National Library of Energy BETA

Sample records for bakken bone springs

  1. Experience reveals better Bakken stimulation techniques

    SciTech Connect (OSTI)

    Cramer, D.D. )

    1991-04-29

    In the Bakken formation, stimulation treatments are used sparingly in horizontal well completions. but in vertical wells, stimulation is used extensively and successfully. This article shows the stimulation designs that are effective in the Bakken formation.

  2. Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD

    U.S. Energy Information Administration (EIA) Indexed Site

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  3. Permian Bone Spring formation: Sandstone play in the Delaware basin. Part I - slope

    SciTech Connect (OSTI)

    Montgomery, S.L.

    1997-08-01

    New exploration in the Permian (Leonardian) Bone Spring formation has indicated regional potential in several sandstone sections across portions of the northern Delaware basin. Significant production has been established in the first, second, and third Bone Spring sandstones, as well as in a new reservoir interval, the Avalon sandstone, above the first Bone Spring sandstone. These sandstones were deposited as submarine-fan systems within the northern Delaware basin during periods of lowered sea level. The Bone Spring as a whole consists of alternating carbonate and siliciclastic intervals representing the downdip equivalents to thick Abo-Yeso/Wichita-Clear Fork carbonate buildups along the Leonardian shelf margin. Hydrocarbon exploration in the Bone Spring has traditionally focused on debris-flow carbonate deposits restricted to the paleoslope. Submarine-fan systems, in contrast, extend a considerable distance basinward of these deposits and have been recently proven productive as much as 40-48 km south of the carbonate trend.

  4. 05643_GeoMech_Bakken | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bakken Formation for Improved Oil Recovery Last Reviewed 6242014 DE-08NT0005643 Goal The goal of this project is to determine the geomechanical properties of the Bakken Formation ...

  5. Stratigraphy and depositional history, Bone Spring Formation, Lea County, New Mexico

    SciTech Connect (OSTI)

    Mazzullo, L.J. )

    1987-02-01

    The Bone Spring formation of the northern Delaware basin in southeastern New Mexico produces oil in Lea County from foreshelf detrital carbonate facies, such as in Scharb field. Production there comes from several intervals. Stratigraphic correlations between the various Bone Springs units and equivalent Leonardian facies of the Northwest shelf in Lea County suggest that the Bone Spring is correlative to the Yeso Formation of the Northwest shelf. The shelf facies there are divided into lower, middle, and upper Yeso. The upper part of what has generally been considered to be Wolfcamp in some areas, beneath the lowermost Bone Spring sandstone, is inferred to be lower Leonardian (lower Yeso) throughout the area studied. A model is proposed for the sedimentologic and reservoir evolution of the Bone Spring Formation in Lea County. Permian-Pennsylvanian tectonic activity provided the initial substrate for the development of a high-energy shelf edge in early Yeso time. In early middle Yeso time, the basin filled with sediments of the 3rd and 2nd Bone Spring units, and the shelf to basin transition was more subtle. As the basin subsided with infilling, a high-energy shelf edge again developed in late middle Yeso time. With continued basin infilling by 1st Bone Springs facies, the shelf to basin transition again evolved into a more subtle feature. Continued basin subsidence caused infilling by a thick sequence of upper Yeso carbonate, which was capped by progradational shelf carbonates of the upper Yeso.

  6. Treating-pressure analysis in the Bakken formation

    SciTech Connect (OSTI)

    Cramer, D.D. )

    1992-01-01

    The Bakken formation is an oil-producing interval in the Williston basin. Usually, commercial Bakken wells are linked to an anisotropic natural fracture network. Hydraulic fracturing treatments have been used extensively in vertical wells and to a limited extent in horizontal wells. In this paper, bottom hole treating pressure (BHTP's) are analyzed to improve understanding of hydraulic fracture propagation in the Bakken.

  7. Bakken shale typifies horizontal drilling success

    SciTech Connect (OSTI)

    Leibman, P.R. )

    1990-12-01

    Given the favorable production response that has been obtained from horizontal drilling in vertical- fractured reservoirs such as the Bakken shale and, more recently, the Austin chalk, industry interest in this technology has mushroomed in the U.S. Indeed, it is difficult to find a good-sized oil company these days that is not involved in a horizontal drilling project or is giving it serious consideration. In response to growing evidence of successful field applications, the realization is dawning on the investment community that horizontal drilling represents a significant technological development with positive implications for both the exploration and production business, and the oilfield services industry.

  8. 05643_GeoMech_Bakken | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanical Study of Bakken Formation for Improved Oil Recovery Last Reviewed 6/24/2014 DE-08NT0005643 Goal The goal of this project is to determine the geomechanical properties of the Bakken Formation in North Dakota, and use these results to increase the success rate of horizontal drilling and hydraulic fracturing in order to improve the ultimate recovery of this vast oil resource. Performer University of North Dakota, Grand Forks, ND 58202-7134 Background Compared to the success of

  9. Source-potential rating index-evaluation of Bakken formation

    SciTech Connect (OSTI)

    Pirkle, F.L., Dembicki, H.

    1985-05-01

    The Bakken formation, an organic-rich, oil-prone unit, is the source of the crude oils found in the middle Bakken and overlying Madison Group. Thickness, organic carbon, and vitrinite reflectance data for the Bakken were gathered from 101 wells within the Williston basin and evaluated in terms of source potential. An index exists that combines sediment thickness, organic carbon content, and thermal maturity data into a single mappable parameter that indicates areas of potential hydrocarbon generation. Multiplying the average percent organic carbon by the effective source rock thickness of a formation yields a richness factor that is then multiplied by maturity scaling factors to give source potential ratings for oil and/or gas generation. By using burial-history curves and thermal-maturation modeling, the rating index can be used to look at source potential through geologic time. The Bakken Formation has been evaluated with the aid of the rating index. The source-potential rating index provides objective semiquantitative measures by which the source potential of a single formation can be compared within an area or the source potential of two or more formations can be compared within the same or different basins. The Bakken did not begin to reach high source potential until toward the end of the Late Cretaceous. This contrasts with previous authorities who believed the Bakken was at peak generation and expelling hydrocarbons throughout the Cretaceous.

  10. The Bakken - An Unconventional Petroleum and Reservoir System

    SciTech Connect (OSTI)

    Sarg, J.

    2011-12-31

    An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. The Middle Bakken Member of the Bakken Formation is the target for horizontal drilling. The mineralogy across all the Middle Bakken lithofacies is very similar and is dominated by dolomite, calcite, and quartz. This Member is comprised of six lithofacies: (A) muddy lime wackestone, (B) bioturbated, argillaceous, calcareous, very fine-grained siltstone/sandstone, (C) planar to symmetrically ripple to undulose laminated, shaly, very fine-grained siltstone/sandstone, (D) contorted to massive fine-grained sandstone, to low angle, planar cross-laminated sandstone with thin discontinuous shale laminations, (E) finely inter-laminated, bioturbated, dolomitic mudstone and dolomitic siltstone/sandstone to calcitic, whole fossil, dolomitic lime wackestone, and (F) bioturbated, shaly, dolomitic siltstone. Lithofacies B, C, D, and E can all be reservoirs, if quartz and dolomite-rich (facies D) or dolomitized (facies B, C, E). Porosity averages 4-8%, permeability averages 0.001-0.01 mD or less. Dolomitic facies porosity is intercrystalline and tends to be greater than 6%. Permeability may reach values of 0.15 mD or greater. This appears to be a determinant of high productive wells in Elm Coulee, Parshall, and Sanish fields. Lithofacies G is organic-rich, pyritic brown/black mudstone and comprises the Bakken shales. These shales are siliceous, which increases brittleness and enhances fracture potential. Mechanical properties of the Bakken reveal that the shales have similar

  11. Geomechanical Study of Bakken Formation for Improved Oil Recovery

    SciTech Connect (OSTI)

    Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

    2013-12-31

    On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.

  12. Regional geology and petroleum potential of Bakken Formation, southwestern Manitoba

    SciTech Connect (OSTI)

    Martiniuk, C.D.

    1988-07-01

    The Bakken Formation has been documented as an excellent petroleum source rock within the Williston basin and has, in some localities, been established as a producing zone. Recent exploration in the Daly field of southwestern Manitoba has led to the discovery and subsequent development of several oil pools within the middle member of the Bakken. The 21 active wells within these pools have produced 20,773.8 m/sup 3/ (130,667.2 bbl) of oil (40.2/degrees/ API) as of December 31, 1987. Through much of the Williston basin, the Bakken typically consists of three members: a lower, highly radioactive, black shale member; a middle siltstone member; and an upper black shale member (identical to the lower member). In southwestern Manitoba, the lower member is absent in most areas due to nondeposition and overstep of the overlying middle member. In these areas, the middle member unconformably overlies eroded red dolomitic shales of the Devonian Lyleton (Three Forks) Formation. The middle member is a relatively uniform blanket deposit averaging 4 m (13 ft) thick. It consists of interbedded tan to greenish-gray, very fine to medium-grained, well-sorted dolomitic sandstone and siltstone with angular to subrounded grains. Oil accumulation in the middle member is largely the result of stratigraphic trapping and appears, in part, to be localized where a basal sandstone (associated with middle member thickening) is concentrated in minor erosional lows on the Lyleton surface. The black shales of the upper member form a thin (2 m or 6.6 ft average), uniform cap throughout the map area and are overlain by the carbonates of the Mississippian Lodgepole Formation (Souris Valley Beds). Maximum thickness of the Bakken reaches 32 m (105 ft) in the Waskada field area, where the lower shale member is locally present.

  13. Horizontal drilling the Bakken Formation, Williston basin: A new approach

    SciTech Connect (OSTI)

    Lefever, J.A. )

    1990-05-01

    Horizontal drilling is an attractive new approach to exploration and development of the Mississippian/Devonian Bakken Formation in the southwestern part of North Dakota. This drilling technique increases the probability of success, the profit potential, the effective drainage area maximizing recoverable reserves, and the productivity by encountering more natural occurring fractures. The target formation, the Mississippian/Devonian Bakken, consists of three members in an overlapping relationship, a lower organic-rich black shale, a middle siltstone/limestone, and an upper organic-rich black shale. It attains a maximum thickness of 145 ft and thins to a feather edge along its depositional limit. Considered to be a major source rock for the Williston basin, the Bakken is usually overpressured where productive. Overpressuring is attributed to intense hydrocarbon generation. Reservoir properties are poor with core fluid porosities being generally 5% or less and permeabilities ranging from 0.1 to 0.2 md. The presence of natural fractures in the shale are necessary for production. Two types of fractures are associated with Bakken reservoirs: large vertical fractures (of tectonic origin) and microfractures (probably related to hydrocarbon generation). An economic comparison between horizontal and vertical wells show that well completion costs are approximately two times higher (average costs; $1,500,000 for a horizontal to $850,000 for a vertical) with average payout for horizontal wells projected to occur in half the time (1.5 yr instead of 3.4 yr). Projected production and reserves are considered to be 2 to 4 times greater from a horizontal well.

  14. The Bakken-An Unconventional Petroleum and Reservoir System

    SciTech Connect (OSTI)

    Sarg, Frederick

    2012-03-01

    An integrated geologic and geophysical study of the Bakken Petroleum System, in the Williston basin of North Dakota and Montana indicates that: (1) dolomite is needed for good reservoir performance in the Middle Bakken; (2) regional and local fractures play a significant role in enhancing permeability and well production, and it is important to recognize both because local fractures will dominate in on-structure locations; and (3) the organic-rich Bakken shale serves as both a source and reservoir rock. Results from the lithofacies, mineral, and fracture analyses of this study were used to construct a dual porosity Petrel geo-model for a portion of the Elm Coulee Field. In this field, dolomitization enhances reservoir porosity and permeability. First year cumulative production helps locate areas of high well productivity and in deriving fracture swarm distribution. A fracture model was developed based on high productivity well distribution, and regional fracture distribution, and was combined with favorable matrix properties to build a dual porosity geo-model.

  15. Horizontal drilling in the Bakken Formation - The hunt for an elephant that never left the source system

    SciTech Connect (OSTI)

    Price, L. ); Le Fever, J. )

    1991-06-01

    New organic-geochemical studies show that bitumen extracted from the upper and lower shale members of the Mississippian Madison Group oils, and that the Bakken shales have contributed only a minor percentage of the conventionally produced oil in the Williston basin. Instead, organic-rich madison marls are an adequate source for the Madison oils. Also, few pathways exist for vertical migration of Bakken-generated oil to shallower Madison reservoirs. Vertical wells in older Bakken oil pools are perforated in one or all of the three units adjacent to the two Bakken shales but are not necessarily perforated in the Bakken shales. Rock-Eval analyses of 6- to 12-in. spaced core samples show that where Bakken shales are thermally mature, the three adjacent organic-poor units contain 10-20 times the hydrocarbons (HCs) they could have generated. Thus, Bakken-generated HCs appear to have moved into the three adjacent units, probably via fractures created by volume expansion of organic matter during HC generation in the Bakken shales. Bakken well histories reveal that unsuccessful Bakken wells appear due to questionable techniques during these operations and not a lack of fractures. If a large in-place resource base exists in the Bakken source system, its commercial recovery will depend on new exploration, drilling, completion, and production technologies and on how much of the generated oil is in fractures rather than dispersed throughout the rocks.

  16. Conodonts of Bakken Formation (Devonian and Mississippian), Williston basin, North Dakota

    SciTech Connect (OSTI)

    Hayes, M.D.; Holland, F.D. Jr.

    1983-08-01

    The Bakken Formation is a thin (maximum 145 ft, 45 m), clastic unit in the subsurface of Williston basin in the United States and Canada. The Bakken is similar in lithologic character and stratigraphic position to other black shale units deposited on the North American craton during the Late Devonian and Early Mississippian. The Bakken was initially considered entirely Mississippian in age. Paleontologic study of regional physical equivalents and analysis of the macrofauna in Saskatchewan has suggested that the Bakken is actually both Devonian and Mississippian. Conodonts were obtained from cores of the Bakken in an effort to determine the age of the formation in North Dakota and to assess the oil generation potential. Nearly 700 conodonts have been recovered, but are unevenly distributed within the Bakken Formation. A majority was obtained from thin (approximately 0.5 cm), fossil-rich beds within the upper shale. Conodonts from the top of the upper shale reveal a Mississippian (Kinderhookian) age and are here assigned to the Lower Siphonodella crenulata Zone. Only rare, fragmentary conodonts have been found in the middle member. Conodont evidence from the middle of the lower shale suggests a late Devonian (Famennian) age (Upper Polygnathus styriacus Zone) for this member. Conodont color has been established as a geothermometer in carbonate rocks. Color alteration indices of conodonts from the Bakken range from 1.5 to approximately 2.5 and indicate a pattern of increasing temperature with depth. These results suggest possible hydrocarbon generation from shallower depths than has been reported previously for the Bakken. The lack of agreement in interpreted hydrocarbon generation depths may be due to, among other things, the clastic nature of the Bakken Formation.

  17. Breaking into Bakken potential on the Fort Peck reservation, northeastern Montana

    SciTech Connect (OSTI)

    Monson, L.M.; Lund, D.F. )

    1991-06-01

    Necessary ingredients for a Bakken play involve overpressuring, thermal maturity, stratigraphic thinning, hydrocarbon content, and the presence of fractures to free the oil. Bakken thickness varies on the reservation from 0 to 25 m. The Upper Shale Member is uniformly 3-4 m. Thickness is related to a northwest structural grain, especially in the northeast where fold axes are located parallel to the Opheim syncline. This strike is coincident with the general salt solution edge of the Devonian Prairie Evaporites. The Bakken is about 16 m thick along this dissolution boundary and may contain the necessary fracturing. Structural flexure near the Wolf Creek Nose, and especially off the northeast and eastern flanks of the Poplar dome, may have suitably fractured the Bakken as well. Well logs in this area have good resistivity separation in the Middle Siltstone Member of the Bakken, which may be used to detect fracturing in this low-porosity reservoir. Present depth of the Bakken varies from about 2,100 to 3,050 m. Electrical resistivities indicate, however, that much of the reservation's Bakken was subjected to sufficient depths to generate hydrocarbons. Other physical properties, based on porosity and gamma-ray logs, confirm that organic carbon content is adequate, if not exceptionally high. Regional and Laramide uplift, coupled with glacial erosion and rebound, probably explain the present elevation of the Bakken in this area. Significant overpressuring exists in the Bakken over at least half of the reservation as determined by sonic-log calculations and sparse drill-stem test pressures.

  18. A comparison of the rates of hydrocarbon generation from Lodgepole, False Bakken, and Bakken formation petroleum source rocks, Williston Basin, USA

    SciTech Connect (OSTI)

    Jarvie, D.M.; Elsinger, R.J.; Inden, R.F.; Palacas, J.G.

    1996-06-01

    Recent successes in the Lodgepole Waulsortian Mound play have resulted in the reevaluation of the Williston Basin petroleum systems. It has been postulated that hydrocarbons were generated from organic-rich Bakken Formation source rocks in the Williston Basin. However, Canadian geoscientists have indicated that the Lodgepole Formation is responsible for oil entrapped in Lodgepole Formation and other Madison traps in portions of the Canadian Williston Basin. Furthermore, geoscientists in the U.S. have recently shown oils from mid-Madison conventional reservoirs in the U.S. Williston Basin were not derived from Bakken Formation source rocks. Kinetic data showing the rate of hydrocarbon formation from petroleum source rocks were measured on source rocks from the Lodgepole, False Bakken, and Bakken Formations. These results show a wide range of values in the rate of hydrocarbon generation. Oil prone facies within the Lodgepole Formation tend to generate hydrocarbons earlier than the oil prone facies in the Bakken Formation and mixed oil/gas prone and gas prone facies in the Lodgepole Formation. A comparison of these source rocks using a geological model of hydrocarbon generation reveals differences in the timing of generation and the required level of maturity to generate significant amounts of hydrocarbons.

  19. Ron Ness will provide comments on the workforce needs of Bakken...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    needs of Bakken and North Dakota's energy industry and the tremendous growth in jobs over the past few years. He will focus on the Empower North Dakota initiatives on ...

  20. Petroleum source rocks and stratigraphy of Bakken formation in North Dakota

    SciTech Connect (OSTI)

    Webster, R.L.

    1984-07-01

    The Bakken Formation (Devonian and Mississippian) of North Dakota consists of upper and lower, black, organic-rich shales separated by a calcareous siltstone middle member. Organic-carbon measurements revealed the Bakken shales to be very organic-rich (average of 11.33 wt.% of organic carbon), and visual kerogen typing revealed this organic matter to be predominantly an amorphous type that is inferred to be sapropelic. The onset of hydrocarbon generation was determined to occur at an average depth of 9000 ft (2.74 km) by interpreting plots of geochemical parameters with depth (e.g., ratios of hydrocarbon to nonhydrocarbon, saturated hydrocarbon to organic carbon, pyrolytic hydrocarbon to organic carbon, and the pyrolysis production index). Hydrocarbon content and thermal kerogen breakdown increase greatly in the Bakken shales where they are buried at depths greater than 9000 ft (2.74 km). The effective source area of the Bakken, as determined by maps of the above geochemical parameters, lies mostly in McKenzie, Williams, Dunn, and Billings Counties. Oil generation was probably initiated in the Bakken about 75 Ma (Late Cretaceous) at a temperature of about 100/sup 0/C (212/sup 0/F), with initial expulsion of oil from the Bakken probably occurring 70 Ma (Late Cretaceous). The amount of oil generated by the Bakken in North Dakota, as calculated from pyrolysis data, is 92.3 billion bbl. If only 10% of this oil was actually expelled from the shales, it could easily account for the 3 billion bbl of known type II oil reserves in the Williston basin.

  1. Thermal history of Bakken shale in Williston basin

    SciTech Connect (OSTI)

    Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J. )

    1989-12-01

    Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships include factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.

  2. Thermal modeling of Bakken Formation of Williston basin

    SciTech Connect (OSTI)

    Anderson, D.

    1986-08-01

    Organic geochemical analyses provide a quantitative basis on which conceptual models of thermal maturation may be built. Contour maps of maturation indices of the Mississippian-Devonian Bakken Formation of the Williston basin show anomalous patterns that are not dependent on burial depth. One such area is on the western side of the Nesson anticline. One-dimensional modeling incorporating a uniform, constant heat flow, lithology-dependent thermal conductivities, and decompaction factors indicates that these areas are less mature than surrounding regions. This is due primarily to decreasing burial depth and thinning of low-thermal-conductivity Tertiary and Cretaceous shales. Additional heat transfer to these regions may be due in part to heat transfer by fluid movement through aquifers or vertical fractures. The influence of these fluid systems is simulated through the use of a two-dimensional finite difference program. Basic assumptions are made concerning heat flow, thermal properties, and ground-water flow rates through time. Modeling of the time-temperature history is simplified by restricting the study to the time of greatest maturation, the post-Jurassic.

  3. Subtask – CO2 storage and enhanced bakken recovery research program

    SciTech Connect (OSTI)

    Sorensen, James; Hawthorne, Steven; Smith, Steven; Braunberger, Jason; Liu, Guoxiang; Klenner, Robert; Botnen, Lisa; Steadman, Edward; Harju, John; Doll, Thomas

    2014-05-31

    Small improvements in productivity could increase technically recoverable oil in the Bakken Petroleum System by billions of barrels. The use of CO2 for enhanced oil recovery (EOR) in tight oil reservoirs is a relatively new concept. The large-scale injection of CO2 into the Bakken would also result in the geological storage of significant amounts of CO2. The Energy & Environmental Research Center (EERC) has conducted laboratory and modeling activities to examine the potential for CO2 storage and EOR in the Bakken. Specific activities included the characterization and subsequent modeling of North Dakota study areas as well as dynamic predictive simulations of possible CO2 injection schemes to predict the potential CO2 storage and EOR in those areas. Laboratory studies to evaluate the ability of CO2 to remove hydrocarbons from Bakken rocks and determine minimum miscibility pressures for Bakken oil samples were conducted. Data from a CO2 injection test conducted in the Elm Coulee area of Montana in 2009 were evaluated with an eye toward the possible application of knowledge gained to future injection tests in other areas. A first-order estimation of potential CO2 storage capacity in the Bakken Formation in North Dakota was also conducted. Key findings of the program are as follows. The results of the research activities suggest that CO2 may be effective in enhancing the productivity of oil from the Bakken and that the Bakken may hold the ability to geologically store between 120 Mt and 3.2 Gt of CO2. However, there are no clear-cut answers regarding the most effective approach for using CO2 to improve oil productivity or the storage capacity of the Bakken. The results underscore the notion that an unconventional resource will likely require unconventional methods of both assessment and implementation when it comes to the injection of CO

  4. Petroleum generation and expulsion in the constrained Bakken petroleum system and its relevance to the formation of fractures

    SciTech Connect (OSTI)

    Muscio, G.P.A.; Horsfield, B.; Welte, D.

    1995-08-01

    The lack of direct and unequivocal evidence for the existence of fractures in the Bakken petroleum system (Williston Basin, U.S.A./Canada) has led to controversial discussions with respect to the magnitude, orientation and frequency of fractures and especially their formation mechanism. Amongst other hypotheses, the creation of overpressuring as a result of high petroleum generation rates was called upon to induce fracturing. On the basis of a comprehensive organic geochemical study incorporating source rock and reservoir data, the present contribution provides evidence for an alternative pressure-controlled fracture formation mechanism: Mass balance calculations performed on Bakken Shale samples covering a maturity spectrum from 0.3% to 1.1% R{sub o} has revealed that the main phase of petroleum formation took place very early during catagenesis (ca. 0.4 - 0.8% R{sub o}) and that its potential has already been realized in those areas of the basin which currently produce from Bakken reservoirs. (1) It has been shown recently that the Bakken petroleum system represents a closed system, i.e. the Bakken sourced oils have not entered the Madison reservoirs. Hence, overall high expulsion efficiencies indicate that Bakken Shale over- and underlying units might represent the principal reservoirs and, most importantly, the strata where overpressuring should be expected. (2) Detailed analysis of Bakken sourced oils which are produced from Bakken reservoirs imply that their bulk and molecular composition may have been altered by significant in-situ thermal alteration which took place after the main phase of expulsion. (3) The hypothesized process of reimpregnation of petroleum from the reservoir back into the source rock system may account for locally occurring high concentrations of solvent extractable organic matter in Bakken Shales.

  5. Macrofossils of Bakken Formation (Devonian and Mississippian), Williston Basin, North Dakota

    SciTech Connect (OSTI)

    Thrasher, L.; Holland, F.D. Jr.

    1983-08-01

    Results of this study of the macrofossils of the Bakken Formation in North Dakota have reinforced the suggestion, based on previous paleontological work in Saskatchewan, that the Bakken is of both Devonian and Mississippian age, rather than being entirely of Lower Mississippian age as originally considered. Increased drilling and coring activity in the North Dakota part of the Williston Basin has provided the opportunity for acquiring a larger fauna that was previously available. Based on lithologic character, the Bakken has been divided into three informal members. These consist of a calcareous siltstone unit between two lithologically similar units of carbonaceous shale. These black shales contain similar faunas distinct from that of the middle member. The black shales contain inarticulate brachiopods, conchostracans, and rare cephalopods and fish remains as well as more abundant conodonts, ostracods, and palynomorphs. The middle siltstone unit contains a more abundant and diverse fauna consisting of inarticulate and articulate brachiopods together with corals, gastropods, cephalopods, ostracods, echinoderm remains, and trace fossils. This is the first report of cephalopods, conchostracans, ostracods, corals, trace fossils, and some of the brachiopods in the Bakken, although all, except the gastropods, have been reported from stratigraphic equivalents (Exshaw Formation of south-central Montana, the Leatham Formation of northeastern Utah, and the middle member of the Pilot Shale in western Utah and eastern Nevada).

  6. Organic carbon in Bakken Formation, United States portion of Williston Basin

    SciTech Connect (OSTI)

    Schmoker, J.W.; Hester, T.C.

    1983-12-01

    The upper and lower members of the Mississippian and Devonian Bakken Formation in the United States portion of the Williston basin are black shales that are extremely rich in organic matter and are the source of much of the oil found in the basin. Organic-carbon values are calculated from formationdensity logs using the equation: TOC = (154.497//rho/) -57.261, where TOC is organic-carbon content (wt. %) and /rho/ is formation density (g/cm/sup 3/). Test calculations comparing this equation to laboratory organic-carbon analyses from 39 wells in North Dakota show an average absolute difference of 1.1% in organic-carbon content. Organic-carbon content, calculated at 159 locations in North Dakota and 107 in Montana, averages 12.1% for the upper member of the Bakken Formation and 11.5% for the lower member. There is a regional depletion of organic carbon, paralleling present-day isotherms, that reflects the conversion of organic matter to oil and subsequent expulsion of the oil from the formation. The mass of organic carbon in the Bakken Formation is approximately evenly divided between the upper and lower members, and it totals about 126 X 10/sup 12/ kg in the study area, of which 102 X 10/sup 12/ kg are in the thermally mature region. The assumption that 167 mg HC/g TOC have migrated out of the mature Bakken shales leads to a tentative estimate that hydrocarbons equivalent to 132 billion bbl of 43/sup 0/ (API gravity) oil have been expelled from the United States portion of the upper and lower members of the Bakken Formation.

  7. Recognition of hydrocarbon expulsion using well logs: Bakken Formation, Williston Basin

    SciTech Connect (OSTI)

    Cunningham, R.; Zelt, F.B.; Morgan, S.R.; Passey, Q.R. ); Snavely, P.D. III; Webster, R.L. )

    1990-05-01

    The Upper Mississippian-Lower Devonian Bakken Formation forms a source/carrier/reservoir system in the Williston basin. Hydrocarbon expulsion within the Bakken has been identified by overlaying sonic and resistivity logs. Typically, these curves track in organically lean, water-saturated mudrocks because both respond mainly to porosity; however, in thermally mature organic-rich rocks and hydrocarbon reservoirs or carrier beds, the curves separate due to the anomalously high resistivity associated with replacement of pore water by hydrocarbons. Sonic/resistivity-log overlays for wells throughout the Montana and North Dakota parts of the Williston basin reveal significant increases and maximum in-curve separation within the middle siltstone member of the Bakken at subsurface temperatures of about 170 and 200{degree}F, respectively. Sequence-stratigraphic characteristics of the Bakken define the framework within which the expulsion process operates. The organic-rich upper and lower shale members represent the transgressive and early highstand systems tracts of two adjacent depositional sequences. A sequence boundary within the intervening middle siltstone member separates nearshore siltstone and sandstone of the late highstand systems tract in the lower sequence from cross-bedded subtidal to intertidal sandstones of the lowstand systems tract in the upper sequence. Reservoir properties vary across this sequence boundary. The authors attribute the log separation in the siltstone member to hydrocarbons expelled from the adjacent shales. Abrupt shifts in several geochemical properties of the shale members, indicative of hydrocarbon generation occur over the same subsurface temperature range as the rapid increase in log separation in the middle siltstone, thus indicating the contemporaneity of generation and expulsion.

  8. Fracture-enhanced porosity and permeability trends in Bakken Formation, Williston basin, western North Dakota

    SciTech Connect (OSTI)

    Freisatz, W.B.

    1988-07-01

    Fractures play a critical role in oil production from the Bakken Formation (Devonian and Mississippian) in the North Dakota portion of the Williston basin. The Bakken Formation in the study area is known for its low matrix porosity and permeability, high organic content, thermal maturity, and relative lateral homogeneity. Core analysis has shown the effective porosity and permeability development within the Bakken Formation to be related primarily to fracturing. In theory, lineaments mapped on the surface reflect the geometry of basement blocks and the zones of fracturing propagated upward from them. Fracturing in the Williston basin is thought to have occurred along reactivated basement-block boundaries in response to varying tectonic stresses and crustal flexure throughout the Phanerozoic. Landsat-derived lineament maps were examined for the area between 47/degrees/ and 48/degrees/ north lat. and 103/degrees/ and 104/degrees/ west long. (northern Billings and Golden Valley Counties, and western McKenzie County, North Dakota) in an attempt to identify large-scale fracture trends. In the absence of major tectonic deformation in the craton, a subtle pattern of fracturing has propagated upward through the sedimentary cover and emerged as linear topographic features visible on these large-scale, remote-sensed images.

  9. Developing an oil generation model for resource assessment of Bakken formation, Williston Basin

    SciTech Connect (OSTI)

    Charpentier, R.R.; Krystinik, K.B.

    1984-04-01

    A model was developed for oil generation in the Devonian and Mississippian Bakken Formation, which has been proposed as the main hydrocarbon source rock within the Williston basin. The data consisted of formation temperatures and of density, neutron-porosity, resistivity, and gamma-ray logs from more than 250 wells in North Dakota and Montana. The upper and the lower shale members of the Bakken Formation were studied. Regression analysis, analysis of residuals, and cluster, discriminant, and factor analyses were used in an attempt to separate depositional effects--especially variations in organic content-from maturity. Regression and analysis of residuals indicate differences both areally and between the upper and lower members. In the upper member, and less strongly in the lower member, the center of the basin differs from the basin margins in that it has extreme residuals--either high or low. Clustering and residual analyses show roughly the same areal patterns. Inverse relationships, similar to those suggested by other workers, were found between formation temperature and organic content and between density logs and organic content. Also found, though, was that the addition of other factors, such as neutron porosity, helps to indicate organic content. Preliminary results show that it may be possible to model oil generation by using statistical techniques on well-log data. In particular, the model has the potential to refine estimates of the amount of hydrocarbons generated by the Bakken Formation in the Williston basin.

  10. Subtask1.10 – CO2 storage and enhanced bakken recovery research program

    SciTech Connect (OSTI)

    Sorensen, James

    2014-05-31

    Small improvements in productivity could increase technically recoverable oil in the Bakken Petroleum System by billions of barrels. The use of CO2 for enhanced oil recovery (EOR) in tight oil reservoirs is a relatively new concept. The large-scale injection of CO2 into the Bakken would also result in the geological storage of significant amounts of CO2. The Energy & Environmental Research Center (EERC) has conducted laboratory and modeling activities to examine the potential for CO2 storage and EOR in the Bakken. Specific activities included the characterization and subsequent modeling of North Dakota study areas as well as dynamic predictive simulations of possible CO2 injection schemes to predict the potential CO2 storage and EOR in those areas. Laboratory studies to evaluate the ability of CO2 to remove hydrocarbons from Bakken rocks and determine minimum miscibility pressures for Bakken oil samples were conducted. Data from a CO2 injection test conducted in the Elm Coulee area of Montana in 2009 were evaluated with an eye toward the possible application of knowledge gained to future injection tests in other areas. A first-order estimation of potential CO2 storage capacity in the Bakken Formation in North Dakota was also conducted. Key findings of the program are as follows. The results of the research activities suggest that CO2 may be effective in enhancing the productivity of oil from the Bakken and that the Bakken may hold the ability to geologically store between 120 Mt and 3.2 Gt of CO2. However, there are no clear-cut answers regarding the most effective approach for using CO2 to improve oil productivity or the storage capacity of the Bakken. The results underscore the notion that an unconventional resource will likely require unconventional methods of both assessment and implementation when it comes to the injection of CO

  11. Subtask 1.8 - Investigation of Improved Conductivity and Proppant Applications in the Bakken Formation

    SciTech Connect (OSTI)

    Bethany Kurz; Darren Schmidt; Steven Smith Christopher Beddoe; Corey Lindeman; Blaise Mibeck

    2012-07-31

    Given the importance of hydraulic fracturing and proppant performance for development of the Bakken and Three Forks Formations within the Williston Basin, a study was conducted to evaluate the key factors that may result in conductivity loss within the reservoirs. Various proppants and reservoir rock cores were exposed to several different fracturing and formation fluids at reservoir conditions. The hardness of the rock cores and the strength of the proppants were evaluated prior to and following fluid exposure. In addition, the conductivity of various proppants, as well as formation embedment and spalling, was evaluated at reservoir temperatures and pressures using actual reservoir rock cores. The results of this work suggest that certain fluids may affect both rock and proppant strength, and therefore, fluid exposure needs to be considered in the field. In addition, conductivity decreases within the Bakken Formation appear to be a function of a variety of factors, including proppant and rock strength, as well as formation embedment and spalling. The results of this study highlight the need for advanced conductivity testing, coupled with quantification of formation embedment and spalling. Given the importance of proppant performance on conductivity loss and, ultimately, oil recovery, better understanding the effects of these various factors on proppant and rock strength in the field is vital for more efficient production within unconventional oil and gas reservoirs.

  12. Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken?

    Reports and Publications (EIA)

    2006-01-01

    This report presents information about the Bakken Formation of the Williston Basin: its location, production, geology, resources, proved reserves, and the technology being used for development. This is the first in a series intending to share information about technology-based oil and natural gas plays.

  13. Suspension- and current-deposit reservoirs in the Delaware basin: Trends and cycles in siltstones of the Permian Bone Spring Limestone

    SciTech Connect (OSTI)

    Lorenz, J.C. ); Brooks, L.L. )

    1990-05-01

    Cores show that siltstone to very fine-grained sandstone oil reservoirs within the Permian Bone Spring Limestone are composed of submillimeter- to centimeter-thick sedimentation laminae. Blanketing of small-scale topography suggests that the laminae were deposited over wide areas as sediment settled vertical to the sea floor. Superimposed on the event laminae, were (1) background sedimentation of dolomitic, organic-rich, mudstone, (2) invertebrate burrowing, and (3) reworking by gentle bottom currents. Currents produced wispy ripply bedding and starved ripple forms that were draped by later deposits. Paleoflow was subparallel to the basin margin. Several sedimentation patterns occur within the formation. Three clastic intervals 25-50-m thick are interbedded with dolomitic mudstones of similar thickness. The clastic intervals are composed of three to six siltstone beds, each up to 25-m thick. Upsection within the beds increases in event-laminae, thickness, bioturbation, and current reworking. Other reports have suggested that these are turbidite-fan deposits, but locally, paleocurrent orientations and the lack of diagnostic assemblages and sequences of sedimentary structures argue against this interpretation. Rather, some of these deposits compare favorably with the few existing sedimentologic descriptions of Quaternary dust storm deposition in marine basins. The siltstone beds may also record deflation of the exposed adjacent shelf during lowered sea level. Very fine grain size and extensive carbonate cementation produce 5-10 pd permeability and 4-15% porosity. Sedimentary laminations cause significantly reduced vertical permeability where they are not disrupted by bioturbation, but permeability may be enhanced by natural fractures. Some reservoir thickenings are attributed to the formation of giant ripples by bottom currents, dictating a different exploration rationale than the turbidite-fan model.

  14. Statistical model for source rock maturity and organic richness using well-log data, Bakken Formation, Williston basin, United States

    SciTech Connect (OSTI)

    Krystinik, K.B.; Charpentier, R.R.

    1987-01-01

    A study of the Bakken Formation, the proposed source rock for much of the hydrocarbons generated in the Williston basin, was done using bulk density, neutron porosity, and resistivity logs, and formation temperatures. Principal components, cluster, and discriminant analyses indicate that the present-day distribution of organic matter controls much of the variability in the log values. Present-day total organic carbon values are high in the central part of the basin near northeastern Montana and along the east edge of the basin, and low in the area of the Nesson anticline and along the southwest edge of the basin. Using a regression of density on temperature and the analysis of residuals from this regression, hydrocarbon maturity effects were partially separated from depositional effects. These analyses suggest that original concentrations of organic matter were low near the limits of the Bakken and increased to a high in northeastern Montana. The pre-maturation distribution of total organic carbon and the present-day total organic carbon distribution, as determined by statistical analyses of well-log data, agree with the results of geochemical analyses. The distributions can be explained by a relatively simple depositional pattern and thermal history for the Bakken. 6 figures, 3 tables.

  15. A resource evaluation of the Bakken Formation (Upper Devonian and Lower Mississippian) continuous oil accumulation, Williston Basin, North Dakota and Montana

    SciTech Connect (OSTI)

    Schmoker, J.W.

    1996-01-01

    The Upper Devonian and Lower Mississippian Bakken Formation in the United States portion of the Williston Basin is both the source and the reservoir for a continuous oil accumulation -- in effect a single very large field -- underlying approximately 17,800 mi{sup 2} (46,100 km{sup 2}) of North Dakota and Montana. Within this area, the Bakken Formation continuous oil accumulation is not significantly influenced by the water column and cannot be analyzed in terms of conventional, discrete fields. Rather, the continuous accumulation can be envisioned as a collection of oil-charged cells, virtually all of which are capable of producing some oil, but which vary significantly in their production characteristics. Better well-performance statistics are linked regionally to higher levels of thermal maturity and to lower levels of reservoir heterogeneity. Although portions of the Bakken Formation continuous oil accumulation have reached a mature stage of development, the accumulation as a whole is far from depleted.

  16. SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II

    SciTech Connect (OSTI)

    Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

    2011-10-31

    Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

  17. A chemical kinetic model of hydrocarbon generation from the Bakken Formation, Williston Basin, North Dakota

    SciTech Connect (OSTI)

    Sweeney, J.J.; Braun, R.L.; Burnham, A.K. ); Gosnold, W.D. )

    1992-10-01

    This report describes a model of hydrocarbon generation and expulsion in the North Dakota portion of the Williston Basin. The modeling incorporates kinetic methods to simulate chemical reactions and 1-dimensional conductive heat flow models to simulate thermal histories of the Mississippian-Devonian Bakken Formation source rock. We developed thermal histories of the source rock for 53 wells in the basin using stratigraphic and heat flow data obtained by the University of North Dakota. Chemical kinetics for hydrocarbon generation, determined from Pyromat pyrolysis, were, then used with the diennal histories to calculate the present day value of the Rock-Eval T[sub max] for each well. The calculated Rock-Eval T[sub max] values agreed with measured values within amounts attributable to uncertainties in the chemical kinetics and the heat flow. These optimized thermal histories were then used with a more detailed chemical kinetic model of hydrocarbon generation and expulsion, modified from a model developed for the Cretaceous La Luna shale, to simulate pore pressure development and detailed aspects of the hydrocarbon chemistry. When compared to values estimated from sonic logs, the pore pressure calculation underestimates the role of hydrocarbon generation and overestimates the role of compaction disequilibrium, but it matches well the general areal extent of pore pressures of 0.7 times lithostatic and higher. The simulated chemistry agrees very well with measured values of HI, PI, H/C atomic ratio of the kerogen, and Rock-Eval S1. The model is not as successful in simulating the amount of extracted bitumen and its saturate content, suggesting that detailed hydrous pyrolysis experiments will probably be needed to further refine the chemical model.

  18. A chemical kinetic model of hydrocarbon generation from the Bakken Formation, Williston Basin, North Dakota

    SciTech Connect (OSTI)

    Sweeney, J.J.; Braun, R.L.; Burnham, A.K.; Gosnold, W.D.

    1992-10-01

    This report describes a model of hydrocarbon generation and expulsion in the North Dakota portion of the Williston Basin. The modeling incorporates kinetic methods to simulate chemical reactions and 1-dimensional conductive heat flow models to simulate thermal histories of the Mississippian-Devonian Bakken Formation source rock. We developed thermal histories of the source rock for 53 wells in the basin using stratigraphic and heat flow data obtained by the University of North Dakota. Chemical kinetics for hydrocarbon generation, determined from Pyromat pyrolysis, were, then used with the diennal histories to calculate the present day value of the Rock-Eval T{sub max} for each well. The calculated Rock-Eval T{sub max} values agreed with measured values within amounts attributable to uncertainties in the chemical kinetics and the heat flow. These optimized thermal histories were then used with a more detailed chemical kinetic model of hydrocarbon generation and expulsion, modified from a model developed for the Cretaceous La Luna shale, to simulate pore pressure development and detailed aspects of the hydrocarbon chemistry. When compared to values estimated from sonic logs, the pore pressure calculation underestimates the role of hydrocarbon generation and overestimates the role of compaction disequilibrium, but it matches well the general areal extent of pore pressures of 0.7 times lithostatic and higher. The simulated chemistry agrees very well with measured values of HI, PI, H/C atomic ratio of the kerogen, and Rock-Eval S1. The model is not as successful in simulating the amount of extracted bitumen and its saturate content, suggesting that detailed hydrous pyrolysis experiments will probably be needed to further refine the chemical model.

  19. Developing an oil generation model for resource assessment of the Bakken Formation, US portion of the Williston Basin

    SciTech Connect (OSTI)

    Krystinik, K.B.; Charpentier, R.R.

    1984-01-01

    A study of the Bakken Formation, the proposed source rock for much of the hydrocarbons generated in the Williston basin, was done using well-log data. Principal components analysis, cluster analysis, and discriminant analysis were used on bulk density, neutron porosity, and resistivity logs, and formation temperatures. These analyses indicate that the present-day distribution of organic matter controls much of the variability in the log values. The pattern of present-day total organic carbon (TOC) is high in the central part of the basin near northeastern Montana and along the east edge of the basin. Low values of TOC occur in the area of the Nesson anticline and along the southwest edge of the basin. Using the regression of density on temperature and the analysis of residuals from this regression, it is possible to separate maturity effects from those of original deposition. These analyses reveal that original concentrations of organic matter were low near the shoreline and increased offshore to a high in northeast Montana. The pre-maturation and present-day TOC distributions derived using statistical analyses and well-log data can easily be explained by the depositional pattern and thermal history that would be expected in this basin, and by geochemical analyses. 9 refs., 13 figs., 3 tabs.

  20. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  1. Bakken and other Devonian-Mississippian petroleum source rocks, northern Rocky Mtns.-Williston basin: Depositional and burial history and maturity estimations

    SciTech Connect (OSTI)

    Peterson, J.A.

    1996-06-01

    The three-member Devonian-Mississippian Bakken-Exshaw organic-rich shaly facies is widely distributed in the northern U.S. and southern Canadian Cordillera. Equivalent facies are also present as far south as Utah and Nevada. Paleogeographically, these rocks thin markedly or pinchout to the west approximately along the Devonian-Mississippian carbonate reef-mound belt of the Cordilleran shelf margin. Although these rocks reach maximum organic richness approximately at the Devonian-Carboniferous transition, similar but somewhat less organic-rich Bakken-like beds are also present in underlying Upper Devonian and overlying Lower Carboniferous carbonate depositional cycles. At least ten cycles are identified in the underlying Duperow and Jefferson Formations, characterized by basal organic-rich Bakken-like shale or shaly carbonate that grades upward into carbonate mound or reefal beds, overlain by evaporite or solution breccia. Cycles in the overlying Lodgepole and Mission Canyon Formations, as many as 10-12 in number, are similar except that the carbonates are composed of algal-oolith, crinoid, or mixed skeletal beds, and end-cycle evaporitic units are less prevalent in the lower cycles. These dark shaly beds are the most important source of hydrocarbon reserves in Montana and the Williston basin. Maximum net thickness of the Devonian-Mississippian organic-rich facies is in the Williston basin. However, variable thicknesses of these potential source rocks is present in parts of Montana as far west as the thrust belt. Burial history studies suggest that in some areas these rocks are probably thermally immature. However, in much of the area original burial depths are sufficient for them to reach the thermally mature stage, and therefore are of importance to further exploration efforts in the Devonian-Mississippian Madison-Duperow-Jefferson Formations.

  2. Spring bypass assembly

    DOE Patents [OSTI]

    Jablonski, Henry; Roughgarden, Jeffrey D.

    1984-02-07

    Pipe clamp comprises two substantially semicircular rim halves biased toward each other by spring assemblies. Adjustable stop means limit separation of the rim halves when the pipe expands.

  3. Coil spring venting arrangement

    DOE Patents [OSTI]

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  4. Motor Gasoline Assessment, Spring 1997

    Reports and Publications (EIA)

    1997-01-01

    Analyzes the factors causing the run up of motor gasoline prices during spring 1996 and the different market conditions during spring 1997 that caused prices to decline.

  5. CDP Spring Workshop 2016

    Broader source: Energy.gov [DOE]

    Combating climate change requires Silicon Valley innovation, which is why CDP (formerly the Carbon Disclosure Project), has partnered with Google for its annual Spring Workshop, which will be held...

  6. AESP Spring Conference

    Broader source: Energy.gov [DOE]

    The Association of Energy Services Professionals (AESP) is hosting its annual Spring Conference in Portland, Oregon, where attendees can hear from experts on the critical role technology and effective implementation play in energy efficiency programs.

  7. Confederated Tribes of Warm Springs - Biomass Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    05 June 2005 A Case Study: A Case Study: Warm Springs Warm Springs Cal Mukumoto Cal Mukumoto Warm Springs Forest Warm Springs Forest Products Industries Products Industries Warm Springs Indian Warm Springs Indian Reservation of Oregon Reservation of Oregon Warm Springs Forest Warm Springs Forest Products Industries (WSFPI) Products Industries (WSFPI) Enterprise of the Confederated Enterprise of the Confederated Tribes of the Warm Springs Tribes of the Warm Springs Reservation of Oregon

  8. Roller belleville spring damper

    SciTech Connect (OSTI)

    Hebel, J.B.

    1981-07-07

    A double acting damper for use in rotary drilling includes a splined tubular telescopic joint and employs plural paralleled stacks of double acting series stacked roller belleville spring washers in an annular pocket between the inner and outer tubular members of the joint. The springs, spline and telescopic bearings are in an oil filled volume sealed from the outside by a pressure seal at the lower end of the damper and a floating seal at the upper end. Electric and magnetic means are provided to check on the condition and quantity of the lubricant.

  9. Energy Matters - Spring 2002

    SciTech Connect (OSTI)

    2002-03-01

    Quarterly newsletter from DOE's Industrial Technologies Program to promote the use of energy-efficient industrial systems. The focus of the Spring 2002 Issue of Energy Matters focuses on premium energy efficiency systems, with articles on new gas technologies, steam efficiency, the Augusta Newsprint Showcase, and more.

  10. Pebble Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Pebble Springs Wind Farm Facility Pebble Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  11. Tuana Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  12. Thousand Springs Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Spring Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. 200 N. Spring Street

    Office of Legacy Management (LM)

    Dipartment of Energy. ,' Washington,DC20585 ., .\ FEB 1 7 ' 19g5' ,The Honorable Richa,rd. Riordon .', 200 N. Spring Street 'Los Angeles, California ,90012 '~ Dear Mayor Riordon: " Secretary of Energy Hazel O'Leary'has announced a neb approach to openness ins- the Department of Energy (DOE) and its communications with the public. fin support of this initiative, we are pleased~ to forward the enclosed information related to the. former Shannon Luminous Metals site in your jurisdiction that

  15. Baltazor Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Baltazor Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location...

  16. Spring 2016 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation ...

  17. Residential Energy Efficiency Stakeholder Meeting - Spring 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings Building America Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 The ...

  18. Spring 2015 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders ...

  19. Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs...

    Open Energy Info (EERE)

    p. () Related Geothermal Exploration Activities Activities (3) Gas Flux Sampling At Brady Hot Springs Area (Lechler And Coolbaugh, 2007) Gas Flux Sampling At Desert Peak Area...

  20. AMF Deployment, Steamboat Springs, Colorado

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and...

  1. Spring loaded thermocouple module

    DOE Patents [OSTI]

    McKelvey, T.E.; Guarnieri, J.J.

    1984-03-13

    A thermocouple arrangement is provided for mounting in a blind hole of a specimen. The thermocouple arrangement includes a cup-like holder member, which receives an elongated thermal insulator, one end of which is seated at an end wall of the holder. A pair of thermocouple wires, threaded through passageways in the insulator, extend beyond the insulator member, terminating in free ends which are joined together in a spherical weld bead. A spring, held captive within the holder, applies a bias force to the weld bead, through the insulator member. The outside surface of the holder is threaded for engagement with the blind hole of the specimen. When the thermocouple is installed in the specimen, the spherical contact surface of the weld bead is held in contact with the end wall of the blind hole, with a predetermined bias force.

  2. Spring loaded thermocouple module

    DOE Patents [OSTI]

    McKelvey, Thomas E.; Guarnieri, Joseph J.

    1985-01-01

    A thermocouple arrangement is provided for mounting in a blind hole of a specimen. The thermocouple arrangement includes a cup-like holder member, which receives an elongated thermal insulator, one end of which is seated at an end wall of the holder. A pair of thermocouple wires, threaded through passageways in the insulator, extend beyond the insulator member, terminating in free ends which are joined together in a spherical weld bead. A spring, held captive within the holder, applies a bias force to the weld bead, through the insulator member. The outside surface of the holder is threaded for engagement with the blind hole of the specimen. When the thermocouple is installed in the specimen, the spherical contact surface of the weld bead is held in contact with the end wall of the blind hole, with a predetermined bias force.

  3. Spring loaded locator pin assembly

    DOE Patents [OSTI]

    Groll, T.A.; White, J.P.

    1998-03-03

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

  4. Spring loaded locator pin assembly

    DOE Patents [OSTI]

    Groll, Todd A.; White, James P.

    1998-01-01

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

  5. NTSF Spring 2011 Agenda | Department of Energy

    Office of Environmental Management (EM)

    1 Agenda NTSF Spring 2011 Agenda Final Agenda for NTSF meeting in Denver Colorado. NTSF Spring 2011 Agenda (317.78 KB) More Documents & Publications NTSF 2014 Meeting Agenda NTSF Newcomers' Orientation NTSF Spring 2014 Preliminary

  6. SpringWorks | Open Energy Information

    Open Energy Info (EERE)

    SpringWorks Jump to: navigation, search Name: SpringWorks Place: Minnetonka, Minnesota Zip: 55343-8684 Product: SpringWorks was created to discover and nurture incubation companies...

  7. Spring Home Maintenance: Windows, Windows, Windows! | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring Home Maintenance: Windows, Windows, Windows Spring Home Maintenance: Windows, Windows, Windows April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air ...

  8. Camp Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Camp Springs Wind Farm Facility Camp Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. Hot Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho...

  10. Warm Springs Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility...

  11. Butte Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Butte Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  12. Belmont Springs Hatchery Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Hatchery Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Belmont Springs Hatchery Aquaculture Low Temperature Geothermal Facility Facility...

  13. Silver Spring Networks Inc | Open Energy Information

    Open Energy Info (EERE)

    Spring Networks Inc Jump to: navigation, search Name: Silver Spring Networks Inc Place: Redwood City, California Zip: 94063 Product: California-based, developer of utility...

  14. Wessington Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Wessington Springs Wind Farm Facility Wessington Springs Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. UVIG 2015 Spring Technical Workshop

    Broader source: Energy.gov [DOE]

    The 2015 UVIG Spring Technical Workshop will provide attendees with an expanded perspective on the status of wind and solar generation in utility systems in the United States and other countries....

  16. Motor gasoline assessment, Spring 1997

    SciTech Connect (OSTI)

    1997-07-01

    The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

  17. Biorenewable Deployment Consortium Spring Symposium

    Broader source: Energy.gov [DOE]

    The Biorenewable Deployment Consortium Spring Symposium will be held this year in downtown Charleston, South Carolina on March 30—31, 2016. Bioenergy Technologies Office Technology Manager Elliott Levine will be giving an update on the Office’s programs and recently announced solicitations and activities. The symposium will also include other federal agency updates and commercial progress panels, especially concerning sugar conversion processes.

  18. NNMCAB Newsletter: Spring 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 NNMCAB Newsletter: Spring 2014 Inside This Issue: Environmental Justice Conference New Pojoaque Valley Student Art Chairs Corner Recommendation 2014-01 FY'16 Budget Priorities Volume II, Issue II - Spring 2014 (2.35

  19. Colorado's Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Colorado's Hot Springs Author D. Frazier Published Pruett Publishing Company, 2000 DOI Not...

  20. Verde Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Verde Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Verde Hot Springs...

  1. Crane Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Crane Hot Springs Geothermal Area (Redirected from Crane Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Crane Hot Springs Geothermal Area Contents 1...

  2. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Ranch Geothermal Area (Redirected from Hot Springs Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hot Springs Ranch Geothermal Area Contents 1...

  3. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Pilgrim Hot Springs Geothermal Area (Redirected from Pilgrim Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pilgrim Hot Springs Geothermal Area...

  4. Roosevelt Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Roosevelt Hot Springs Geothermal Area (Redirected from Roosevelt Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Roosevelt Hot Springs Geothermal...

  5. Spring 2014 Composite Data Products: Backup Power

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Saur, G.

    2014-06-01

    This report includes 30 composite data products (CDPs) produced in Spring 2014 for fuel cell backup power systems.

  6. Spring 2006 ASA Meeting Disclaimer

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you may find unedited transcripts of EIA's spring 2006 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings may be found to the right of the Thursday and Friday transcripts. The public meeting took place April 6 and 7,

  7. Spring 2006 ASA Meeting Disclaimer

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's spring 2007 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place April 19 and

  8. Spring 2008 ASA Meeting Disclaimer

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's spring 2008 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place on April 9,

  9. Spring 2009 ASA Meeting Disclaimer

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's spring 2009 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place on April 2

  10. Leach Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Leach Hot Springs Geothermal Project Project Location Information...

  11. Neal Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Neal Hot Springs Geothermal Project Project Location Information...

  12. DISCOVERY AND RESEARCH ON JIAHU BONE FLUTES IN WUYANG, CHINA.

    SciTech Connect (OSTI)

    JUZHONG, Z.; HARBOTTLE, G.; XINGHUA, X.; CHANGSUI, W.

    2000-11-01

    The site of Jiahu is located in Jiahu village, Wuyang County, Henan province, on the Western edge of the broad plain of Huanhuaihai. On its north the site borders the Sha River, in the upper reaches of the Huai River; its latitude is 33{degree} 36 minutes North, longitude 113{degree} 40 minutes East, and it is 67.5 meters above sea level. Between 1983 and 1987, the Henan Cultural Relics and Archaeology Institute carried out six campaigns of excavation here, revealing an area of 2400 square meters. Except for the trial excavation in the spring of 1983, Zhang Juzhong has been in charge of all the excavations. In early May 1986, while excavating tomb 78, Zhang Juzhong and Yang Zhenwei first discovered two funerary bone flutes. They soon found other, similar bone flutes in tombs 73, 94 and 121 respectively. Mr. Zhang's attention was instantly focused on these remarkable finds. In the campaign of autumn 1986, one or two more bone flutes were discovered in each of tombs 233,273, 263 and 270. Finally, in the spring of 1987, again one or two bone flutes were found in each of the tombs 282, 363,341,411,344 and 387. Up to the end of excavation in June 1987, altogether 25 bone flutes had been found, of which 17 were complete or almost complete, 6 broken or fragmentary and 2 were half-finished examples. Among the 17 complete bone flutes, there were 14 having seven holes, one five-hole, one six-hole and one eight-hole bone flute. In particular, the bone flute M282:20 was exquisitely made, and complete. Zhang Juzhong, the discoverer of the bone flutes, researcher Pei Mingxiang, the. ex-director of the division, who came to the digging site to see the progress of the work, and their coworkers were all understandably very excited.

  13. FUPWG Spring 2013 Report and Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report and presentations from the Federal Utility Partnership Working Group's Spring 2013 meeting held May 22-23, 2013 in San Francisco, California.

  14. FUPWG Spring 2014 Agenda and Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Agenda and presentations from the Federal Utility Partnership Working Group's Spring 2014 meeting held May 7-8, 2014 in Virginia Beach, Virginia.

  15. Alaska Energy Pioneer Spring 2016 Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Indian Energy's Alaska Energy Pioneer Spring 2016 newsletter highlights opportunities and actions to accelerate Alaska Native energy development.

  16. Paleomagnetic Measurements At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    of the Roosevelt Hot Springs Geothermal Area. Notes Paleomagnetic dating performed by Brown (1977) on opal samples in order to date the age of the hydrothermal system. The...

  17. Stallion Springs, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Stallion Springs, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0888553, -118.6425912 Show Map Loading map......

  18. ARM - Field Campaign - Spring SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSpring SCM IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring SCM IOP 1998.04.27 - 1998.05.17 Lead Scientist : David Randall For data sets, see below. Abstract The Spring 1998 SCM/Cloud IOP was conducted from 27 April to 17 May 1998 at the ARM SGP site. All objectives outlined in the planning document were addressed to some degree. As is typical of mid-spring in Oklahoma, the

  19. Spring into Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into Energy Savings Spring into Energy Savings April 14, 2009 - 6:00am Addthis Amy Foster Parish No winter lasts forever; no spring skips its turn. - Hal Borland In my part of the country, winter seems to hang on an interminably long time. So I always look forward to the first signs of spring with unbridled glee. At the first glimpse of a cherry blossom, the winter boots are banished to the back of the closet and the sandals are put to work in earnest. But while spring may give the perfect

  20. STATISTICAL PERFORMANCE EVALUATION OF SPRING OPERATED PRESSURE...

    Office of Scientific and Technical Information (OSTI)

    STATISTICAL PERFORMANCE EVALUATION OF SPRING OPERATED PRESSURE RELIEF VALVE RELIABILITY IMPROVEMENTS 2004 TO 2014 Citation Details In-Document Search Title: STATISTICAL PERFORMANCE ...

  1. Glenwood Springs Amendments | Open Energy Information

    Open Energy Info (EERE)

    2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Glenwood Springs Amendments Citation BLM Colorado River Valley Field Office...

  2. Detachment Faulting & Geothermal Resources - Pearl Hot Spring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic ...

  3. Addison (Webster Springs), West Virginia: Energy Resources |...

    Open Energy Info (EERE)

    Addison (Webster Springs), West Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.4780477, -80.4090044 Show Map Loading map......

  4. Colorado Springs Utilities- Energy Efficient Builder Program

    Broader source: Energy.gov [DOE]

    The Colorado Springs Utilities (CSU) Energy Efficient Builder Program offers an incentive to builders who construct ENERGY STAR qualified homes within the CSU service area. The incentive range...

  5. STATISTICAL PERFORMANCE EVALUATION OF SPRING OPERATED PRESSURE...

    Office of Scientific and Technical Information (OSTI)

    VALVE RELIABILITY IMPROVEMENTS 2004 TO 2014 Citation Details In-Document Search Title: STATISTICAL PERFORMANCE EVALUATION OF SPRING OPERATED PRESSURE RELIEF VALVE RELIABILITY ...

  6. Weldon Spring Site Archived Soil & Groundwater Master Reports | Department

    Office of Environmental Management (EM)

    of Energy Weldon Spring Site Archived Soil & Groundwater Master Reports Weldon Spring Site Archived Soil & Groundwater Master Reports Weldon Spring Site Archived Soil & Groundwater Master Reports Weldon Spring Site - Chemical Plant East Plume (17.9 KB) Weldon Spring Site - Chemical Plant Quarry (17.53 KB) Weldon Spring Site - Chemical Plant VOC (16.06 KB) Weldon Spring Site - Chemical Plant West Plume (18.61 KB) More Documents & Publications South Valley Archived Soil &

  7. NTSF Spring 2012 Agenda | Department of Energy

    Office of Environmental Management (EM)

    2 Agenda NTSF Spring 2012 Agenda Meeting agenda with times and descriptions of events. NTSF Spring 2012 Agenda (449.02 KB) More Documents & Publications Northeast High-Level Radioactive Waste Transportation Task Force Agenda Midwestern Radioactive Materials Transportation Committee Agenda NTSF 2015

  8. Method for fusing bone

    DOE Patents [OSTI]

    Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.

    1996-01-01

    Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  9. Weldon Spring historical dose estimate

    SciTech Connect (OSTI)

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  10. Cross-shaped torsional spring

    DOE Patents [OSTI]

    Williamson, M.M.; Pratt, G.A.

    1999-06-08

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  11. Cross-shaped torsional spring

    DOE Patents [OSTI]

    Williamson, Matthew M.; Pratt, Gill A.

    1999-06-08

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  12. Spring and Summer Energy-Saving Tips | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips Simple and inexpensive actions can help you save energy and money during the warm spring and summer ...

  13. Silver Spring Networks comments on DOE NBP RFI: Data Access ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Access Silver Spring Networks comments on DOE NBP RFI: Data Access Silver Spring Networks comments on DOE NBP RFI: Data Access Silver Spring Networks comments on DOE NBP RFI: ...

  14. Spring/dimple instrument tube restraint

    DOE Patents [OSTI]

    DeMario, E.E.; Lawson, C.N.

    1993-11-23

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs. 7 figures.

  15. Spring/dimple instrument tube restraint

    DOE Patents [OSTI]

    DeMario, Edmund E.; Lawson, Charles N.

    1993-01-01

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs.

  16. NTSF Spring 2015 Registration Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Registration Announcement NTSF Spring 2015 Registration Announcement It's time to register for the 2015 U.S. Department of Energy National Transportation Stakeholders Forum being held in Albuquerque, New Mexico on May 12-14. NTSF Spring 2015 Registration Announcement (45.1 KB) More Documents & Publications NTSF Spring 2015 Save the Date NTSF Spring 2015 Registration Announcement Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico NTSF Spring 2013 Save The Date

  17. ARM - Field Campaign - Spring 2002 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSpring 2002 SCM IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring 2002 SCM IOP 2002.05.25 - 2002.06.15 Lead Scientist : David Randall For data sets, see below. Abstract The proposed single column model (SCM) IOP for Spring 2002 is the standard 3-week IOP with sonde launches every 3 hours from the Central Facility and four boundary facilities. The timing is selected to be most

  18. Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Sol...

  19. Brady Hot Springs I Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Brady Hot Springs I Geothermal Facility General Information Name Brady Hot Springs I Geothermal...

  20. Brady Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Brady Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Brady Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  1. Magnetotellurics At Brady Hot Springs Area (Combs 2006) | Open...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Brady Hot Springs Area (Combs 2006)...

  2. Gas Flux Sampling At Steamboat Springs Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Steamboat Springs Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Steamboat Springs Area...

  3. Aerial Photography At Brady Hot Springs Area (Wesnousky, Et Al...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Wesnousky, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Brady Hot Springs Area...

  4. Micro-Earthquake At Brady Hot Springs Geothermal Area (2011)...

    Open Energy Info (EERE)

    At Brady Hot Springs Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Brady Hot Springs Geothermal Area...

  5. Direct-Current Resistivity Survey At Brady Hot Springs Area ...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Brady Hot Springs Area...

  6. Great Boiling Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Boiling Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Boiling Springs Geothermal Area Contents 1 Area Overview 2 History and...

  7. Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Facility Hunt's...

  8. Pilgrim Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Pilgrim Hot Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Pilgrim Hot Springs Geothermal Project Project Location...

  9. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Pilgrim Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pilgrim Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  10. Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

    Open Energy Info (EERE)

    Pilgrim Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

  11. Big Bend Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Bend Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Bend Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  12. Big Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  13. City of Soda Springs, Idaho (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Soda Springs, Idaho (Utility Company) Jump to: navigation, search Name: City of Soda Springs Place: Idaho Phone Number: (208) 547-2600 Website: www.sodaspringsid.comindex.as...

  14. City of Colorado Springs, Colorado (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    from Colorado Springs Utilities) Jump to: navigation, search Name: Colorado Springs City of Place: Colorado Phone Number: 719-448-4800 Website: www.csu.orgPagesresidential....

  15. Sleeping Child Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Sleeping Child Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sleeping Child Hot Springs Geothermal Area Contents 1 Area Overview 2...

  16. Crystal Crane Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Crystal Crane Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Crystal Crane Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  17. Warner Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Pool & Spa Low Temperature Geothermal Facility Facility Warner Springs Sector...

  18. Warner Springs, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, California: Energy Resources Jump to: navigation, search Name Warner Springs, California Equivalent URI DBpedia GeoNames ID 5407222 Coordinates 33.2822596,...

  19. Kelly Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Kelly Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Kelly Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  20. Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Facility Kelly...

  1. Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  2. Confederated Tribes of the Warm Springs Reservation- 2007 Wind Project

    Broader source: Energy.gov [DOE]

    Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon.

  3. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  4. Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Warm Springs Resort...

  5. Camas Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camas Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camas Hot...

  6. Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Springs...

  7. Camperworld Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  8. Saratoga Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Saratoga Springs...

  9. Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility Facility Hobo Hot...

  10. Neal Hot Springs Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot...

  11. Manley Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Manley Hot Springs Sector...

  12. Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility...

  13. Indian Springs Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Indian Springs Resort...

  14. Carson Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Carson Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Carson Hot...

  15. Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  16. Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility...

  17. Twin Springs Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Twin Springs Resort...

  18. Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Weiser Hot...

  19. Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Wilbur...

  20. Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Lava Hot...

  1. Hot Sulphur Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Sulphur Springs Pool & Spa Low Temperature Geothermal Facility Facility Hot Sulphur Springs Sector...

  2. Harbin Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Harbin Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Harbin Hot...

  3. Burgdorf Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Burgdorf Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Burgdorf Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  4. Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature...

  5. Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs...

  6. Krotz Springs, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Krotz Springs, Louisiana: Energy Resources (Redirected from Krotz Springs, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.5368592, -91.7528931 Show Map...

  7. Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  8. Hot Springs State Park Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs State...

  9. Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility...

  10. Saratoga Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Pool & Spa Low Temperature Geothermal Facility Facility Saratoga Springs Sector...

  11. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hot Springs Ranch Geothermal Area Contents 1 Area Overview 2 History and...

  12. Como Springs Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Como Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Como Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Como...

  13. Spring Forward: Top Strategies for Growing and Scaling Your Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spring Forward: Top Strategies for Growing and Scaling Your Program (301) Spring Forward: Top Strategies for Growing and Scaling Your Program (301) May 2

  14. Red River Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Red River Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Red River Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  15. Town of Red Springs, North Carolina (Utility Company) | Open...

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Town of Red Springs, North Carolina (Utility Company) Jump to: navigation, search Name: Red Springs...

  16. Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Red River Hot...

  17. Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Lehman...

  18. Hunters Hot Spring Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Facility Hunters...

  19. Manley Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Space Heating Low Temperature Geothermal Facility Facility Manley Hot Springs...

  20. Circle Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Circle Hot Springs Space Heating Low Temperature Geothermal Facility Facility Circle Hot Springs...

  1. Desert Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot...

  2. Lava Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Space Heating Low Temperature Geothermal Facility Facility Lava Hot Springs...

  3. Medical Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Medical Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Hot Springs Space Heating Low Temperature Geothermal Facility...

  4. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

    Open Energy Info (EERE)

    Broadwater Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low...

  5. Cottonwood Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  6. Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Facility Tecopa Hot Springs...

  7. Arrowhead Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  8. Vichy Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Facility Vichy Hot Springs...

  9. White Sulphur Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Sulphur Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility...

  10. Twin Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Springs Resort Space Heating Low Temperature Geothermal Facility Facility Twin Springs...

  11. Chico Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Chico Hot Springs Space Heating Low Temperature Geothermal Facility Facility Chico Hot Springs...

  12. Chena Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Chena Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Chena Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  13. Breitenbush Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Breitenbush Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  14. Pinkerton Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pinkerton Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pinkerton Hot Springs Space Heating Low Temperature Geothermal Facility...

  15. Jemez Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jemez Springs Space Heating Low Temperature Geothermal Facility Facility Jemez Springs Sector...

  16. Del Rio Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Rio Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  17. Miracle Hot Spring Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Facility Miracle Hot...

  18. Radium Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Space Heating Low Temperature Geothermal Facility Facility Radium Hot Springs...

  19. Geronimo Springs Museum Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility...

  20. Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Kaiser...

  1. Auburn Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Auburn Hot Spring Sector Geothermal energy Type Pool and Spa Location Auburn, Wyoming Coordinates...

  2. Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility...

  3. Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility...

  4. Broadwater Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Broadwater Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Broadwater Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  5. Reed River Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Reed River Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reed River Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  6. Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Bear...

  7. Salmon Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Salmon Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Salmon Hot...

  8. Sitka Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Sitka Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sitka Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure...

  9. Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Facility...

  10. Ishtalitna Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Ishtalitna Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ishtalitna Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  11. Bradfield Canal Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Bradfield Canal Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bradfield Canal Hot Spring Geothermal Area Contents 1 Area Overview 2...

  12. Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility...

  13. Spring high school internship application is open | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring high school internship application is open September 4, 2015 Apply by November 30 The application for PPPL's spring high school internship is open Click here for more...

  14. Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility...

  15. Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Alive Polarity's Murrietta Hot Spring Pool & Spa Low...

  16. River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility...

  17. Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Broadwater...

  18. Cold Bay Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cold Bay Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cold Bay Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  19. Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal...

  20. Dann Ranch Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Dann Ranch Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dann Ranch Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  1. Upper Division Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Upper Division Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Upper Division Hot Spring Geothermal Area Contents 1 Area Overview 2 History...

  2. Fisher Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fisher Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fisher Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  3. Macfarlane's Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Macfarlane's Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Macfarlane's Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  4. Building America Spring 2012 Stakeholder Meeting Report: Austin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spring 2012 Stakeholder Meeting Report: Austin, Texas; February 29 - March 2, 2012 Building America Spring 2012 Stakeholder Meeting Report: Austin, Texas; February 29 - March 2, ...

  5. Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  6. Cove Hot Spring Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Cove Hot Spring Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Cove Hot Spring Greenhouse Low Temperature Geothermal Facility Facility Cove Hot...

  7. Chico Hot Springs Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Chico Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Chico Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Chico...

  8. Geology and Geothermal Potential of the Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Field Mapping At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Geothermometry At...

  9. White Arrow Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    White Arrow Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home White Arrow Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  10. White Licks Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    White Licks Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home White Licks Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  11. White Sulphur Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility White...

  12. Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Bagby...

  13. Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Ritter...

  14. Trimble Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Trimble Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Trimble Hot...

  15. Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  16. Mystic Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mystic Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mystic Hot Springs Sector...

  17. Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Murphy...

  18. Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Orr Hot...

  19. Chico Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Chico Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Chico Hot Springs Sector...

  20. Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  1. Vichy Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Vichy Hot Springs Sector...

  2. Campbell Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Campbell Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Campbell...

  3. Circle Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Circle Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Circle Hot Springs Sector...

  4. Bozeman Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Bozeman Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  5. Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Dunton...

  6. Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  7. Chena Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Chena Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Chena Hot Springs Sector...

  8. Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mercey...

  9. Steamboat Villa Hot Springs Spa Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Villa Hot Springs Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Pool & Spa Low Temperature Geothermal Facility...

  10. Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Belknap Hot...

  11. Castle Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Castle Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Castle Hot...

  12. Crystal Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Crystal Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Crystal Hot...

  13. Austin Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Austin Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Austin Hot...

  14. Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Heise...

  15. Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  16. Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Steele Hot...

  17. Sierra Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sierra Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Sierra Hot...

  18. Boulder Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Boulder Hot Springs...

  19. Mono Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mono Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mono Hot...

  20. Darrough Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Darrough Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Darrough Hot Springs...

  1. Roman Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Roman Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility...

  2. Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  3. Miracle Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Miracle Hot Springs...

  4. Symes Hotel and Medicinal Springs Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Symes Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Symes Hotel and Medicinal Springs Pool & Spa Low Temperature...

  5. Aeromagnetic Survey At Baltazor Hot Springs Area (Isherwood ...

    Open Energy Info (EERE)

    local magnetic low associated with the spring. This low could reflect destruction of magnetite related to hydrothermal alteration in the vicinity of the spring. References W. F....

  6. 2003 Annual Inspection of the Weldon Spring Site

    Office of Legacy Management (LM)

    Office of Legacy Management 2003 Annual Inspection - Weldon Spring, Missouri February 2004 ... Spring, Missouri, Site DOEOffice of Legacy Management 2003 Annual Inspection - Salt ...

  7. Noble Gas Geochemistry In Thermal Springs | Open Energy Information

    Open Energy Info (EERE)

    Noble Gas Geochemistry In Thermal Springs Abstract The composition of noble gases in both gas and water samples collected from Horseshoe Spring, Yellowstone National Park, was...

  8. Crump's Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Survey GTP ARRA Spreadsheet Ground Magnetics At Crump's Hot Springs Area (DOE GTP) Ground Magnetics GTP ARRA Spreadsheet Reflection Survey At Crump's Hot Springs Area (DOE...

  9. Reflection Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    At Neal Hot Springs Geothermal Area (Colwell, Et Al., 2012) Exploration Activity Details Location Neal Hot Springs Geothermal Area Exploration Technique Reflection Survey Activity...

  10. City of El Dorado Springs, Missouri (Utility Company) | Open...

    Open Energy Info (EERE)

    Springs, Missouri (Utility Company) Jump to: navigation, search Name: City of El Dorado Springs Place: Missouri Phone Number: 417-876-4821 or 417-876-2521 Website:...

  11. Valles Caldera - Sulphur Springs Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Valles Caldera - Sulphur Springs Geothermal Area (Redirected from Valles Caldera - Sulphur Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Valles Caldera...

  12. GEOTHERMAL CASE STUDY: WAUNITA HOT SPRINGS, GUNNISON COUNTY,...

    Open Energy Info (EERE)

    GEOTHERMAL CASE STUDY: WAUNITA HOT SPRINGS, GUNNISON COUNTY, COLORADO Travis Brown and Kamran Bakhsh, Colorado School of Mines I. Details 1. Area Overview Waunita Hot Springs is...

  13. Valles Caldera - Sulphur Springs Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Valles Caldera - Sulphur Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Valles Caldera - Sulphur Springs Geothermal Area Contents 1 Area...

  14. Gila Hot Springs District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Show Map...

  15. Masson Radium Springs Farm Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Temperature Geothermal Facility Facility Masson Radium Springs Farm Sector Geothermal energy Type Greenhouse Location Radium Springs, New Mexico Coordinates 32.501453,...

  16. Ch. IV, A hydrogeochemical comparison of the Waunita Hot Springs...

    Open Energy Info (EERE)

    A hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle Rock and Anderson Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  17. Port Moller Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Port Moller Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Port Moller Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  18. Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

  19. Steamboat Springs Health and Rec. Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Springs Health and Rec. Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Springs Health and Rec. Pool & Spa Low Temperature Geothermal...

  20. Confederated Tribes of the Warm Springs Reservation- 2007 Project

    Broader source: Energy.gov [DOE]

    Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon.

  1. Silver Spring Networks comments on DOE NBP RFI: Comms Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comms Requirements Silver Spring Networks comments on DOE NBP RFI: Comms Requirements Comments of Silver Spring Networks on Implementing the National Broadband Plan by Studying the ...

  2. EIS-0500: Crystal Springs Hatchery Program; Bingham, Custer,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Crystal Springs Hatchery Program; Bingham, Custer, and Lemhi Counties, Idaho EIS-0500: Crystal Springs Hatchery Program; Bingham, Custer, and Lemhi Counties, Idaho Summary DOE's ...

  3. Brockway Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility...

  4. Silver Star Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Silver Star Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Silver Star Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  5. Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Bathhouse Sector Geothermal energy Type Pool and Spa Location Jemez Springs, New Mexico Coordinates 35.7686356, -106.692258 Show Map Loading map......

  6. Surface Gas Sampling At Jemez Springs Area (Goff & Janik, 2002...

    Open Energy Info (EERE)

    Jemez Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Jemez Springs Area (Goff & Janik,...

  7. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  8. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1985) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  9. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1985) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  10. Executive summary: Weldon Spring Site Environmental Report for calendar year 1992. Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.

  11. ARM - Field Campaign - Spring 1994 UAV IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSpring 1994 UAV IOP Campaign Links ARM UAV Program Image Library Science Plan ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note ...

  12. ARM - Field Campaign - Spring UAV Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSpring UAV Campaign Campaign Links ARM UAV Program Science Plan ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us ...

  13. Hydrothermal Exploration at Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov [DOE]

    Geothermal Technologies Office, Department of Energy, explored hydrothermal potential at Pilgrim Hot Springs, Alaska and discovered a resource siginificant enough for a spectrum of geothermal energy developments, including on-site power generation.

  14. Spring 2013 Composite Data Products - Backup Power

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.

    2013-05-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes 21 composite data products (CDPs) produced in Spring 2013 for fuel cell backup power systems.

  15. Insights into Spring 2008 Gasoline Prices

    Reports and Publications (EIA)

    2008-01-01

    Gasoline prices rose rapidly in spring 2007 due a variety of factors, including refinery outages and lower than expected imports. This report explores those factors and looks at the implications for 2008.

  16. Colorado Springs Utilities- Renewable Energy Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through its Renewable Energy Rebate Program, Colorado Springs Utilities (CSU) offers a rebate to customers who install grid-connected solar-electric (photovoltaic, or PV) systems and solar water ...

  17. Colorado Springs Utilities- Builder Incentive Program

    Broader source: Energy.gov [DOE]

    The Colorado Springs Utilities (CSU) Energy Efficient Builder Program offers an incentive to builders who construct ENERGY STAR qualified homes within the CSU service area. The incentives range up...

  18. Pagosa Springs geothermal project. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1984-10-19

    This booklet discusses some ideas and methods for using Colorado geothermal energy. A project installed in Pagosa Springs, which consists of a pipeline laid down 8th street with service to residences retrofitted to geothermal space heating, is described. (ACR)

  19. Colorado thermal spring water geothermometry (public dataset...

    Open Energy Info (EERE)

    chemical geothermometers for Colorado thermal springs. Data citations include Barrett, J. K. and Pearl, R. H. (1976), George, R. D., Curtis, H. A., Lester, O. C., Crook, J. K.,...

  20. FUPWG Spring 2015 Agenda and Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    This page features links to the presentations given during the spring 2015 Federal Utility Partnership Working Group meeting, which took place April 22-23, 2015 in Nashville, Tennessee.

  1. Mineral Springs of Alaska | Open Energy Information

    Open Energy Info (EERE)

    these springs during the field season of 1915, and the present report is an account of field work done in that year between June 15 and September 4. Authors Gerald Ashley...

  2. Spring O&M Users Group Meeting

    Broader source: Energy.gov [DOE]

    The spring 2015 UVIG O&M User Group meeting will feature a plenary session focused on blade inspection best practices.  The UVIG membership will hear presentations from:

  3. Method for fusing bone

    DOE Patents [OSTI]

    Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.

    1996-03-12

    The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  4. ARM - Spring 2002 Post-Workshop Evaluations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post-Workshop Evaluations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Spring 2002 Post-Workshop Evaluations This is the analysis of the post-workshop evaluations that were given to teachers in Manus after the ARM Climate Change Teacher Workshops held in spring of 2002. The Manus Workshop

  5. ARM - Spring 2002 Pre-Workshop Evaluations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pre-Workshop Evaluations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Spring 2002 Pre-Workshop Evaluations This is the analysis of the post-workshop evaluations that were given to teachers in Manus after the ARM Climate Change Teacher Workshops held in spring of 2002. The Manus Workshop

  6. STEVE SHEPHERD Bakken Workforce Development Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    isolated and have experienced persistent and historical poverty and chronic unemployment. ... the reservations in western North Dakota, and work toward breaking the cycle of poverty. ...

  7. Pyrolysis kinetics for the Bakken shale

    SciTech Connect (OSTI)

    Burnham, A.K.

    1992-01-01

    Pyrolysis kinetics are reported and compared for rapid open pyrolysis experiments: Py-TG-FTIR, Py-FID, and Py-MS. Where the type of information obtained overlapped, the results were very similar. The principal activation energy for total hydrocarbon generation using a parallel reaction model is 52 kcal/mol. As with most petroleum source rocks, carbon dioxide generation tends to lead oil formation while ethene and methane generation tend to lag oil generation. The midpoint of oil generation for a geological heating rate of 3 {degrees}C/m.y. is predicted to be between 130 and 140{degrees}C. 5 refs., 4 figs., 1 tab.

  8. Biodegradable synthetic bone composites

    DOE Patents [OSTI]

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  9. Industrial Assessment Centers Quarterly Update, Spring 2014 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Quarterly Update, Spring 2014 Industrial Assessment Centers Quarterly Update, Spring 2014 Read the Industrial Assessment Centers (IAC) Quarterly Update -- Spring 2014 Industrial Assessment Centers (IAC) Quarterly Update -- Spring 2014 (1.89 MB) More Documents & Publications Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers Update, Fall 2015

  10. Spring 2013 National Transportation Stakeholders Forum Meeting, New York |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Transportation Stakeholders Forum » Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum Meeting, New York Save the Date NTSF Registration Announcement NTSF 2013 Agenda EM's Huizenga Gives Keynote Address at National Transportation Stakeholders Forum Spring 2013 NTSF Presentations May 14, 2013 Presentations

  11. Confederated Tribes of Warm Springs - Wind Energy Power Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Springs Power and Water Enterprise Use of DOE Grant DE-PS36-06GO96037 For Engineering Cost Assessment For Wind Energy Power Development On The Warm Springs Indian Reservation of Oregon. Prepared by: Warm Springs Power & Water Enterprises The Confederated Tribes of Warm Springs * Home of the Warm Springs, Wasco, and Paiute tribes, the Warm Springs Reservation is inhabited by nearly 4,500 tribal members, most of whom live in or around the town of Warm Springs. * Within the community, the

  12. Confederated Tribes of Warm Springs - Geothermal Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Enterprises Geothermal Power Development Feasibility Study Warm Springs Indian Reservation US Department of Energy Tribal Energy Program Review October 23-27 2006 Confederated Tribes of Warm Springs Warm Springs, Oregon Project Participants Project Participants * * Jim Manion, GM, Warm Springs Power & Water Ent. Jim Manion, GM, Warm Springs Power & Water Ent. * * David McClain, DW McClain Associates David McClain, DW McClain Associates * * GeothermEx Inc. GeothermEx Inc. * * Power

  13. Spring 2016 National Transportation Stakeholders Forum Meeting, Florida |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation Stakeholders Forum Meeting, Florida The Spring 2016 meeting of the National Transportation Stakeholders Forum will be held on June 7-9, 2016 in Orlando, FL. Save the Date NTSF 2016 Registration Announcement More Documents & Publications NTSF Spring 2016 Save the Date NTSF Spring 2016 Registration

  14. Town of Pagosa Springs geothermal heating system

    SciTech Connect (OSTI)

    Garcia, M.B.

    1997-08-01

    The Town of Pagosa Springs has owned and operated a geothermal heating system since December 1982 to provide geothermal heating during the fall, winter and spring to customers in this small mountain town. Pagosa Springs is located in Archuleta County, Colorado in the southwestern corner of the State. The Town, nestled in majestic mountains, including the Continental Divide to the north and east, has an elevation of 7,150 feet. The use of geothermal water in the immediate area, however, dates back to the 1800`s, with the use of Ute Bands and the Navajo Nation and later by the U.S. Calvery in the 1880`s (Lieutenant McCauley, 1878). The Pagosa area geothermal water has been reported to have healing and therapeutic qualities.

  15. ARM - Field Campaign - Spring 1997 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSpring 1997 SCM IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring 1997 SCM IOP 1997.04.01 - 1997.04.30 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore National Laboratory Actual data files for a number of past SCM IOPs are available from the ARM Archive. For data sets, see below. Abstract These seasonal SCM IOPs are

  16. ARM - Field Campaign - Spring Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSpring Cloud IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring Cloud IOP 2000.03.01 - 2000.03.26 Lead Scientist : Gerald Mace For data sets, see below. Summary The Atmospheric Radiation Measurement (ARM) Program conducted a Cloud Intensive Operational Period (IOP) in March 2000 that was the first-ever effort to document the 3-dimensional cloud field from observational data. Prior

  17. Bone morphogenetic protein

    SciTech Connect (OSTI)

    Xiao Yongtao; Xiang Lixin; Shao Jianzhong

    2007-10-26

    Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor-beta superfamily. It has been demonstrated that BMPs had been involved in the regulation of cell proliferation, survival, differentiation and apoptosis. However, their hallmark ability is that play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. In this review, we mainly concentrate on BMP structure, function, molecular signaling and potential medical application.

  18. Spring-loaded polymeric gel actuators

    DOE Patents [OSTI]

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  19. Spring-loaded polymeric gel actuators

    DOE Patents [OSTI]

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  20. Recombinant human bone morphogenetic protein induces bone formation

    SciTech Connect (OSTI)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M. )

    1990-03-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 {mu}g of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans.

  1. Geochemistry And Geothermometry Of Spring Water From The Blackfoot...

    Open Energy Info (EERE)

    for eight springs along the Corral Creek drainage. The springs along Corral Creek have Na-K-Ca temperatures that average 354C, a direct result of high potassium concentrations in...

  2. City of Glenwood Springs, Colorado (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Springs City of Place: Colorado Phone Number: 970-384-6352 or 970-625-8095 Website: www.ci.glenwood-springs.co.us Outage Hotline: 970-384-6352 or 970-625-8095 References: EIA...

  3. Armored spring-core superconducting cable and method of construction

    DOE Patents [OSTI]

    McIntyre, Peter M.; Soika, Rainer H.

    2002-01-01

    An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

  4. Confederated Tribes of the Warm Springs Reservation- 2002 Project

    Broader source: Energy.gov [DOE]

    Warm Springs Power Enterprises, a corporate entity owned and operated by the Confederated Tribes of Warm Springs, will conduct a 36-month comprehensive wind energy resource assessment and development feasibility study.

  5. Sulphur Springs Valley E C Inc | Open Energy Information

    Open Energy Info (EERE)

    Springs Valley E C Inc Jump to: navigation, search Name: Sulphur Springs Valley E C Inc Abbreviation: SSVEC Place: Arizona Phone Number: 1-(800) 422-3275 Website: www.ssvec.org...

  6. VPP Awareness Spring 2012 | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VPP Awareness Spring 2012 VPP Awareness Spring 2012 The mp4 video format is not supported by this browser. Download video Captions: On Time: 13:42 min. Is there a star on Y-12's...

  7. Silver Spring, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Silver Spring is a census-designated place in Montgomery County, Maryland.1 Registered Energy Companies in Silver Spring, Maryland CPV Wind...

  8. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    of fluids sampled from the Sulphur Springs within the caldera and from several hotcold springs and drill holes along the Jemez fault zone were used to construct a preliminary...

  9. Confederated Tribes of Warm Springs - Human Capacity Building

    Broader source: Energy.gov (indexed) [DOE]

    Grant DE-PS36-06G096038 Human Capacity Building for Renewable Energy Development. Warm Spring Power and Water Enterprise Mark K. Johnson Jr. Prepared by: Warm Springs Power & Water ...

  10. Office of Indian Energy Alaska Energy Pioneer Spring 2015 Newsletter |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Alaska Energy Pioneer Spring 2015 Newsletter Office of Indian Energy Alaska Energy Pioneer Spring 2015 Newsletter The U.S. Department of Energy Office of Indian Energy's Alaska Energy Pioneer Spring 2015 newsletter highlights opportunities and actions to accelerate Alaska Native energy development. Alaska Energy Pioneer - Spring 2015 (739.5 KB) More Documents & Publications Alaska Energy Pioneer Fall 2015 Newsletter Office of Indian Energy Newsletter: Fall/Winter

  11. Confederated Tribes of Warm Springs - Geothermal Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Springs The Confederated Tribes Of Warm Springs Presentation to DOE Department of Renewable Energy Presentation to DOE Department of Renewable Energy October, 2005 for Geothermal Development Potential on Confederated Tribes of Warm Springs Reservation of Oregon repared by: Warm Springs Power Enterprises History with Energy Developments History with Energy Developments * * Intro to Power business in 1955 with the development of the Pelt Intro to Power business in 1955 with the development of the

  12. Confederated Tribes of Warm Springs - Geothermal Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Springs Presentation to DOE Department of Renewable Energy October , 2007 For Geothermal Development Potential On Confederated Tribes of Warm Springs Reservation of Oregon Lands Prepared by: Warm Springs Power & Water Enterprises History With Energy Developments Intro to Power business in 1955 with the development of the Pelton Project. 1970 with the installation of three 3 MW steam turbines at Warm Springs Forest Products Industries (WSFPI). 1982 completed the installation of the Pelton

  13. Confederated Tribes of Warm Springs - Wind Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Enterprises Wind Energy Development Feasibility Study Warm Springs Indian Reservation Oregon Confederated Tribes of Warm Springs Warm Springs, Oregon US Department of Energy Tribal Energy Program Review October 23-27 2006 Project Participants * Warm Springs Power & Water Enterprises * CTWS Dept. of Natural Resources * DW McClain and Associates: Project Management * OSU Energy Research Laboratory: Wind Modeling * Elcon Associates: Transmission System Studies * Northwest Wildlife

  14. Manchester Spring Chinook Broodstock Project, 1998-1999 Annual Report.

    SciTech Connect (OSTI)

    McAuley, W.Carlin; Wastel, Michael R.; Flagg, Thomas A.

    2000-02-01

    This yearly report concerned facilities upgrade and endangered Snake River spring/summer chinook salmon captive broodstock rearing.

  15. FUPWG Spring 2011 Washington, D.C., Update

    Broader source: Energy.gov [DOE]

    Presentation covers the Federal Utility Partnership Working Group (FUPWG) Washington update, and is given during the FUPWG Spring 2011 meeting.

  16. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974)...

  17. Hot Springs Point Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Point Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Springs Point Geothermal Project Project Location Information...

  18. Geothermal Literature Review At Breitenbush Hot Springs Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1996) Exploration...

  19. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  20. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Exploration...

  1. Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 5 National Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico The Spring 2015 meeting of the National Transportation Stakeholders Forum will be held on May 12-14, 2015 in Albuquerque, NM. Save the Date NTSF 2015 Registration Announcement NTSF 2015 Agenda - Preliminary More Documents & Publications NTSF Spring 2015

  2. Mid-Winter Check In and Getting Ready for Spring

    Broader source: Energy.gov [DOE]

    Drew Bittner provides energy efficient tips for closing out the winter and preparing for spring savings in the months ahead.

  3. Recent reservoir engineering developments at Brady Hot Springs, Nevada

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Recent reservoir engineering developments at Brady Hot Springs, Nevada Citation Details In-Document Search Title: Recent reservoir engineering developments at Brady Hot Springs, Nevada Brady's Hot Springs is a hydrothermal area located approximately 28Km northeast of Fernley, Nevada. Surface manifestations of geothermal activity occur along a north-northeast trend fault zone (herein referred to as the Brady Thermal Fault) at the eastern margin of Hot Springs

  4. Summary of the Spring 2004 ASA Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    of the Spring Meeting of the American Statistical Association (ASA) Committee on Energy Statistics April 22 and 23, 2004 with the Energy Information Administration 1000 Independence Ave., SW. Washington, D.C. 20585 Thursday, April 22, 2004 Natural Gas Prices and Industrial Sector Responses: An Experimental Module for the Short-Term Integrated Forecasting System (STIFS), Dave Costello, Office of Energy Markets and End Use (EMEU) and Frederick L. Joutz, Associate Professor, Department of

  5. Summary of the Spring 2006 ASA Meetings

    U.S. Energy Information Administration (EIA) Indexed Site

    Summaries of the American Statistical Association (ASA) Committee on Energy Statistics Advice and Energy Information Administration (EIA) Responses at the spring 2006 Meeting 1. How Can Modeling Suggest Data Needs? Open discussion between the Committee and EIA. This session was prompted by Committee remarks in the fall 2005 meeting. Nancy Kirkendall, Chair, and Margot Anderson, Director, EMEU. See transcript for discussion on EIA's Home Page: http://www.eia.gov/calendar/asa_overview.htm 2.

  6. Microsoft Word - WeldonSpringFAQ.docx

    Office of Legacy Management (LM)

    Spring, Missouri, Site Page 1 of 2 Last Updated: 8/11/2009 Frequently Asked Questions Q: Is my drinking water safe? A: On the basis of groundwater studies conducted by the U.S. Department of Energy (DOE), U.S. Geological Survey, and Missouri Department of Natural Resources, the extent of groundwater contamination is well understood. DOE can state with confidence that groundwater contaminants of concern generated by WSSRAP are not detectable above background levels in samples from any private

  7. SULI Program Information - Spring | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Information - Spring Science Undergraduate Laboratory Internships January 9 - April 28, 2017 Getting Started Our program begins Monday, January 9, and runs through Friday, April 28, 2017. Each student will be paired with an Ames Laboratory/Iowa State University scientist/mentor for their internship; however, students should also expect to work closely with graduate students. Our program is 16 weeks in length to allow interns sufficient time to write papers for submission to peer-reviewed

  8. N Springs expedited response action proposal

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    Since signing the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in 1989, the parties to the agreement have recognized the need to modify the approach to conducting investigations, studies, and cleanup actions at Hanford. To implement this approach, the parties have jointly developed the Hanford Past-Practice Strategy. The strategy defines a non-time-critical expedited response action (ERA) as a response action ``needed to abate a threat to human health or welfare or the environment where sufficient time exists for formal planning prior to initiation of response. In accordance with the past-practice strategy, DOE proposes to conduct an ERA at the N Springs, located in the Hanford 100 N Area, to substantially reduce the strontium-90 transport into the river through the groundwater pathway. The purpose of this ERA proposal is to provide sufficient information to select a preferred alternative at N Springs. The nature of an ERA requires that alternatives developed for the ERA be field ready; therefore, all the technologies proposed for the ERA should be capable of addressing the circumstances at N Springs. A comparison of these alternatives is made based on protectiveness, cost, technical feasibility, and institutional considerations to arrive at a preferred alternative. Following the selection of an alternative, a design phase will be conducted; the design phase will include a detailed look at design parameters, performance specifications, and costs of the selected alternative. Testing will be conducted as required to generate design data.

  9. brady_hot_springs_300.png | OSTI, US Dept of Energy Office of Scientific

    Office of Scientific and Technical Information (OSTI)

    and Technical Information brady_hot_springs_30

  10. Digital electronic bone growth stimulator

    DOE Patents [OSTI]

    Kronberg, James W.

    1995-01-01

    A device for stimulating bone tissue by applying a low level alternating current signal directly to the patient's skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures.

  11. Digital electronic bone growth stimulator

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-05-09

    A device is described for stimulating bone tissue by applying a low level alternating current signal directly to the patient`s skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures. 5 figs.

  12. ARM - Field Campaign - Spring 1996 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SCM IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring 1996 SCM IOP 1996.04.01 - 1996.04.30 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore National Laboratory Actual data files for a number of past SCM IOPs are available from the ARM Archive. For data sets, see below. Abstract These seasonal SCM IOPs are conducted at the

  13. Argonne Now Spring 2016 | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Click to subscribe to the lab's science magazine, Argonne Now. Argonne Now Spring 2016 In this special "breaking"-themed issue of the Argonne magazine, find out the ways that scientists and engineers "break" things (including batteries, atoms, and nuclear reactors) in order to find out how they work - and in many cases, how to make them work better. You can also learn how towns are preparing for the storms, droughts, and floods of climate change to avoid infrastructure

  14. Spring structure for a thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, Daniel T.

    1992-01-01

    A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  15. Spring structure for a thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, D.T.

    1992-03-17

    A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.

  16. Wrap spring clutch syringe ram and frit mixer

    DOE Patents [OSTI]

    Simpson, Frank B.

    2006-07-25

    A wrap spring clutch syringe ram pushes at least one syringe with virtually instantaneous starting and stopping, and with constant motion at a defined velocity during the intervening push. The wrap spring clutch syringe ram includes an electric motor, a computer, a flywheel, a wrap spring clutch, a precision lead screw, a slide platform, and syringe reservoirs, a mixing chamber, and a reaction incubation tube. The electric motor drives a flywheel and the wrap spring clutch couples the precision lead screw to the flywheel when a computer enables a solenoid of the wrap spring clutch. The precision lead screw drives a precision slide which causes syringes to supply a portion of solution into the mixing chamber and the incubation tube. The wrap spring clutch syringe ram is designed to enable the quantitative study of solution phase chemical and biochemical reactions, particularly those reactions that occur on the subsecond time scale.

  17. Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado. pearl_hot_springs_peer2013.pdf (1.5 MB) More Documents & Publications Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well

  18. FUPWG Spring 2016 Agenda and Presentations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spring 2016 Agenda and Presentations FUPWG Spring 2016 Agenda and Presentations This page features presentations given at the spring 2016 Federal Utility Partnership Working Group (FUPWG) seminar on May 18-19, 2016, at the Marriot in Cincinnati, Ohio. Welcome: Presented by Jim Henning, President - Duke Energy Ohio and Duke Energy Kentucky (630.68 KB) DOE/FEMP Welcome and Announcements: Presented by David McAndrew, DOE FEMP (620.71 KB) Washington Update: Presented by Tim Unruh, DOE FEMP Program

  19. AMO Director Delivers Keynote at Copper Development Association Spring

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting | Department of Energy Delivers Keynote at Copper Development Association Spring Meeting AMO Director Delivers Keynote at Copper Development Association Spring Meeting June 29, 2016 - 4:40pm Addthis AMO Director Delivers Keynote at Copper Development Association Spring Meeting Industry plays a large role in the work that the Advanced Manufacturing Office (AMO) undertakes. The relationship between AMO, academia, national labs, and industry partners is symbiotic - we each bring

  20. EIS-0451: Hooper Springs Transmission Project, Caribou County, Idaho

    Broader source: Energy.gov [DOE]

    DOE’s Bonneville Power Administration (BPA) prepared an EIS that evaluates the potential environmental impacts of a proposed new 115-kilovolt (kV) transmission line from BPA's proposed Hooper Springs Substation near Soda Springs, Idaho, to either an existing Lower Valley Energy (LVE) substation or a proposed BPA connection with LVE's existing transmission system in northeastern Caribou County. Additional information is available at http://efw.bpa.gov/environmental_services/Document_Library/HooperSprings/.

  1. Office of Indian Energy Newsletter: Spring 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spring 2013 Office of Indian Energy Newsletter: Spring 2013 Indian Energy Beat: News on Actions to Accelerate Energy Development in Indian Country Spring 2013 Issue: Federal Technical Assistance Aims to Accelerate Tribal energy Project Deployment Message from the Director Indian Country Energy Roundup: Conferences and Webinars Sharing Knowledge: Renewable Energy Technical Potential on Tribal Lands Winning the Future: Strategic Planning Opens Doors for Isolated Alaskan Village Building Bridges:

  2. Jefferson Lab announces 2004 Spring Science Series events | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    announces 2004 Spring Science Series events Jefferson Lab announces 2004 Spring Science Series events January 30, 2004 The Dept. of Energy's Jefferson Lab Spring 2004 Science Series events begin Tuesday, February 24, with science writer Nigel Hey presenting "Worlds Beyond the Matrix." In his presentation, learn about the exploration of space and see images gathered by probes and telescopes. He will venture into topics ranging from "What do those huge canyons on Mars look

  3. Building America Spring 2012 Stakeholder Meeting Report: Austin, Texas;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 29 - March 2, 2012 | Department of Energy Spring 2012 Stakeholder Meeting Report: Austin, Texas; February 29 - March 2, 2012 Building America Spring 2012 Stakeholder Meeting Report: Austin, Texas; February 29 - March 2, 2012 The Building America Spring 2012 Stakeholder Meeting was held on February 29-March 2, 2012, in Austin, Texas, and outlined stakeholder needs, collaboration opportunities, and research results as they relate to the U.S. Department of Energys (DOE) Residential

  4. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coproduced from Oil and/or Gas Wells | Department of Energy Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells Chena Hot Springs Resort project presentation at the 2013 peer review meeting in Colorado. chenahotsprings_peerreview2013.pdf (798.26 KB) More Documents & Publications Electrical Power Generation Using

  5. Ch. I, Report on Waunita Hot Springs Project, Gunnison County...

    Open Energy Info (EERE)

    Report: Ch. I, Report on Waunita Hot Springs Project, Gunnison County, Colorado Author K. W. Nickerson and Associates Editor T. G. Zacharakis Published Colorado Geological...

  6. Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney...

    Open Energy Info (EERE)

    Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration...

  7. Isotopic Analysis At Jemez Springs Area (Goff, Et Al., 1981)...

    Open Energy Info (EERE)

    (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Additional References Retrieved from "http:en.openei.orgw...

  8. Compound and Elemental Analysis At Jemez Springs Area (Goff,...

    Open Energy Info (EERE)

    (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Additional References Retrieved from "http:en.openei.orgw...

  9. Tucson and Colorado Springs Middle Schools Win Science Bowl Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tucson and Colorado Springs Middle Schools Win Science Bowl Hydrogen Fuel Cell Model Car Competitions National "Battle of the Brains" continues June 19 with academic face off June ...

  10. Interpretation of Water Sample Analysis, Waunita Hot Spring Project...

    Open Energy Info (EERE)

    of Water Sample Analysis, Waunita Hot Spring Project, Gunnison County, Colorado Author R. H. Carpenter Organization Colorado Geological Survey in Cooperation with the U.S....

  11. Soil mercury investigations, Waunita Hot Springs | Open Energy...

    Open Energy Info (EERE)

    Report: Soil mercury investigations, Waunita Hot Springs Authors C. D. Ringrose and R. H. Pearl Organization Colorado Geological Survey in Cooperation with the U.S. Department...

  12. Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al., 2010) Exploration Activity Details...

  13. Aerial Photography At Beowawe Hot Springs Area (Wesnousky, Et...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Beowawe Hot Springs Area (Wesnousky, Et Al., 2003) Exploration Activity Details...

  14. Direct-Current Resistivity Survey At Roosevelt Hot Springs Area...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Roosevelt Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  15. Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Geothermal Area (Roberts, Et Al.,...

  16. Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Geothermal Area (Wilt & Haar, 1986)...

  17. EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Statement Contact Douglas Corkran dfcorkran@bpa.gov (503) 230-7646 More Information http:efw.bpa.govenvironmentalservicesDocumentLibraryHotSpringsAnaconda

  18. Pan Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Facility Facility Pan Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bear City, California Coordinates 34.2611183, -116.84503 Show Map Loading map......

  19. Barron's Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Resource Areas. Print PDF Retrieved from "http:en.openei.orgwindex.php?titleBarron%27sHotSpringsGeothermalArea&oldid714634" Feedback Contact needs updating Image...

  20. Refraction Survey At Hot Sulphur Springs Area (Laney, 2005) ...

    Open Energy Info (EERE)

    Location Hot Sulphur Springs Area Exploration Technique Refraction Survey Activity Date Usefulness useful DOE-funding Unknown Notes Seismic Imaging, Majer, Gritto and Daley....

  1. Analysis Of Hot Springs And Associated Deposits In Yellowstone...

    Open Energy Info (EERE)

    Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Airborne VisibleIR Image Spectrometer (AVIRIS) data were used to characterize hot spring deposits in the...

  2. Salida Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Facility Facility Salida Hot Springs Sector Geothermal energy Type Pool and Spa Location Salida, Colorado Coordinates 38.5347193, -105.9989022 Show Map Loading map......

  3. SWIR at Steamboat Springs Geothermal Area (Kruse 2012) | Open...

    Open Energy Info (EERE)

    Springs Geothermal Area Exploration Technique SWIR Activity Date Spectral Imaging Sensor MASTER, ASTER, AVIRIS Usefulness useful DOE-funding none Notes Analysis of the SWIR...

  4. Spring and Summer Energy-Saving Tips | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.comeyedias. Simple and inexpensive...

  5. Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt...

    Open Energy Info (EERE)

    Zandt, G.; Mcpherson, L.; Schaff, S.; Olsen, S. (1 May 1982) Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Additional References...

  6. Jackson Well Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Well Springs Space Heating Low Temperature Geothermal Facility Facility Jackson Well...

  7. Astoria Mineral Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Astoria Mineral Hot Springs Sector Geothermal energy Type Pool and Spa Location Jackson, Wyoming Coordinates 43.4799291, -110.7624282 Show Map Loading map......

  8. Jackson Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Jackson Hot...

  9. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Jackson...

  10. Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Camp Preventorium Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bend, California Coordinates 39.6982182, -121.4608015 Show Map Loading map......

  11. Neal Hot Springs II Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    II Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Neal Hot Springs II Geothermal Project Project Location Information...

  12. Glenwood Springs Resource Management Plan (1984) | Open Energy...

    Open Energy Info (EERE)

    Resource Management Plan (1984) Jump to: navigation, search OpenEI Reference LibraryAdd to library Land Use Plan: Glenwood Springs Resource Management Plan (1984) Organization BLM...

  13. ES&H Newsletter - Spring 2015 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly Highlights Brochures Fact Sheets Newsletters PPPL News Quest Princeton Journal Watch Blog PPPL Experts Research at Princeton ES&H Newsletter - Spring 2015 ES&H Newsletter - ...

  14. Rock Sampling At Neal Hot Springs Geothermal Area (Colwell, Et...

    Open Energy Info (EERE)

    of Neal Hot Springs and the surrounding areas. This study was conducted by a geophysics field camp from the Colorado School of Mines. Notes Geochemical FingerprintingXRF...

  15. Field Mapping At Beowawe Hot Springs Area (Wesnousky, Et Al....

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Beowawe Hot Springs Area (Wesnousky, Et Al., 2003) Exploration Activity Details...

  16. City of Spring Grove, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Grove, Minnesota (Utility Company) Jump to: navigation, search Name: City of Spring Grove Place: Minnesota Phone Number: 507-498-5221 Website: www.springgrove.govoffice.com Outage...

  17. Colorado Springs Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Colorado Springs Utilities (CSU) Business Energy and Water Efficiency Rebate Program offers a variety of incentives to business customers for energy and water efficiency measures. Follow all...

  18. Desert Hot Springs, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Riverside County, California. It falls under California's 41st congressional district.12 Registered Energy Companies in Desert Hot Springs, California BCL Associates Inc...

  19. Wheeler Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Wheeler Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Wheeler Hot...

  20. Sleeping Child Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sleeping Child Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Sleeping...

  1. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    crust. The boreholes which exhibited the lowest average gradient were several kilometers from the hot springs and up-dip. None of them penetrated the Dakota Sandstone ....

  2. Core Holes At Steamboat Springs Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    2004) Exploration Activity Details Location Steamboat Springs Area Exploration Technique Core Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to...

  3. Chena Hot Springs GRED III Project: Final Report Geology, Petrology...

    Open Energy Info (EERE)

    Springs GRED III Project: Final Report Geology, Petrology, Geochemistry, Hydrothermal Alteration, and Fluid Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to...

  4. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Phillips, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area...

  5. Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-04-02

    Presentation prepared for the 2008 National Hydrogen Association Conference that describes the spring 2008 results for DOE's Fuel Cell Vehicle Learning Demonstration.

  6. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  7. Ground Gravity Survey At Crump's Hot Springs Area (DOE GTP) ...

    Open Energy Info (EERE)

    Ground Gravity Survey At Crump's Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Crump's Hot...

  8. Indian Springs, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Nevada: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.5696826, -115.6705757 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Balch Springs, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Balch Springs, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7287413, -96.6227714 Show Map Loading map... "minzoom":false,"mappings...

  10. York Springs, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0089827, -77.1155359 Show Map Loading map... "minzoom":false,"mapping...

  11. Borrego Springs, California: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Springs, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2558717, -116.375012 Show Map Loading map... "minzoom":false,"mappingse...

  12. Pleasant Springs, Wisconsin: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Springs, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9971945, -89.189643 Show Map Loading map... "minzoom":false,"mappingserv...

  13. Miami Springs, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8223198, -80.289495 Show Map Loading map... "minzoom":false,"mappingservic...

  14. Edgar Springs, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Missouri: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7044863, -91.8665452 Show Map Loading map... "minzoom":false,"mappingserv...

  15. Middletown Springs, Vermont: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Middletown Springs, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4856255, -73.1181624 Show Map Loading map......

  16. Cedar Springs, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.2233604, -85.5514237 Show Map Loading map... "minzoom":false,"mappingserv...

  17. Sand Springs, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sand Springs, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1398102, -96.108891 Show Map Loading map... "minzoom":false,"mapping...

  18. Manitou Springs, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Manitou Springs, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8597127, -104.9171989 Show Map Loading map......

  19. Altamonte Springs, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Altamonte Springs, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6611089, -81.3656242 Show Map Loading map......

  20. Western Springs, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8097532, -87.9006155 Show Map Loading map... "minzoom":false,"mappingserv...

  1. Poncha Springs, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Poncha Springs, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.5127752, -106.0772384 Show Map Loading map... "minzoom":false,"map...

  2. Running Springs, California: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Springs, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.2077859, -117.1092049 Show Map Loading map... "minzoom":false,"mappings...

  3. Coral Springs, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.271192, -80.2706044 Show Map Loading map... "minzoom":false,"mappingservic...

  4. Sandy Springs, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9242688, -84.3785379 Show Map Loading map... "minzoom":false,"mappingservi...

  5. Holly Springs, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Holly Springs, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6512655, -78.8336218 Show Map Loading map......

  6. Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature Geothermal Facility Facility...

  7. Wekiwa Springs, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wekiwa Springs, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6986077, -81.4256255 Show Map Loading map... "minzoom":false,"mappi...

  8. Magnetic Springs, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Magnetic Springs, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3528377, -83.2613063 Show Map Loading map... "minzoom":false,"mappin...

  9. Idaho Springs, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7424881, -105.5136081 Show Map Loading map... "minzoom":false,"mappingser...

  10. Glenwood Springs, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5505376, -107.3247762 Show Map Loading map... "minzoom":false,"mappingser...

  11. Peach Springs, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5291589, -113.425491 Show Map Loading map... "minzoom":false,"mappingservi...

  12. Palm Springs, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.6359009, -80.0961538 Show Map Loading map... "minzoom":false,"mappingservi...

  13. Palm Springs Spa Resort Casino Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Palm Springs Spa Resort Casino Pool & Spa Low Temperature Geothermal Facility Facility Palm...

  14. Saratoga Springs, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3491173, -111.9046567 Show Map Loading map... "minzoom":false,"mappingservice...

  15. Abita Springs, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Abita Springs, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.4785257, -90.0375755 Show Map Loading map... "minzoom":false,"mapp...

  16. Microsoft Word - XX 15 BPA moving forward with Hooper Springs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACT: Doug Johnson, 503-230-5840503-230-5131 BPA selects final path for its Hooper Springs Transmission project Portland, Ore. - The Bonneville Power Administration has decided...

  17. Camperworld Hot Springs SCUBA Dive Pool Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Jump to: navigation, search Name Camperworld Hot Springs SCUBA Dive Pool Pool & Spa Low Temperature Geothermal Facility Facility Camperworld...

  18. Eldorado Springs, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9324862, -105.2769348 Show Map Loading map... "minzoom":false,"mappingser...

  19. Bonita Springs, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bonita Springs, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.339806, -81.7786972 Show Map Loading map... "minzoom":false,"mappin...

  20. Dripping Springs, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dripping Springs, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.1902067, -98.0866781 Show Map Loading map... "minzoom":false,"mappi...

  1. Hot Springs, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5037004, -93.0551795 Show Map Loading map... "minzoom":false,"mappingserv...

  2. Bear Valley Springs, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Valley Springs, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1591307, -118.6284245 Show Map Loading map......

  3. Indian Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Exploration Activity Page Technique Activity Start Date Activity End Date Reference Material Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Isotopic...

  4. Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs 2006) Exploration Activity...

  5. Refraction Survey At Mt Princeton Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Location Mt Princeton Hot Springs Geothermal Area Exploration Technique Refraction Survey Activity Date 2012 - 2012 Usefulness useful DOE-funding Unknown Exploration Basis...

  6. Controlled Source Audio MT At Roosevelt Hot Springs Area (Combs...

    Open Energy Info (EERE)

    Audio MT At Roosevelt Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Audio MT At Roosevelt Hot...

  7. Boulder Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Space Heating Low Temperature Geothermal Facility Facility Boulder Hot...

  8. Hot Sulphur Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility Hot Sulphur...

  9. Walley's Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's...

  10. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Fairmont...

  11. Lolo Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Lolo Hot...

  12. Steamboat Villa Hot Springs Spa Space Heating Low Temperature...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Facility...

  13. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility Facility Waunita Hot...

  14. Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility...

  15. Saratoga Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Resort Space Heating Low Temperature Geothermal Facility Facility Saratoga...

  16. Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility...

  17. Bozeman Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Facility Bozeman Hot...

  18. Warm Springs State Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility...

  19. Warner Springs Ranch Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Ranch Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility...

  20. Roosevelt Warm Springs Institute for Rehab. Space Heating Low...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility...

  1. Miracle Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Springs Space Heating Low Temperature Geothermal Facility Facility Miracle Hot...

  2. Summer Lake Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake...

  3. Banbury Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Space Heating Low Temperature Geothermal Facility Facility Banbury Hot...

  4. Indian Springs School Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs School Space Heating Low Temperature Geothermal Facility Facility Indian...

  5. Burgdorf Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Burgdorf Hot Springs Space Heating Low Temperature Geothermal Facility Facility Burgdorf Hot...

  6. Hot Springs National Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    National Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility...

  7. Aeromagnetic Survey At Mt Princeton Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Princeton Hot Springs Geothermal Area (Case, Et Al., 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mt Princeton...

  8. Colorado Springs Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Colorado Springs Utilities offers a variety of energy and water efficiency incentives to its residential customers through the Residential Rebate Program. Rebates are offered for single and multi...

  9. Vehicle Technologies Office Spring 2016 Quarterly Analysis Review...

    Broader source: Energy.gov (indexed) [DOE]

    The QAR comprises a glimpse at the transportation energy ecosystem within which VTO operates. This is the Spring 2016 presentation of the QAR. VTO Analysis staff members present ...

  10. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas ...

  11. Stewart Mineral Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility Facility Stewart...

  12. Exploratory Well At Roosevelt Hot Springs Geothermal Area (Petersen...

    Open Energy Info (EERE)

    Petersen, 1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Roosevelt Hot Springs Geothermal Area (Petersen, 1975)...

  13. Petrography Analysis At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Roosevelt Hot...

  14. Aerial Photography At Roosevelt Hot Springs Geothermal Area ...

    Open Energy Info (EERE)

    Petersen, 1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Roosevelt Hot Springs Geothermal Area (Petersen, 1975)...

  15. Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Facility Fairmont Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Anaconda, Montana Coordinates...

  16. Winter Springs, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6988853, -81.3081226 Show Map Loading map... "minzoom":false,"mappingservi...

  17. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Roberts, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  18. Spring Green, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wisconsin. It falls under Wisconsin's 3rd congressional district.12 Registered Energy Companies in Spring Green, Wisconsin Biogas Direct LCC References US Census...

  19. Cold Spring, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Spring, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4200937, -73.954583 Show Map Loading map... "minzoom":false,"mappingservic...

  20. Energy Emergency Preparedness Quarterly Vol 3, Issue 2 - Spring...

    Broader source: Energy.gov (indexed) [DOE]

    the Energy Assurance page. Energy Emergency Preparedness Quarterly Vol 3 Issue 2 - SpringSummer 2014 More Documents & Publications Energy Emergency Preparedness Quarterly Vol...

  1. Cold Spring Harbor, New York: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Spring Harbor, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8714873, -73.456788 Show Map Loading map... "minzoom":false,"mappin...

  2. Discovery-Spring Garden, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Discovery-Spring Garden, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.4614398, -77.358284 Show Map Loading map......

  3. Hot Spring County, Arkansas: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Spring County, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3393795, -92.9775558 Show Map Loading map... "minzoom":false,"mappi...

  4. Spring City Corporation (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City Corporation (Utility Company) Jump to: navigation, search Name: Spring City Corporation Place: Utah Phone Number: (435) 462-2244 Website: uamps.comindex.phpabout-uamp Outage...

  5. Office of Indian Energy Alaska Energy Pioneer Spring 2015 Newsletter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Energy Pioneer - Spring 2015 (739.5 KB) More Documents & Publications Alaska Energy Pioneer Fall 2015 Newsletter Office of Indian Energy Newsletter: FallWinter 2014 Solar ...

  6. Hydrogeologic investigation of Coso Hot Springs, Inyo County...

    Open Energy Info (EERE)

    investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  7. 10 Energy Saving Tips for Spring | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Paul Lester Digital Content Specialist, Office of Public Affairs MORE SPRING ENERGY SAVING INFO Check out this infographic to learn how to spruce up your landscaping and save...

  8. California Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name California Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility California Hot...

  9. Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Alvord Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  10. Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Beowawe Hot Springs Area (Wood, 2002) Exploration Activity Details...

  11. Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter, 1981) Exploration Activity...

  12. Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mccredie Hot Springs Area (Wood, 2002) Exploration Activity Details...

  13. Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Umpqua Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  14. Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details...

  15. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  16. Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  17. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982)...

  18. Water Sampling At Jemez Springs Geothermal Area (Trainer, 1974...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Jemez Springs Geothermal Area (Trainer, 1974) Exploration Activity Details...

  19. Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) Exploration Activity...

  20. Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details...