preferential orientation of metal oxide superconducting materials by mechanical means

    DOE Patents [OSTI]

    Capone, Donald W. (Bolingbrook, IL)

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0<.times.<0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu--O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities.

  9. Structural Orientations Adjacent to Some Colorado Geothermal Systems

    SciTech Connect (OSTI)

    Richard,

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Structural Data Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Structural orientations (fractures, joints, faults, lineaments, bedding orientations, etc.) were collected with a standard Brunton compass during routine field examinations of geothermal phenomena in Colorado. Often multiple orientations were taken from one outcrop. Care was taken to ensure outcrops were "in place". Point data was collected with a hand-held GPS unit. The structural data is presented both as standard quadrant measurements and in format suitable for ESRI symbology Spatial Domain: Extent: Top: 4491528.924999 m Left: 207137.983196 m Right: 432462.310324 m Bottom: 4117211.772001 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard Rick Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  10. Preferential orientation of metal oxide superconducting materials by mechanical means

    DOE Patents [OSTI]

    Capone, D.W.

    1990-11-27

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities. 3 figs.

  11. CALIBRATING STELLAR VELOCITY DISPERSIONS BASED ON SPATIALLY RESOLVED H-BAND SPECTRA FOR IMPROVING THE M{sub BH}-{sigma}{sub *} RELATION

    SciTech Connect (OSTI)

    Kang, Wol-Rang; Woo, Jong-Hak; Park, Daeseong; Schulze, Andreas; Riechers, Dominik A.; Kim, Sang Chul; Smolcic, Vernesa

    2013-04-10

    To calibrate stellar velocity dispersion measurements from optical and near-IR stellar lines, and to improve the black hole mass (M{sub BH})-stellar velocity dispersion ({sigma}{sub *}) relation, we measure {sigma}{sub *} based on high-quality H-band spectra for a sample of 31 nearby galaxies, for which dynamical M{sub BH} is available in the literature. By comparing velocity dispersions measured from stellar lines in the H-band with those measured from optical stellar lines, we find no significant difference, suggesting that optical and near-IR stellar lines represent the same kinematics and that dust effect is negligible for early-type galaxies. Based on the spatially resolved rotation and velocity dispersion measurements along the major axis of each galaxy, we find that a rotating stellar disk is present for 80% of galaxies in the sample. For galaxies with a rotation component, {sigma}{sub *} measured from a single aperture spectrum can vary by up to {approx}20%, depending on the size of the adopted extraction aperture. To correct for the rotational broadening, we derive luminosity-weighted {sigma}{sub *} within the effective radius of each galaxy, providing uniformly measured velocity dispersions to improve the M{sub BH}-{sigma}{sub *} relation.

  12. Band structure of ABC-trilayer graphene superlattice

    SciTech Connect (OSTI)

    Uddin, Salah Chan, K. S.

    2014-11-28

    We investigate the effect of one-dimensional periodic potentials on the low energy band structure of ABC trilayer graphene first by assuming that all the three layers have the same potential. Extra Dirac points having the same electron hole crossing energy as that of the original Dirac point are generated by superlattice potentials with equal well and barrier widths. When the potential height is increased, the numbers of extra Dirac points are increased. The dispersions around the Dirac points are not isotropic. It is noted that the dispersion along the k{sub y} direction for k{sub x}?=?0 oscillates between a non-linear dispersion and a linear dispersion when the potential height is increased. When the well and barrier widths are not identical, the symmetry of the conduction and valence bands is broken. The extra Dirac points are shifted either upward or downward depending on the barrier and well widths from the zero energy, while the position of the central Dirac point oscillates with the superlattice potential height. By considering different potentials for different layers, extra Dirac points are generated not from the original Dirac points but from the valleys formed in the energy spectrum. Two extra Dirac points appear from each pair of touched valleys, so four Dirac points appeared in the spectrum at particular barrier height. By increasing the barrier height of superlattice potential two Dirac points merge into the original Dirac point. This emerging and merging of extra Dirac points is different from the equal potential case.

  13. Urat Rear Banner Jihe Orient Wind Energy Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Urat Rear Banner Jihe Orient Wind Energy Co Ltd Jump to: navigation, search Name: Urat Rear Banner Jihe Orient Wind Energy Co Ltd Place: Inner Mongolia Autonomous Region, China...

  14. Agua Caliente Band's Pursuit of Energy Self-Sufficiency Gains Momentum |

    Energy Savers [EERE]

    Department of Energy Agua Caliente Band's Pursuit of Energy Self-Sufficiency Gains Momentum Agua Caliente Band's Pursuit of Energy Self-Sufficiency Gains Momentum March 1, 2016 - 11:02am Addthis Concept drawing of the Agua Caliente Band’s Heritage Plaza Parking Lot Project, which involves installing solar arrays, partly funded by a DOE grant, on carport shade structures. Photo from Larry Fossum, Agua Caliente Band of Cahuilla Indians. Concept drawing of the Agua Caliente Band's Heritage

  15. Triaxial strongly deformed bands in {sup 164}Hf and the effect of elevated yrast line

    SciTech Connect (OSTI)

    Ma Wenchao

    2012-10-20

    Two exotic rotational bands have been identified in {sup 164}Hf and linked to known states. They are interpreted as being associated with the calculated triaxial strongly deformed (TSD) potential energy minimum. The bands are substantially stronger and are located at much lower spins than the previously discovered TSD bands in {sup 168}Hf. In addition to the proton and neutron shell gaps at large trixiality, it was proposed that the relative excitation energy of TSD bands above the yrast line plays an important role in the population of TSD bands.

  16. Method and device for determining the position of a cutting tool relative to the rotational axis of a spindle-mounted workpiece

    DOE Patents [OSTI]

    Williams, R.R.

    1980-09-03

    The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrificial pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational axis of the workpiece a distance equal to the radius of the cylinder.

  17. W-band ARM Cloud Radar (WACR) Handbook

    SciTech Connect (OSTI)

    Widener, KB; Johnson, K

    2005-01-05

    The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and composition of clouds at 95.04 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar reports estimates for the first three spectra moments for each range gate up to 15 km. The 0th moment is reflectivity, the 1st moment is radial velocity, and the 2nd moment is spectral width. Also available are the raw spectra files. Unlike the millimeter wavelength cloud radar (MMCR), the WACR does not use pulse coding and operates in only copolarization and cross-polarization modes.

  18. Little Traverse Bay Bands of Odawa Indians- 2005 Project

    Broader source: Energy.gov [DOE]

    The Little Traverse Bay Bands of Odawa Indians is located in the northern part of lower Michigan on approximately 590 acres of land. The tribe originally had no consistent vision or strategic plan concerning its energy use. This project had three objectives. The first objective was to produce a comprehensive energy plan for the tribe. The second objective was to create an energy organization and tribal energy code. The third objective was to increase the capacity of the tribe for better understanding (through active tribal participation), capability, knowledge and awareness of energy issues through bimonthly articles in the tribal newsletter and two energy workshops. The vision, strategic plan, and code will provide the focus, direction and guidelines as the tribe seeks to develop renewable energy and energy efficiency.

  19. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    SciTech Connect (OSTI)

    Caddeau, MP

    2010-06-23

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humidity conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.

  20. Voltage-matched, monolithic, multi-band-gap devices

    DOE Patents [OSTI]

    Wanlass, Mark W.; Mascarenhas, Angelo

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  1. Project Reports for Mississippi Band of Choctaw Indians- 2002 Project

    Broader source: Energy.gov [DOE]

    The Mississippi Band of Choctaw Indians (MBCI) always seeks new opportunities to diversify its economy and create new career opportunities for tribal members, which is the purpose of this feasibility study. The MBCI will study the feasibility of locating a renewable energy installation on tribal lands. The technologies to be utilized in the renewable energy installation will be those that can readily handle poultry litter, either alone or in combination with wood residues. The purpose of the study is to determine whether such an installation can be both economically sustainable and consistent with the cultural, social, and economic goals of the tribe. The feasibility study will result in the development of a thorough business plan that will allow the MBCI to make an informed decision regarding this project.

  2. Out of band radiation effects on resist patterning

    SciTech Connect (OSTI)

    George, Simi A .; Naulleau, Patrick P.

    2011-03-11

    Our previous work estimated the expected out-of-band (OOB) flare contribution at the wafer level assuming that there is a given amount of OOB at the collector focus. We found that the OOB effects are wavelength, resist, and pattern dependent. In this paper, results from rigorous patterning evaluation of multiple OOB-exposed resists using the SEMATECH Berkeley 0.3-NA MET are presented. A controlled amount of OOB is applied to the resist films before patterning is completed with the MET. LER and process performance above the resolution limit and at the resolution limits are evaluated and presented. The results typically show a negative impact on LER and process performance after the OOB exposures except in the case of single resist formulation, where resolution and performance improvement was observed.

  3. Voltage-Matched, Monolithic, Multi-Band-Gap Devices

    DOE Patents [OSTI]

    Wanlass, M. W.; Mascarenhas, A.

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  4. THE SPIN AND ORIENTATION OF DARK MATTER HALOS WITHIN COSMIC FILAMENTS

    SciTech Connect (OSTI)

    Zhang Youcai; Yang Xiaohu; Lin Weipeng; Faltenbacher, Andreas; Springel, Volker; Wang Huiyuan

    2009-11-20

    Clusters, filaments, sheets, and voids are the building blocks of the cosmic web. Forming dark matter halos respond to these different large-scale environments, and this in turn affects the properties of galaxies hosted by the halos. It is therefore important to understand the systematic correlations of halo properties with the morphology of the cosmic web, as this informs both about galaxy formation physics and possible systematics of weak lensing studies. In this study, we present and compare two distinct algorithms for finding cosmic filaments and sheets, a task which is far less well established than the identification of dark matter halos or voids. One method is based on the smoothed dark matter density field and the other uses the halo distributions directly. We apply both techniques to one high-resolution N-body simulation and reconstruct the filamentary/sheet like network of the dark matter density field. We focus on investigating the properties of the dark matter halos inside these structures, in particular, on the directions of their spins and the orientation of their shapes with respect to the directions of the filaments and sheets. We find that both the spin and the major axes of filament halos with masses approx<10{sup 13} h {sup -1} M{sub sun} are preferentially aligned with the direction of the filaments. The spins and major axes of halos in sheets tend to lie parallel to the sheets. There is an opposite mass dependence of the alignment strength for the spin (negative) and major (positive) axes, i.e. with increasing halo mass the major axis tends to be more strongly aligned with the direction of the filament, whereas the alignment between halo spin and filament becomes weaker with increasing halo mass. The alignment strength as a function of the distance to the most massive node halo indicates that there is a transit large-scale environment impact: from the two-dimensional collapse phase of the filament to the three-dimensional collapse phase of the cluster/node halo at small separation. Overall, the two algorithms for filament/sheet identification investigated here agree well with each other. The method based on halos alone can be easily adapted for use with observational data sets.

  5. Dynamic Object Oriented Requirements System (DOORS) System Test Plan

    SciTech Connect (OSTI)

    JOHNSON, A.L.

    2000-04-01

    The U. S. Department of Energy, Office of River Protection (ORP) will use the Dynamic Object Oriented Requirements System (DOORS) as a tool to assist in identifying, capturing, and maintaining the necessary and sufficient set of requirements for accomplishing the ORP mission. By managing requirements as one integrated set, the ORP will be able to carry out its mission more efficiently and effectively. DOORS is a Commercial-Off-The-Shelf (COTS) requirements management tool. The tool has not been customized for the use of the PIO, at this time.

  6. Preliminary analysis of the audible noise of constant-speed, horizontal-axis wind-turbine generators

    SciTech Connect (OSTI)

    Keast, D. N.; Potter, R. C.

    1980-07-01

    An analytical procedure has been developed for calculating certain aerodynamic sound levels produced by large, horizontal-axis wind-turbine generators (WTG's) such as the DOE/NASA Mods-0, -0A, -1, and -2. This preliminary procedure is based upon very limited field data from the Mod-0. It postulates a noise component due to the (constant) rotation of the blades of the WTG, plus a wake-noise component that increases with the square of the power produced by the WTG. Mechanical sound from machinery, and low-frequency impulsive sounds produced by blade interaction with the wake of the support tower are not considered.

  7. Use of off-axis injection as an alternative to geometrically merging beams in an energy-recovering linac

    DOE Patents [OSTI]

    Douglas, David R.

    2012-01-10

    A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.

  8. Magnetic domain structure in nanocrystalline Ni-Zn-Co spinel ferrite thin films using off-axis electron holography

    SciTech Connect (OSTI)

    Zhang, D.; Ray, N. M.; Petuskey, W. T.; Smith, D. J.; McCartney, M. R.

    2014-08-28

    We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (?90?C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

  9. Channels, reservoir orientation, and paleocurrents - Theory and exploitation

    SciTech Connect (OSTI)

    Grace, L.M.; Pirie, R.G. ); Potter, P.E. )

    1990-05-01

    Channels, from a few up to hundreds of meters thick, occur in virtually all the major sandy and carbonate environments. The fill of channels varies greatly and includes stream deposits, delta distributaries, tidal deposits, debris flows, marine detritus washed both longitudinally and laterally into shelf channels, deep-water turbidites, glacial deposits, and volcanic rocks. Landslide blocks from collapsing channel margins can also be incorporated in the fill. Most of these occur in combinations, although a few combinations are very common and some are rare. Reservoirs in channels are increasingly significant in mature basins. The authors propose a general set of rules for predicting reservoir orientation in channels. The rules are independent of depositional environment and scale, and depend only on the physical processes of channel filling. This set of rules is based on studies of outcrop and electrical images from well bores and includes channel sinuosity, type of accretion, and the orientation of paleocurrent structures. A key concept is compactional dip, which mirrors the channel's bottom morphology. These rules are illustrated with case histories of successful offset wells from basins of all ages throughout the world.

  10. Acoustic plane wave preferential orientation of metal oxide superconducting materials

    DOE Patents [OSTI]

    Tolt, Thomas L. (North Olmsted, OH); Poeppel, Roger B. (Glen Ellyn, IL)

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0orientation of the crystal basal planes parallel with the direction of desired current flow is accomplished by an applied acoustic plane wave in the acoustic or ultrasonic frequency range (either progressive or standing) in applying a torque to each crystal particle. The ceramic slip is then set and fired by conventional methods to produce a conductor with preferentially oriented grains and substantially enhanced current carrying capacity.

  11. Magnetic preferential orientation of metal oxide superconducting materials

    DOE Patents [OSTI]

    Capone, D.W.; Dunlap, B.D.; Veal, B.W.

    1990-07-17

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

  12. Magnetic preferential orientation of metal oxide superconducting materials

    DOE Patents [OSTI]

    Capone, Donald W. (Bolingbrook, IL); Dunlap, Bobby D. (Bolingbrook, IL); Veal, Boyd W. (Downers Grove, IL)

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

  13. DETECTION OF SEMIMAJOR AXIS DRIFTS IN 54 NEAR-EARTH ASTEROIDS: NEW MEASUREMENTS OF THE YARKOVSKY EFFECT

    SciTech Connect (OSTI)

    Nugent, C. R.; Margot, J. L.; Chesley, S. R.; Vokrouhlicky, D.

    2012-08-15

    We have identified and quantified semimajor axis drifts in near-Earth asteroids (NEAs) by performing orbital fits to optical and radar astrometry of all numbered NEAs. We focus on a subset of 54 NEAs that exhibit some of the most reliable and strongest drift rates. Our selection criteria include a Yarkovsky sensitivity metric that quantifies the detectability of semimajor axis drift in any given data set, a signal-to-noise metric, and orbital coverage requirements. In 42 cases, the observed drifts ({approx}10{sup -3} AU Myr{sup -1}) agree well with numerical estimates of Yarkovsky drifts. This agreement suggests that the Yarkovsky effect is the dominant non-gravitational process affecting these orbits, and allows us to derive constraints on asteroid physical properties. In 12 cases, the drifts exceed nominal Yarkovsky predictions, which could be due to inaccuracies in our knowledge of physical properties, faulty astrometry, or modeling errors. If these high rates cannot be ruled out by further observations or improvements in modeling, they would be indicative of the presence of an additional non-gravitational force, such as that resulting from a loss of mass of order a kilogram per second. We define the Yarkovsky efficiency f{sub Y} as the ratio of the change in orbital energy to incident solar radiation energy, and we find that typical Yarkovsky efficiencies are {approx}10{sup -5}.

  14. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmore » structural and electrical characterization of SrZrxTi1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  15. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    SciTech Connect (OSTI)

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO? and Ge, in which the band gap of the former is enhanced with Zr content x. We present structural and electrical characterization of SrZrxTi1-xO?-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.

  16. TEMPORAL SPECTRAL SHIFT AND POLARIZATION OF A BAND-SPLITTING SOLAR TYPE II RADIO BURST

    SciTech Connect (OSTI)

    Du, Guohui; Chen, Yao; Lv, Maoshui; Kong, Xiangliang; Feng, Shiwei; Guo, Fan; Li, Gang

    2014-10-01

    In many type II solar radio bursts, the fundamental and/or the harmonic branches of the bursts can split into two almost parallel bands with similar spectral shapes and frequency drifts. However, the mechanisms accounting for this intriguing phenomenon remain elusive. In this study, we report a special band-splitting type II event in which spectral features appear systematically earlier on the upper band (with higher frequencies) than on the lower band (with lower frequencies) by several seconds. Furthermore, the emissions carried by the splitting band are moderately polarized with the left-hand polarized signals stronger than the right-hand ones. The polarization degree varies in a range of 0.3 to 0.6. These novel observational findings provide important constraints on the underlying physical mechanisms of band-splitting of type II radio bursts.

  17. Geometrical and band-structure effects on phonon-limited hole mobility in rectangular cross-sectional germanium nanowires

    SciTech Connect (OSTI)

    Tanaka, H. Mori, S.; Morioka, N.; Suda, J.; Kimoto, T.

    2014-12-21

    We calculated the phonon-limited hole mobility in rectangular cross-sectional [001], [110], [111], and [112]-oriented germanium nanowires, and the hole transport characteristics were investigated. A tight-binding approximation was used for holes, and phonons were described by a valence force field model. Then, scattering probability of holes by phonons was calculated taking account of hole-phonon interaction atomistically, and the linearized Boltzmann's transport equation was solved to calculate the hole mobility at low longitudinal field. The dependence of the hole mobility on nanowire geometry was analyzed in terms of the valence band structure of germanium nanowires, and it was found that the dependence was qualitatively reproduced by considering an average effective mass and the density of states of holes. The calculation revealed that [110] germanium nanowires with large height along the [001] direction show high hole mobility. Germanium nanowires with this geometry are also expected to exhibit high electron mobility in our previous work, and thus they are promising for complementary metal-oxide-semiconductor (CMOS) applications.

  18. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    SciTech Connect (OSTI)

    Lowe, M.; McGrath, R.; Sharma, H. R.; Yadav, T. P.; Fourne, V.; Ledieu, J.

    2015-03-07

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized by x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe{sub 3}O{sub 4} rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol.

  19. Independently tunable dual-band perfect absorber based on graphene at

    Office of Scientific and Technical Information (OSTI)

    mid-infrared frequencies (Journal Article) | SciTech Connect Journal Article: Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies Citation Details In-Document Search Title: Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate

  20. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian

    SciTech Connect (OSTI)

    Kolek, Andrzej

    2015-05-04

    The formulas are derived that enable calculations of intersubband absorption coefficient within nonequilibrium Green's function method applied to a single-band effective-mass Hamiltonian with the energy dependent effective mass. The derivation provides also the formulas for the virtual valence band components of the two-band Green's functions which can be used for more exact estimation of the density of states and electrons and more reliable treatment of electronic transport in unipolar n-type heterostructure semiconductor devices.

  1. Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indian Reservation | Department of Energy Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian Reservation Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian Reservation September 23, 2014 - 11:24am Addthis From the White House Council on Environmental Quality blog: Last Friday I had the pleasure of visiting the Fond du Lac Band of Lake Superior Chippewa Indian Reservation. I was joined by Raina Thiele, Associate Director of White

  2. Project Reports for Agua Caliente Band of Cahuilla Indians - 2010 Project |

    Energy Savers [EERE]

    Department of Energy Agua Caliente Band of Cahuilla Indians - 2010 Project Project Reports for Agua Caliente Band of Cahuilla Indians - 2010 Project The Agua Caliente Band of Cahuilla Indians (ACBCI) will conduct a feasibility and predevelopment study of potential solar projects on its lands in southern California. Learn more about this project or find details in the below status reports. PDF icon November 2009 status report PDF icon October 2010 status report PDF icon Final report More

  3. Little River Band of Ottawa Indians … First Steps to Human Capacity Building

    Office of Environmental Management (EM)

    Little River Band of Ottawa Indians Melissa Waitner, GPC Grant Writer 375 River Street Manistee, Michigan 49660 mwaitner@lrboi.com - The Little River Band of Ottawa Indians (LRBOI) is a Federally Recognized Tribal Nation located in Manistee, Michigan along the shores of Lake Michigan. - Our people are the descendants of nine Ottawa bands whose leaders were signatories to the 1836 Treaty of Washington and the 1855 Treaty of Detroit. - For over 100 years, succeeding generations of Ottawa leaders

  4. Little River Band of Ottawa Indians … First Steps to Human Capacity Building

    Office of Environmental Management (EM)

    Little River Band of Ottawa Indians Melissa Waitner, GPC Grant Writer 375 River Street Manistee, Michigan 49660 mwaitner@lrboi.com  The Little River Band of Ottawa Indians (LRBOI) is a Federally Recognized Tribal Nation located in Manistee, Michigan along the shores of Lake Michigan.  Our people are the descendants of nine Ottawa bands whose leaders were signatories to the 1836 Treaty of Washington and the 1855 Treaty of Detroit.  For over 100 years, succeeding generations of Ottawa

  5. Fully Polarimetric Differential Intensity W-band Imager

    SciTech Connect (OSTI)

    Bernacki, Bruce E.; Tedeschi, Jonathan R.; Kelly, James F.; Sheen, David M.; Hall, Thomas E.; Valdez, Patrick LJ; Lechelt, Wayne M.; McMakin, Douglas L.

    2013-05-31

    We present a novel architecture based upon a Dicke-switched heterodyne radiometer architecture employing two identical input sections consisting of horn and orthomode transducer to detect the difference between the H and V polarization states of two separate object patches imaged by the radiometer. We have constructed and described previously a fully polarimetric W-band passive millimeter wave imager constructed to study the phenomenology of anomaly detection using polarimetric image exploitation of the Stokes images. The heterodyne radiometer used a PIN diode switch between the input millimeter wave energy and that of a reference load in order to eliminate the effects of component drifts and reduce the effects of 1/f noise. The differential approach differs from our previous work by comparing H and V polarization states detected by each of the two input horns instead of a reference load to form signals delta H and delta V from closely adjacent paired object patches. This novel imaging approach reduces common mode noise and enhances detection of small changes between the H and V polarization states of two object patches, now given as difference terms of the fully polarimetric radiometer. We present the theory of operation, initial proof of concept experimental results, and extension of the differential radiometer to a system with a binocular fore optics that allow adjustment of the convergence or shear of the object patches viewed by the differential polarimetric imager.

  6. Project Reports for Santa Ynez Band of Chumash Indians- 2011 Project

    Broader source: Energy.gov [DOE]

    The Santa Ynez Band of Chumash Indians (SYBCI) will prepare a comprehensive, strategic energy plan that incorporates energy efficiency, renewable energy, and other energy management and development options.

  7. Project Reports for Ramona Band of Cahuilla Mission Indians- 1999 Project

    Broader source: Energy.gov [DOE]

    The Ramona Band of Cauhilla Indians is establishing an ecotourism facility on their Reservation at the southern end of the San Bernardino National Forest in southern California.

  8. Theoretical performance of solar cell based on mini-bands quantum dots

    SciTech Connect (OSTI)

    Aly, Abou El-Maaty M. E-mail: ashraf.nasr@gmail.com; Nasr, A. E-mail: ashraf.nasr@gmail.com

    2014-03-21

    The tremendous amount of research in solar energy is directed toward intermediate band solar cell for its advantages compared with the conventional solar cell. The latter has lower efficiency because the photons have lower energy than the bandgap energy and cannot excite mobile carriers from the valence band to the conduction band. On the other hand, if mini intermediate band is introduced between the valence and conduction bands, then the smaller energy photons can be used to promote charge carriers transfer to the conduction band and thereby the total current increases while maintaining a large open circuit voltage. In this article, the influence of the new band on the power conversion efficiency for structure of quantum dots intermediate band solar cell is theoretically investigated and studied. The time-independent Schrdinger equation is used to determine the optimum width and location of the intermediate band. Accordingly, achievement of a maximum efficiency by changing the width of quantum dots and barrier distances is studied. Theoretical determination of the power conversion efficiency under the two different ranges of QD width is presented. From the obtained results, the maximum power conversion efficiency is about 70.42%. It is carried out for simple cubic quantum dot crystal under fully concentrated light. It is strongly dependent on the width of quantum dots and barrier distances.

  9. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  10. Accurate Band-Structure Calculations for the 3d Transition Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed a method to calculate accurate band structures and bandgap energies for 3d transition metal oxides using an augmented GW formalism. Significance and Impact This approach...

  11. Project Reports for Minnesota Chippewa Tribe: White Earth Band- 2003 Project

    Broader source: Energy.gov [DOE]

    Several northern Minnesota tribes interested in building a common foundation for strategic tribal energy capacity have banded together for strategic energy resource planning.

  12. Micromachined cutting blade formed from {211}-oriented silicon

    DOE Patents [OSTI]

    Fleming, James G.; Sniegowski, Jeffry J.; Montague, Stephen

    2003-09-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  13. Micromachined cutting blade formed from {211}-oriented silicon

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Burbank, CA); Sniegowski, Jeffry J. (Tijeras, NM); Montague, Stephen (Albuquerque, NM)

    2011-08-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  14. An object-oriented extension for debugging the virtual machine

    SciTech Connect (OSTI)

    Pizzi, R.G. Jr.

    1994-12-01

    A computer is nothing more then a virtual machine programmed by source code to perform a task. The program`s source code expresses abstract constructs which are compiled into some lower level target language. When a virtual machine breaks, it can be very difficult to debug because typical debuggers provide only low-level target implementation information to the software engineer. We believe that the debugging task can be simplified by introducing aspects of the abstract design and data into the source code. We introduce OODIE, an object-oriented extension to programming languages that allows programmers to specify a virtual environment by describing the meaning of the design and data of a virtual machine. This specification is translated into symbolic information such that an augmented debugger can present engineers with a programmable debugging environment specifically tailored for the virtual machine that is to be debugged.

  15. MORE operating system: a message oriented resource environment

    SciTech Connect (OSTI)

    Cabral, B.; Poggio, M.

    1986-07-15

    The operating system, MORE (Message Oriented Resource Environment), is designed for a software engineering environment built on the VAXstation II micro-computer. The MORE operating system is based on the message passing model. The hardware configuration of the VAXstation II is described, including a thorough discussion of the hardware operating system support features of the VAX architecture. The software engineering environment that MORE will provide for the user is discussed. The operating system as the application programmer will see it is presented in the form of a system services manual for MORE. The concept of a server in MORE and the objects or resources manipulated by the servers are included. The high level implementation and organization of MORE, the device managers and drivers, and the kernel of MORE are detailed. 17 refs., 17 figs.

  16. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    DOE Patents [OSTI]

    De Doncker, Rik W. A. A. (Schenectady, NY)

    1992-01-01

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other.

  17. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    DOE Patents [OSTI]

    De Doncker, R.W.A.A.

    1992-09-01

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other. 3 figs.

  18. CONSTRAINING THE PHYSICAL CONDITIONS IN THE JETS OF ?-RAY FLARING BLAZARS USING CENTIMETER-BAND POLARIMETRY AND RADIATIVE TRANSFER SIMULATIONS. II. EXPLORING PARAMETER SPACE AND IMPLICATIONS

    SciTech Connect (OSTI)

    Hughes, Philip A.; Aller, Margo F.; Aller, Hugh D. E-mail: mfa@umich.edu

    2015-02-01

    We analyze the shock-in-jet models for the ?-ray flaring blazars 0420-014, OJ 287, and 1156+295 presented in PaperI, quantifying how well the modeling constrains internal properties of the flow (low-energy spectral cutoff, partition between random and ordered magnetic field), the flow dynamics (quiescent flow speed and orientation), and the number and strength of the shocks responsible for radio-band flaring. We conclude that well-sampled, multifrequency polarized flux light curves are crucial for defining source properties. We argue for few, if any, low-energy particles in these flows, suggesting no entrainment and efficient energization of jet material, and for approximate energy equipartition between the random and ordered magnetic field components, suggesting that the ordered field is built by nontrivial dynamo action from the random component, or that the latter arises from a jet instability that preserves the larger-scale, ordered flow. We present evidence that the difference between orphan radio-band (no ?-ray counterpart) and non-orphan flares is due to more complex shock interactions in the latter case.

  19. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect (OSTI)

    Lawson, M. J.; Li, Y.; Sale, D. C.

    2011-10-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  20. Analysis of the efficiency of intermediate band solar cells based on quantum dot supercrystals

    SciTech Connect (OSTI)

    Heshmati, S; Golmohammadi, S; Abedi, K; Taleb, H

    2014-03-28

    We have studied the influence of the quantum-dot (QD) width and the quantum-dot conduction band (QD-CB) offset on the efficiency of quantum-dot intermediate band solar cells (QD-IBSCs). Simulation results demonstrate that with increasing QD-CB offset and decreasing QD width, the maximum efficiency is achieved. (laser applications and other topics in quantum electronics)

  1. JeoViewer: Object-Oriented GIS Framework | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JeoViewer: Object-Oriented GIS Framework JeoViewer: Object-Oriented GIS Framework JeoViewer is an intelligent, object-oriented geographical information system (GIS) framework written in Java. It can provide links to any object's data and behaviors, and is optimized for spatial geometry representation. Unlike traditional "static" GIS systems, JeoViewer is dynamic and can be dynamically linked to objects, models and other live data streams. JeoViewer's object-oriented approach provides a

  2. Dilute group III-V nitride intermediate band solar cells with contact blocking layers

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2015-02-24

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  3. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2012-07-31

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  4. Defect-Band Emission Photoluminescence Imaging on Multi-Crystalline Si Solar Cells: Preprint

    SciTech Connect (OSTI)

    Yan, F.; Johnston, S.; Zaunbrecher, K.; Al-Jassim, M.; Sidelkheir, O.; Blosse, A.

    2011-07-01

    Defect-band photoluminescence (PL) imaging with an InGaAs camera was applied to multicrystalline silicon (mc-Si) wafers, which were taken from different heights of different Si bricks. Neighboring wafers were picked at six different processing steps, from as-cut to post-metallization. By using different cut-off filters, we were able to separate the band-to-band emission images from the defect-band emission images. On the defect-band emission images, the bright regions that originate from the grain boundaries and defect clusters were extracted from the PL images. The area fraction percentage of these regions at various processing stages shows a correlation with the final cell electrical parameters.

  5. Inferior Pancreaticoduodenal Artery Aneurysms Associated with Occlusive Lesions of the Celiac Axis: Diagnosis, Treatment Options, Outcomes, and Review of the Literature

    SciTech Connect (OSTI)

    Flood, Karen Nicholson, Anthony A.

    2013-06-15

    Purpose. To describe the presentation, treatment, and outcomes for 14 patients with aneurysms of the inferior pancreaticoduodenal arteries associated with occlusive lesions of the celiac axis, and to review the literature for similar cases. Methods, Over a period of 12 years, 14 patients (10 women and 4 men) ranging in age from 26 to 50 (mean 46) years were demonstrated to have aneurysms of the inferior pancreaticoduodenal artery origin associated with stenosis or occlusion of the celiac axis. All patients were treated by a combination of surgery and interventional radiology. Results. Outcome data collected between 3 months and 4 years (mean 2 years) demonstrated that all aneurysms remained excluded, and all 14 patients were well. The 49 case reports in the literature confirm the findings of this cohort. Conclusion. In inferior pancreaticoduodenal artery aneurysm resulting from celiac occlusive disease, endovascular treatment is best achieved by stenting the celiac axis and/or embolizing the aneurysm when necessary.

  6. STEADY TWIN-JETS ORIENTATION: IMPLICATIONS FOR THEIR FORMATION MECHANISM

    SciTech Connect (OSTI)

    Soker, Noam; Mcley, Liron E-mail: lironmc@tx.technion.ac.il

    2013-08-01

    We compare the structures of the jets of the pre-planetary nebulae (pre-PNe) CRL618 and the young stellar object (YSO) NGC 1333 IRAS 4A2 and propose that in both cases the jets are launched near periastron passages of a highly eccentric binary system. The pre-PN CRL618 has two ''twin-jets'' on each side, where by ''twin-jets'' we refer to a structure where one side is composed of two very close and narrow jets that were launched at the same time. We analyze the position-velocity diagram of NGC 1333 IRAS 4A2, and find that it also has the twin-jet structure. In both systems, the orientation of the two twin-jets does not change with time. By comparing these two seemingly different objects, we speculate that the constant relative direction of the two twin-jets is fixed by the direction of a highly eccentric orbit of a binary star. For example, a double-arm spiral structure in the accretion disk induced by the companion might lead to the launching of the twin-jets. We predict the presence of a low-mass stellar companion in CRL618 that accretes mass and launches the jets, and a substellar (a planet of a brown dwarf) companion to the YSO NGC 1333 IRAS 4A2 that perturbed the accretion disk. In both cases the orbit has a high eccentricity.

  7. Method and device for determining the position of a cutting tool relative to the rotational axis of a spindle-mounted workpiece

    DOE Patents [OSTI]

    Williams, Richard R. (Oak Ridge, TN)

    1982-01-01

    The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrifical pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational aixs of the workpiece a distance equal to the radius of the cylinder.

  8. Bulk and Surface Molecular Orientation Distribution in Injection-molded Liquid Crystalline Polymers: Experiment and Simulation

    SciTech Connect (OSTI)

    Fang, J.; Burghardt, W; Bubeck, R; Burgard, S; Fischer, D

    2010-01-01

    Bulk and surface distributions of molecular orientation in injection-molded plaques of thermotropic liquid crystalline polymers (TLCPs) have been studied using a combination of techniques, coordinated with process simulations using the Larson-Doi 'polydomain' model. Wide-angle X-ray scattering was used to map out the bulk orientation distribution. Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) were utilized to probe the molecular orientation states to within about {approx}5 {micro}m and {approx}2 nm, respectively, of the sample surface. These noninvasive, surface-sensitive techniques yield reasonable self-consistency, providing complementary validation of the robustness of these methods. An analogy between Larson-Doi and fiber orientation models has allowed the first simulations of TLCP injection molding. The simulations capture many fine details in the bulk orientation distribution across the sample plaque. Direct simulation of surface orientation at the level probed by FTIR-ATR and NEXAFS was not possible due to the limited spatial resolution of the simulations. However, simulation results extracted from the shear-dominant skin region are found to provide a qualitatively accurate indicator of surface orientation. Finally, simulations capture the relation between bulk and surface orientation states across the different regions of the sample plaque.

  9. RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT

    SciTech Connect (OSTI)

    Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha; Chennamangalam, Jayanth; Rao, K. B. Raghavendra; Somashekar, R.; Ezhilarasi, M. S.; Sujatha, S.; Kasturi, S.; Sandhya, P.; Duraichelvan, R.; Amiri, Shahram; Aswathappa, H. A.; Sarabagopalan, G.; Ananda, H. M.; Anderson, Gary; Bauserman, Jonah; Beaudet, Carla; Bloss, Marty; Barve, Indrajit V.; and others

    2013-01-15

    We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.

  10. Electronic band structure and Kondo coupling in YbRh2Si2

    SciTech Connect (OSTI)

    Wigger, G.A.

    2010-04-15

    The electronic band structure of YbRh2Si2 is calculated in a relativistic framework including correlation corrections and magnetization of the Yb ion and compared to detailed angle-resolved photoemission spectra. The photoemission spectra for LuRh2Si2 are used as reference to identify electronic bands with no f symmetry. The calculated band structure manifests a 4f13 spin-polarized configuration leaving the unoccupied state at 1.4eV above the Fermi energy. At the band theory level, the 4f bands are located far below the Fermi level and the anisotropic Coulomb interaction within the 4f shell spreads the multilevel into broader 4f complexes below -2.5eV . The photoemission spectra obtained on YbRh2Si2 show a clear f -multilevel splitting into j=7/2 and 5/2 excitations. The interaction of the 4f7/2 levels close to the Fermi energy with two conduction bands shows visible hybridization gaps of 45 and 80meV, respectively. We discuss the origin of these excitations and provide an analysis according to Anderson's single-impurity model with parameters suggested by the band-structure calculation and the photoemission spectra. Both experiment and theory indicate nearly identical Fermi surfaces for LuRh2Si2 and YbRh2Si2 . The valency of Yb in YbRh2Si2 is estimated to be close to +3.

  11. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    SciTech Connect (OSTI)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-21

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  12. The use of bulk states to accelerate the band edge statecalculation of a semiconductor quantum dot

    SciTech Connect (OSTI)

    Vomel, Christof; Tomov, Stanimire Z.; Wang, Lin-Wang; Marques,Osni A.; Dongarra, Jack J.

    2006-05-10

    We present a new technique to accelerate the convergence of the folded spectrum method in empirical pseudopotential band edge state calculations for colloidal quantum dots. We use bulk band states of the materials constituent of the quantum dot to construct initial vectors and a preconditioner. We apply these to accelerate the convergence of the folded spectrum method for the interior states at the top of the valence and the bottom of the conduction band. For large CdSe quantum dots, the number of iteration steps until convergence decreases by about a factor of 4 compared to previous calculations.

  13. Electronic Band Dispersion Of CeAg{sub 2}Ge{sub 2} Studied Using Angle

    Office of Scientific and Technical Information (OSTI)

    Resolved Photoemission Spectroscopy (Journal Article) | SciTech Connect Electronic Band Dispersion Of CeAg{sub 2}Ge{sub 2} Studied Using Angle Resolved Photoemission Spectroscopy Citation Details In-Document Search Title: Electronic Band Dispersion Of CeAg{sub 2}Ge{sub 2} Studied Using Angle Resolved Photoemission Spectroscopy Angle resolved photoelectron spectroscopy has been used to determine the electronic band dispersion of CeAg{sub 2}Ge{sub 2} single crystal along the {Gamma}-Z

  14. CORE SHAPES AND ORIENTATIONS OF CORE-SRSIC GALAXIES

    SciTech Connect (OSTI)

    Dullo, Bililign T.; Graham, Alister W., E-mail: Bdullo@astro.swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2015-01-01

    The inner and outer shapes and orientations of core-Srsic galaxies may hold important clues to their formation and evolution. We have therefore measured the central and outer ellipticities and position angles for a sample of 24 core-Srsic galaxies using archival Hubble Space Telescope (HST) images and data. By selecting galaxies with core-Srsic break radii R{sub b} a measure of the size of their partially depleted corethat are ? 0.''2, we find that the ellipticities and position angles are quite robust against HST seeing. For the bulk of the galaxies, there is a good agreement between the ellipticities and position angles at the break radii and the average outer ellipticities and position angles determined over R {sub e}/2 < R < R {sub e}, where R {sub e} is the spheroids' effective half light radius. However there are some interesting differences. We find a median ''inner'' ellipticity at R{sub b} of ?{sub med}= 0.13 0.01, rounder than the median ellipticity of the ''outer'' regions ?{sub med}= 0.20 0.01, which is thought to reflect the influence of the central supermassive black hole at small radii. In addition, for the first time we find a trend, albeit weak (2? significance), such that galaxies with larger (stellar deficit-to-supermassive black hole) mass ratiosthought to be a measure of the number of major dry merger eventstend to have rounder inner and outer isophotes, suggesting a connection between the galaxy shapes and their merger histories. We show that this finding is not simply reflecting the well known result that more luminous galaxies are rounder, but it is no doubt related.

  15. Vacuum chamber for containing particle beams

    DOE Patents [OSTI]

    Harvey, A.

    1985-11-26

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.

  16. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect (OSTI)

    Lawson, Mi. J.; Li, Y.; Sale, D. C.

    2011-01-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines (HATTs). First, an HATT blade was designed using the blade element momentum method in conjunction with a genetic optimization algorithm. Several unstructured computational grids were generated using this blade geometry and steady CFD simulations were used to perform a grid resolution study. Transient simulations were then performed to determine the effect of time-dependent flow phenomena and the size of the computational timestep on the numerical solution. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  17. Status of Advanced Tokamak Scenario Modeling with Off-Axis Electron Cyclotron Current Drive in DIII-D

    SciTech Connect (OSTI)

    M. Murakami; H.E. St.John; T.A. Casper; M.S. Chu; J.C. DeBoo; C.M. Greenfield; J.E. Kinsey; L.L. Lao; R.J. La Haye; Y.R. Lin-Liu; T.C. Luce; P.A. Politzer; B.W. Rice; G.M. Staebler; T.S. Taylor; M.R. Wade

    1999-12-01

    The status of modeling work focused on developing the advanced tokamak scenarios in DIII-D is discussed. The objectives of the work are two-fold: (1) to develop AT scenarios with ECCD using time-dependent transport simulations, coupled with heating and current drive models, consistent with MHD equilibrium and stability; and (2) to use time-dependent simulations to help plan experiments and to understand the key physics involved. Time-dependent simulations based on transport coefficients derived from experimentally achieved target discharges are used to perform AT scenario modeling. The modeling indicates off-axis ECCD with approximately 3 MW absorbed power can maintain high-performance discharges with q{sub min} > 1 for 5 to 10 s. The resultant equilibria are calculated to be stable to n = 1 pressure driven modes. The plasma is well into the second stability regime for high-n ballooning modes over a large part of the plasma volume. The role of continuous localized ECCD is studied for stabilizing m/n = 2/1 tearing modes. The progress towards validating current drive and transport models, consistent with experimental results, and developing self-consistent, integrated high performance AT scenarios is discussed.

  18. One-Axis Trackers -- Improved Reliability, Durability, Performance, and Cost Reduction; Final Subcontract Technical Status Report, 2 May 2006 - 31 August 2007

    SciTech Connect (OSTI)

    Shingleton, J.

    2008-02-01

    The overall objective of this subcontract is to reduce the total cost of electricity generated by single-axis tracking solar energy systems for utility and other large-scale commercial applications by improving performance and reliability and by reducing installation time, cost, and environmental impact.

  19. Extended investigation of superdeformed bands in {sup 151,152}Tb nuclei

    SciTech Connect (OSTI)

    Robin, J.; Byrski, Th.; Duchene, G.; Beck, F. A.; Curien, D.; Dubray, N.; Dudek, J.; Courtin, S.; Dorvaux, O.; France, G. de; Gall, B.; Joshi, P.; Nourredine, A.; Pachoud, E.; Piqueras, I.; Vivien, J. P.; Gozdz, A.; Odahara, A.; Schunck, N.; Adimi, N.

    2008-01-15

    A detailed study of known and new SD bands in Tb isotopes has been performed with the use of the EUROBALL IV {gamma}-ray array. The high-statistics data set has allowed for the extension of known SD bands at low and high spins by new {gamma}-ray transitions. These transitions, as it turns out, correspond to the rotational frequencies where the principal superdeformed gaps (Z=66,N=86) close giving rise to up- or down-bending mechanisms. This enables to attribute the underlying theoretical configurations with much higher confidence as compared to the previous identifications. Five new SD bands have been discovered, three of them assigned to the {sup 152}Tb and the two others to the {sup 151}Tb nuclei. Nuclear mean-field calculations have been used to interpret the structure of known SD bands as well as of the new ones in terms of nucleonic configurations.

  20. Project Reports for Agua Caliente Band of Cahuilla Indians- 2005 Project

    Broader source: Energy.gov [DOE]

    The Agua Caliente Band of Cahuilla Indians will establish a comprehensive energy strategic plan that captures economic and environmental benefits while continuing to respect tribal cultural practices and traditions.

  1. Project Reports for Agua Caliente Band of Cahuilla Indians-2015 Project

    Broader source: Energy.gov [DOE]

    Under this grant, Agua Caliente Band of Cahuilla Indians will install a 76.9-kilowatt (kW) SunEdison solar photovoltaic (PV) system to offset the energy usage costs of the Tribal Education and Family Services offices.

  2. Project Reports for Agua Caliente Band of Cahuilla Indians- 2012 Project

    Broader source: Energy.gov [DOE]

    The Agua Caliente Band of Cahuilla Indians (ACBCI) plans to complete a feasibility study to evaluate a combined wind/solar power generation project on its Whitewater Ranch trust lands in southern California.

  3. Quasi-phase-matching of the dual-band nonlinear left-handed metamaterial

    SciTech Connect (OSTI)

    Liu, Yahong Song, Kun; Gu, Shuai; Liu, Zhaojun; Guo, Lei; Zhao, Xiaopeng; Zhou, Xin

    2014-11-17

    We demonstrate a type of nonlinear meta-atom creating a dual-band nonlinear left-handed metamaterial (DNLHM). The DNLHM operates at two distinct left-handed frequency bands where there is an interval of one octave between the two center frequencies. Under the illumination of a high-power signal at the first left-handed frequency band corresponding to fundamental frequency (FF), second-harmonic generation (SHG) is observed at the second left-handed band. This means that our DNLHM supports backward-propagating waves both at FF and second-harmonic (SH) frequency. We also experimentally demonstrate quasi-phase-matching configurations for the backward SHG. This fancy parametric process can significantly transmits the SH generated by an incident FF wave.

  4. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the third opens a band-gap in the normal way. Low-dimensional metals have attracted much attention because of their unique electronic properties, which often lead to exotic...

  5. Project Reports for Little River Band of Ottawa Indians- 2011 Project

    Broader source: Energy.gov [DOE]

    The main purpose of this project is to increase human capacity of the Little River Band of Ottawa Indians (LRBOI) to understand the components of renewable energy and the importance of energy efficiency.

  6. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying...

  7. Project Reports for Scotts Valley Band of Pomo Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    The Scotts Valley Band of Pomo Indians in Lakeport, California, will establish a Tribal Multi-County Weatherization Energy Program to provide training, outreach, and education on energy assistance and conservation to low-income families.

  8. DOE/SC-ARM/TR-122 G-Band Vapor Radiometer Precipitable Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    state or reflect those of the U.S. Government or any agency thereof. DOESC-ARMTR-122 G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product A...

  9. Band structure engineering through orbital interaction for enhanced thermoelectric power factor

    SciTech Connect (OSTI)

    Zhu, Hong; Sun, Wenhao; Ceder, Gerbrand; Armiento, Rickard; Lazic, Predrag

    2014-02-24

    Band structure engineering for specific electronic or optical properties is essential for the further development of many important technologies including thermoelectrics, optoelectronics, and microelectronics. In this work, we report orbital interaction as a powerful tool to finetune the band structure and the transport properties of charge carriers in bulk crystalline semiconductors. The proposed mechanism of orbital interaction on band structure is demonstrated for IV-VI thermoelectric semiconductors. For IV-VI materials, we find that the convergence of multiple carrier pockets not only displays a strong correlation with the s-p and spin-orbit coupling but also coincides with the enhancement of power factor. Our results suggest a useful path to engineer the band structure and an enticing solid-solution design principle to enhance thermoelectric performance.

  10. Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network M. A. Miller, R. M. Reynolds, and J. J. Bartholomew Brookhaven National Laboratory Upton, New York Introduction A network of ship-mounted marine fast-rotating shadow-band radiometers (FRSRs) and broadband radiometers have been deployed over the fast four years on several backbone ships, funded jointly by Atmospheric Radiation Measurement (ARM) and National Aeronautic and Space Administration's (NASA's) Sensor Intercomparison

  11. Ku-band 6-bit RF MEMS time delay network. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Ku-band 6-bit RF MEMS time delay network. Citation Details In-Document Search Title: Ku-band 6-bit RF MEMS time delay network. No abstract prepared. Authors: Nordquist, Christopher Daniel ; Sullivan, Charles Thomas ; Kraus, Garth Merlin ; Austin, Franklin, IV [1] ; Finnegan, Patrick Sean [1] ; Ballance, Mark H. [1] ; Dyck, Christopher William + Show Author Affiliations (LMATA Government Services, LLC, Albuquerque, NM) Publication Date: 2008-10-01 OSTI Identifier: 966236 Report

  12. Project Reports for Ramona Band of Cahuilla Mission Indians- 2002 Project

    Broader source: Energy.gov [DOE]

    The Ramona Band of Cahuilla Mission Indians ("Ramona Band" or "tribe") will be the first tribe to develop its entire reservation off-grid, using renewable energy as the primary power source. The tribe will purchase and install the primary components for a 65-80 kilowatt-hours per day central wind/PV/propane generator hybrid system that will power the reservation's housing, offices, ecotourism, and training businesses. The electricity is planned to be distributed through an underground mini-grid.

  13. High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management | Department of Energy Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier Management High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier Management Higher-Efficiency Power Conversion and Managed Supply Improve Energy Utilization Information technology (IT) and telecommunications facilities consume ~48 billion kWh of electricity in the United States. Energy consumption within IT data center facilities could be improved in three key areas:

  14. Performance characteristics of a perforated shadow band under clear sky conditions

    SciTech Connect (OSTI)

    Brooks, Michael J.

    2010-12-15

    A perforated, non-rotating shadow band is described for separating global solar irradiance into its diffuse and direct normal components using a single pyranometer. Whereas shadow bands are normally solid so as to occult the sensor of a pyranometer throughout the day, the proposed band has apertures cut from its circumference to intermittently expose the instrument sensor at preset intervals. Under clear sky conditions the device produces a saw tooth waveform of irradiance data from which it is possible to reconstruct separate global and diffuse curves. The direct normal irradiance may then be calculated giving a complete breakdown of the irradiance curves without need of a second instrument or rotating shadow band. This paper describes the principle of operation of the band and gives a mathematical model of its shading mask based on the results of an optical ray tracing study. An algorithm for processing the data from the perforated band system is described and evaluated. In an extended trial conducted at NREL's Solar Radiation Research Laboratory, the band coupled with a thermally corrected Eppley PSP produced independent curves for diffuse, global and direct normal irradiance with low mean bias errors of 5.6 W/m{sup 2}, 0.3 W/m{sup 2} and -2.6 W/m{sup 2} respectively, relative to collocated reference instruments. Random uncertainties were 9.7 W/m{sup 2} (diffuse), 17.3 W/m{sup 2} (global) and 19.0 W/m{sup 2} (direct). When the data processing algorithm was modified to include the ray trace model of sensor exposure, uncertainties increased only marginally, confirming the effectiveness of the model. Deployment of the perforated band system can potentially increase the accuracy of data from ground stations in predominantly sunny areas where instrumentation is limited to a single pyranometer. (author)

  15. Dependence of Band Renormalization Effect on the Number of Copper-oxide

    Office of Scientific and Technical Information (OSTI)

    Layers in Tl-based Copper-oxide Superconductor using Angle-resolved Photoemission Spectroscopy (Journal Article) | SciTech Connect Dependence of Band Renormalization Effect on the Number of Copper-oxide Layers in Tl-based Copper-oxide Superconductor using Angle-resolved Photoemission Spectroscopy Citation Details In-Document Search Title: Dependence of Band Renormalization Effect on the Number of Copper-oxide Layers in Tl-based Copper-oxide Superconductor using Angle-resolved Photoemission

  16. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap

    Office of Scientific and Technical Information (OSTI)

    State (Journal Article) | SciTech Connect Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State Citation Details In-Document Search This content will become publicly available on January 26, 2017 Title: Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State Authors: Lim, A. ; Foulkes, W. M. C. ; Horsfield, A. P. ; Mason, D. R. ; Schleife, A. ; Draeger, E. W. ; Correa, A. A. Publication Date: 2016-01-27 OSTI Identifier: 1236285 Grant/Contract

  17. Prompt Proton Decay and Deformed Bands in 56Ni

    SciTech Connect (OSTI)

    Johansson, E. K.; Rudolph, D.; Andersson, L. L.; Torres, D. A.; Ragnarsson, I.; Andreoiu, C.; Baktash, Cyrus; Carpenter, M. P.; Charity, R. J.; Chiara, C. J.; Ekman, J.; Fahlander, C.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; du Rietz, R.; Sarantites, D. G.; Seweryniak, D.; Sobotka, L. G.; Yu, Chang-Hong; Zhu, S.

    2008-06-01

    High-spin states in the doubly magic N=Z nucleus {sup 56}Ni have been investigated with three fusion-evaporation reaction experiments. New {gamma}-ray transitions are added, and a confirmation of a previously suggested prompt proton decay from a rotational band in {sup 56}Ni into the ground state of {sup 55}Co is presented. The rotational bands in {sup 56}Ni are discussed within the framework of cranked Nilsson-Strutinsky calculations.

  18. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOE Patents [OSTI]

    Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  19. Lac du Flambeau Band of Lake Superior Chippewa Indians - Conservation and Renewable Energy Planning

    Office of Environmental Management (EM)

    du Flambeau Tribal Energy Program Lac du Flambeau Tribal Energy Program Renewable Energy and Conservation Renewable Energy and Conservation Planning Planning Larry Wawronowicz Larry Wawronowicz Deputy Administrator of Natural Resources Deputy Administrator of Natural Resources November 8, 2007 November 8, 2007 Lac du Flambeau Band of Lake Superior Lac du Flambeau Band of Lake Superior Chippewa Indians Chippewa Indians DE DE - - PS36 PS36 - - 06GO96038 06GO96038 Brief Summary of Tribe Brief

  20. Grand Traverse Band of Ottawa & Chippewa Indians - Renewable Energy Feasibility Study

    Office of Environmental Management (EM)

    DOE Tribal Energy Program Review DOE Tribal Energy Program Review Denver, Colorado Denver, Colorado November 5 November 5 - - 8, 2007 8, 2007 Final Report Final Report December 2007 December 2007 Grand Traverse Band Grand Traverse Band * * 4,023 Members 4,023 Members * * 2,370 Acres 2,370 Acres - - Checkerboard Checkerboard * * Six Six - - County Service Area County Service Area * * EDC: 2 Casinos, Resort (424 Rooms), EDC: 2 Casinos, Resort (424 Rooms), Gas Station, etc. Gas Station, etc. * *