Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Field Development Strategies for Bakken Shale Formation  

E-Print Network (OSTI)

July 2010 Field Development Strategies for Bakken Shale Formation SPE 139032 S.Zargari, S Bakken Formation is comprised of 3 Members: · Upper Shale Member­ Source & Seal · Middle "Siltstone" Member­ Reservoir & Migration Conduit · Lower Shale Member- Source & Seal #12;July 2010 Reservoir

Mohaghegh, Shahab

2

Bakken Shale Oil Production Trends  

E-Print Network (OSTI)

As the conventional reservoirs decrease in discovering, producing and reserving, unconventional reservoirs are more remarkable in terms of discovering, development and having more reserve. More fields have been discovered where Barnett Shale and Bakken Shale are the most recently unconventional reservoir examples. Shale reservoirs are typically considered self-sourcing and have very low permeability ranging from 10-100 nanodarcies. Over the past few decades, numerous research projects and developments have been studied, but it seems there is still some contention and misunderstanding surrounding shale reservoirs. One of the largest shale in the United State is the Bakken Shale play. This study will describe the primary geologic characteristics, field development history, reservoir properties,and especially production trends, over the Bakken Shale play. Data are available for over hundred wells from different companies. Most production data come from the Production Data Application (HDPI) database and in the format of monthly production for oil, water and gas. Additional 95 well data including daily production rate, completion, Pressure Volume Temperature (PVT), pressure data are given from companies who sponsor for this research study. This study finds that there are three Types of well production trends in the Bakken formation. Each decline curve characteristic has an important meaning to the production trend of the Bakken Shale play. In the Type I production trend, the reservoir pressure drops below bubble point pressure and gas releasingout of the solution. With the Type II production trend, oil flows linearly from the matrix into the fracture system, either natural fracture or hydraulic fracture. Reservoir pressure is higher than the bubble point pressure during the producing time and oil flows as a single phase throughout the production period of the well. A Type III production trend typically has scattering production data from wells with a different Type of trend. It is difficult to study this Type of behavior because of scattering data, which leads to erroneous interpretation for the analysis. These production Types, especially Types I and II will give a new type curve matches for shale oil wells above or below the bubble point.

Tran, Tan

2011-05-01T23:59:59.000Z

3

SPE-139032-PP Field Development Strategies for Bakken Shale Formation  

E-Print Network (OSTI)

, Trans, AIME. 1945. 12. R. N. Heistand, H. G. Humphries; Direct Determination of Organic Carbon in Oil Shale, Analytical Chemistry, Vol. 48, No. 8, July 1976, p 1193. #12;

Mohaghegh, Shahab

4

New Models Help Optimize Development of Bakken Shale Resources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Models Help Optimize Development of Bakken Shale Resources Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources February 7, 2012 - 12:00pm Addthis Washington, DC - Exploration and field development in the largest continuous oil play in the lower 48 states, located in North Dakota and eastern Montana, will be guided by new geo-models developed with funding from the Department of Energy's (DOE) Office of Fossil Energy (FE). The three-year project to develop exploration and reservoir models for the Bakken Shale resource play was conducted by the Colorado School of Mines (CSM), through research funded by FE's Oil and Natural Gas Program. A "play" is a shale formation containing significant accumulations of natural gas or oil. The U.S. Geological Survey estimates the Bakken Shale

5

New Models Help Optimize Development of Bakken Shale Resources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources February 7, 2012 - 12:00pm Addthis Washington, DC - Exploration and field development in the largest continuous oil play in the lower 48 states, located in North Dakota and eastern Montana, will be guided by new geo-models developed with funding from the Department of Energy's (DOE) Office of Fossil Energy (FE). The three-year project to develop exploration and reservoir models for the Bakken Shale resource play was conducted by the Colorado School of Mines (CSM), through research funded by FE's Oil and Natural Gas Program. A "play" is a shale formation containing significant accumulations of natural gas or oil. The U.S. Geological Survey estimates the Bakken Shale

6

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Data Tools & Models ... Oil production growth in the Bakken shale play mirrors somewhat the growth in natural gas production ... U.S. Department of Energy USA.gov

7

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken?  

Gasoline and Diesel Fuel Update (EIA)

Technology-Based Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken? Through the use of technology, U.S. oil and natural gas operators are converting previously uneconomic oil and natural gas resources into proved reserves and production. The Bakken Formation of the Williston Basin is a success story of horizontal drilling, fracturing, and completion technologies. The recent, highly productive oil field discoveries within the Bakken Formation did not come from venturing out into deep uncharted waters heretofore untapped by man, nor from blazing a trail into pristine environs never open to drilling before. Instead, success came from analysis of geologic data on a decades-old producing area, identification of uptapped resources, and application of the new drilling and completion technology necessary to exploit them. In short, it came from using technology

8

TOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS Shahab D. Mohaghegh1 & Grant Bromhal2  

E-Print Network (OSTI)

development in the oil and gas industry and is being used on some shale formations. BAKKEN SHALE MuchTOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS based on measure data, called Top-Down, Intelligent Reservoir Modeling for the shale formations

Mohaghegh, Shahab

9

SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II  

Science Conference Proceedings (OSTI)

Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

2011-10-31T23:59:59.000Z

10

Subtask 1.8 - Investigation of Improved Conductivity and Proppant Applications in the Bakken Formation  

SciTech Connect

Given the importance of hydraulic fracturing and proppant performance for development of the Bakken and Three Forks Formations within the Williston Basin, a study was conducted to evaluate the key factors that may result in conductivity loss within the reservoirs. Various proppants and reservoir rock cores were exposed to several different fracturing and formation fluids at reservoir conditions. The hardness of the rock cores and the strength of the proppants were evaluated prior to and following fluid exposure. In addition, the conductivity of various proppants, as well as formation embedment and spalling, was evaluated at reservoir temperatures and pressures using actual reservoir rock cores. The results of this work suggest that certain fluids may affect both rock and proppant strength, and therefore, fluid exposure needs to be considered in the field. In addition, conductivity decreases within the Bakken Formation appear to be a function of a variety of factors, including proppant and rock strength, as well as formation embedment and spalling. The results of this study highlight the need for advanced conductivity testing, coupled with quantification of formation embedment and spalling. Given the importance of proppant performance on conductivity loss and, ultimately, oil recovery, better understanding the effects of these various factors on proppant and rock strength in the field is vital for more efficient production within unconventional oil and gas reservoirs.

Bethany Kurz; Darren Schmidt; Steven Smith Christopher Beddoe; Corey Lindeman; Blaise Mibeck

2012-07-31T23:59:59.000Z

11

The Bakken-An Unconventional Petroleum and Reservoir System  

SciTech Connect

An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. The Middle Bakken Member of the Bakken Formation is the target for horizontal drilling. The mineralogy across all the Middle Bakken lithofacies is very similar and is dominated by dolomite, calcite, and quartz. This Member is comprised of six lithofacies: (A) muddy lime wackestone, (B) bioturbated, argillaceous, calcareous, very fine-grained siltstone/sandstone, (C) planar to symmetrically ripple to undulose laminated, shaly, very fine-grained siltstone/sandstone, (D) contorted to massive fine-grained sandstone, to low angle, planar cross-laminated sandstone with thin discontinuous shale laminations, (E) finely inter-laminated, bioturbated, dolomitic mudstone and dolomitic siltstone/sandstone to calcitic, whole fossil, dolomitic lime wackestone, and (F) bioturbated, shaly, dolomitic siltstone. Lithofacies B, C, D, and E can all be reservoirs, if quartz and dolomite-rich (facies D) or dolomitized (facies B, C, E). Porosity averages 4-8%, permeability averages 0.001-0.01 mD or less. Dolomitic facies porosity is intercrystalline and tends to be greater than 6%. Permeability may reach values of 0.15 mD or greater. This appears to be a determinant of high productive wells in Elm Coulee, Parshall, and Sanish fields. Lithofacies G is organic-rich, pyritic brown/black mudstone and comprises the Bakken shales. These shales are siliceous, which increases brittleness and enhances fracture potential. Mechanical properties of the Bakken reveal that the shales have similar effective stress as the Middle Bakken suggesting that the shale will not contain induced fractures, and will contribute hydrocarbons from interconnected micro-fractures. Organic-rich shale impedance increases with a reduction in porosity and an increase in kerogen stiffness during the burial maturation process. Maturation can be directly related to impedance, and should be seismically mappable. Fractures enhance permeability and production. Regional fractures form an orthogonal set with a dominant NE-SW trend parallel to ?1, and a less prominent NW-SE trend. Many horizontal wells are drilled perpendicular to the ?1 direction to intersect these fractures. Local structures formed by basement tectonics or salt dissolution generate both hinge parallel and hinge oblique fractures that may overprint and dominate the regional fracture signature. Horizontal microfractures formed by oil expulsion in the Bakken shales, and connected and opened by hydrofracturing provide permeability pathways for oil flow into wells that have been hydro-fractured in the Middle Bakken lithofacies. Results from the lithofacies, mineral, and fracture analyses of this study were used to construct a dual porosity Petrel geo-model for a portion of the Elm Coulee Field. In this field, dolomitization enhances reservoir porosity and permeability. First year cumulative production helps locate areas of high well productivity and in deriving fracture swarm distribution. A fracture model was developed based on high productivity well distribution, and regional fracture distribution, and was combined with favorable matrix properties to build a dual porosity geo-model.

Frederick Sarg

2011-12-31T23:59:59.000Z

12

The Bakken - An Unconventional Petroleum and Reservoir System  

Science Conference Proceedings (OSTI)

An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. The Middle Bakken Member of the Bakken Formation is the target for horizontal drilling. The mineralogy across all the Middle Bakken lithofacies is very similar and is dominated by dolomite, calcite, and quartz. This Member is comprised of six lithofacies: (A) muddy lime wackestone, (B) bioturbated, argillaceous, calcareous, very fine-grained siltstone/sandstone, (C) planar to symmetrically ripple to undulose laminated, shaly, very fine-grained siltstone/sandstone, (D) contorted to massive fine-grained sandstone, to low angle, planar cross-laminated sandstone with thin discontinuous shale laminations, (E) finely inter-laminated, bioturbated, dolomitic mudstone and dolomitic siltstone/sandstone to calcitic, whole fossil, dolomitic lime wackestone, and (F) bioturbated, shaly, dolomitic siltstone. Lithofacies B, C, D, and E can all be reservoirs, if quartz and dolomite-rich (facies D) or dolomitized (facies B, C, E). Porosity averages 4-8%, permeability averages 0.001-0.01 mD or less. Dolomitic facies porosity is intercrystalline and tends to be greater than 6%. Permeability may reach values of 0.15 mD or greater. This appears to be a determinant of high productive wells in Elm Coulee, Parshall, and Sanish fields. Lithofacies G is organic-rich, pyritic brown/black mudstone and comprises the Bakken shales. These shales are siliceous, which increases brittleness and enhances fracture potential. Mechanical properties of the Bakken reveal that the shales have similar effective stress as the Middle Bakken suggesting that the shale will not contain induced fractures, and will contribute hydrocarbons from interconnected micro-fractures. Organic-rich shale impedance increases with a reduction in porosity and an increase in kerogen stiffness during the burial maturation process. Maturation can be directly related to impedance, and should be seismically mappable. Fractures enhance permeability and production. Regional fractures form an orthogonal set with a dominant NE-SW trend, and a less prominent NW-SE trend. Many horizontal 1 direction to intersect these fractures. Local structures formed by basement tectonics or salt dissolution generate both hinge parallel and hinge oblique fractures that may overprint and dominate the regional fracture signature. Horizontal microfractures formed by oil expulsion in the Bakken shales, and connected and opened by hydrofracturing provide permeability pathways for oil flow into wells that have been hydro-fractured in the Middle Bakken lithofacies. Results from the lithofacies, mineral, and fracture analyses of this study were used to construct a dual porosity Petrel geo-model for a portion of the Elm Coulee Field. In this field, dolomitization enhances reservoir porosity and permeability. First year cumulative production helps locate areas of high well productivity and in deriving fracture swarm distribution. A fracture model was developed based on high productivity well distribution, and regional fracture distribution, and was combined with favorable matrix properties to build a dual porosity geo-model.

Sarg, J.

2011-12-31T23:59:59.000Z

13

Modeling, History Matching, Forecasting and Analysis of Shale Reservoirs Performance Using Artificial Intelligence  

E-Print Network (OSTI)

matching, forecasting and analyzing oil and gas production in shale reservoirs. In this new approach and analysis of oil and gas production from shale formations. Examples of three case studies in Lower Huron and New Albany shale formations (gas producing) and Bakken Shale (oil producing) is presented

Mohaghegh, Shahab

14

Annual Logging Symposium, June 19-23, 2010 Formation Evaluation in the Bakken Complex Using Laboratory Core Data  

E-Print Network (OSTI)

complex include the Middle Bakken dolomitic sand/siltstone and the Three Forks dolomite. The Upper basin (Energy Information Administration, 2006). The tight Mississippian age Lodgepole Limestone fine sand). Some of the samples were found to contain fractures. Fig. 8 Ternary diagram of sandstone

15

Method for maximizing shale oil recovery from an underground formation  

DOE Patents (OSTI)

A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

Sisemore, Clyde J. (Livermore, CA)

1980-01-01T23:59:59.000Z

16

Impact of formation properties and well design on cumulative gas production from Devonian Shale.  

E-Print Network (OSTI)

??Devonian Shale refers to all the shale strata sandwiched between two different formations; the younger Berea sandstone above it and the older limestone termed Onondaga (more)

Ita, Jacques.

2011-01-01T23:59:59.000Z

17

Evaluating the antrim shale formation using a Geographic Information System  

Science Conference Proceedings (OSTI)

The Antrim Shale formation is currently the most active exploration play in the Michigan basin. With more than 3500 producing wells, the Antrim Shale has significantly increased Michigan's natural gas reserves. The Antrim Shale now accounts for over 50% of Michigan's daily natural gas production. C-Map is a vector-based Geographic Information System developed at Michigan State University. It is used throughout Michigan, primarily by state and local government agencies, to assist in programs that range from resource management to civic planning. Although not originally designed for oil and gas exploration, many of the features found in C-Map are ideally suited to this task. Exploration functions performed on C-Map include the creation of base maps, data posting, and thematic mapping. Interfaces written into C-MAP also allow for computer gridding, contouring, and 3-D modeling using commercial software designed for this purpose. C-MAP can also be used in conjunction with Michigan's Resource Inventory System, the digital land-use database developed by the Michigan Department of Natural Resources. The unconventional nature of the Antrim Shale reservoir, along with the large volume of wells drilled and data collected have combined to make the Antrim Shale a very difficult play to evaluate. C-Map, with its analytical tools, low cost, and compatibility with an existing digital land-use database for Michigan is an ideal exploration tool for companies and individuals attempting to enhance their understanding of this challenging play.

Carlton, R.B. (Nomeco Oil Gas Co., Jackson, MI (United States))

1994-08-01T23:59:59.000Z

18

Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California  

Science Conference Proceedings (OSTI)

The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

Reid, S.A.; McIntyre, J.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

1996-01-01T23:59:59.000Z

19

A coupled flow and geomechanics model for enhanced oil and gas recovery in shale formations.  

E-Print Network (OSTI)

??Economic production from shale formations has been achieved because of advances in horizontal well drilling and hydraulic fracturing. Nonetheless, hydrocarbon recovery from these reservoirs is (more)

Fakcharoenphol, Perapon

2013-01-01T23:59:59.000Z

20

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could ...  

U.S. Energy Information Administration (EIA)

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken? Through the use of technology, U.S. oil and natural gas operators are ...

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method of detonating explosives for fragmenting oil shale formation toward a vertical free face  

SciTech Connect

A description is given of a method for explosively expanding oil shale formation toward a limited void volume provided by a void excavated in a retort site in formation containing oil shale, wherein said void has at least one vertical free face, the improvement comprising the steps of: placing explosive in a roiw of blasting holes in a remaining portion of unfragmented formation within the retort site adjacent such a vertical free face, said blasting holes being mutually spaced apart along the length of the void; and detonating explosive in the blasting holes in a single round in a time delay sequence progressing along the length of the row of blasting holes for explosivelyexpanding formation in said remaining portion of unfragmented formation toward such vertical free face for forming at least a portion of a fragmented permeable mass of formation particles containing oil shale in an in situ oil shale retort.

Hutchins, N.; Ridley, R.

1980-07-01T23:59:59.000Z

22

Formation of the Late Aptian Niveau Fallot black shales in the Vocontian Basin (SE France): evidence from foraminifera,  

E-Print Network (OSTI)

Formation of the Late Aptian Niveau Fallot black shales in the Vocontian Basin (SE France for the formation of the marlstone facies and the most prominent black shale intervals of the Late Aptian Niveau Fallot black shale succession from the Vocontian Basin (SE France). In the lower part of the succession

Pross, Jörg

23

Improved Detection of Bed Boundaries for Petrophysical Evaluation with Well Logs: Applications to Carbonate and Organic-Shale Formations  

E-Print Network (OSTI)

: Applications to Carbonate and Organic-Shale Formations Zoya Heidari, SPE, Texas A&M University and Carlos of well logs acquired in organic shales and carbonates is challenging because of the presence of thin beds acquired in thinly bedded carbonates and in the Haynesville shale-gas formation. Estimates of petrophysical

Torres-Verdín, Carlos

24

Precise inversion of logged slownesses for elastic parameters in a gas shale formation  

E-Print Network (OSTI)

Dipole sonic log data recorded in a vertical pilot well and the associated production well are analyzed over a 2001100-ft section of a North American gas shale formation. The combination of these two wells enables angular ...

Miller, Douglas E.

25

Fractured shale reservoirs: Towards a realistic model  

Science Conference Proceedings (OSTI)

Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

1996-09-01T23:59:59.000Z

26

Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah  

SciTech Connect

Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

1983-04-01T23:59:59.000Z

27

Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering  

Science Conference Proceedings (OSTI)

Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt.% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are eitherfilled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7% while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered sample. This work highlights the impact of shale water O2interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in ourfield study.

Jin, Lixin [University of Texas at El Paso; Ryan, Mathur [Juniata College, Huntingdon; Rother, Gernot [ORNL; Cole, David [Ohio State University; Bazilevskaya, Ekaterina [Pennsylvania State University, University Park, PA; Williams, Jennifer [Pennsylvania State University; Alex, Carone [Pennsylvania State University; Brantley, S. L. [Pennsylvania State University, University Park, PA

2013-01-01T23:59:59.000Z

28

Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering  

Science Conference Proceedings (OSTI)

Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are either filled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7 % while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered sample. This work highlights the impact of shale-water-O2 interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in our field study.

Jin, Lixin [ORNL; Mathur, Ryan [Juniata College, Huntingdon; Rother, Gernot [ORNL; Cole, David [Ohio State University; Bazilevskaya, Ekaterina [Pennsylvania State University, University Park, PA; Williams, Jennifer [Pennsylvania State University; Carone, Alex [Pennsylvania State University, University Park, PA; Brantley, Susan L [ORNL

2013-01-01T23:59:59.000Z

29

Staggered array of explosives for fragmented oil shale formation toward a vertical free face  

SciTech Connect

Oil shale formation is explosively expanded toward a limited void volume for forming an in situ oil shale retort in a subterranean formation containing oil shale. In one embodiment, a void in the form of a vertical slot is excavated within a retort site, leaving at least one portion of unfragmented formation within the retort site adjacent to a vertical free face of the slot. Explosive is placed in at least two rows of vertical blasting holes in the remaining portion of unfragmented formation adjacent the vertical free face. The blasting holes in each row are mutually spaced apart along the length of the slot and longitudinally offset from blasting holes in the next adjacent row, and the row of blasting holes extends generally parallel to the vertical free face. Explosive in the blasting holes is detonated in a time delay sequence starting near one end of the slot and progressing along the length of the slot for explosively expanding formation in the remaining portion of unfragmented formation toward the vertical free face for forming a fragmented permeable mass of formation particles containing oil shale in an in situ oil shale retort.

Hutchins, N.M.; Studebaker, I.G.

1980-03-25T23:59:59.000Z

30

Staggered array of explosives for fragmented oil shale formation toward a vertical free face  

SciTech Connect

Oil shale formation is explosively expanded toward a limited void volume for forming an in situ oil shale retort in a subterranean formation containing oil shale. In one embodiment, a void in the form of a vertical slot is excavated within a retort site, leaving at least one portion of unfragmented formation within the retort site adjacent a vertical free face of the slot. Explosive is placed in at least 2 rows of vertical blasting holes in the remaining portion of unfragmented formation adjacent the vertical free face. The blasting holes in each row are mutually spaced apart along the length of the slot and longitudinally offset from blasting holes in the next adjacent row, and the row of blasting holes extends generally parallel to the vertical free face. Explosive in the blasting holes is detonated in a time delay sequence starting near one end of the slot and progressing along the length of the slot for explosively expanding formation in the remaining portion of unfragmented formation toward the vertical free face for forming a fragmented permeable mass of formation particles containing oil shale in an in situ oil shale retort. 31 claims.

Studebaker, I.G.; Hutchins, N.M.

1980-03-25T23:59:59.000Z

31

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

gas and billion barrels (Bbbl) of shale oil for each major shale formation. Risked Recoverable Gas and Oil, reported in trillion cubic feet (Tcf) of shale gas and

32

Method of detonating explosives for fragmenting oil shale formation toward a vertical free face  

SciTech Connect

An oil shale formation is explosively expanded toward a limited void volume for forming an in situ oil shale retort in a subterranean formation. A void in the form of a narrow vertical slot is excavated within a retort site, leaving at least one portion of unfragmented formation within the retort site adjacent a vertical free face of the slot. Explosive is placed in a row of vertical blasting holes in the remaining portion of unfragmented formation adjacent the vertical free face. The blasting holes are mutually spaced apart along the length of the slot, and the row of blasting holes extends parallel to the vertical free face. Explosive in the blasting holes is detonated in a time delay sequence starting near one end of the slot and progressing along the length of the slot for explosively expanding the formation in the vertical free face. A fragmented permeable mass of formation particles containing oil shale is formed in an in situ oil shale retort. 34 claims.

Hutchins, N.M.; Ridley, R.D.

1980-07-01T23:59:59.000Z

33

UThPbREE systematics of organic-rich shales from the ca. 2.15 Ga Sengoma Argillite Formation, Botswana: Evidence for oxidative continental weathering during  

E-Print Network (OSTI)

U­Th­Pb­REE systematics of organic-rich shales from the ca. 2.15 Ga Sengoma Argillite Formation contains organic-rich shales deposited during the Great Oxidation Event. The slope of the 207 Pb/204 Pb­206 Pb/204 Pb array of shales from the Sengoma Argillite Formation corresponds to a Pb­Pb age

Bekker, Andrey

34

The Implications and Flow Behavior of the Hydraulically Fractured Wells in Shale Gas Formation  

E-Print Network (OSTI)

Shale gas formations are known to have low permeability. This low permeability can be as low as 100 nano darcies. Without stimulating wells drilled in the shale gas formations, it is hard to produce them at an economic rate. One of the stimulating approaches is by drilling horizontal wells and hydraulically fracturing the formation. Once the formation is fractured, different flow patterns will occur. The dominant flow regime observed in the shale gas formation is the linear flow or the transient drainage from the formation matrix toward the hydraulic fracture. This flow could extend up to years of production and it can be identified by half slop on the log-log plot of the gas rate against time. It could be utilized to evaluate the hydraulic fracture surface area and eventually evaluate the effectiveness of the completion job. Different models from the literature can be used to evaluate the completion job. One of the models used in this work assumes a rectangular reservoir with a slab shaped matrix between each two hydraulic fractures. From this model, there are at least five flow regions and the two regions discussed are the Region 2 in which bilinear flow occurs as a result of simultaneous drainage form the matrix and hydraulic fracture. The other is Region 4 which results from transient matrix drainage which could extend up to many years. The Barnett shale production data will be utilized throughout this work to show sample of the calculations. This first part of this work will evaluate the field data used in this study following a systematic procedure explained in Chapter III. This part reviews the historical production, reservoir and fluid data and well completion records available for the wells being analyzed. It will also check for data correlations from the data available and explain abnormal flow behaviors that might occur utilizing the field production data. It will explain why some wells might not fit into each model. This will be followed by a preliminary diagnosis, in which flow regimes will be identified, unclear data will be filtered, and interference and liquid loading data will be pointed. After completing the data evaluation, this work will evaluate and compare the different methods available in the literature in order to decide which method will best fit to analyze the production data from the Barnett shale. Formation properties and the original gas in place will be evaluated and compared for different methods.

Almarzooq, Anas Mohammadali S.

2010-12-01T23:59:59.000Z

35

Resource appraisal of three rich oil-shale zones in the Green River Formation, Piceance Creek Basin, Colorado  

SciTech Connect

The main oil-shale-bearing member of the Eocene Green River Formation, the Parachute Creek Member, contains several distinct rich oil-shale zones that underlie large areas of Piceance Creek Basin in NW. Colorado. Three of these have been selected for an oil-shale resource-appraisal study. Two over-lie and one underlies the main saline zone in the Parachute Creek Member. The uppermost of these zones, the Mahogany Zone, is in the upper third of the Parachute Creek Member/ it ranges in thickness from less than 75 to more than 225 ft and is the most persistent oil- shale unit in the Green River Formation underlying an area of more than 1,200 sq miles in the Piceance Creek Basin. The second rich zone is separated from the Mahogany Zone by a variable thickness of sandstone, siltstone, or low- grade oil shale. This zone attains a maximum thickness of more than 250 ft and underlies an area of more than 700 sq miles. The third rich oil-shale zone is in the lower third of the Parachute Creek Member. It underlies an area of about 300 sq miles near the depositional center of the Piceance Creek Basin and attains a thickness of more than 150 ft. The 3 rich oil-shale zones have total resources of 317 billion bbl of oil in the areas appraised.

Donnell, J.R.; Blair, R.W. Jr.

1970-10-01T23:59:59.000Z

36

Engineering performance of Bringelly shale.  

E-Print Network (OSTI)

??SYNOPSIS This thesis is concerned with the general and fundamental engineering characterisation of a geological formation within Wianamatta group, known as Bringelly shale. Bringelly shale (more)

William, Ezzat

2007-01-01T23:59:59.000Z

37

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky.  

E-Print Network (OSTI)

a key role in making important and strategic field development decisions. Big Sandy Gas Field #12;SPE and naturally fractured gas-shale simulator developed at the National Energy Technology Laboratory (Mc Dynamic Recharge from the Matrix. Proc. DOE Natural Gas Conference. Houston: DOE. 6. Mohaghegh, S. D

Mohaghegh, Shahab

38

Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation on Production from Shale Formations: Application to New  

E-Print Network (OSTI)

Shale (Devonian-Mississippian) of southeastern Indiana, in Proceedings, 1989 Eastern Oil Shale Symposium

Mohaghegh, Shahab

39

Sedimentological, mineralogical and geochemical definition of oil-shale facies in the lower Parachute Creek Member of Green River Formation, Colorado  

SciTech Connect

Sedimentological, mineralogical and geochemical studies of two drill cores penetrating the lower Saline zone of the Parachute Creek Member (middle L-4 oil-shale zone through upper R-2 zone) of the Green River Formation in north-central Piceance Creek basin, Colorado, indicate the presence of two distinct oil-shale facies. The most abundant facies has laminated stratification and frequently occurs in the L-4, L-3 and L-2 oil-shale zones. The second, and subordinate facies, has ''streaked and blebby'' stratification and is most abundant in the R-4, R-3 and R-2 zones. Laminated oil shale originated by slow, regular sedimentation during meromictic phases of ancient Lake Uinta, whereas streaked and blebby oil shale was deposited by episodic, non-channelized turbidity currents. Laminated oil shale has higher contents of nahcolite, dawsonite, quartz, K-feldspar and calcite, but less dolomite/ankerite and albite than streaked and blebby oil shale. Ca-Mg-Fe carbonate minerals in laminated oil shale have more variable compositions than those in streaked and blebby shales. Streaked and blebby oil shale has more kerogen and a greater diversity of kerogen particles than laminated oil shale. Such variations may produce different pyrolysis reactions when each shale type is retorted.

Cole, R.D.

1984-04-01T23:59:59.000Z

40

Modeling gas injection into the shale oil reservoirs in the Sanish field, North Dakota.  

E-Print Network (OSTI)

??The Bakken Formation, a late Devonian-early Mississippian relatively thin unit, is deposited in the Williston Basin, covering 200,000 square miles of the north central United (more)

Dong, Cuiyu

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves  

U.S. Energy Information Administration (EIA)

... between the production of oil from the layers of shale within the Bakken Formation and the extraction of oil from oil shale plays. See ...

42

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky  

Science Conference Proceedings (OSTI)

In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

2010-07-01T23:59:59.000Z

43

Today in Energy - Bakken formation oil and gas drilling activity ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... (from green to red), the more gas is being produced.

44

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

45

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Tools; Glossary All Reports ... weather; gasoline; capacity; exports; nuclear; forecast; View All Tags ...

46

Core-based integrated sedimentologic, stratigraphic, and geochemical analysis of the oil shale bearing Green River Formation, Uinta Basin, Utah  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Award No.: DE-FE0001243 DOE Award No.: DE-FE0001243 Topical Report CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH Submitted by: University of Utah Institute for Clean and Secure Energy 155 South 1452 East, Room 380 Salt Lake City, UT 84112 Prepared for: United States Department of Energy National Energy Technology Laboratory April 2011 Oil & Natural Gas Technology Office of Fossil Energy Core-based integrated sedimentologic, stratigraphic, and geochemical analysis of the oil shale bearing Green River Formation, Uinta Basin, Utah Topical Report Reporting Period: October 31, 2009 through March 31, 2011 Authors: Lauren P. Birgenheier, Energy and Geoscience Insitute, University of Utah

47

Crude oil and condensate production rises at Bakken and other ...  

U.S. Energy Information Administration (EIA)

Liquids production (crude oil and condensate) is rising significantly at several shale plays in the United States as operators increasingly target the liquids-bearing ...

48

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Joint Forum on US Shale Gas & Pacific Gas Markets Joint Forum on US Shale Gas & Pacific Gas Markets May 14, 2013 | New York, NY By Adam Sieminski, Administrator U.S. Shale Gas 2 Adam Sieminski , May 14, 2013 Domestic production of shale gas has grown dramatically over the past few years Adam Sieminski , May 14, 2013 3 0 5 10 15 20 25 30 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) shale gas production (dry) billion cubic feet per day Sources: LCI Energy Insight gross withdrawal estimates as of March 2013 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play. Shale gas leads growth in total gas production through 2040 to

49

Injection of CO2 with H2S and SO2 and Subsequent Mineral Trapping in Sandstone-Shale Formation  

E-Print Network (OSTI)

these injected acid gases with shale-confining layers of ato illustrate effects of shale on acid-gas sequestration andusing a sandstone-shale sequence under acid-gas injection

Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

2004-01-01T23:59:59.000Z

50

Injection of CO2 with H2S and SO2 and Subsequent Mineral Trapping in Sandstone-Shale Formation  

E-Print Network (OSTI)

carbon dioxide in a sandstone-shale system, Submitted to Sandstone 1x10 -8 1x10 -9 Shale 1x10 -8 1x10 -9 k rl = S * ?alone or the sandstone-shale sequence, four reactive

Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

2004-01-01T23:59:59.000Z

51

Paleoclimate and geochemical variation of the Stark Shale Member, Dennis Formation (Missourian), Mid-continent North America.  

E-Print Network (OSTI)

??The Upper Pennsylvanian Stark Shale is the core shale of the Dennis cyclothem. Bottom-water oxygenation is an important control on the preservation and quality of (more)

Akanbi, Oluwatosin T.

2008-01-01T23:59:59.000Z

52

Oil shale commercialization study  

SciTech Connect

Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

Warner, M.M.

1981-09-01T23:59:59.000Z

53

Multiphase flow modeling of oil mist and liquid film formation in oil shale retorting  

DOE Green Energy (OSTI)

A first level model is developed to account for the appearance and disappearance of liquid oil produced during oil shale retorting. Although nearly all the kerogen initially present in the oil shale exits the retort in the form of a liquid either in the form of a mist or a falling film, the flow of this valuable, clean liquid fuel is not presently accounted for in oil shale retorting computer models. A rigorous treatment of the problem is very difficult. A simplified but sophisticated treatment is developed which is designed to be easily incorporated into the LLL computer model now without major modifications to the numerical solution algorithms. A complete set of equations and simple models are developed to explicitly account for the movement of condensed oil mist and liquid film flowing at unequal velocities. The equations clearly illustrate where more detailed treatments may be inserted, as they are developed.

Lyczkowski, R.W.; Gidaspow, D.

1979-01-12T23:59:59.000Z

54

Injection of CO2 with H2S and SO2 and Subsequent Mineral Trapping in Sandstone-Shale Formation  

Science Conference Proceedings (OSTI)

Carbon dioxide (CO{sub 2}) injection into deep geologic formations can potentially reduce atmospheric emissions of greenhouse gases. Sequestering less-pure CO{sub 2} waste streams (containing H{sub 2}S and/or SO{sub 2}) would be less expensive or would require less energy than separating CO{sub 2} from flue gas or a coal gasification process. The long-term interaction of these injected acid gases with shale-confining layers of a sandstone injection zone has not been well investigated. We therefore have developed a conceptual model of injection of CO{sub 2} with H{sub 2}S and/or SO{sub 2} into a sandstone-shale sequence, using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments of the United States. We have performed numerical simulations of a 1-D radial well region considering sandstone alone and a 2-D model using a sandstone-shale sequence under acid-gas injection conditions. Results indicate that shale plays a limited role in mineral alteration and sequestration of gases within a sandstone horizon for short time periods (10,000 years in present simulations). The co-injection of SO{sub 2} results in different pH distribution, mineral alteration patterns, and CO{sub 2} mineral sequestration than the co-injection of H{sub 2}S or injection of CO{sub 2} alone. Simulations generate a zonal distribution of mineral alteration and formation of carbon and sulfur trapping minerals that depends on the pH distribution. The co-injection of SO{sub 2} results in a larger and stronger acidified zone close to the well. Precipitation of carbon trapping minerals occurs within the higher pH regions beyond the acidified zones. In contrast, sulfur trapping minerals are stable at low pH ranges (below 5) within the front of the acidified zone. Corrosion and well abandonment due to the co-injection of SO{sub 2} could be important issues. Significant CO{sub 2} is sequestered in ankerite and dawsonite, and some in siderite. The CO{sub 2} mineral-trapping capability can reach 80 kg per cubic meter of medium. Most sulfur is trapped through alunite precipitation, although some is trapped by anhydrite precipitation and minor amount of pyrite. The addition of the acid gases and induced mineral alteration result in changes in porosity. The limited information currently available on the mineralogy of natural high-pressure acid-gas reservoirs is generally consistent with our simulations.

Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

2004-09-07T23:59:59.000Z

55

CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH  

Science Conference Proceedings (OSTI)

An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

Lauren P. Birgenheier; Michael D. Vanden Berg,

2011-04-11T23:59:59.000Z

56

Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III  

SciTech Connect

The primary objective of this project was to conduct advanced reservoir characterization and modeling studies in the Antelope Shale of the Bureau Vista Hills Field. Work was subdivided into two phases or budget periods. The first phase of the project focused on a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work would then be used to evaluate how the reservoir would respond to enhanced oil recovery (EOR) processes such as of CO2 flooding. The second phase of the project would be to implement and evaluate a CO2 in the Buena Vista Hills Field. A successful project would demonstrate the economic viability and widespread applicability of CO2 flooding in siliceous shale reservoirs of the San Joaquin Valley.

Perri, Pasquale R.; Cooney, John; Fong, Bill; Julander, Dale; Marasigan, Aleks; Morea, Mike; Piceno, Deborah; Stone, Bill; Emanuele, Mark; Sheffield, Jon; Wells, Jeff; Westbrook, Bill; Karnes, Karl; Pearson, Matt; Heisler, Stuart

2000-04-24T23:59:59.000Z

57

Bureau of Land Management Oil Shale Development  

E-Print Network (OSTI)

Bureau of Land Management Oil Shale Development Unconventional Fuels Conference University of Utah May 17, 2011 #12;#12;Domestic Oil Shale Resources Primary oil shale resources in the U.S. are in the Green River Formation in Wyoming, Utah, and Colorado. 72 % of this oil shale resource is on Federal

Utah, University of

58

David E. Bakken (Summary page) School of Electrical Engineering and Computer Science,  

E-Print Network (OSTI)

, and Automation. CRC Press, 2014. 4. Panel on high-profile US. Dept. of Energy panel on "Data Management1 David E. Bakken (Summary page) School of Electrical Engineering and Computer Science, Washington (minor: Electrical Engineering), Washington State University, 1985. B.S., Mathematics, Washington State

Bakken, Dave E.

59

Hydraulic fracture orientation for miscible gas injection EOR in the Elm Coulee field.  

E-Print Network (OSTI)

??There is tremendous potential for shale oil reservoirs, such as the Bakken Formation, Eagle Ford and Niobrara to have a lasting impact on the U.S (more)

Xu, Tao

2013-01-01T23:59:59.000Z

60

2011 Brief: Brent crude oil averages over $100 per barrel in ...  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, ... With low spare production ... Amid fast-rising crude oil production from the Bakken Shale formation and Canad ...

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales  

SciTech Connect

The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

Morea, Michael F.

1999-11-01T23:59:59.000Z

62

Chemical evidence of kerogen formation in source rocks and oil shales via selective preservation of thin resistant outer walls of microalgae: Origin of ultralaminae  

SciTech Connect

New structures, termed ultralaminae, were recently observed by Transmission Electron Microscopy, usually in high amounts, in a number of kerogens from oil shales and source rocks. Morphological similarities were noted between ultralaminae and the thin (ca. 15 nm) resistant outer walls, composed of non-hydrolyzable macromolecules (algaenans), commonly occurring in extant Chlorophyceae, especially in the cosmopolitan genus Scenedesmus. Identification of the pyrolysis products of S. quadricauda algaenan showed (i) a highly aliphatic structure based on a macromolecular network of long (up to C{sub 32}) polymethylenic chains probably cross-linked by ether bridges, and (ii) a close correlation based on the formation of n-alkylnitriles, between this algaenan and two ultralaminar kerogens, the Rundle Oil Shale and the Green River Shale. These fossil ultralaminae, therefore, likely originated from the selective preservation of the thin, algaenan-containing, outer walls of Scenedesmus and/or of other Chlorophyceae containing outer walls of a similar morphology and composition. Previous evidence of kerogen formation via selective preservation of algaenans was restricted to rather uncommon kerogens; the present results, added to ultralamina common occurrence and abundance, point to a wide involvement and to a large contribution of the selective preservation of algaenan-containing thin outer walls of Chlorophyceae in the formation of kerogens in a number of lacustrine source rocks and oil shales.

Derenne, S.; Largeau, C.; Casadevall, E.; Berkaloff, C.; Rousseau, B. (Ecole Normale Superieure, Cedex (France))

1991-04-01T23:59:59.000Z

63

Focus on the Marcellus Shale By Lisa Sumi  

E-Print Network (OSTI)

Shale Gas: Focus on the Marcellus Shale By Lisa Sumi FOR THE OIL & GAS ACCOUNTABILITY PROJECT on potential oil and gas development in the Marcellus Shale formation in northeastern Pennsylvania · www.ogap.org #12;Shale Gas: Focus on the Marcellus Shale A REPORT COMPILED FOR THE OIL AND GAS

Boyer, Elizabeth W.

64

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Glossary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glossary Glossary Acquifer - A single underground geological formation, or group of formations, containing water. Antrim Shale - A shale deposit located in the northern Michigan basin that is a Devonian age rock formation lying at a relatively shallow depth of 1,000 feet. Gas has been produced from this formation for several decades primarily via vertical, rather than horizontal, wells. The Energy Information Administration (EIA) estimates the technically recoverable Antrim shale resource at 20 trillion cubic feet (tcf). Appalachian Basin - The geological formations that roughly follow the Appalachian Mountain range and contain

65

Oil shale retorting method and apparatus  

SciTech Connect

Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

York, E.D.

1983-03-22T23:59:59.000Z

66

Shale gas is natural gas trapped inside  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

67

Figure 97. Total U.S. tight oil production by geologic formation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 97. Total U.S. tight oil production by geologic formation, 2011-2040 (million barrels per day) Permian Basin Bakken Eagle Ford

68

Preliminary assessment of high-resistivity cap-rock shale in the Frio Formation of the Texas Gulf Coast. Annual report  

DOE Green Energy (OSTI)

Mapping of high resistivity cap rock shales in the Frio Formation of the Texas Gulf Coast shows that few areas of thin cap rock occur in the upper Texas Gulf Coast, and more extensive, thicker cap rock occurs in the lower Texas Gulf Coast. Increases in (1) maximum shale resistivity, (2) unstable minerals (volcanic rock fragments, detrital carbonate grains), and (3) authigenic cementation parallel the increase in cap rock from the upper to the lower Gulf Coast. Similarity in cap rock distribution in two major Frio deltaic depocenters is not evident. Facies analysis of regional cross sections in the lower Texas Gulf Coast and of cross sections in Sarita East field, Kenedy County, shows preferential development of cap rock in the delta-front/slope facies of the Norias delta system. Sand content of the cap rock interval varies from 23 to 41 percent in part of Sarita East field, suggesting that if cap rock is due to authigenic cementation, such sands may act as fluid conduits during mineralization. Cap rock is rarely developed in the shale-rich prodelta and distal delta-front facies. High resistivity cap rock shales have been considered a result of authigenic calcite cementation, but definite evidence for this origin is lacking. Preliminary mineralogic analyses of well cuttings have not yielded satisfactory results. Analysis of core through cap rock and non-cap rock intervals will be required to determine the mineralogic variability within each interval and to accurately assess any mineralogic control of the high resistivity log response.

Finley, R.J.

1982-05-01T23:59:59.000Z

69

Preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for disposal of radioactive waste  

SciTech Connect

Results are presented of a preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for possible disposal of radioactive waste material. The objective of this study was to make a preliminary investigation and to obtain a broad overview of the physical and economic factors which would have an effect on the suitability of the oil shale formations for possible disposal of radioactive waste material. These physical and economic factors are discussed in sections on magnitude of the oil shales, waste disposal relations with oil mining, cavities requirements, hydrological aspects, and study requirements. (JRD)

1975-05-01T23:59:59.000Z

70

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA) Indexed Site

Technically Recoverable Shale Oil and Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 June 2013 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources 1 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

71

Burgess Shale: Cambrian Explosion in Full Bloom  

E-Print Network (OSTI)

4 Burgess Shale: Cambrian Explosion in Full Bloom James W. Hagadorn T he middle cambrian burgess shale is one of the world's best-known and best-studied fossil deposits. The story of the discovery in the Burgess Shale Formation of the Canadian Rockies, Charles Walcott discovered a remarkable "phyl- lopod

Hagadorn, Whitey

72

Two-level, horizontal free face mining system for in situ oil shale retorts  

Science Conference Proceedings (OSTI)

A method is described for forming an in-situ oil shale retort within a retort site in a subterranean formation containing oil shale, such an in-situ oil shale retort containing a fragmented permeable mass of formation particles containing oil shale formed within upper, lower and side boundaries of an in-situ oil shale retort site.

Cha, C.Y.; Ricketts, T.E.

1986-09-16T23:59:59.000Z

73

What is shale gas and why is it important?  

Reports and Publications (EIA)

Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

2012-04-11T23:59:59.000Z

74

In-situ laser retorting of oil shale  

SciTech Connect

Oil shale formations were retorted in-situ and gaseous hydrocarbon products recovered by drilling two or more wells into an oil shale formation. After fracturing a region of oil shale formation by directing a high energy laser beam into one of the wells and focussing the laser beam into a region of oil shale formation from a laser optical system, compressed gas was forced into the well which supports combustion in the flame front ignited by laser beam, thereby retorting the oil shale and recovering gaseous hydrocarbon products which permeate through the fractured oil shale from one of the auxiliary wells.

Bloomfield, H.S.

1977-01-28T23:59:59.000Z

75

Technology drives natural gas production growth from shale ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Rapid increases in natural gas production from shale gas formations resulted from widespread application ...

76

WTI discount to Brent and premium to Bakken both rising in ...  

U.S. Energy Information Administration (EIA)

It is likely that concerns regarding oil transportation bottlenecks throughout the central United States and increasing production from shale ...

77

Resilience, Community, and Perceptions of Marcellus Shale Development in the Pennsylvania Wilds.  

E-Print Network (OSTI)

??Unconventional natural gas development in deep shale formations forms a major, promising option for energy development. The Marcellus Shale in the northeastern United States is (more)

Weigle, Jason

2010-01-01T23:59:59.000Z

78

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network (OSTI)

from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,V. E . 1977; Mercury in Oil Shale from the Mahogany Zone

Fox, J. P.

2012-01-01T23:59:59.000Z

79

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network (OSTI)

from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,E . 1977; Mercury in Oil Shale from the Mahogany Zone the

Fox, J. P.

2012-01-01T23:59:59.000Z

80

Shale oil and shale gas resources are globally abundant - Today in ...  

U.S. Energy Information Administration (EIA)

Several nations have begun to evaluate and test the production potential of shale formations located in their countries. Poland, for example, ...

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Method for forming an in-situ oil shale retort in differing grades of oil shale  

Science Conference Proceedings (OSTI)

An in-situ oil shale retort is formed in a subterranean formation containing oil shale. The formation comprises at least one region of relatively richer oil shale and another region of relatively leaner oil shale. According to one embodiment, formation is excavated from within a retort site for forming at least one void extending horizontally across the retort site, leaving a portion of unfragmented formation including the regions of richer and leaner oil shale adjacent such a void space. A first array of vertical blast holes are drilled in the regions of richer and leaner oil shale, and a second array of blast holes are drilled at least in the region of richer oil shale. Explosive charges are placed in portions of the blast holes in the first and second arrays which extend into the richer oil shale, and separate explosive charges are placed in portions of the blast holes in the first array which extend into the leaner oil shale. This provides an array with a smaller scaled depth of burial (sdob) and closer spacing distance between explosive charges in the richer oil shale than the sdob and spacing distance of the array of explosive charges in the leaner oil shale. The explosive charges are detonated for explosively expanding the regions of richer and leaner oil shale toward the horizontal void for forming a fragmented mass of particles. Upon detonation of the explosive, greater explosive energy is provided collectively by the explosive charges in the richer oil shale, compared with the explosive energy produced by the explosive charges in the leaner oil shale, resulting in comparable fragmentation in both grades of oil shale.

Ricketts, T.E.

1984-04-24T23:59:59.000Z

82

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is shale gas? is shale gas? Basically, it is natural gas - primarily methane - found in shale formations, some of which were formed 300-million-to-400-million years ago during the Devonian period of Earth's history. The shales were deposited as fine silt and clay particles at the bottom of relatively enclosed bodies of water. At roughly the same time, primitive plants were forming forests on land and the first amphibians were making an appearance. Some of the methane that formed from the organic matter buried with the sediments escaped into sandy rock layers adjacent to the shales, forming conventional accumulations of natural gas which are relatively easy to extract. But some of it remained locked in the tight, low permeability shale layers, becoming shale gas.

83

A 4D Synchrotron X-Ray-Tomography Study of the Formation of Hydrocarbon- Migration Pathways in Heated Organic-Rich Shale  

Science Conference Proceedings (OSTI)

Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interest in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low-permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing, and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms have been proposed for the transport of hydrocarbons from the rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures, and a better understanding of this complex process (primary migration) is needed. To characterize these processes, it is imperative to use the latest technological advances. In this study, it is shown how insights into hydrocarbon migration in source rocks can be obtained by using sequential high-resolution synchrotron X-ray tomography. Three-dimensional images of several immature "shale" samples were constructed at resolutions close to 5 um. This is sufficient to resolve the source-rock structure down to the grain level, but very-fine-grained silt particles, clay particles, and colloids cannot be resolved. Samples used in this investigation came from the R-8 unit in the upper part of the Green River shale, which is organic rich, varved, lacustrine marl formed in Eocene Lake Uinta, USA. One Green River shale sample was heated in situ up to 400 degrees C as X-ray-tomography images were recorded. The other samples were scanned before and after heating at 400 degrees C. During the heating phase, the organic matter was decomposed, and gas was released. Gas expulsion from the low-permeability shales was coupled with formation of microcracks. The main technical difficulty was numerical extraction of microcracks that have apertures in the 5- to 30-um range (with 5 um being the resolution limit) from a large 3D volume of X-ray attenuation data. The main goal of the work presented here is to develop a methodology to process these 3D data and image the cracks. This methodology is based on several levels of spatial filtering and automatic recognition of connected domains. Supportive petrographic and thermogravimetric data were an important complement to this study. An investigation of the strain field using 2D image correlation analyses was also performed. As one application of the 4D (space + time) microtomography and the developed workflow, we show that fluid generation was accompanied by crack formation. Under different conditions, in the subsurface, this might provide paths for primary migration.

Hamed Panahi; Paul Meakin; Francois Renard; Maya Kobchenko; Julien Scheibert; Adriano Mazzini; Bjorn Jamtveit; Anders Malthe-Sorenssen; Dag Kristian Dysthe

2013-04-01T23:59:59.000Z

84

Bjorn Bakken  

NLE Websites -- All DOE Office Websites (Extended Search)

1989. His main areas of work include distributed energy systems, energy system planning, operation and control, ancillary services, frequency and power control, and power flow...

85

Oil shale combustion/retorting  

SciTech Connect

The Morgantown Energy Technology Center (METC) conducted a number of feasibility studies on the combustion and retorting of five oil shales: Celina (Tennessee), Colorado, Israeli, Moroccan, and Sunbury (Kentucky). These studies generated technical data primarily on (1) the effects of retorting conditions, (2) the combustion characteristics applicable to developing an optimum process design technology, and (3) establishing a data base applicable to oil shales worldwide. During the research program, METC applied the versatile fluidized-bed process to combustion and retorting of various low-grade oil shales. Based on METC's research findings and other published information, fluidized-bed processes were found to offer highly attractive methods to maximize the heat recovery and yield of quality oil from oil shale. The principal reasons are the fluidized-bed's capacity for (1) high in-bed heat transfer rates, (2) large solid throughput, and (3) selectivity in aromatic-hydrocarbon formation. The METC research program showed that shale-oil yields were affected by the process parameters of retorting temperature, residence time, shale particle size, fluidization gas velocity, and gas composition. (Preferred values of yields, of course, may differ among major oil shales.) 12 references, 15 figures, 8 tables.

Not Available

1983-05-01T23:59:59.000Z

86

A 4D synchrotron X-ray tomography study of the formation of hydrocarbon migration pathways in heated organic-rich shale  

E-Print Network (OSTI)

Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interests in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms for the transport of hydrocarbons from the source rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures have been proposed, and a better understanding of this complex process (primary migration) is needed. To characterize these processes it is imperative to use the ...

Panahi, Hamed; Renard, Francois; Mazzini, Adriano; Scheibert, Julien; Dysthe, Dag Kristian; Jamtveit, Bjorn; Malthe-Srenssen, Anders; Meakin, Paul

2014-01-01T23:59:59.000Z

87

An investigation of anisotropy using AVAZ and rock physics modeling in the Woodford Shale, Anadarko Basin, OK.  

E-Print Network (OSTI)

??The Woodford Shale formation is currently an important unconventional gas resource that extends across parts of the mid-continent of the United States. A resource shale (more)

Lamb, Alexander Peter Joseph

2012-01-01T23:59:59.000Z

88

Measurement of the rapidity and transverse momentum distributions of Z bosons in pp collisions at  

E-Print Network (OSTI)

from Bakken shale, Bazhenov shale, and Woodford shale. Our analysis, based on spatial autocorrelation of the Bakken shale series samples, a Bazhenov shale and a Woodford shale are shown in Figure 3. The C shale. Figure 3: SAM images of Bakken shales (bk), Bazhenov shale (bz, lower left), and Woodford shale

Adolphs, Ralph

89

Social boundaries and state formation in ancient Edom : a comparative ceramic approach  

E-Print Network (OSTI)

1: Lower Cretaceous Shales....355 B. PetrographicGroup 6: Lower Cretaceous Shale with Micaceous clay-along the Dolmite-Limestone-Shale (DLS) rock formations. B.

Smith, Neil G.

2009-01-01T23:59:59.000Z

90

Advanced reservoir characterization in the Antelope Shale to establish the viability of CO2 enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 7, 1997--February 6, 1998  

SciTech Connect

The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the antelope Shale in Buena Vista Hills Field. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization during Phase 1 of the project will be performed using data collected in the pilot pattern wells. During this period the following tasks have been completed: laboratory wettability; specific permeability; mercury porosimetry; acoustic anisotropy; rock mechanics analysis; core description; fracture analysis; digital image analysis; mineralogical analysis; hydraulic flow unit analysis; petrographic and confocal thin section analysis; oil geochemical fingerprinting; production logging; carbon/oxygen logging; complex lithologic log analysis; NMR T2 processing; dipole shear wave anisotropy logging; shear wave vertical seismic profile processing; structural mapping; and regional tectonic synthesis. Noteworthy technological successes for this reporting period include: (1) first (ever) high resolution, crosswell reflection images of SJV sediments; (2) first successful application of the TomoSeis acquisition system in siliceous shales; (3) first detailed reservoir characterization of SJV siliceous shales; (4) first mineral based saturation algorithm for SJV siliceous shales, and (5) first CO{sub 2} coreflood experiments for siliceous shale. Preliminary results from the CO{sub 2} coreflood experiments (2,500 psi) suggest that significant oil is being produced from the siliceous shale.

Morea, M.F.

1998-06-01T23:59:59.000Z

91

Bakken Formation Producing Wells W il sto nBa North Dakota ...  

U.S. Energy Information Administration (EIA)

USA CANADA SD MT ND Saskatchewan Manitoba Dunn Ward Dawson McLean McKenzie Morton W il ams Stark Richland R os ev lt Mountrail Divide Prairie McHenry Burke Sheridan

92

Kerogen extraction from subterranean oil shale resources  

Science Conference Proceedings (OSTI)

The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

2010-09-07T23:59:59.000Z

93

Kerogen extraction from subterranean oil shale resources  

DOE Patents (OSTI)

The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

2009-03-10T23:59:59.000Z

94

Gas withdrawal from an in situ oil shale retort  

SciTech Connect

Liquid and gaseous products are recovered from oil shale in an in situ oil shale retort containing a fragmented permeable mass of particles containing oil shale by retorting oil shale in the fragmented mass to produce gaseous and liquid products. The liquid products are withdrawn from the retort to a first level in unfragmented formation below the elevation of the bottom boundary of the retort. Gaseous products are withdrawn from the retort to a second level below the elevation of the first level.

Mills, E.A.

1979-02-20T23:59:59.000Z

95

Advanced reservoir characterizstion in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey formation siliceous shales. Quarterly report, July 1 - September 30, 1996  

SciTech Connect

The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Antelope Shale in Buena Vista Hills field. The Buena Vista Hills Pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability of CO{sub 2} flooding in fractured siliceous shales reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and, CO{sub 2} Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the West Dome of the Buena Vista Hills field. The project took a major step in the third quarter of 1996 with the drilling of the pilot injector well. The well spudded on July 1 and was completed on July 29 at a total measured depth of 4907 ft. The well was cored continuously through the entire Brown Shale and the productive portion of the Antelope Shale to just below the P2 e-log marker. The reservoir matrix and fluid characterization are discussed in this report.

Smith, S.C.

1996-09-01T23:59:59.000Z

96

Subject is oil shale  

SciTech Connect

The article reviews the current financial, legislative and regulatory problems of oil shale development. 2 refs.

Due, M.J.C.

1982-02-01T23:59:59.000Z

97

TOPIC: Shale Gas Emissions w/David Allen, Energy Institute HOST: Jeff Tester and Todd Cowen  

E-Print Network (OSTI)

TOPIC: Shale Gas Emissions w/David Allen, Energy Institute HOST: Jeff Tester and Todd Cowen DATE fracturing of shale formations (shale gas) is projected by the Energy Information Administration to become the nation's energy landscape. However, the environmental impacts associated with ``fracking'' for shale gas

Angenent, Lars T.

98

Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey Formation siliceous shales. Quarterly report, October 1, 1996--December 31, 1996  

SciTech Connect

The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Antelope Shale in Buena Vista Hills field. The Buena Vista Hills pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability of CO{sub 2} flooding in fractured siliceous shales reservoirs of the San Joaquin Valley. The research consists of four primary work processes: reservoir matrix and fluid characterization: fracture characterization; reservoir modeling and simulation; and, CO{sub 2} pilot flood and evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery pilot in the West Dome of the Buena Vista Hills field. In this report, accomplishments for this period are presented for: reservoir matrix and fluid characterization; fracture characterization; reservoir modeling and simulation; and technology transfer.

Toronyi, R.M.

1996-12-31T23:59:59.000Z

99

Experimental study of mechanisms of improving oil recovery in Shale.  

E-Print Network (OSTI)

??ABSTRACT Extensive laboratory work was done to investigate some of the important mechanisms of improving oil recovery in Shale formations. The objective of this research (more)

Onyenwere, Emmanuel

2012-01-01T23:59:59.000Z

100

Recent trends in oil shale. I. History, nature, and reserves  

SciTech Connect

To understand the current level of oil shale development and to anticipate some of the problems that will govern the growth rate of the domestic shale oil industry, this bulletin will discuss these issues in three parts. In this MIB, the nature of oil shale is discussed and a brief history of oil shale development is presented. The worldwide and domestic oil shale resources are described, with emphasis on recent geologic exploration of the Green River formation. Part II will cover oil shale mining and fuel extraction while Part III will discuss technical problems of shale oil refining and some economic and social problems of oil shale development. An extensive bibliography is provided. (MCW)

Sladek, T.A.

1974-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Apparatus for distilling shale oil from oil shale  

Science Conference Proceedings (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

102

Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey formation siliceous shales. Quarterly report, April 1, 1996 - June 30, 1996  

SciTech Connect

The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the Buena Vista Hills field. The Buena Vista Hills pilot CO{sub 2} project will demonstrate the economic viability and widespread applicability Of CO{sub 2} flooding in fractured siliceous shales reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and, CO{sub 2} Pilot Flood and Evaluation. Work done in these areas can be subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced EOR pilot in the West Dome of the Buena Vista Hills field. The Buena Vista Hills project realized it`s first major milestone in the second quarter of 1996 with the pending drilling of proposed project injection well. Regional fracture characterization work was also initiated in the second quarter. This report summarizes the status of those efforts.

Smith, S.C.

1996-06-01T23:59:59.000Z

103

Two-stage oil shale retorting process and disposal of spent oil shale  

SciTech Connect

Formation is excavated from an in situ oil shale retort site for forming at least one void within the retort site, leaving at least one remaining zone of unfragmented formation within the retort site adjacent such a void. The remaining zone is explosively expanded toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in an in situ oil shale retort. Oil shale in the in situ retort is retorted to produce liquid and gaseous products, leaving a mass of spent oil shale particles in the in situ retort. Oil shale particles excavated from the in situ retort site are separately retorted, such as in a surface retorting operation, producing liquid and gaseous products and spent surface retorted oil shale particles. The spent surface retorted particles are disposed of by forming an aqueous slurry of the particles, and pumping the slurry into a spent in situ retort. In one embodiment, the aqueous slurry is introduced into a hot lower portion of the spent retort where contact with hot spent oil shale particles generates steam which, in turn, is withdrawn from the spent retort in usable form. In another embodiment, water from the aqueous slurry introduced into a spent in situ retort collects at a level within the retort. The water can be recovered by drilling a drainage hole upwardly from a lower level drift into the level within the spent retort where the water collects and draining the water through the drainage hole to the lower level drift for recovery.

Tassoney, J.P.

1983-04-12T23:59:59.000Z

104

Assay products from Green River oil shale  

DOE Green Energy (OSTI)

Data from 66 material-balanced assays conducted at Lawrence Livermore National Laboratory, Laramie Energy Technology Center, and The Oil Shale Corporation were compiled and analyzed to determine the pyrolysis stoichiometry for Green River formation oil shales originating in and near the Mahogany zone. Shale samples came from four sites in Colorado and one in Utah, and ranged in oil content from 12 to 258 L/Mg (3 to 62 gal/ton). Average values and pairwise correlation coefficients are reported for all data (except sulfur analyses) available on the shales, e.g., elemental analyses of shales and oils, distribution of organic carbon in products, gas composition, and some ratios of elemental composition. The wide range of organic carbon contents made it possible to demonstrate the sensitivity of assay product distribution to oil shale grade. A linear correlation for shale grade as a function of weight percent organic carbon in raw shale is presented. An average stoichiometry for pyrolysis of the organic material is also calculated and compared with others available in the literature.

Singleton, M.F.; Koskinas, G.J.; Burnham, A.K.; Raley, J.H.

1982-04-12T23:59:59.000Z

105

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network (OSTI)

temperature, type of shale and oil content of shale iscontent of the shale, and shale oil content of the rock cantemperatures. Lean and Rich Shale Oil shales vary in their

Bellman Jr., R.

2012-01-01T23:59:59.000Z

106

Western oil-shale development: a technology assessment. Volume 3: air-quality impacts  

SciTech Connect

The effects of a mature oil shale industry on the air quality over the Green River Oil Shale Formation of Colorado, Utah, and Wyoming is described. Climate information is supplied for the Piceance Creek Basin. (ACR)

1982-01-01T23:59:59.000Z

107

Statistical nano-chemo-mechanical assessment of shale by wave dispersive spectroscopy and nanoindentation  

E-Print Network (OSTI)

Shale is a common type of sedimentary rock formed by clay particles and silt inclusions, and, in some cases, organic matter. Typically, shale formations serve as geological caps for hydrocarbon reservoirs. More recently, ...

Deirieh, Amer (Amer Mohammad)

2011-01-01T23:59:59.000Z

108

Comparative Study for the Interpretation of Mineral Concentrations, Total Porosity, and TOC in Hydrocarbon-Bearing Shale from Conventional Well  

E-Print Network (OSTI)

, and TOC in Hydrocarbon-Bearing Shale from Conventional Well Logs Haryanto Adiguna, SPE, Anadarko Petroleum, and mineral composition is an integral part of unconventional shale reservoir formation evaluation. Porosity requirement for economically viable flow of gas in very-low permeability shales. Brittle shales are favorable

Torres-Verdín, Carlos

109

Shale caprock integrity under carbon sequestration conditions  

Science Conference Proceedings (OSTI)

Carbon sequestration technology requires injection and storage of large volumes of carbon dioxide ( CO 2 ) in subsurface geological formations. Shale caprock which constitutes more than 60% of effective seals for geologic hydrocarbon bearing formations are therefore of considerable interest in underground CO 2 storage into depleted oil and gas formations. This study investigated experimentally shale caprocks geophysical and geochemical behavior when in contact with aqueous CO 2 over a long period of time. The primary concern is a potential increase in hydraulic conductivity of clay-rich rocks as a result of acidic brine-rock minerals geochemical interactions. Both

Abiola Olabode; Lauren Bentley; Mileva Radonjic

2012-01-01T23:59:59.000Z

110

Shale mineralogy and burial diagenesis of Frio and Vicksburg Formations in two geopressured wells, McAllen Ranch area, Hidalgo County, Texas  

DOE Green Energy (OSTI)

Thirty-six shale samples ranging in depth from 1454 ft to 13,430 ft from Shell Oil Company No. 1 Dixie Mortage Loan well and 33 shale samples ranging in depth from 2183 ft to 13,632 ft from Shell Oil/Delhi-Taylor Oil Corporation No. 3 A.A. McAllen well were examined by x-ray techniques to determine the mineralogical parameters of the geopressured zone in the Vicksburg Fairway. Both wells have the same weight-percent trends with depth for the mineralogy: quartz, calcite, total clay, and potassium feldspar are constant; plagioclase feldspar gradually increases; kaolinite increases; discrete illite decreases; total mixed-layer illite-smectite (I/S) decreases; illite in mixed layer I/S increases; and smectite in mixed-layer I/S decreases. Chlorite is found only in the geopressured zone of each well. The Boles and Franks model is compatible with a steady supply of original mixed-layer I/S during the depositional history of the McAllen Ranch area. The constant content with depth of calcite, quartz, and potassium feldspar indicates that limited material, if any, is supplied by the shales to surrounding sands. The ions generated by changes within the clay minerals are involved in further clay mineral reactions as outlined above. In addition, magnesium and iron are involved in forming chlorite within the shales.

Freed, R.L.

1980-01-01T23:59:59.000Z

111

Transport in shales and the design of improved water-based shale drilling fluids  

Science Conference Proceedings (OSTI)

Transport of water and ions in shales and its impact on shale stability were studied to facilitate the improvement of water-based muds as shale drilling fluids. Transport parameters associated with flows driven by gradients in pressure and chemical potential were quantified in key laboratory and full-scale experiments. The experimental results show that the low-permeability matrices of intact, clay-rich shales can act as imperfect or leaky membranes that will sustain osmotic flow of water. Moreover, the ability of shales to act as osmotic membranes is shown to provide a powerful new means for stabilizing these rocks when exposed to water-based drilling fluids. Guidelines are presented for effective exploitation of shale membrane action and induced osmotic flows through optimized water-based drilling fluid formulation. In addition, special attention is given to induced electro-osmotic water flow in shales driven by electric potential gradients, which may provide an exciting, new, environmentally benign means for stabilizing shale formations.

Oort, E. van; Hale, A.H.; Mody, F.K.; Roy, S.

1996-09-01T23:59:59.000Z

112

Gas collection system for oil shale retort  

SciTech Connect

An in-situ oil shale retorting process is described in which a cavity filled with broken particles of oil shale is formed within the subsurface oil shale formation and air is forced down through the cavity to sustain combustion of the top layer of oil shale particles, the products of combustion being withdrawn at the bottom of the cavity. A plurality of exhaust pipes traverse the bottom of the cavity and extend out through the sealed entrance to the retort cavity. The pipes are supported above the floor of the cavity and have holes opening on the bottom side of the pipes through which the product gases are withdrawn from the cavity. Valves in each pipe control the flow so as to balance the flow distribution of air and exhaust gases through the retorting cavity.

Ridley, R.D.; Burton, R.S. III

1980-01-01T23:59:59.000Z

113

Center for transportation studies The NewAmerican  

E-Print Network (OSTI)

--such as shale oil and natural gas--are having a seismic impact on Upper Midwest transportation networks fracking really took off, the Bakken formation has become one of the most active shale oil fields fracturing, or fracking, techniques have transformed shale deposits from marginal sources of hydrocarbon fuel

Minnesota, University of

114

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

Germany 51 254 700 ... June 2013 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources 18

115

Shale Gas Hydraulic Fracturing in the Dutch Posidonia Shale:.  

E-Print Network (OSTI)

??Recently the oil and gas industry is looking at the Posidonia shale in the Dutch subsurface for production of the unconventional shale gas. This is (more)

Janzen, M.R.

2012-01-01T23:59:59.000Z

116

Shale mineralogy and burial diagenesis of Frio and Vicksburg Formations in two geopressured wells, McAllen Ranch area, Hidalgo County, Texas  

DOE Green Energy (OSTI)

Thirty-six shale samples ranging in depth from 1454 ft to 13,430 ft from Shell Oil Company No. 1 Dixie Mortgage Loan well and 33 shale samples ranging in depth from 2183 ft to 13,632 ft from Shell Oil/Delhi-Taylor Oil Corporation No. 3 A.A. McAllen well were examined by x-ray techniques to determine the mineralogical parameters of the geopressured zone in the Vicksburg Fairway. Both wells have the same weight-percent trends with depth for the mineralogy: quartz, calcite, total clay, and potassium feldspar are constant; plagioclase feldspar gradually increases; kaolinite increases; discrete illite decreases; total mixed-layer illite-smectite (I/S) decreases; illite in mixed-layer I/S increases; and smectite in mixed-layer I/S decreases. Chlorite is found only in the geopressured zone of each well.

Freed, R.L.

1981-01-01T23:59:59.000Z

117

Using Flue Gas Huff 'n Puff Technology and Surfactants to Increase Oil Production from the Antelope Shale Formation of the Railroad Gap Oil Field  

Science Conference Proceedings (OSTI)

This project was designed to test cyclic injection of exhaust flue gas from compressors located in the field to stimulate production from Antelope Shale zone producers. Approximately 17,000 m{sup 3} ({+-}600 MCF) of flue gas was to be injected into each of three wells over a three-week period, followed by close monitoring of production for response. Flue gas injection on one of the wells would be supplemented with a surfactant.

McWilliams, Michael

2001-12-18T23:59:59.000Z

118

The Rise of Shale Gas: Implications of the shale gas boom for natural gas markets, environmental protection and U.S. energy policy.  

E-Print Network (OSTI)

??Through the processes of hydraulic fracturing and horizontal drilling, once overlooked deposits of natural gas in shale formations have become economically viable to extract. In (more)

Lovejoy, Cassandra L.

2012-01-01T23:59:59.000Z

119

Underground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies & Practicality.  

E-Print Network (OSTI)

environments and are very salty, like the Marcellus shale and other oil and gas formations underlying the areaUnderground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies), Region 3. Marcellus Shale Educational Webinar, February 18, 2010 (Answers provide below by Karen Johnson

Boyer, Elizabeth W.

120

Lake Level Controlled Sedimentological I Heterogenity of Oil Shale, Upper Green River  

E-Print Network (OSTI)

Chapter 3 Lake Level Controlled Sedimentological 1:'_i 'I I Heterogenity of Oil Shale, Upper Green email: mgani@uno.edu t",. The Green River Formation comprises the world's largest deposit of oil-shale characterization of these lacustrine oil-shale deposits in the subsurface is lacking. This study analyzed ~300 m

Gani, M. Royhan

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading  

E-Print Network (OSTI)

Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading-rich shale recovered from the Wilcox formation and saturated with 1 M NaCl solution varies from 3 ? 10?22 transport; KEYWORDS: permeability, shale, connected pore space Citation: Kwon, O., A. K. Kronenberg, A. F

Herbert, Bruce

122

What questions should we be asking about shale gas? Bob Howarth  

E-Print Network (OSTI)

What questions should we be asking about shale gas? Bob Howarth Department of Ecology://www.eia.gov/forecasts/aeo/pdf/0383er(2011).pdf #12;Unconventional extraction of gas from shale formations is new, and is being/ndx_marcil.pdf Shales hold a lot of natural gas (methane), but very dispersed, not economical using traditional

Barthelat, Francois

123

Water management practices used by Fayetteville shale gas producers.  

SciTech Connect

Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

Veil, J. A. (Environmental Science Division)

2011-06-03T23:59:59.000Z

124

Oil shale resources of the Naval Oil Shale Reserve No. 1, Colorado  

SciTech Connect

The resource of potential oil represented by Green River Formation oil shale on Naval Oil Shale Reserve No. 1 (NOSR No. 1) in the southeast corner of Colorado's Piceance Creek Basin is evaluated in detail. NOSR No. 1 is the site of intensive long-term oil-shale development studies and is the source of innumerable oil-shale samples for all manner of testing. A brief history of these studies is presented. This oil-shale resource is defined from oil-yield assay data on 33 cores plotted as histograms and correlated into cross sections. Contour maps of thickness, richness and oil resource in place are presented for the Mahogany Zone, the rich zone in the Mahogany zone, and for 2 units beneath and 5 units above the Mahogany zone. Total oil shale resource on NOSR No. 1 is 20.4 billion barrels of which 17.4 billion barrels are particularly suitable for development by vertical modified in-place processes. A previously unknown Mahogany zone outcrop providing much additional development access is described. Now under sole control of the US Department of Energy (DOE), NOSR No. 1 offers DOE a unique site for oil shale testing and development.

Smith, J.W.; Beard, T.N.; Trudell, L.G.

1979-06-01T23:59:59.000Z

125

Oil shale data book  

SciTech Connect

The Oil Shale Data Book has been prepared as a part of its work under DOE Management Support and Systems Engineering for the Naval Oil Shale Reserves Predevelopment Plan. The contract calls for the preparation of a Master Development Plan for the Reserves which comprise some 145,000 acres of oil shale lands in Colorado and Utah. The task of defining the development potential of the Reserves required that the resources of the Reserves be well defined, and the shale oil recovery technologies that are potentially compatible with this resource be cataloged. Additionally, processes associated with shale oil recovery like mining, materials handling, beneficiation, upgrading and spent shale disposal have also been cataloged. This book, therefore, provides a ready reference for evaluation of appropriate recovery technologies and associated processes, and should prove to be valuable for many oil shale activities. Technologies that are still in the process of development, like retorting, have been treated in greater detail than those that are commercially mature. Examples of the latter are ore crushing, certain gas clean-up systems, and pipeline transportation. Emphasis has been on documenting available design information such as, maximum module size, operation conditions, yields, utility requirements, outlet gas compositions, shale oil characteristics, etc. Cost information has also been included where available.

1979-06-01T23:59:59.000Z

126

Process of treating oil shale  

SciTech Connect

A process of destructively distilling oil shale is described consisting in subjecting the oil shale containing aluminum to the action of heat and pressure to destructively distill it and separate the light oil constituents. Chlorine gas is simultaneously passed through the hot oil shale countercurrent to the direction of movement of the oil shale.

Egloff, G.

1927-05-03T23:59:59.000Z

127

Refining of shale oil  

DOE Green Energy (OSTI)

The refining of shale oil is reviewed to assess the current state-of-the-art, especially as to the avaiability of technology suitable for operation on a commercial scale. Oil shale retorting processes as they affect the quality of the crude shale oil for refining, exploratory research on the character and refining of shale oil, and other published refining background leading to the present status are discussed. The initial refining of shale oil requires the removal of a large concentration of nitrogen, an added step not required for typical petroleum crude oils, and recently published estimates show that the total cost of refining will be high. Specific technoloy is reported by industry to be technically proven and available for commercial-scale refining. Although the refining will be more costly than that of petroleum, the viability of a shale oil industry will also be affected greatly by the technology and costs of producing the crude shale oil, environmental costs, and future price and tax treatment, and these are outside the scope of this study of refining.

Lanning, W.C.

1978-05-01T23:59:59.000Z

128

Economic analysis of shale gas wells in the United States  

E-Print Network (OSTI)

Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

Hammond, Christopher D. (Christopher Daniel)

2013-01-01T23:59:59.000Z

129

Outlook for U.S. shale oil and gas  

U.S. Energy Information Administration (EIA)

Title: Outlook for U.S. shale oil and gas Author: Kondis, Paul Last modified by: ch4 Created Date: 5/9/2013 1:27:26 PM Document presentation format

130

Modeling studies to evaluate performance of the horizontal wells completed in shale.  

E-Print Network (OSTI)

??The results of the modeling studies to determine the production performance of multiple fractured horizontal wells completed in shale formation has been summarized in this (more)

Belyadi, Abbas.

2011-01-01T23:59:59.000Z

131

Rig count in Utica Shale doubles from year ago - Today in ...  

U.S. Energy Information Administration (EIA)

The number of active oil and natural gas rigs in the Appalachian Basin's Utica Shale formation for the last week of October 2012 (ending October 26) ...

132

Shale Oil Production Performance from a Stimulated Reservoir Volume  

E-Print Network (OSTI)

The horizontal well with multiple transverse fractures has proven to be an effective strategy for shale gas reservoir exploitation. Some operators are successfully producing shale oil using the same strategy. Due to its higher viscosity and eventual 2-phase flow conditions when the formation pressure drops below the oil bubble point pressure, shale oil is likely to be limited to lower recovery efficiency than shale gas. However, the recently discovered Eagle Ford shale formations is significantly over pressured, and initial formation pressure is well above the bubble point pressure in the oil window. This, coupled with successful hydraulic fracturing methodologies, is leading to commercial wells. This study evaluates the recovery potential for oil produced both above and below the bubble point pressure from very low permeability unconventional shale oil formations. We explain how the Eagle Ford shale is different from other shales such as the Barnett and others. Although, Eagle Ford shale produces oil, condensate and dry gas in different areas, our study focuses in the oil window of the Eagle Ford shale. We used the logarithmically gridded locally refined gridding scheme to properly model the flow in the hydraulic fracture, the flow from the fracture to the matrix and the flow in the matrix. The steep pressure and saturation changes near the hydraulic fractures are captured using this gridding scheme. We compare the modeled production of shale oil from the very low permeability reservoir to conventional reservoir flow behavior. We show how production behavior and recovery of oil from the low permeability shale formation is a function of the rock properties, formation fluid properties and the fracturing operations. The sensitivity studies illustrate the important parameters affecting shale oil production performance from the stimulated reservoir volume. The parameters studied in our work includes fracture spacing, fracture half-length, rock compressibility, critical gas saturation (for 2 phase flow below the bubble point of oil), flowing bottom-hole pressure, hydraulic fracture conductivity, and matrix permeability. The sensitivity studies show that placing fractures closely, increasing the fracture half-length, making higher conductive fractures leads to higher recovery of oil. Also, the thesis stresses the need to carry out the core analysis and other reservoir studies to capture the important rock and fluid parameters like the rock permeability and the critical gas saturation.

Chaudhary, Anish Singh

2011-08-01T23:59:59.000Z

133

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

during oil shale retorting: retort water and gas condensate.commercial oil shale plant, retort water and gas condensateunique to an oil shale retort water, gas condensate, and

Fox, J.P.

2010-01-01T23:59:59.000Z

134

Challenges associated with shale gas production | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges associated with shale gas production Challenges associated with shale gas production What challenges are associated with shale gas production? More Documents &...

135

Shale Gas Glossary | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Glossary Shale Gas Glossary Shale Gas Glossary Energy.gov Careers & Internships...

136

Shale gas - what happened? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale gas - what happened? Shale gas - what happened? It seems like shale gas came out of...

137

Chattanooga Shale conference  

SciTech Connect

Seven papers are included, relating to the exploitation of the uranium contained in shales. One of these papers discusses the IGT Hytort process, and was previously abstracted. Separate abstracts were prepared for the remaining six papers. (DLC)

1979-11-01T23:59:59.000Z

138

Shale oil: process choices  

SciTech Connect

The four broad categories of shale-oil processing are discussed. All of these processes share the basic function of retorting oil-shale rock at high temperature so that the kerogen material in the rocks is thermally decomposed to shale oil and gaseous products. The technologies and the organizations working on their development are: solids-to-solids heating, The Oil Shale Co. (TOSCO) and Lurgi-Rhur; gas-to-solids heating with internal gas combustion, U. S. Bureau of Mines, Development Engineering Inc. and Union Oil of California; gas-to-solid heating with external heat generation, Development Engineering, Union Oil, Petrobas, and Institute of Gas Technology; and in-situ retorting, Occidental Petroleum Corp. The TOSCO II process is considered proven and on the verge of commercialization. (BLM)

1974-05-13T23:59:59.000Z

139

Slate, Shale & Mudstone  

NLE Websites -- All DOE Office Websites (Extended Search)

100 gallons per ton. In western Colorado and eastern Utah there are mountains of oil shale. A process for extracting the oil is being developed and those colossal deposits...

140

Microporomechanical modeling of shale  

E-Print Network (OSTI)

Shale, a common type of sedimentary rock of significance to petroleum and reservoir engineering, has recently emerged as a crucial component in the design of sustainable carbon and nuclear waste storage solutions and as a ...

Ortega, J. Alberto (Jose Alberta Ortega Andrade)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Representation of common equipment at a natural gas hydraulic fracturing drill pad. Representation of common equipment at a natural gas hydraulic fracturing drill pad. How is Shale Gas Produced? Shale gas formations are "unconventional" reservoirs - i.e., reservoirs of low "permeability." Permeability refers to the capacity of a porous, sediment, soil - or rock in this case - to transmit a fluid. This contrasts with a "conventional" gas reservoir produced from sands and carbonates (such as limestone). The bottom line is that in a conventional reservoir, the gas is in interconnected pore spaces, much like a kitchen sponge, that allow easier flow to a well; but in an unconventional reservoir, like shale, the reservoir must be mechanically "stimulated" to

142

Laboratory weathering and solubility relationships of fluorine and molybdenum in combusted oil shale  

SciTech Connect

Proper management of large volumes of spent oil shale requires an understanding of the mineralogy and the disposal environment chemistry. Simulated laboratory weathering is one method to rapidly and inexpensively assess the long-term potential for spent oil shales to degrade the environment. The objectives of this study were to assess the solubility relationships of fluorine (F) and molybdenum (Mo) in Green River Formation spent oil shale, to examine the mineralogy and leachate chemistry of three combusted oil shales in a laboratory weathering environment using the humidity cell technique, and to examine the data from spent oil shale literature. Combusted oil shales from the Green River Formation and New Albany Shale were used in the examination of the leachate chemistry and mineralogy.

Essington, M.E.; Wills, R.A.; Brown, M.A.

1991-01-01T23:59:59.000Z

143

Oil shale of the Uinta Basin, northeastern Utah  

SciTech Connect

The Tertiary rocks, which occupy the interior of the Uinta basin, have been subdivided into four formations: Wasatch, Green River, Bridger, and Uinta. The division is based on stratigraphic and paleontologic evidence. Hydrocarbon materials have been found in all four formations, although bedded deposits (asphaltic sandstone and oil shale) are known only in the Wasatch and Green River. Veins of gilsonite, elaterite, ozocerite, and other related hydrocarbons cut all the Tertiary formation of the Uinta basin. Good oil shale (Uinta basin of Utah) is black or brownish black except on weathered surfaces, where it is blue-white or white. It is fine grained, slightly calcareous, and usually free from grit. It is tough and in thin-bedded deposits remarkably flexible. Although oil shale consists of thin laminae, this is not apparent in some specimens until after the rock has been heated and the oil driven off. Freshly broken oil shale gives off a peculiar odor similar to that of crude petroleum. Oil shale contains a large amount of carbonaceous matter (largely remains of lower plants, including algae), which is the source of the distillation products. Thin splinters of oil shale will burn with a very sooty flame and give off an asphaltic odor. Lean specimens of oil shale have a higher specific gravity than rich specimens and are generally heavier than coal.

Winchester, D.E.

1918-01-01T23:59:59.000Z

144

Underground oil shale retorting. [Basic principles are outlined  

DOE Green Energy (OSTI)

The basic principles involved in combustion processing of oil shale are outlined. The manual is designed to serve as an introduction to the subject for the support personnel of the LLL Oil Shale Project. The material is presented in a simple two page format with one page devoted to a figure or table and the facing page contains a brief description of that material. Thus, it can serve as a self-study guide. Following a brief description of oil shale, how it was formed, and the extent of the resource, an overview of the concepts and major technical problems of Modified In-Situ (MIS) Oil Shale Retorting is presented. Finally, the liquid product, shale oil, is compared with typical petroleum crudes.

Campbell, J.H.; Raley, J.H.

1980-02-01T23:59:59.000Z

145

Effect of shale-water recharge on brine and gas recovery from geopressured reservoirs  

DOE Green Energy (OSTI)

The concept of shale-water recharge has often been discussed and preliminary assessments of its significance in the recovery of geopressured fluids have been given previously. The present study uses the Pleasant Bayou Reservoir data as a base case and varies the shale formation properties to investigate their impact on brine and gas recovery. The parametric calculations, based on semi-analytic solutions and finite-difference techniques, show that for vertical shale permeabilities which are at least of the order of 10/sup -5/ md, shale recharge will constitute an important reservoir drive mechanism and will result in much larger fluid recovery than that possible in the absence of shale dewatering.

Riney, T.D.; Garg, S.K.; Wallace, R.H. Jr.

1985-01-01T23:59:59.000Z

146

Method for establishing a combustion zone in an in situ oil shale retort  

SciTech Connect

A method for retorting oil shale in an in situ oil shale retort includes the steps of excavating a void in a subterranean formation containing oil shale and placing combustible material in the void adjacent an ignition situs. Formation is then explosively expanded toward the void to form a retort containing a fragmented permeable mass of formation particles containing oil shale, the top layer of the fragmented mass adjacent an ignition situs containing such combustible material. The combustible material is then ignited for establishing a combustion zone in the retort.

Bartel, W.J.; Cha, C.Y.; Burton, R.S. III

1979-04-03T23:59:59.000Z

147

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network (OSTI)

products, percent: Oil Gas Spent Shale TOTAL Average tracecontent of the gases for the lean shale exceeded that for

Bellman Jr., R.

2012-01-01T23:59:59.000Z

148

January 20, 2011 Marcellus Shale 101  

E-Print Network (OSTI)

. Will oil shale be viable as well? Oil shale will not be economically viable anytime in the near future

Hardy, Christopher R.

149

DOE oil shale reference sample bank: Quarterly report, July-September 1987  

DOE Green Energy (OSTI)

The DOE Oil Shale Program was restructured in FY84 to implement a 5-year period of basic and applied research in the study of the phenomena involved in oil shale pyrolysis/retorting. The program calls for the study of two reference shales per year for a period of 5 years. Consequently, the program calls for the identification, acquisition, processing, characterization, storage, disbursement, and record keeping for ten reference shales in a period of 5 years. Two FY86 and one FY87 reference shales have been acquired, processed and stored under inert gas. The Eastern shale, designated E86, was obtained from the Clegg Creek Member of the New Albany Shale at a quarry near Louisville, Kentucky in the first quarter of FY86. The FY86 Western Shale was obtained from the Exxon Colony Mine, located near Parachute, Colorado, during the first quarter of FY86. The FY87 Western Shale was obtained from the Tipton Member of the Green River Formation near Rock Springs, Wyoming during the fourth quarter of FY87. Partial distributions of the FY86 shale have been made to DOE and non-DOE contractors. Complete descriptions of the FY87 Western reference shale locale, shale processing procedures and analytical characterization are provided in this report. 7 refs., 6 figs., 1 tab.

Owen, L.B.

1987-09-01T23:59:59.000Z

150

Market assessment for shale oil  

DOE Green Energy (OSTI)

This study identified several key issues on the cost, timeliness, and ease with which shale oil can be introduced into the United States' refining system. The capacity of the existing refining industry to process raw shale oil is limited by the availability of surplus hydrogen for severe hydrotreating. The existing crude oil pipeline system will encounter difficulties in handling raw shale oil's high viscosity, pour point, and contaminant levels. The cost of processing raw shale oil as an alternate to petroleum crude oil is extremely variable and primarily dependent upon the percentage of shale oil run in the refinery, as well as the availability of excess hydrogen. A large fraction of any shale oil which is produced will be refined by the major oil companies who participate in the shale oil projects and who do not anticipate problems in processing the shale oil in their refineries. Shale oil produced for sale to independent refiners will initially be sold as boiler fuel. A federal shale oil storage program might be feasible to supplement the Strategic Petroleum Reserve. Based on refinery configurations, hydrogen supply, transportation systems, and crude availability, eleven refineries in Petroleum Administration for Defense Districts (PADDs) 2A and 2B have been identified as potential processors of shale oil. Based on refining technology and projected product demands to the year 2000, shale oil will be best suited to the production of diesel fuel and jet fuel. Tests of raw shale oil in boilers are needed to demonstrate nitrogen oxide emissions control.

Not Available

1979-10-01T23:59:59.000Z

151

Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation of Gas Diffusion in Kerogen, Langmuir Desorption from  

E-Print Network (OSTI)

SPE 159250 Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation algorithm to forecast gas production in organic shale that simultaneously takes into account gas diffusion-than-expected permeability in shale-gas formations, while Langmuir desorption maintains pore pressure. Simulations confirm

Torres-Verdín, Carlos

152

Implementation of FracTracker.org: A GeoWeb platform to manage and communicate shale gas information  

E-Print Network (OSTI)

Implementation of FracTracker.org: A GeoWeb platform to manage and communicate shale gas Health, GSPH. Background Natural gas drilling in shale formations worldwide employs relatively new drilling in the Marcellus Shale (See Figure 1.) of the northeastern United States necessitates better

Sibille, Etienne

153

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota DE-FC26-08NT43291 – 01.2 Goal The goal of this project is to quantitatively describe and understand the Bakken Formation in the Williston Basin by collecting and analyzing a wide range of parameters, including seismic and geochemical data, that impact well productivity/oil recovery. Performer Energy & Environmental Research Center, Grand Forks, ND 58202-9018 Background The Bakken Formation is rapidly emerging as an important source of oil in the Williston Basin. The formation typically consists of three members, with the upper and lower members being shales and the middle member being dolomitic siltstone and sandstone. Total organic carbon (TOC) within the shales may be as high as 40%, with estimates of total hydrocarbon generation across the entire Bakken Formation ranging from 200 to 400 billion barrels. While the formation is productive in numerous reservoirs throughout Montana and North Dakota, with the Elm Coulee Field in Montana and the Parshall area in North Dakota being the most prolific examples of Bakken success, many Bakken wells have yielded disappointing results. While variable productivity within a play is nothing unusual to the petroleum industry, the Bakken play is noteworthy because of the wide variety of approaches and technologies that have been applied with apparently inconsistent and all too often underachieving results. This project will implement a robust, systematic, scientific, and engineering research effort to overcome these challenges and unlock the vast resource potential of the Bakken Formation in the Williston Basin.

154

Process for oil shale retorting  

DOE Patents (OSTI)

Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

1981-10-27T23:59:59.000Z

155

Oil shale retort apparatus  

DOE Patents (OSTI)

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

156

Marcellus Shale Educational Webinar Series  

E-Print Network (OSTI)

#12;Marcellus Shale Litigation and Legislation December 17, 2009 7 . Pennsylvania Oil and Gas Law1 Marcellus Shale Educational Webinar Series October 2009 - March 2010 Penn State Cooperative Extension #12;2 Marcellus Shale Webinar Series Planning Committee · Members ­ Mark Douglass, Jefferson

Boyer, Elizabeth W.

157

Shale Play Industry Transportation Challenges,  

E-Print Network (OSTI)

­ High volume commodi-es flows in and out of shale plays · Sand In....Oil in excess of 50 MMT/Yr. · Life of current Shale Oil & Gas explora-on trend ­ 2012) #12;Shale Play Oil Industry A Look at the Baaken · 2-3 Unit Trains

Minnesota, University of

158

Oil shale: Technology status report  

Science Conference Proceedings (OSTI)

This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

Not Available

1986-10-01T23:59:59.000Z

159

The Shale Gas Matt Ridley  

E-Print Network (OSTI)

The Shale Gas Shock Matt Ridley Foreword by Freeman Dyson The Global Warming Policy Foundation GWPF Professor Richard Tol Professor Deepak Lal Dr David Whitehouse Professor Harold Lewis #12;The Shale Gas ....................................................................14 Coal-bed methane and tight gas in sandstone................................15 Shale gas

Boyer, Elizabeth W.

160

MARCELLUS SHALE APRIL 2011 EDITION  

E-Print Network (OSTI)

CWIA-MS MARCELLUS SHALE APRIL 2011 EDITION Each of the following sections is a quick snapshot of labor market information for Pennsylvania's Marcellus Shale (MS) industries and related economic related to the Marcellus Shale industry. While several data sources are utilized in this document

Boyer, Elizabeth W.

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Porosity and permeability of Eastern Devonian gas shale  

SciTech Connect

High-precision core analysis has been performed on eight Devonian gas shale samples from the Appalachian basin. Seven of the core samples consist of the Upper Devonian Age Huron member of the Ohio shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eight core sample consists of Middle Devonian Age Marcellus shale obtained from a well in Morgantown, WV. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the work has identified a number of geological factors that influence gas production from organic-rich shales. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron shale samples effectively limits the gas porosity of this formation to less than 0.2%, and gas permeability of the rock matrix is commonly less than 0.1 ..mu..d at reservoir stress. The Marcellus shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10%, and a surprisingly high permeability of 20 ..mu..d. Gas permeability of the Marcellus was highly stress-dependent, however; doubling the net confining stress reduced the permeability by nearly 70%. The conclusion reached from this study is that the gas productivity potential of Devonian shale in the Appalachian basin is influenced by a wide range of geologic factors. Organic content, thermal maturity, natural fracture spacing, and stratigraphic relationships between gray and black shales all affect gas content and mobility. Understanding these factors can improve the exploration and development of Devonian shale gas.

Soeder, D.J.

1988-03-01T23:59:59.000Z

162

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

situ oil shale combustion experiment con- A gas chro- Thisspent shales were waters were studied, retort water and gasof retort waters and gas condensate. Spent shale reduces the

Fox, J.P.

2013-01-01T23:59:59.000Z

163

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

surface spent shale, and grout production from treateda grout from spent shale--grout production fromraw shale, grout production from as-

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

164

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

Mineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. LivermoreEffects Lawrence of Steam on Oil Shale Retorting: Livermore

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

165

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

study of retorted oil shale," Lawrence Livermore Laboratoryb) using columns of spent shale. REFERENCES Burnham, Alankinetics between and oil-shale residual carbon. 1. co Effect

Fox, J.P.

2013-01-01T23:59:59.000Z

166

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

Mineral Reactions in Colorado Oil Shale," Lawrence Livermoreof Colorado Oil Shale: II. Livermore Laboratory Report No.Effects Lawrence of Steam on Oil Shale Retorting: Livermore

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

167

Shale Gas Development Challenges: Water | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Shale Gas Development Challenges: Water Shale Gas Development Challenges: Water More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas...

168

Shale Gas Development Challenges: Air | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale Gas Development Challenges: Air Shale Gas Development Challenges: Air Shale Gas Development Challenges: Air More Documents & Publications Natural Gas from Shale: Questions...

169

Solar retorting of oil shale  

DOE Patents (OSTI)

An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

170

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

171

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

172

Solar retorting of oil shale  

DOE Green Energy (OSTI)

An apparatus and method are described for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber. In the second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

Gregg, D.W.

1981-04-28T23:59:59.000Z

173

Evidence of Reopened Microfractures in Production Data of Hydraulically Fractured Shale Gas Wells  

E-Print Network (OSTI)

Frequently a discrepancy is found between the stimulated shale volume (SSV) estimated from production data and the SSV expected from injected water and proppant volume. One possible explanation is the presence of a fracture network, often termed fracture complexity, that may have been opened or reopened during the hydraulic fracturing operation. The main objective of this work is to investigate the role of fracture complexity in resolving the apparent SSV discrepancy and to illustrate whether the presence of reopened natural fracture network can be observed in pressure and production data of shale gas wells producing from two shale formations with different well and reservoir properties. Homogeneous, dual porosity and triple porosity models are investigated. Sensitivity runs based on typical parameters of the Barnett and the Horn River shale are performed. Then the field data from the two shales are matched. Homogeneous models for the two shale formations indicate effective infinite conductivity fractures in the Barnett well and only moderate conductivity fractures in the Horn River shale. Dual porosity models can support effectively infinite conductivity fractures in both shale formations. Dual porosity models indicate that the behavior of the Barnett and Horn River shale formations are different. Even though both shales exhibit apparent bilinear flow behavior the flow behaviors during this trend are different. Evidence of this difference comes from comparing the storativity ratio observed in each case to the storativity ratio estimated from injected fluid volumes during hydraulic fracturing. In the Barnett shale case similar storativity ratios suggest fracture complexity can account for the dual porosity behavior. In the Horn River case, the model based storativity ratio is too large to represent only fluids from hydraulic fracturing and suggests presence of existing shale formation microfractures.

Apiwathanasorn, Sippakorn

2012-08-01T23:59:59.000Z

174

Development of Correlations for Unconfined Compression Strength and Methods of Field Preparations and Preservation of Kope Shale.  

E-Print Network (OSTI)

??In the Greater Cincinnati area, the Kope formation and in particular Kope shale is problematic for engineers and geologists because of its ever-changing strength and (more)

McFaddin, Jared Douglas

2008-01-01T23:59:59.000Z

175

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

for the grout. SPENT SHALE Oil shale, which is a low-gradeMineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. Livermore

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

176

Method of operating an oil shale kiln  

DOE Patents (OSTI)

Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.

Reeves, Adam A. (Rifle, CO)

1978-05-23T23:59:59.000Z

177

The twentieth oil shale symposium proceedings  

Science Conference Proceedings (OSTI)

This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

Gary, J.H.

1987-01-01T23:59:59.000Z

178

Market assessment for shale oil  

SciTech Connect

This study identified several key issues on the cost, timeliness, and ease with which shale oil can be introduced into the United States' refining system. The capacity of the existing refining industry to process raw shale oil is limited by the availability of surplus hydrogen for severe hydrotreating. The existing crude oil pipeline system will encounter difficulties in handling raw shale oil's high viscosity, pour point, and contaminant levels. The cost of processing raw shale oil as an alternate to petroleum crude oil is extremely variable and primarily dependent upon the percentage of shale oil run in the refinery, as well as the availability of excess hydrogen. A large fraction of any shale oil which is produced will be refined by the major oil companies who participate in the shale oil projects and who do not anticipate problems in processing the shale oil in their refineries. Shale oil produced for sale to independent refiners will initially be sold as boiler fuel. A federal shale oil storage program might be feasible to supplement the Strategic Petroleum Reserve. Based on refinery configurations, hydrogen supply, transportation systems, and crude availability, eleven refineries in Petroleum Administration for Defense Districts (PADDs) 2A and 2B have been identified as potential processors of shale oil. Based on refining technology and projected product demands to the year 2000, shale oil will be best suited to the production of diesel fuel and jet fuel. Tests of raw shale oil in boilers are needed to demonstrate nitrogen oxide emissions control.

1979-10-01T23:59:59.000Z

179

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

180

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Petrographic observations suggestive of microbial mats from Rampur Shale and Bijaigarh Shale,  

E-Print Network (OSTI)

Petrographic observations suggestive of microbial mats from Rampur Shale and Bijaigarh Shale observations of two Vindhyan black shales (Rampur Shale of the Semri Group and Bijaigarh Shale of the Kaimur an attempt has been made to highlight possible microbial mat features from two black shale horizons (Rampur

Schieber, Juergen

182

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

proved natural gas reserves (3) 2013 EIA/ARI unproved wet shale gas technically recoverable resources (TRR) 2012 USGS conventional unproved wet natural gas TRR,

183

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Act) and numerous state and local environmental and public health laws apply to shale gas and other unconventional oil and gas development. Consequently, the fracturing...

184

Shale oil recovery process  

DOE Patents (OSTI)

A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

Zerga, Daniel P. (Concord, CA)

1980-01-01T23:59:59.000Z

185

AVESTAR® - Shale Gas Processing (SGP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Shale Gas Processing (SGP) Shale Gas Processing (SGP) SPG The shale gas revolution is transforming America's energy landscape and economy. The shale gas boom, including the Marcellus play in Appalachia, is driving job creation and investment in the energy sector and is also helping to revive other struggling sectors of the economy like manufacturing. Continued growth in domestic shale gas processing requires that energy companies maximize the efficiency and profitability from their operations through excellent control and drive maximum business value from all their plant assets, all while reducing negative environmental impact and improving safety. Changing demographics and rapidly evolving plant automation and control technologies also necessitate training and empowering the next-generation of shale gas process engineering and

186

Syncrude from eastern oil shale  

SciTech Connect

A study was made to make resource assessment, mining and process economic evaluations of oil shale in Lewis and Fleming Counties, Kentucky. Two surface retorting processes, Paraho and HYTORT, were selected and the process and economic analyses were made for a 30,000 tons/day oil shale retorting facility. This work presents the results of this eastern oil shale feasibility study. 3 refs.

Vyas, K.C.

1981-01-01T23:59:59.000Z

187

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalJ. B. , "Simulated effects of oil-shale development on the

Mehta, P.K.

2013-01-01T23:59:59.000Z

188

What is shale gas? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home What is shale gas? What is shale gas? What is shale gas? Energy.gov Careers & Internships Science &...

189

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

Fox, J.P.

2010-01-01T23:59:59.000Z

190

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

191

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalSimulated effects of oil-shale development on the hydrology

Mehta, P.K.

2013-01-01T23:59:59.000Z

192

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network (OSTI)

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

Bellman Jr., R.

2012-01-01T23:59:59.000Z

193

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network (OSTI)

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Corrosion of Oil Shale Retort Component Materials," LBL-

Bellman Jr., R.

2012-01-01T23:59:59.000Z

194

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

cement from spent oil shale," Vol. 10, No. 4, p. 54S,Colorado's primary oil shale resource for vertical modifiedSimulated effects of oil-shale development on the hydrology

Mehta, P.K.

2013-01-01T23:59:59.000Z

195

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

196

Case Study: Shale Bings in Central  

E-Print Network (OSTI)

and oil shale was widespread. The extraction of oil from shales began in the 1850s and developed within the region that the oil-shale bings constitute one of the eight main habi- tats in West Lothian

197

Australian Shale Gas Assessment Project Reza Rezaee  

E-Print Network (OSTI)

Australian Shale Gas Assessment Project Reza Rezaee Unconventional Gas Research Group, Department of Petroleum Engineering, Curtin University, Australia Shale gas is becoming an important source feet (Tcf) of technically recoverable shale gas resources. Western Australia (WA) alone

198

Process Design and Integration of Shale Gas to Methanol  

E-Print Network (OSTI)

Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact on the United States chemical industry and present many opportunities for new capital investments and industry growth. As in conventional natural gas, shale gas contains primarily methane, but some formations contain significant amounts of higher molecular weight hydrocarbons and inorganic gases such as nitrogen and carbon dioxide. These differences present several technical challenges to incorporating shale gas with current infrastructure designed to be used with natural gas. However, each shale presents opportunities to develop novel chemical processes that optimize its composition in order to more efficiently and profitably produce valuable chemical products. This paper is aimed at process synthesis, analysis, and integration of different processing pathways for the production of methanol from shale gas. The composition of the shale gas feedstock is assumed to come from the Barnett Shale Play located near Fort Worth, Texas, which is currently the most active shale gas play in the US. Process simulation and published data were used to construct a base-case scenario in Aspen Plus. The impact of different processing pathways was analyzed. Key performance indicators were assessed. These include overall process targets for mass and energy, economic performance, and environmental impact. Finally, the impact of several factors (e.g., feedstock composition, design and operating variables) is studied through a sensitivity analysis. The results show a profitable process above a methanol selling price of approximately $1.50/gal. The sensitivity analysis shows that the ROI depends much more heavily on the selling price of methanol than on the operating costs. Energy integration leads to a savings of $30.1 million per year, or an increase in ROI of 2% points. This also helps offset some of the cost required for the oxygen necessary for syngas generation through partial oxidation. For a sample shale gas composition with high levels of impurities, preprocessing costs require a price differential of $0.73/MMBtu from natural gas. The process is also environmentally desirable because shale gas does not lead to higher GHG emissions than conventional natural gas. More water is required for hydraulic fracturing, but some of these concerns can be abated through conservation techniques and regulation.

Ehlinger, Victoria M.

2013-05-01T23:59:59.000Z

199

Non-subsidence method for developing an in situ oil shale retort  

SciTech Connect

A non-subsidence method for developing an in situ oil shale retort tract in a subterranean formation containing oil shale includes forming a number of spaced apart rows of in situ oil shale retorts, leaving intervening zones of unfragmented formation between adjacent rows of retorts for supporting the overburden loads without substantial subsidence. Each retort contains a fragmented permeable mass of formation particles containing oil shale. The retorts in each row are separated by gas barriers that provide support for the overburden load above each row of retorts. After retorting, a stabilizing material is introduced into the void spaces in the spent in situ oil shale retorts for increasing the compressive strength of the fragmented masses of spent oil shale particles in the spent in situ retorts. Thereafter, separate rows of in situ oil shale retorts are formed in corresponding intervening zones of unfragmented formation. The retorts in each intervening row are separated by gas barriers that provide partial support for the overburden load above each row of intervening retorts. Separate barriers of unfragmented formation are left between the retorts in each intervening row and adjacent rows of spent retorts. This shifts the overburden load to the spent retorts and to the intervening barriers of unfragmented formation, as well as to the barriers of formation between individual retorts in the intervening rows of retorts, which collectively support overburden loads without substantial subsidence during the operating life of the retorts in the intervening rows.

Hutchins, N.M.

1983-01-18T23:59:59.000Z

200

Microstructure Study on Barnett Shale.  

E-Print Network (OSTI)

??This thesis presents the discussion of the microstructure of the Barnett Shale as studied using the combined technology of the Focus Ion Beam (FIB) and (more)

Chen, Di

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Oil shale technical data handbook  

SciTech Connect

This is a reference book to provide information for the evaluation of appropriate technology for shale oil development. The oil resource is defined, and the properties of shale and the oil and gas derived from it are listed. Recovery technologies compatible with the particular resource are also described. Discussion of various aspects of shale oil development, such as mining, materials handling, beneficiation, upgrading, waste-water treatment, and spent shale disposal, are also presented. Available design information dealing with maximum module size, operating conditions, yields, utility requirements, etc. is documented. (BLM)

Nowacki, P. (ed.)

1981-01-01T23:59:59.000Z

202

Production analysis of Marcellus Shale.  

E-Print Network (OSTI)

??The purpose of this thesis was to analyze the production potential of Marcellus shale using actual field data. By using real field production data for (more)

Belyadi, Hossein.

2011-01-01T23:59:59.000Z

203

Apparatus for oil shale retorting  

DOE Patents (OSTI)

A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

1986-01-01T23:59:59.000Z

204

Gas seal for an in situ oil shale retort and method of forming thermal barrier  

DOE Patents (OSTI)

A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

Burton, III, Robert S. (Mesa, CO)

1982-01-01T23:59:59.000Z

205

DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Funded Primer Underscores Technology Advances, Challenges of DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas Development DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas Development April 14, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) announces the release of "Modern Shale Gas Development in the United States: A Primer." The Primer provides regulators, policy makers, and the public with an objective source of information on the technology advances and challenges that accompany deep shale gas development. Natural gas production from hydrocarbon rich deep shale formations, known as "shale gas," is one of the most quickly expanding trends in onshore domestic oil and gas exploration. The lower 48 states have a wide

206

In the OSTI Collections: Oil Shales | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Oil Shales Oil Shales Extraction Water Use History References Additional References Research Organizations Reports Available through OSTI's SciTech Connect Petroleum is commonly extracted from pores in rock formations below the earth's surface. Different kinds of rock have petroleum in their pores, but the petroleum is not part of the rock itself. Kerogen, another hydrocarbon material, is a constituent material of a type of rock called oil shale. While oil shales can be burned directly as a fuel, it's possible to extract a liquid substitute for petroleum from kerogen by heating the oil shale to a high temperature, thus producing a vapor, which is then cooled. Some of the cooled vapor remains gaseous (and is called "combustible oil-shale gas"), while the rest condenses

207

90-day Interim Report on Shale Gas Production - Secretary of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

90-day Interim Report on Shale Gas Production - Secretary of Energy 90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board The Shale Gas Subcommittee of the Secretary of Energy Advisory Board is charged with identifying measures that can be taken to reduce the environmental impact and improve the safety of shale gas production. Natural gas is a cornerstone of the U.S. economy, providing a quarter of the country's total energy. Owing to breakthroughs in technology, production from shale formations has gone from a negligible amount just a few years ago to being almost 30 percent of total U.S. natural gas production. This has brought lower prices, domestic jobs, and the prospect of enhanced national security due to the potential of substantial

208

Why is shale gas important? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why is shale gas important? Why is shale gas important? Why is shale gas important? More Documents & Publications Natural Gas from Shale: Questions and Answers How is shale gas...

209

CX-004679: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-004679: Categorical Exclusion Determination Enhanced Oil Recovery from the Bakken Shale Using Surfactant Imbibition Couple with Gravity...

210

PMG Mar1006 - bakken  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Group Meeting March 10, 2006 Tier-1 Equipment Budget 7 Tier-1 Budget including overhead 0 2000 4000 6000 8000 K 1227 3160 6853 3119 5686 FY05 FY06 FY07 FY08 FY09 Jon...

211

Florida Shale Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Florida Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ... Shale Gas Production;

212

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

Shale Process Wastewater," in Analysis of Waters Associated with Alternate Fuel Production,shale during In in-situ processes, retort water its production

Fox, J.P.

2010-01-01T23:59:59.000Z

213

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

Oil Shale Process Wastewater," in Analysis of Waters Associated with Alternate Fuel Production,oil and shale during In in-situ processes, retort water its production

Fox, J.P.

2010-01-01T23:59:59.000Z

214

Natural Gas from Shale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas from Shale Natural Gas from Shale Office of Fossil Energy research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective...

215

West Virginia Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) West Virginia Shale Production (Billion Cubic Feet) West Virginia Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

216

Eastern States Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Eastern States Shale Production (Billion Cubic Feet) Eastern States Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

217

Montana Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Montana Shale Proved Reserves (Billion Cubic Feet) Montana Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

218

Shale Gas Development Challenges: Fracture Fluids | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Fracture Fluids Shale Gas Development Challenges: Fracture...

219

North Dakota Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) North Dakota Shale Production (Billion Cubic Feet) North Dakota Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

220

Wyoming Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Wyoming Shale Proved Reserves (Billion Cubic Feet) Wyoming Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Kentucky Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Kentucky Shale Proved Reserves (Billion Cubic Feet) Kentucky Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

222

Pennsylvania Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Pennsylvania Shale Proved Reserves (Billion Cubic Feet) Pennsylvania Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

223

Michigan Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Michigan Shale Proved Reserves (Billion Cubic Feet) Michigan Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

224

Arkansas Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Arkansas Shale Proved Reserves (Billion Cubic Feet) Arkansas Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

225

Shale Gas Development Challenges: Earthquakes | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Earthquakes Shale Gas Development Challenges: Earthquakes...

226

Colorado Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Colorado Shale Proved Reserves (Billion Cubic Feet) Colorado Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

227

Oklahoma Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Oklahoma Shale Proved Reserves (Billion Cubic Feet) Oklahoma Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

228

Shale Gas Development Challenges: Surface Impacts | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Surface Impacts Shale Gas Development Challenges: Surface...

229

Oil shale: The environmental challenges III  

SciTech Connect

This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

Petersen, K.K.

1983-01-01T23:59:59.000Z

230

Porosity and permeability of eastern Devonian gas shale  

Science Conference Proceedings (OSTI)

High-precision core analysis has been performed on eight samples of Devonian gas shale from the Appalachian Basin. Seven of the core samples consist of the Upper Devonian age Huron Member of the Ohio Shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eighth core sample consists of Middle Devonian age Marcellus Shale obtained from a well in Morgantown, West Virginia. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the results have also shown that there are a number of previously unknown factors which influence or control gas production from organic-rich shales of the Appalachian Basin. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron Shale samples effectively limits the gas porosity of this formation to less than 0.2%, and permeability of the rock matrix to gas is less than 0.1 microdarcy at reservoir stress. The Marcellus Shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10% under stress with a fairly strong ''adsorption'' component. Permeability to gas (K/sub infinity/ was highly stress-dependent, ranging from about 20 microdarcies at a net stress of 3000 psi down to about 5 microdarcies at a net stress of 6000 psi. The conclusion reached from this study is that Devonian shale in the Appalachian Basin is a considerably more complex natural gas resource than previously thought. Production potential varies widely with geographic location and stratigraphy, just as it does with other gas and oil resources. 15 refs., 8 figs., 3 tabs.

Soeder, D.J.

1986-01-01T23:59:59.000Z

231

The Kiviter process for retorting large particle oil shale  

SciTech Connect

In recent years considerable interest has been shown to the experience of commercial-scale processing of oil shale as an alternative feedstock for the production of liquid fuels. The evaluation of different retort systems, however, should be made with due consideration of the specific properties of different oil shales, influencing the efficiency of the retorting process. The author's studies of oil shale samples extracted from the world's largest oil shale formations in the USA and Brazil as well as those of kukersite (Baltic oil shale) processed in the USSR on a commercial scale, show that the latter is characterized by several technological properties which complicate it's thermal processing. Relatively high levels of specific heat consumption for the retorting process and a high organic matter content make it necessary to process kukersite in special retorting systems. Due to the specific properties of kukersite the concept employing cross current flow of heat carrier gas through the shale bed proved to be most acceptable for the retorting of this particular shale. Compared with the traditionally employed counter current flow of heat carrier gas this concept is more preferable providing for more uniform distribution of the heat carrier through the fuel bed. It enables to modify the height of the retorting chamber and thus to practically eliminate the dependence of the unit throughput rate on the velocity of the heat carrier gas in the retorting chamber, and to perform the process in a thin oil shale bed. The authors discuss how generators employing cross current heat carrier flow (the Kiviter process) are widely applied in the U.S.S.R. for retorting of kukersite, characterized by a high organic content and bituminization upon heating.

Yefimov, V.M. (Oil Shale Research Institute, Kohtla-Jarve, Estonian (UA)); Rooks, I.H. (V.I. Lenin PO Slantsekhim, Kohtla-Jarve, Estonian (UA))

1989-01-01T23:59:59.000Z

232

Shale Reservoir Characterization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Shale Gas » Shale Reservoir Oil & Gas » Shale Gas » Shale Reservoir Characterization Shale Reservoir Characterization Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Gas-producing shales are predominantly composed of consolidated clay-sized particles with a high organic content. High subsurface pressures and temperatures convert the organic matter to oil and gas, which may migrate to conventional petroleum traps and also remains within the shale. However, the clay content severely limits gas and fluid flow within the shales. It is, therefore, necessary to understand the mineral and organic content, occurrence of natural fractures, thermal maturity, shale volumes, porosity

233

Fifth symposium on oil shale  

SciTech Connect

Papers presented at symposium May 2-3, 1968 at Denver, discusses legal and economic problems facing federal policy toward oil shale deposits exploitation, processing of oil shale above surface and in situ and underground mining methods and equipment to be used.

1968-10-04T23:59:59.000Z

234

Solar retorting of oil shale  

DOE Green Energy (OSTI)

A detailed analysis of technical and economic factors solar retorting of oil shale shows that such a process should be technically feasible and, depending on the grade of the shale, should improve the fuel yield from the oil shale by 10 to 40%, compared to one of the best competing surface ay for the incremental processes. The improved oil yield should more than pay for the incremental cost associated with adding the solar collection system. An experiment is described in which solar energy is used to retort oil shale, and the experimental results show that yields of better than 110% Fischer Assay are achievable. An advanced design for a solar oil-shale retort is also discussed.

Gregg, D.W.; Grens, J.Z.; Taylor, R.W.; Aiman, W.R.

1980-04-08T23:59:59.000Z

235

Method for closing a drift between adjacent in-situ oil shale retorts  

SciTech Connect

A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.

Hines, A.E.

1984-04-10T23:59:59.000Z

236

Method for closing a drift between adjacent in situ oil shale retorts  

DOE Patents (OSTI)

A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.

Hines, Alex E. (Grand Junction, CO)

1984-01-01T23:59:59.000Z

237

Production of Shale Oil  

E-Print Network (OSTI)

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan provides a blueprint for the development of a 28,000 acre holding on Clear Creek in Garfield County, Colorado on property acquired by Standard Oil of California in the late 1940's and early 1950's. The paper describes these planning activities and the principal features of a proposed $5 billion project to develop facilities for production of 100,000 barrels per day of synthetic crude from oil shale. Subjects included are resource evaluation, environmental baseline studies, plans for acquisition of permits, plans for development of required retorting and mining technology and a preliminary description of the commercial project which will ultimately emerge from these activities. General financial impact of the project and the case for additional tax incentives to encourage it will be described.

Loper, R. D.

1982-01-01T23:59:59.000Z

238

Determining the locus of a processing zone in an oil shale retort by effluent off gas heating value  

SciTech Connect

A processing zone advances through a fragmented permeable mass of particles containing oil shale in an in situ oil shale retort in a subterranean formation containing oil shale. The retort has an effluent gas passing therefrom. The effluent gas has a heating value which is dependent on the kerogen content of the oil shale then in contact with the processing zone. To determine the locus of the processing zone, the formation is assayed at selected locations in the retort for kerogen content before processing the selected locations, and effluent gas from the retort is monitored for its heating value.

Cha, C.Y.

1981-07-21T23:59:59.000Z

239

Oil shale, tar sands, and related materials  

SciTech Connect

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

240

Fire and explosion hazards of oil shale  

SciTech Connect

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Favorable conditions noted for Australia shale oil  

Science Conference Proceedings (OSTI)

After brief descriptions of the Rundle, Condor, and Stuart/Kerosene Creek oil shale projects in Queensland, the competitive advantages of oil shale development and the state and federal governments' attitudes towards an oil shale industry in Australia are discussed. It is concluded that Australia is the ideal country in which to start an oil shale industry.

Not Available

1986-09-01T23:59:59.000Z

242

Study of gas evolution during oil shale pyrolysis by TQMS (triple quadrupole mass spectrometer)  

DOE Green Energy (OSTI)

Real-time gas evolution during pyrolysis of two Green River Formation (Colorado) oil shales, one eastern US Devonian shale, and two Chinese shales was monitored using a triple quadrupole mass spectrometer (TQMS). We calculated kinetic parameters for hydrocarbon generation. For water, carbon oxides, and sulfur gases, we compared evolution profiles and identified the organicinorganic precursors of each species. We also monitored nitrogen- and sulfur-containing naphtha components. Hydrocarbon gas profiles, except for CH/sub 4/, are similar for all shales, and their rates of evolution reach a maximum at around the temperatures of maximum oil evolutions. The evolution profiles for H/sub 2/, CH/sub 2/, CO, and CO/sub 2/, at high temperatures are affected by the amount of char remaining in shale, carbonate minerals, and the water-gas shift reaction. The water profile, in general, consists of waters from surface dehydration, kerogen pyrolysis, and mineral dehydration. Mineral dehydration was the dominant water source for all shales, but the temperature ranges for the major water peak varied because of widely different mineral composition. Chinese shales evolved much more water than U.S. shales. Major differences between shales were seen in the sulfur gases. 17 refs., 4 figs., 3 tabs.

Oh, M.S.; Coburn, T.T.; Crawford, R.W.; Burnham, A.K.

1988-02-01T23:59:59.000Z

243

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Where is shale gas found Where is shale gas found in the United States? Shale gas is located in many parts of the United States. These deposits occur in shale "plays" - a set of discovered, undiscovered or possible natural gas accumulations that exhibit similar geological characteristics. Shale plays are located within large-scale basins or accumulations of sedimentary rocks, often hundreds of miles across, that also may contain other oil and gas resources. 1 Shale gas production is currently occurring in 16 states. 1 U.S. Government Accountability Office, Report to Congressional Requesters, "Oil and Gas: Information on Shale Resources, Development, and

244

Marcellus Shale Exploration in Greene County, Pennsylvania: A Land Cover Study of the Cumulative Effects of Forest Fragmentation in Well Pad Site Selection and Construction.  

E-Print Network (OSTI)

??The exploration and development of the Marcellus Shale geologic formation has increased greatly over the last decade. Of all the states that share this resource, (more)

Steiner, Joshua Eugene

2012-01-01T23:59:59.000Z

245

Shale oil cracking. 1. Kinetics  

DOE Green Energy (OSTI)

Experiments were conducted to determine kinetics for thermal cracking of shale oil vapor over shale. Cracking temperatures of 504 to 610/sup 0/C and residence times of 2 to 11 seconds were used. A first-order Arrhenius rate expression and stoichiometry were obtained. Also observed were changes in the oil quality. Cracking decreased the H/C ratio, increased the nitrogen content, and decreased the pour point of the oil. Gas-phase oil cracking is contrasted to liquid-phase oil coking as a loss mechanism in oil-shale retorting.

Burnham, A.K.; Taylor, J.R.

1979-10-01T23:59:59.000Z

246

Process and apparatus for oil shale retorting  

SciTech Connect

A process and apparatus are disclosed for the continuoua steady state retorting of ground oil shale in the absence of air. Retorting is accomplished by countercurrently contacting heated spent oil shale with fresh ground oil shale in a vessel from which air is excluded. The spent oil shale is heated by combustion of its carbonaceous residue to form a hot heat transfer medium which, when contacted with fresh oil shale in the retorting process, provides the energy for the recovery of hydrocarbons. (auth)

Frick, G.W.

1974-01-01T23:59:59.000Z

247

90-day Interim Report on Shale Gas Production - Secretary of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interim Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board The Shale Gas...

248

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

are unique to in-situ oil shale production, Literature fromother industries to oil shale production because these datapotential for spent shale grout production and to design a

Persoff, P.

2011-01-01T23:59:59.000Z

249

Shale Gas Development Challenges: Water | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Water Shale Gas Development Challenges: Water Shale Gas...

250

Shale Gas Development Challenges: Air | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Air Shale Gas Development Challenges: Air Shale Gas...

251

Oil Shale and Other Unconventional Fuels Activities | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

252

Oil Shale Research in the United States | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Shale Research in the United States Oil Shale Research in the United States Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories,...

253

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

pore-volume study of retorted oil shale," Lawrence LivermoreReaction kinetics between and oil-shale residual carbon. 1.Reaction kinetics between and oil-shale residual carbon. 2.

Fox, J.P.

2013-01-01T23:59:59.000Z

254

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

pore-volume study of retorted oil shale," Lawrence Livermorekinetics between and oil-shale residual carbon. 1. co Effectkinetics between and oil-shale residual carbon. 2. co 2

Fox, J.P.

2013-01-01T23:59:59.000Z

255

Production of fuel products by the thermal dissolution of enriched Baltic combustible shale  

SciTech Connect

The thermal dissolution of enriched Baltic shale (kerogen-70) in the presence of an organosilicon compound reduces the formation of gas and raises the solubility of its organic matter and, when the sludge from the process is coked, it decreases the formation of semicoke and gas; as a result of this, the yield of liquid products calculated on the shale processed is increased one and a half times.

Vol-Epshtein, A.B.; Gorlov, E.G.; Shpilberg, M.B.

1983-01-01T23:59:59.000Z

256

Shale Natural Gas Estimated Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Data Series: Proved Reserves as of Dec. 31 Adjustments...

257

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

by the Division of Oil, Gas, and Shale Technology and theGas Environments on Mineral Reactions in Colorado Oil Shale,"

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

258

Oil shale deposits of Thailand  

SciTech Connect

Oil-shale deposits occur in several areas of Thailand. Perhaps the most important deposit occurs at Mae Sod in Tak Province, West Thailand. Other well-known deposits are Li in Lamphum Province, Ko Kha District, Lampang Province, and Krabi in the southern peninsular region. The geological age of all these deposits is late Tertiary, as demonstrated by the presence of the fossils from the oil shale of the Mae Sod series, e.g., fish of the Ostariophysian family Cyprinidae.

Chakrabarti, A.K.

1976-06-01T23:59:59.000Z

259

Fracture analysis of the upper devonian antrim shale, Michigan basin  

Science Conference Proceedings (OSTI)

The Antrim Shale is a fractured, unconventional gas reservoir in the northern Michigan basin. Controls on gas production are poorly constrained but must depend on the fracture framework. Analyses of fracture geometry (orientation, spacing, and aperture width) were undertaken to better evaluate reservoir permeability and, hence, pathways for fluid migration. Measurements from nearly 600 fractures were made from outcrop, core, and Formation MicroScanner logs covering three members of the Antrim Shale (Norwood, Paxton, Lachine) and the Ellsworth Shale. Fracture analyses indicate pronounced reservoir anisotropy among the members. Together related with lithologic variations, this leads to unique reservoir characteristics within each member. There are two dominant fracture sets, northeast-southwest and northwest-southeast. Fracture density varies among stratigraphic intervals but always is lowest in the northwest-southeast fracture set and is greatest in the northeast-southwest fracture set. While aperture width decreases markedly with depth, subsurface variation in mean aperture width is significant. Based on fracture density and mean aperture width, the Norwood member has the largest intrinsic permeability and the Ellsworth Shale the lowest intrinsic permeability. The highest intrinsic fracture permeability in all intervals is associated with the northeast-southwest fracture set. The Norwood and Lachine members thus exhibit the best reservoir character. This information is useful in developing exploration strategies and completion practices in the Antrim Shale gas play.

Richards, J.A.; Budai, J.M.; Walter, L.M.; Abriola, L.M. (Univ. of Michigan, Ann Arbor, MI (United States))

1994-08-01T23:59:59.000Z

260

Maps: Exploration, Resources, Reserves, and Production - Energy ...  

U.S. Energy Information Administration (EIA)

Granite Wash Play, Texas and Oklahoma: United States Shale Oil Maps: Bakken Shale Play, Williston Basin, North Dakota, Montana, Saskatchewan & Manitoba Updated 3/20/2011:

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

targeting unconventional oil resources such as extra heavy oil, oil and tar sands, oil shale, and oil in unconventional reservoirs (like the fractured Bakken Shale of North...

262

Shale gas in the southern central area of New York State: Part I. How to find and develop shale gas in New York State  

SciTech Connect

The Appalachian Basin contains vast volumes of shale gas, and a significant potion of this is contained in three shales in south-central New York - the Rhinestreet, the Geneseo and the Marcellus. The economics of shale-gas exploration in New York are not very attractive to the large oil and gas companies, which seek a rapid return on their investments. The situation may be quite different for organizations which are more concerned with security of supply and stability of cost; these may include manufacturing companies, colleges, hospitals, state institutions and industrial or agricultural cooperatives. For these, production of even a modest 50 Mcf/day/well, declining slowly over many years, would be appealing if it could be guaranteed. To date three wells have been artificially fractured in the Marcellus shale of New York, and all three appear to be producers. This is only a small sample, and one of the wells is known to have encountered natural fractures. However, it does raise the possbility that (while nothing in exploration can be truly guaranteed) the chances of extracting at least some gas from the Marcellus - using modern fracturing techniques - are good. The chances are improved if geological techniques can identify zones of a suitable degree of natural fracturing in the shale. These techniques are aided by detailed structure maps of the shale units; such a map has been prepared for the Geneseo shale, as part of this project. The present conclusion is that the most likely source of shale gas in south-central New York is the Marcellus formation. Shale-gas wells should be drilled with air. The dry open hole should be logged with gamma-ray, density, temperature and noise logs. The shale should be artificially fractured using a nitrogen stimulation technique. Recommendations are given for each of these steps in the text.

Not Available

1981-04-01T23:59:59.000Z

263

Solar retorting of oil shale  

DOE Green Energy (OSTI)

First, in an overview, we outline and discuss the potential applications of solar energy to the production of fuels. We show that, starting from a fossil feedstock, there are four areas in which solar energy can have a major impact in the production of fuels: in solar retorting of oil shale, in solar coal gasification, in solar steam flooding of oil fields, and in solar steam-reforming of methane. We performed a detailed technical and economic analysis of solar retorting of oil shale. The analysis shows that this solar process not only should be technically feasible but also should improve the fuel yield from the oil-shale feedstock by 10 to 40%, depending on the grade of the shale, compared to the most efficient competing (nonsolar) process. The improved oil yield should more than pay for the incremental cost associated with adding the solar collection system (field of focusing heliostats). The results from an experiment in which solar energy was used to retort oil shale show that yields of better than 110% Fischer Assay are achievable. An advanced design for a solar oil-shale retort is also presented.

Gregg, D.W.; Taylor, R.W.; Grens, J.Z.; Aiman, W.R.; Marsh, L.E.

1980-05-15T23:59:59.000Z

264

Mechanical properties of oil shale of importance to in-situ rubblization  

SciTech Connect

Current proposals for true in-situ processing of oil shale employ deeply buried explosive charges to produce the desired rubblization. At short times after the explosion, the dynamic behavior of the material is of interest and can be studied in shockwave experiments. At intermediate times the divergence of the flow field requires a multidimensional specification of the material behavior which appears to be best determined from triaxial test data. At late times the possible formation of tensile stresses requires knowledge of the fracture mechanics and tensile behavior of the shale. This report presents a summary of techniques and results of triaxial compression, extension and fracture toughness tests on two grades of oil shale. Results indicate that oil shale differs significantly from most rocks and suggest that models originally developed for composite materials may be appropriate for describing the mechanical behavior of oil shale.

Schuler, K.W.; Schmidt, R.A.

1977-01-01T23:59:59.000Z

265

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

the carbon, oil, and gas from the shale are combusted; andceases t II Burner gas and shale heat shale ll>" ~Air AirFigure 2. Oil recovery Vent gas '\\Raw shale oil Recycled gas

Persoff, P.

2011-01-01T23:59:59.000Z

266

Shale Gas R&D | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale Gas R&D Shale Gas R&D Shale Gas R&D Natural gas from shales has the potential to significantly increase America's security of energy supply, reduce greenhouse gas emissions,...

267

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

recovery Vent gas '\\Raw shale oil Recycled gas compressorThis process produces shale oil, a low BTU gas, and char,Oil Shale Process" in Oil Shale and Tar Sands, J. W. Smith

Persoff, P.

2011-01-01T23:59:59.000Z

268

Combuston method of oil shale retorting  

DOE Patents (OSTI)

A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.

Jones, Jr., John B. (300 Enterprise Building, Grand Junction, CO 81501); Reeves, Adam A. (P.O. Box 781, Anvil Points, Rifle, CO 81650)

1977-08-16T23:59:59.000Z

269

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

Adams, D.C.

1993-04-22T23:59:59.000Z

270

Method for forming an in situ oil shale retort with horizontal free faces  

DOE Patents (OSTI)

A method for forming a fragmented permeable mass of formation particles in an in situ oil shale retort is provided. A horizontally extending void is excavated in unfragmented formation containing oil shale and a zone of unfragmented formation is left adjacent the void. An array of explosive charges is formed in the zone of unfragmented formation. The array of explosive charges comprises rows of central explosive charges surrounded by a band of outer explosive charges which are adjacent side boundaries of the retort being formed. The powder factor of each outer explosive charge is made about equal to the powder factor of each central explosive charge. The explosive charges are detonated for explosively expanding the zone of unfragmented formation toward the void for forming the fragmented permeable mass of formation particles having a reasonably uniformly distributed void fraction in the in situ oil shale retort.

Ricketts, Thomas E. (Grand Junction, CO); Fernandes, Robert J. (Bakersfield, CA)

1983-01-01T23:59:59.000Z

271

LLNL oil shale project review  

Science Conference Proceedings (OSTI)

Livermore's oil shale project is funded by two budget authorities, two thirds from base technology development and one third from environmental science. Our base technology development combines fundamental chemistry research with operation of pilot retorts and mathematical modeling. We've studied mechanisms for oil coking and cracking and have developed a detailed model of this chemistry. We combine the detailed chemistry and physics into oil shale process models (OSP) to study scale-up of generic second generation Hot-Recycled-Solid (HRS) retorting systems and compare with results from our 4 tonne-per-day continuous-loop HRS pilot retorting facility. Our environmental science program focuses on identification of gas, solid and liquid effluents from oil shale processes and development of abatement strategies where necessary. We've developed on-line instruments to quantitatively measure trace sulfur and nitrogen compounds released during shale pyrolysis and combustion. We've studied shale mineralogy, inorganic and organic reactions which generate and consume environmentally sensitive species. Figures, references, and tables are included with each discussion.

Cena, R.J. (ed.)

1990-04-01T23:59:59.000Z

272

What is the Issue? The Marcellus Shale is a geologic shale bed that extends across much  

E-Print Network (OSTI)

What is the Issue? The Marcellus Shale is a geologic shale bed that extends across much of the Marcellus Shale. Energy companies plan to nearly double the number of drilling rigs by the end of the year, this development illustrates the attractiveness of market proximity and the quality of Marcellus Shale gas

Wang, Z. Jane

273

Pennsylvania Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Shale Production (Billion Cubic Feet) Pennsylvania Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 1 65...

274

New Mexico Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) New Mexico Shale Production (Billion Cubic Feet) New Mexico Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

275

Multiphase flow analysis of oil shale retorting  

DOE Green Energy (OSTI)

Several multiphase phenomena occur during oil shale retorting. An analysis is presented of two of these processes including condensation of oil shale vapor and oscillations of pressure in oil shale blocks through cracked bedding planes. Energy conservation equations for oil shale retorting, which include the effects associated with condensation of oil, are derived on the basis of two phase flow theory. It is suggested that an effective heat capacity associated with the latent heat of condensation should be included in the modeling of simulated modified in-situ oil shale retorting. A pressure propagation equation for fast transients in oil shale cracks has been derived and examined in view of existing experimental data. For slow processes, a limiting solution for maximum pressure in oil shale rocks has been obtained. Generation of high pressures in rocks by thermal or other means may lead to rock fracture which may be taken advantage of in modified in-situ oil shale processing.

Gidaspow, D.; Lyczkowski, R.W.

1978-09-18T23:59:59.000Z

276

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network (OSTI)

Minor elements in oil shale and oil~shale products, LERCmercury to the oil shale, shale oil, and retort water. Thesemercury to spent shale, shale oil, retort water and offgas

Fox, J. P.

2012-01-01T23:59:59.000Z

277

Oil shale technology. Final report  

SciTech Connect

This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

1995-03-01T23:59:59.000Z

278

In situ oil shale retort with a generally T-shaped vertical cross section  

DOE Patents (OSTI)

An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale and has a production level drift in communication with a lower portion of the fragmented mass for withdrawing liquid and gaseous products of retorting during retorting of oil shale in the fragmented mass. The principal portion of the fragmented mass is spaced vertically above a lower production level portion having a generally T-shaped vertical cross section. The lower portion of the fragmented mass has a horizontal cross sectional area smaller than the horizontal cross sectional area of the upper principal portion of the fragmented mass above the production level.

Ricketts, Thomas E. (Grand Junction, CO)

1981-01-01T23:59:59.000Z

279

Australian developments in oil shale processing  

SciTech Connect

This study gives some background on Australian oil shale deposits, briefly records some history of oil shale processing in the country and looks at the current status of the various proposals being considered to produce syncrudes from Australian oil shales. 5 refs.

Baker, G.L.

1981-01-01T23:59:59.000Z

280

Oil shale technology and evironmental aspects  

SciTech Connect

Oil shale processes are a combination of mining, retorting, and upgrading facilities. This work outlines the processing steps and some design considerations required in an oil shale facility. A brief overview of above ground and in situ retorts is presented; 6 retorts are described. The development aspects which the oil shale industry is addressing to protect the environment are presented.

Scinta, J.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

Adams, D.C.

1992-01-01T23:59:59.000Z

282

Reaction kinetics for remodeling oil shale retorting  

DOE Green Energy (OSTI)

Results from recent laboratory kinetic studies at the Lawrence Livermore Laboratory (LLL) on gasification, pyrolysis, and mineral reactions in oil shale are presented. The specific pyrolysis reactions investigated include the decomposition of kerogen, the evolution of oil, hydrogen and C/sub 2/ plus C/sub 3/ hydrocarbons and the formation of a carbonaceous residue. Data describing the evolution of H/sub 2/ and CH/sub 4/ during secondary pyrolysis of the carbonaceous residue are also presented. The mineral reaction kinetics discussed include the decomposition and/or reaction (with silica or silicates) of calcite, dolomite, dawsonite and nahcolite. Rate equations describing the effects of CO/sub 2/ and steam on the reactions of calcite and dolomite are presented. Finally, kinetics describing gasification of the carbonaceous residue by CO/sub 2/ and H/sub 2/O are examined. The above kinetic data are summarized in a set of rate expressions that can be used in numerical modeling of oil shale retorting. The rate equations are general enough for modeling both in-situ and surface retorting processes.

Campbell, J.H.; Burnham, A.K.

1979-01-01T23:59:59.000Z

283

Oil-shale material properties  

SciTech Connect

The mechanical properties of oil shale have been under examination at Sandia since 1975 in a program which has involved laboratory and field experimentation along with complementary analytical activities. The dependence of the fragmentation phenomenon on strain rate is important in explosive applications because strain rates realized in typical blasting events extend over a wide range. The model has been used to calculate a variety of explosive geometries in oil shale, with results compared to small- and large-scale experiments, including a small block test with 80 g of explosive and a field test with 5 kg explosive.

Kipp, M.E.

1983-01-01T23:59:59.000Z

284

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 XX-1 XX. CHINA SUMMARY China has abundant shale gas and shale oil potential in seven prospective basins: Sichuan, Tarim, Junggar, Songliao, the Yangtze Platform, Jianghan and Subei, Figure XX-1. Figure XX-1. China's Seven Most Prospective Shale Gas and Shale Oil Basins are the Jianghan, Junggar, Sichuan, Songliao, Subei, Tarim, and Yangtze Platform. Source: ARI, 2013. XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment

285

Ground water control for an in situ oil shale retort  

SciTech Connect

An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of particles containing oil shale. An open base of operation is excavated in the formation above the retort site, and an access drift is excavated to the bottom of the retort site. Formation is explosively expanded to form the fragmented mass between the access drift and an elevation spaced below the bottom of the base of operation, leaving a horizontal sill pillar of unfragmented formation between the top of the fragmented mass and the bottom of the base of operation. The sill pillar provides a safe base of operation above the fragmented mass from which to control retorting operations. A plurality of blasting holes used in explosively expanding the formation extend from the base of operation, through the sill pillar, and open into the top of the fragmented mass. Trenches are formed in the base of operation for collecting ground water which enters the base of operation prior to and during retorting operations, and collected ground water is withdrawn from the base of operation. Casings can be placed in the blasting holes and adapted for controlling gas flow through the fragmented mass during retorting operations. The casings extend above the floor of the base of operation to inhibit flow of ground water through the blasting holes into the fragmented mass, and other blasting holes not having such casings are sealed. After retorting is completed, the floor of the base of operation can be covered with a layer of concrete and/or the blasting holes can be sealed with concrete to inhibit leakage of ground water into treated oil shale particles in the fragmented mass.

Ridley, R.D.

1979-05-08T23:59:59.000Z

286

Sulfide-Driven Arsenic Mobilization from Arsenopyrite and Black Shale Pyrite  

Science Conference Proceedings (OSTI)

We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black shale formations.

Zhu, W.; Young, L; Yee, N; Serfes, M; Rhine, E; Reinfelder, J

2008-01-01T23:59:59.000Z

287

Material balance assay of Devonian gas shale  

DOE Green Energy (OSTI)

A Devonian shale retorting method, similar to the TOSCO Material Balance Assay, was developed. Oil, gas, water, and spent shale collected from the thermal decomposition of Devonian shale provide material balance closure. Elemental and other analyses were used to characterize the products and evaluate their fuel potential. The precision of each analysis was estimated by running a series of material balance assays on a composite shale sample. The elemental composition of this shale oil was shown to remain unchanged on aging. Typical material balance assays from each well where core samples were taken are presented.

Kapsch, D.M.; Frye, J.O.; Nunn, E.B.

1979-08-20T23:59:59.000Z

288

Prevention of bit balling in shales - Preliminary results  

Science Conference Proceedings (OSTI)

Bit balling is a major problem that occurs during drilling of a formation containing water-sensitive clays, such as shales. This paper discusses a new technique for eliminating this problem that establishes an electric potential between the formation and the bit with the bit as the cathode. Laboratory drilling experiments in Pierre shale showed that, under favorable conditions, bit balling was reduced. The rate of penetration (ROP) doubled when the bit was negatively charged with respect to the rock, compared with the case where no potential was applied. This method suggests a new approach to reducing bit balling without toxic chemicals or oil-based muds, which are subject to serious environmental restrictions.

Roy, S.; Cooper, G.A. (Univ., of California, Berkeley (United States))

1993-09-01T23:59:59.000Z

289

Oil-shale utilization at Morgantown, WV  

Science Conference Proceedings (OSTI)

Fully aware of the nation's need to develop high-risk and long-term research in eastern oil-shale and low-grade oil-shale utilization in general, the US DOE/METC initiated an eastern oil-shale characterization program. In less than 3 months, METC produced shale oil from a selected eastern-US oil shale with a Fischer assay of 8.0 gallons/ton. In view of the relatively low oil yield from this particular oil shale, efforts were directed to determine the process conditions which give the highest oil yield. A 2-inch-diameter electrically heated fluidized-bed retort was constructed, and Celina oil shale from Tennessee was selected to be used as a representative eastern oil shale. After more than 50 runs, the retorting data were analyzed and reviewed and the best oil-yield operating condition was determined. In addition, while conducting the oil-shale retorting experiments, a number of technical problems were identified, addressed, and overcome. Owing to the inherent high rates of heat and mass transfers inside the fluidized bed, the fluidized-bed combustor and retorting appear to be a desirable process technology for an effective and efficient means for oil-shale utilization. The fluidized-bed operation is a time-tested, process-proven, high-throughput, solid-processing operation which may contribute to the efficient utilization of oil-shale energy.

Shang, J.Y.; Notestein, J.E.; Mei, J.S.; Romanosky, R.R.; King, J.A.; Zeng, L.W.

1982-01-01T23:59:59.000Z

290

Enriching off gas from oil shale retort  

SciTech Connect

Liquid and gaseous products are recovered from oil shale in an in situ oil shale retort in which a combustion zone is advanced therethrough by a method which includes the steps of establishing a combustion zone in the oil shale in the in situ oil shale retort and introducing a gaseous feed mixture into the combustion zone in the direction the combustion zone is to be advanced through the in situ oil shale retort. The gaseous feed mixture comprises an oxygen supplying gas and water vapor and is introduced into the combustion zone at a rate sufficient to maintain the temperature in the combustion zone within a predetermined range of temperatures above the retorting temperature of the oil shale in the in situ oil shale retort and sufficient to advance the combustion zone through the in situ oil shale retort. The introduction of the gaseous feed mixture into the combustion zone generates combustion products gases which together with the portion of the gaseous feed mixture which does not take part in the combustion process, is called flue gas. The flue gas passes through the oil shale on the advancing side of the combustion zone, thereby retorting the oil shale to produce liquid and gaseous products. The liquid product and the retort off gas, which comprises gaseous product and flue gas, are withdrawn from the in situ oil shale retort at a point on the advancing side of the retorting zone. 47 claims, 1 figure.

Cha, C.Y.; Ridley, R.D.

1977-07-19T23:59:59.000Z

291

Flash pyrolysis of oil shale with various gases  

DOE Green Energy (OSTI)

The flash pyrolysis of Colorado Oil Shale with methane at a temperature of 800/sup 0/C and pressure of 500 psi appears to give the highest yield of hydrocarbon gas and liquid followed by hydrogen and lowest with helium. In the methane pyrolysis over 54.5% of the carbon in the kerogen is converted to ethylene and benzene. The flash pyrolysis with hydrogen (flash hydropyrolysis) of the oil shale at increasing temperatures showed a rapidly increasing amount of methane formed and a decrease in ethane formation, while the BTX (benzene mainly) yield remained at approximately 10%. At 950/sup 0/C and 500 psi almost all (97.0%) of the carbon in the kerogen is converted to liquid and gaseous hydrocarbons. Experiments with a mixture of a New Mexico sub-bituminous coal and oil shale under flash hydropyrolysis and methane pyrolysis conditions indicated higher yields of methane and ethylene and slightly lower yields of benzene than predicted by partial additive calculations. These exploratory experiments appear to be of sufficient interest to warrant a fuller investigation of the interaction of the natural resources, oil shale, coal and natural gas under flash pyrolysis conditions.

Steinberg, M.; Fallon, P.T.

1983-10-01T23:59:59.000Z

292

Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil  

Science Conference Proceedings (OSTI)

This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

1989-12-12T23:59:59.000Z

293

Water management technologies used by Marcellus Shale Gas Producers.  

Science Conference Proceedings (OSTI)

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

294

Ignition technique for an in situ oil shale retort  

DOE Patents (OSTI)

A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

Cha, Chang Y. (Golden, CO)

1983-01-01T23:59:59.000Z

295

SHALE OIL--THE ELUSIVE ENERGY  

E-Print Network (OSTI)

An early settler in the valley of Parachute Creek in western Colorado built a log cabin, and made the fireplace and chimney out of the easily cut, locally abundant black rock. The pioneer invited a few neighbors to a house warming. As the celebration began, he lit a fire. The fireplace, chimney, and ultimately the whole cabin caught fire, and burned to the ground. The rock was oil shale. It was a sensational house warming! Oil shales are reported to have been set afire by lightning strikes. The Ute Indians of northwestern Colorado told stories of "mountains that burned. " Cowboys and ranchers of the region burned the dark rock in their fires, like coal. The flammable nature of the richer oil shales is basis for the title of a fascinating book by H. K. Savage (1967), The Rock That Burns. During oil shale enthusiasms in the early part of this century, stock promoters brought pieces of oil shale to Chicago street corners and set them afire. Clouds of smoke attracted crowds, and the promoters sold stock in oil shale companies. Nature of oil shale. Shale oil comes from oil shale, but oil shale is a misnomer. It is neither a true shale nor does it generally have any oil in it. It is better identified as organic marlstone, marl being a mixture of clay and calcium carbonate. The organic material is kerogen, derived from myriad organisms, chiefly plants. Savage (1967) notes the term "oil shale " is a promotional term: "The magic word 'oil ' would raise large sums of promotion money while organic marlstone wouldn't raise a dime." The U. S. Geological Survey (USGS) defines oil shale as "organic-rich shale that yields substantial quantities of oil by conventional methods of destructive distillation of the contained organic matter, which employ low confining pressures in a closed retort system. " (Duncan and HC#98/4-1-1

M. King; Hubbert Center; Walter Youngquist

1998-01-01T23:59:59.000Z

296

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

Adams, D.C.

1992-01-01T23:59:59.000Z

297

Determining the locus of a processing zone in an in situ oil shale retort by pressure monitoring  

SciTech Connect

The locus of a processing zone advancing through a fragmented permeable mass of particles in an in situ oil shale retort in a subterranean formation containing oil shale is determined by monitoring pressure in the retort. Monitoring can be effected by placing a pressure transducer in a well extending through the formation adjacent the retort and/or in the fragmented mass such as in a well extending into the fragmented mass.

Ridley, R.D.; Burton, R.S. III

1978-10-17T23:59:59.000Z

298

Sedimentology of gas-bearing Devonian shales of the Appalachian Basin  

SciTech Connect

The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

Potter, P.E.; Maynard, J.B.; Pryor, W.A.

1981-01-01T23:59:59.000Z

299

Shale gas in the southern central area of New York State: Part II. Experience of locating and drilling four shale-gas wells in New York State  

Science Conference Proceedings (OSTI)

Four shale-gas wells have been located and drilled in the south-central area of New York State as part of this project. The four wells that were drilled are: the Rathbone well, in Steuben County, was located on the north side of a graben, in an old shale-gas field; it penetrated the Rhinestreet, Geneseo and Marcellus shales. Artificial stimulation was performed in the Rhinestreet, without marked success, and in the Marcellus; the latter formation has a calculated open flow of 110 Mcf/day and appears capable of initial production of 100 Mcf/day against a back-pressure of 500 psi. The Dansville well, in Livingston County, tested the Geneseo and Marcellus shales at shallower depth. Artificial stimulation was performed in the Marcellus. The calculated open flow is 95 Mcf/day, and the well appears capable of initial production of 70 Mcf/day against a back-pressure of 300 psi. The Erwin and N. Corning wells, both near Corning in Steuben County, were designed to test the possibility of collecting gas from a fractured conduit layer connecting to other fracture systems in the Rhinestreet shale. The N. Corning well failed; the expected conduit was found to be only slightly fractured. The Erwin well encountered a good initial show of gas at the conduit, but the gas flow was not maintained; even after artificial stimulation the production is only 10 Mcf/day. The present conclusion is that the most likely source of shale gas in south-central New York is the Marcellus shale formation. Important factors not yet established are the decline rate of Marcellus production and the potential of the Geneseo after stimulation.

Not Available

1981-04-01T23:59:59.000Z

300

Effects of diagenesis on the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Magnafacies  

E-Print Network (OSTI)

Effects of diagenesis on the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Abstract The Utica black shales were deposited in the Taconic Foreland basin 420 Ma ago. The organic matter in these shales is of marine origin and the timing of deposition of these shales has been constrained

Basu, Asish R.

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network (OSTI)

production of portland cement from a 1.8:1 mixture of limestone and raw oil shale.oil production and result in a new, high-risk tech- nology while modification of as-received spent shale

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

302

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network (OSTI)

pore-volume study of retorted oil shale," Lawrence Livermore1978. York, E. D. , Amoco Oil Co. , letter to J. P. Fox,Reaction kinetics between and oil-shale residual carbon. 1.

Fox, J.P.

2013-01-01T23:59:59.000Z

303

Shale Energy Resources Alliance (SERA)  

NLE Websites -- All DOE Office Websites (Extended Search)

contActS contActS George Darakos Business Manager 412-386-7390 george.darakos@netl.doe.gov Barbara Kutchko, PhD Shallow Stray Gas, Research Team Leader 412-386-5149 barbara.kutchko@netl.doe.gov Natalie Pekney, PhD Air Emissions, Research Team Leader 412-386-5953 natalie.pekney@netl.doe.gov Paul Ziemkiewicz, PhD Water, Research Team Leader 304-293-6958 pziemkie@wvu.edu nEtL-RUA PARtnERS Carnegie Mellon University Penn State University of Pittsburgh URS Corporation Virginia Tech West Virginia University Shale Energy Resources Alliance (SERA) Mission To support the environmentally and socially sustainable development of shale resources through collaborative research and development among industry, university, and government partners on: resource characterization; drilling and

304

Hugoniots of Colorado oil shale  

SciTech Connect

Standard experimental shock wave techniques were used to obtain Hugoniots of Anvil Points oil shale as functions of richness and orientation in the pressure regime encountered in the near-field region of an explosion. The shock response was found to be sensitive to kerogen content but independent of bedding orientation relative to the direction of shock propagation. A two-component model combining the inferred dynamic parameters for the end members (kerogen and mineral matrix) is adequate to predict the Hugoniots of oil shale of any arbitrary composition. Hence, the Hugoniots, as for other material properties, can be ultimately uniquely related to the oil yield. Preliminary dynamic results from samples obtained from other sites in Colorado and Wyoming indicate that this is generally true within the accuracy required for predictive explosive rock breakage calculations. 7 figures.

Carter, W.J.

1977-01-01T23:59:59.000Z

305

Shale Oil Value Enhancement Research  

Science Conference Proceedings (OSTI)

Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

James W. Bunger

2006-11-30T23:59:59.000Z

306

International developments in oil shale  

SciTech Connect

An overview of oil shale research and development outside the US provides a status report on technology approaches under active consideration in Australia, Brazil, Canada, China, West Germany, Israel, Jordan, Morocco, Soviet Union, Thailand, Turkey, and Yugoslavia. The status report covers the development plans and project costs of industrial projects. The technologies under consideration include the Fushun, Galoter, Kiviter, Lurgi, and Petrosix processes. 10 references.

Uthus, D.B.

1985-08-01T23:59:59.000Z

307

Oil shale up-date  

SciTech Connect

The development of large domestic oil shale resources in an environmentally acceptable manner is technically feasible. Such development is approaching economic attractiveness. It is an essential step in attacking the major national problem: increasing oil imports. Several things have been impeding oil shale development. First, until recently there has been a lack of viable technology. Second, environmental regulations are becoming increasingly restrictive. These have become so unrealistic that the bare undeveloped ground in oil shale country fails to comply. Most of this area is now classified as a nonattainment area. The third reason is economic uncertainty. This relates to price and other governmental controls which make it impossible to predict future conditions with enough confidence to justify private investments. In an effort to overcome this uncertainty, while retaining the impeding controls, all types of governmental incentives and supports are being proposed by the Administration, the Congress, and the industry. This study highlights the current status of the more prominent technologies. It suggest that the next logical step in their advancement is the construction and operation of single full-size retorts or modules.

Pforzheimer, H.

1978-09-01T23:59:59.000Z

308

Oil shale mining and the environment. [Colorado  

SciTech Connect

Experimental mining of oil shale, to date, has been conducted only in the shallow Mahogany Zone and has utilized only the room and pillar mining method. The U.S. Bureau of Mines is planning a demonstration mine in the deep, thick oil-shale deposits in Colorado. This study describes the 4 mining concepts that are planned for demonstration and the interrelationship of these concepts and the environment. The environmental aspects of oil-shale development also are discussed.

Rajaram, V.; Kauppila, T.A.; Bolmer, R.L.

1977-01-01T23:59:59.000Z

309

Pyrolysis of shale oil residual fractions  

SciTech Connect

The freezing point of JP-5, the Navy jet fuel, has been related to the n-alkane content, specifically n-hexadecane. In general, jet fuels from shale oil have the highest n-alkanes. The formation of n-alkanes in the jet fuel distillation range can be explained if large n-alkanes are present in the crude oil source. Quantities of large n-alkanes are insufficient, however, to explain the amounts found - up to 37% n-alkanes in the jet fuel range. Other possible precursors to small straight chain molecules are substituted cyclic compounds. Attack in the side chain obviously afford a path to an n-alkane. Aromatic hydrocarbons, esters, acids, amines, and ethers also have the potential to form n-alkanes if an unbranched alkyl chain is present in the molecule. Investigations showed that the best yield of the JP-5 cut comes at different times for the various fractions, but a time in the 60 to 120 min range would appear to be the optimum time for good yield at 450/sup 0/C. The longer time would be preferred with respect to lower potential n-alkane yield. None of the fractions gave n-alkane yields approaching the 37% amount found in the Shale-I JP-5. A temperature different than the 450/sup 0/C used here might affect the conversion percentage. Further the combined saturate, aromatic, and polar fractions may interact under pyrolysis conditions to give higher potential n-alkane yields than the fractions stressed independently.

Hazlett, R.N.; Beal, E.; Vetter, T.; Sonntag, R.; Moniz, W.

1980-01-01T23:59:59.000Z

310

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 I-1 I. CANADA SUMMARY Canada has a series of large hydrocarbon basins with thick, organic-rich shales that are assessed by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in Western Canada. Figure I-1. Selected Shale Gas and Oil Basins of Western Canada Source: ARI, 2012. I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 I-2 The full set of Canadian shale gas and shale oil basins assessed in this study include:

311

Modern Shale Gas Development in the United States: A Primer ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modern Shale Gas Development in the United States: A Primer Modern Shale Gas Development in the United States: A Primer This Primer on Modern Shale Gas Development in the United...

312

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

are unique to in-situ oil shale production, Literature fromother industries to oil shale production because these dataThe processes used in production of oil shale have not been

Persoff, P.

2011-01-01T23:59:59.000Z

313

Why is shale gas important? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home Why is shale gas important? Why is shale gas important? Why is shale gas important? Energy.gov...

314

How is shale gas produced? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home How is shale gas produced? How is shale gas produced? How is shale gas produced? Energy.gov Careers...

315

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network (OSTI)

20 to 40% of the oil shale, and explosively rubblizing andCEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,

Mehta, P.K.

2012-01-01T23:59:59.000Z

316

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network (OSTI)

CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,CEMENTS FROM SPENT OIL SHALE P, K, Mehta Civil Engineering

Mehta, P.K.

2012-01-01T23:59:59.000Z

317

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

Controls for a Commercial Oil Shale In~try, Vol. I, An En~in Second Briefing on In-Situ Oil Shale Technology, LawrenceReactions in Colorado Oil Shale, Lawrence Report UCRL-

Persoff, P.

2011-01-01T23:59:59.000Z

318

Control Strategies for Abandoned in situ Oil Shale Retorts  

E-Print Network (OSTI)

Presented elt the TUJelfth Oil Shale Synlposittnz, Golden,for Abandoned In Situ Oil Shale Retorts P. Persoll and ]. P.Water Pollution of Spent Oil Shale Residues, EDB Lea,

Persoff, P.; Fox, J.P.

1979-01-01T23:59:59.000Z

319

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

Controls for a Commercial Oil Shale In~try, Vol. I, An En~Mathematical Hodel for In-Situ Shale Retorting," in SecondBriefing on In-Situ Oil Shale Technology, Lawrence Livermore

Persoff, P.

2011-01-01T23:59:59.000Z

320

Control Strategies for Abandoned in situ Oil Shale Retorts  

E-Print Network (OSTI)

Presented elt the TUJelfth Oil Shale Synlposittnz, Golden,for Abandoned In Situ Oil Shale Retorts P. Persoll and ]. P.Pollution of Spent Oil Shale Residues, EDB Lea, Salinity

Persoff, P.; Fox, J.P.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Impacts of Marcellus Shale Development on Municipal Governments in Susquehanna  

E-Print Network (OSTI)

Impacts of Marcellus Shale Development on Municipal Governments in Susquehanna and Washington Marcellus shale gas development. The study focused on how gas development is affecting the demand (1) their already extensive shale activity; (2) their divergent geographical, cultural

Boyer, Elizabeth W.

322

INTER-MOUNTAIN BASINS SHALE BADLAND extent exaggerated for display  

E-Print Network (OSTI)

INTER-MOUNTAIN BASINS SHALE BADLAND R.Rondeau extent exaggerated for display ACHNATHERUM HYMENOIDES HERBACEOUS ALLIANCE Achnatherum hymenoides Shale Barren Herbaceous Vegetation ARTEMISIA BIGELOVII SHRUBLAND ALLIANCE Leymus salinus Shale Sparse Vegetation Overview: This widespread ecological system

323

NATURAL GAS FROM SHALE: Questions and Answers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges are Associated with Challenges are Associated with Shale Gas Production? Developing any energy resource - whether conventional or non-conventional like shale - carries with it the possibility and risk of environmental, public health, and safety issues. Some of the challenges related to shale gas production and hydraulic fracturing include: * Increased consumption of fresh water (volume and sources); * Induced seismicity (earthquakes) from shale flowback water disposal;Chemical disclosure of fracture fluid additives; * Potential ground and surface water contamination; * Air quality impacts; * Local impacts, such as the volume of truck traffic, noise, dust and land disturbance.

324

Virginia Shale Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Natural Gas > Navigator Energy Glossary ... Download Data (XLS File) No chart available. Virginia Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3

325

Production Optimization in Shale Gas Reservoirs.  

E-Print Network (OSTI)

?? Natural gas from organic rich shales has become an important part of the supply of natural gas in the United States. Modern drilling and (more)

Knudsen, Brage Rugstad

2010-01-01T23:59:59.000Z

326

,"Miscellaneous Shale Gas Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

327

,"Shale Natural Gas Reserves Revision Decreases "  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Shale Natural Gas Reserves Revision Decreases ",36,"Annual",2011,"6302009" ,"Release...

328

Miscellaneous States Shale Gas Proved Reserves Acquisitions ...  

U.S. Energy Information Administration (EIA) Indexed Site

Available; W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Shale Natural Gas Reserves Acquisitions...

329

,"Shale Natural Gas Reserves Revision Increases "  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Shale Natural Gas Reserves Revision Increases ",36,"Annual",2011,"6302009" ,"Release...

330

,"Shale Natural Gas New Field Discoveries "  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Shale Natural Gas New Field Discoveries ",36,"Annual",2011,"6302009" ,"Release...

331

The Black Shale Basin of West Texas.  

E-Print Network (OSTI)

??The Black Shale Basin of West Texas covers an area in excess of 21,000 square miles and includes the region from Terrell and Pecos Counties (more)

Cole, Charles Taylor, 1913-

2012-01-01T23:59:59.000Z

332

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

steam, and groundwater intrusion during oil shale retorting: retort water and gas condensate.Steam Stripping of Occi- dental petroleum Retort No. 6 Gas Condensate,

Fox, J.P.

2010-01-01T23:59:59.000Z

333

,"Wyoming Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

334

,"Pennsylvania Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

335

,"Montana Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

336

,"Colorado Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

337

,"Oklahoma Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

338

,"Arkansas Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

339

,"Michigan Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

340

,"Ohio Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"Kentucky Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

342

Water application related to oil shale listed  

SciTech Connect

A water right application filed by the Rio Blanco Oil Shale Company, Inc. is reported for surface waters and ground water in Rio Blanco County, Colorado.

1986-09-01T23:59:59.000Z

343

Method and apparatus for distilling oil shale  

SciTech Connect

In an oil shale retrort there is the combination of a plurality of interconnected hollow sections, each having a flat bottom, the bottom surfaces of the sections lying in different planes and being inclined at an angle greater than the angle of repose for powdered oil shale whereby oil shale will flow by the action of gravity alone. Means are located at the juncture of each of the sections for abruptly changing the direction of flow of the shale whereby the velocity is reduced.

White, C.O.

1929-02-26T23:59:59.000Z

344

Enriching off gas from oil shale retort  

SciTech Connect

A method whereby liquid and gaseous products are recovered from oil shale in an in situ oil shale retort is discussed. A combustion zone is advanced by establishing a combustion zone in the oil shale and introducing a gaseous feed mixture into the zone in the direction the zone is to be advanced through the oil shale retort. The gaseous feed mixture consists of an oxygen supplying gas and water vapor and is introduced into the combustion zone at a rate sufficient to maintain the temperature in the combustion zone within a predetermined range of temperatures above the retorting temperature of the oil shale in the in situ oil shale retort. The introduction of the gaseous feed mixture into the combustion zone generates combustion product gases which together with the portion of the gaseous feed mixture which does not take part in the combustion process, is called flue gas. The flue gas passes through the oil shale on the advancing side of the combustion zone, thereby retorting the oil shale to produce liquid and gaseous products. The liquid product and the retort off gas, which consists of gaseous product and flue gas, are withdrawn from the in situ oil shale retort at a point on the advancing side of the retorting zone. (47 claims) (Continuation-in-part of U.S. Appl. 492,289, f. 7/26/74)

Cha, C.Y.; Ridley, R.D.

1977-07-19T23:59:59.000Z

345

Oil shale oxidation at subretorting temperatures  

SciTech Connect

Green River oil shale was air oxidized at subretorting temperatures. Off gases consisting of nitrogen, oxygen, carbon monoxide, carbon dioxide, and water were monitored and quantitatively determined. A mathematical model of the oxidation reactions based on a shrinking core model has been developed. This model incorporates the chemical reaction of oxygen and the organic material in the oil shale as well as the diffusivity of the oxygen into the shale particle. Diffusivity appears to be rate limiting for the oxidation. Arrhenius type equations, which include a term for oil shale grade, have been derived for both the chemical reaction and the diffusivity.

Jacobson, I.A. Jr.

1980-06-01T23:59:59.000Z

346

Developments in oil shale in 1983  

SciTech Connect

Oil shale development activities continued at a somewhat restricted pace during 1983. The activities reflect the continued soft economic environment in the petroleum industry. A limited number of projects are active, and research is continuing on processes, materials handling, mining techniques, and resource evaluation. Past oil shale development papers have highlighted resources and activities in several states in the eastern and western portions of the United States. This paper highlights Australian oil shale geology and developments and Canadian oil shale geology and developments. 5 figures, 1 table.

Knutson, C.F.; Dana, G.F.; Hutton, A.C.; Macauley, G.

1984-10-01T23:59:59.000Z

347

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

showing potential for subsidence and spent shale leaching.cracking and ground subsidence, and low leaving largeto 210 m overburden), and subsidence. These problems may be

Mehta, P.K.

2013-01-01T23:59:59.000Z

348

Shale Gas Proved Reserves - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Shale Gas Proved Reserves (Billion Cubic Feet) Period: Annual : Download Series History: Definitions, Sources & Notes 2007 2008 View History; U.S. ...

349

Challenges and strategies of shale gas development.  

E-Print Network (OSTI)

??The objective of this paper is to help new investors and project developers identify the challenges of shale gas E&P and to enlighten them of (more)

Lee, Sunje

2012-01-01T23:59:59.000Z

350

Improved Casing for Shales - Programmaster.org  

Science Conference Proceedings (OSTI)

The shale gas boom in recent years has been due to modern technology in hydraulic fracturing to create extensive artificial fractures around well bores. Proper...

351

Shale recharge and production behavior of geopressured reservoirs  

DOE Green Energy (OSTI)

The reservoir simulator MUSHRM was used to study the conditions under which significant shale recharge may be expected. The calculations presented herein show that shale recharge is a strong function of the vertical shale permeability but is not greatly influenced by the shale compressibility. Significant shale recharge will occur only if the vertical shale permeability is at least of the order of 0.01 ..mu..d.

Garg, S.K.

1980-04-01T23:59:59.000Z

352

TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY  

E-Print Network (OSTI)

Identified in Oil Shale and Shale Oil. list." 1. Preliminaryrisks of large scale shale oil production are sufficient tofound in oil shale and shale oil by EMIC and ETIC, has

Kland, M.J.

2010-01-01T23:59:59.000Z

353

INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER  

E-Print Network (OSTI)

Minor Elements in Oil Shale and Oil Shale Products. LERCfor Use 1n Oil Shale and Shale Oil. OSRD-32, 1945. Jeris, J.Water coproduced with shale oil and decanted from it is

Farrier, D.S.

2011-01-01T23:59:59.000Z

354

TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY  

E-Print Network (OSTI)

Chemicals Identified in Oil Shale and Shale Oil. list." 1.of Trace Contaminants in Oil Shale Retort Wa- ters", Am.Trace Contaminants in Oil Shale Retort Waters", in Oil Shale

Kland, M.J.

2010-01-01T23:59:59.000Z

355

A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES..............................1 A2. VARIABILITY IN SHALE WELL PRODUCTION PERFORMANCE ............................1  

E-Print Network (OSTI)

1 APPENDIX1 Contents A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES..............................1 A2. VARIABILITY IN SHALE WELL PRODUCTION PERFORMANCE ............................1 A3. GHG FOR FLOWBACK GAS CAPTURE IN SHALE PLAYS..9 A5. REFERENCES

356

Second eastern gas shales symposium. Preprints. Volume II  

SciTech Connect

Ten papers are included on the eastern gas shale project, characterization of the shale, and stimulation. Separate abstracts were prepared for all ten papers. (DLC)

1978-10-01T23:59:59.000Z

357

The Impact of Marcellus Shale Total Organic Carbon on Productivity.  

E-Print Network (OSTI)

??In the Appalachian basin, the Devonian organic-rich shale interval, including the Marcellus Shale, is an important target for natural gas exploration. It has been utilized (more)

Fakhouri, Eyad

2013-01-01T23:59:59.000Z

358

North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) North Dakota Natural Gas Gross Withdrawals from Shale Gas...

359

Louisiana (with State Offshore) Shale Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Louisiana (with State Offshore) Shale Production (Billion Cubic Feet) Louisiana (with State Offshore) Shale Production (Billion Cubic...

360

Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Shale Gas...

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Texas (with State Offshore) Shale Proved Reserves (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Texas (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Shale Proved Reserves (Billion...

362

Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Arkansas Natural Gas Gross Withdrawals from Shale Gas...

363

Montana Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

364

Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

365

Louisiana--North Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Louisiana--North Shale Production (Billion Cubic Feet) Louisiana--North Shale Production (Billion Cubic Feet) Decade Year-0 Year-1...

366

Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

367

Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Virginia Natural Gas Gross Withdrawals from Shale Gas...

368

Modern Shale Gas Development in the United States: A Primer ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home Modern Shale Gas Development in the United States: A Primer Modern Shale Gas Development in the...

369

Louisiana--North Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Louisiana--North Shale Proved Reserves (Billion Cubic Feet) Louisiana--North Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

370

Lower 48 States Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Lower 48 States Shale Proved Reserves (Billion Cubic Feet) Lower 48 States Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

371

Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas...

372

California Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) California Natural Gas Gross Withdrawals from Shale Gas...

373

New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) New Mexico Natural Gas Gross Withdrawals from Shale Gas...

374

Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Shale Gas...

375

West Virginia Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) West Virginia Shale Proved Reserves (Billion Cubic Feet) West Virginia Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

376

West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Annual Download Data (XLS File) West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) West Virginia Natural Gas Gross Withdrawals from Shale Gas...

377

Alabama (with State Offshore) Shale Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion...

378

Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Shale Gas...

379

Secretary of Energy Advisory Board Hosts Conference Call on Shale...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Secretary of Energy Advisory Board Hosts Conference Call on Shale Gas Draft Report Secretary of Energy Advisory Board Hosts Conference Call on Shale Gas...

380

Texas (with State Offshore) Shale Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas (with State Offshore) Shale Production (Billion Cubic Feet) Texas (with State Offshore) Shale Production (Billion Cubic Feet)...

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas from Shale: Questions and Answers | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home Natural Gas from Shale: Questions and Answers Natural Gas from Shale: Questions and Answers Natural Gas from...

382

Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Shale Gas (Million...

383

Louisiana (with State Offshore) Shale Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Shale Proved Reserves...

384

North Dakota Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) North Dakota Shale Proved Reserves (Billion Cubic Feet) North Dakota Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

385

Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Data (XLS File) Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Shale Gas...

386

Secretary of Energy Advisory Board Subcommittee Releases Shale...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Secretary of Energy Advisory Board Subcommittee Releases Shale Gas Recommendations Secretary of Energy Advisory Board Subcommittee Releases Shale Gas...

387

California (with State off) Shale Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) California (with State off) Shale Production (Billion Cubic Feet) California (with State off) Shale Production (Billion Cubic Feet)...

388

Miscellaneous States Shale Gas Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Miscellaneous States Shale Gas Proved Reserves (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves (Billion Cubic...

389

New Mexico Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) New Mexico Shale Proved Reserves (Billion Cubic Feet) New Mexico Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

390

California (with State off) Shale Proved Reserves (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) California (with State off) Shale Proved Reserves (Billion Cubic Feet) California (with State off) Shale Proved Reserves (Billion...

391

Natural Contamination from the Mancos Shale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Natural Contamination from the Mancos Shale Natural Contamination from the Mancos Shale Natural Contamination from the Mancos...

392

U.S. Shale Proved Reserves Acquisitions (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves Acquisitions (Billion Cubic Feet) U.S. Shale Proved Reserves Acquisitions (Billion Cubic Feet) Decade...

393

Characterization of Gas Shales by X-ray Raman Spectroscopy |...  

NLE Websites -- All DOE Office Websites (Extended Search)

137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of...

394

Oil Shale Research in the United States | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research in the United States Oil Shale Research in the United States Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public...

395

DOE - Office of Legacy Management -- Naval Oil Shale Reserves...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Shale Reserves Site - 013 FUSRAP Considered Sites Site: Naval Oil Shale Reserves Site (013 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

396

Calif--San Joaquin Basin onsh Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

onsh Shale Proved Reserves (Billion Cubic Feet) Calif--San Joaquin Basin onsh Shale Proved Reserves (Billion Cubic Feet) No Data Available For This Series - No Data Reported; --...

397

DOE's Early Investment in Shale Gas Technology Producing Results...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Early Investment in Shale Gas Technology Producing Results Today DOE's Early Investment in Shale Gas Technology Producing Results Today February 2, 2011 - 12:00pm Addthis...

398

Lawrence Livermore National Laboratory oil shale: Quarterly report, October-December 1987  

DOE Green Energy (OSTI)

A unique mass spectrometry (MS) method for the study of water formation during oil shale batch pyrolysis was recently discussed. Water evolution observations differ from what others have reported, necessitating a detailed quality assurance study. That study is discussed in this report, along with the water calibration techniques that have been used to obtain quantitative data from our Triple Quadrupole Mass Spectrometer (TQMS) - which normally provides qualitative information. The rate of pyrolysis of raw shale and the rate of combustion of retorted shale in a new apparatus which allows C and H mass balances have been measured. Thus, the fraction of the raw shale organic C that is pyrolyzed and burned can be measured. The shale sample is fluidized with an inert gas which sweeps the pyrolysis gases out of the pyrolyzer and into a tube furnace where they are burned with oxygen. The concentrations of carbon dioxide and steam produced by this oxidation are measured on-line by means of a mass spectrometer. Following pyrolysis, the organic C and H which remain in the retorted shale are burned in the same fluidized bed by adding oxygen to the fluidizing gas. An experiment has also been conducted to find out if indeed Green River shale can be retorted in half the time generally used. The LLNL pilot retort was used, and the pyrolysis appears to have been completed when pyrolysis time at 500/sup 0/ was reduced from 3 m to 1.5 m. The evidence is the fact that the combustor temperature, which is sensitive to the carbon content of the retorted shale, did not increase when pyrolysis time was reduced.

Lewis, A.E. (ed.)

1988-01-01T23:59:59.000Z

399

Selected elemental distributions as determined by reference retorting of oil shale  

DOE Green Energy (OSTI)

In an effort to determine potential hindrances to the commercial development of the oil shale industry mass balance Fischer assay was used as a reference retorting method to examine the distribution of selected elements generally considered as contaminants in the final retort products. The elements examined were nitrogen, sulfur, silver, arsenic, barium, cadmium, chromium, copper, mercury, lead, selenium, and zinc. The shales used in this study were an eastern (New Albany) interim reference shale, a western (Green River Formation) interim reference shale, and a series of stratigraphically differentiated shales from Colorado corehole No. 1 in the Piceance Creek Basin. Analysis of the raw shale and retort products was accomplished using instrumental elemental methods including inductively coupled argon plasma spectroscopy and graphite furnace atomic absorption. Carbon balances indicated a high potential for achieving good mass closures existed. However, instrumental limitations combined with a high potential for contamination and/or representative sampling problems resulted in poor closures for many of the trace elements. Consistent closures were obtained for arsenic, barium, copper, and zinc. Given the operating conditions of the retort all elements under consideration remained primarily in the spent shale. Elements verified in the oil product included nitrogen and sulfur compounds and arsenic and selenium. The water product was also contaminated by nitrogen and sulfur compounds and arsenic and selenium. Evidence suggests the sulfur occurs primarily as organic sulfur. Quantitative results for the gas product were poor. However, sulfur and mercury were determined to be present at significant levels in the gas stream. The data presented here concurs with previously reported data that suggests the existence of several potential problem areas in the development of an oil shale industry. 42 refs., 1 fig., 42 tabs.

Johnson, L.S.

1986-07-01T23:59:59.000Z

400

Fluidized bed retorting of eastern oil shale  

SciTech Connect

This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

Gaire, R.J.; Mazzella, G.

1989-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Active oil shale operations: Eastern Uinta Basin  

SciTech Connect

A Utah Geological and Mineral survey Map of the Eastern Uinta Basin is presented. Isopach lines for the Mahogany oil shale are given, along with the locations of active oil shale operations and the land ownership (i.e. federal, state, or private).

Ritzma, H.R.

1980-01-01T23:59:59.000Z

402

Chemical kinetics and oil shale process design  

SciTech Connect

Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

Burnham, A.K.

1993-07-01T23:59:59.000Z

403

Indirect heating pyrolysis of oil shale  

DOE Patents (OSTI)

Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

Jones, Jr., John B. (Grand Junction, CO); Reeves, Adam A. (Grand Junction, CO)

1978-09-26T23:59:59.000Z

404

Effect of oil shale type and retorting atmosphere on the products from retorting various oil shales by the controlled-state retort  

DOE Green Energy (OSTI)

Six oil shales from different locations (the Green River formation of Colorado and Utah, the Antrim Basin of Michigan, and Morocco) having different Fischer Assay oil yields were retorted using three retorting atmospheres (N/sub 2/, N/sub 2//steam, and N/sub 2//steam/O/sub 2/) under the same retorting conditions. The products (oils, gases, waters, and shales) were analyzed and the data are reported. Changing retorting atmospheres had little observable effect on the product oils; however, there was a great deal of change in the composition and amount of gas produced. Steam in the retorting atmosphere increased the amount of carbon dioxide produced and decreased the amount of carbonate and organic carbon in the retorted shale. Addition of oxygen to N/sub 2//steam and increasing the maximum temperature compounded the above effect. 3 figures, 20 tables.

Duvall, J.J.; Mason, K.K.

1980-02-01T23:59:59.000Z

405

Improved core recovery in laminated sand and shale sequences  

SciTech Connect

Coring and core analysis are essential to the exploration, development, and production phases of the oil and gas industry. Large-diameter (4-in. (10-cm)) core provides engineers and geologists with direct means to measure physical properties of reservoir rocks at both the microscopic and macroscopic levels. This information provides engineers with clues to improve their understanding of the reservoir and prediction of its performance. If stored properly, core may assist in development of the reservoir many years after the well is drilled. In microlaminated reservoirs, laboratory core analysis is very important because of inherent limitations in wireline log resolution. In these cases, petrophysical information, such as saturation, porosity, and net feet of pay, cannot be calculated from wireline data. Instead, these data must be measured directly from core plugs in the laboratory. Historically, core recovery in these types of reservoirs has not been good (Fig. 1A) using methods designed for firmly consolidated formations. These methods did not achieve satisfactory recovery in unconsolidated sand interbedded with hard shale stringers for two reasons: unconsolidated sand was eroded by mechanical or hydraulic means and shale ''jammed'' in the core barrel, thereby preventing more core from entering. Changes in coring strategies and equipment have nearly eliminated recovery problems in unconsolidated sand while reducing jams in shale (Fig. 1B). This paper discusses several of these changes and presents ideas for further improvements.

Bradburn, F.R.; Cheatham, C.A. (Shell Offshore Inc. (US))

1988-12-01T23:59:59.000Z

406

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources Program) Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources Program) NETL-ORD Project Information Resource Assessment | Drilling Under Extreme Conditions | Environmental Impacts Enhanced and Unconventional Oil Recovery Enhanced Oil Recovery from Fractured Media Read Detailed Project Information [PDF] Read project abstract Oil recovery from unconventional media is often difficult. However, significant hydrocarbon resources can be found in fractured reservoirs. As the supply of oil from conventional reservoirs is depleted, fractured media will provide a greater proportion of the country's oil reserves. One example of such a resource is the Bakken shale, part of the Williston Basin in North and South Dakota and Montana. It is estimated that over 100-176 billion barrels of oil are present in the Bakken shale. However, due to the low permeability of the formation and the apparent oil-wet nature of the shale, production from this formation presents considerable problems.

407

General screening criteria for shale gas reservoirs and production data analysis of Barnett shale  

E-Print Network (OSTI)

Shale gas reservoirs are gaining importance in United States as conventional oil and gas resources are dwindling at a very fast pace. The purpose of this study is twofold. First aim is to help operators with simple screening criteria which can help them in making certain decisions while going after shale gas reservoirs. A guideline chart has been created with the help of available literature published so far on different shale gas basins across the US. For evaluating potential of a productive shale gas play, one has to be able to answer the following questions: 1. What are the parameters affecting the decision to drill a horizontal well or a vertical well in shale gas reservoirs? 2. Will the shale gas well flow naturally or is an artificial lift required post stimulation? 3. What are the considerations for stimulation treatment design in shale gas reservoirs? A comprehensive analysis is presented about different properties of shale gas reservoirs and how these properties can affect the completion decisions. A decision chart presents which decision best answers the above mentioned questions. Secondly, research focuses on production data analysis of Barnett Shale Gas reservoir. The purpose of this study is to better understand production mechanisms in Barnett shale. Barnett Shale core producing region is chosen for the study as it best represents behavior of Barnett Shale. A field wide moving domain analysis is performed over Wise, Denton and Tarrant County wells for understanding decline behavior of the field. It is found that in all of these three counties, Barnett shale field wells could be said to have established pressure communication within the reservoir. We have also studied the effect of thermal maturity (Ro %), thickness, horizontal well completion and vertical well completion on production of Barnett Shale wells. Thermal maturity is found to have more importance than thickness of shale. Areas with more thermal maturity and less shale thickness are performing better than areas with less thermal maturity and more shale thickness. An interactive tool is developed to access the production data according to the leases in the region and some suggestions are made regarding the selection of the sample for future studies on Barnett Shale.

Deshpande, Vaibhav Prakashrao

2008-12-01T23:59:59.000Z

408

Oil shale and tar sands technology: recent developments  

SciTech Connect

The detailed, descriptive information in this book is based on US patents, issued since March 1975, that deal with the technology of oil shale and tar sands. The book contains an introductory overview of the subject. Topics included are oil shale retorting, in situ processing of oil shale, shale oil refining and purification processes, in situ processing of tar sands, tar sands separation processes.

Ranney, M.W.

1979-01-01T23:59:59.000Z

409

Location and Geology Fig 1. The Macasty black shale  

E-Print Network (OSTI)

, Quebec, is organic-rich black shale and hosting oil and gas. It is equivalent to the Ithaca shaleLocation and Geology Fig 1. The Macasty black shale in the Anticosti Island in the Gulf of St. d13C for calcite disseminated in the black shale range from 2.6o to 2.8 / The values are lower

410

Secure Fuels from Domestic Resources- Oil Shale and Tar Sands  

Energy.gov (U.S. Department of Energy (DOE))

Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

411

Utilization of Oil Shale Retorting Technology and Underground Overview  

Science Conference Proceedings (OSTI)

The paper analyzes the world's oil shale development and status of underground dry distillation technology and, through case studies proved the advantages of underground dry distillation technology. Global oil shale resource-rich, many countries in the ... Keywords: oil shale, ground retorting, underground dry distillation, shale oil, long slope mining

Chen Shuzhao; Guo Liwen; Xiao Cangyan; Wang Haijun

2011-02-01T23:59:59.000Z

412

Study of composite cement containing burned oil shale  

E-Print Network (OSTI)

Study of composite cement containing burned oil shale Julien Ston Supervisors : Prof. Karen properties. SCMs can be by-products from various industries or of natural origin, such as shale. Oil shale correctly, give a material with some cementitious properties known as burned oil shale (BOS). This study

Dalang, Robert C.

413

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network (OSTI)

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and Controversies Kyle J Ferrar;UNITED STATES SHALE BASINS Modern Shale Gas Development in the U.S.: A Primer, (2009) U.S. Dept of Energy Development http://www.secinfo.com/DB/SEC/2007 #12;Where to Drill? Harper, John A. (2008). The Marcellus Shale

Sibille, Etienne

414

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development  

E-Print Network (OSTI)

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New

Angenent, Lars T.

415

Gasification characteristics of eastern oil shale  

DOE Green Energy (OSTI)

The Institute of Gas Technology (IGT) is evaluating the gasification characteristics of Eastern oil shales as a part of a cooperative agreement between the US Department of Energy and HYCRUDE Corporation to expand the data base on moving-bed hydroretorting of Eastern oil shales. Gasification of shale fines will improve the overall resource utilization by producing synthesis gas or hydrogen needed for the hydroretorting of oil shale and the upgrading of shale oil. Gasification characteristics of an Indiana New Albany oil shale have been determined over temperature and pressure ranges of 1600 to 1900/sup 0/F and 15 to 500 psig, respectively. Carbon conversion of over 95% was achieved within 30 minutes at gasification conditions of 1800/sup 0/F and 15 psig in a hydrogen/steam gas mixture for the Indiana New Albany oil shale. This paper presents the results of the tests conducted in a laboratory-scale batch reactor to obtain reaction rate data and in a continuous mini-bench-scale unit to obtain product yield data. 2 refs., 7 figs., 4 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1986-11-01T23:59:59.000Z

416

Oil shale retorting and retort water purification process  

SciTech Connect

An oil shale process is provided to retort oil shale and purify oil shale retort water. In the process, raw oil shale is retorted in an in situ underground retort or in an above ground retort to liberate shale oil, light hydrocarbon gases and oil shale retort water. The retort water is separated from the shale oil and gases in a sump or in a fractionator or quench tower followed by an API oil/water separator. After the retort water is separated from the shale oil, the retort water is steam stripped, carbon adsorbed and biologically treated, preferably by granular carbon adsorbers followed by activated sludge treatment or by activated sludge containing powdered activated carbon. The retort water can be granularly filtered before being steam stripped. The purified retort water can be used in various other oil shale processes, such as dedusting, scrubbing, spent shale moisturing, backfilling, in situ feed gas injection and pulsed combustion.

Venardos, D.G.; Grieves, C.G.

1985-01-22T23:59:59.000Z

417

Adsorption studies of natural gas storage in Devonian shales  

SciTech Connect

Significant amounts of natural gas exist as an adsorbed, or condensed, phase in Devonian shale formations and other unconventional gas resources. The amount of the adsorbed phase depends on the pressure and temperature. The Langmuir isotherm has been used to describe the pressure dependence. However, temperature dependence has not been explored. This is important to evaluate thermal simulation as a recovery method and to extrapolate laboratory measurements to reservoir conditions. The authors investigate adsorption as a function of both pressure and temperature. They found that the effects of temperature are significant and that the Langmuir model does not describe adsorption adequately. They reconciled the data with bi-Langmuir models.

Lu, X.C.; Li, F.C.; Watson, A.T. [Texas A and M Univ., College Station, TX (United States)

1995-06-01T23:59:59.000Z

418

Processing dipole acoustic logging data to image fracture network in shale gas reservoirs  

Science Conference Proceedings (OSTI)

A recent advance in borehole remote acoustic reflection imaging is the utilization of a dipole acoustic system in a borehole to emit and receive elastic waves to and from a remote geologic reflector in formation. An important application of this new technique is the delineation of fracture network in shale gas reservoirs

Zhuang Chunxi; Su Yuanda; Tang Xiaoming

2012-01-01T23:59:59.000Z

419

Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance  

Science Conference Proceedings (OSTI)

In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

Eaton, Scott J [ORNL; Bunting, Bruce G [ORNL; Lewis Sr, Samuel Arthur [ORNL; Fairbridge, Craig [National Centre for Upgrading Technology, Canada

2009-01-01T23:59:59.000Z

420

Differential thermal analysis of the reaction properties of raw and retorted oil shale with air  

SciTech Connect

The results of a study to determine the kinetics of combustion of oil shale and its char by using differential thermal analysis are reported. The study indicates that Colorado oil shale and its char combustion rate is the fastest while Fushun oil shale and its char combustion rate is the slowest among the six oil shales used in this work. Oil shale samples used were Fushun oil shale, Maoming oil shale, Huang county oil shale, and Colorado oil shale.

Wang, T.F.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

U.S. Shale Gas and Shale Oil Plays Review of Emerging Resources:  

Gasoline and Diesel Fuel Update (EIA)

Shale Gas and Shale Oil Plays Shale Gas and Shale Oil Plays Review of Emerging Resources: July 2011 www.eia.gov U.S. Depa rtment of Energy W ashington, DC 20585 This page inTenTionally lefT blank The information presented in this overview is based on the report Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays, which was prepared by INTEK, Inc. for the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. The full report is attached. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

422

NATURAL GAS FROM SHALE: Questions and Answers Why is Shale Gas Important?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why is Shale Gas Important? Why is Shale Gas Important? With the advance of extraction technology, shale gas production has led to a new abundance of natural gas supply in the United States over the past decade, and is expected to continue to do so for the foreseeable future. According to the Energy Information Administration (EIA), the unproved technically recoverable U.S. shale gas resource is estimated at 482 trillion cubic feet. 1 Estimated proved and unproved shale gas resources amount to a combined 542 trillion cubic feet (or 25 percent) out of a total U.S. resource of 2,203 trillion cubic feet. 2 U.S. shale gas production has increased 12-fold over the last

423

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

VIII. Poland EIA/ARI World Shale Gas and Shale Oil Resource Assessment VIII. Poland EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 VIII-1 VIII. POLAND (INCLUDING LITHUANIA AND KALININGRAD) SUMMARY Poland has some of Europe's most favorable infrastructure and public support for shale development. The Baltic Basin in northern Poland remains the most prospective region with a relatively simple structural setting. The Podlasie and Lublin basins also have potential but are

424

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

and INTRODUCTION Oil shale production by vertical modified1 aspects of oil shale production air, solid waste, andimpacts of oil shale production, and to develop information

,

2012-01-01T23:59:59.000Z

425

CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE  

E-Print Network (OSTI)

OF FIGURES Areal extent of oil shale deposits in the Greencommercial in~situ oil shale facility. Possible alternativefor pyrolysis of oil shale Figure 7. Establishment of

Amy, Gary L.

2013-01-01T23:59:59.000Z

426

CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE  

E-Print Network (OSTI)

from Characterization of Spent Shale s . , , . . . ,4. Preparation of Spent Shale Samples and Procedure forof Particular Types of Spent Shale References Appendix A.

Amy, Gary L.

2013-01-01T23:59:59.000Z

427

Mineral Sequestration of Carbon Dixoide in a Sandstone-Shale System  

E-Print Network (OSTI)

microfractures in geopressured shales. AAPG Bulletin 77(8),Porosimetry measurement of shale fabric and its relationshipof intra-aquifer shales and the relative effectiveness of

Xu, Tianfu; Apps, John A.; Pruess, Karsten

2004-01-01T23:59:59.000Z

428

Method for retorting oil shale  

DOE Patents (OSTI)

The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

Shang, Jer-Yu; Lui, A.P.

1985-08-16T23:59:59.000Z

429

Shale disposal of U.S. high-level radioactive waste.  

SciTech Connect

This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within a few meters of the repository, that can be reasonably characterized. Within a few centuries after waste emplacement, overburden pressures will seal fractures, resaturate the dehydrated zones, and provide a repository setting that strongly limits radionuclide movement to diffusive transport. Coupled hydrogeochemical transport calculations indicate maximum extents of radionuclide transport on the order of tens to hundreds of meters, or less, in a million years. Under the conditions modeled, a shale repository could achieve total containment, with no releases to the environment in undisturbed scenarios. The performance analyses described here are based on the assumption that long-term standards for disposal in clay/shale would be identical in the key aspects, to those prescribed for existing repository programs such as Yucca Mountain. This generic repository evaluation for shale is the first developed in the United States. Previous repository considerations have emphasized salt formations and volcanic rock formations. Much of the experience gained from U.S. repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, is applied here to scoping analyses for a shale repository. A contemporary understanding of clay mineralogy and attendant chemical environments has allowed identification of the appropriate features, events, and processes to be incorporated into the analysis. Advanced multi-physics modeling provides key support for understanding the effects from coupled processes. The results of the assessment show that shale formations provide a technically advanced, scientifically sound disposal option for the U.S.

Sassani, David Carl; Stone, Charles Michael; Hansen, Francis D.; Hardin, Ernest L.; Dewers, Thomas A.; Martinez, Mario J.; Rechard, Robert Paul; Sobolik, Steven Ronald; Freeze, Geoffrey A.; Cygan, Randall Timothy; Gaither, Katherine N.; Holland, John Francis; Brady, Patrick Vane

2010-05-01T23:59:59.000Z

430

Montana Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Montana Quick Facts. The Bakken shale under Montana and North Dakota, one of the largest accumulations of crude oil in the United States, is currently estimated to be ...

431

Natural Gas Year-in-Review - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

rose by 29% before declining slightly in 2013. Production also grew by 33% in the Bakken Shale in North Dakota and Montana, where operators predominantly target crude oil,...

432

North Dakota sees increases in real GDP per capita following ...  

U.S. Energy Information Administration (EIA)

In recent years, North Dakota has seen significant gains in real gross domestic product (GDP) per capita, coinciding with development of the Bakken shale play.

433

North Dakota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 8, 2010 CX-004679: Categorical Exclusion Determination Enhanced Oil Recovery from the Bakken Shale Using Surfactant Imbibition Couple with Gravity Drainage CX(s) Applied:...

434

Devonian gas shales bibliography. Topical report  

Science Conference Proceedings (OSTI)

Reports and publications (1983 to May 1991) on Devonian shale research are listed by title. The reports cover topics such as geology, reservoirs, production, drilling technology, and gas yields.

Not Available

1991-05-01T23:59:59.000Z

435

Oil shale: a new set of uncertainties  

SciTech Connect

The discovery and delivery of North Sea oil has created an uncertain future for the British oil shale industry in spite of its lower price per barrel. While oil companies have long been interested in a secure shale oil source for chemical feedstocks, environmental concerns, mining difficulties, and inflated operating costs have counteracted the opportunity provided by the 1973 oil embargo. With the financial risks of oil shale mining and retorting too great for a single company, research efforts have shifted to a search for technologies that will be multistaged and less costly, such as in-situ mining, in-situ processing, and hydraulic fracturing. Successful testing and demonstration of these processes will determine the future commercial role of oil shales. 17 references and footnotes.

Schanz, J.J. Jr.; Perry, H.

1978-10-01T23:59:59.000Z

436

Overview of LASL oil shale program  

SciTech Connect

The Los Alamos Scientific Laboratory (LASL) is involved in a broad spectrum of oil shale-related activities for the US Department of Energy (DOE), including the bed preparation design of a modified in situ retort. This aspect of oil shale research has been identified by DOE as one of the limiting technologies impeding commerical, in situ development of oil shale. The retort bed must have uniform particle size, permeability, and void distributions to allow proper retorting and optimum resource recovery. Controlled fracturing using chemical explosives and carefully designed blasting schemes are the only feasible methods to attain this distribution. This approach to the bed preparation problem is a coordinated research program of explosives characterization, dynamic rock mechanics, predictive computer modeling, and field verification tests. The program is designed to develop the predictive fracturing capability required for the optimum rubbing of the shale.

Morris, W.

1981-05-01T23:59:59.000Z

437

Oil shale. environmental and health issues  

SciTech Connect

Environmental and health issues include the solid-waste disposal problem; the possibility of the release of toxic and carcinogenic constituents into the environment; water requirements in a water-poor area; the potential air pollution problems; the low resource utilization of some of the processes; and the relative energy production compared with energy input. Such issues arise from the fact that it takes 1.5 tons of oil shale to make 1 bbl of oil, which, for a 1 million bbl/day industry, would require the processing of 480 million tons/yr of shale and would produce 390 million tons/yr of spent shale. The various oil shale processing technologies are briefly described.

Chappell, W.R.

1980-01-01T23:59:59.000Z

438

Kentucky Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Kentucky Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2 5 2010's 4 4...

439

Michigan Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Michigan Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 148 122 132...

440

Montana Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Montana Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 13 7 2010's 13...

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Colorado Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Colorado Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 1 2010's 1 3...

442

Arkansas Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Arkansas Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 94 279 527 2010's...

443

Oklahoma Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Oklahoma Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 40 168 249 2010's...

444

Ohio Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) No chart available. Ohio Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

445

Wyoming Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) No chart available. Wyoming Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

446

Western States Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) No chart available. Western States Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

447

Ohio Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) No chart available. Ohio Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

448

Insulated dipole antennas for heating oil shale  

Science Conference Proceedings (OSTI)

Insulated dipole antennas in the HF band are potentially useful in heating shale i n s i t u to extract oil. To help evaluate the efficiency of such antennas

John P. Casey; Rajeev Bansal

1987-01-01T23:59:59.000Z

449

Multiscale strength homogenization : application to shale nanoindentation  

E-Print Network (OSTI)

Shales are one of the most encountered materials in sedimentary basins. Because of their highly heterogeneous nature, their strength prediction for oil and gas exploitation engineering has long time been an enigma. In this ...

Gathier, Benjamin

2008-01-01T23:59:59.000Z

450

Hydrology of the Piceance Basin and its impact on oil shale development  

SciTech Connect

The Piceance Basin is a structural downwarp in NW. Colorado. The Green River Formation, the uppermost stratigraphic unit in the basin, contains the richest oil shale deposits in the U.S. The near-surface rocks are commonly jointed. The joint density is a function of the competency and thickness of the individual layers, the lateral distance to a free surface, and the depth below the surface. These joints provide permeable paths for the flow of ground water. Consequently, soluble elements in the rock have been leached, thereby enhancing the transmissivity by fracture enlargement. Thus, the oil-shale layers are part of the aquifer matrix, and the richest layers of oil shale occur between, below or are part of the basin's complex aquifer system. Well over 1 million acre-ft of potable water is contained in the Green River ground-water system.

Knutson, C.F.; Boardman, C.R.

1973-01-01T23:59:59.000Z

451

In situ recovery of shale oil  

SciTech Connect

An in situ oil shale retort is formed in a subterranean oil shale deposit by excavating a columnar void having a vertically extending free face, drilling blasting holes adjacent to the columnar void and parallel to the free face, loading the blasting holes with explosive, and detonating the explosive in a single round to expand the shale adjacent to the columnar void toward the free face in layers severed in a sequence progressing away from the free face and to fill with fragmented oil shale the columnar void and the space in the in situ retort originally occupied by the expanded shale prior to the expansion. A room having a horizontal floor plan that coincides approximately with the horizontal cross section of the retort to be formed is excavated so as to intersect the columnar void. The blasting holes are drilled and loaded with explosive from the room. The room can lie above the columnar void, below the columnar void, or intermediate the ends of the columnar void. In one embodiment, the columnar void is cylindrical and the blasting holes are arranged in concentric rings around the columnar void. In another embodiment, the columnar void is a slot having one or more large parallel, planar vertical free faces, toward which the oil shale in the retort under construction can be explosively expanded. The blasting holes are arranged in planes parallel to these faces. The resulting retort generally has a cross section coinciding with the placement of the blasting holes and a height determined for the greater part by the vertical height of the columnar void. To form a retort having a large cross-sectional area, a plurality of columnar voids can be excavated and the shale in the retort expanded toward the respective columnar voids to form a continuous fragmented permeable mass of oil shale.

French, G.B.

1977-08-23T23:59:59.000Z

452

Devonian shale gas resource assessment, Illinois basin  

Science Conference Proceedings (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

453

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

SciTech Connect

Low cost material is needed for grouting abandoned retorts. Experimental work has shown that a hydraulic cement can be produced from Lurgi spent shale by mixing it in a 1:1 weight ratio with limestone and heating one hour at 1000C. With 5% added gypsum, strengths up to 25.8 MPa are obtained. This cement could make an economical addition up to about 10% to spent shale grout mixes, or be used in ordinary cement applications.

Mehta, P.K.; Persoff, P.; Fox, J.P.

1980-06-01T23:59:59.000Z

454

Reverse combustion oil-shale retorting  

DOE Green Energy (OSTI)

Oil shale was retorted in a laboratory retort with the flame front and gas flow moving concurrently and countercurrently. Results indicate countercurrent flow produced a lower oil yield and a higher heating value of the retort gas than concurrent flow. Energy recovery from the oil shale was essentially the same when the retorting was done with either concurrent or countercurrent flame and gas movement. Laboratory results are compared with large scale retorts operated under similar conditions.

Jacobson, I.A. Jr.; Dockter, L.

1979-06-01T23:59:59.000Z

455

Converting Chattanooga oil shale to synthetic liquid fuel. Phase I. Final report. [Tennessee  

SciTech Connect

The Chattanooga Shale is widely distributed in Tennessee and has been known as a potential source of shale oil and strategic minerals, particularly uranium, for many years. It was studied in the late 1940's as a source of uranium. The shale varies in color from light gray to black. The shale is of the Devonian Age and occurs under the Maury formation and above the Leipers limestone. It exists as the Gassaway and Dowelltown members. Generally, the combined thickness of these two members in the seven-county study ranged in thickness from about 26 feet to greater than 34 feet. The overall intent of this study was to identify the extent of the Chattanooga shale in Tennessee, characterize its properties, review its potential as an oil producer in terms of present-day technologies, and to assess interest in the private sector for development and commercialization. This report contains the results of this six-month study. 28 figures, 58 tables.

1981-01-01T23:59:59.000Z

456

Environmental control costs for oil shale processes  

SciTech Connect

The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

1979-10-01T23:59:59.000Z

457

Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort  

DOE Patents (OSTI)

In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

Studebaker, Irving G. (Grand Junction, CO); Hefelfinger, Richard (Grand Junction, CO)

1980-01-01T23:59:59.000Z

458

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network (OSTI)

measured mercury levels in shale gases and waters. The TLV'srecovery shale Spent shale gas (wet) CS~35 cs~s6 CS-57 CS-59on large areas of the shale bed if gas channeling and

Fox, J. P.

2012-01-01T23:59:59.000Z

459

USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES  

E-Print Network (OSTI)

Minor Elements in Oil Shale and Oil-Shale Products. LERC RIChemistry of Tar Sands and Oil Shale, ACS, New Orleans.Constituent Analysis of Oil Shale and Solvent-Refined Coal

Girvin, D.G.

2011-01-01T23:59:59.000Z

460

INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES  

E-Print Network (OSTI)

Minor Elements ~n Oil Shale and Oil-Shale Products. LERC RI-Analytical Chemistry of Oil Shale and Tar Sands. Advan. inFischer Assay of Standard Oil-Shale Sample. Preprints, Div.

Fox, J.P.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Retorting of oil shale followed by solvent extraction of spent shale: Experiment and kinetic analysis  

Science Conference Proceedings (OSTI)

Samples of El-Lajjun oil shale were thermally decomposed in a laboratory retort system under a slow heating rate (0.07 K/s) up to a maximum temperature of 698--773 K. After decomposition, 0.02 kg of spent shale was extracted by chloroform in a Soxhlet extraction unit for 2 h to investigate the ultimate amount of shale oil that could be produced. The retorting results indicate an increase in the oil yields from 3.24% to 9.77% of oil shale feed with retorting temperature, while the extraction results show a decrease in oil yields from 8.10% to 3.32% of spent shale. The analysis of the data according to the global first-order model for isothermal and nonisothermal conditions shows kinetic parameters close to those reported in literature.

Khraisha, Y.H.

2000-05-01T23:59:59.000Z

462

PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT  

E-Print Network (OSTI)

or by refin- ing and using shale Oil Mass balances and oil.shale retorting produces shale oil, mobility factors wereand retort operating shale, shale oil, retorting (LETC) con-

Fox, J. P.

2011-01-01T23:59:59.000Z

463

Determining the locus of a processing zone in an in situ oil shale retort by sound monitoring  

DOE Patents (OSTI)

The locus of a processing zone advancing through a fragmented permeable mass of particles in an in situ oil shale retort in a subterranean formation containing oil shale is determined by monitoring for sound produced in the retort, preferably by monitoring for sound at at least two locations in a plane substantially normal to the direction of advancement of the processing zone. Monitoring can be effected by placing a sound transducer in a well extending through the formation adjacent the retort and/or in the fragmented mass such as in a well extending into the fragmented mass.

Elkington, W. Brice (Grand Junction, CO)

1978-01-01T23:59:59.000Z

464

A Technical and Economic Study of Completion Techniques In Five Emerging U.S. Gas Shale Plays  

E-Print Network (OSTI)

methane and other higher order hydrocarbons, through C4, with interest in further developing reactions important to methane- and ethane-related chemistry. With the increased demand for energy and the declining conventional hydrocarbons worldwide, energy companies, both majors and independents, are turning to unconventional resources to produce the hydrocarbons required to meet market demand. From coalbed methane to low permeability (tight) gas reservoirs and gas shales, energy companies are making substantial progress in developing the technologies required to bring these unconventional reserves to the market. A common misconception is that there are not enough domestic oil and gas reserves to fuel our economy. The United States imports most of the oil used for transportation fuel and several TCF of natural gas annually. However, there is a very large resource of natural gas in unconventional reservoirs, with over 2,200 TCF of gas in place in just the gas shale formations that have been identified in the energy arena (Navigant Study 2008). There are still major gas shale plays and basins that have not been explored and are waiting to be evaluated and developed. The natural gas in shales and other unconventional reservoirs can be used to generate electricity, or it can be turned into liquids and used by the transportation industry. It is also misconstrued that gas shales are relatively new in our industry and something of the future. The first commercially viable gas shale well was drilled in the early 1920s in Pennsylvania, before the famous oil well drilled by Colonel Drake. The objectives of this study are to (1) complete literature review to establish which geologic parameters affect completion techniques in five emerging gas shales: the Antrium, the Barnett, the Haynesville, the Marcellus, and the Woodford; (2) identify the different completion methods; (3) create an economic model for the completion techniques discussed; (4) develop a sensitivity analysis on various economic parameters to determine optimal completion strategy; and (5) create completion flowcharts. Based on the literature review I have done for several gas shale basins, I have identified seven pertinent geologic parameters that influence completion practices. These are depositional environment, total organic content (TOC), average gas content, shale mineralogy, shale thickness, and reservoir pressure. Next, I identified different completion and simulation trends in the industry for the different shale plays. The results from this study show that although there are some stark differences between depths (i.e. the Antrim Shale and the Haynesville Shale), shale plays are very similar in all other geologic properties. Interestingly, even with a large range for the different geological parameters, the completion methods did not drastically differ indicating that even if the properties do not fall within the range presented in this paper does not automatically rule them out for further evaluation in other plays. In addition to the evaluation of geologic properties, this study looked at drilling cost and the production profile for each play. Due to the volatility of the energy industry, economic sensitivity was completed on the price, capital, and operating cost to see what affect it would have on the play. From the analysis done, it is concluded that horizontal drilling in almost any economic environment is economic except for one scenario for the Woodford Shale. Therefore, gas shales plays should still be invested in even in lower price environments and companies should try to take advantage of the lower cost environments that occur during these times. With continual development of new drilling and completion techniques, these plays will become more competitive and can light the path for exploration of new shale plays worldwide.

Agrawal, Archna

2009-12-01T23:59:59.000Z

465

The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs  

E-Print Network (OSTI)

Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase the surface area of the formation that is connected to the wellbore. These highly conductive fractures significantly increase the production rates of petroleum fluids. During the process of hydraulic fracturing proppant is pumped and distributed in the fractures to keep them open after closure. Economic considerations have driven the industry to find ways to determine the optimal type, size and concentration of proppant that would enhance fracture conductivity and improve well performance. Therefore, direct laboratory conductivity measurements using real shale samples under realistic experimental conditions are needed for reliable hydraulic fracturing design optimization. A series of laboratory experiments was conducted to measure the conductivity of propped and unpropped fractures of Barnett shale using a modified API conductivity cell at room temperature for both natural fractures and induced fractures. The induced fractures were artificially created along the bedding plane to account for the effect of fracture face roughness on conductivity. The cementing material present on the surface of the natural fractures was preserved only for the initial unpropped conductivity tests. Natural proppants of difference sizes were manually placed and evenly distributed along the fracture face. The effect of proppant monolayer was also studied.

Kamenov, Anton

2013-05-01T23:59:59.000Z

466

Kinetics of oil shale pyrolysis.  

E-Print Network (OSTI)

??The potential energy supply that could be provided by-tapping the energy reserve found in the Green River Formation of Utah, Colorado, and Wyoming has presented (more)

Kowallis, Paul Clair

1905-01-01T23:59:59.000Z

467

Gulf Shale Oil Upgrading Process technology  

SciTech Connect

A description of the Gulf Shale Oil Hydrotreating Process, which is designed for upgrading full range shale oil to premium quality synthetic crude, is presented. The process consists of two sections: a low severity pretreating section which stabilizes the raw oil, removes iron, arsenic, trace metals and particulates, and sulfur; and a twostage, high severity hydrotreating section which completes the upgrading. The second section hydrotreats the bulk oil to a specified nitrogen content, allowing for a quality FCC feedstock in the 650F+ (343C+) residue. The main reactor effluent is flashed with subsequent hydrotreating of the flash vapor oil to achieve a low nitrogen level in the naphtha and middle distillate. The benefit of this flash configuration is hydrogen addition selectivity which maximizes syncrude quality while minimizing overall hydrogen consumption; this selectivity relationship is detailed. Finally, the product quality of the syncrudes produced with the Gulf Shale Oil Hydrotreating Process using shale oils derived from three different retort technologies and for Western and Eastern shales are discussed.

Jones, W.; Antezana, F.J.; Cugini, A.V.; Lyzinski, D.; Miller, J.B.

1984-04-01T23:59:59.000Z

468

System for utilizing oil shale fines  

DOE Patents (OSTI)

A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

Harak, Arnold E. (Laramie, WY)

1982-01-01T23:59:59.000Z

469

Can We Accurately Model Fluid Flow in Shale?  

NLE Websites -- All DOE Office Websites (Extended Search)

Can We Accurately Model Fluid Flow Can We Accurately Model Fluid Flow in Shale? Can We Accurately Model Fluid Flow in Shale? Print Thursday, 03 January 2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to the heyday of easy-to-tap gas and liquid crude. The source of shale oil and gas is kerogen, an organic material in the shale, but until now kerogen hasn't been incorporated in mathematical models of shale gas reservoirs. Paulo Monteiro, Chris Rycroft, and Grigory Isaakovich Barenblatt, with the Computational Research Division and the Advanced Light Source, recently modeled how pressure gradients in the boundary layer between kerogen inclusions and shale matrices affect productivity and can model reservoir longevity.

470

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network (OSTI)

Controls for a Commercial Oil Shale In~try, Vol. I, An En~in Second Briefing on In-Situ Oil Shale Technology, LawrenceHeley, Water Management ln Oil Golder Associates, Kirkland,

Persoff, P.

2011-01-01T23:59:59.000Z

471

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

472

Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(SEAB) on Shale Gas Production Posts Draft Report Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale Gas Production Posts Draft Report November 10, 2011 - 1:12pm...

473

DOE's Shale Gas and Hydraulic Fracturing Research | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Shale Gas and Hydraulic Fracturing Research DOE's Shale Gas and Hydraulic Fracturing Research April 26, 2013 - 11:05am Addthis Statement of Guido DeHoratiis Acting Deputy...

474

Projected natural gas prices depend on shale gas resource ...  

U.S. Energy Information Administration (EIA)

Because shale gas production is projected to be a large proportion of U.S. and North American gas production, changes in the cost and productivity of U.S. shale gas ...

475

Material invariant properties of shales : nanoindentation and microporoelastic analysis  

E-Print Network (OSTI)

Shales compose the major part of sedimentary rocks and cover most of hydrocarbon bearing reservoirs. Shale materials are probably one of the most complex natural composites, and their mechanical properties are still an ...

Delafargue, A. (Antoine), 1981-

2005-01-01T23:59:59.000Z

476

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

OSullivan, Francis Martin

477

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network (OSTI)

ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P.Cement Manufacture from Oil Shale, U.S. Patent 2,904,445,203 (1974), E. D. York, Amoco Oil Co. , letter to J, P. Fox,

Mehta, P.K.

2012-01-01T23:59:59.000Z

478

U.S. Shale Proved Reserves Revision Increases (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves Revision Increases (Billion Cubic Feet) U.S. Shale Proved Reserves Revision Increases (Billion Cubic Feet)...

479

New Mexico--East Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) New Mexico--East Shale Proved Reserves (Billion Cubic Feet) New Mexico--East Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

480

U.S. Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves (Billion Cubic Feet) U.S. Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "bakken shale formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Texas--RRC District 8 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 8 Shale Production (Billion Cubic Feet) Texas--RRC District 8 Shale Production (Billion Cubic Feet) Decade Year-0...

482

New Mexico--West Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) New Mexico--West Shale Proved Reserves (Billion Cubic Feet) New Mexico--West Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

483

New Mexico--West Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) New Mexico--West Shale Production (Billion Cubic Feet) New Mexico--West Shale Production (Billion Cubic Feet) Decade Year-0 Year-1...

484

Texas--RRC District 6 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 6 Shale Production (Billion Cubic Feet) Texas--RRC District 6 Shale Production (Billion Cubic Feet) Decade Year-0...

485

New Mexico--East Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) New Mexico--East Shale Production (Billion Cubic Feet) New Mexico--East Shale Production (Billion Cubic Feet) Decade Year-0 Year-1...

486

Texas--RRC District 9 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 9 Shale Production (Billion Cubic Feet) Texas--RRC District 9 Shale Production (Billion Cubic Feet) Decade Year-0...

487

U.S. Shale Proved Reserves Revision Decreases (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves Revision Decreases (Billion Cubic Feet) U.S. Shale Proved Reserves Revision Decreases (Billion Cubic Feet)...

488

Texas--RRC District 1 Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 1 Shale Production (Billion Cubic Feet) Texas--RRC District 1 Shale Production (Billion Cubic Feet) Decade Year-0...

489

U.S. Shale Proved Reserves Extensions (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves Extensions (Billion Cubic Feet) U.S. Shale Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0...

490

U.S. Shale Proved Reserves Adjustments (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves Adjustments (Billion Cubic Feet) U.S. Shale Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0...

491

U.S. Shale Proved Reserves Sales (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) U.S. Shale Proved Reserves Sales (Billion Cubic Feet) U.S. Shale Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1...

492

Texas--RRC District 5 Shale Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Texas--RRC District 5 Shale Production (Billion Cubic Feet) Texas--RRC District 5 Shale Production (Billion Cubic Feet) Decade Year-0...

493

Can We Accurately Model Fluid Flow in Shale?  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to...

494

A study on the Jordanian oil shale resources and utilization  

Science Conference Proceedings (OSTI)

Jordan has significant oil shale deposits occurring in 26 known localities. Geological surveys indicate that the existing deposits underlie more than 60% of Jordan's territory. The resource consists of 40 to 70 billion tones of oil shale

Ahmad Sakhrieh; Mohammed Hamdan

2012-01-01T23:59:59.000Z

495

The Naval Petroleum and Oil Shale Reserves | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserves To ensure sufficient fuel for the fleet, the Government began withdrawing probable oil-bearing...

496

California--onshore Natural Gas Gross Withdrawals from Shale...  

U.S. Energy Information Administration (EIA) Indexed Site

onshore Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) California--onshore Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Decade Year-0 Year-1...

497

Texas--onshore Natural Gas Gross Withdrawals from Shale Gas ...  

U.S. Energy Information Administration (EIA) Indexed Site

from Shale Gas (Million Cubic Feet) Texas--onshore Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

498

Louisiana--onshore Natural Gas Gross Withdrawals from Shale Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

from Shale Gas (Million Cubic Feet) Louisiana--onshore Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

499

Projected natural gas prices depend on shale gas resource ...  

U.S. Energy Information Administration (EIA)

... Quarterly Coal Report Monthly Energy Review Residential Energy ... Solar Energy in Brief. What's ... to test the influence of shale gas ...

500

Process concept of retorting of Julia Creek oil shale  

SciTech Connect

A process is proposed for the above ground retorting of the Julia Creek oil shale in Queensland. The oil shale characteristics, process description, chemical reactions of the oil shale components, and the effects of variable and operating conditions on process performance are discussed. The process contains a fluidized bed combustor which performs both as a combustor of the spent shales and as a heat carrier generator for the pyrolysis step. 12 references, 5 figures, 5 tables.

Sitnai, O.

1984-06-01T23:59:59.000Z