Sample records for bailey loop mcclellan

  1. Depletion calculations for the McClellan Nuclear Radiation Center.

    E-Print Network [OSTI]

    Klann, Raymond T.; Newell, Daniel L.

    1997-01-01T23:59:59.000Z

    FOR THE MCCLELLAN RADIATION CENTER NUCLEAR BY Raymond T.for the McClellan Nuclear Radiation Center Raymond T. KkmnL. Newell McClellan Nuclear Radiation Center SM-ALC/TIR 5335

  2. Kay Bailey | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bailey Kay Bailey Oral History Videos Speakers INTRODUCTION Ed Bailey Jim Bailey Kay Bailey Ken Bernander Willard Brock Wilma Brooks Elmer Brummitt Naomi Brummitt Blake Case Larry...

  3. Jim Bailey | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jim Bailey Jim Bailey Oral History Videos Speakers INTRODUCTION Ed Bailey Jim Bailey Kay Bailey Ken Bernander Willard Brock Wilma Brooks Elmer Brummitt Naomi Brummitt Blake Case...

  4. Ed Bailey | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ed Bailey Ed Bailey Oral History Videos Speakers INTRODUCTION Ed Bailey Jim Bailey Kay Bailey Ken Bernander Willard Brock Wilma Brooks Elmer Brummitt Naomi Brummitt Blake Case...

  5. Reactor control system upgrade for the McClellan Nuclear Radiation Center

    E-Print Network [OSTI]

    Power, Michael A.

    1999-01-01T23:59:59.000Z

    FOR THE McCLELLAN NUCLEAR RADIATION CENTER SACRAMENTO, CA Byfor the McClellan Nuclear Radiation Center Sacramento, CAfor the McClellan Nuclear Radiation Facility. This new

  6. Preprocessing of backprojection images in the McClellan Nuclear Radiation Center tomography system

    E-Print Network [OSTI]

    Gibbons, Matthew R.; Shields, Kevin

    1998-01-01T23:59:59.000Z

    Images in the McClellan Nuclear Radiation Center TomographyBays,” McClellan Nuclear Radiation Center report MNRC-0057-

  7. ANOVA and Statistical Models R. A. Bailey

    E-Print Network [OSTI]

    Bailey, R. A.

    ANOVA and Statistical Models R. A. Bailey School of Mathematical Sciences r.a.bailey depends on diet. Model: yield on cow i = KA +i if on diet A KB +i if on diet B KC +i if on diet C where +i if on diet B KC +i if on diet C where 1, ..., 11 are independent (normal) random variables

  8. ANOVA and Statistical Models R. A. Bailey

    E-Print Network [OSTI]

    Bailey, R. A.

    ANOVA and Statistical Models R. A. Bailey School of Mathematical Sciences r.a.bailey@qmul.ac.uk ESD on cow i = KA +i if on diet A KB +i if on diet B KC +i if on diet C where 1, ..., 11 are independent: yield depends on diet. Model: yield on cow i = KA +i if on diet A KB +i if on diet B KC +i if on diet

  9. Installation-wide energy-conservation demonstration at Fort McClellan, Alabama. Final report

    SciTech Connect (OSTI)

    Windingland, L.M.; Lilly, B.P.; Shonder, J.A.; Underwood, D.M.; Augustine, L.J.

    1988-11-01T23:59:59.000Z

    The objective of the installation-wide energy conservation demonstration at Fort McClellan, AL, was to evaluate the effectiveness of applying available energy-conservation technologies and techniques to produce significant and predictable reductions in energy use and cost. Five major areas of energy conservation were identified and investigated: (1) pressure reduction in district-steam-heating systems; (2) reduction of outdoor air in heating, ventilation, and air-conditioning (HVAC) systems; (3) replacement of oversized and inefficient motors in HVAC systems; (4) reduction of outdoor air infiltration in family housing; and (5) combustion optimization of gas-fired heating equipment. Other areas of investigation included radio-controlled exterior lighting, and temperature reduction in the high-temperature hot-water system. Each conservation project was evaluated on a small scale to verify energy savings before it was implemented. An energy-information management system was developed to maintain annual consumption data for each building. The system provides immediate feedback on energy use so managers can make correct decisions on conservation measures. The energy conservation programs implemented at Fort McClellan contributed to the 14% reduction in baseline (weather independent) energy consumption from FY84 to FY86. These programs have wide applicability to other U.S. Army installations. This research has also shown the importance of preliminary, small-scale testing of energy-conservation programs before implementation.

  10. Field Mapping At Valles Caldera - Redondo Geothermal Area (Bailey...

    Open Energy Info (EERE)

    based on surface mapping of the caldera. References Roy A. Bailey, Robert Leland Smith, Clarence Samuel Ross (1969) Stratigraphic Nomenclature of Volcanic Rocks in the Jemez...

  11. Reactor control system upgrade for the McClellan Nuclear Radiation Center Sacramento, CA.

    SciTech Connect (OSTI)

    Power, M. A.

    1999-03-10T23:59:59.000Z

    Argonne National Laboratory is currently developing a new reactor control system for the McClellan Nuclear Radiation Facility. This new control system not only provides the same functionality as the existing control system in terms of graphic displays of reactor process variables, data archival capability, and manual, automatic, pulse and square-wave modes of operation, but adds to the functionality of the previous control system by incorporating signal processing algorithms for the validation of sensors and automatic calibration and verification of control rod worth curves. With the inclusion of these automated features, the intent of this control system is not to replace the operator but to make the process of controlling the reactor easier and safer for the operator. For instance, an automatic control rod calibration method reduces the amount of time to calibrate control rods from days to minutes, increasing overall reactor utilization. The control rod calibration curve, determined using the automatic calibration system, can be validated anytime after the calibration, as long as the reactor power is between 50W and 500W. This is done by banking all of the rods simultaneously and comparing the tabulated rod worth curves with a reactivity computer estimate. As long as the deviation between the tabulated values and the reactivity estimate is within a prescribed error band, then the system is in calibration. In order to minimize the amount of information displayed, only the essential flux-related data are displayed in graphical format on the control screen. Information from the sensor validation methods is communicated to the operators via messages, which appear in a message window. The messages inform the operators that the actual process variables do not correlate within the allowed uncertainty in the reactor system. These warnings, however, cannot cause the reactor to shutdown automatically. The reactor operator has the ultimate responsibility of using this information to either keep the reactor operating or to shut the reactor down. In addition to new developments in the signal processing realm, the new control system will be migrating from a PC-based computer platform to a Sun Solaris-based computer platform. The proven history of stability and performance of the Sun Sohuis operating system are the main advantages to this change. The I/O system will also be migrating from a PC-based data collection system, which communicates plant data to the control computer using RS-232 connections, to an Ethernet-based I/O system. The Ethernet Data Acquisition System (EDAS) modules from Intelligent Instrumentation, Inc. provide an excellent solution for embedded control of a system using the more universally-accepted data transmission standard of TCP/IP. The modules contain a PROM, which operates all of the functionality of the I/O module, including the TCP/IP network access. Thus the module does not have an internal, sophisticated operating system to provide functionality but rather a small set hard-coded of instructions, which almost eliminates the possibility of the module failing due to software problems. An internal EEPROM can be modified over the Internet to change module configurations. Once configured, the module is contacted just like any other Internet host using TCP/IP socket calls. The main advantage to this architecture is its flexibility, expandability, and high throughput.

  12. Bailey County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagley Public Utilities CommBailey County

  13. A Comparison of Methods for Sizing Energy Storage Devices in Renewable Energy Systems Thomas Bailey

    E-Print Network [OSTI]

    Victoria, University of

    A Comparison of Methods for Sizing Energy Storage Devices in Renewable Energy Systems by Thomas of Methods for Sizing Energy Storage Devices in Renewable Energy Systems by Thomas Bailey B.Eng, University, storage technologies are proposed as a means to increase the penetration of renewable energy, to minimize

  14. Using Layered Manufacturing for Scientific Visualization Mike Bailey, Oregon State University

    E-Print Network [OSTI]

    Bailey, Mike

    Manufacturing, on the other hand, is characterized by additive manufacturing processes. They start with nothing, but there are significant advantages to additive manufacturing for scientific visualization: · Extremely complex parts can1 Using Layered Manufacturing for Scientific Visualization Mike Bailey, Oregon State University

  15. High Speed Compressors P.B. Bailey, M. W. Dadd, C. R. Stone.

    E-Print Network [OSTI]

    1 High Speed Compressors P.B. Bailey, M. W. Dadd, C. R. Stone. Oxford University, Department compressors with a high power density, and one method of achieving this is to increase the operating frequency of the compressor. The `Oxford' type clearance seal/flexure bearing compressors are typically operated close

  16. Loop Representations

    E-Print Network [OSTI]

    B. Bruegmann

    1993-12-02T23:59:59.000Z

    The loop representation plays an important role in canonical quantum gravity because loop variables allow a natural treatment of the constraints. In these lectures we give an elementary introduction to (i) the relevant history of loops in knot theory and gauge theory, (ii) the loop representation of Maxwell theory, and (iii) the loop representation of canonical quantum gravity. (Based on lectures given at the 117. Heraeus Seminar, Bad Honnef, Sept. 1993)

  17. Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed*

    E-Print Network [OSTI]

    1 Gas Spring Losses in Linear Clearance Seal Compressors P.B. Bailey, M.W. Dadd, J.S. Reed* , C investigations on conventional crank driven reciprocating compressors, where the use of normal sliding seals would minimise seal losses. The widespread use of linear clearance seals in linear compressor has raised

  18. Breaking ECC2K-130 Daniel V. Bailey1,10, Lejla Batina2, Daniel J. Bernstein3, Peter Birkner4, Joppe W. Bos5,

    E-Print Network [OSTI]

    Bernstein, Daniel

    Breaking ECC2K-130 Daniel V. Bailey1,10, Lejla Batina2, Daniel J. Bernstein3, Peter Birkner4, Joppe, CH-1015 Lausanne, Switzerland {joppe.bos, thorsten.kleinjung}@epfl.ch 6 Academia Sinica, Taiwan {kc

  19. Loop-to-loop coupling.

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01T23:59:59.000Z

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  20. Quantum loop programs

    E-Print Network [OSTI]

    Mingsheng Ying; Yuan Feng

    2007-01-04T23:59:59.000Z

    Loop is a powerful program construct in classical computation, but its power is still not exploited fully in quantum computation. The exploitation of such power definitely requires a deep understanding of the mechanism of quantum loop programs. In this paper, we introduce a general scheme of quantum loops and describe its computational process. The notions of termination and almost termination are proposed for quantum loops, and the function computed by a quantum loop is defined. To show their expressive power, quantum loops are applied in describing quantum walks. Necessary and sufficient conditions for termination and almost termination of a general quantum loop on any mixed input state are presented. A quantum loop is said to be (almost) terminating if it (almost) terminates on any input state. We show that a quantum loop is almost terminating if and only if it is uniformly almost terminating. It is observed that a small disturbance either on the unitary transformation in the loop body or on the measurement in the loop guard can make any quantum loop (almost) terminating. Moreover, a representation of the function computed by a quantum loop is given in terms of finite summations of matrices. To illustrate the notions and results obtained in this paper, two simplest classes of quantum loop programs, one qubit quantum loops, and two qubit quantum loops defined by controlled gates, are carefully examined.

  1. The Funk Transform as a Penrose Transform T.N. Bailey M.G. Eastwood A.R. Gover L.J. Mason

    E-Print Network [OSTI]

    Gover, Rod

    The Funk Transform as a Penrose Transform T.N. Bailey M.G. Eastwood A.R. Gover L.J. Mason December 2, 1999 Abstract The Funk transform is the integral transform from the space of smooth even this transform as a limit in a certain sense of the Penrose transform from C P 2 to C P \\Lambda 2 . We exploit

  2. Dental Evidence from the Aterian Human Populations J.-J. Hublin, C. Verna, S. Bailey, T. Smith, A. Olejniczak, F. Z. Sbihi-Alaoui, and M. Zouak

    E-Print Network [OSTI]

    Smith, Tanya M.

    . Bailey, T. Smith, A. Olejniczak, F. Z. Sbihi-Alaoui, and M. Zouak Abstract The Aterian fossil hominins Department of Anthropology, New York University, Rufus D. Smith Hall, 25 Waverly Place, New York, NY 10003 Platz 6, 04103 Leipzig, Germany e-mail: sbailey@nyu.edu T. Smith Department of Human Evolutionary

  3. Intermolecular C-H Bond Activation Promoted by a Titanium Alkylidyne Brad C. Bailey, Hongjun Fan, Erich W. Baum, John C. Huffman, Mu-Hyun Baik,* and

    E-Print Network [OSTI]

    Baik, Mu-Hyun

    Intermolecular C-H Bond Activation Promoted by a Titanium Alkylidyne Brad C. Bailey, Hongjun Fan to perform intermolecular activation of inert C-H bonds.3-7 We now report that transient titanium alkylidynes an energy profile for the C-H bond activation reaction. Recently, our group reported the synthesis

  4. Fast flux locked loop

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-09-10T23:59:59.000Z

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  5. 1D lanthanide halide crystals inserted into single-walled carbon nanotubes Cigang Xu,a Jeremy Sloan,ab Gareth Brown,ab Sam Bailey,a V. Clifford Williams,a Steffi Friedrichs,a Karl S.

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    ,ab Gareth Brown,ab Sam Bailey,a V. Clifford Williams,a Steffi Friedrichs,a Karl S. Coleman,a Emmanuel). Images were acquired digitally on a Gatan model 794 (1 k 3

  6. CIS 1068: Practice Problems 11 Some practice with basic loop algorithms: step-by-step loops, sentinel loops, accumulation

    E-Print Network [OSTI]

    Yates, Alexander

    , sentinel loops, accumulation loops, and nested loops. 1. Basic Step-by-Step Loops A basic step-by-step loop. Accumulation loops Accumulation loops keep track of and update information each time through the loop. Usually an accumulation loop. Accumulation loops are add-ons to either step-by-step or sentinel loops. You need to start

  7. Optimizing Nested Loops with Loop Distribution and Loop Fusion Department of Computer Science and Engineering

    E-Print Network [OSTI]

    Sha, Edwin

    nodes so that the loop nodes inside one partition can be fused directly without transformation. Maximum and the power consumption [1, 5, 7, 8]. Direct loop fusion is to find the legal fusion partition of the loop of the fused loops is minimized. Loop distribution separates independent statements inside a single loop (or

  8. SPECIAL INITATIVE CONTACT: Stephanie McClellan

    E-Print Network [OSTI]

    Firestone, Jeremy

    to large population centers that need the electricity. Additionally, unlike land-based wind, offshore wind blows during the points of highest energy demand. These advantages give offshore wind the potential necessary to address climate change, and to grow our domestic clean energy economy. The Special Initiative

  9. Multiprotein DNA looping

    E-Print Network [OSTI]

    Jose M. G. Vilar; Leonor Saiz

    2006-06-19T23:59:59.000Z

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switch-like transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  10. A loop quantum multiverse?

    E-Print Network [OSTI]

    Martin Bojowald

    2012-12-20T23:59:59.000Z

    Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.

  11. A loop quantum multiverse?

    E-Print Network [OSTI]

    Bojowald, Martin

    2013-01-01T23:59:59.000Z

    Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.

  12. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26T23:59:59.000Z

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  13. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    None

    2013-07-24T23:59:59.000Z

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  14. CURRICULUM VITAE Matthew Bailey

    E-Print Network [OSTI]

    Marsh, David

    . Esmeralda Tinajero, "Resonancias bíblicas en el Cantar de Mio Cid," Spring 2006. Joseph Fees, "Orality

  15. CURRICULUM VITAE Matthew Bailey

    E-Print Network [OSTI]

    Marsh, David

    . Esmeralda Tinajero, "Resonancias bíblicas en el Cantar de Mio Cid," Spring 2006. #12;2 Joseph Fees, "Orality

  16. Robert Bailey Curriculum Vitae

    E-Print Network [OSTI]

    Argerami, Martin

    for the Mathematical Sciences) Postdoctoral Fellow, Department of Mathematics and Statis- tics, University of Regina (University of Ottawa). Education September 2002­December 2005 Ph.D. in Mathematics, Queen Mary, University

  17. BaileyQdo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugustDecade5-F,INITIAL JohnE P T0 Investor

  18. Coupled dual loop absorption heat pump

    DOE Patents [OSTI]

    Sarkisian, Paul H. (Watertown, MA); Reimann, Robert C. (Lafayette, NY); Biermann, Wendell J. (Fayetteville, NY)

    1985-01-01T23:59:59.000Z

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  19. Dynamic PID loop control

    E-Print Network [OSTI]

    Pei, L; Theilacker, J; Soyars, W; Martinez, A; Bossert, R; DeGraff, B; Darve, C

    2012-01-01T23:59:59.000Z

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters' oscillation.

  20. Dynamic PID loop control

    SciTech Connect (OSTI)

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01T23:59:59.000Z

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  1. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

  2. Loop-deformed Poincaré algebra

    E-Print Network [OSTI]

    Jakub Mielczarek

    2013-04-08T23:59:59.000Z

    In this essay we present evidence suggesting that loop quantum gravity leads to deformation of the local Poincar\\'e algebra within the limit of high energies. This deformation is a consequence of quantum modification of effective off-shell hypersurface deformation algebra. Surprisingly, the form of deformation suggests that the signature of space-time changes from Lorentzian to Euclidean at large curvatures. We construct particular realization of the loop-deformed Poincar\\'e algebra and find that it can be related to curved momentum space, which indicates the relationship with recently introduced notion of relative locality. The presented findings open a new way of testing loop quantum gravity effects.

  3. Thermodynamics in Loop Quantum Cosmology

    E-Print Network [OSTI]

    Li-Fang Li; Jian-Yang Zhu

    2008-12-18T23:59:59.000Z

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. And the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but are actually also found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  4. Detecting and escaping infinite loops using Bolt

    E-Print Network [OSTI]

    Kling, Michael (Michael W.)

    2012-01-01T23:59:59.000Z

    In this thesis we present Bolt, a novel system for escaping infinite loops. If a user suspects that an executing program is stuck in an infinite loop, the user can use the Bolt user interface, which attaches to the running ...

  5. Video looping of human cyclic motion

    E-Print Network [OSTI]

    Choi, Hye Mee

    2004-09-30T23:59:59.000Z

    In this thesis, a system called Video Looping is developed to analyze human cyclic motions. Video Looping allows users to extract human cyclic motion from a given video sequence. This system analyzes similarities from a large amount of live footage...

  6. Closing the Loop over Wireless Networks:Closing the Loop over Wireless Networks: Fundamentals and Applications

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    4/9/2008 1 Closing the Loop over Wireless Networks:Closing the Loop over Wireless Networks Johansson, Pan Gun Park, Emmanuel Witrant Closing the Loop over Wireless Networks:Closing the Loop over Wireless Networks: Fundamentals and Applications Karl H. Johansson Electrical Engineering, Royal Institute

  7. McClellan, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan, California: Energy Resources Jump to:

  8. Chemical Looping | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County, Washington:Looping Jump to: navigation,

  9. Hard-thermal-loop QED thermodynamics

    E-Print Network [OSTI]

    Nan Su; Jens O. Andersen; Michael Strickland

    2009-11-24T23:59:59.000Z

    The weak-coupling expansion for thermodynamic quantities in thermal field theories is poorly convergent unless the coupling constant is tiny. We discuss the calculation of the free energy for a hot gas of electrons and photons to three-loop order using hard-thermal-loop perturbation theory (HTLpt). We show that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ~ 2. The reorganization is gauge invariant by construction, and due to the cancellations among various contributions, we obtain a completely analytic result for the resummed thermodynamic potential at three loops.

  10. Sandia National Laboratories: molten salt test loop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molten salt test loop Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy...

  11. 1McNEILL: JITTER IN PHASE-LOCKED LOOPS Jitter in Phase-Locked Loops

    E-Print Network [OSTI]

    McNeill, John A.

    1McNEILL: JITTER IN PHASE-LOCKED LOOPS Jitter in Phase-Locked Loops John McNeill Worcester Polytechnic Institute #12;2McNEILL: JITTER IN PHASE-LOCKED LOOPS Course Overview · Basic Theory · Applications · Measurement Techniques · Test Issues · Design Measurement Techniques Design Tools #12;3McNEILL: JITTER

  12. Direct numerical integration for multi-loop integrals

    E-Print Network [OSTI]

    Sebastian Becker; Stefan Weinzierl

    2013-03-18T23:59:59.000Z

    We present a method to construct a suitable contour deformation in loop momentum space for multi-loop integrals. This contour deformation can be used to perform the integration for multi-loop integrals numerically. The integration can be performed directly in loop momentum space without the introduction of Feynman or Schwinger parameters. The method can be applied to finite multi-loop integrals and to divergent multi-loop integrals with suitable subtraction terms. The algorithm extends techniques from the one-loop case to the multi-loop case. Examples at two and three loops are discussed explicitly.

  13. UWB communication receiver feedback loop

    DOE Patents [OSTI]

    Spiridon, Alex (Palo Alto, CA); Benzel, Dave (Livermore, CA); Dowla, Farid U. (Castro Valley, CA); Nekoogar, Faranak (San Ramon, CA); Rosenbury, Erwin T. (Castro Valley, CA)

    2007-12-04T23:59:59.000Z

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  14. Closed loop steam cooled airfoil

    DOE Patents [OSTI]

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18T23:59:59.000Z

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  15. Ground Loops for Heat Pumps and Refrigeration 

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  16. Ground Loops for Heat Pumps and Refrigeration

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  17. Power Generating Stationary Engines Nox Control: A Closed Loop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Stationary Engines Nox Control: A Closed Loop Control Technology Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at...

  18. DNA looping: the consequences and its control

    E-Print Network [OSTI]

    Leonor Saiz; Jose M. G. Vilar

    2006-09-26T23:59:59.000Z

    The formation of DNA loops by proteins and protein complexes is ubiquitous to many fundamental cellular processes, including transcription, recombination, and replication. Here we review recent advances in understanding the properties of DNA looping in its natural context and how they propagate to the cellular behavior through gene regulation. The results of connecting the molecular properties with cellular physiology indicate that looping of DNA in vivo is much more complex and easier than predicted from current models and reveals a wealth of previously unappreciated details.

  19. A new loop-reducing routing algorithm

    E-Print Network [OSTI]

    Park, Sung-Woo

    1989-01-01T23:59:59.000Z

    Coming-up VI. Three Links Failed Page 51 51 52 52 53 53 . 54 54 55 Figure 5. 6. 7. 8. LIST OF FIGURES Bellman-Ford Algorithm Update Tables of Distributed Bellman-Ford Algorithm Two Types of a. Loop Two-Node Loop Multi-Node Loop... distances for all pairs of nodes in the subnet, and distributes updated routing information to all the nodes. The centralized algorithm, however, is vulnerable to a. single node failure ? if the NRC fails, all nodes in the network must stop their rout...

  20. Modulation of DNA loop lifetimes by the free energy of loop formation

    E-Print Network [OSTI]

    Chen, Yi-Ju; Mulligan, Peter; Spakowitz, Andrew J; Phillips, Rob

    2015-01-01T23:59:59.000Z

    Storage and retrieval of the genetic information in cells is a dynamic process that requires the DNA to undergo dramatic structural rearrangements. DNA looping is a prominent example of such a structural rearrangement that is essential for transcriptional regulation in both prokaryotes and eukaryotes, and the speed of such regulations affects the fitness of individuals. Here, we examine the in vitro looping dynamics of the classic Lac repressor gene-regulatory motif. We show that both loop association and loop dissociation at the DNA-repressor junctions depend on the elastic deformation of the DNA and protein, and that both looping and unlooping rates approximately scale with the looping J factor, which reflects the system's deformation free energy. We explain this observation by transition state theory and model the DNA-protein complex as an effective worm-like chain with twist. We introduce a finite protein-DNA binding interaction length, in competition with the characteristic DNA deformation length scale, ...

  1. Off-shell two loop QCD vertices

    E-Print Network [OSTI]

    J. A. Gracey

    2014-06-03T23:59:59.000Z

    We calculate the triple gluon, ghost-gluon and quark-gluon vertex functions at two loops in the MSbar scheme in the chiral limit for an arbitrary linear covariant gauge when the external legs are all off-shell.

  2. Speed estimation using single loop detector outputs

    E-Print Network [OSTI]

    Ye, Zhirui

    2008-10-10T23:59:59.000Z

    -in Motion (WIM) Video Image Processor (VIP) Microwave Radar Infrared Sensors Ultrasonic Sensors Non-intrusive Passive Acoustic Array Sensors In the following sections, three types of detectors adopting the inductive loop technology are reviewed...

  3. Speed estimation using single loop detector outputs

    E-Print Network [OSTI]

    Ye, Zhirui

    2009-05-15T23:59:59.000Z

    -in Motion (WIM) Video Image Processor (VIP) Microwave Radar Infrared Sensors Ultrasonic Sensors Non-intrusive Passive Acoustic Array Sensors In the following sections, three types of detectors adopting the inductive loop technology are reviewed...

  4. The Three-Loop Lattice Free Energy

    E-Print Network [OSTI]

    B. Alles; M. Campostrini; A. Feo; H. Panagopoulos

    2005-08-15T23:59:59.000Z

    We calculate the free energy of SU(N) gauge theories on the lattice, to three loops. Our result, combined with Monte Carlo data for the average plaquette, gives a more precise estimate of the gluonic condensate.

  5. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07T23:59:59.000Z

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  6. Analysis of heat transfer in unlooped and looped pulsating

    E-Print Network [OSTI]

    Zhang, Yuwen

    , Tubing Abstract An advanced heat transfer model for both unlooped and looped Pulsating Heat Pipes (PHPs

  7. On Smarandache Bryant Schneider group of a Smarandache loop

    E-Print Network [OSTI]

    Temitope Gbolahan Jaiyeola

    2008-06-05T23:59:59.000Z

    The concept of Smarandache Bryant Schneider Group of a Smarandache loop is introduced. Relationship(s) between the Bryant Schneider Group and the Smarandache Bryant Schneider Group of an S-loop are discovered and the later is found to be useful in finding Smarandache isotopy-isomorphy condition(s) in S-loops just like the formal is useful in finding isotopy-isomorphy condition(s) in loops. Some properties of the Bryant Schneider Group of a loop are shown to be true for the Smarandache Bryant Schneider Group of a Smarandache loop. Some interesting and useful cardinality formulas are also established for a type of finite Smarandache loop.

  8. Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood

    E-Print Network [OSTI]

    Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood.2 million cubic meters) of lumber treated with CCA are produced annually in the United States (Micklewright 1998). ·In 1997, for example, some 581.4 million cu. ft. was treated with waterborne preservatives

  9. Parameterizing loop fusion for automated empirical tuning

    SciTech Connect (OSTI)

    Zhao, Y; Yi, Q; Kennedy, K; Quinlan, D; Vuduc, R

    2005-12-15T23:59:59.000Z

    Traditional compilers are limited in their ability to optimize applications for different architectures because statically modeling the effect of specific optimizations on different hardware implementations is difficult. Recent research has been addressing this issue through the use of empirical tuning, which uses trial executions to determine the optimization parameters that are most effective on a particular hardware platform. In this paper, we investigate empirical tuning of loop fusion, an important transformation for optimizing a significant class of real-world applications. In spite of its usefulness, fusion has attracted little attention from previous empirical tuning research, partially because it is much harder to configure than transformations like loop blocking and unrolling. This paper presents novel compiler techniques that extend conventional fusion algorithms to parameterize their output when optimizing a computation, thus allowing the compiler to formulate the entire configuration space for loop fusion using a sequence of integer parameters. The compiler can then employ an external empirical search engine to find the optimal operating point within the space of legal fusion configurations and generate the final optimized code using a simple code transformation system. We have implemented our approach within our compiler infrastructure and conducted preliminary experiments using a simple empirical search strategy. Our results convey new insights on the interaction of loop fusion with limited hardware resources, such as available registers, while confirming conventional wisdom about the effectiveness of loop fusion in improving application performance.

  10. Torsional oscillations of longitudinally inhomogeneous coronal loops

    E-Print Network [OSTI]

    T. V. Zaqarashvili; K Murawski

    2007-04-03T23:59:59.000Z

    We explore the effect of an inhomogeneous mass density field on frequencies and wave profiles of torsional Alfven oscillations in solar coronal loops. Dispersion relations for torsional oscillations are derived analytically in limits of weak and strong inhomogeneities. These analytical results are verified by numerical solutions, which are valid for a wide range of inhomogeneity strength. It is shown that the inhomogeneous mass density field leads to the reduction of a wave frequency of torsional oscillations, in comparison to that of estimated from mass density at the loop apex. This frequency reduction results from the decrease of an average Alfven speed as far as the inhomogeneous loop is denser at its footpoints. The derived dispersion relations and wave profiles are important for potential observations of torsional oscillations which result in periodic variations of spectral line widths. Torsional oscillations offer an additional powerful tool for a development of coronal seismology.

  11. Inflationary universe in loop quantum cosmology

    E-Print Network [OSTI]

    Xin Zhang; Yi Ling

    2007-07-23T23:59:59.000Z

    Loop quantum cosmology provides a nice solution of avoiding the big bang singularity through a big bounce mechanism in the high energy region. In loop quantum cosmology an inflationary universe is emergent after the big bounce, no matter what matter component is filled in the universe. A super-inflation phase without phantom matter will appear in a certain way in the initial stage after the bounce; then the universe will undergo a normal inflation stage. We discuss the condition of inflation in detail in this framework. Also, for slow-roll inflation, we expect the imprint from the effects of the loop quantum cosmology should be left in the primordial perturbation power spectrum. However, we show that this imprint is too weak to be observed.

  12. Automation of one-loop QCD corrections

    E-Print Network [OSTI]

    Valentin Hirschi; Rikkert Frederix; Stefano Frixione; Maria Vittoria Garzelli; Fabio Maltoni; Roberto Pittau

    2013-05-14T23:59:59.000Z

    We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.

  13. A keyboard control method for loop measurement

    SciTech Connect (OSTI)

    Gao, Z.W. [Universita Degli Studi di Roma La Sapienza (Italy)

    1994-12-31T23:59:59.000Z

    This paper describes a keyboard control mode based on the DEC VAX computer. The VAX Keyboard code can be found under running of a program was developed. During the loop measurement or multitask operation, it ables to be distinguished from a keyboard code to stop current operation or transfer to another operation while previous information can be held. The combining of this mode, the author successfully used one key control loop measurement for test Dual Input Memory module which is used in a rearrange Energy Trigger system for LEP 8 Bunch operation.

  14. Evaluation of multi-loop multi-scale integrals and phenomenological two-loop applications

    E-Print Network [OSTI]

    Sophia Borowka

    2014-10-29T23:59:59.000Z

    In this thesis, major developments in the publicly available program SecDec are presented, extending the numerical evaluation of multi-loop multi-scale integrals from Euclidean to physical kinematics. The power of this new feature is shown in two phenomenological applications. In the first, numerical results for several massive two-loop four-point functions are shown. In its second application within this thesis, the leading momentum-dependent two-loop corrections to the neutral $\\mathcal{CP}$-even MSSM Higgs-boson masses are calculated. The results are included in the code FeynHiggs.

  15. Loop realizations of quantum affine algebras

    SciTech Connect (OSTI)

    Cautis, Sabin [Department of Mathematics, University of Southern California, Los Angeles, California, 90089 (United States); Licata, Anthony [Department of Mathematics, Australian National University, Canberra (Australia)

    2012-12-15T23:59:59.000Z

    We give a simplified description of quantum affine algebras in their loop presentation. This description is related to Drinfeld's new realization via halves of vertex operators. We also define an idempotent version of the quantum affine algebra which is suitable for categorification.

  16. The HTGR Closed - Loop Energy System

    E-Print Network [OSTI]

    Leeth, G. G.

    1981-01-01T23:59:59.000Z

    This paper summarizes some of the studies performed during the past several years on the application of the high temperature gas-cooled reactor (HTGR) to the U.S. industrial energy market. The specific concept utilizes a closed-loop thermo chemical...

  17. Loop expansion in Yang-Mills thermodynamics

    E-Print Network [OSTI]

    Ralf Hofmann

    2009-11-05T23:59:59.000Z

    We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.

  18. Warm inflationary model in loop quantum cosmology

    SciTech Connect (OSTI)

    Herrera, Ramon [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Casilla 4059, Valparaiso (Chile)

    2010-06-15T23:59:59.000Z

    A warm inflationary universe model in loop quantum cosmology is studied. In general we discuss the condition of inflation in this framework. By using a chaotic potential, V({phi}){proportional_to}{phi}{sup 2}, we develop a model where the dissipation coefficient {Gamma}={Gamma}{sub 0}=constant. We use recent astronomical observations for constraining the parameters appearing in our model.

  19. Selective purge for hydrogenation reactor recycle loop

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

    2001-01-01T23:59:59.000Z

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  20. Breakout Session: Getting in the Loop: PV Hardware Recycling...

    Energy Savers [EERE]

    Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT...

  1. Loop simulation capability for sodium-cooled systems

    E-Print Network [OSTI]

    Adekugbe, Oluwole A.

    1984-01-01T23:59:59.000Z

    A one-dimensional loop simulation capability has been implemented in the thermal-hydraulic analysis code, THERMIT-4E. This code had been used to simulate and investigate flow in test sections of experimental sodium loops ...

  2. Six-loop divergences in the supersymmetric Kahler sigma model

    E-Print Network [OSTI]

    I. Jack; D. R. T. Jones; J. Panvel

    1993-11-19T23:59:59.000Z

    The two-dimensional supersymmetric $\\s$-model on a K\\"ahler manifold has a non-vanishing $\\b$-function at four loops, but the $\\b$-function at five loops can be made to vanish by a specific choice of renormalisation scheme. We investigate whether this phenomenon persists at six loops, and conclude that it does not; there is a non-vanishing six-loop $\\b$-function irrespective of renormalisation scheme ambiguities.

  3. Closed loop cooling operation with MICON. Revision 1

    SciTech Connect (OSTI)

    Navarro, G.E.

    1995-01-18T23:59:59.000Z

    Document provides instructions for testing the closed loop cooling operation with the MICON Computer System at PFP.

  4. Gravitational field of a stationary circular cosmic string loop

    E-Print Network [OSTI]

    A; A. Sen; N. Banerjee

    1998-06-22T23:59:59.000Z

    Gravitational field of a stationary circular cosmic string loop has been studied in the context of full nonlinear Einstein's theory of gravity. It has been assumed that the radial and tangential stresses of the loop are equal to the energy density of the string loop. An exact solution for the system has been presented which has a singularity at a finite distance from the axis,but is regular for any other distances from the axis of the loop.

  5. On Termination of Integer Linear Loops Joel Ouaknine

    E-Print Network [OSTI]

    Ouaknine, Joël

    On Termination of Integer Linear Loops Jo¨el Ouaknine Department of Computer Science Oxford con- cerns the termination of simple linear loops of the form: x u ; while Bx c do x Ax + a , where initial integer vectors u, such a loop terminates. The correctness of our algorithm relies

  6. Using neutrons to fight forest fires

    E-Print Network [OSTI]

    Egbert, Hal; Walker, Ronald; Flocchini, R.

    2006-01-01T23:59:59.000Z

    UC Davis/ McClellan Nuclear Radiation Center,” Presented atDAVIS- MCCLELLAN NUCLEAR RADIATION CENTER MCCLELLAN,Davis-McClellan Nuclear Radiation Center (UCD-MNRC) is

  7. A new vacuum for Loop Quantum Gravity

    E-Print Network [OSTI]

    Bianca Dittrich; Marc Geiller

    2015-05-05T23:59:59.000Z

    We construct a new vacuum for loop quantum gravity, which is dual to the Ashtekar-Lewandowski vacuum. Because it is based on BF theory, this new vacuum is physical for $(2+1)$-dimensional gravity, and much closer to the spirit of spin foam quantization in general. To construct this new vacuum and the associated representation of quantum observables, we introduce a modified holonomy-flux algebra which is cylindrically consistent with respect to the notion of refinement by time evolution suggested in [1]. This supports the proposal for a construction of a physical vacuum made in [1,2], also for $(3+1)$-dimensional gravity. We expect that the vacuum introduced here will facilitate the extraction of large scale physics and cosmological predictions from loop quantum gravity.

  8. Closed-loop pulsed helium ionization detector

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01T23:59:59.000Z

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  9. MAGNETIC LOOPS IN THE QUIET SUN

    SciTech Connect (OSTI)

    Wiegelmann, T.; Solanki, S. K.; Barthol, P.; Gandorfer, A. [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau (Germany); Borrero, J. M.; Schmidt, W. [Kiepenheuer-Institut fuer Sonnenphysik, Schoeneckstr. 6, 79104 Freiburg (Germany); Pillet, V. MartInez; Bonet, J. A. [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, 38200 La Laguna, Tenerife (Spain); Del Toro Iniesta, J. C. [Instituto de Astrofisica de Andalucia (CSIC), Apartado de Correos 3004, 18080 Granada (Spain); Domingo, V. [Grupo de Astronomia y Ciencias del Espacio, Universidad de Valencia, 46980 Paterna, Valencia (Spain); Knoelker, M. [High Altitude Observatory, National Center for Atmospheric Research Boulder, CO 80307 (United States); Title, A. M., E-mail: wiegelmann@mps.mpg.d [Lockheed Martin Solar and Astrophysics Laboratory, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

    2010-11-10T23:59:59.000Z

    We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from SUNRISE/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops that reach into the chromosphere or higher have one footpoint in relatively strong magnetic field regions in the photosphere. Ninety-one percent of the magnetic energy in the mid-chromosphere (at a height of 1 Mm) is in field lines, whose stronger footpoint has a strength of more than 300 G, i.e., above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker footpoint has a strength B < 300 G and is located in the internetwork (IN). Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the IN fields.

  10. Water-loop heat pump systems

    SciTech Connect (OSTI)

    Eley, C.; Hydeman, M. (Eley (Charles) Associates, San Francisco, CA (United States))

    1992-12-01T23:59:59.000Z

    Water-loop heat pump (WLHP) systems are reliable, versatile, energy-efficient alternatives to conventional systems such as packaged rooftop or central chiller systems. These systems offer low installed costs, unparalleled design flexibility, and an inherent ability to recover heat in a variety of commercial and multifamily residential buildings for both new construction and retrofit markets. Southern California Edison Co. (SCE) teamed with EPRI to develop a comprehensive design guide for WLHP systems that incorporated recent research by EPRI, SCE, and others. The project team reviewed current literature, equipment data, and design guidelines from equipment manufacturers. They next discussed design and application practices with consulting engineers as well as design and building contractors. The team also ran extensive computer simulations on commercial and multifamily residential building models for Southern California, both to determine the sensitivity of energy use to WLHP system design parameters and to establish optimal design parameters. This information culminated in a comprehensive engineering guide. Volume 1 of this report, provides step-by-step technical design data for selection, application, and specification of WLHP systems. This guide emphasizes energy-efficient design principles and incorporates the findings of the computer simulations and research. For example, it recommends lowering the loop temperature in buildings dominated by internal loads. Reducing the loop temperature from 90 to 80[degrees]F provides a 7--10% savings in the total system energy in Southern California climate areas. Other recommendations include (1) installing a cooling tower with a propeller fan, which uses one fourth to one third of the energy of a cooling tower with a centrifugal fan; and (2) incorporating variable-speed pumps in conjunction with two-position valves in the heat pumps to reduce the system pump energy use by up to 50%.

  11. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01T23:59:59.000Z

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  12. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21T23:59:59.000Z

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  13. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

    2009-10-27T23:59:59.000Z

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  14. Fractal Structure of Loop Quantum Gravity

    E-Print Network [OSTI]

    Leonardo Modesto

    2008-12-11T23:59:59.000Z

    In this paper we have calculated the spectral dimension of loop quantum gravity (LQG) using simple arguments coming from the area spectrum at different length scales. We have obtained that the spectral dimension of the spatial section runs from 2 to 3, across a 1.5 phase, when the energy of a probe scalar field decrees from high to low energy. We have calculated the spectral dimension of the space-time also using results from spin-foam models, obtaining a 2-dimensional effective manifold at hight energy. Our result is consistent with other two approach to non perturbative quantum gravity: causal dynamical triangulation and asymptotic safety quantum gravity.

  15. High Energy Evolution with Pomeron Loops

    E-Print Network [OSTI]

    Michael Lublinsky

    2006-05-02T23:59:59.000Z

    The high energy/density QCD has been widely used for DIS phenomenology with a projectile particle considered as perturbative and dilute. We review some recent attempts to derive a high energy evolution kernel which treats targets and projectiles in a symmetric manner. From theoretical point of view the problem is tightly related to inclusion of Pomeron loops in the evolution. The ultimate goal is to consider high energy scatterings with both projectile and target being dense, the situation faced at RHIC and the LHC.

  16. Loop Quantum Gravity: An Inside View

    E-Print Network [OSTI]

    Thomas Thiemann

    2006-08-29T23:59:59.000Z

    This is a (relatively) non -- technical summary of the status of the quantum dynamics in Loop Quantum Gravity (LQG). We explain in detail the historical evolution of the subject and why the results obtained so far are non -- trivial. The present text can be viewed in part as a response to an article by Nicolai, Peeters and Zamaklar [hep-th/0501114]. We also explain why certain no go conclusions drawn from a mathematically correct calculation in a recent paper by Helling et al [hep-th/0409182] are physically incorrect.

  17. Grafting Polymer Loops onto Functionalized Nanotubes: Monitoring Grafting and Loop Formation

    SciTech Connect (OSTI)

    Ashcraft, Earl C [ORNL; Ji, Haining [ORNL; Mays, Jimmy [ORNL; Dadmun, Mark D [ORNL

    2011-01-01T23:59:59.000Z

    Polystyrene functionalized at both ends (telechelic polymer) with epoxide groups (epoxy PS epoxy) was reacted with carboxylated multiwall carbon nanotubes (COOH MWNT) in solution in order to graft polymer chains at both ends onto the MWNT surface, forming loops. FT-IR spectroscopy was employed to monitor the formation of aromatic esters and to quantify the amount of telechelic grafted to the nanotube surface as a function of reaction time. When the samples were further annealed in the melt, an increase in the aromatic ester peak was observed, indicating that the unreacted chain ends further grafted to MWNT surfaces to form loops. By reacting the grafted nanotube samples further with monocarboxy terminated poly(4-methylstyrene) (COOH P4MS), the amount of epoxy PS epoxy that had only reacted at one end was determined. Reaction rate analysis indicates that that the grafting of epoxy PS epoxy to the nanotube surface is reaction controlled, as the FT-IR spectroscopy signal grows as a function of approximately t0.3. These studies exemplify how FT-IR spectroscopy can be used as a novel technique to quantify the amount of grafted polymer, grafting rate, and percent of difunctional polymers that form loops, and provide a method to create loop covered nanoparticles.

  18. High temperature storage loop : final design report.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.

    2013-07-01T23:59:59.000Z

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650%C2%B0C) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOE's SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  19. Evolution equation for 3-quark Wilson loop operator

    E-Print Network [OSTI]

    R. E. Gerasimov; A. V. Grabovsky

    2012-12-07T23:59:59.000Z

    The evolution equation for the 3 quark Wilson loop operator has been derived in the leading logarithm approximation within Balitsky high energy operator expansion.

  20. ORC Closed Loop Control Systems for Transient and Steady State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    models using iterative concept analysis are being used on a closed loop controlled, waste heat recovery system running automatically over various drive cycles....

  1. Robotic Roommates Making Pancakes -Look Into Perception-Manipulation Loop

    E-Print Network [OSTI]

    Cremers, Daniel

    Robotic Roommates Making Pancakes - Look Into Perception-Manipulation Loop Michael Beetz, Ulrich Klank, Alexis Maldonado, Dejan Pangercic, Thomas R¨uhr {beetz, klank, maldonad, pangercic, ruehr

  2. Neutron Tomography and Space

    E-Print Network [OSTI]

    Egbert, Hal; Walker, Ronald; Flocchini, R.

    2007-01-01T23:59:59.000Z

    DAVIS- MCCLELLAN NUCLEAR RADIATION CENTER MCCLELLAN,Davis-McClellan Nuclear Radiation Center (UCD-MNRC) is

  3. Theory of the hysteresis loop in ferromagnets

    E-Print Network [OSTI]

    Lyuksyutov, Igor F.; Nattermann, T.; Pokrovsky, Valery L.

    1999-01-01T23:59:59.000Z

    ~see Refs. 7?9! PRB 590163-1829/99/59~6!/4260~13!/$15.00 loop in ferromagnets v* , College Station, Texas 77843-4242 n a?t zu Ko?ln, 50937, Ko?ln, Germany , 24 rue Lhomond 75231, Paris Cedex 05, France y , College Station, Texas 77843-4242 l... strength in a compli- cated way.18 The random fields h @ r5(x,Z) # generated by imperfec- PRB 59 THEORY OF THE HYSTERESI tions is assumed to be Gaussian distributed and short-range correlated with h(r)50 and h ~ r!h~r 8 !5h 2lD11d l~r2r8!. ~2...

  4. Open-loop heat-recovery dryer

    DOE Patents [OSTI]

    TeGrotenhuis, Ward Evan

    2013-11-05T23:59:59.000Z

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  5. Gas Test Loop Functional and Technical Requirements

    SciTech Connect (OSTI)

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01T23:59:59.000Z

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  6. Pair Correlation Function of Wilson Loops

    E-Print Network [OSTI]

    S. Chaudhuri; Y. Chen; E. Novak

    2000-02-02T23:59:59.000Z

    We give a path integral prescription for the pair correlation function of Wilson loops lying in the worldvolume of Dbranes in the bosonic open and closed string theory. The results can be applied both in ordinary flat spacetime in the critical dimension d or in the presence of a generic background for the Liouville field. We compute the potential between heavy nonrelativistic sources in an abelian gauge theory in relative collinear motion with velocity v = tanh(u), probing length scales down to r_min^2 = 2 \\pi \\alpha' u. We predict a universal -(d-2)/r static interaction at short distances. We show that the velocity dependent corrections to the short distance potential in the bosonic string take the form of an infinite power series in the dimensionless variables z = r_min^2/r^2, uz/\\pi, and u^2.

  7. Geothermal Loop Experimental Facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    Research at the Geothermal Loop Experimental Facility was successfully concluded in September 1979. In 13,000 hours of operation over a three and one half year period, the nominal 10 megawatt electrical equivalent GLEF provided the opportunity to identify problems in working with highly saline geothermal fluids and to develop solutions that could be applied to a commercial geothermal power plant producing electricity. A seven and one half year period beginning in April 1972, with early well flow testing and ending in September 1979, with the completion of extensive facility and reservoir operations is covered. During this period, the facility was designed, constructed and operated in several configurations. A comprehensive reference document, addressing or referencing documentation of all the key areas investigated is presented.

  8. Loop-voltage tomography in tokamaks using transient synchrotron radiation

    SciTech Connect (OSTI)

    Fisch, N.J.; Kritz, A.H. (Princeton Univ., NJ (USA). Plasma Physics Lab.; Hunter Coll., New York, NY (USA). Dept. of Physics)

    1989-07-01T23:59:59.000Z

    The loop voltage in tokamaks is particularly difficult to measure anywhere but at the plasma periphery. A brief, deliberate, perturbation of hot plasma electrons, however, produces a transient radiation response that is sensitive to this voltage. We investigate how such a radiation response can be used to diagnose the loop voltage. 24 refs., 6 figs.

  9. Supply Regulation Techniques for Phase-Locked Loops

    E-Print Network [OSTI]

    Palermo, Sam

    Supply Regulation Techniques for Phase-Locked Loops Vivekananth Gurumoorthy and Samuel Palermo-- Phase-locked loops (PLLs) which employ voltage regulators for low supply-noise sensitivity often rely. This paper compares various supply regulation techniques on the basis of their ability to reject noise from

  10. Electricity generation with looped transmission networks: Bidding to an ISO

    E-Print Network [OSTI]

    Ferris, Michael C.

    on a transmission network from net generation nodes to net consumption nodes is governed by the Kirchoff Laws [45Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes

  11. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-Print Network [OSTI]

    IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

  12. Singlet Free Energies and Renormalized Polyakov Loop in full QCD

    E-Print Network [OSTI]

    K. Petrov

    2006-10-05T23:59:59.000Z

    We calculate the free energy of a static quark anti-quark pair and the renormalized Polyakov loop in 2+1- and 3- flavor QCD using $16^3 \\times 4$ and $16^3 \\times 6$ lattices and improved staggered p4 action. We also compare the renormalized Polyakov loop with the results of our earlier studies.

  13. Flow Loop Experiments Using Polyalphaolefin Nanofluids Ian C. Nelson

    E-Print Network [OSTI]

    Banerjee, Debjyoti

    Flow Loop Experiments Using Polyalphaolefin Nanofluids Ian C. Nelson and Debjyoti Banerjee Texas A a flow-loop apparatus to explore the performance of nanofluids in cooling applications. The experiments/heater), and a reservoir. Experiments were conducted using nanofluid and polyalphaolefin for two different fin strip

  14. Control and optimization system and method for chemical looping processes

    DOE Patents [OSTI]

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2014-06-24T23:59:59.000Z

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  15. Vortex loops: Are they always doomed to die

    SciTech Connect (OSTI)

    Ben-Ya'acov, U. (International Solvay Institutes for Physics and Chemistry, Campus Plaine-CP231, Universite Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels (Belgium))

    1995-03-15T23:59:59.000Z

    The effective equations of motion of relativistic strings in material media are derived and applied to moving rings with a time-dependent radius. The equations contain the Magnus force, due to the motion of the ring relative to the medium, whose eventual effect is the possible stabilization of the ring against shrinking. A constant solution is identified, and small fluctuations around it are bound, demonstrating the stability of the solution. If the string loops created in the cosmological cosmic string scenario interact via this mechanism with a formed-up Higgs particle condensate, then the stabilizing velocities are [similar to][delta][sub loop]/[ital R][sub loop], and the overall effect of this phenomenon is to stabilize large loops and reduce the general disappearance rate of the string loops.

  16. Worm-like Polymer Loops and Fourier Knots

    E-Print Network [OSTI]

    S. Rappaport; Y. Rabin; A. Yu. Grosberg

    2006-03-02T23:59:59.000Z

    Every smooth closed curve can be represented by a suitable Fourier sum. We show that the ensemble of curves generated by randomly chosen Fourier coefficients with amplitudes inversely proportional to spatial frequency (with a smooth exponential cutoff), can be accurately mapped on the physical ensemble of worm-like polymer loops. We find that measures of correlation on the scale of the entire loop yield a larger persistence length than that calculated from the tangent-tangent correlation function at small length scales. The conjecture that physical loops exhibit additional rigidity on scales comparable to the entire loop due to the contribution of twist rigidity, can be tested experimentally by determining the persistence length from the local curvature and comparing it with that obtained by measuring the radius of gyration of dsDNA plasmids. The topological properties of the ensemble randomly generated worm-like loops are shown to be similar to that of other polymer models.

  17. Closed-loop control of anesthesia in children 1 Robust closed-loop control of induction and

    E-Print Network [OSTI]

    : During closed-loop control, a drug infusion is continually adjusted according to a measure of clinical. Remifentanil was administered as a bolus (0.5 g/kg), followed by continuous infusion (0.03 g/kg/min). The propofol infusion was closed-loop controlled throughout induction and maintenance of anesthesia, using

  18. Chemical Looping Combustion Reactions and Systems

    SciTech Connect (OSTI)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01T23:59:59.000Z

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  19. Diesel Combustion Control with Closed-Loop Control of the Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control with Closed-Loop Control of the Injection Strategy Diesel Combustion Control with Closed-Loop Control of the Injection Strategy New control strategies are...

  20. Folding of a DNA Hairpin Loop Structure in Explicit SolventUsingRepli...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a DNA Hairpin Loop Structure in Explicit Solvent UsingReplica-Exchange Molecular Dynamics Simulations. Folding of a DNA Hairpin Loop Structure in Explicit Solvent...

  1. Program permits fast solution to pipeline loop requirements

    SciTech Connect (OSTI)

    Bierman, G.D.

    1983-10-31T23:59:59.000Z

    A program developed for the HP-41CV hand-held calculator can provide pipeline engineers with a quick and easy means for determining loop requirements on existing gas-transmission pipelines. Adding pipe in parallel to an existing pipeline, referred to as looping, is necessary to insure that with a given flow rate, the gas will arrive at a certain point on the pipeline with a pressure equal to or greater than the minimum required pressure. The automatic loop program calculates loop by first determining the total number of segments which require looping within the section of pipeline being evaluated. A section of pipe is usually the pipeline between compressor stations and is divided into segments by either receipt or delivery points along the pipeline. The number of segments which require looping is found by adding loop to individual segments until the final pressure (i.e., the pressure at the point of interest downstream on the pipeline) is equal to or greater than the specified design pressure.

  2. The Human is the Loop: New Directions for Visual Analytics

    SciTech Connect (OSTI)

    Endert, Alexander; Hossain, Shahriar H.; Ramakrishnan, Naren; North, Chris; Fiaux, Patrick; Andrews, Christopher

    2014-01-28T23:59:59.000Z

    Visual analytics is the science of marrying interactive visualizations and analytic algorithms to support exploratory knowledge discovery in large datasets. We argue for a shift from a ‘human in the loop’ philosophy for visual analytics to a ‘human is the loop’ viewpoint, where the focus is on recognizing analysts’ work processes, and seamlessly fitting analytics into that existing interactive process. We survey a range of projects that provide visual analytic support contextually in the sensemaking loop, and outline a research agenda along with future challenges.

  3. THE COOLING OF CORONAL PLASMAS. IV. CATASTROPHIC COOLING OF LOOPS

    SciTech Connect (OSTI)

    Cargill, P. J. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Bradshaw, S. J., E-mail: p.cargill@imperial.ac.uk [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2013-07-20T23:59:59.000Z

    We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling is due to the inability of a loop to sustain radiative/enthalpy cooling below a critical temperature, which can be >1 MK in flares, 0.5-1 MK in active regions, and 0.1 MK in long tenuous loops. Catastrophic cooling is characterized by a rapid fall in coronal temperature, while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect considerably limits the lifetime of coronal plasmas below the critical temperature.

  4. POSSIBLE PHASE LOOP FOR THE GLOBAL DECOUPLING.

    SciTech Connect (OSTI)

    LUO, Y.; CAMERON, P.; DELLA PENNA, A.; JONES, R.; ET AL.

    2005-05-16T23:59:59.000Z

    The two eigentunes Q{sub I} and Q{sub II}, two eigenmode amplitude ratios R{sub I} and R{sub II}, and two eignmode phase differences {Delta}{phi}{sub I} and {Delta}{phi}{sub II}, are defined as the coupling observables for the linear weak difference betatron coupling. Simulations were carried out to investigate their behaviors in global decoupling scans. It was found that the amplitude ratios R{sub I,II} are more sensitive than the tune split when the decoupling scan is approaching the global uncoupled point, and that the phase differences {Delta}{phi}{sub I,II} tell the right global decoupling direction, the right strength combination of the skew quadrupoles or families. The analytical solution to these six coupling observables is calculated through both the strict matrix approach and the perturbation Hamiltonian approach. The constant phase differences in the right decoupling direction hint a possible global decoupling phase loop. Dedicated beam experiments were carried out at the Relativistic Heavy Ion Collider (RHIC). The preliminary results from the beam experiments are presented. These six parameters can be used for the global decoupling in feed-back mode, especially on the non-stop energy ramp.

  5. TS LOOP NON-POTABLE PUMP EVALUATION

    SciTech Connect (OSTI)

    S. Goodin

    1999-05-14T23:59:59.000Z

    This analysis evaluates the existing subsurface non-potable water system from the portal pump to the end of the water line in the South Ramp and determines if the pump size and spacing meets the system pressure and flow requirements for construction operations and incipient fire fighting capability as established in the Subsurface Fire Hazards Analysis (CRWMS M&O 1998b). This analysis does not address the non potable water system in the Cross Drift which is covered under a previous design analysis (CRWMS-M&O 1998a). The Subsurface Fire Hazards Analysis references sections of OSHA 29 CFR 1910 Subpart L for requirements applicable to the incipient fire fighting hose stations used underground. This analysis does not address mechanical system valves, fittings, risers and other components of the system piping. This system is not designed or intended to meet all National Fire Protection Association (NFPA) codes for a fire fighting system but is only considered a backup system to fire extinguishers that are installed throughout the Topopah Springs (TS) Loop and may be used to fight small incipient stage fires.

  6. Experimental characterization and chemical kinetics study of chemical looping combustion

    E-Print Network [OSTI]

    Chen, Tianjiao, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Chemical looping combustion (CLC) is one of the most promising technologies to achieve carbon capture in fossil fuel power generation plants. A novel rotary-bed reactor concept was proposed by Zhao et. al. [1] in 2013. It ...

  7. Investigations of tetraspanin functions using large extracellular loops

    E-Print Network [OSTI]

    Liu, Christopher C

    2005-01-01T23:59:59.000Z

    This thesis describes our characterization of a specific tetraspanin domain: the large extracellular loop (LEL). Tetraspanins are involved in cellular migration, adhesion, and metastasis, sperm-egg fusion, and viral ...

  8. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01T23:59:59.000Z

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  9. active region loop: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loops J.-Y. Lee1,2 , Graham that seems to be associated with separators with a smaller free energy. Subject headings: Sun: corona -- Sun: magnetic topology -- Sun: UV radiation...

  10. active region loops: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loops J.-Y. Lee1,2 , Graham that seems to be associated with separators with a smaller free energy. Subject headings: Sun: corona -- Sun: magnetic topology -- Sun: UV radiation...

  11. N >= 4 Supergravity Amplitudes from Gauge Theory at One Loop

    SciTech Connect (OSTI)

    Bern, Z.; /UCLA; Boucher-Veronneau, C.; /SLAC; Johansson, H.; /Saclay

    2011-08-19T23:59:59.000Z

    We expose simple and practical relations between the integrated four- and five-point one-loop amplitudes of N {ge} 4 supergravity and the corresponding (super-)Yang-Mills amplitudes. The link between the amplitudes is simply understood using the recently uncovered duality between color and kinematics that leads to a double-copy structure for gravity. These examples provide additional direct confirmations of the duality and double-copy properties at loop level for a sample of different theories.

  12. Entropy and Area of Black Holes in Loop Quantum Gravity

    E-Print Network [OSTI]

    I. B. Khriplovich

    2002-03-31T23:59:59.000Z

    Simple arguments related to the entropy of black holes strongly constrain the spectrum of the area operator for a Schwarzschild black hole in loop quantum gravity. In particular, this spectrum is fixed completely by the assumption that the black hole entropy is maximum. Within the approach discussed, one arrives in loop quantum gravity at a quantization rule with integer quantum numbers $n$ for the entropy and area of a black hole.

  13. Triple loop heat exchanger for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01T23:59:59.000Z

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  14. Operational Results of a Closed Brayton Cycle Test-Loop

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Brown, Nicholas [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States); Fuller, Robert; Nichols, Kenneth [Barber Nichols 6325 W 55th Ave., Arvada, Colorado 80002 (United States)

    2005-02-06T23:59:59.000Z

    A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kWth with a maximum outlet temperature of {approx}1000 K.

  15. Operational results of a Closed Brayton Cycle test-loop.

    SciTech Connect (OSTI)

    Fuller, Robert (Barber Nichols, Arvada, Colorado); Wright, Steven Alan; Nichols, Kenneth Graham. (Barber Nichols, Arvada, Colorado); Brown, Nicholas; Lipinski, Ronald J.

    2004-11-01T23:59:59.000Z

    A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kW{sub th} with a maximum outlet temperature of {approx}1000 K.

  16. SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Ofman, L.; Wang, T. J. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Davila, J. M. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

    2012-08-01T23:59:59.000Z

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  17. Profiles of heating in turbulent coronal magnetic loops

    E-Print Network [OSTI]

    E. Buchlin; P. J. Cargill; S. J. Bradshaw; M. Velli

    2007-02-28T23:59:59.000Z

    Context: The location of coronal heating in magnetic loops has been the subject of a long-lasting controversy: does it occur mostly at the loop footpoints, at the top, is it random, or is the average profile uniform? Aims: We try to address this question in model loops with MHD turbulence and a profile of density and/or magnetic field along the loop. Methods: We use the ShellAtm MHD turbulent heating model described in Buchlin & Velli (2006), with a static mass density stratification obtained by the HydRad model (Bradshaw & Mason 2003). This assumes the absence of any flow or heat conduction subsequent to the dynamic heating. Results: The average profile of heating is quasi-uniform, unless there is an expansion of the flux tube (non-uniform axial magnetic field) or the variation of the kinetic and magnetic diffusion coefficients with temperature is taken into account: in the first case the heating is enhanced at footpoints, whereas in the second case it is enhanced where the dominant diffusion coefficient is enhanced. Conclusions: These simulations shed light on the consequences on heating profiles of the complex interactions between physical effects involved in a non-uniform turbulent coronal loop.

  18. Closed loop drilling systems can eliminate reserve pit costs

    SciTech Connect (OSTI)

    Astrella, L.; Wiemers, R. [Environmental Equipment Corp., Denver, CO (United States)

    1996-05-27T23:59:59.000Z

    Closed loop systems have become more dependable and efficient, making drilling without a mud pit an economically attractive alternative in many drilling programs. A closed loop system is defined simply as a mechanical and chemical system which will allow an operator to drill a well without using a reserve pit. A closed loop system includes some solids control equipment (such as the shaker, desander, desilter, and proper centrifuge), which may already be on the rig, and a polymer flocculation unit, which is not part of a conventional rig`s solids control system. This paper reviews the various methods of flocculation and the performance of the different units. It then goes on to describe costs and regulations associated with both methods of handling drilling wastes.

  19. Hamiltonian traffic dynamics in microfluidic-loop networks

    E-Print Network [OSTI]

    Raphaël Jeanneret; Julien Piera-Vest; Denis Bartolo

    2011-09-28T23:59:59.000Z

    Recent microfluidic experiments revealed that large particles advected in a fluidic loop display long-range hydrodynamic interactions. However, the consequences of such couplings on the traffic dynamics in more complex networks remain poorly understood. In this letter, we focus on the transport of a finite number of particles in one-dimensional loop networks. By combining numerical, theoretical, and experimental efforts, we evidence that this collective process offers a unique example of Hamiltonian dynamics for hydrodynamically interacting particles. In addition, we show that the asymptotic trajectories are necessarily reciprocal despite the microscopic traffic rules explicitly break the time reversal symmetry. We exploit these two remarkable properties to account for the salient features of the effective three-particle interaction induced by the exploration of fluidic loops.

  20. Loop-induced Neutrino Masses: A Case Study

    E-Print Network [OSTI]

    Geng, Chao-Qiang; Tsai, Lu-Hsing

    2014-01-01T23:59:59.000Z

    We study the cocktail model in which the Majorana neutrino masses are generated by the so-called "cocktail" three-loop diagrams with the dark matter particle running in the loops. In particular, we give the correct analytic expressions of the neutrino masses in the model by the detailed calculation of the cocktail diagrams. Based on the reliable numerical calculation of the loop integrals, we explore the parameter space which can give the correct orders of neutrino masses while satisfying other experimental constraints, such as those from the neutrinoless double beta decay, low-energy lepton flavor violation processes, electroweak precision tests, and collider searches. As a result, the large couplings and the large mass difference between the two singly-charged (neutral) scalars are required.

  1. Forward Modelling of Standing Slow Modes in Flaring Coronal Loops

    E-Print Network [OSTI]

    Yuan, D; Banerjee, D; Antolin, P

    2015-01-01T23:59:59.000Z

    Standing slow mode waves in hot flaring loops are exclusively observed in spectrometers and are used to diagnose the magnetic field strength and temperature of the loop structure. Due to the lack of spatial information, the longitudinal mode cannot be effectively identified. In this study, we simulate standing slow mode waves in flaring loops and compare the synthesized line emission properties with SUMER spectrographic and SDO/AIA imaging observations. We find that the emission intensity and line width oscillations are a quarter period out of phase with Doppler shift velocity both in time and spatial domain, which can be used to identify a standing slow mode wave from spectroscopic observations. However, the longitudinal overtones could be only measured with the assistance of imagers. We find emission intensity asymmetry in the positive and negative modulations, this is because the contribution function pertaining to the atomic emission process responds differently to positive and negative temperature variat...

  2. From Loops to Trees By-passing Feynman's Theorem

    SciTech Connect (OSTI)

    Catani, Stefano; Gleisberg, Tanju; Krauss, Frank; Rodrigo, German; Winter, Jan-Christopher

    2008-04-22T23:59:59.000Z

    We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary + i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. It is suitable for applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluation of cross-sections at next-to-leading order.

  3. Abnormal operating procedures for ATR (Advanced Test Reactor's) experiment loops

    SciTech Connect (OSTI)

    Auflick, J.L.

    1989-09-01T23:59:59.000Z

    This paper outlines the background from the TMI accident which resulted in the definition and development of function-oriented procedures. It also explains how function-oriented procedures were applied in a task for the Advanced Test Reactor's (ATR) NR experiment loops. Human performance design discrepancies were identified for existing procedures, and were corrected by upgrading them according to current NRC and DOE standards. Finally, specific recommendations are made with respect to future ATR control room and loop improvements, as they relate to the revision of operating procedures within INEL's power reactor program. 8 refs., 4 figs.

  4. Estimating two-loop radiative effects in the MOLLER experiment

    SciTech Connect (OSTI)

    Aleksejevs, A. G., E-mail: aaleksejevs@swgc.mun.ca [Grenfell Campus Memorial University (Canada); Barkanova, S. G., E-mail: svetlana.barkanova@acadiau.ca [Acadia University (Canada); Zykunov, V. A., E-mail: vladimir.zykunov@cern.ch [Belarussian State University of Transport (Belarus); Kuraev, E. A., E-mail: kuraev@theor.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2013-07-15T23:59:59.000Z

    Within the on-shell renormalization scheme, two-loop electroweak corrections to the parityviolating polarization asymmetry in the reaction e{sup -}e{sup -} {yields} e{sup -}e{sup -}({gamma}, {gamma}{gamma}) were estimated for the MOLLER experiment at JLab. The infrared divergence and the imaginary part of the amplitude were taken completely under control. Relevant compact expressions obtained by using asymptotic methods are free from unphysical parameters and are convenient for analysis and for numerical estimations. A numerical analysis revealed a significant scale of two-loop effects and the need for taking them into account in the MOLLER experiment.

  5. String Loop Corrections to Stable Non-BPS Branes

    E-Print Network [OSTI]

    N. D. Lambert; I. Sachs

    2000-10-31T23:59:59.000Z

    We calculate the string loop corrections to the tachyon potential for stable non-BPS Dp-branes on the orbifold T^4/Z_2. We find a non-trivial phase structure and we show that, after tachyon condensation, the non-BPS Dp-branes are attracted to each other for p=0,1,2. We then identify the corresponding closed string boundary states together with the massless long range fields they excite. For p=3,4 the string loop correction diverge. We identify the massless closed string fields responsible for these divergencies and regularise the partition function using a Fischler-Susskind mechanism.

  6. Suppression and enhancement of transcriptional noise by DNA looping

    E-Print Network [OSTI]

    Jose M. G. Vilar; Leonor Saiz

    2014-06-11T23:59:59.000Z

    DNA looping has been observed to enhance and suppress transcriptional noise but it is uncertain which of these two opposite effects is to be expected for given conditions. Here, we derive analytical expressions for the main quantifiers of transcriptional noise in terms of the molecular parameters and elucidate the role of DNA looping. Our results rationalize paradoxical experimental observations and provide the first quantitative explanation of landmark individual-cell measurements at the single molecule level on the classical lac operon genetic system [Choi et al., Science 322, 442-446 (2008)].

  7. A Novel Strange Attractor with a Stretched Loop

    E-Print Network [OSTI]

    Safieddine Bouali

    2012-03-30T23:59:59.000Z

    The paper introduces a new 3D strange attractor topologically different from any other known chaotic attractors. The intentionally constructed model of three autonomous first-order differential equations derives from the coupling-induced complexity of the well-known Lotka-Volterra oscillator. The chaotic attractor exhibiting a double scroll bridged by a loop mutates to a single scroll with a very stretched loop by the variation of one parameter. Analysis of the global behavior of the new low dimensional dissipative dynamical model and its range of periodic and a-periodic oscillations are presented.

  8. LOCA with consequential or delayed LOOP accidents: Unique issues, plant vulnerability, and CDF contributions

    SciTech Connect (OSTI)

    Martinez-Guridi, G.; Samanta, P.; Chu, L.; Yang, J.

    1998-08-01T23:59:59.000Z

    A loss-of-coolant accident (LOCA) can cause a loss-of-offsite power (LOOP) wherein the LOOP is usually delayed by few seconds or longer. Such an accident is called LOCA with consequential LOOP, or LOCA with delayed LOOP (here, abbreviated as LOCA/LOOP). This paper analyzes the unique conditions that are associated with a LOCA/LOOP, presents a model, and quantifies its contribution to core damage frequency (CDF). The results show that the CDF contribution can be a dominant contributor to risk for certain plant designs, although boiling water reactors (BWRs) are less vulnerable than pressurized water reactors (PWRs).

  9. GRACE at ONE-LOOP: Automatic calculation of 1-loop diagrams in the electroweak theory with gauge parameter independence checks

    E-Print Network [OSTI]

    G. Belanger; F. Boudjema; J. Fujimoto; T. Ishikawa; T. Kaneko; K. Kato; Y. Shimizu

    2006-04-18T23:59:59.000Z

    We describe the main building blocks of a generic automated package for the calculation of Feynman diagrams. These blocks include the generation and creation of a model file, the graph generation, the symbolic calculation at an intermediate level of the Dirac and tensor algebra, implementation of the loop integrals, the generation of the matrix elements or helicity amplitudes, methods for the phase space integrations and eventually the event generation. The report focuses on the fully automated systems for the calculation of physical processes based on the experience in developing GRACE-loop. As such, a detailed description of the renormalisation procedure in the Standard Model is given emphasizing the central role played by the non-linear gauge fixing conditions for the construction of such automated codes. The need for such gauges is better appreciated when it comes to devising efficient and powerful algorithms for the reduction of the tensorial structures of the loop integrals. A new technique for these reduction algorithms is described. Explicit formulae for all two-point functions in a generalised non-linear gauge are given, together with the complete set of counterterms. We also show how infrared divergences are dealt with in the system. We give a comprehensive presentation of some systematic test-runs which have been performed at the one-loop level for a wide variety of two-to-two processes to show the validity of the gauge check. These cover fermion-fermion scattering, gauge boson scattering into fermions, gauge bosons and Higgs bosons scattering processes. Comparisons with existing results on some one-loop computation in the Standard Model show excellent agreement. We also briefly recount some recent development concerning the calculation of mutli-leg one-loop corrections.

  10. Automation of Multi-leg One-loop virtual Amplitudes

    E-Print Network [OSTI]

    D. Maitre

    2010-06-29T23:59:59.000Z

    In the last few years, much progress has been made in the computation of one-loop virtual matrix elements for processes involving many external particles. In this contribution the methods that have enabled this recent progress are briefly reviewed with a focus on their computing and automation aspects.

  11. The long wavelength limit of hard thermal loop effective actions

    E-Print Network [OSTI]

    F T Brandt; J Frenkel; J C Taylor

    2009-01-22T23:59:59.000Z

    We derive a closed form expression for the long wavelength limit of the effective action for hard thermal loops in an external gravitational field. It is a function of the metric, independent of time derivatives. It is compared and contrasted with the static limit, and with the corresponding limits in an external Yang-Mills field.

  12. Combined Loop Transformation and Hierarchy Allocation for Data Reuse Optimization

    E-Print Network [OSTI]

    Cong, Jason "Jingsheng"

    transformation framework was established based on parametric integer linear programming [6-8]. Data dependenceCombined Loop Transformation and Hierarchy Allocation for Data Reuse Optimization Jason Cong, Peng Zhang, Yi Zou Computer Science Department University of California, Los Angeles Los Angeles, CA 90095

  13. 5-loop Konishi from linearized TBA and the XXX magnet

    E-Print Network [OSTI]

    Janos Balog; Arpad Hegedus

    2010-06-08T23:59:59.000Z

    Using the linearized TBA equations recently obtained in [arXiv:1002.1711] we show analytically that the 5-loop anomalous dimension of the Konishi operator agrees with the result obtained previously from the generalized Luscher formulae. The proof is based on the relation between this linear system and the XXX model TBA equations.

  14. An evaluation of inductance loop detectors for speed measurement accuracy

    E-Print Network [OSTI]

    Cronin, Brian Patrick

    1994-01-01T23:59:59.000Z

    . The lag time from the presence of a vehicle at an inductance loop to the actual detection of a vehicle varies. As the lag time varies so does the accuracy of speed measurement. Vehicle size, vehicle speed, detector type, detector sensitivity...

  15. A Radiation Tolerant Phase Locked Loop Design for Digital Electronics

    E-Print Network [OSTI]

    Kumar, Rajesh

    2011-10-21T23:59:59.000Z

    significantly to the chip level Soft Error Rate (SER). The on-chip Phase Locked Loop (PLL) is particularly vulnerable to radiation strikes. In this thesis, we present a radiation hardened PLL design. Each of the components of this design-the voltage controlled...

  16. Closed-Loop Energy Management Control of Large Industrial Facilities 

    E-Print Network [OSTI]

    Childress, R. L.

    2002-01-01T23:59:59.000Z

    providing steam to the process. A Sell Advisor calculates Make-Buy decisions based on real-time electrical prices, fuel prices and boiler loads. Condensing turbines are coordinated with closed-loop control to provide the lowest energy cost to the plant. When...

  17. Closed-Loop Energy Management Control of Large Industrial Facilities

    E-Print Network [OSTI]

    Childress, R. L.

    A case study is presented of a closed-loop control system installed and running at a Pulp and Paper facility in the southeast. A fuzzy logic, ruled-based control system optimally loads multiple steam turbines for maximum electrical generation, while...

  18. Sagnac Interference in Carbon Nanotube Loops Gil Refael,1

    E-Print Network [OSTI]

    Bockrath, Marc

    loops. The conductance as a function of the applied voltage is shown to oscillate due to interference. The period of these oscillations with respect to the gate voltage, as well as the temperatures required calculate interaction effects on the period of the oscillations, and show that even though interactions

  19. MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE

    E-Print Network [OSTI]

    MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMP SYSTEMS By CENK SOURCE HEAT PUMP SYSTEMS Thesis Approved: ___________________________________________ Thesis Adviser scale test data. The short-term behavior of ground-coupled heat pump systems is important for the design

  20. A Loop Material Flow System Design for Automated Guided Vehicles

    E-Print Network [OSTI]

    Dessouky, Maged

    A Loop Material Flow System Design for Automated Guided Vehicles Ardavan Asef-Vaziri 1 Maged load automated guided vehicles. The model simultaneously determines both the design are attributed to material handling (Tompkins et al., 1996). Automated guided vehicles (AGVs) are among

  1. ORIGINAL ARTICLE Comparative genomics-guided loop-mediated isothermal

    E-Print Network [OSTI]

    Hsiang, Tom

    ORIGINAL ARTICLE Comparative genomics-guided loop-mediated isothermal amplification sequencing and analytical techniques, genomic sequence data of prok- aryotes are accumulating at a very rapid pace. As of October 2008, there are 873 complete and pub- lished genome sequences, as well as 2025

  2. Optimization of Industrial Applications with Hardware in the Loop

    E-Print Network [OSTI]

    Boyer, Edmond

    of industrial robots integrated in complex robot cells. Trajectory optimizers are usually based on models and with changes of the robot task. Index Terms Industrial robotics, Trajectory optimization, Derivative free with Hardware in the Loop I. INTRODUCTION To reduce production costs, industrial robots must work as fast

  3. Conformal Behavior at Four Loops and Scheme (In)Dependence

    E-Print Network [OSTI]

    Thomas A. Ryttov

    2014-10-01T23:59:59.000Z

    We search for infrared zeros of the beta function and evaluate the anomalous dimension of the mass at the associated fixed point for asymptotically free vector-like fermionic gauge theories with gauge group SU(N). The fixed points of the beta function are studied at the two, three and four loop level in two different explicit schemes. These are the modified regularization invariant, RI', scheme and the minimal momentum subtraction, mMOM, scheme. The search is performed in Landau gauge where the beta function of the gauge parameter vanishes. We then compare our findings to earlier identical investigations performed in the modified minimal subtraction, $\\bar{\\text{MS}}$, scheme. It is found that the value of the anomalous dimension of the mass is smaller at three and four loops than at two loops. This seems to be a generic pattern that is observed in all three different schemes. We then estimate the value of the anomalous dimension to be $\\gamma \\sim 0.225-0.375$ for twelve fundamental flavors and three colors, $\\gamma \\sim 0.500 - 0.593$ for two adjoint flavors and two colors and finally $\\gamma \\sim 1.12-1.70$ for two two-indexed flavors and three colors with the lower and upper bound set by the minimum and maximum value respectively over all three schemes and at three and four loops. Our analysis suggests that the former two theories lie in the conformal window while the latter belongs to the chirally broken phase.

  4. On the q-quantum gravity loop algebra

    E-Print Network [OSTI]

    Seth Major

    2008-02-19T23:59:59.000Z

    A class of deformations of the q-quantum gravity loop algebra is shown to be incompatible with the combinatorics of Temperley-Lieb recoupling theory with deformation parameter at a root of unity. This incompatibility appears to extend to more general deformation parameters.

  5. A new closed loop control method for HVDC transmission

    SciTech Connect (OSTI)

    Karlecik-Maier, F. [Siemens AG, Erlangen (Germany)] [Siemens AG, Erlangen (Germany)

    1996-10-01T23:59:59.000Z

    The paper presents a new closed loop control method which uses information locally available at each converter station and combines and coordinates control possibilities with the objective of improving the dynamic behavior during fault recoveries and disturbances around the operating points.

  6. Three-loop free energy for pure gauge QCD

    SciTech Connect (OSTI)

    Arnold, P.; Zhai, C. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1994-12-15T23:59:59.000Z

    We compute the free energy density for pure non-Abelian gauge theory at high temperature and zero chemical potential. The three-loop result to [ital O]([ital g][sup 4]) is [ital F]=[ital d][sub [ital A

  7. Waste Heat Recovery Using a Circulating Heat Medium Loop

    E-Print Network [OSTI]

    Manning, E., Jr.

    1981-01-01T23:59:59.000Z

    by a circulating heat medium loop where waste heat is recovered for useful purposes. The heat medium chosen is turbine fuel. It is pumped around the refinery to pick up heat at the crude distilling unit, the hydrocracker, the catalytic cracker...

  8. Closed-loop real-time control on distributed networks

    E-Print Network [OSTI]

    Ambike, Ajit Dilip

    2004-11-15T23:59:59.000Z

    This thesis is an e?ort to develop closed-loop control strategies on computer networks and study their stability in the presence of network delays and packet losses. An algorithm using predictors was designed to ensure the system stability...

  9. PHYSICAL PROPERTIES OF COOLING PLASMA IN QUIESCENT ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Landi, E. [Artep, Inc. at Naval Research Laboratory, 4555 Overlook Ave. S.W., 20375-5320, Washington DC (United States); Miralles, M. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-50, Cambridge, MA 02138 (United States); Curdt, W. [Max Planck Institut fuer Sonnensystemforschung, Max Planck Strasse 2, Katlenburg-Lindau 37191 (Germany); Hara, H. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2009-04-10T23:59:59.000Z

    In the present work, we use SOHO/SUMER, SOHO/UVCS, SOHO/EIT, SOHO/LASCO, STEREO/EUVI, and Hinode/EIS coordinated observations of an active region (AR 10989) at the west limb taken on 2008 April 8 to study the cooling of coronal loops. The cooling plasma is identified using the intensities of SUMER spectral lines emitted at temperatures in the 4.15 {<=} log T {<=} 5.45 range. EIS and SUMER spectral observations are used to measure the physical properties of the loops. We found that before cooling took place these loops were filled with coronal hole-like plasma, with temperatures in the 5.6 {<=} log T {<=} 5.9 range. SUMER spectra also allowed us to determine the plasma temperature, density, emission measure, element abundances, and dynamic status during the cooling process. The ability of EUVI to observe the emitting region from a different direction allowed us to measure the volume of the emitting region and estimate its emission measure. Comparison with values measured from line intensities provided us with an estimate of the filling factor. UVCS observations of the coronal emission above the active region showed no streamer structure associated with AR 10989 at position angles between 242{sup 0}and 253.{sup 0} EIT, LASCO, and EUVI-A narrowband images and UVCS spectral observations were used to discriminate between different scenarios and monitor the behavior of the active region in time. The present study provides the first detailed measurements of the physical properties of cooling loops, a very important benchmark for theoretical models of loop cooling and condensation.

  10. Possible Regulatory Role for the Histidine-Rich Loop in the Zinc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulatory Role for the Histidine-Rich Loop in the Zinc Transport Protein, ZnuA. Possible Regulatory Role for the Histidine-Rich Loop in the Zinc Transport Protein, ZnuA. Abstract:...

  11. Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7.10 -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Nio Geek-Up08.27.10 -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Nio...

  12. High Performance Loop Filter Design for Continuous-time Sigma-delta ADC

    E-Print Network [OSTI]

    Gui, Fan

    2014-11-12T23:59:59.000Z

    Continuous-time (CT) sigma-delta (??) analog-to-digital converters (ADCs) are widely used in wireless transceiver. Loop filter becomes a critical component in the implementation of high resolution large bandwidth CT ?? ADC because it determines loop...

  13. Development of a Water Loop Simulation at the Texas A&M University Main Campus

    E-Print Network [OSTI]

    Xue, H.; Deng, S.; Claridge, D. E.; Liu, M.

    2000-01-01T23:59:59.000Z

    A computer simulation model is an economic and convenient tool to perform analysis of chilled water loop. The primary objective of this paper is developing procedure for simulating and optimizing chilled water loop with computer simulation model. A...

  14. P a g e | 1 Why can wind delay the shedding of Loop Current eddies?1

    E-Print Network [OSTI]

    a g e | 4 intrudes northward into the Gulf along the Campeche Bank's eastern shelfbreak, and loops44

  15. Running of $?_s$ in the MSSM with three-loop accuracy

    E-Print Network [OSTI]

    Luminita Mihaila

    2007-10-11T23:59:59.000Z

    The evolution of the strong coupling constant $\\alpha_s$ from $M_Z$ to the GUT scale is presented, involving three-loop running and two-loop decoupling. Accordingly, the two-loop transition from the $\\bar{\\rm MS}$ to the $\\bar{\\rm DR}$ scheme is properly taken into account. We find that the three-loop effects are comparable to the experimental uncertainty for $\\alpha_s$.

  16. RELAP-7: Demonstrating the integration of two-phase flow components for an ideal BWR loop

    SciTech Connect (OSTI)

    Hongbin Zhang; Haihua Zhao; Ling Zou; David Andrs; John Peterson; Ray Berry; Richard Martineua

    2013-06-01T23:59:59.000Z

    This is DOE Level 3 milestone report documenting RELAP-7's capability to simulate an ideal BWR loop.

  17. Closed-Loop Compensation Method for Oscillations Caused by Control Valve Stiction

    E-Print Network [OSTI]

    Wang, Jiandong

    Closed-Loop Compensation Method for Oscillations Caused by Control Valve Stiction Jiandong Wang-loop compensation method to remove oscillations caused by control valve stiction. With the control loop operating movements for the control valve to arrive at a desired position. A systematic way to design the parameters

  18. The Distribution of Loop Lengths in Graphical Models for Turbo Decoding

    E-Print Network [OSTI]

    Smyth, Padhraic

    1 The Distribution of Loop Lengths in Graphical Models for Turbo Decoding Xianping Ge, David model for a K = 6, N = 12, rate 1=2 turbo code. Abstract| This paper analyzes the distribution of loop lengths in graphical models for turbo decoding. The prop- erties of such loops are of signi#12;cant

  19. On the Blue Loops of Intermediate-Mass Stars

    E-Print Network [OSTI]

    Walmswell, J J; Eldridge, J J

    2015-01-01T23:59:59.000Z

    We consider the blue loops in the Hertzsprung-Russell diagram that occur when intermediate-mass stars begin core helium burning. It has long been known that the excess of helium above the burning shell, the result of the contraction of the convective core during core hydrogen burning, has the effect of making such stars redder and larger than they would be otherwise. The outward motion of the burning shell in mass removes this excess and triggers the loop. Hitherto nobody has attempted to demonstrate why the excess helium has this effect. We consider the effect of the local opacity, which is reduced by excess helium, the shell fuel supply, which is also reduced, and the local mean molecular weight, which is increased. We demonstrate that the mean molecular weight is the decisive reddening factor. The opacity has a much smaller effect and a reduced fuel supply actually favours blueward motion.

  20. Closed-loop guided directional drilling: Fundamentals, concepts and simulations

    SciTech Connect (OSTI)

    Heisig, G.; Oppelt, J. [Baker Hughes INTEQ GmbH, Celle (Germany); Neubert, M. [Technical Univ. Braunschweig (Germany); Donati, F. [Agip S.p.A., Milan (Italy)

    1996-09-01T23:59:59.000Z

    This paper introduces the fundamentals of directional drilling with a closed-loop control. In the discussion of different signal flow concepts a surface controlled system is identified as the original approach to automatic directional drilling. The success of the directional drilling operation depends on the proper layout of the controller in the control loop. A control method is introduced which anticipates direction changes on the planned path. The algorithm is tested by applying computer simulation techniques. The simulator is based on a mathematical model of a directional drilling system with an adjustable stabilizer. Coupling this model with a rock/bit interaction model yields a non-linear differential equation system for the drilling trajectory. The equations can be solved numerically. The simulation results prove the importance of anticipation in the control algorithm.

  1. Heliostat System with Wireless Closed-Loop Control

    Broader source: Energy.gov [DOE]

    This fact sheet summarizes a SunShot Initiative project led by Thermata to develop and demonstrate the first practical heliostat to use closed-loop tracking that can optically sense and control the reflected sunlight beam at the target. The expected benefits of this system include the reduction in the total installed cost of the heliostat field in a power tower concentrating solar power project.

  2. Longitudinal magnetohydrodynamics oscillations in dissipative, cooling coronal loops

    SciTech Connect (OSTI)

    Al-Ghafri, K. S.; Ruderman, M. S.; Williamson, A.; Erdélyi, R., E-mail: app08ksa@sheffield.ac.uk, E-mail: m.s.ruderman@sheffield.ac.uk, E-mail: app09aw@sheffield.ac.uk, E-mail: robertus@sheffield.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2014-05-01T23:59:59.000Z

    This paper investigates the effect of cooling on standing slow magnetosonic waves in coronal magnetic loops. The damping mechanism taken into account is thermal conduction that is a viable candidate for dissipation of slow magnetosonic waves in coronal loops. In contrast to earlier studies, here we assume that the characteristic damping time due to thermal conduction is not small, but arbitrary, and can be of the order of the oscillation period, i.e., a temporally varying plasma is considered. The approximation of low-beta plasma enables us to neglect the magnetic field perturbation when studying longitudinal waves and consider, instead, a one-dimensional motion that allows a reliable first insight into the problem. The background plasma temperature is assumed to be decaying exponentially with time, with the characteristic cooling timescale much larger than the oscillation period. This assumption enables us to use the WKB method to study the evolution of the oscillation amplitude analytically. Using this method we obtain the equation governing the oscillation amplitude. The analytical expressions determining the wave properties are evaluated numerically to investigate the evolution of the oscillation frequency and amplitude with time. The results show that the oscillation period increases with time due to the effect of plasma cooling. The plasma cooling also amplifies the amplitude of oscillations in relatively cool coronal loops, whereas, for very hot coronal loop oscillations the damping rate is enhanced by the cooling. We find that the critical point for which the amplification becomes dominant over the damping is in the region of 4 MK. These theoretical results may serve as impetus for developing the tools of solar magneto-seismology in dynamic plasmas.

  3. "Closed-loop" analysis of a thermo-charged capacitor

    E-Print Network [OSTI]

    Germano D'Abramo

    2014-05-02T23:59:59.000Z

    In this Letter, an explicit application of conservation of energy and zero net work principle around a closed path ("closed-loop" analysis) is carried out on a thermo-charged capacitor at equilibrium with ambient heat at uniform temperature. This analysis corroborates the results of previous studies [Phys.Lett.A 374 (2010) 1801, Physica A 390 (2011) 481] that a potential drop $\\Delta V$ does actually occur at capacitor terminals.

  4. Closed-loop air cooling system for a turbine engine

    DOE Patents [OSTI]

    North, William Edward (Winter Springs, FL)

    2000-01-01T23:59:59.000Z

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  5. A Cluster Bootstrap for Two-Loop MHV Amplitudes

    E-Print Network [OSTI]

    John Golden; Marcus Spradlin

    2015-01-17T23:59:59.000Z

    We apply a bootstrap procedure to two-loop MHV amplitudes in planar N=4 super-Yang-Mills theory. We argue that the mathematically most complicated part (the $\\Lambda^2 B_2$ coproduct component) of the n-particle amplitude is uniquely determined by a simple cluster algebra property together with a few physical constraints (dihedral symmetry, analytic structure, supersymmetry, and well-defined collinear limits). We present a concise, closed-form expression which manifests these properties for all n.

  6. Effects of Sequence Disorder on DNA Looping and Cyclization

    E-Print Network [OSTI]

    Yuri O. Popov; Alexei V. Tkachenko

    2007-06-08T23:59:59.000Z

    Effects of sequence disorder on looping and cyclization of the double-stranded DNA are studied theoretically. Both random intrinsic curvature and inhomogeneous bending rigidity are found to result in a remarkably wide distribution of cyclization probabilities. For short DNA segments, the range of the distribution reaches several orders of magnitude for even completely random sequences. The ensemble averaged values of the cyclization probability are also calculated, and the connection to the recent experiments is discussed.

  7. Visualisations of coherent centre domains in local Polyakov loops

    E-Print Network [OSTI]

    Finn M. Stokes; Waseem Kamleh; Derek B. Leinweber

    2014-06-12T23:59:59.000Z

    Quantum Chromodynamics exhibits a hadronic confined phase at low to moderate temperatures and, at a critical temperature $T_C$, undergoes a transition to a deconfined phase known as the quark-gluon plasma. The nature of this deconfinement phase transition is probed through visualizations of the Polyakov loop, a gauge independent order parameter. We produce visualizations that provide novel insights into the structure and evolution of center clusters. Using the HMC algorithm the percolation during the deconfinement transition is observed. Using 3D rendering of the phase and magnitude of the Polyakov loop, the fractal structure and correlations are examined. The evolution of the center clusters as the gauge fields thermalize from below the critical temperature to above it are also exposed. We observe deconfinement proceeding through a competition for the dominance of a particular center phase. We use stout-link smearing to remove small-scale noise in order to observe the large-scale evolution of the center clusters. A correlation between the magnitude of the Polyakov loop and the proximity of its phase to one of the center phases of SU(3) is evident in the visualizations.

  8. Asymmetric Ejecta Distribution of the Cygnus Loop revealed with Suzaku

    E-Print Network [OSTI]

    S. Katsuda; H. Tsunemi; E. Miyata; K. Mori; M. Namiki; N. Nemes; E. D. Miller

    2008-03-03T23:59:59.000Z

    We observed a linearly sliced area of the Cygnus Loop from the north-east to the south-west with Suzaku in seven pointings. After dividing the entire fields of view (FOV) into 119 cells, we extracted spectra from all of the cells and performed spectral analysis for them. We then applied both one- and two-component non-equilibrium ionization (NEI) models for all of the spectra, finding that almost all were significantly better fitted by the two-component NEI model rather than the one-component NEI model. Judging from the abundances, the high-kT_e component must be the ejecta component, while the low-kT_e component comes from the swept-up matter. Therefore, the ejecta turn out to be distributed inside a large area (at least our FOV) of the Cygnus Loop. We divided the entire FOV into northern and southern parts, and found that the ejecta distributions were asymmetric to the geometric center: the ejecta of Si, S, and Fe seem to be distributed more in the south than in the north of the Cygnus Loop by a factor of about 2. The degree of ejecta-asymmetry is consistent with that expected by recent supernova explosion models.

  9. Asymmetric Ejecta Distribution of the Cygnus Loop revealed with Suzaku

    E-Print Network [OSTI]

    Katsuda, S; Miyata, E; Mori, K; Namiki, M; Nemes, N; Miller, E D

    2008-01-01T23:59:59.000Z

    We observed a linearly sliced area of the Cygnus Loop from the north-east to the south-west with Suzaku in seven pointings. After dividing the entire fields of view (FOV) into 119 cells, we extracted spectra from all of the cells and performed spectral analysis for them. We then applied both one- and two-component non-equilibrium ionization (NEI) models for all of the spectra, finding that almost all were significantly better fitted by the two-component NEI model rather than the one-component NEI model. Judging from the abundances, the high-kT_e component must be the ejecta component, while the low-kT_e component comes from the swept-up matter. Therefore, the ejecta turn out to be distributed inside a large area (at least our FOV) of the Cygnus Loop. We divided the entire FOV into northern and southern parts, and found that the ejecta distributions were asymmetric to the geometric center: the ejecta of Si, S, and Fe seem to be distributed more in the south than in the north of the Cygnus Loop by a factor of a...

  10. Soft X-ray emission in flaring coronal loops

    E-Print Network [OSTI]

    Pinto, R F; Brun, A S

    2014-01-01T23:59:59.000Z

    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink unstable twisted flux-ropes provide a source of magnetic energy which can be released impulsively and account for the heating of the plasma in flares. We investigate the temporal, spectral and spatial evolution of the properties of the thermal X-ray emission produced in such kink-unstable magnetic flux-ropes using a series of MHD simulations. We deduce emission diagnostics and their temporal evolution and discuss the results of the simulations with respect to observations. The numerical setup used consists of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, compute the evolution of the plasma properties in the loop (density, temperature) and deduce the X-ray emission properties of the plasma during the whole flaring episode. During the initial phase of the instability plasma heating is mostly ...

  11. Heating and Dynamics of Two Flare Loop Systems Observed by AIA and EIS

    E-Print Network [OSTI]

    Li, Y; Ding, M D

    2013-01-01T23:59:59.000Z

    We investigate heating and evolution of flare loops in a C4.7 two-ribbon flare on 2011 February 13. From SDO/AIA imaging observations, we can identify two sets of loops. Hinode/EIS spectroscopic observations reveal blueshifts at the feet of both sets of loops. The evolution and dynamics of the two sets are quite different. The first set of loops exhibits blueshifts for about 25 minutes followed by redshifts, while the second set shows stronger blueshifts, which are maintained for about one hour. The UV 1600 observation by AIA also shows that the feet of the second set of loops brighten twice. These suggest that continuous heating may be present in the second set of loops. We use spatially resolved UV light curves to infer heating rates in the few tens of individual loops comprising the two loop systems. With these heating rates, we then compute plasma evolution in these loops with the "enthalpy-based thermal evolution of loops" (EBTEL) model. The results show that, for the first set of loops, the synthetic EU...

  12. A two length scale polymer theory for RNA loop free energies and helix stacking Daniel P. Aalberts and Nagarajan Nandagopal

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    A two length scale polymer theory for RNA loop free energies and helix stacking Daniel P. Aalberts). The reliability of RNA secondary structure predictions is subject to the accuracy of the underly- ing free energy formulation of loop free energies, particularly for multibranch loops. RNA loops contain single

  13. Simple microscope using a compound refractive lens and a wide-bandwidth thermal neutron beam

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Walker Davis McClellan Nuclear Radiation Center, Universitybeam line at McClellan Nuclear Radiation Center reactor. Thefor the McClellan Nuclear Radiation Cen- ter ?MNRC?, bay 4

  14. Thermal Neutron Computed Tomography of Soil Water and Plant Roots

    E-Print Network [OSTI]

    Leanne G. Tumlinson; Hungyuan Liu; Wendy K. Silk; Jan W. Hopmans

    2007-01-01T23:59:59.000Z

    images in the McClellan Nuclear Radiation Center tomographyPap. NCT5. McClellan Nuclear Radiation Ctr. , Univ. of1991. McClellan Nuclear Radiation Center safety analysis

  15. Optical bistability in nonlinear system with two loops of feedback

    E-Print Network [OSTI]

    George P. Miroshnichenko; Alexander I. Trifanov

    2010-11-16T23:59:59.000Z

    A model of nonlinear optical system surrounded by two loops of feedback is investigated. The cell with the vapor of rubidium - type atoms is taken in the capacity of nonlinear element. Two modes of near-resonant electromagnetic field interacting with the cell are involved in the feedback. Two-dimensional optical bistability domain in location of input field intensities is obtained and dependence of its form and magnitude from the system parameters (photon detunings, feedback factor etc.) is investigated. "Input - output" relations corresponding to different trajectories in the bistability domain are obtained. Cross-hysteresis is studied.

  16. "Closed-loop" analysis of a thermo-charged capacitor

    E-Print Network [OSTI]

    Germano D'Abramo

    2015-05-04T23:59:59.000Z

    In this Letter, an explicit application of conservation of energy and zero net work principle around a closed path ("closed-loop" analysis) is carried out on a thermo-charged capacitor at equilibrium with ambient heat at uniform temperature. This analysis corroborates the results of previous studies [Phys.Lett.A 374 (2010) 1801, Physica A 390 (2011) 481] that a potential drop $\\Delta V$ does actually occur at capacitor terminals. Finally, a conventional photoelectric emission experiment is proposed to indirectly text thermo-charged capacitor functioning.

  17. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, D.J.; Briesch, M.S.

    1998-07-21T23:59:59.000Z

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  18. Numerical investigation of closed-loop control for Hall accelerators

    SciTech Connect (OSTI)

    Barral, S.; Miedzik, J. [Institute of Plasma Physics and Laser Microfusion, 01497 Warsaw (Poland)

    2011-01-01T23:59:59.000Z

    Low frequency discharge current oscillations in Hall accelerators are conventionally damped with external inductor-capacitor (LC) or resistor-inductor-capacitor (RLC) networks. The role of such network in the stabilization of the plasma discharge is investigated with a numerical model and the potential advantages of proportional-integral-derivative (PID) closed-loop control over RLC networks are subsequently assessed using either discharge voltage or magnetic field modulation. Simulations confirm the reduction of current oscillations in the presence of a RLC network, but suggest that PID control could ensure nearly oscillation-free operation with little sensitivity toward the PID settings.

  19. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

    1998-01-01T23:59:59.000Z

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  20. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect (OSTI)

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  1. Loop Quantum Theory Applied to Biology and Nonlinear Whole Biology

    E-Print Network [OSTI]

    Yi-Fang Chang

    2008-01-02T23:59:59.000Z

    The loop quantum theory, which constitutes a very small discontinuous space, as new method is applied to biology. The model of protein folding and lungs is proposed. In the model, some known results are used, and four approximate conclusions are obtained: their structures are quantized, their space regions are finite, various singularities correspond to folding and crossed points, and different types of catastrophe exist. Further, based on the inseparability and correlativity of the biological systems, the nonlinear whole biology is proposed, and four basic hypotheses are formed. It may unify reductionism and holism, structuralism and functionalism. Finally, the medical meaning of the theory is discussed briefly.

  2. System having unmodulated flux locked loop for measuring magnetic fields

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Blue Springs, MO)

    2006-08-15T23:59:59.000Z

    A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.

  3. Study of a third order phase-lock loop 

    E-Print Network [OSTI]

    Moore, Jack Masters

    1967-01-01T23:59:59.000Z

    'aboratory sys- tem. 43 18 Final diagram of loop filter used in the laboratory system. 43 Vi Figure No. Page B ? 1 Ana1og computer response to step change in frequency of 0. 5 radians/second. 55 Nonlinear system response to a step change in input... phase of 1. 0 radians. 0 ? 2 Nonlinear system response to a step change in input phase of 0. 5 radians. 58 LIST OF TABLES Table Number I NUMERICAL COMPARISON OF LINEAR AND NONLINEAR SYSTEM RESPONSE TO A STEP CHANGE IN INPUT PHASE OF 1. 0 RADIANS...

  4. Spectral indices of Galactic radio loops between 1420, 820 and 408 MHz

    E-Print Network [OSTI]

    V. Borka

    2007-02-10T23:59:59.000Z

    In this paper the average brightness temperatures and surface brightnesses at 1420, 820 and 408 MHz of the six main Galactic radio-continuum loops are derived, as are their radio spectral indices. The temperatures and surface brightnesses of the radio loops are computed using data taken from radio continuum surveys at 1420, 820 and 408 MHz. We have demonstrated the reality of Loops V and VI and present diagrams of their spectra for the first time. We derived the radio spectral indices of Galactic radio loops from radio surveys at three frequencies (1420, 820 and 408 MHz) and confirm them to be non-thermal sources. Diameters and distances of Loops I-VI were also calculated. The results obtained are in good agreement with current theories of supernova remnant (SNR) evolution and suggest that radio loops may have a SNR origin.

  5. Fusion rules and macroscopic loops from discretized approach to two-dimensional gravity

    E-Print Network [OSTI]

    Masahiro Anazawa

    1997-04-04T23:59:59.000Z

    We investigate the multi-loop correlators and the multi-point functions for all of the scaling operators in unitary minimal conformal models coupled to two-dimensional gravity from the two-matrix model. We show that simple fusion rules for these scaling operators exist, and these are summarized in a compact form as fusion rules for loops. We clarify the role of the boundary operators and discuss its connection to how loops touch each other. We derive a general formula for the n-resolvent correlators, and point out the structure similar to the crossing symmetry of underlying conformal field theory. We discuss the connection of the boundary conditions of the loop correlators to the touching of loops for the case of the four-loop correlators.

  6. OBSERVATIONS OF PLASMA UPFLOW IN A WARM LOOP WITH HINODE/EIS

    SciTech Connect (OSTI)

    Tripathi, Durgesh [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Mason, Helen E.; Del Zanna, Giulio [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Bradshaw, Steven [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2012-07-20T23:59:59.000Z

    A complete understanding of Doppler shift in active region loops can help probe the basic physical mechanism involved into the heating of those loops. Here, we present observations of upflows in coronal loops detected in a range of temperatures (log T = 5.8-6.2). The loop was not discernible above these temperatures. The speed of upflow was strongest at the footpoint and decreased with height. The upflow speed at the footpoint was about 20 km s{sup -1} in Fe VIII, which decreased with temperature, being about 13 km s{sup -1} in Fe X, about 8 km s{sup -1} in Fe XII, and about 4 km s{sup -1} in Fe XIII. To the best of our knowledge, this is the first observation providing evidence of upflow of plasma in coronal loop structures at these temperatures. We interpret these observations as evidence of chromospheric evaporation in quasi-static coronal loops.

  7. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01T23:59:59.000Z

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  8. Environmental Impact on the Southeast Limb of the Cygnus Loop

    E-Print Network [OSTI]

    N. A. Levenson; James R. Graham

    2004-12-17T23:59:59.000Z

    We analyze observations from the Chandra X-ray Observatory of the southeast knot of the Cygnus Loop supernova remnant. In this region, the blast wave propagates through an inhomogeneous environment. Extrinsic differences and subsequent multiple projections along the line of sight rather than intrinsic shock variations, such as fluid instabilities, account for the apparent complexity of the images. Interactions between the supernova blast wave and density enhancements of a large interstellar cloud can produce the morphological and spectral characteristics. Most of the X-ray flux arises in such interactions, not in the diffuse interior of the supernova remnant. Additional observations at optical and radio wavelengths support this account of the existing interstellar medium and its role in shaping the Cygnus Loop, and they demonstrate that the southeast knot is not a small cloud that the blast wave has engulfed. These data are consistent with rapid equilibration of electron and ion temperatures behind the shock front, and the current blast wave velocity v_{bw} approx 330 km/s. Most of this area does not show strong evidence for non-equilibrium ionization conditions, which may be a consequence of the high densities of the bright emission regions.

  9. Supervisory control of a pilot-scale cooling loop

    SciTech Connect (OSTI)

    Kris Villez; Venkat Venkatasubramanian; Humberto Garcia

    2011-08-01T23:59:59.000Z

    We combine a previously developed strategy for Fault Detection and Identification (FDI) with a supervisory controller in closed loop. The combined method is applied to a model of a pilot-scale cooling loop of a nuclear plant, which includes Kalman filters and a model-based predictive controller as part of normal operation. The system has two valves available for flow control meaning that some redundancy is available. The FDI method is based on likelihood ratios for different fault scenarios which in turn are derived from the application of the Kalman filter. A previously introduced extension of the FDI method is used here to enable detection and identification of non-linear faults like stuck valve problems and proper accounting of the time of fault introduction. The supervisory control system is designed so to take different kinds of actions depending on the status of the fault diagnosis task and on the type of identified fault once diagnosis is complete. Some faults, like sensor bias and drift, are parametric in nature and can be adjusted without need for reconfiguration of the regulatory control system. Other faults, like a stuck valve problem, require reconfiguration of the regulatory control system. The whole strategy is demonstrated for several scenarios.

  10. Matter Bounce Loop Quantum Cosmology from $F(R)$ Gravity

    E-Print Network [OSTI]

    S. D. Odintsov; V. K. Oikonomou

    2014-12-04T23:59:59.000Z

    Using the reconstruction method, we investigate which $F(R)$ theories, with or without the presence of matter fluids, can produce the matter bounce scenario of holonomy corrected Loop Quantum Cosmology. We focus our study in two limits of the cosmic time, the large cosmic time limit and the small cosmic time limit. For the former, we found that, in the presence of non-interacting and non-relativistic matter, the $F(R)$ gravity that reproduces the late time limit of the matter bounce solution is actually the Einstein-Hilbert gravity plus a power law term. In the early time limit, since it corresponds to large spacetime curvatures, assuming that the Jordan frame is described by a general metric that when it is conformally transformed to the Einstein frame, produces an accelerating Friedmann-Robertson-Walker metric, we found explicitly the scalar field dependence on time. After demonstrating that the solution in the Einstein frame is indeed accelerating, we calculate the spectral index derived from the Einstein frame scalar-tensor counterpart theory of the $F(R)$ theory and compare it with the Planck experiment data. In order to implement the resulting picture, we embed the $F(R)$ gravity explicitly in a Loop Quantum Cosmology framework by introducing holonomy corrections to the $F(R)$ gravity. In this way, the resulting inflation picture corresponding to the $F(R)$ gravity can be corrected in order it coincides to some extent with the current experimental data.

  11. Flux formulation of loop quantum gravity: Classical framework

    E-Print Network [OSTI]

    Bianca Dittrich; Marc Geiller

    2014-12-11T23:59:59.000Z

    We recently introduced a new representation for loop quantum gravity, which is based on the BF vacuum and is in this sense much nearer to the spirit of spin foam dynamics. In the present paper we lay out the classical framework underlying this new formulation. The central objects in our construction are the so-called integrated fluxes, which are defined as the integral of the electric field variable over surfaces of codimension one, and related in turn to Wilson surface operators. These integrated flux observables will play an important role in the coarse graining of states in loop quantum gravity, and can be used to encode in this context the notion of curvature-induced torsion. We furthermore define a continuum phase space as the modified projective limit of a family of discrete phase spaces based on triangulations. This continuum phase space yields a continuum (holonomy-flux) algebra of observables. We show that the corresponding Poisson algebra is closed by computing the Poisson brackets between the integrated fluxes, which have the novel property of being allowed to intersect each other.

  12. Dry dilution refrigerator with 4He-1K-loop

    E-Print Network [OSTI]

    Uhlig, Kurt

    2014-01-01T23:59:59.000Z

    In this article we summarize experimental work on cryogen-free 3He/4He dilution refrigerators which, in addition to the dilution refrigeration circuit, are equipped with a 4He-1K-stage. This type of DR becomes worth considering when high cooling capacities are needed at T ~ 1 K to cool cold amplifiers and heat sink cables. In our application, the motivation for the construction of this type of cryostat was to do experiments on superconducting quantum circuits for quantum information technology and quantum simulations. In other work, DRs with 1K-stage were proposed for astro-physical cryostats. For neutron scattering research, a top-loading cryogen-free DR with 1K-stage was built which was equipped with a standard commercial dilution refrigeration insert. Cooling powers of up to 100 mW have been reached with our 1K-stage, but higher refrigeration powers were achieved with more powerful pulse tube cryocoolers and higher 4He circulation rates in the 1K-loop. Several different versions of a 1K-loop have been test...

  13. Testing Loop Quantum Gravity and Electromagnetic Dark Energy in Superconductors

    E-Print Network [OSTI]

    Clovis Jacinto de Matos

    2009-08-06T23:59:59.000Z

    In 1989 Cabrera and Tate reported an anomalous excess of mass of the Cooper pairs in rotating thin Niobium rings. So far, this experimental result never received a proper theoretical explanation in the context of superconductor's physics. In the present work we argue that what Cabrera and Tate interpreted as an anomalous excess of mass can also be associated with a deviation from the classical gravitomagnetic Larmor theorem due to the presence of dark energy in the superconductor, as well as with the discrete structure of the area of the superconducting Niobium ring as predicted by Loop Quantum Gravity. From Cabrera and Tate measurements we deduce that the quantization of spacetime in superconducting circular rings occurs at the Planck-Einstein scale $l_{PE} = (\\hbar G/c^3 \\Lambda)^{1/4}\\sim 3.77\\times 10 ^{-5} m$, instead of the Planck scale $l_{P} =(\\hbar G / c^3)^{1/2}=1.61 \\times 10 ^{-35} m$, with an Immirzi parameter which depends on the specific critical temperature of the superconducting material and on the area of the ring. The stephan-Boltzmann law for quantized areas delimited by superconducting rings is predicted, and an experimental concept based on the electromagnetic black-body radiation emitted by this surfaces, is proposed to test loop quantum gravity and electromagnetic dark energy in superconductors.

  14. Dry Dilution Refrigerator with He-4 Precool Loop

    E-Print Network [OSTI]

    Uhlig, K

    2014-01-01T23:59:59.000Z

    He-3/He-4 dilution refrigerators (DR) are very common in sub-Kelvin temperature research. We describe a pulse tube precooled DR where a separate He-4 circuit condenses the He-3 of the dilution loop. Whereas in our previous work the dilution circuit and the He-4 circuit were separate, we show how the two circuits can be combined. Originally, the He-4 loop with a base temperature of ~ 1 K was installed to make an additional cooling power of up to 100 mW available to cool cold amplifiers and electrical lines. In the new design, the dilution circuit is run through a heat exchanger in the vessel of the He-4 circuit so that the condensation of the He-3 stream of the DR is done by the He-4 stage. A much reduced condensation time (factor of 2) of the He-3/He-4 gas mixture at the beginning of an experiment is achieved. A compressor is no longer needed with the DR as the condensation pressure remains below atmospheric pressure at all times; thus the risk of losing expensive He-3 gas is small. The performance of the DR ...

  15. Fuzzy bags, Polyakov loop and gauge/string duality

    E-Print Network [OSTI]

    Fen Zuo

    2014-09-10T23:59:59.000Z

    Confinement in SU($N$) gauge theory is due to the linear potential between colored objects. At short distances, the linear contribution could be considered as the quadratic correction to the leading Coulomb term. Recent lattice data show that such quadratic corrections also appear in the deconfined phase, in both the thermal quantities and the Polyakov loop. These contributions are studied systematically employing the gauge/string duality. "Confinement" in ${\\mathcal N}=4$ SU($N$) Super Yang-Mills (SYM) theory could be achieved kinematically when the theory is defined on a compact space manifold. In the large-$N$ limit, deconfinement of ${\\mathcal N}=4$ SYM on $\\mathbb{S}^3$ at strong coupling is dual to the Hawking-Page phase transition in the global Anti-de Sitter spacetime. Meantime, all the thermal quantities and the Polyakov loop achieve significant quadratic contributions. Similar results can also be obtained at weak coupling. However, when confinement is induced dynamically through the local dilaton field in the gravity-dilaton system, these contributions can not be generated consistently. This is in accordance with the fact that there is no dimension-2 gauge-invariant operator in the boundary gauge theory. Based on these results, we suspect that quadratic corrections, and also confinement, should be due to global or non-local effects in the bulk spacetime.

  16. Simulations of magnetic hysteresis loops at high temperatures

    SciTech Connect (OSTI)

    Plumer, M. L.; Whitehead, J. P.; Fal, T. J. [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7 (Canada); Ek, J. van [Western Digital Corporation, San Jose, California 94588 (United States); Mercer, J. I. [Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7 (Canada)

    2014-09-28T23:59:59.000Z

    The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700 Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680 K. Our results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300 K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.

  17. THE DYNAMICS AND HEATING OF ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Doschek, G. A., E-mail: george.doschek@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2012-08-01T23:59:59.000Z

    I examine the dynamics of active regions using spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. I show the relationship between non-thermal velocities, Doppler outflows and downflows, intensities, and electron density for two representative active regions out of a group of 18 active regions examined. Results from the other active regions are summarized. Imaging spectra of these active regions were obtained from a number of different EIS raster observations. In the case of the outflows for the two representative regions, two-Gaussian fits were made to line profiles of Fe XII and Fe XIII to obtain quantitative information on high-speed components of the outflows. A three-Gaussian fit was made for the Fe XII line at {lambda}195.119. The highest speed outflows occur in weak regions adjacent to the bright loops in active regions. They are weak (less than 5% of the intensity of the main spectral component in the brightest parts of active regions) and even in the extensive flow regions they are generally less than 25% of the intensity of the main component. The outflow regions are characterized by long or open magnetic field lines and I suggest that the apparent absence of these higher speed outflows in bright regions is due to abundant stationary plasma in the closed bright loop regions that mask or overwhelm the outflow signal.

  18. Thomas L. Shaw, President LOOP LLC Before Public Meeting on the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LOOP's restart following Hurricane Katrina, a notable and measurable drop in crude oil prices in the US occurred as refineries were able to receive oil. This rapid restart...

  19. Development of Diagnostic Rules for a Dry Bulb Economizer Mixed Air Loop

    E-Print Network [OSTI]

    Underwood, D.

    1990-01-01T23:59:59.000Z

    knowledge base for a two fan variable air volume (VAV) air handling unit. Rules for the mixed air loop with a dry bulb economizer are presented....

  20. Graphical user interfaces for the McCellan Nuclear Radiation Center (MNRC)

    E-Print Network [OSTI]

    Brown-VanHoozer, S. A.; Power, Mike; Forsmann, Hope

    1998-01-01T23:59:59.000Z

    Interfaces for McClellan Nuclear Radiation Center S. AlenkaAbstract McClellan’s Nuclear Radiation Center (MNRC) control

  1. NLO evolution of 3-quark Wilson loop operator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balitsky, Ian; Grabovsky, A V

    2015-01-01T23:59:59.000Z

    It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in themore »next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. We also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.« less

  2. NLO evolution of 3-quark Wilson loop operator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balitsky, Ian [ODU, JLAB; Grabovsky, A V [Novosibirsk

    2015-01-01T23:59:59.000Z

    It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in the next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. We also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.

  3. Phenomenological aspects of heterotic orbifold models at one loop

    SciTech Connect (OSTI)

    Birkedal-Hansen, A.; Binetruy, P.; Mambrini, Y.; Nelson, B.

    2003-08-05T23:59:59.000Z

    We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon and the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly.

  4. Chimera: A hybrid approach to numerical loop quantum cosmology

    E-Print Network [OSTI]

    Diener, Peter; Singh, Parampreet

    2013-01-01T23:59:59.000Z

    The existence of a quantum bounce in isotropic spacetimes is a key result in loop quantum cosmology (LQC), which has been demonstrated to arise in all the models studied so far. In most of the models, the bounce has been studied using numerical simulations involving states which are sharply peaked and which bounce at volumes much larger than the Planck volume. An important issue is to confirm the existence of the bounce for states which have a wide spread, or which bounce closer to the Planck volume. Numerical simulations with such states demand large computational domains, making them very expensive and practically infeasible with the techniques which have been implemented so far. To overcome these difficulties, we present an efficient hybrid numerical scheme using the property that at the small spacetime curvature, the quantum Hamiltonian constraint in LQC, which is a difference equation with uniform discretization in volume, can be approximated by a Wheeler-DeWitt differential equation. By carefully choosi...

  5. Two-loop Yang-Mills diagrams from superstring amplitudes

    E-Print Network [OSTI]

    Magnea, Lorenzo; Russo, Rodolfo; Sciuto, Stefano

    2015-01-01T23:59:59.000Z

    Starting from the superstring amplitude describing interactions among D-branes with a constant world-volume field strength, we present a detailed analysis of how the open string degeneration limits reproduce the corresponding field theory Feynman diagrams. A key ingredient in the string construction is represented by the twisted (Prym) super differentials, as their periods encode the information about the background field. We provide an efficient method to calculate perturbatively the determinant of the twisted period matrix in terms of sets of super-moduli appropriate to the degeneration limits. Using this result we show that there is a precise one-to-one correspondence between the degeneration of different factors in the superstring amplitudes and one-particle irreducible Feynman diagrams capturing the gauge theory effective action at the two-loop level.

  6. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    SciTech Connect (OSTI)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01T23:59:59.000Z

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  7. Quintessence and (anti-)Chaplygin gas in loop quantum cosmology

    SciTech Connect (OSTI)

    Lamon, Raphael; Woehr, Andreas J. [Institut fuer Theoretische Physik, Universitaet Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany)

    2010-01-15T23:59:59.000Z

    The concordance model of cosmology contains several unknown components such as dark matter and dark energy. Many proposals have been made to describe them by choosing an appropriate potential for a scalar field. We study four models in the realm of loop quantum cosmology: the Chaplygin gas, an inflationary and radiationlike potential, quintessence and an anti-Chaplygin gas. For the latter we show that all trajectories start and end with a type II singularity and, depending on the initial value, may go through a bounce. On the other hand the evolution under the influence of the first three scalar fields behaves classically at times far away from the big bang singularity and bounces as the energy density approaches the critical density.

  8. NLO evolution of 3-quark Wilson loop operator

    E-Print Network [OSTI]

    I. Balitsky; A. V. Grabovsky

    2014-08-15T23:59:59.000Z

    It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in the next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. We also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.

  9. Renormalization of a two-loop neutrino mass model

    SciTech Connect (OSTI)

    Babu, K. S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States); Julio, J. [Fisika LIPI, Kompleks Puspiptek Serpong, Tangerang 15310, Indonesia and Jožef Stefan Institute, Jamova Cesta 39, 1001 Ljubljana (Slovenia)

    2014-01-01T23:59:59.000Z

    We analyze the renormalization group structure of a radiative neutrino mass model consisting of a singly charged and a doubly charged scalar fields. Small Majorana neutrino masses are generated by the exchange of these scalars via two-loop diagrams. We derive boundedness conditions for the Higgs potential and show how they can be satisfied to energies up to the Planck scale. Combining boundedness and perturbativity constraints with neutrino oscillation phenomenology, new limits on the masses and couplings of the charged scalars are derived. These in turn lead to lower limits on the branching ratios for certain lepton flavor violating (LFV) processes such as ??e?, ??3e and ? – e conversion in nuclei. Improved LFV measurements could test the model, especially in the case of inverted neutrino mass hierarchy where these are more prominent.

  10. Dry dilution refrigerator with He-4 precool loop

    SciTech Connect (OSTI)

    Uhlig, Kurt [Walther-Meissner-Institute, 85748 Garching (Germany)

    2014-01-29T23:59:59.000Z

    He-3/He-4 dilution refrigerators (DR) are very common in sub-Kelvin temperature research. We describe a pulse tube precooled DR where a separate He-4 circuit condenses the He-3 of the dilution loop. Whereas in our previous work the dilution circuit and the He-4 circuit were separate, we show how the two circuits can be combined. Originally, the He-4 loop with a base temperature of ? 1 K was installed to make an additional cooling power of up to 100 mW available to cool cold amplifiers and electrical lines. In the new design, the dilution circuit is run through a heat exchanger in the vessel of the He-4 circuit so condensation of the He-3 stream of the DR is done by the He-4 stage. A much reduced condensation time (factor of 2) of the He-3/He-4 gas mixture at the beginning of an experiment is achieved. A compressor is no longer needed with the DR as the condensation pressure remains below atmospheric pressure at all times; thus the risk of losing expensive He-3 gas is small. The performance of the DR has been improved compared to previous work: The base temperature of the mixing chamber at a small He-3 flow rate is now 4.1 mK; at the highest He-3 flow rate of 1.2 mmol/s this temperature increases to 13 mK. Mixing chamber temperatures were measured with a cerium magnesium nitrate (CMN) thermometer which was calibrated with a superconducting fixed point device.

  11. Closed loop computer control for an automatic transmission

    DOE Patents [OSTI]

    Patil, Prabhakar B. (Detroit, MI)

    1989-01-01T23:59:59.000Z

    In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determined from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.

  12. Relativistic calculation of the pion loop correlation energy in nuclear matter in a theory including confinement

    E-Print Network [OSTI]

    Boyer, Edmond

    Relativistic calculation of the pion loop correlation energy in nuclear matter in a theory of nuclear matter which contains the correlation energy. Pion loops are incorporated on top of a relativistic for the correlation energy is the Landau-Migdal parameter g governing the short-range part of the spin- isospin

  13. Individualized closed-loop control of propofol anesthesia: A preliminary study

    E-Print Network [OSTI]

    Individualized closed-loop control of propofol anesthesia: A preliminary study Kristian Soltesz a an individualized approach to closed-loop control of depth of hypnosis during propo- fol anesthesia. The novelty of the paper lies in the individualization of the controller at the end of the induction phase of anesthesia

  14. Closed-Loop Neural Control of Cursor Motion using a Kalman Filter

    E-Print Network [OSTI]

    Black, Michael J.

    Closed-Loop Neural Control of Cursor Motion using a Kalman Filter W. Wu A. Shaikhouni J. P, Providence, RI, USA Abstract-- Recently, we proposed a Kalman filter method to model the probabilistic-line, closed-loop, neural control of cursor motion using the Kalman filter. In this task a monkey moves

  15. Dynamics of interacting dark energy model in Einstein and Loop Quantum Cosmology

    E-Print Network [OSTI]

    Songbai Chen; Bin Wang; Jiliang Jing

    2008-11-10T23:59:59.000Z

    We investigate the background dynamics when dark energy is coupled to dark matter in the universe described by Einstein cosmology and Loop Quantum Cosmology. We introduce a new general form of dark sector coupling, which presents us a more complicated dynamical phase space. Differences in the phase space in obtaining the accelerated scaling attractor in Einstein cosmology and Loop Quantum Cosmology are disclosed.

  16. Two-Dimensional Dynamic Loop Scheduling Schemes for Computer Clusters Anthony T. Chronopoulos, Satish Penmatsa

    E-Print Network [OSTI]

    Chronopoulos, Anthony T.

    runs within this network of computing resources to allow for inter-process communication between the various resources by use of Message Passing Interface (MPI). Scientific applications usually consist of large loops (re- peated execution of a set of statements) inside them. These loops are one

  17. A Simple and Effective Hardware-in-the-Loop Simulation Platform for Urban Electric Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Simple and Effective Hardware-in-the-Loop Simulation Platform for Urban Electric Vehicles B-in-the-loop simulation of urban electric vehicles. The proposed platform, which is expected to be used for electric is coupled to DC machine-based load torque emulator taking into account the electric vehicle mechanics

  18. Free energy for parameterized Polyakov loops in SU(2) and SU(3) lattice gauge theory

    E-Print Network [OSTI]

    Rossak, Wilhelm R.

    Free energy for parameterized Polyakov loops in SU(2) and SU(3) lattice gauge theory [arXiv:1205 by analyzing the free energy of static quarks in pure SU(2) and SU(3) lattice gauge theory. The Polyakov loop P is introduced as a parameterized source for the quarks. Calculation of the free energy F as a function

  19. On the Location of Energy Release and Temperature Pro les along Coronal Loops

    E-Print Network [OSTI]

    Mackay, Duncan

    temperature and the temperature distribution along the loop. In each case the ratio between the heat deposited and radiation provides a scaling for the summit temperature. Keywords: methods: Numerical - MHD - sun: corona;les of the energy release are then used to in- vestigate the temperature distribution along a loop.

  20. Liquid Lead-Bismuth Materials Test Loop Valentina Tcharnotskaia, Curtt Ammerman, Timothy Darling, Joe King,

    E-Print Network [OSTI]

    McDonald, Kirk

    Liquid Lead-Bismuth Materials Test Loop Valentina Tcharnotskaia, Curtt Ammerman, Timothy Darling 1663, Los Alamos, NM 87545 Abstract We designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten lead-bismuth eutectic (LBE). In this paper we

  1. APPLICATION OF GENEALOGICAL DECISION TREES FOR OPEN-LOOP TRACKING CONTROL

    E-Print Network [OSTI]

    Del Moral , Pierre

    APPLICATION OF GENEALOGICAL DECISION TREES FOR OPEN-LOOP TRACKING CONTROL Enso Ikonen !,1 Kaddour on a genealogical decision tree is suggested for solving an open-loop tracking problem. The algorithm associates supported by UK EPSRC Research cluster project, grant nro GR/S63779/01 Genealogical decision trees belong

  2. Asymptotic scaling corrections in QCD with Wilson fermions from the 3-loop average plaquette

    E-Print Network [OSTI]

    B. Alles; A. Feo; H. Panagopoulos

    1998-01-23T23:59:59.000Z

    We calculate the 3-loop perturbative expansion of the average plaquette in lattice QCD with N_f massive Wilson fermions and gauge group SU(N). The corrections to asymptotic scaling in the corresponding energy scheme are also evaluated. We have also improved the accuracy of the already known pure gluonic results at 2 and 3 loops.

  3. Quantification of Valve Stiction for Control Loop Performance Assessment Guohua Wang and liandong Wang*

    E-Print Network [OSTI]

    Wang, Jiandong

    Quantification of Valve Stiction for Control Loop Performance Assessment Guohua Wang and liandong, Beijing, P. R. China (*Email: jiandong@pku.edu.cn) Abstract - Control valves are extensively used in the process industry and valve stiction limits the performance of control loops. This study aims

  4. Evaluating the Health of California's Loop Sensor Network Ram Rajagopal1 and Pravin Varaiya

    E-Print Network [OSTI]

    Varaiya, Pravin

    Evaluating the Health of California's Loop Sensor Network Ram Rajagopal1 and Pravin Varaiya The California Department of Transportation (Caltrans) freeway sensor network has two compo- nents: the sensor system of 25,000 inductive loop sensors grouped into 8,000 vehicle detector sta- tions (VDS) and covering

  5. Loop Current warming by Hurricane Wilma L.-Y. Oey,1

    E-Print Network [OSTI]

    Ezer, Tal

    /16$26/2005) is the most powerful At- lantic hurricane on record. The storm's minimum surface pressure. On the other hand, less is known about the effects of a hurricane on the powerful Loop Current, where strong] for a review of the Loop Current and general circulation in the Gulf of Mexico). 2. Methodology [4] To analyze

  6. The Susceptibility of Materials in Spallation Neutron Source Target and Blanket Cooling Loops to Corrosion

    E-Print Network [OSTI]

    to Corrosion R. Scott Lillard, Darryl P. Butt Materials Corrosion and Environmental Effects Lab MST-6 cooling loops to corrosion. To simulate the environment that materials may be exposed to in a target of exposing corrosion samples to an 800 MeV proton beam at currents upwards of 1 mA was constructed. This loop

  7. Sequence Codes for Extended Conformation: A Neighbor-Dependent Sequence Analysis of Loops in Proteins

    E-Print Network [OSTI]

    Crasto, Chiquito

    in proteins. Because of this lack of knowledge, our ability to identify loop regions in proteins is limited in Proteins Chiquito J. Crasto and Jin-an Feng* Institute for Cancer Research, Fox Chase Cancer Center of proteins. By dividing a loop databank derived from the Protein Data Bank into groups, we analyzed

  8. Using Loop Length Variants to Dissect the Folding Pathway of a Four-helix-bundle Protein

    E-Print Network [OSTI]

    Mochrie, Simon

    . These observations show that loop alteration may be useful as a general tech- nique for dissecting protein folding pathways. # 1999 Academic Press Keywords: protein folding; kinetics; Rop; loops; four-helix-bundle*Corresponding author Introduction A frequently debated question in the ®eld of protein folding is the importance

  9. Finite Temperature and Density Effect on Symmetry Breaking by Wilson Loops

    E-Print Network [OSTI]

    Kiyoshi Shiraishi

    2012-06-27T23:59:59.000Z

    A finite temperature and density effect of Wilson loop elements on non-simply connected space is investigated in the model suggested by Hosotani. Using one-loop calculations it is shown that the value of an "order parameter" does not shift as the temperature grows. We find that finite density effect is of much importance for restoration of symmetry.

  10. Discrete-Time, Cyclostationary Phase-Locked Loop Model for Jitter Analysis

    E-Print Network [OSTI]

    Nikolic, Borivoje

    Discrete-Time, Cyclostationary Phase-Locked Loop Model for Jitter Analysis Socrates D. Vamvakos Sciences, Berkeley, CA 94720 USA Abstract ­ Timing jitter is one of the most significant phase- locked loop to develop the tools necessary to study and predict PLL jitter performance at design time. In this paper

  11. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    SciTech Connect (OSTI)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30T23:59:59.000Z

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  12. Experiments on snap buckling, hysteresis and loop formation in twisted rods

    E-Print Network [OSTI]

    van der Heijden, Gert

    that a compressed rod can buckle in any lateral direction. It is also well-known that if a bending moment is appliedExperiments on snap buckling, hysteresis and loop formation in twisted rods V.G.A. Goss , G phenomena such as snap buckling, the formation of loops, and buckling into and out of planar configurations

  13. Experiments on Snap Buckling, Hysteresis and Loop Formation in Twisted Rods

    E-Print Network [OSTI]

    Neukirch, Sébastien

    rod can buckle in any lateral direction. It is also well known that if a bending moment is appliedExperiments on Snap Buckling, Hysteresis and Loop Formation in Twisted Rods by V.G.A. Goss, G. In this way, commonly encountered phenomena are investigated, such as snap buckling, the formation of loops

  14. Kinetics of Loop Formation and Breakage in the Denatured State of Iso-1-cytochrome c

    E-Print Network [OSTI]

    Roder, Heinrich

    Kinetics of Loop Formation and Breakage in the Denatured State of Iso-1-cytochrome c Eydiejo to measure the rates of histidine­heme loop formation and breakage in the denatured state of iso-1-cytochrome single surface histidine variants of iso-1-cytochrome c. A scaling factor (the dependence of kf on log

  15. Thermal Response of the Hybrid Loop-Pool Design for Sodium Cooled Faster Reactors

    SciTech Connect (OSTI)

    Zhang, Hongbin; Zhao, Haihua; Davis, Cliff

    2008-09-01T23:59:59.000Z

    An innovative hybrid loop-pool design for the sodium cooled fast reactor (SFR) has been recently proposed with the primary objective of achieving cost reduction and safety enhancement. With the hybrid loop-pool design, closed primary loops are immersed in a secondary buffer tank. This design takes advantage of features from conventional both pool and loop designs to further improve economics and safety. This paper will briefly introduce the hybrid loop-pool design concept and present the calculated thermal responses for unproctected (without reactor scram) loss of forced circulation (ULOF) transients using RELAP5-3D. The analyses examine both the inherent reactivity shutdown capability and decay heat removal performance by passive safety systems.

  16. Thermal and non-thermal emission from reconnecting twisted coronal loops

    E-Print Network [OSTI]

    Pinto, R; Browning, P K; Vilmer, N

    2015-01-01T23:59:59.000Z

    Twisted magnetic fields should be ubiquitous in the solar corona. The magnetic energy contained in such twisted fields can be released during solar flares and other explosive phenomena. Reconnection in helical magnetic coronal loops results in plasma heating and particle acceleration distributed within a large volume, including the lower coronal and chromospheric sections of the loops, and can be a viable alternative to the standard flare model, where particles are accelerated only in a small volume located in the upper corona. The goal of this study is to investigate the observational signatures of plasma heating and particle acceleration in kink-unstable twisted coronal loops using combination of MHD simulations and test-particle methods. The simulations describe the development of kink instability and magnetic reconnection in twisted coronal loops using resistive compressible MHD, and incorporate atmospheric stratification and large-scale loop curvature. The resulting distributions of hot plasma let us est...

  17. Modeling solar coronal bright point oscillations with multiple nanoflare heated loops

    E-Print Network [OSTI]

    Chandrashekhar, K

    2015-01-01T23:59:59.000Z

    Intensity oscillations of coronal bright points (BPs) have been studied for past several years. It has been known for a while that these BPs are closed magnetic loop like structures. However, initiation of such intensity oscillations is still an enigma. There have been many suggestions to explain these oscillations, but modeling of such BPs have not been explored so far. Using a multithreaded nanoflare heated loop model we study the behavior of such BPs in this work. We compute typical loop lengths of BPs using potential field line extrapolation of available data (Chandrashekhar et al. 2013), and set this as the length of our simulated loops. We produce intensity like observables through forward modeling and analyze the intensity time series using wavelet analysis, as was done by previous observers. The result reveals similar intensity oscillation periods reported in past observations. It is suggested these oscillations are actually shock wave propagations along the loop. We also show that if one considers di...

  18. The Dynamics of a Flexible Loop in a Quasi-2D Flow

    E-Print Network [OSTI]

    Jung, S; Shelley, M J; Zhang, J; Jung, Sunghwan; Mareck, Kathleen; Shelley, Michael J.; Zhang, Jun

    2006-01-01T23:59:59.000Z

    We study the behavior of an elastic loop embedded in a flowing soap film. This deformable loop is wetted into the film and is held fixed at a single point against the oncoming flow. We interpret this system as a two-dimensional flexible body interacting in a two-dimensional flow. This coupled fluid-structure system shows bistability, with both stationary and oscillatory states. In its stationary state, the loop remains essentially motionless and its wake is a von K\\'arm\\'an vortex street. In its oscillatory state, the loop sheds two vortex dipoles, or more complicated vortical structures, within each oscillation period. We find that the oscillation frequency of the loop is linearly proportional to the flow velocity, and that the measured Strouhal numbers can be separated based on wake structure.

  19. DEEPER BY THE DOZEN: UNDERSTANDING THE CROSS-FIELD TEMPERATURE DISTRIBUTIONS OF CORONAL LOOPS

    SciTech Connect (OSTI)

    Schmelz, J. T.; Pathak, S.; Jenkins, B. S.; Worley, B. T., E-mail: jschmelz@memphis.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2013-02-10T23:59:59.000Z

    Spectroscopic analysis of coronal loops has revealed a variety of cross-field temperature distributions. Some loops appear to be isothermal while others require multithermal plasma. The EUV Imaging Spectrometer on Hinode has the spatial resolution and temperature coverage required for differential emission measure (DEM) analysis of coronal loops. Our results also use data from the X-Ray Telescope on Hinode as a high-temperature constraint. Of our 12 loops, two were post-flare loops with broad temperature distributions, two were narrow but not quite isothermal, and the remaining eight were in the mid range. We consider our DEM methods to be a significant advance over previous work, and it is also reassuring to learn that our findings are consistent with results available in the literature. For the quiescent loops analyzed here, 10 MK plasma, a signature of nanoflares, appears to be absent at a level of approximately two orders of magnitude down from the DEM peak. We find some evidence that warmer loops require broader DEMs. The cross-field temperatures obtained here cannot be modeled as single flux tubes. Rather, the observed loop must be composed of several or many unresolved strands. The plasma contained in each of these strands could be cooling at different rates, contributing to the multithermal nature of the observed loop pixels. An important implication of our DEM results involves observations from future instruments. Once solar telescopes can truly resolve X-ray and EUV coronal structures, these images would have to reveal the loop substructure implied by our multithermal results.

  20. In uence-Based Model Decomposition Christopher Bailey-Kellogg

    E-Print Network [OSTI]

    Bailey-Kellogg, Chris

    building temperature (smart buildings) to ve- hicle on-board diagnostic and control systems that in- cessing technology have enabled a new generation of AI robotic systems | so-called Smart Matter systems of these Smart Matter systems is to synthesize optimal control policies using data rich models for the systems

  1. Randomization 50 years after Fisher R. A. Bailey

    E-Print Network [OSTI]

    Bailey, R. A.

    with milk she can discriminate whether the milk or the tea infusion was first added to the cup." (Fisher made with milk she can discriminate whether the milk or the tea infusion was first added to the cup that by tasting a cup of tea made with milk she can discriminate whether the milk or the tea infusion was first

  2. Seating Final Exam, Fall 2011, Bailey classes, Lambert Fieldhouse

    E-Print Network [OSTI]

    Bailey, Charlotte M

    2011-12-07T23:59:59.000Z

    Seating Final Exam, Fall 2011, KLOSTER classes, Lambert. Fieldhouse. NAME. ROW. SEAT NUMBER. Arrington, Brook L. 1. 1. Blevins, Sash M. 2. 1. Brown ...

  3. ROBERT MCNAB AND KATHLEEN BAILEY MANUSCRIPT 2: DEFINING CORRUPTION

    E-Print Network [OSTI]

    to be a corrupt action, given the individual saw no explicit private benefit? From Nye's perspective, 1964). The literature commonly defines corruption as, "the abuse of public power for private benefit: "the use of public office for private gain."3 From this perspective, corruption is connected explicitly

  4. Field Mapping At Valles Caldera - Sulphur Springs Geothermal Area (Bailey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOETheEt Al., 1969)

  5. Bailey Bay Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagley Public Utilities Comm

  6. Microsoft PowerPoint - Continued Storage Rule_Marissa Bailey

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis and Feedback onWorking GroupContinued Storage

  7. Bailey County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to:Bahamas: Energy Resources JumpTexas:

  8. Bailey's Crossroads, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to:Bahamas: Energy Resources

  9. Techno-economic study of the calcium looping process for CO2 capture from cement and biomass power plants 

    E-Print Network [OSTI]

    Ozcan, Dursun Can

    2014-11-27T23:59:59.000Z

    The first detailed systematic investigation of a cement plant with various carbon capture technologies has been performed. The calcium looping (Ca-looping) process has emerged as a leading option for this purpose, since ...

  10. Thermal hydraulic calculations to support increase in operating power in McClellan Nuclear Radiation Center(MNRC) TRIGA reactor.

    E-Print Network [OSTI]

    Jensen, R. T.; Newell, Daniel L.

    1998-01-01T23:59:59.000Z

    to 2.0 MW. The calculation results show the reactor to havecalculations performed by others. Core loading data and measured fhel temperatures for a Bangladesh reactor

  11. Thermal hydraulic calculations to support increase in operating power in McClellan Nuclear Radiation Center(MNRC) TRIGA reactor.

    E-Print Network [OSTI]

    Jensen, R. T.; Newell, Daniel L.

    1998-01-01T23:59:59.000Z

    program (Reference 3). The RELAP5 code was developed for thelight water reactors. The RELAP5 code is highly generic andThe MOD3 version of RELAP5 has been developed jointly by the

  12. Page 1 of 31 Why does the Loop Current tend to shed more eddies in summer and winter?1

    E-Print Network [OSTI]

    Page 1 of 31 Why does the Loop Current tend to shed more eddies in summer and winter?1 Y.-L. Chang seasonal preferences of Loop Current eddy shedding, more in summer and5 winter and less in fall and spring in virtually any21 month of the year. That the Loop Current can intrude into the Gulf and eddies can separate

  13. MODEL FOR ALFVEN WAVE TURBULENCE IN SOLAR CORONAL LOOPS: HEATING RATE PROFILES AND TEMPERATURE FLUCTUATIONS

    SciTech Connect (OSTI)

    Asgari-Targhi, M.; Van Ballegooijen, A. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-15, Cambridge, MA 02138 (United States)

    2012-02-10T23:59:59.000Z

    It has been suggested that the solar corona may be heated by dissipation of Alfven waves that propagate up from the solar photosphere. According to this theory, counterpropagating Alfven waves are subject to nonlinear interactions that lead to turbulent decay of the waves and heating of the chromospheric and coronal plasma. To test this theory, better models for the dynamics of Alfven waves in coronal loops are required. In this paper, we consider wave heating in an active region observed with the Solar Dynamics Observatory in 2010 May. First a three-dimensional (3D) magnetic model of the region is constructed, and ten magnetic field lines that match observed coronal loops are selected. For each loop we construct a 3D magnetohydrodynamic model of the Alfven waves near the selected field line. The waves are assumed to be generated by footpoint motions inside the kilogauss magnetic flux elements at the two ends of the loop. Based on such models, we predict the spatial and temporal profiles of the heating along the selected loops. We also estimate the temperature fluctuations resulting from such heating. We find that the Alfven wave turbulence model can reproduce the observed characteristics of the hotter loops in the active region core, but the loops at the periphery of the region have large expansion factors and are predicted to be thermally unstable.

  14. Magnetic reconnection between small-scale loops observed with the New Vacuum Solar Telescope

    E-Print Network [OSTI]

    Yang, Shuhong; Xiang, Yongyuan

    2014-01-01T23:59:59.000Z

    Using the high tempo-spatial resolution H$\\alpha$ images observed with the New Vacuum Solar Telescope, we report the solid observational evidence of magnetic reconnection between two sets of small-scale anti-parallel loops with an X-shaped topology. The reconnection process contains two steps: a slow step with the duration of more than several tens of minutes, and a rapid step lasting for only about three minutes. During the slow reconnection, two sets of anti-parallel loops reconnect gradually, and new loops are formed and stacked together. During the rapid reconnection, the anti-parallel loops approach each other quickly, and then the rapid reconnection takes place, resulting in the disappearance of former loops. In the meantime, new loops are formed and separate. The region between the approaching loops is brightened, and the thickness and length of this region are determined to be about 420 km and 1.4 Mm, respectively. During the rapid reconnection process, obvious brightenings at the reconnection site an...

  15. Corrosion of type 316L stainless steel in a mercury thermal convection loop

    SciTech Connect (OSTI)

    DiStefano, J.R.; Manneschmidt, E.T.; Pawel, S.J.

    1999-04-01T23:59:59.000Z

    Two thermal convection loops fabricated from 316L stainless steel containing mercury (Hg) and Hg with 1000 wppm gallium (Ga), respectively, were operated continuously for about 5000 h. In each case, the maximum loop temperature was constant at about 305 degrees C and the minimum temperature was constant at about 242 degrees C. Coupons in the hot leg of the Hg-loop developed a posous surface layer substantially depleted of nickel and chromium, which resulted in a transformation to ferrite. The coupon exposed at the top of the hot leg in the Hg-loop experienced the maximum degradation, exhibiting a surface layer extending an average of 9-10 mu m after almost 5000 h. Analysis of the corrosion rate data as a function of temperature (position) in the Hg-loop suggests wetting by the mer cury occurred only above about 255 degrees C and that the rate limiting step in the corrosion process above 255 degrees C is solute diffusion through the saturated liquid boundary layer adjacent to the corroding surface. The latter factor suggests that the corrosion of 316L stainless steel in a mercury loop may be velocity dependent. No wetting and no corrosion were observed on the coupons and wall specimens removed from the Hg/Ga loop after 5000 h of operation.

  16. DETECTING NANOFLARE HEATING EVENTS IN SUBARCSECOND INTER-MOSS LOOPS USING Hi-C

    SciTech Connect (OSTI)

    Winebarger, Amy R.; Moore, Ronald; Cirtain, Jonathan [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Walsh, Robert W. [University of Central Lancashire, Preston, Lancashire PR1 2HE (United Kingdom); De Pontieu, Bart; Title, Alan [Lockheed Martin Solar and Astrophysics Lab, 3251 Hanover St., Org. A0215, Bldg. 252, Palo Alto, CA 94304 (United States); Hansteen, Viggo [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Golub, Leon; Korreck, Kelly; Weber, Mark [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kobayashi, Ken [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Dr, Huntsville, AL 35805 (United States); DeForest, Craig [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Kuzin, Sergey, E-mail: amy.r.winebarger@nasa.gov [P.N. Lebedev Physical institute of the Russian Academy of Sciences, Leninskii prospekt 53 119991, Moscow (Russian Federation)

    2013-07-01T23:59:59.000Z

    The High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high-spatial and temporal resolution images of the solar corona in a narrowband 193 A channel. In this paper, we analyze a set of rapidly evolving loops that appear in an inter-moss region. We select six loops that both appear in and fade out of the Hi-C images during the short flight. From the Hi-C data, we determine the size and lifetimes of the loops and characterize whether these loops appear simultaneously along their length or first appear at one footpoint before appearing at the other. Using co-aligned, co-temporal data from multiple channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we determine the temperature and density of the loops. We find the loops consist of cool ({approx}10{sup 5} K), dense ({approx}10{sup 10} cm{sup -3}) plasma. Their required thermal energy and their observed evolution suggest they result from impulsive heating similar in magnitude to nanoflares. Comparisons with advanced numerical simulations indicate that such dense, cold and short-lived loops are a natural consequence of impulsive magnetic energy release by reconnection of braided magnetic field at low heights in the solar atmosphere.

  17. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    SciTech Connect (OSTI)

    McFarlane, Joanna [ORNL; Bell, Jason R [ORNL; Felde, David K [ORNL; Joseph III, Robert Anthony [ORNL; Qualls, A L [ORNL; Weaver, Samuel P [ORNL

    2013-02-01T23:59:59.000Z

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  18. Similarities and Differences between Coronal Holes and the Quiet Sun: Are Loop Statistics the Key?

    E-Print Network [OSTI]

    T. Wiegelmann; S. K. Solanki

    2008-02-01T23:59:59.000Z

    Coronal holes (CH) emit significantly less at coronal temperatures than quiet-Sun regions (QS), but can hardly be distinguished in most chromospheric and lower transition region lines. A key quantity for the understanding of this phenomenon is the magnetic field. We use data from SOHO/MDI to reconstruct the magnetic field in coronal holes and the quiet Sun with the help of a potential magnetic model. Starting from a regular grid on the solar surface we then trace field lines, which provide the overall geometry of the 3D magnetic field structure. We distinguish between open and closed field lines, with the closed field lines being assumed to represent magnetic loops. We then try to compute some properties of coronal loops. The loops in the coronal holes (CH) are found to be on average flatter than in the QS. High and long closed loops are extremely rare, whereas short and low-lying loops are almost as abundant in coronal holes as in the quiet Sun. When interpreted in the light of loop scaling laws this result suggests an explanation for the relatively strong chromospheric and transition region emission (many low-lying, short loops), but the weak coronal emission (few high and long loops) in coronal holes. In spite of this contrast our calculations also suggest that a significant fraction of the cool emission in CHs comes from the open flux regions. Despite these insights provided by the magnetic field line statistics further work is needed to obtain a definite answer to the question if loop statistics explain the differences between coronal holes and the quiet Sun.

  19. ANALYSIS AND MODELING OF TWO FLARE LOOPS OBSERVED BY AIA AND EIS

    SciTech Connect (OSTI)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2012-10-10T23:59:59.000Z

    We analyze and model an M1.0 flare observed by SDO/AIA and Hinode/EIS to investigate how flare loops are heated and evolve subsequently. The flare is composed of two distinctive loop systems observed in extreme ultraviolet (EUV) images. The UV 1600 A emission at the feet of these loops exhibits a rapid rise, followed by enhanced emission in different EUV channels observed by the Atmospheric Imaging Assembly (AIA) and the EUV Imaging Spectrometer (EIS). Such behavior is indicative of impulsive energy deposit and the subsequent response in overlying coronal loops that evolve through different temperatures. Using the method we recently developed, we infer empirical heating functions from the rapid rise of the UV light curves for the two loop systems, respectively, treating them as two big loops with cross-sectional area of 5'' by 5'', and compute the plasma evolution in the loops using the EBTEL model. We compute the synthetic EUV light curves, which, with the limitation of the model, reasonably agree with observed light curves obtained in multiple AIA channels and EIS lines: they show the same evolution trend and their magnitudes are comparable by within a factor of two. Furthermore, we also compare the computed mean enthalpy flow velocity with the Doppler shift measurements by EIS during the decay phase of the two loops. Our results suggest that the two different loops with different heating functions as inferred from their footpoint UV emission, combined with their different lengths as measured from imaging observations, give rise to different coronal plasma evolution patterns captured both in the model and in observations.

  20. A study of the loop current in the eastern Gulf of Mexico

    E-Print Network [OSTI]

    Hubertz, Jon Michael

    1967-01-01T23:59:59.000Z

    of the Loop Current in the Eastern Gulf' of Mexico Jon M. Hubertz, B, S. , University of Florida Directed by: Dr, W. D. Nowlin, Jr. A physical oceanographic survey was made in June 1966 using an instrument which measures salinity and temperature... as continuous functions of depth. Data was also gathered using Nansen casts, bathythermographs, and the geomagnetic electrokinetograph. The Loop Current was found to extend to 27'30'N with a smaller secondary loop at its northern tip. Average speeds in the 6...

  1. Recent progress in hard-thermal-loop QCD thermodynamics and collective excitations

    E-Print Network [OSTI]

    Nan Su

    2015-03-27T23:59:59.000Z

    I review recent developments in QCD thermodynamics and collective excitations from the hard-thermal-loop effective theory. I begin by motivating the discussion with open questions from heavy-ion collisions. I then discuss a finite-temperature and -density calculation of QCD thermodynamics at NNLO from the hard-thermal-loop perturbation theory. Finally I discuss a recent exploration of generalizing the hard-thermal-loop framework to the (chromo)magnetic scale $g^2T$, from which a novel massless mode is uncovered.

  2. Scalable boson-sampling with time-bin encoding using a loop-based architecture

    E-Print Network [OSTI]

    Keith R. Motes; Alexei Gilchrist; Jonathan P. Dowling; Peter P. Rohde

    2014-03-17T23:59:59.000Z

    We present an architecture for arbitrarily scalable boson-sampling using two nested fiber loops. The architecture has fixed experimental complexity, irrespective of the size of the desired interferometer, whose scale is limited only by fiber and switch loss rates. The architecture employs time-bin encoding, whereby the incident photons form a pulse train, which enters the loops. Dynamically controlled loop coupling ratios allow the construction of the arbitrary linear optics interferometers required for boson-sampling. The architecture employs only a single point of interference and may thus be easier to stabilize than other approaches. The scheme has polynomial complexity and could be realized using demonstrated present-day technologies.

  3. Exact beta function from the holographic loop equation of large-N QCD_4

    E-Print Network [OSTI]

    Marco Bochicchio

    2007-06-08T23:59:59.000Z

    We construct and study a previously defined quantum holographic effective action whose critical equation implies the holographic loop equation of large-N QCD_4 for planar self-avoiding loops in a certain regularization scheme. We extract from the effective action the exact beta function in the given scheme. For the Wilsonean coupling constant the beta function is exacly one loop and the first coefficient agrees with its value in perturbation theory. For the canonical coupling constant the exact beta function has a NSVZ form and the first two coefficients agree with their value in perturbation theory.

  4. Loop induced interference effects in Higgs Boson plus two jet production at the LHC.

    E-Print Network [OSTI]

    Andersen, Jeppe R.; Binoth, T.; Heinrich, G.; Smillie, Jennifer M.

    ar X iv :0 70 9. 35 13 v2 [ he p- ph ] 22 Fe b 2 00 8 Cavendish-HEP-07/09 Edinburgh 2007/21 Loop induced interference effects in Higgs Boson plus two jet production at the LHC J. R. Andersena, T. Binothb, G. Heinrichb, J. M. Smilliea a... processes allowed at the one-loop level in Higgs boson plus 2 jet production at the LHC. The corresponding one-loop amplitudes, which have not been considered in the lit- erature so far, are evaluated analytically using dimensional regularisation...

  5. Two Loop Renormalization of Massive (p,q) Supersymmetric Sigma Models

    E-Print Network [OSTI]

    N. D. Lambert

    1995-10-18T23:59:59.000Z

    We calculate the beta-functions of the general massive (p,q) supersymmetric sigma model to two loop order using (1,0) superfields. The conditions for finiteness are discussed in relation to (p,q) supersymmetry. We also calculate the effective potential using component fields to one loop order and consider the possibility of perturbative breaking of supersymmetry. The effect of one loop finite local counter terms and the ultra-violet behaviour of the off-shell (p,q) models to all orders in perturbation theory are also addressed.

  6. Peierls-Nabarro Barrier and Protein Loop Propagation

    E-Print Network [OSTI]

    Adam K. Sieradzan; Antti Niemi; Xubiao Peng

    2014-10-28T23:59:59.000Z

    When a self-localized quasiparticle excitation propagates along a discrete one dimensional lattice, it becomes subject to a dissipation that converts the kinetic energy into lattice vibrations. Eventually the kinetic energy does no longer enable the excitation to cross over the minimum energy barrier between neighboring sites, and the excitation becomes localized within a lattice cell. In the case of a protein, the lattice structure consists of the C-alpha backbone. The self-localized quasiparticle excitation is the elemental building block of loops. It can be modeled by a kink which solves a variant of the discrete non-linear Schroedinger equation (DNLS). We study the propagation of such a kink in the case of protein G related albumin-binding domain, using the UNRES coarse-grained molecular dynamics force field. We estimate the height of the energy barriers the kink needs to cross over, in order to propagate along the backbone lattice. We analyse how these barriers gives rise to both stresses and reliefs which control the kink movement. For this, we deform a natively folded protein structure by parallel translating the kink along the backbone away from its native position. We release the transposed kink, and we follow how it propagates along the backbone towards the native location. We observe that the dissipative forces which are exerted on the kink by the various energy barriers, have a pivotal role in determining how a protein folds towards its native state.

  7. Future singularities and teleparallelism in loop quantum cosmology

    SciTech Connect (OSTI)

    Bamba, Kazuharu [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Haro, Jaume de [Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Odintsov, Sergei D., E-mail: bamba@kmi.nagoya-u.ac.jp, E-mail: jaime.haro@upc.edu, E-mail: odintsov@ieec.uab.es [Dept. Gen. and Theor. Phys. and Eurasian International Center for Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2013-02-01T23:59:59.000Z

    We demonstrate how holonomy corrections in loop quantum cosmology (LQC) prevent the Big Rip singularity by introducing a quadratic modification in terms of the energy density ? in the Friedmann equation in the Friedmann-Lemaître-Robertson-Walker (FLRW) space-time in a consistent and useful way. In addition, we investigate whether other kind of singularities like Type II,III and IV singularities survive or are avoided in LQC when the universe is filled by a barotropic fluid with the state equation P = ???f(?), where P is the pressure and f(?) a function of ?. It is shown that the Little Rip cosmology does not happen in LQC. Nevertheless, the occurrence of the Pseudo-Rip cosmology, in which the phantom universe approaches the de Sitter one asymptotically, is established, and the corresponding example is presented. It is interesting that the disintegration of bound structures in the Pseudo-Rip cosmology in LQC always takes more time than that in Einstein cosmology. Our investigation on future singularities is generalized to that in modified teleparallel gravity, where LQC and Brane Cosmology in the Randall-Sundrum scenario are the best examples. It is remarkable that F(T) gravity may lead to all the kinds of future singularities including Little Rip.

  8. EVIDENCE OF IMPULSIVE HEATING IN ACTIVE REGION CORE LOOPS

    SciTech Connect (OSTI)

    Tripathi, Durgesh; Mason, Helen E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Klimchuk, James A., E-mail: d.tripathi@damtp.cam.ac.u [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2010-11-01T23:59:59.000Z

    Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained emission measure EM(T) distributions in two different moss regions within the same active region. We have compared these with theoretical transition region EMs derived for three limiting cases, namely, static equilibrium, strong condensation, and strong evaporation from Klimchuk et al. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from log T[K] = 5.15-6.3. Using photospheric abundances, we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the strong condensation case (EM{sub con}), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3-5 MK) seen in the core of active regions are heated by nanoflares.

  9. Chimera: A hybrid approach to numerical loop quantum cosmology

    E-Print Network [OSTI]

    Peter Diener; Brajesh Gupt; Parampreet Singh

    2013-11-12T23:59:59.000Z

    The existence of a quantum bounce in isotropic spacetimes is a key result in loop quantum cosmology (LQC), which has been demonstrated to arise in all the models studied so far. In most of the models, the bounce has been studied using numerical simulations involving states which are sharply peaked and which bounce at volumes much larger than the Planck volume. An important issue is to confirm the existence of the bounce for states which have a wide spread, or which bounce closer to the Planck volume. Numerical simulations with such states demand large computational domains, making them very expensive and practically infeasible with the techniques which have been implemented so far. To overcome these difficulties, we present an efficient hybrid numerical scheme using the property that at the small spacetime curvature, the quantum Hamiltonian constraint in LQC, which is a difference equation with uniform discretization in volume, can be approximated by a Wheeler-DeWitt differential equation. By carefully choosing a hybrid spatial grid allowing the use of partial differential equations at large volumes, and with a simple change of geometrical coordinate, we obtain a surprising reduction in the computational cost. This scheme enables us to explore regimes which were so far unachievable for the isotropic model in LQC. Our approach also promises to significantly reduce the computational cost for numerical simulations in anisotropic LQC using high performance computing.

  10. Loop quantum cosmology of k=1 FRW models

    E-Print Network [OSTI]

    Abhay Ashtekar; Tomasz Pawlowski; Parampreet Singh; Kevin Vandersloot

    2007-01-23T23:59:59.000Z

    The closed, k=1, FRW model coupled to a massless scalar field is investigated in the framework of loop quantum cosmology using analytical and numerical methods. As in the k=0 case, the scalar field can be again used as emergent time to construct the physical Hilbert space and introduce Dirac observables. The resulting framework is then used to address a major challenge of quantum cosmology: resolving the big-bang singularity while retaining agreement with general relativity at large scales. It is shown that the framework fulfills this task. In particular, for states which are semi-classical at some late time, the big-bang is replaced by a quantum bounce and a recollapse occurs at the value of the scale factor predicted by classical general relativity. Thus, the `difficulties' pointed out by Green and Unruh in the k=1 case do not arise in a more systematic treatment. As in k=0 models, quantum dynamics is deterministic across the deep Planck regime. However, because it also retains the classical recollapse, in contrast to the k=0 case one is now led to a cyclic model. Finally, we clarify some issues raised by Laguna's recent work addressed to computational physicists.

  11. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect (OSTI)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01T23:59:59.000Z

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  12. Study of Two-Loop Neutrino Mass Generation Models

    E-Print Network [OSTI]

    Geng, Chao-Qiang

    2015-01-01T23:59:59.000Z

    We study the models with the Majorana neutrino masses generated radiatively by two-loop diagrams due to the Yukawa $\\rho \\bar \\ell_R^c \\ell_R$ and effective $\\rho^{\\pm\\pm} W^\\mp W^\\mp$ couplings along with a scalar triplet $\\Delta$, where $\\rho$ is a doubly charged singlet scalar, $\\ell_R$ the charged lepton and $W$ the charged gauge boson. A generic feature in these types of models is that the neutrino mass spectrum has to be a normal hierarchy. Furthermore, by using the neutrino oscillation data and comparing with the global fitting result in the literature, we find a unique neutrino mass matrix and predict the Dirac and two Majorana CP phases to be $1.40\\pi$, $1.11\\pi$ and $1.47\\pi$, respectively. We also discuss the model parameters constrained by the lepton flavor violating processes and electroweak oblique parameters. In addition, we show that the rate of the neutrinoless double beta decay $(0\

  13. Cosmological Analysis of Pilgrim Dark Energy in Loop Quantum Cosmology

    E-Print Network [OSTI]

    Jawad, Abdul

    2015-01-01T23:59:59.000Z

    The proposal of pilgrim dark energy is based on speculation that phantom-like dark energy (with strong enough resistive force) can prevent black hole formation in the universe. We explore this phenomenon in loop quantum cosmology framework by taking Hubble horizon as an infra-red cutoff in pilgrim dark energy. We evaluate the cosmological parameters such as Hubble, equation of state parameter, squared speed of sound and also cosmological planes like $\\omega_{\\vartheta}-\\omega'_{\\vartheta}$ and $r-s$ on the basis of pilgrim dark energy parameter ($u$) and interacting parameter ($d^2$). It is found that values of Hubble parameter lies in the range $74^{+0.005}_{-0.005}$. It is mentioned here that equation state parameter lies within the ranges $-1\\mp0.00005$ for $u=2, 1$ and $(-1.12,-1), (-5,-1)$ for $u=-1,-2$, respectively. Also, $\\omega_{\\vartheta}-\\omega'_{\\vartheta}$ planes provide $\\Lambda$CDM limit, freezing and thawing regions for all cases of $u$. It is also interesting to mention here that $\\omega_{\\va...

  14. Progress in an oxygen-carrier reaction kinetics experiment for rotary-bed chemical looping combustion

    E-Print Network [OSTI]

    Jester-Weinstein, Jack (Jack L.)

    2013-01-01T23:59:59.000Z

    The design process for an experimental platform measuring reaction kinetics in a chemical looping combustion (CLC) process is documented and justified. To enable an experiment designed to characterize the reaction kinetics ...

  15. An Excitatory Loop with Astrocytes Contributes to Drive Neurons to Seizure Threshold

    E-Print Network [OSTI]

    Newman, Eric A.

    An Excitatory Loop with Astrocytes Contributes to Drive Neurons to Seizure Threshold Marta Go´ mez to control seizures. Citation: Go´mez-Gonzalo M, Losi G, Chiavegato A, Zonta M, Cammarota M, et al. (2010

  16. Design, fabrication, and characterization of a multi-condenser loop heat pipe

    E-Print Network [OSTI]

    Hanks, Daniel Frank

    2012-01-01T23:59:59.000Z

    A condenser design was characterized for a multi-condenser loop heat pipe (LHP) capable of dissipating 1000 W. The LHP was designed for integration into a high performance aircooled heat sink to address thermal management ...

  17. Closed-loop Real-time Control of a Novel Linear Magnetostrictive Actuator

    E-Print Network [OSTI]

    Chen, Chien-Fan

    2010-10-12T23:59:59.000Z

    This thesis presents the design of various closed-loop real-time control of a novel linear magnetostrictive actuator. The novel linear magnetostrictive actuator which uses Terfenol-D as the magnetostrictive material was developed by Sadighi...

  18. New Developments in Closed Loop Combustion Control Using Flue Gas Analysis 

    E-Print Network [OSTI]

    Nelson, R. L.

    1981-01-01T23:59:59.000Z

    New developments in closed loop combustion control are causing radical changes in the way combustion control systems are implemented. The recent availability of in line flue gas analyzers and microprocessor technology are teaming up to produce...

  19. 1/2-BPS Wilson Loops and Vortices in ABJM Model

    E-Print Network [OSTI]

    Lee, Ki-Myeong

    2010-01-01T23:59:59.000Z

    We explore the low-energy dynamics of 1/2-BPS heavy particles coupled to the ABJM model via the Higgsing of M2-branes, with focus on physical understanding of the recently discovered 1/2-BPS Wilson loop operators. The low-energy theory of 1/2-BPS heavy particles turns out to have the U(N|N) supergauge symmetry, which explains the novel structure of the 1/2-BPS Wilson loop operator as a holonomy of a U(N|N) superconnection. We show that the supersymmetric transformation of the Wilson loop operator can be identified as a fermionic supergauge transformation, which leads to their invariance under half of the supersymmetry. We also argue that 1/2-BPS Wilson loop operators appear as 1/2-BPS vortices with vorticity 1/k. Such a vortex can be naturally interpreted as a membrane wrapping the Z_k cycle once, or type IIA fundamental string.

  20. 1/2-BPS Wilson Loops and Vortices in ABJM Model

    E-Print Network [OSTI]

    Ki-Myeong Lee; Sungjay Lee

    2010-06-29T23:59:59.000Z

    We explore the low-energy dynamics of 1/2-BPS heavy particles coupled to the ABJM model via the Higgsing of M2-branes, with focus on physical understanding of the recently discovered 1/2-BPS Wilson loop operators. The low-energy theory of 1/2-BPS heavy particles turns out to have the U(N|N) supergauge symmetry, which explains the novel structure of the 1/2-BPS Wilson loop operator as a holonomy of a U(N|N) superconnection. We show that the supersymmetric transformation of the Wilson loop operator can be identified as a fermionic supergauge transformation, which leads to their invariance under half of the supersymmetry. We also argue that 1/2-BPS Wilson loop operators appear as 1/2-BPS vortices with vorticity 1/k. Such a vortex can be naturally interpreted as a membrane wrapping the Z_k cycle once, or type IIA fundamental string.

  1. Exotic twisted equivariant cohomology of loop spaces, twisted Bismut-Chern character and T-duality

    E-Print Network [OSTI]

    Fei Han; Varghese Mathai

    2015-01-20T23:59:59.000Z

    We define exotic twisted $S^1$-equivariant cohomology for the loop space $LZ$ of a smooth manifold $Z$ via the invariant differential forms on $LZ$ with coefficients in the (typically non-flat) holonomy line bundle of a gerbe, with differential an equivariantly flat superconnection. We introduce the twisted Bismut-Chern character form, a loop space refinement of the twisted Chern character form, which represent classes in the completed periodic exotic twisted $S^1$-equivariant cohomology of $LZ$. We establish a localisation theorem for the completed periodic exotic twisted $S^1$-equivariant cohomology for loop spaces and apply it to establish T-duality in a background flux in type II String Theory from a loop space perspective.

  2. Looping and reconfiguration dynamics of a flexible chain with internal friction

    E-Print Network [OSTI]

    Nairhita Samanta; Jayanta Ghosh; Rajarshi Chakrabarti

    2014-04-09T23:59:59.000Z

    In recent past, experiments and simulations have suggested that apart from the solvent friction, friction arising from the protein itself plays an important role in protein folding by affecting the intra-chain loop formation dynamics. This friction is termed as internal friction in the literature. Using a flexible Gaussian chain with internal friction we analyze the intra- chain reconfiguration and loop formation times for all three topology classes namely end-to- end, end-to-interior and interior-to-interior. In a nutshell, bypassing expensive simulations we show how simple models like that of Rouse and Zimm can support the single molecule experiment and computer simulation results on intra-chain diffusion coefficients, looping time and even can predict the effects of tail length on the looping time.

  3. Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets

    E-Print Network [OSTI]

    Rothstein, Jonathan

    Microfluidic device incorporating closed loop feedback control for uniform and tunable production, we have designed a microfluidic-based technology utilizing elementary microchannel geometries initial development using flow-focusing microfluidic geometry for droplet formation, computer

  4. Closed-loop control of an experimental mixing layer using machine learning control

    E-Print Network [OSTI]

    Parezanovi?, Vladimir; Cordier, Laurent; Noack, Bernd R; Delville, Joël; Bonnet, Jean-Paul; Segond, Marc; Abel, Markus; Brunton, Steven L

    2014-01-01T23:59:59.000Z

    A novel framework for closed-loop control of turbulent flows is tested in an experimental mixing layer flow. This framework, called Machine Learning Control (MLC), provides a model-free method of searching for the best function, to be used as a control law in closed-loop flow control. MLC is based on genetic programming, a function optimization method of machine learning. In this article, MLC is benchmarked against classical open-loop actuation of the mixing layer. Results show that this method is capable of producing sensor-based control laws which can rival or surpass the best open-loop forcing, and be robust to changing flow conditions. Additionally, MLC can detect non-linear mechanisms present in the controlled plant, and exploit them to find a better type of actuation than the best periodic forcing.

  5. Development of Real-time Closed-loop Control Algorithms for Grid-scale Battery

    E-Print Network [OSTI]

    i Development of Real-time Closed-loop Control Algorithms for Grid-scale Battery Energy Storage Systems Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy ................................................................................................. 23 6.2. Data Storage

  6. Steelcase's Closed-Loop Energy Recovery System Results in $250,000 Savings Annually

    E-Print Network [OSTI]

    Wege, P. M.

    1981-01-01T23:59:59.000Z

    Steelcase Inc. put a closed-loop energy recovery system into operation in August, 1980, with the installation of a $1.1 million waste incinerator. The system provides steam for process applications in the company's main complex. Processable waste...

  7. Two-loop self-energy correction in high-Z hydrogen-like ions

    E-Print Network [OSTI]

    V. A. Yerokhin; P. Indelicato; V. M. Shabaev

    2003-02-28T23:59:59.000Z

    A complete evaluation of the two-loop self-energy diagrams to all orders in Z\\alpha is presented for the ground state of H-like ions with Z\\ge 40.

  8. ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase...

    Open Energy Info (EERE)

    ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ICFT- An Initial...

  9. Wilson loops in N=4 SYM theory: rotation in S5

    E-Print Network [OSTI]

    A. A. Tseytlin; K. Zarembo

    2002-07-26T23:59:59.000Z

    We study Wilson loops in N=4 SYM theory which are non-constant in the scalar (S5) directions and open string solutions associated with them in the context of AdS/CFT correspondence. An interplay between Minkowskian and Euclidean pictures turns out to be non-trivial for time-dependent Wilson loops. We find that in the S5-rotating case there appears to be no direct open-string duals for the Minkowskian Wilson loops, and their expectation values should be obtained by analytic continuation from the Euclidean-space results. In the Euclidean case, we determine the dependence of the ``quark - anti-quark'' potential on the rotation parameter, both at weak coupling (i.e. in the 1-loop perturbative SYM theory) and at strong coupling (i.e. in the classical string theory in AdS5 x S5).

  10. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31T23:59:59.000Z

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  11. Development of a compensation chamber for use in a multiple condenser loop heat pipe

    E-Print Network [OSTI]

    Roche, Nicholas Albert

    2013-01-01T23:59:59.000Z

    The performance of many electronic devices is presently limited by heat dissipation rates. One potential solution lies in high-performance air-cooled heat exchangers like PHUMP, the multiple condenser loop heat pipe presented ...

  12. Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles

    E-Print Network [OSTI]

    Shin, J; Kim, W K; Metzler, R

    2015-01-01T23:59:59.000Z

    We study the dynamics of polymer chains in a bath of self-propelled particles (SPP) by extensive Langevin dynamics simulations in a two dimensional system. Specifically, we analyse the polymer looping properties versus the SPP activity and investigate how the presence of the active particles alters the chain conformational statistics. We find that SPPs tend to extend flexible polymer chains while they rather compactify stiffer semiflexible polymers, in agreement with previous results. Here we show that larger activities of SPPs yield a higher effective temperature of the bath and thus facilitate looping kinetics of a passive polymer chain. We explicitly compute the looping probability and looping time in a wide range of the model parameters. We also analyse the motion of a monomeric tracer particle and the polymer's centre of mass in the presence of the active particles in terms of the time averaged mean squared displacement, revealing a giant diffusivity enhancement for the polymer chain via SPP pooling. Our...

  13. Approximate inference on planar graphs using loop calculus and belief progagation

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Gomez, Vicenc [RADBOUD UNIV; Kappen, Hilbert [RADBOUD UNIV

    2009-01-01T23:59:59.000Z

    We introduce novel results for approximate inference on planar graphical models using the loop calculus framework. The loop calculus (Chertkov and Chernyak, 2006b) allows to express the exact partition function Z of a graphical model as a finite sum of terms that can be evaluated once the belief propagation (BP) solution is known. In general, full summation over all correction terms is intractable. We develop an algorithm for the approach presented in Chertkov et al. (2008) which represents an efficient truncation scheme on planar graphs and a new representation of the series in terms of Pfaffians of matrices. We analyze in detail both the loop series and the Pfaffian series for models with binary variables and pairwise interactions, and show that the first term of the Pfaffian series can provide very accurate approximations. The algorithm outperforms previous truncation schemes of the loop series and is competitive with other state-of-the-art methods for approximate inference.

  14. Pollution Reduction System that Generates Profits (Cascading Closed Loop Cycle - CCLC) 

    E-Print Network [OSTI]

    Stinger, D. H.; Mian, F.

    2004-01-01T23:59:59.000Z

    WOW Energy Inc. (WOW) recently received notification from the patent office that its patent claims for the Cascading Closed Loop Cycle (CCLC) were valid for converting waste heat to electricity in a process using standard off-the-shelf components...

  15. Discrete-time, cyclostationary phase-locked loop model for jitter analysis

    E-Print Network [OSTI]

    Vamvakos, Socrates D.

    Timing jitter is one of the most significant phase-locked loop characteristics, with high impact on performance in a range of applications. It is, therefore, important to develop the tools necessary to study and predict ...

  16. (VDL)² : a jitter measurement built-in self-test circuit for phase locked loops

    E-Print Network [OSTI]

    Kam, Brandon Ray

    2005-01-01T23:59:59.000Z

    This paper discusses the development of a new type of BIST circuit, the (VDL)2, with the purpose of measuring jitter in IBM's phase locked loops. The (VDL)2, which stands for Variable Vernier Digital Delay Locked Line, ...

  17. Rotary bed reactor for chemical-looping combustion with carbon capture

    E-Print Network [OSTI]

    Zhao, Zhenlong

    2012-01-01T23:59:59.000Z

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently almost all the research has been focused on developing CLC based inter-connected fluidized bed ...

  18. Control Strategy for a Dual Loop EGR System to Meet Euro 6 and...

    Broader source: Energy.gov (indexed) [DOE]

    LP- EGR Cooler EGR Mixer HP- EGR Cooler VTG I4 diesel engine, common rail EGR & Turbo Charging System Architecture Base "Dual Loop" EGR system Layout Base engine HW: 2L...

  19. Poisoned Feedback: The Impact of Malicious Users in Closed-Loop Multiuser MIMO Systems

    E-Print Network [OSTI]

    Mukherjee, Amitav

    2010-01-01T23:59:59.000Z

    Accurate channel state information (CSI) at the transmitter is critical for maximizing spectral efficiency on the downlink of multi-antenna networks. In this work we analyze a novel form of physical layer attacks on such closed-loop wireless networks. Specifically, this paper considers the impact of deliberately inaccurate feedback by malicious users in a multiuser multicast system. Numerical results demonstrate the significant degradation in performance of closed-loop transmission schemes due to intentional feedback of false CSI by adversarial users.

  20. Application of infinite array theory to loop antennas in lossy media

    E-Print Network [OSTI]

    Lee, Meng-Feng

    1991-01-01T23:59:59.000Z

    APPLICATION OF INFINITE ARRAY THEORY TO LOOP ANTENNAS IN LOSSY MEDIA A Thesis by MENG-FENG LEE Submitted to the Office of Graduate Studies of Texas ASSAM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1991 Major Subject: Electrical Engineering APPLICATION OF INFINITE ARRAY THEORY TO LOOP ANTENNAS IN LOSSY MEDIA A Thesis by MENG-FFNG LEE Approved as to style and content by: S. M. Wrig (Chair of Committee) R. D. Nevels (Member...

  1. A Simple and Quick Chilled Water Loop Balancing for Variable Flow System

    E-Print Network [OSTI]

    Zhu, Y.; Batten, T.; Turner, W. D.; Claridge, D. E.; Liu, M.

    2000-01-01T23:59:59.000Z

    system is reduced by about 40%. Key words: chilled water, loop, riser, balancing, commissioning, cold deck, pump, energy consumption, EMCS. INTRODUCTION Variable flow pumping systems are becoming more prevalent in the chilled water loops or risers... the building owner, facility engineers or HVAC operators more opportunities to run the chilled water system more efficiently. Generally, the pump speeds are controlled by the EMCS or a stand-alone controller to maintain the differential pressure setpoints...

  2. Polarimetric glucose sensing utilizing a digital closed-loop control system 

    E-Print Network [OSTI]

    Cameron, Brent Duane

    1996-01-01T23:59:59.000Z

    POLARIMETRIC GLUCOSE SENSING UTILIZING A DIGITAL CLOSED-LOOP CONTROL SYSTEM A Thesis by BRENT DUANE CAMERON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1996 Major Subject: Bioengineering POLARIMETRIC GLUCOSE SENSING UTILIZING A DIGITAL CLOSED-LOOP CONTROL SYSTEM A Thesis by BRENT DUANE CAMERON Submitted to Texas Atr M University in partial fulfillment of the requirements...

  3. The Tetrahedron algebra, the Onsager algebra, and the $\\mathfrak{sl}_2$ loop algebra

    E-Print Network [OSTI]

    Brian Hartwig; Paul Terwilliger

    2005-11-02T23:59:59.000Z

    Let $K$ denote a field with characteristic 0 and let $T$ denote an indeterminate. We give a presentation for the three-point loop algebra $\\mathfrak{sl}_2 \\otimes K\\lbrack T, T^{-1},(T-1)^{-1}\\rbrack$ via generators and relations. This presentation displays $S_4$-symmetry. Using this presentation we obtain a decomposition of the above loop algebra into a direct sum of three subalgebras, each of which is isomorphic to the Onsager algebra.

  4. Finite-dimensional irreducible modules for the three-point $\\mathfrak{sl}_2$ loop algebra

    E-Print Network [OSTI]

    Ito, Tatsuro

    2007-01-01T23:59:59.000Z

    Recently Brian Hartwig and the second author found a presentation for the three-point $sl_2$ loop algebra by generators and relations. To obtain this presentation they defined a Lie algebra $\\boxtimes$ by generators and relations, and displayed an isomorphism from $\\boxtimes$ to the three-point $sl_2$ loop algebra. In this paper we describe the finite-dimensional irreducible $\\boxtimes$-modules from multiple points of view.

  5. New Developments in Closed Loop Combustion Control Using Flue Gas Analysis

    E-Print Network [OSTI]

    Nelson, R. L.

    1981-01-01T23:59:59.000Z

    NEW DEVELOPMENTS IN CLOSED LOOP COMBUSTION CONTROL USING FLUE GAS ANALYSIS Robert L. Nelson Westinghouse Computer &Instrumentation Div. Orrville, Ohio Introduction New developments in closed loop combustion control are causing radical changes... the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 i The Westinghouse Model 215 analyzer, shown in j Figure 8, has a very short sampling path and has be~n used on many high temperature applications befor~ a high temperature...

  6. Lessons for Loop Quantum Gravity from Parametrised Field Theory

    E-Print Network [OSTI]

    Thomas Thiemann

    2010-10-12T23:59:59.000Z

    In a series of seminal papers, Laddha and Varadarajan have developed in depth the quantisation of Parametrised Field Theory (PFT) in the kind of discontinuous representations that are employed in Loop Quantum Gravity (LQG). In one spatial dimension (circle) PFT is very similar to the closed bosonic string and the constraint algebra is isomorphic to two mutually commuting Witt algebras. Its quantisation is therefore straightforward in LQG like representations which by design lead to non anomalous, unitary, albeit discontinuous representations of the spatial diffeomorphism group. In particular, the complete set of (distributional) solutions to the quantum constraints, a preferred and complete algebra of Dirac observables and the associated physical inner product has been constructed. On the other hand, the two copies of Witt algebras are classically isomorphic to the Dirac or hypersurface deformation algebra of General Relativity (although without structure functions). The question we address in this paper, also raised by Laddha and Varadarajan in their paper, is whether we can quantise the Dirac algebra in such a way that its space of distributional solutions coincides with the one just described. This potentially teaches us something about LQG where a classically equivalent formulation of the Dirac algebra in terms of spatial diffeomorphism Lie algebras is not at our disposal. We find that, in order to achieve this, the Hamiltonian constraint has to be quantised by methods that extend those previously considered. The amount of quantisation ambiguities is somewhat reduced but not eliminated. We also show that the algebra of Hamiltonian constraints closes in a precise sense, with soft anomalies, that is, anomalies that do not cause inconsistencies. We elaborate on the relevance of these findings for full LQG.

  7. Molten Salt Test Loop (MSTL) system customer interface document.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01T23:59:59.000Z

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  8. Results from tests of TFL Hydragard sampling loop

    SciTech Connect (OSTI)

    Steimke, J.L.

    1995-03-01T23:59:59.000Z

    When the Defense Waste Processing Facility (DWPF) is operational, processed radioactive sludge will be transferred in batches to the Slurry Mix Evaporator (SME), where glass frit will be added and the contents concentrated by boiling. Batches of the slurry mixture are transferred from the SME to the Melter Feed Tank (MFT). Hydragard{reg_sign} sampling systems are used on the SME and the MFT for collecting slurry samples in vials for chemical analysis. An accurate replica of the Hydragard sampling system was built and tested in the thermal Fluids Laboratory (TFL) to determine the hydragard accuracy. It was determined that the original Hydragard valve frequently drew a non-representative sample stream through the sample vial that ranged from frit enriched to frit depleted. The Hydragard valve was modified by moving the plunger and its seat backwards so that the outer surface of the plunger was flush with the inside diameter of the transfer line when the valve was open. The slurry flowing through the vial accurately represented the composition of the slurry in the reservoir for two types of slurries, different dilution factors, a range of transfer flows and a range of vial flows. It was then found that the 15 ml of slurry left in the vial when the Hydragard valve was closed, which is what will be analyzed at DWPF, had a lower ratio of frit to sludge as characterized by the lithium to iron ratio than the slurry flowing through it. The reason for these differences is not understood at this time but it is recommended that additional experimentation be performed with the TFL Hydragard loop to determine the cause.

  9. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect (OSTI)

    Mittereder, N.; Poerschke, A.

    2013-11-01T23:59:59.000Z

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  10. Observational Tests of Damping by Resonant Absorption in Coronal Loop Oscillations

    E-Print Network [OSTI]

    Markus J. Aschwanden; Richard W. Nightingale; Jesse Andries; Marcel Goossens; Tom Van Doorsselaere

    2003-09-17T23:59:59.000Z

    One of the proposed damping mechanisms of coronal (transverse) loop oscillations in the kink-mode is resonant absorption as a result of the Alfven speed variation at the outer boundary of coronal loops. Analytical expressions for the period and damping time exist for loop models with thin non-uniform boundaries. Here we measure the thickness of the non-uniform layer in oscillating loops for 11 events, by forward-fitting of the cross-sectional density profile and line-of-sight integration to the cross-sectional fluxes observed with TRACE 171 A. This way we model the internal and external electron density of the coronal plasma in oscillating loops. This allows us to test the theoretically predicted damping rates for thin boundaries as function of the density ratio. We find that the density ratio predicted by the damping time is higher than the density ratio estimated from the background fluxes. The lower densities modeled from the background fluxes are likely to be a consequence of the neglected hotter plasma that is not detected with the TRACE 171 A filter. Taking these correction into account, resonant absorption predicts damping times of kink-mode oscillations that are commensurable with the observed ones and provides a new diagnostic of the density contrast of oscillating loops.

  11. Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops

    E-Print Network [OSTI]

    Kumar, Pankaj

    2015-01-01T23:59:59.000Z

    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 {\\AA}) arcade loops observed by the SDO/AIA. The wave was associated with an impulsive/compact flare, near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060-760 km/s within ~3-4 minute. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km/s, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  12. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect (OSTI)

    McFarlane, Joanna [ORNL] [ORNL; Bell, Jason R [ORNL] [ORNL; Felde, David K [ORNL] [ORNL; Joseph III, Robert Anthony [ORNL] [ORNL; Qualls, A L [ORNL] [ORNL; Weaver, Samuel P [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  13. Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems

    SciTech Connect (OSTI)

    Horan, D.; Nassiri, A.; Schwartz, C.

    1997-08-01T23:59:59.000Z

    Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured.

  14. Solving the Puzzle of ? 100 ? Interstitial Loop Formation in bcc Iron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Haixuan; Stoller, Roger E.; Osetsky, Yury N.; Terentyev, Dmitry

    2013-06-01T23:59:59.000Z

    The interstitial loop is a unique signature of radiation damage in structural materials for nuclear and other advanced energy systems. Unlike other bcc metals, two types of interstitial loops, 1/2?111? and ?100?, are formed in bcc iron and its alloys. However, the mechanism by which ?100? interstitial dislocation loops are formed has remained undetermined since they were first observed more than fifty years ago. We describe our atomistic simulations that have provided the first direct observation of ?100? loop formation. The process was initially observed using our self-evolving atomistic kinetic Monte Carlo method, and subsequently confirmed using molecular dynamics simulations. Formation of ?100? loops involves a distinctly atomistic interaction between two 1/2?111? loops, and does not follow the conventional assumption of dislocation theory, which is Burgers vector conservation between the reactants and the product. The process observed is different from all previously proposed mechanisms. Thus, our observations might provide a direct link between experiments and simulations and new insights into defect formation that may provide a basis to increase the radiation resistance of these strategic materials.

  15. Closed-loop control in ambulatory diabetic swine A closed-loop blood-glucose control system is tested in vivo in an ambulatory diabetic swine

    E-Print Network [OSTI]

    is tested in vivo in an ambulatory diabetic swine model. · Blood-glucose (BG) regulation is achieved for pre-loop control provides blood-glucose regulation using dual subcutaneous insulin and glucagon infusion ACQUISITION DELIVERY MEASUREMENT DIABETIC PIG MODEL Insulin Glucagon Bluetooth wireless control SIGNAL CONTROL

  16. SOLAR CORONA LOOP STUDIES WITH THE ATMOSPHERIC IMAGING ASSEMBLY. I. CROSS-SECTIONAL TEMPERATURE STRUCTURE

    SciTech Connect (OSTI)

    Aschwanden, Markus J.; Boerner, Paul, E-mail: aschwanden@lmsal.com [Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Org. ADBS, Bldg. 252, 3251 Hanover St., Palo Alto, CA 94304 (United States)

    2011-05-10T23:59:59.000Z

    We present a first systematic study on the cross-sectional temperature structure of coronal loops using the six coronal temperature filters of the Atmospheric Imaging Assembly (AIA) instrument on the Solar Dynamics Observatory (SDO). We analyze a sample of 100 loop snapshots measured at 10 different locations and 10 different times in active region NOAA 11089 on 2010 July 24, 21:00-22:00 UT. The cross-sectional flux profiles are measured and a cospatial background is subtracted in six filters in a temperature range of T {approx} 0.5-16 MK, and four different parameterizations of differential emission measure (DEM) distributions are fitted. We find that the reconstructed DEMs consist predominantly of narrowband peak temperature components with a thermal width of {sigma}{sub log(T)} {<=} 0.11 {+-} 0.02, close to the temperature resolution limit of the instrument, consistent with earlier triple-filter analysis from the Transition Region and Coronal Explorer by Aschwanden and Nightingale and from EIS/Hinode by Warren et al. or Tripathi et al. We find that 66% of the loops could be fitted with a narrowband single-Gaussian DEM model, and 19% with a DEM consisting of two narrowband Gaussians (which mostly result from pairs of intersecting loops along the same line of sight). The mostly isothermal loop DEMs allow us also to derive an improved empirical response function of the AIA 94 A filter, which needs to be boosted by a factor of q{sub 94} = 6.7 {+-} 1.7 for temperatures at log (T) {approx}< 6.3. The main result of near-isothermal loop cross-sections is not consistent with the predictions of standard nanoflare scenarios, but can be explained by flare-like heating mechanisms that drive chromospheric evaporation and upflows of heated plasma coherently over loop cross-sections of w {approx} 2-4 Mm.

  17. The 1/N correction in the D3-brane description of circular Wilson loop at strong coupling

    E-Print Network [OSTI]

    E. I. Buchbinder; A. A. Tseytlin

    2014-06-30T23:59:59.000Z

    We compute the one-loop correction to the probe D3-brane action in AdS5 x S5 expanded around the classical Drukker-Fiol solution ending on a circle at the boundary. It is given essentially by the logarithm of the one-loop partition function of an Abelian ${\\cal N}=4$ vector multiplet in AdS2 x S2 geometry. This one-loop correction is expected to describe the subleading 1/N term in the expectation value of circular Wilson loop in the totally symmetric rank k representation in SU(N) SYM theory at strong coupling. In the limit k << N when the circular Wilson loop expectation values for the symmetric representation and for the product of k fundamental representations are expected to match we find that this one-loop D3-brane correction agrees with the gauge theory result for the k-fundamental case.

  18. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect (OSTI)

    Lowe, K.T.

    2005-10-07T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be easily scaleable for this larger load.

  19. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    SciTech Connect (OSTI)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01T23:59:59.000Z

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will be performed to develop probability of confidence in what is measured in the test loop. Overall, the testing loop will allow development of needed heat transfer related thermophysical parameters for all the salts, validate existing correlations, validate measuring instruments under harsh environment, and have extensive corrosion testing of materials of construction.

  20. COMBINING PARTICLE ACCELERATION AND CORONAL HEATING VIA DATA-CONSTRAINED CALCULATIONS OF NANOFLARES IN CORONAL LOOPS

    SciTech Connect (OSTI)

    Gontikakis, C.; Efthymiopoulos, C.; Georgoulis, M. K. [Research Center for Astronomy and Applied Mathematics, Academy of Athens, Soranou Efessiou 4, 11528 Athens (Greece); Patsourakos, S. [Section of Astro-Geophysics, Department of Physics, University of Ioannina, 45110 Ioannina (Greece); Anastasiadis, A., E-mail: cgontik@academyofathens.gr [National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, GR-15236, Palaia Penteli (Greece)

    2013-07-10T23:59:59.000Z

    We model nanoflare heating of extrapolated active-region coronal loops via the acceleration of electrons and protons in Harris-type current sheets. The kinetic energy of the accelerated particles is estimated using semi-analytical and test-particle-tracing approaches. Vector magnetograms and photospheric Doppler velocity maps of NOAA active region 09114, recorded by the Imaging Vector Magnetograph, were used for this analysis. A current-free field extrapolation of the active-region corona was first constructed. The corresponding Poynting fluxes at the footpoints of 5000 extrapolated coronal loops were then calculated. Assuming that reconnecting current sheets develop along these loops, we utilized previous results to estimate the kinetic energy gain of the accelerated particles. We related this energy to nanoflare heating and macroscopic loop characteristics. Kinetic energies of 0.1-8 keV (for electrons) and 0.3-470 keV (for protons) were found to cause heating rates ranging from 10{sup -6} to 1 erg s{sup -1} cm{sup -3}. Hydrodynamic simulations show that such heating rates can sustain plasma in coronal conditions inside the loops and generate plasma thermal distributions that are consistent with active-region observations. We concluded the analysis by computing the form of X-ray spectra generated by the accelerated electrons using the thick-target approach. These spectra were found to be in agreement with observed X-ray spectra, thus supporting the plausibility of our nanoflare-heating scenario.

  1. Understanding the grafting of telechelic polymers on a solid substrate to form loops

    SciTech Connect (OSTI)

    Huang, Zhenyu [University of Tennessee, Knoxville (UTK); Ji, Haining [ORNL; Mays, Jimmy [ORNL; Dadmun, Mark D [ORNL

    2008-01-01T23:59:59.000Z

    Recent experimental and theoretical studies have demonstrated that relative to singly tethered chains, the presence of polymer loops at interfaces significantly improves interfacial properties such as adhesion, friction, and wettability. In the present study, a simple system was studied to examine the formation of polymeric loops on a solid surface, where the grafting of carboxylic acid terminated telechelic polystyrene from the melt to an epoxy functionalized silicon is chosen. The impact of telechelic molecular weight, grafting temperature, and surface functionality on the telechelic attachment process is studied. It was found that grafting of the telechelic to the surface at both ends to form loops is the primary product of this grafting process. Moreover, examination of the kinetics of the grafting process indicates that it is reaction controlled. Fluorescence tagging of the dangling ends of singly bound chains provides a mechanism to monitor their time evolution during grafting, and these results indicate that the grafting process is accurately described by recent Monte Carlo simulation work. The results also provide a method to control the extent of loop formation at interfaces and therefore provide an opportunity to further understand the role of the loops in the interfacial properties in multicomponent polymer systems.

  2. THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELING OF PROPAGATING DISTURBANCES IN FAN-LIKE CORONAL LOOPS

    SciTech Connect (OSTI)

    Wang, Tongjiang; Ofman, Leon [Department of Physics, Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States)] [Department of Physics, Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Davila, Joseph M., E-mail: tongjiang.wang@nasa.gov [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20770 (United States)

    2013-09-20T23:59:59.000Z

    Quasi-periodic propagating intensity disturbances (PDs) have been observed in large coronal loops in EUV images over a decade, and are widely accepted to be slow magnetosonic waves. However, spectroscopic observations from Hinode/EIS revealed their association with persistent coronal upflows, making this interpretation debatable. Motivated by the scenario that the coronal upflows could be the cumulative result of numerous individual flow pulses generated by sporadic heating events (nanoflares) at the loop base, we construct a velocity driver with repetitive tiny pulses, whose energy frequency distribution follows the flare power-law scaling. We then perform three-dimensional MHD modeling of an idealized bipolar active region by applying this broadband velocity driver at the footpoints of large coronal loops which appear open in the computational domain. Our model successfully reproduces the PDs with similar features as the observed, and shows that any upflow pulses inevitably excite slow magnetosonic wave disturbances propagating along the loop. We find that the generated PDs are dominated by the wave signature as their propagation speeds are consistent with the wave speed in the presence of flows, and the injected flows rapidly decelerate with height. Our simulation results suggest that the observed PDs and associated persistent upflows may be produced by small-scale impulsive heating events (nanoflares) at the loop base in the corona, and that the flows and waves may both contribute to the PDs at lower heights.

  3. Scott Yost HERWIRI 1 and 2 LoopFest 2012 May 2012 p. 1/30 Vector Boson Production

    E-Print Network [OSTI]

    Yost, Scott

    Scott Yost HERWIRI 1 and 2 LoopFest 2012 May 2012 ­ p. 1/30 #12;Vector Boson Production · Vector, but is still gauranteed at all orders. Scott Yost HERWIRI 1 and 2 LoopFest 2012 May 2012 ­ p. 3/30 #12;The will eventually be combined. Scott Yost HERWIRI 1 and 2 LoopFest 2012 May 2012 ­ p. 4/30 #12;HERWIRI1 Current

  4. A development of an accelerator board dedicated for multi-precision arithmetic operations and its application to Feynman loop integrals

    E-Print Network [OSTI]

    Shinji Motoki; Hiroshi Daisaka; Naohito Nakasato; Tadashi Ishikawa; Fukuko Yuasa; Toshiyuki Fukushige; Atsushi Kawai; Junichiro Makino

    2014-11-30T23:59:59.000Z

    Higher order corrections in perturbative quantum field theory are required for precise theoretical analysis to investigate new physics beyond the Standard Model. This indicates that we need to evaluate Feynman loop diagram with multi-loop integral which may require multi-precision calculation. We developed a dedicated accelerator system for multi-precision calculation (GRAPE9-MPX). We present performance results of our system for the case of Feynman two-loop box and three-loop selfenergy diagrams with multi-precision.

  5. Sensitivity of the blue loops of intermediate-mass stars to nuclear reactions

    SciTech Connect (OSTI)

    Halabi, Ghina M.; El Eid, Mounib [American University of Beirut, Department of Physics, P.O. Box 11-0236, Riad El-Solh, Beirut (Lebanon)

    2012-11-20T23:59:59.000Z

    We investigate the effects of a modification of the {sup 14}N(p,{gamma}){sup 15}O reaction rate, as suggested by recent evaluations, on the formation and extension of the blue loops encountered during the evolution of the stars in the mass range 5M{sub Circled-Dot-Operator} to 12M{sub Circled-Dot-Operator }. We show that the blue loops of stars in the mass range 5M{sub Circled-Dot-Operator} to 8M{sub Circled-Dot-Operator }, that is the range of super ABG stars, are severely affected by a modification of the important {sup 14}N(p,{gamma}){sup 15}O reaction rate. We also show that the blue loops can be restored if envelope overshooting is included, which is necessary to explain the observations of the Cepheid stars.

  6. A Proposal for a Standard Interface Between Monte Carlo Tools And One-Loop Programs

    SciTech Connect (OSTI)

    Binoth, T.; /Edinburgh U.; Boudjema, F.; /Annecy, LAPP; Dissertori, G.; Lazopoulos, A.; /Zurich, ETH; Denner, A.; /PSI, Villigen; Dittmaier, S.; /Freiburg U.; Frederix, R.; Greiner, N.; Hoeche, Stefan; /Zurich U.; Giele, W.; Skands, P.; Winter, J.; /Fermilab; Gleisberg, T.; /SLAC; Archibald, J.; Heinrich, G.; Krauss, F.; Maitre, D.; /Durham U., IPPP; Huber, M.; /Munich, Max Planck Inst.; Huston, J.; /Michigan State U.; Kauer, N.; /Royal Holloway, U. of London; Maltoni, F.; /Louvain U., CP3 /Milan Bicocca U. /INFN, Turin /Turin U. /Granada U., Theor. Phys. Astrophys. /CERN /NIKHEF, Amsterdam /Heidelberg U. /Oxford U., Theor. Phys.

    2011-11-11T23:59:59.000Z

    Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV Colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs.

  7. Two-loop correction to the Higgs boson mass in the MRSSM

    E-Print Network [OSTI]

    Diessner, Philip; Kotlarski, Wojciech; Stöckinger, Dominik

    2015-01-01T23:59:59.000Z

    We present the impact of two-loop corrections on the mass of the lightest Higgs boson in the Minimal R-symmetric Supersymmetric Standard Model (MRSSM). These shift the Higgs boson mass up by typically 5 GeV or more. The dominant corrections arise from strong interactions, from the gluon and its N=2 superpartners, the sgluon and Dirac gluino, and these corrections further increase with large Dirac gluino mass. The two-loop contributions governed purely by Yukawa couplings and the MRSSM $\\lambda,\\Lambda$ parameters are smaller. We also update an earlier analysis [Diessner:2014ksa], which showed that the MRSSM can accommodate the measured Higgs and W boson masses. Including the two-loop corrections increases the parameter space where the theory prediction agrees with the measurement.

  8. Analyticity, Unitarity and One-loop Graviton Corrections to Compton Scattering

    E-Print Network [OSTI]

    Hovhannes R. Grigoryan

    2012-07-30T23:59:59.000Z

    We compute spin-flip cross section for graviton photoproduction on a spin-1/2 target of finite mass. Using this tree-level result, we find one-loop graviton correction to the spin-flip low-energy forward Compton scattering amplitude by using Gerasimov-Drell-Hearn sum rule. We show that this result agrees with the corresponding perturbative computations, implying the validity of the sum rule at one-loop level, contrary to the previous claims. We discuss possible effects from the black hole production and string Regge trajectory exchange at very high energies. These effects seem to soften the UV divergence present at one-loop graviton level. Finally, we discuss the relation of these observations with the models that involve extra dimensions.

  9. Numerical integration of one-loop Feynman diagrams for N-photon amplitudes

    E-Print Network [OSTI]

    Zoltan Nagy; Davison E. Soper

    2007-01-04T23:59:59.000Z

    In the calculation of cross sections for infrared-safe observables in high energy collisions at next-to-leading order, one approach is to perform all of the integrations, including the virtual loop integration numerically. One would use a subtraction scheme that removes infrared and collinear divergences from the integrand in a style similar to that used for real emission graphs. Then one would perform the loop integration by Monte Carlo integration along with the integrations over final state momenta. In this paper, we have explored how one can perform the numerical integration. We have studied the N-photon scattering amplitude with a massless electron loop in order to have a case with a singular integrand that is not, however, so singular as to require the subtractions. We report results for N = 4, N = 5 with left-handed couplings, and N=6.

  10. The Lattice Free Energy of QCD with Clover Fermions, up to Three-Loops

    E-Print Network [OSTI]

    A. Athenodorou; H. Panagopoulos; A. Tsapalis

    2007-10-20T23:59:59.000Z

    We calculate the perturbative value of the free energy in Lattice QCD, up to three loops. Our calculation is performed using Wilson gluons and the Sheikholeslami - Wolhert (clover) improved action for fermions. The free energy is directly related to the average plaquette. To carry out the calculation, we compute all relevant Feynman diagrams up to 3 loops, using a set of automated procedures in Mathematica; numerical evaluation of the resulting loop integrals is performed on finite lattice, with subsequent extrapolation to infinite size. The results are presented as a function of the fermion mass m, for any SU(N_c) gauge group, and for an arbitrary number of fermion flavors. In order to enable independent comparisons, we also provide the results on a per diagram basis, for a specific mass value.

  11. Numerical Study of a Propagating Non-Thermal Microwave Feature in a Solar Flare Loop

    E-Print Network [OSTI]

    T. Minoshima; T. Yokoyama

    2008-06-24T23:59:59.000Z

    We analytically and numerically study the motion of electrons along a magnetic loop, to compare with the observation of the propagating feature of the non-thermal microwave source in the 1999 August 28 solar flare reported by Yokoyama et al. (2002). We model the electron motion with the Fokker-Planck equation and calculate the spatial distribution of the gyrosynchrotron radiation. We find that the microwave propagating feature does not correspond to the motion of electrons with a specific initial pitch angle. This apparent propagating feature is a consequence of the motion of an ensemble of electrons with different initial pitch angles, which have different time and position to produce strong radiation in the loop. We conclude that the non-thermal electrons in the 1999 August 28 flare were isotropically accelerated and then are injected into the loop.

  12. Delayed neutron noise characteristics of an in-pile fission product loop

    SciTech Connect (OSTI)

    Tamaoki, T. (Toshiba Corp., Nuclear Engineering Lab., 8 Shin-Sugita, Isogo-ku, Yokohama 235 (JP)); Sakai, T.; Endo, H. (Toshiba Corp., Isogo Engineering Center, 8 Shin-Sugita, Isogo-ku, Yokohama 235 (JP)); Haga, K. (Power Reactor and Nuclear Fuel Development Corp., O-aral Engineering Center, 4002 Narita, O-araimachi, Ibaraki-ken 311-13 (JP)); Takahashi, R. (Tokyo Inst. of Technology, Dept. of Mechanical Engineering, Ookayama, Meguro-ku, Tokyo 152 (JP))

    1992-07-01T23:59:59.000Z

    This paper reports on delayed neutron noise measurements carried out in an in-pile sodium loop, the Fission Product Loop 2 (FPL-2), installed on the Toshiba Training Reactor I. To clarify the characteristics and origin of delayed neutron count rate noise, a noise propagation mechanism was identified using a multivariate autoregressive model. The results show that a simulated fuel failure in the FPL-2, with recoil as the principal fission product release phenomena, produces a white spectrum of delayed neutron count rate noise. It was also found that the loop temperature fluctuation strongly affects the delayed neutron count rate noise at temperatures below 300{degrees} C, through the deposition of fission products on the surface of structures.

  13. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    SciTech Connect (OSTI)

    Xu Zhouxiang; Zhang Xian; Huang Kaikai; Lu Xuanhui [Physics Department, Zhejiang University, Hangzhou, 310027 (China)

    2012-09-15T23:59:59.000Z

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  14. Regulation loops for the ring magnet power supplies in the SSC accelerator complex

    SciTech Connect (OSTI)

    Tacconi, E.; Christiansen, C.

    1993-05-01T23:59:59.000Z

    The SSC complex consists of five cascaded accelerators: The linear accelerator (linac) and four synchrotrons: The low energy booster (LEB), the medium energy booster (MEB), the high energy booster (HEB), and the collider. Twelve- or 24-pulse phase-controlled SCR power supplies are used to energize the ring magnets. Each power supply has a voltage loop designed to regulate the voltage applied to the magnets. The voltage regulation loops for these synchrotrons and the current regulation for the LEB are analyzed in this work. The digital voltage regulator is fiber-optic isolated from the power converter. It has a closed-loop bandwidth of 150 Hz with band rejections for 60-Hz and 120-Hz perturbations. The LEB has a very precise current regulation system composed of a feedforward compensator, a fast feedback regulator, and a slow synchronous regulator. The current regulation design is corroborated by computer simulations.

  15. Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture

    SciTech Connect (OSTI)

    Kathe, Mandar; Xu, Dikai; Hsieh, Tien-Lin; Simpson, James; Statnick, Robert; Tong, Andrew; Fan, Liang-Shih

    2014-12-31T23:59:59.000Z

    This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol required selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.

  16. The Distribution of Loop Lengths in Graphical Models for Turbo Decoding

    E-Print Network [OSTI]

    Smyth, Padhraic

    1 The Distribution of Loop Lengths in Graphical Models for Turbo Decoding Xianping Ge, David ¢¡£ ¢¡ ¡ ¤¡¥ ¢¡¦ ¢¡§ ¤¡¨ © £ © ¡ © ¥ © ¦ © § © ¨ £ £ £ ¡ £ ¥ £ ¦ £ § £ ¨ ¦ £ ¡ ¦ £ ¡ £ ¡ ¥ § ¨ £ ££ £ ¡ ¥ § ¨ £ ££ Fig. 1 The ADG model for a K = 6, N = 12, rate 1/2 turbo code. Abstract-- This paper analyzes the distribution of loop lengths in graphical models for turbo decoding. The prop- erties of such loops

  17. Scaling Laws and Temperature Profiles for Solar and Stellar Coronal Loops with Non-uniform Heating

    E-Print Network [OSTI]

    P. C. H. Martens

    2008-04-16T23:59:59.000Z

    The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of Active Regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a wide range of heating functions, including footpoint heating, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution -- not sufficiently to be of significant diagnostic value -- and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the RTV scaling law ($P_{0}L \\thicksim T_{max}^3$) depending on the specific heating function. Furthermore, quasi-static analytical solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the solutions to the case of a strand with a variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are stable and accurate.

  18. Myotonic Dystrophy Type 1 RNA Crystal Structures Reveal Heterogeneous 1 × 1 Nucleotide UU Internal Loop Conformations

    SciTech Connect (OSTI)

    Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W.; Disney, Matthew D. (Scripps)

    2012-03-27T23:59:59.000Z

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[{und UU}GGGC(C{und U}G){sub 3}GUCC]{sub 2}, refined to 2.20 and 1.52 {angstrom} resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 x 1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 {angstrom} structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 x 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 x 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 {angstrom} structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 x 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 x 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands.

  19. Automation of One-Loop Calculations with GoSam: Present Status and Future Outlook

    E-Print Network [OSTI]

    Gavin Cullen; Nicolas Greiner; Gudrun Heinrich; Gionata Luisoni; Pierpaolo Mastrolia; Giovanni Ossola; Thomas Reiter; Francesco Tramontano

    2011-11-14T23:59:59.000Z

    In this presentation, we describe the GoSam (Golem/Samurai) framework for the automated computation of multi-particle scattering amplitudes at the one-loop level. The amplitudes are generated analytically in terms of Feynman diagrams, and can be evaluated using either D-dimensional integrand reduction or tensor decomposition. GoSam can be used to compute one-loop corrections to Standard Model (QCD and EW) processes, and it is ready to link generic model files for theories Beyond SM. We show the main features of GoSam through its application to several examples of different complexity.

  20. Hanford Tank Farms Waste Feed Flow Loop Phase VI: PulseEcho System Performance Evaluation

    SciTech Connect (OSTI)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.

    2012-11-21T23:59:59.000Z

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  1. Hardware In The Loop Simulator in UAV Rapid Development Life Cycle

    E-Print Network [OSTI]

    Adiprawita, Widyawardana; Semibiring, Jaka

    2008-01-01T23:59:59.000Z

    Field trial is very critical and high risk in autonomous UAV development life cycle. Hardware in the loop (HIL) simulation is a computer simulation that has the ability to simulate UAV flight characteristic, sensor modeling and actuator modeling while communicating in real time with the UAV autopilot hardware. HIL simulation can be used to test the UAV autopilot hardware reliability, test the closed loop performance of the overall system and tuning the control parameter. By rigorous testing in the HIL simulator, the risk in the field trial can be minimized.

  2. In vivo evidence of alternative loop geometries in DNA-protein complexes

    E-Print Network [OSTI]

    Leonor Saiz; Jose M. G. Vilar

    2006-02-10T23:59:59.000Z

    The in vivo free energy of looping double-stranded DNA by the lac repressor has a remarkable behavior whose origins are not fully understood. In addition to the intrinsic periodicity of the DNA double helix, the in vivo free energy has an oscillatory component of about half the helical period and oscillates asymmetrically with an amplitude significantly smaller than predicted by current theories. Here, we show that the in vivo behavior is accurately accounted for by the simultaneous presence of two distinct conformations of looped DNA. Our analysis reveals that these two conformations have different optimal free energies and phases and that they behave distinctly in the presence of key architectural proteins.

  3. Curvature and torsion effects in electric current-carrying twisted solar loops

    SciTech Connect (OSTI)

    Garcia de Andrade, L. C. [Departamento de Fisica Teorica-IF-UERJ, Rua Sao Francisco Xavier 524, Rio de Janeiro, RJ Maracana, CEP 20550-013 Brazil (Brazil)

    2006-11-15T23:59:59.000Z

    Riemannian geometry of the electric current-carrying solar loops is obtained from a thin tube approximation of twisted magnetic flux tubes. The Frenet torsion and curvature affect the electron drift speed of the electrons of the current along the toroidal direction of the tube. The twist of the tube is computed and it is shown that twist is maximum at the surface of the tube and minimum at the tube axis. This acts as inertia effects to the electron drift. The higher the torsion of the tube axis the smaller is the velocity along the direction of the tube. This effect is similar to the one obtained by Tyspin et al. [Physics of Plasmas, 5, 3385 (1998)] in the case of toroidal devices with curvature and torsion. Here the simple geometrical effects are enough to slow down the currents and no viscosity in the fluid is taken into account. A slight compressibility of the plasma flow is due to the twist of the tube. As applications of these ideas, it is shown that torsion effects are not enough to accelerate electrons up to relativistic energies, and the torsion is computed in the case of the force-free loop. The value of torsion is used to compute the electron acceleration in two distinct cases. The first is the case when the Riemann loop suffers the action of a dc electric sub-Dreicer field, where the magnetic field is direct along the magnetic loop, and the loop moves along the orthogonal direction to the loop as in vortex filaments. In this case, the acceleration is shown to be of the order of 10{sup -17} cm s{sup -2} for a solar torsion of the order of 10{sup -4} cm{sup -1}. The second case is for the curvature drift contribution, where torsion is also present. In this case we show that torsion is not present in the velocity drift but just in the electron acceleration. Though these values are extremely low, they can be improved by considering small loops lowering the radius of the loop which, here, was taken as 600 km. Curvature drift acceleration is also estimated as 100 cm s{sup -2}.

  4. Stability Analysis on Single-Phase Natural Circulation in Argonne Lead Loop Facility

    SciTech Connect (OSTI)

    Wu, Qiao [Oregon State University, Corvallis, OR 97331-4501 (United States); Sienicki, James J. [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL 60439 (United States)

    2002-07-01T23:59:59.000Z

    One-dimensional linear stability analysis was performed for single-phase lead-bismuth eutectic natural circulation. The Nyquist criterion and a root search method were employed to find the linear stability boundary of both forward and backward circulations. It was found that the natural circulations could be linearly unstable in a high Reynolds number region. Increasing loop friction makes a forward circulation more stable, but destabilizes the corresponding backward circulation under the same heating/cooling conditions. The characteristic wavelength of an unstable disturbance is roughly equal to the entire loop length. (authors)

  5. Forty-Four Pass Fibre Optic Loop for Improving the Sensitivity of Surface Plasmon Resonance Sensors

    E-Print Network [OSTI]

    Chin B Su; Jun Kameoka

    2007-09-21T23:59:59.000Z

    A forty-four pass fibre optic surface plasmon resonance sensor that enhances detection sensitivity according to the number of passes is demonstrated for the first time. The technique employs a fibre optic recirculation loop that passes the detection spot forty- four times, thus enhancing sensitivity by a factor of forty-four. Presently, the total number of passes is limited by the onset of lasing action of the recirculation loop. This technique offers a significant sensitivity improvement for various types of plasmon resonance sensors that may be used in chemical and biomolecule detections.

  6. Numerical multi-loop calculations with the program SecDec

    E-Print Network [OSTI]

    Sophia Borowka; Gudrun Heinrich

    2014-11-04T23:59:59.000Z

    SecDec is a program which can be used for the evaluation of parametric integrals, in particular multi-loop integrals. For a given set of propagators defining the graph, the program constructs the graph polynomials, factorizes the endpoint singularities, and finally produces a Laurent series in the dimensional regularization parameter, whose coefficients are evaluated numerically. In this talk we discuss various features of the program, which extend the range of applicability. We also present a recent phenomenological example of an application entering the momentum dependent two-loop corrections to neutral Higgs boson masses in the MSSM.

  7. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOE Patents [OSTI]

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07T23:59:59.000Z

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  8. Wilson loops, geometric operators and fermions in 3d group field theory

    E-Print Network [OSTI]

    R. J. Dowdall

    2009-11-12T23:59:59.000Z

    Group field theories whose Feynman diagrams describe 3d gravity with a varying configuration of Wilson loop observables and 3d gravity with volume observables at each vertex are defined. The volume observables are created by the usual spin network grasping operators which require the introduction of vector fields on the group. We then use this to define group field theories that give a previously defined spin foam model for fermion fields coupled to gravity, and the simpler quenched approximation, by using tensor fields on the group. The group field theory naturally includes the sum over fermionic loops at each order of the perturbation theory.

  9. Modelling Rates of Gasification of a Char Particle in Chemical Looping Combustion

    E-Print Network [OSTI]

    Saucedo, Marco A.; Dennis, John S.; Scott, Stuart A.

    2014-07-15T23:59:59.000Z

    with that in the initial particle. Keywords Chemical-looping combustion; gasification; coal; CO2 separation; fluidisation 3 Nomenclature 12ckA Pre-exponential factor for the rate constant 2ck1, mol s -1 g-1 bar-1 12ckA Pre-exponential factor for the rate constant 2ck2... 1 Modelling Rates of Gasification of a Char Particle in Chemical Looping Combustion Marco A. Saucedoa*, John S. Dennisa, Stuart A. Scottb aDepartment of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge...

  10. Acceleration of electric current-carrying string loop near a Schwarzschild black hole immersed in an asymptotically uniform magnetic field

    E-Print Network [OSTI]

    Arman Tursunov; Martin Kološ; Zden?k Stuchlík; Bobomurat Ahmedov

    2014-09-18T23:59:59.000Z

    We study the acceleration of an electric current-carrying and axially-symmetric string loop initially oscillating in the vicinity of a Schwarzschild black hole embedded in an external asymptotically uniform magnetic field. The plane of the string loop is orthogonal to the magnetic field lines and the acceleration of the string loop occurs due to the transmutation effect turning in the deep gravitational field the internal energy of the oscillating strings to the energy of their translational motion along the axis given by the symmetry of the black hole spacetime and the magnetic field. We restrict our attention to the motion of string loop with energy high enough, when it can overcome the gravitational attraction and escape to infinity. We demonstrate that for the current-carrying string loop the transmutation effect is enhanced by the contribution of the interaction between the electric current of the string loop and the external magnetic field and we give conditions that have to be fulfilled for an efficient acceleration. The Schwarzschild black hole combined with the strong external magnetic field can accelerate the current-carrying string loop up to the velocities close to the speed of light $v \\sim c$. Therefore, the string loop transmutation effect can potentially well serve as an explanation for acceleration of highly relativistic jets observed in microquasars and active galactic nuclei.

  11. THE GENERATION OF CORONAL LOOP WAVES BELOW THE PHOTOSPHERE BY p-MODE FORCING Bradley W. Hindman

    E-Print Network [OSTI]

    Li, Yi

    fibrils that lace the convection zone and pierce the solar photosphere. Once generated by p-mode forcing'' coronal loop has also been reported by Marsh et al. (2003). They estimate a speed of 50Y195 km sÀ1) report intensity fluctuations with a period of 6 s along and within coronal loops. The propagation speed

  12. Resource Conservative Manufacturing Transforming Waste into High Value Resource through Closed-Loop Product Systems (ResCoM)

    E-Print Network [OSTI]

    Arleo, Angelo

    and the environment, the EU has no choice but to go for the transition to a resource-efficient and ultimately), supply chain management (integrated supply chains), business model development (closed-loop business of closed loop product design in terms of resource efficiency, CO2 production and energy use

  13. Absolute Free Energy and Entropy of a Mobile Loop of the Enzyme Acetylcholinesterase Mihail Mihailescu and Hagai Meirovitch*

    E-Print Network [OSTI]

    Meirovitch, Hagai

    Absolute Free Energy and Entropy of a Mobile Loop of the Enzyme Acetylcholinesterase Mihail dissociation measurements suggest that the free-energy (F) penalty for the loop displacement is F ) Ffree contribution of water to the total free energy. Namely, for water densities close to the experimental value

  14. Fractional-N PLL with 90 degree phase shift lock and active switched-capacitor loop filter

    E-Print Network [OSTI]

    Park, Joohwan

    2006-10-30T23:59:59.000Z

    .............................................................................................................42 32 Power spectral density............................................................................................44 33 PSD with input reference jitter ...............................................................................46 34... of the charge pump. An active loop filter is used to alleviate this drawback [22]. In the continuous-time PLL, the PFD operation can be critical when the loop is locked, due to finite pulse durations. To reduce noise from the PFD and input reference jitter, a...

  15. Operational Space Inertia for Robots with Internal Loops Abhinandan Jain1

    E-Print Network [OSTI]

    and the environment. The advantage of the operational space control approach over joint space control matrix which defines the relationship between the joint space accelerations and torques, the operationalOperational Space Inertia for Robots with Internal Loops Abhinandan Jain1 1 Jet Propulsion

  16. SpeedAccuracy Trade-Off in Skilled Typewriting: Decomposing the Contributions of Hierarchical Control Loops

    E-Print Network [OSTI]

    Logan, Gordon D.

    Speed­Accuracy Trade-Off in Skilled Typewriting: Decomposing the Contributions of Hierarchical were able to trade speed for accuracy but were unable to type at rates faster than 100 ms and errors indicated that the majority of the trade-offs were due to inner-loop processing. The contribution

  17. The loop compiler for Java and JML Joachim van den Berg, Bart Jacobs

    E-Print Network [OSTI]

    Jacobs, Bart

    engineering process. Within this project a dynamic logic for JavaCard, Java's subset for smart cardThe loop compiler for Java and JML Joachim van den Berg, Bart Jacobs Computing Science Institute into their semantics in higher order logic. It serves as a front-end to a the- orem prover in which the actual veri#12

  18. LOOP TRANSFORMATIONS FOR INTERFACE-BASED HIERARCHIES IN SDF GRAPHS Jonathan Piat1

    E-Print Network [OSTI]

    Bhattacharyya, Shuvra S.

    LOOP TRANSFORMATIONS FOR INTERFACE-BASED HIERARCHIES IN SDF GRAPHS Jonathan Piat1 , Shuvra S processing (DSP) applica- tions. A restricted version of data-flow, termed synchronous data-flow (SDF of hierarchy (Interface-based SDF) has been proposed allowing more expressivity while maintaining its

  19. Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels

    SciTech Connect (OSTI)

    Mahalatkar, K.; Kuhlman, J.; Huckaby, E.D.; O'Brien, T.

    2011-01-01T23:59:59.000Z

    A computational fluid dynamic(CFD) model for the fuel reactor of chemical looping combustion technology has been developed,withspecialfocusonaccuratelyrepresentingtheheterogeneous chemicalreactions.Acontinuumtwo-fluidmodelwasusedtodescribeboththegasandsolidphases. Detailedsub-modelstoaccountforfluid–particleandparticle–particleinteractionforceswerealso incorporated.Twoexperimentalcaseswereanalyzedinthisstudy(Son andKim,2006; Mattisonetal., 2001). SimulationswerecarriedouttotestthecapabilityoftheCFDmodeltocapturechangesinoutletgas concentrationswithchangesinnumberofparameterssuchassuperficialvelocity,metaloxide concentration,reactortemperature,etc.Fortheexperimentsof Mattissonetal.(2001), detailedtime varyingoutletconcentrationvalueswerecompared,anditwasfoundthatCFDsimulationsprovideda reasonablematchwiththisdata.

  20. Laboratory simulations of astrophysical jets and solar coronal loops: new results

    E-Print Network [OSTI]

    Bellan, Paul M.

    -uniform pinch force associated with the ared axial current density. Behavior is consistent with a model showing amplifying the embedded toroidal magnetic eld, enhancing the pinch force, and hence causing collimation. Both the astrophysical jet [1, 2, 3, 4, 5] and solar coronal loop experiments [6, 7, 8] use technology

  1. Fractal Structure of Isothermal Lines and Loops on the Cosmic Microwave Background

    E-Print Network [OSTI]

    Chiang, Lung-Yih

    Fractal Structure of Isothermal Lines and Loops on the Cosmic Microwave Background Naoki KOBAYASHI and the fractal structure is confirmed in the radiation temperature fluctuation. We estimate the fractal exponents, such as the fractal dimension De of the entire pattern of isothermal lines, the fractal dimension Dc of a single

  2. POISONED FEEDBACK: THE IMPACT OF MALICIOUS USERS IN CLOSED-LOOP MULTIUSER MIMO SYSTEMS

    E-Print Network [OSTI]

    Swindlehurst, A. Lee

    POISONED FEEDBACK: THE IMPACT OF MALICIOUS USERS IN CLOSED-LOOP MULTIUSER MIMO SYSTEMS Amitav systems based on malicious feedback of CSI. In particular, we examine malicious or poisoned feedback of the trans- mitter are listed in Sec. 3. Numerical results that depict the impact of poisoned feedback

  3. Closed Loop System with Feedback Control MISO control laws SISO control law

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    Closed Loop System with Feedback Control MISO control laws SISO control law Switching Control demand · Two control modes for wind turbine: MISO & SISO · Proportional Integral (PI) feedback control Modes MISO SISO Inputs Blade Pitch Angle, Generator Torque Blade Pitch Angle Output Power Power

  4. A Stochastic Time-to-Digital Converter for Digital Phase-Locked Loops submitted to

    E-Print Network [OSTI]

    Moon, Un-Ku

    A Stochastic Time-to-Digital Converter for Digital Phase-Locked Loops by Kerem Ok A THESIS. Thanks to Tufan for always being ready to go lifting or to Platinum (Thanks Dave) or Senor Sam's with me.1.2 Synthesis Using Digital PLLs........................................................ 8 3. STOCHASTIC TIME

  5. Eddy currents in a gradient coil, modelled as circular loops of strips

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Eddy currents in a gradient coil, modelled as circular loops of strips J.M.B. Kroot, S.J.L. van. Due to induction eddy currents occur which lead to the so-called edge-effect. The edge- effect depends the gradient coils themselves. Eddy currents occur, causing perturbations on the expected gradient field

  6. Eddy currents in a gradient coil, modeled as circular loops of strips

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Eddy currents in a gradient coil, modeled as circular loops of strips J.M.B. Kroot, S.J.L. van to induction, eddy currents occur, resulting in a so-called edge-effect. Higher frequencies cause stronger edge by a gradient coil induces eddy currents in the conducting structures. The eddy currents cause perturbations

  7. Shaping Power System Inter-area Oscillations through Control Loops of Grid Integrated Wind Farms

    E-Print Network [OSTI]

    Gayme, Dennice

    Shaping Power System Inter-area Oscillations through Control Loops of Grid Integrated Wind Farms. However, in many situations, it may not be possible to site a wind farm at the location with the most desirable frequency response. Here, we show that one can design a wind farm controller to shape

  8. A Self-Optimizing Embedded Microprocessor using a Loop Table for Low Power

    E-Print Network [OSTI]

    Vahid, Frank

    A Self-Optimizing Embedded Microprocessor using a Loop Table for Low Power Frank Vahid* and Ann describe an approach for a microprocessor to tune itself to its fixed application to reduce power in an embedded system. We define a basic architecture and methodology supporting a microprocessor self

  9. Control of Delayed Recycling Systems with Unstable First Order Forward Loop

    E-Print Network [OSTI]

    Boyer, Edmond

    Control of Delayed Recycling Systems with Unstable First Order Forward Loop J. F. M Abstract Unstable time-delay systems and recycling systems are challenging problems for control analysis and design. When an unstable time-delay system has a recycle, its control problem becomes even more difficult

  10. Looped carbon capturing and environmental remediation: case study of magnetic polypropylene nanocomposites{

    E-Print Network [OSTI]

    Guo, John Zhanhu

    Looped carbon capturing and environmental remediation: case study of magnetic polypropylene carbon nanocomposites (MCNCs) and simultaneously produce useful chemical species which can be utilized a distribution of species with different numbers of carbon, while only 40% of pure PP is decomposed after

  11. One-loop Single Real Emission Contributions to Inclusive Higgs Production at NNNLO

    E-Print Network [OSTI]

    William B. Kilgore

    2014-08-11T23:59:59.000Z

    I discuss the contributions of the one-loop single-real-emission amplitudes, $gg\\to H g$, $qg\\to H q$, etc. to inclusive Higgs boson production through next-to-next-to-next-to-leading order in the strong coupling.

  12. Effect of downstream feedback on the achievable performance of feedback control loops for serial processes

    E-Print Network [OSTI]

    Duffy, Ken

    ]. For control design purposes, the common approach is to use linear models obtained around a certain operationEffect of downstream feedback on the achievable performance of feedback control loops for serial-- This paper deals with feedback control of serial processes, that is, processes formed by the series

  13. Black hole entropy with and without log correction in loop quantum gravity

    E-Print Network [OSTI]

    P. Mitra

    2014-06-02T23:59:59.000Z

    Earlier calculations of black hole entropy in loop quantum gravity have given a term proportional to the area with a correction involving the logarithm of the area when the area eigenvalue is close to the classical area. However the calculations yield an entropy proportional to the area eigenvalue with no such correction when the area eigenvalue is large compared to the classical area.

  14. Parameter Variation Analysis for Voltage Controlled Oscillators in Phase-Locked Loops

    E-Print Network [OSTI]

    Moon, Un-Ku

    Parameter Variation Analysis for Voltage Controlled Oscillators in Phase-Locked Loops Igor Vytyaz), the oscillation frequency of a voltage-controlled oscillator (VCO) is specified by the reference frequency on the oscillation frequency as the PLL adjusts the control voltage to keep the frequency unchanged. More importantly

  15. CHIRON: a package for ChPT numerical results at two loops

    E-Print Network [OSTI]

    Johan Bijnens

    2014-12-02T23:59:59.000Z

    This document describes the package CHIRON which includes two libraries, chiron itself and jbnumlib. CHIRON is a set of routines useful for two-loop numerical results in Chiral Perturbation Theory (ChPT). It includes programs for the needed one- and two-loop integrals as well as routines to deal with the ChPT parameters. The present version includes everything needed for the masses, decay constants and quark-antiquark vacuum-expectation-values. An added routine calculates consistent values for the masses and decay constants when the pion and kaon masses are varied. In addition a number of finite volume results are included: one-loop tadpole integrals, two-loop sunset integrals and the results for masses and decay constants. The numerical routine library jbnumlib contains the numerical routines used in chiron. Many are to a large extent simple C++ versions of routines in the CERNLIB numerical library. Notable exceptions are the dilogarithm and the Jacobi theta function implementations. This paper describes what is included in CHIRON v0.50.

  16. Catastrophic cooling and highspeed downflow in quiescent solar coronal loops observed with TRACE zx

    E-Print Network [OSTI]

    Schrijver, Karel

    is no more than 80 m/s 2 , less than 1/3rd of the surface gravity. Cooling appears to progress with delaysCatastrophic cooling and high­speed downflow in quiescent solar coronal loops observed with TRACE Region and Coronal Explorer, TRACE , show frequent catastrophic cooling and evacuation of quiescent solar

  17. Natural circulation loop using liquid nitrogen for cryo-detection system

    SciTech Connect (OSTI)

    Choi, Yeon Suk [Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 305-806 (Korea, Republic of)

    2014-01-29T23:59:59.000Z

    The natural circulation loop is designed for the cryogenic insert in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Sensitivity is the key parameter of a FTICR mass spectrometer and the cryo-cooling of the pre-amplifier can reduce the thermal noise level and thereby improve the signal-to-noise ratio. The pre-amplifier consisted of non-magnetic materials is thermally connected to the cooling loop which is passing through the flange maintaining ultra-high vacuum in the ion cell. The liquid nitrogen passes through inside of the loop to cool the pre-amplifier indirectly. At the end, a cryocooler is located to re-condense nitrogen vapor generated due to the heat from the pre-amplifier. The circulating fluid removes heat from the pre-amplifier and transports it to the cryocooler or heat sink. In this paper the natural circulation loop for cryogenic pre-amplifier is introduced for improving the sensitivity of cryo-detector. In addition, the initial cool-down of the system by a cryocooler is presented and the temperature of the radiation shield is discussed with respect to the thickness of shield and the thermal radiation load.

  18. Dynamically Feasible Trajectory and Open-Loop Control Design for Unmanned Airships

    E-Print Network [OSTI]

    Papadopoulos, Evangelos

    Fig. 1, belong to the category of Unmanned Air Vehicles (UAVs) that play an increasingly significant the problem of trajectory planning for an Autonomous Underwater Vehicle. In this paper, we describe a methodDynamically Feasible Trajectory and Open-Loop Control Design for Unmanned Airships Filoktimon

  19. A Compiler Framework for Optimization of Affine Loop Nests for General Purpose Computations on GPUs

    E-Print Network [OSTI]

    Ramanujam, J. "Ram"

    ]. Until very recently, GPGPU computations were performed by transforming matrix operations. Although the polyhedral model of dependence abstraction and program transformation is much more powerfulA Compiler Framework for Optimization of Affine Loop Nests for General Purpose Computations on GPUs

  20. Loop Current Mixed Layer Energy Response to Hurricane Lili (2002). Part I: Observations

    E-Print Network [OSTI]

    Miami, University of

    Loop Current Mixed Layer Energy Response to Hurricane Lili (2002). Part I: Observations ERIC W-dimensional oceanic energy evolution in response to Hurricane Lili's (2002) passage. Mixed layer temperature analyses, Florida (Manuscript received 4 May 2011, in final form 3 October 2011) ABSTRACT The ocean mixed layer

  1. Loop Current Mixed Layer Energy Response to Hurricane Lili (2002). Part II: Idealized Numerical Simulations

    E-Print Network [OSTI]

    Miami, University of

    Loop Current Mixed Layer Energy Response to Hurricane Lili (2002). Part II: Idealized Numerical horizontal pressure gradient, wind energy transfer to the mixed layer can be more efficient in such a regime as compared to the case of an initially horizontally homogeneous ocean. However, nearly all energy is removed

  2. Selected topics on multi-loop calculations to Higgs boson properties and renormalization group functions

    E-Print Network [OSTI]

    Mihaila, Luminita N

    2015-01-01T23:59:59.000Z

    We review some results obtained in the context of the Collaborative Research Center/Transregio~9. In particular we discuss three-loop corrections to the Higgs boson mass in the Minimal Supersymmetric Standard Model, higher order corrections to Higgs boson production, and the calculations of renormalization group functions and decoupling constants.

  3. What is stopping Carbon Capture Utilization and Storage from closing the carbon loop?

    E-Print Network [OSTI]

    dioxide as a global public good. Considering the social cost of carbon, or the net present valueWhat is stopping Carbon Capture Utilization and Storage from closing the carbon loop? The social cost of carbon is still not developed There is no global consensus on the price of reducing carbon

  4. Retrodirective phase-lock loop controlled phased array antenna for a solar power satellite system

    E-Print Network [OSTI]

    Kokel, Samuel John

    2006-04-12T23:59:59.000Z

    was performed using a transceiver converting a pair of received 2.9 GHz signals down to 10 MHz, and up converting two 10 MHz signals to 5.8 GHz. Phase scaling and conjugation was performed at the 10 MHz IF using linear XOR phase detectors and a PLL loop...

  5. Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units

    E-Print Network [OSTI]

    Guan, W.; Liu, M.; Wang, J.

    1998-01-01T23:59:59.000Z

    The impacts of the water loop management on the heating and cooling energy consumption are investigated by using model simulation. The simulation results show that the total thermal energy consumption can be increased by 24% for a typical AHU in San...

  6. Theoretical and Experimental Dissection of DNA Loop-Mediated Repression James Q. Boedicker,1

    E-Print Network [OSTI]

    Phillips, Rob

    of such models. We dissect gene regulation through DNA looping by tuning network parameters such as repressor as the macro- molecular pipeline linking the critical genetic information hidden within DNA sequences framework for transcriptional regulation [8­10], including in the analysis of gene regulation with DNA

  7. APS/CopyNumber Theoretical and experimental dissection of DNA loop-mediated repression

    E-Print Network [OSTI]

    Phillips, Rob

    regulation through DNA looping by tuning network parameters such as repressor copy number, DNA binding of the central dogma serve as the macro- molecular pipeline linking the critical genetic information hidden". These models have been widely used as a quantitative frame- work to describe transcriptional regulation

  8. PERIODIC VARIATIONS IN X-RAY EMISSION INTENSITY OF CORONAL LOOPS D. E. McKenzie(

    E-Print Network [OSTI]

    McKenzie, David E.

    light observations made during solar eclipses (e.g., Pasachoff (1991), Singh et al. (1997), and recently-3840, USA (¡ ) Southwestern College, 100 College Street, Winfield, KS 67156, USA ABSTRACT The analysis of light curves generated from Yohkoh Soft X-ray Telescope observations of coronal loops, described by Mc

  9. New Loops! MiTeGen* 50MicroMountsTM consist of a thin microfabricated

    E-Print Network [OSTI]

    Meagher, Mary

    New Loops! MiTeGen* 50µMicroMountsTM consist of a thin microfabricated polyimide film attached to a solid non-magnetic stainless steel pin. The film is polyimide, which is used in Kapton® tape and is employed for X- ray transparent windows on X-ray beam lines. The film is curved by wrapping polyimide film

  10. Neural Network-Based Noise Suppressor and Predictor for Quantifying Valve Stiction in Oscillatory Control Loops

    E-Print Network [OSTI]

    Annan, Carl Ashie

    2014-12-18T23:59:59.000Z

    . This work proposes a neural network approach to quantify the degree of stiction in a valve once the phenomenon has been detected. Several degrees of stiction are simulated in a closed loop control system by specifying the magnitude of static (fs) and dynamic...

  11. Statistical Evidence for the Existence of Alfv\\'enic Turbulence in Solar Coronal Loops

    E-Print Network [OSTI]

    Liu, Jiajia; De Moortel, Ineke; Threlfall, James; Bethge, Christian

    2014-01-01T23:59:59.000Z

    Recent observations have demonstrated that waves which are capable of carrying large amounts of energy are ubiquitous throughout the solar corona. However, the question of how this wave energy is dissipated (on which time and length scales) and released into the plasma remains largely unanswered. Both analytic and numerical models have previously shown that Alfv\\'enic turbulence may play a key role not only in the generation of the fast solar wind, but in the heating of coronal loops. In an effort to bridge the gap between theory and observations, we expand on a recent study [De Moortel et al., ApJL, 782:L34, 2014] by analyzing thirty-seven clearly isolated coronal loops using data from the Coronal Multi-channel Polarimeter (CoMP) instrument. We observe Alfv\\'enic perturbations with phase speeds which range from 250-750 km/s and periods from 140-270 s for the chosen loops. While excesses of high frequency wave-power are observed near the apex of some loops (tentatively supporting the onset of Alfv\\'enic turbu...

  12. The Universal Central Extension of the Three-point sl_2 Loop Algebra

    E-Print Network [OSTI]

    Georgia Benkart; Paul Terwilliger

    2005-12-17T23:59:59.000Z

    We give a presentation of the universal central extension of the three-point loop algebra L over sl_2 by generators and relations. Our presentation arises from the realization of L as the tetrahedron Lie algebra and leads to connections between the universal central extension and the Onsager Lie algebra. Symmetry under the alternating group A_4 features prominently in this work.

  13. Evaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    for copper-based materials, and at 950 °C for iron- and manganese-based materials. Methane or syngas (50% COEvaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Goteborg, Sweden

  14. Numerical evaluation of one-loop diagrams near exceptional momentum configurations

    SciTech Connect (OSTI)

    Walter T Giele; Giulia Zanderighi; E.W.N. Glover

    2004-07-06T23:59:59.000Z

    One problem which plagues the numerical evaluation of one-loop Feynman diagrams using recursive integration by part relations is a numerical instability near exceptional momentum configurations. In this contribution we will discuss a generic solution to this problem. As an example we consider the case of forward light-by-light scattering.

  15. Rogowski Loop Designs for NSTX * B. McCormack, R. Kaita, H. Kugel, R. Hatcher

    E-Print Network [OSTI]

    . A loop is a multi­ turn uniformly wound solenoid having a uniform cross­ sectional area and completely into account metric/English conversions while the equation form highlights the direct relationship of turns the inner diameter of the Center Stack casing insulation and the OH Coil outside diameter. It would

  16. Rogowski Loop Designs for NSTX * B. McCormack, R. Kaita, H. Kugel, R. Hatcher

    E-Print Network [OSTI]

    . A loop is a multi- turn uniformly wound solenoid having a uniform cross- sectional area and completely/English conversions while the equation form highlights the direct relationship of turns and cross-sectional area of the Center Stack casing insulation and the OH Coil outside diameter. It would be measuring Mamp plasma

  17. Keeping the Intelligent Environment Resident in the Loop Parisa Rashidi and Diane J. Cook*

    E-Print Network [OSTI]

    Cook, Diane J.

    Keeping the Intelligent Environment Resident in the Loop Parisa Rashidi and Diane J. Cook* *School will become part of our everyday environments. However, many of these technologies are brittle and do and requests. 1 Introduction Recently there has been extensive research to develop smart environments

  18. The setpoint overshoot method: A simple and fast closed-loop approach for PID tuning*

    E-Print Network [OSTI]

    Skogestad, Sigurd

    The setpoint overshoot method: A simple and fast closed-loop approach for PID tuning* Mohammad and Technology (NTNU), N-7491 Trondheim, Norway Abstract: A simple method has been developed for PID controller% of the regulatory controllers utilise the PID algorithm. A recent survey (Kano and Ogawa [2]) from Japan shows

  19. Performance Assessment of PID Control Loops based on IMC Tuning Rule

    E-Print Network [OSTI]

    Wang, Jiandong

    Performance Assessment of PID Control Loops based on IMC Tuning Rule Zhenpeng Yu Jiandong Wang ,1, and controllers are usually restricted to the PID form. This paper establishes the lower bounds of integrated is proposed to assess the performance of PID controllers. Numerical and experimental examples, as well

  20. Multi-loop Decentralized PID Control Based on Covariance Control Criteria: an LMI Approach

    E-Print Network [OSTI]

    Alberta, University of

    Multi-loop Decentralized PID Control Based on Covariance Control Criteria: an LMI Approach Xin, Alberta, Canada T6G2G6 Abstract PID control is well known and widely applied in industry and many design PID control for multivariable processes to meet certain objectives simultaneously is still

  1. Closed-loop identification via output fast sampling Jiandong Wang a

    E-Print Network [OSTI]

    Wang, Jiandong

    Closed-loop identification via output fast sampling Jiandong Wang a , Tongwen Chen a,*, Biao Huang6G 2V4 b Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB identifiable? The so-called fast-sampling direct approach provides a positive answer. It removes a traditional

  2. ACCELERATED COMMUNICATION Low free energy cost of very long loop insertions in proteins

    E-Print Network [OSTI]

    Baker, David

    SCALLEY-KIM,1 PHILIPPE MINARD,1,3 AND DAVID BAKER2 1 Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA 2 Department of Biochemistry, Howard Hughes Medical Institute into four surface loops in phosphoglycerate kinase (PGK) were Reprint requests to: David Baker, Department

  3. Hydrogen-bond driven loop-closure kinetics in unfolded polypeptide chains

    SciTech Connect (OSTI)

    Daidone, Isabella [University of Heidelberg; Neuweiler, H [University of Heidelberg; Doose, S [University of Heidelberg; Sauer, M [University of Heidelberg; Smith, Jeremy C [ORNL

    2010-12-01T23:59:59.000Z

    Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20-100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient beta-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events.

  4. Structural properties of the histidine-containing loop in HIV-1RNase H

    SciTech Connect (OSTI)

    Kern, G.; Pelton, J.; Marqusee, S.; Kern, D.

    2001-01-02T23:59:59.000Z

    The isolated HIV-1 RNase H domain is inactive. This inactivity has been linked to the lack of structure in the C-terminus of the isolated domain. His539 residing in a loop preceding the C-terminal Helix was studies by NMR to determine the stability and conformational properties of this region.

  5. Polymers in poor solvents : loop expansion of irreducible diagrams (II) J. des Cloizeaux

    E-Print Network [OSTI]

    Boyer, Edmond

    761 Polymers in poor solvents : loop expansion of irreducible diagrams (II) J. des Cloizeaux polydispersion. Abstract. 2014 Properties of polymers in poor solvent are found by calculating irreducible. Expressions are given for the osmotic pressure, the size of a polymer in a solution and the density

  6. The electromagnetic fields and the radiation of a spatio-temporally varying electric current loop

    E-Print Network [OSTI]

    Markus Lazar

    2013-04-12T23:59:59.000Z

    The electric and magnetic fields of a spatio-temporally varying electric current loop are calculated using the Jefimenko equations. The radiation and the nonradiation parts of the electromagnetic fields are derived in the framework of Maxwell's theory of electromagnetic fields. In this way, a new, exact, analytical solution of the Maxwell equation is found.

  7. Motor Modeling and Position Control Lab Week 3: Closed Loop Control

    E-Print Network [OSTI]

    Krovi, Venkat

    Motor Modeling and Position Control Lab Week 3: Closed Loop Control 1. Review In the first week of motor modeling lab, a mathematical model of a DC motor from first principles was derived to obtain specifically for this motor model. In the second week, a physical DC motor (Quanser SRV-02) was used for open

  8. Fourier analysis and systems identification of the p53 feedback loop

    E-Print Network [OSTI]

    to a circuit, measures its output at different frequencies, and describes this by linear models of the dynamicsFourier analysis and systems identification of the p53 feedback loop Naama Geva-Zatorskya,1 , Erez (received for review January 31, 2010) A key circuit in the response of cells to damage is the p53­mdm2

  9. arXiv:hepph/0610045v2 2006 ENERGY CONSERVATION and POMERON LOOPS

    E-Print Network [OSTI]

    Lunds Universitet,

    arXiv:hep­ph/0610045v2 31 Oct 2006 ENERGY CONSERVATION and POMERON LOOPS in HIGH ENERGY EVOLUTION@thep.lu.se We present a formalism which modi#12;es the Mueller Dipole Model such that it incorporates energy at the XLVI Cracow School of Theoretical Physics, May 27 - June 5 2006, Zakopane, Poland. (1) #12; 2 Emil

  10. Verifiable Active Safety for Automotive Cyber-Physical Systems with Humans in the Loop

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    Verifiable Active Safety for Automotive Cyber-Physical Systems with Humans in the Loop Francesco-6925 A recent trend in the automotive industry is the rapid inclusion of electronics, computers and controls that focus entirely on improved functionality and overall system robustness. This makes the automotive sector

  11. Vacancy clustering and prismatic dislocation loop formation in aluminum Vikram Gavini

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Vacancy clustering and prismatic dislocation loop formation in aluminum Vikram Gavini Department of atoms to address this problem in aluminum. Our results show that there is a cascade of larger and larger, calculations for aluminum using quan- tum mechanical density-functional theory [9, 10] show that di

  12. Three-loop free energy for high-temperature QED and QCD with fermions

    SciTech Connect (OSTI)

    Arnold, P. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)); Zhai, C. (Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States))

    1995-02-15T23:59:59.000Z

    We compute the free energy density for gauge theories, with fermions, at high temperature and zero chemical potential. Specifically, we analytically compute the free energy through [ital O]([ital g][sup 4]), which requires the evaluation of three-loop diagrams. This computation extends our previous result for pure gauge QCD.

  13. Frequency multiplexed flux locked loop architecture providing an array of DC SQUIDS having both shared and unshared components

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-01-01T23:59:59.000Z

    Architecture for frequency multiplexing multiple flux locked loops in a system comprising an array of DC SQUID sensors. The architecture involves dividing the traditional flux locked loop into multiple unshared components and a single shared component which, in operation, form a complete flux locked loop relative to each DC SQUID sensor. Each unshared flux locked loop component operates on a different flux modulation frequency. The architecture of the present invention allows a reduction from 2N to N+1 in the number of connections between the cryogenic DC SQUID sensors and their associated room temperature flux locked loops. Furthermore, the 1.times.N architecture of the present invention can be paralleled to form an M.times.N array architecture without increasing the required number of flux modulation frequencies.

  14. VELOCITY MEASUREMENTS FOR A SOLAR ACTIVE REGION FAN LOOP FROM HINODE/EIS OBSERVATIONS

    SciTech Connect (OSTI)

    Young, P. R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); O'Dwyer, B.; Mason, H. E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2012-01-01T23:59:59.000Z

    The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s{sup -1} up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of 'strands'-one cooler and downflowing, the other hotter and stationary-is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 Multiplication-Sign 10{sup 9} cm{sup -3} at the loop base, to 5.0 Multiplication-Sign 10{sup 8} cm{sup -3} at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s{sup -1} in Fe XII {lambda}195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s{sup -1} at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.

  15. Temperature control feedback loops for the linac upgrade side coupled cavities at Fermilab

    SciTech Connect (OSTI)

    Crisp, J.

    1990-10-25T23:59:59.000Z

    The linac upgrade project at Fermilab will replace the last 4 drift-tube linac tanks with seven side coupled cavity strings. This will increase the beam energy from 200 to 400 MeV at injection into the Booster accelerator. The main objective of the temperature loop is to control the resonant frequency of the cavity strings. A cavity string will constant of 4 sections connected with bridge couplers driven with a 12 MW klystron at 805 MHz. Each section is a side coupled cavity chain consisting of 16 accelerating cells and 15 side coupling cells. For the linac upgrade, 7 full cavity strings will be used. A separate temperature control system is planned for each of the 28 accelerating sections, the two transition sections, and the debuncher section. The cavity strings will be tuned to resonance for full power beam loaded conditions. A separate frequency loop is planned that will sample the phase difference between a monitor placed in the end cell of each section and the rf drive. The frequency loop will control the set point for the temperature loop which will be able to maintain the resonant frequency through periods within beam or rf power. The frequency loop will need the intelligence required to determine under what conditions the phase error information is valid and the temperature set point should be adjusted. This paper will discuss some of the reason for temperature control, the implementation, and some of the problems encountered. An appendix contains some useful constants and descriptions of some of the sensor and control elements used. 13 figs.

  16. Evolution of the Loop-Top Source of Solar Flares--Heating and Cooling Processes

    E-Print Network [OSTI]

    Yan Wei Jiang; Siming Liu; Wei Liu; Vahe Petrosian

    2005-08-24T23:59:59.000Z

    We present a study of the spatial and spectral evolution of the loop-top (LT) sources in a sample of 6 flares near the solar limb observed by {\\it RHESSI}. A distinct coronal source, which we identify as the LT source, was seen in each of these flares from the early ``pre-heating'' phase through the late decay phase. Spectral analyses reveal an evident steep power-law component in the pre-heating and impulsive phases, suggesting that the particle acceleration starts upon the onset of the flares. In the late decay phase the LT source has a thermal spectrum and appears to be confined within a small region near the top of the flare loop, and does not spread throughout the loop, as is observed at lower energies. The total energy of this source decreases usually faster than expected from the radiative cooling but much slower than that due to the classical Spitzer conductive cooling along the flare loop. These results indicate the presence of a distinct LT region, where the thermal conductivity is suppressed significantly and/or there is a continuous energy input. We suggest that plasma wave turbulence could play important roles in both heating the plasma and suppressing the conduction during the decay phase of solar flares. With a simple quasi-steady loop model we show that the energy input in the gradual phase can be comparable to that in the impulsive phase and demonstrate how the observed cooling and confinement of the LT source can be used to constrain the wave-particle interaction.

  17. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    SciTech Connect (OSTI)

    James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01T23:59:59.000Z

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.

  18. Dismantling of Loop-Type Channel Equipment of MR Reactor in NRC 'Kurchatov Institute' - 13040

    SciTech Connect (OSTI)

    Volkov, Victor; Danilovich, Alexey; Zverkov, Yuri; Ivanov, Oleg; Kolyadin, Vyacheslav; Lemus, Alexey; Pavlenko, Vitaly; Semenov, Sergey; Fadin, Sergey; Shisha, Anatoly; Chesnokov, Alexander [National Research Centre 'Kurchatov Institute', Moscow (Russian Federation)] [National Research Centre 'Kurchatov Institute', Moscow (Russian Federation)

    2013-07-01T23:59:59.000Z

    In 2009 the project of decommissioning of MR and RTF reactors was developed and approved by the Expert Authority of the Russian Federation (Gosexpertiza). The main objective of the decommissioning works identified in this project: - complete dismantling of reactor equipment and systems; - decontamination of reactor premises and site in accordance with the established sanitary and hygienic standards. At the preparatory stage (2008-2010) of the project the following works were executed: loop-type channels' dismantling in the storage pool; experimental fuel assemblies' removal from spent fuel repositories in the central hall; spent fuel assembly removal from the liquid-metal-cooled loop-type channel of the reactor core and its placement into the SNF repository; and reconstruction of engineering support systems to the extent necessary for reactor decommissioning. The project assumes three main phases of dismantling and decontamination: - dismantling of equipment/pipelines of cooling circuits and loop-type channels, and auxiliary reactor equipment (2011-2012); - dismantling of equipment in underground reactor premises and of both MR and RTF in-vessel devices (2013-2014); - decontamination of reactor premises; rehabilitation of the reactor site; final radiation survey of reactor premises, loop-type channels and site; and issuance of the regulatory authorities' de-registration statement (2015). In 2011 the decommissioning license for the two reactors was received and direct MR decommissioning activities started. MR primary pipelines and loop-type facilities situated in the underground reactor hall were dismantled. Works were also launched to dismantle the loop-type channels' equipment in underground reactor premises; reactor buildings were reconstructed to allow removal of dismantled equipment; and the MR/RTF decommissioning sequence was identified. In autumn 2011 - spring 2012 results of dismantling activities performed are: - equipment from underground rooms (No. 66, 66A, 66B, 72, 64, 63) - as well as from water and gas loop corridors - was dismantled, with the total radwaste weight of 53 tons and the total removed activity of 5,0 x 10{sup 10} Bq; - loop-type channel equipment from underground reactor hall premises was dismantled; - 93 loop-type channels were characterized, chopped and removed, with radwaste of 2.6 x 10{sup 13} Bq ({sup 60}Co) and 1.5 x 10{sup 13} Bq ({sup 137}Cs) total activity removed from the reactor pool, fragmented and packaged. Some of this waste was placed into the high-level waste (HLW) repository of the Center. Dismantling works were executed with application of remotely operated mechanisms, which promoted decrease of radiation impact on the personnel. The average individual dose for the personnel was 1.9 mSv/year in 2011, and the collective dose is estimated as 0.0605 man x Sv/year. (authors)

  19. Micro capillary pumped loop system for a cooling high power device Chin-Tsan Wang a,*, Tzong-Shyng Leu b

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Micro capillary pumped loop system for a cooling high power device Chin-Tsan Wang a,*, Tzong-driven two-phase loop, configured on a micro capillary pumped loop (MCPL) system without an external power. The combination of micro-scale heat transfer and fluid dynamics along with high surface-to-volume ratios makes

  20. Reconnections of Vortex Loops in the Superfluid Turbulent HeII. Rates of the Breakdown and Fusion processes

    E-Print Network [OSTI]

    Sergey K. Nemirovskii

    2005-05-18T23:59:59.000Z

    Kinetics of merging and breaking down vortex loops is the important part of the whole vortex tangle dynamics. Another part is the motion of individual lines, which obeys the Biot-Savart law in presence of friction force and of applied external velocity fields if any. In the present work we evaluate the coefficients of the reconnection rates $A(l_{1},l_{2},l)$ and $B(l,l_{1},l_{2})$. Quantity $A$ is a number (per unit of time and per unit of volume) of events, when two loops with lengths $l_{1}$and $l_{2}$ collide and form the single loop of length $ l=l_{1}+l_{2}$. Quantity $% B(l,l_{1},l_{2}) $ describes the rate of events, when the single loop of the length $l$ breaks down into two the daughter loops of lengths $ l_{1}$ and $l_{2}$. These quantities ave evaluated as the averaged numbers of zeroes of vector $\\mathbf{S}%_{s}(\\xi_{2},\\xi_{1},t)$ connecting two points on the loops of $\\xi_{2}$ and $ \\xi_{1}$ at moment of time $t$. Statistics of the individual loops is taken from the Gaussian model of vortex tangle. PACS-number 67.40

  1. Forces of Interaction between Surfaces Bearing Looped Polymer Brushes in Good Solvent.

    SciTech Connect (OSTI)

    Alonzo, Jose [Clemson University; Mays, Jimmy [ORNL; Kilbey, II, S Michael [ORNL

    2009-01-01T23:59:59.000Z

    In a previous publication we suggested [Huang et al., Macromolecules, 2008, 41, 1745-1752] that looped polymer brushes formed by tethering chains by both ends to a surface may exhibit a polydispersity-like effect due to a distribution of distances between tethering points, leading to segment density profiles dominated by a long and diffuse exponentially-decaying tail. To study this issue in more detail, the force profiles (forces of interaction as a function of separation distance) of a series of looped polymer brushes made by preferential adsorption of poly(2-vinylpyridine)-polystyrene-poly(2-vinylpyridine) (PVP-b-PS-b-PVP) triblock copolymers of varying molecular weight and asymmetry ratio are measured using the surface forces apparatus. The force profiles are analyzed using an equivalent diblock model, which considers the triblock copolymer brushes as being comprised of two diblock copolymers of half the PS molecular weight. While scaling the dependencies of the interaction energy and distance on molecular weight, the tethering density and segment size coalesce the measured force profiles to the universal profile, it is necessary to include polydispersity in the description of the equilibrium structure. This is done using the self-consistent field model of Milner et al. [Macromolecules, 1988, 21, 2610-2619]. For looped brushes formed from the symmetric and moderately symmetric triblock copolymers we find that the polydispersity due to molecular weight distribution effectively accounts for the observed force profiles. On the other hand, agreement between the measured and predicted force profiles of looped brushes formed from highly asymmetric copolymers at low degrees-of-compression is achieved only if a much smaller value of the polydispersity index is used in the fitting. The implication of these results is that the shape of the segment density profiles is not due to the previously proposed anchor-induced polydispersity arising due to loop formation; however in the case of highly asymmetric copolymers, loop formation may constrain the stretching of the chains relative to what is expected for brushes formed from the equivalent diblock copolymer.

  2. Analytic Result for the Two-loop Six-point NMHV Amplitude in N = 4 Super Yang-Mills Theory

    SciTech Connect (OSTI)

    Dixon, Lance J.; /SLAC; Drummond, James M.; /CERN /Annecy, LAPTH; Henn, Johannes M.; /Humboldt U., Berlin /Princeton, Inst. Advanced Study

    2012-02-15T23:59:59.000Z

    We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behavior, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parameters uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral {Omega}{sup (2)}, also plays a key role in a new representation of the remainder function R{sub 6}{sup (2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) x (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) x (parity even) part. The second non-polylogarithmic function, the loop integral {tilde {Omega}}{sup (2)}, characterizes this sector. Both {Omega}{sup (2)} and {tilde {Omega}}{sup (2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.

  3. Conformation and dynamics of nucleotides in bulges and symmetric internal loops in duplex DNA studied by EPR and fluorescence spectroscopies

    SciTech Connect (OSTI)

    Cekan, Pavol [University of Iceland, Science Institute, Dunhaga 3, 107 Reykjavik (Iceland)] [University of Iceland, Science Institute, Dunhaga 3, 107 Reykjavik (Iceland); Sigurdsson, Snorri Th., E-mail: snorrisi@hi.is [University of Iceland, Science Institute, Dunhaga 3, 107 Reykjavik (Iceland)

    2012-04-13T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Bulges and loops were studied by both EPR and fluorescence spectroscopies using the probe C/C{sup f}. Black-Right-Pointing-Pointer One-base bulge was in a temperature-dependent equilibrium between looped-out and stacked states. Black-Right-Pointing-Pointer Bases in two- and three-base bulges were stacked at all temperatures, resulting in DNA bending. Black-Right-Pointing-Pointer Bases were stacked in symmetrical two- to five-base internal loops, according to EPR data. Black-Right-Pointing-Pointer Unexpectedly high fluorescence for the smaller loops indicated local structural perturbations. -- Abstract: The dynamics and conformation of base bulges and internal loops in duplex DNA were studied using the bifunctional spectroscopic probe C, which becomes fluorescent (C{sup f}) upon reduction of the nitroxide functional group, along with EPR and fluorescence spectroscopies. A one-base bulge was in a conformational equilibrium between looped-out and stacked states, the former favored at higher temperature and the latter at lower temperature. Stacking of bulge bases was favored in two- and three-base bulges, independent of temperature, resulting in DNA bending as evidenced by increased fluorescence of C{sup f}. EPR spectra of C-labeled three-, four- and five-base symmetrical interior DNA bulges at 20 Degree-Sign C showed low mobility, indicating that the spin-label was stacked within the loop. The spin-label mobility at 37 Degree-Sign C increased as the loops became larger. A considerable variation in fluorescence between different loops was observed, as well as a temperature-dependence within constructs. Fluorescence unexpectedly increased as the size of the loop decreased at 2 Degree-Sign C. Fluorescence of the smallest loops, where a single T{center_dot}T mismatch was located between the stem region and the probe, was even larger than for the single strand, indicating a considerable local structural deformation of these loops from regular B-DNA. These results show the value of combining EPR and fluorescence spectroscopy to study non-helical regions of nucleic acids.

  4. General properties of logarithmically divergent one-loop lattice Feynman integrals

    E-Print Network [OSTI]

    Kim, J; Lee, W

    2007-01-01T23:59:59.000Z

    We prove that logarithmically divergent one-loop lattice Feynman integrals have the general form I(p,a) = f(p)log(aM)+g(p,M) up to terms which vanish for lattice spacing a -> 0. Here p denotes collectively the external momenta and M is an arbitrary mass scale. The f(p) is shown to be universal and to coincide with the analogous quantity in the corresponding continuum integral (regularized, e.g., by momentum cut-off). This is essential for universality of the lattice QCD beta-function and anomalous dimensions of renormalized lattice operators at one loop. The result and argument presented here are simplified versions of ones given in arXiv:0709.0781. A noteworthy feature of the argument here is that it does not involve Taylor expansion in external momenta, hence infra-red divergences associated with that expansion do not arise.

  5. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    DOE Patents [OSTI]

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07T23:59:59.000Z

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  6. The Structure of n-Point One-Loop Open Superstring Amplitudes

    E-Print Network [OSTI]

    Carlos R. Mafra; Oliver Schlotterer

    2014-09-02T23:59:59.000Z

    In this article we present the worldsheet integrand for one-loop amplitudes in maximally supersymmetric superstring theory involving any number n of massless open string states. The polarization dependence is organized into the same BRST invariant kinematic combinations which also govern the leading string correction to tree level amplitudes. The dimensions of the bases for both the kinematics and the associated worldsheet integrals is found to be the unsigned Stirling number S_3^{n-1} of first kind. We explain why the same combinatorial structures govern on the one hand finite one-loop amplitudes of equal helicity states in pure Yang Mills theory and on the other hand the color tensors at quadratic alpha prime order of the color dressed tree amplitude.

  7. Effective potential for Polyakov loops from a center symmetric effective theory in three dimensions

    E-Print Network [OSTI]

    Dominik Smith

    2012-07-04T23:59:59.000Z

    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for the Wilson line which includes a "fuzzy" bag term to generate non-perturbative fluctuations. The effective potential for the Polyakov loop is extracted from the simulations including all modes of the loop as well as for cooled configuration where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram.

  8. Two-loop Jet-Function and Jet-Mass for Top Quarks

    E-Print Network [OSTI]

    Ambar Jain; Ignazio Scimemi; Iain W. Stewart

    2008-06-16T23:59:59.000Z

    We compute the two-loop heavy quark jet-function in the heavy quark limit. This is one of the key ingredients in next-to-next-to-leading order (NNLO) and next-to-next-to-leading-log order (NNLL) computations of the invariant mass distribution of top-jets at a future e+e- collider. The shape of the top invariant mass distribution is affected by large logs which we compute at NNLL order. Exploiting the non-abelian exponentiation theorem, a definition of the top jet-mass is given which is transitive and whose renormalization group evolution is determined by the cusp-anomalous dimension to all orders in perturbation theory. Relations of the jet-mass to the pole, MSbar, and 1S masses are presented at two-loop order.

  9. Two-loop additive mass renormalization with clover fermions and Symanzik improved gluons

    E-Print Network [OSTI]

    A. Skouroupathis; M. Constantinou; H. Panagopoulos

    2008-01-21T23:59:59.000Z

    We calculate the critical value of the hopping parameter, $\\kappa_c$, in Lattice QCD, up to two loops in perturbation theory. We employ the Sheikholeslami-Wohlert (clover) improved action for fermions and the Symanzik improved gluon action with 4- and 6-link loops. The quantity which we study is a typical case of a vacuum expectation value resulting in an additive renormalization; as such, it is characterized by a power (linear) divergence in the lattice spacing, and its calculation lies at the limits of applicability of perturbation theory. Our results are polynomial in $c_{SW}$ (clover parameter) and cover a wide range of values for the Symanzik coefficients $c_i$. The dependence on the number of colors N and the number of fermion flavors $N_f$ is shown explicitly. In order to compare our results to non perturbative evaluations of $\\kappa_c$ coming from Monte Carlo simulations, we employ an improved perturbation theory method for improved actions.

  10. Explicit solutions for effective four- and five-loop QCD running coupling

    E-Print Network [OSTI]

    Gorazd Cveti?; Igor Kondrashuk

    2011-11-26T23:59:59.000Z

    We start with the explicit solution, in terms of the Lambert W function, of the renormalization group equation (RGE) for the gauge coupling in the supersymmetric Yang-Mills theory described by the well-known beta function of Novikov et al.(NSVZ). We then construct a class of beta functions for which the RGE can be solved in terms of the Lambert W function. These beta functions are expressed in terms of a function which is a truncated Laurent series in the inverse of the gauge coupling. The parameters in the Laurent series can be adjusted so that the first coefficients of the Taylor expansion of the beta function in the gauge coupling reproduce the four-loop or five-loop QCD (or SQCD) beta function.

  11. On the relevance of magnetohydrodynamic pumping in solar coronal loop simulation experiments

    SciTech Connect (OSTI)

    Tenfelde, J.; Mackel, F.; Ridder, S.; Stein, H.; Tacke, T.; Soltwisch, H. [Institute of Experimental Physics V-Laser and Plasma Physics Group, Ruhr Universitaet Bochum, D-44780 Bochum (Germany); Kempkes, P. [Ernst-Moritz-Arndt-Universitaet Greifswald and MPI for Plasma Physics, D-17491 Greifswald (Germany)

    2012-07-15T23:59:59.000Z

    A magnetohydrodynamic pumping mechanism was proposed by Bellan [Phys. Plasmas 10, 1999 (2003)] to explain the formation of highly collimated plasma-filled magnetic flux tubes in certain solar coronal loop simulation experiments. In this paper, measurements on such an experiment are compared to the predictions of Bellan's pumping and collimation model. Significant discrepancies between theoretical implications and experimental observations have prompted more elaborate investigations by making use of pertinent modifications of the experimental device. On the basis of these studies, it is concluded that the proposed MHD pumping mechanism does not play a crucial role for the formation and temporal evolution of the arched plasma structures that are generated in the coronal loop simulation experiments under consideration.

  12. Spontaneous helicity of a polymer with side-loops confined to a cylinder

    E-Print Network [OSTI]

    Chaudhuri, Debasish

    2011-01-01T23:59:59.000Z

    Inspired by recent experiments on the spatial organization of bacterial chromosomes, we consider a type of "bottle brush" polymer consisting of a flexible backbone chain, to which flexible side loops are connected. We show that such a model with an open linear backbone spontaneously adopts a helical structure with a well-defined pitch when confined to small cylindrical volume. This helicity persists over a range of sizes and aspect-ratios of the cylinder, provided the packing fraction of the chain is suitably large. We analyze this results in terms of the interplay between the effective stiffness and actual intra-chain packing effects caused by the side-loops in response to the confinement. For the case of a circular backbone, mimicking e.g. the E. coli chromosome, the polymer adopts a linearized configuration of two parallel helices connected at the cylinder poles.

  13. Two Loop Radiative Seesaw and X-ray line Dark Matter with Global U(1) Symmetry

    E-Print Network [OSTI]

    Okada, Hiroshi

    2015-01-01T23:59:59.000Z

    We study a two loop induced radiative neutrino model with global $U(1)$ symmetry at 0.1 GeV scale, in which we consider a keV scale of dark matter candidate recently reported by XMN-Newton X-ray observatory using data of various galaxy clusters and Andromeda galaxy. We also discuss the vacuum stability of singly charged bosons, lepton flavor violation processes, and a role of Goldstone boson.

  14. Recursion relations for two-loop self-energy diagrams on-shell

    E-Print Network [OSTI]

    J. Fleischer; M. Yu. Kalmykov; A. V. Kotikov

    1999-05-18T23:59:59.000Z

    A set of recurrence relations for on-shell two-loop self-energy diagrams with one mass is presented, which allows to reduce the diagrams with arbitrary indices (powers of scalar propagators) to a set of the master integrals. The SHELL2 package is used for the calculation of special types of diagrams. A method of calculation of higher order \\epsilon-expansion of master integrals is demonstrated.

  15. One-loop Beta Functions for the Orientable Non-commutative Gross-Neveu Model

    E-Print Network [OSTI]

    Ahmed Lakhoua; Fabien Vignes-Tourneret; Jean-Christophe Wallet

    2007-01-18T23:59:59.000Z

    We compute at the one-loop order the beta-functions for a renormalisable non-commutative analog of the Gross Neveu model defined on the Moyal plane. The calculation is performed within the so called x-space formalism. We find that this non-commutative field theory exhibits asymptotic freedom for any number of colors. The beta-function for the non-commutative counterpart of the Thirring model is found to be non vanishing.

  16. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01T23:59:59.000Z

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  17. SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop

    E-Print Network [OSTI]

    S. Borowka; G. Heinrich; S. P. Jones; M. Kerner; J. Schlenk; T. Zirke

    2015-02-23T23:59:59.000Z

    SecDec is a program which can be used for the factorization of dimensionally regulated poles from parametric integrals, in particular multi-loop integrals, and the subsequent numerical evaluation of the finite coefficients. Here we present version 3.0 of the program, which has major improvements compared to version 2: it is faster, contains new decomposition strategies, an improved user interface and various other new features which extend the range of applicability.

  18. Bibliography of publications related to Classical and Quantum Gravity in terms of Connection and Loop Variables

    E-Print Network [OSTI]

    Christopher Beetle; Alejandro Corichi

    1997-03-18T23:59:59.000Z

    This bibliography attempts to give a comprehensive overview of all the literature related to the Ashtekar connection and the Rovelli-Smolin loop variables. The original version was compiled by Peter H\\"ubner in 1989, and it has been subsequently updated by Gabriela Gonzalez, Bernd Br\\"ugmann, Monica Pierri, Troy Schilling, Alejandro Corichi and Christopher Beetle. Information about additional literature, new preprints, and especially corrections are always welcome.

  19. A UWB CMOS 0.13m Low-Noise Amplifier with Dual Loop Negative Feedback

    E-Print Network [OSTI]

    Serdijn, Wouter A.

    ,rrovatti@arces.unibo.it Abstract-- A Low-Noise Amplifier for ultra wide band (UWB) applications is presented. The use of a dual for low-noise amplifier (LNA) design. Since the LNA is the first active component close to the antennaA UWB CMOS 0.13m Low-Noise Amplifier with Dual Loop Negative Feedback Luca Antonio De Michele ARCES

  20. SHOCK SPEED, COSMIC RAY PRESSURE, AND GAS TEMPERATURE IN THE CYGNUS LOOP

    SciTech Connect (OSTI)

    Salvesen, Greg; Raymond, John C.; Edgar, Richard J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)], E-mail: salvesen@head.cfa.harvard.edu, E-mail: jraymond@cfa.harvard.edu, E-mail: edgar@head.cfa.harvard.edu, E-mail: salvesen@umich.edu

    2009-09-01T23:59:59.000Z

    Upper limits on the shock speeds in supernova remnants can be combined with post-shock temperatures to obtain upper limits on the ratio of cosmic ray to gas pressure (P {sub CR}/P{sub G} ) behind the shocks. We constrain shock speeds from proper motions and distance estimates, and we derive temperatures from X-ray spectra. The shock waves are observed as faint H{alpha} filaments stretching around the Cygnus Loop supernova remnant in two epochs of the Palomar Observatory Sky Survey (POSS) separated by 39.1 years. We measured proper motions of 18 nonradiative filaments and derived shock velocity limits based on a limit to the Cygnus Loop distance of 576 {+-} 61 pc given by Blair et al. for a background star. The Position Sensitive Proportional Counter (PSPC) instrument on-board ROSAT observed the X-ray emission of the post-shock gas along the perimeter of the Cygnus Loop, and we measure post-shock electron temperature from spectral fits. Proper motions range from 2.''7 to 5.''4 over the POSS epochs and post-shock temperatures range from kT {approx} 100-200 eV. Our analysis suggests a cosmic ray to post-shock gas pressure consistent with zero, and in some positions P {sub CR} is formally smaller than zero. We conclude that the distance to the Cygnus Loop is close to the upper limit given by the distance to the background star and that either the electron temperatures are lower than those measured from ROSAT PSPC X-ray spectral fits or an additional heat input for the electrons, possibly due to thermal conduction, is required.

  1. On the two-loop corrections to the Higgs mass in trilinear R-parity violation

    E-Print Network [OSTI]

    Herbi K. Dreiner; Kilian Nickel; Florian Staub

    2014-11-21T23:59:59.000Z

    We study the impact of large trilinear R-parity violating couplings on the lightest CP-even Higgs boson mass in supersymmetric models. We use the publicly available computer codes SARAH and SPheno to compute the leading two-loop corrections. We use the effective potential approach. For not too heavy third generation squarks (< 1 TeV) and couplings close to the unitarity bound we find positive corrections up to a few GeV in the Higgs mass.

  2. Multi-leg One-loop Massive Amplitudes from Integrand Reduction via Laurent Expansion

    E-Print Network [OSTI]

    Hans van Deurzen; Gionata Luisoni; Pierpaolo Mastrolia; Edoardo Mirabella; Giovanni Ossola; Tiziano Peraro

    2014-11-18T23:59:59.000Z

    We present the application of a novel reduction technique for one-loop scattering amplitudes based on the combination of the integrand reduction and Laurent expansion. We describe the general features of its implementation in the computer code NINJA, and its interface to GoSam. We apply the new reduction to a series of selected processes involving massive particles, from six to eight legs.

  3. Homotopy Operators and One-Loop Vacuum Energy at the Tachyon Vacuum

    E-Print Network [OSTI]

    Shoko Inatomi; Isao Kishimoto; Tomohiko Takahashi

    2012-01-31T23:59:59.000Z

    We construct the homotopy operators for the BRST operator in the theory around the identity-based solutions, which are believed to represent the tachyon vacuum in cubic bosonic open string field theory. Using the homotopy operators, we find that the one-loop vacuum energy at the tachyon vacuum is independent of moduli such as interbrane distances, which are included in the BRST operator. We also revisit the cohomology problem, which was solved earlier without the homotopy operators.

  4. Lorentz symmetry breaking in the noncommutative Wess-Zumino model: One loop corrections

    SciTech Connect (OSTI)

    Ferrari, A.F.; Gomes, M.; Girotti, H.O. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo - SP (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 - Porto Alegre, RS (Brazil)

    2006-02-15T23:59:59.000Z

    In this paper we deal with the issue of Lorentz symmetry breaking in quantum field theories formulated in a noncommutative space-time. We show that, unlike in some recent analysis of quantum gravity effects, supersymmetry does not protect the theory from the large Lorentz-violating effects arising from the loop corrections. We take advantage of the noncommutative Wess-Zumino model to illustrate this point.

  5. Simulation of Thermal Plant Optimization and Hydraulic Aspects of Thermal Distribution Loops for Large Campuses

    E-Print Network [OSTI]

    Chen, Q.

    simulation models for chilled water and heating hot water distribution systems. The simulation model was used in a $2.3 million Ross Street chilled water pipe replacement project at Texas A&M University. A second project conducted at the University... of Texas at San Antonio was used as an example to demonstrate how to identify and design an optimal distribution system by using a simulation model. The author found that the minor losses of these closed loop thermal distribution systems...

  6. Case study of Chilled Water Loop Low Delta-T Fault Diagnosis

    E-Print Network [OSTI]

    Wang, L.; Meline, K.; Watt, J.

    2014-01-01T23:59:59.000Z

    verification, degraded performance ESL-IC-14-09-12 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 ...Case Study of Chilled Water Loop Low DT Fault Diagnosis Presented by Lei Wang Ph.D. P.E. Energy Systems Laboratory, Texas A&M University System Sep. 15, 2014 Energy Systems Laboratory p. 1 ESL-IC-14-09-12a Proceedings of the 14th International...

  7. Heavy Quark Anti-Quark Free Energy and the Renormalized Polyakov Loop

    E-Print Network [OSTI]

    Kaczmarek, O; Petreczky, P; Zantow, F

    2002-01-01T23:59:59.000Z

    We calculate the colour averaged and colour singlet free energies of static quark anti-quark sources placed in a thermal gluonic heat bath. We discuss the renormalization of these free energies using the short distance properties of the zero temperature heavy quark potential. This leads to the definition of the renormalized Polyakov loop as an order parameter for the deconfinement phase transition of the SU(3) gauge theory which is well behaved in the continuum limit.

  8. One-loop fluctuation-dissipation formula for bubble-wall velocity

    SciTech Connect (OSTI)

    Arnold, P. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1993-08-15T23:59:59.000Z

    The limiting bubble-wall velocity during a first-order electroweak phase transition is of interest in scenarios for electroweak baryogenesis. Khlebnikov has recently proposed an interesting method for computing this velocity based on the fluctuation-dissipation theorem. I demonstrate that at one-loop order this method is identical to simple, earlier techniques for computing the wall velocity based on computing the friction from particles reflecting off or transmitting through the wall in the ideal gas ( thin-wall'') limit.

  9. Analysis of the October 5, 1979 lithium spill and fire in the Lithium Processing Test Loop

    SciTech Connect (OSTI)

    Maroni, V.A.; Beatty, R.A.; Brown, H.L.; Coleman, L.F.; Foose, R.M.; McPheeters, C.C.; Slawecki, M.; Smith, D.L.; Van Deventer, E.H.; Weston, J.R.

    1981-12-01T23:59:59.000Z

    On October 5, 1979, the Lithium Processing Test Loop (LPTL) developed a lithium leak in the electromagnetic (EM) pump channel, which damaged the pump, its surrounding support structure, and the underlying floor pan. A thorough analysis of the causes and consequences of the pump failure was conducted by personnel from CEN and several other ANL divisions. Metallurgical analyses of the elliptical pump channel and adjacent piping revealed that there was a significant buildup of iron-rich crystallites and other solid material in the region of the current-carrying bus bars (region of high magnetic field), which may have resulted in a flow restriction that contributed to the deterioration of the channel walls. The location of the failure was in a region of high residual stress (due to cold work produced during channel fabrication); this failure is typical of other cold work/stress-related failures encountered in components operated in forced-circulation lithium loops. Another important result was the isolation of crystals of a compound characterized as Li/sub x/CrN/sub y/. Compounds of this type are believed to be responsible for much of the Fe, Cr, and Ni mass transfer encountered in lithium loops constructed of stainless steel. The importance of nitrogen in the mass-transfer mechanism has long been suspected, but the existence of stable ternary Li-M-N compounds (M = Fe, Cr, Ni) had not previously been verified.

  10. Two Loop Unification of Non-SUSY SO(10) GUT with TeV Scalars

    E-Print Network [OSTI]

    Brennan, T Daniel

    2015-01-01T23:59:59.000Z

    In this paper we examine gauge coupling unification at the two loop level in the the non-SUSY SO(10) grand unified theory proposed by Babu and Mohapatra \\cite{BM}. This GUT, which breaks down to the standard model in a single step, has the distinguishing feature of containing non-standard model scalars at the TeV scale. This leads to a plethora of interesting effects in the TeV range, most prominently predicting the possibility of discovering new particles at the LHC in run 2. This model also gives rise to measurable proton decay, neutron-antineutron oscillations, provides a mechanism for baryogenesis, and contains potential dark matter candidates. In this paper, we compute the two loop beta function and show that this model unifies to two loop order around $10^{15}$ GeV. We then compute the proton lifetime and argue that threshold effects place it comfortably above the Super Kamiokande limit. In this paper, we demonstrate that this model passes the baseline for physical plausibility and therefore is worth st...

  11. Evaluation of severe accident risk during mid-loop operation at Surry unit-1

    SciTech Connect (OSTI)

    Mubayi, V.; Jo, J.; Lin, C.C.; Neymotin, L.; Pratt, W.T.

    1996-06-01T23:59:59.000Z

    In the past most probabilistic risk assessments (PRAs) of severe accidents in nuclear power plants have considered initiating events which could potentially lead to core damage and containment failure during normal full power operation. However, recent studies and operational experience during periods while plants were shutdown for maintenance or refueling indicated that potential accidents initiated during low power operation or shutdown conditions could also potentially become important contributors to risk. In 1989, the Nuclear Regulatory Commission (NRC) began an extensive program to assess the risk during low power and shutdown operation. Two plants, Surry (a pressurized water reactor, PWR) and Grand Gulf (a boiling water reactor ,BWR) were selected as the plants to be studied.This paper describes an analysis of accident progression and offsite consequences (level 3 PRA) carried out for the Surry plant. The focus of the level 3 PRA was on mid-loop operation, which is a plant operational state (POS) that can occur while the plant is shutdown for maintenance or refueling. Mid-loop refers to a configuration when the reactor coolant system is lowered to the mid-plane of the hot leg to allow essential maintenance to be performed. This operational state was selected after an initial coarse screening study indicated that reduced inventory during mid-loop operation could pose higher risk than other POSs.

  12. SHEAR PHOTOSPHERIC FORCING AND THE ORIGIN OF TURBULENCE IN CORONAL LOOPS

    SciTech Connect (OSTI)

    Rappazzo, A. F. [Instituto de Astrofisica de Canarias, 38205 La Laguna, Tenerife (Spain); Velli, M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Einaudi, G., E-mail: rappazzo@iac.e [Dipartimento di Fisica 'E. Fermi', Universita di Pisa, 56127 Pisa (Italy)

    2010-10-10T23:59:59.000Z

    We present a series of numerical simulations aimed at understanding the nature and origin of turbulence in coronal loops in the framework of the Parker model for coronal heating. A coronal loop is studied via reduced magnetohydrodynamic (MHD) simulations in Cartesian geometry. A uniform and strong magnetic field threads the volume between the two photospheric planes, where a velocity field in the form of a one-dimensional shear flow pattern is present. Initially, the magnetic field that develops in the coronal loop is a simple map of the photospheric velocity field. This initial configuration is unstable to a multiple tearing instability that develops islands with X and O points in the plane orthogonal to the axial field. Once the nonlinear stage sets in the system evolution is characterized by a regime of MHD turbulence dominated by magnetic energy. A well-developed power law in energy spectra is observed and the magnetic field never returns to the simple initial state mapping the photospheric flow. The formation of X and O points in the planes orthogonal to the axial field allows the continued and repeated formation and dissipation of small-scale current sheets where the plasma is heated. We conclude that the observed turbulent dynamics are not induced by the complexity of the pattern that the magnetic field-line footpoints follow but they rather stem from the inherent nonlinear nature of the system.

  13. Two Loop Unification of Non-SUSY SO(10) GUT with TeV Scalars

    E-Print Network [OSTI]

    T. Daniel Brennan

    2015-03-30T23:59:59.000Z

    In this paper we examine gauge coupling unification at the two loop level in the the non-SUSY SO(10) grand unified theory proposed by Babu and Mohapatra \\cite{BM}. This GUT, which breaks down to the standard model in a single step, has the distinguishing feature of containing non-standard model scalars at the TeV scale. This leads to a plethora of interesting effects in the TeV range, most prominently predicting the possibility of discovering new particles at the LHC in run 2. This model also gives rise to measurable proton decay, neutron-antineutron oscillations, provides a mechanism for baryogenesis, and contains potential dark matter candidates. In this paper, we compute the two loop beta function and show that this model unifies to two loop order around $10^{15}$ GeV. We then compute the proton lifetime and argue that threshold effects place it comfortably above the Super Kamiokande limit. In this paper, we demonstrate that this model passes the baseline for physical plausibility and therefore is worth studying due to its interesting low energy phenomenology.

  14. Design of an experimental loop for post-LOCA heat transfer regimes in a Gas-cooled Fast Reactor

    E-Print Network [OSTI]

    Cochran, Peter A. (Peter Andrew)

    2005-01-01T23:59:59.000Z

    The goal of this thesis is to design an experimental thermal-hydraulic loop capable of generating accurate, reliable data in various convection heat transfer regimes for use in the formulation of a comprehensive convection ...

  15. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    SciTech Connect (OSTI)

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Peterson, Scott N.; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon (UC); (UIC)

    2012-04-18T23:59:59.000Z

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

  16. Tyrosine B10 triggers a heme propionate hydrogen bonding network loop with glutamine E7 moiety

    SciTech Connect (OSTI)

    Ramos-Santana, Brenda J., E-mail: brenda.ramos@upr.edu [Department of Chemistry, University of Puerto Rico, Mayagueez Campus, P.O. Box 9019, Mayagueez 00681-9019 (Puerto Rico); Lopez-Garriga, Juan, E-mail: juan.lopez16@upr.edu [Department of Chemistry, University of Puerto Rico, Mayagueez Campus, P.O. Box 9019, Mayagueez 00681-9019 (Puerto Rico)] [Department of Chemistry, University of Puerto Rico, Mayagueez Campus, P.O. Box 9019, Mayagueez 00681-9019 (Puerto Rico)

    2012-08-10T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer H-bonding network loop by PheB10Tyr mutation is proposed. Black-Right-Pointing-Pointer The propionate group H-bonding network restricted the flexibility of the heme. Black-Right-Pointing-Pointer The hydrogen bonding interaction modulates the electron density of the iron. Black-Right-Pointing-Pointer Propionate H-bonding network loop explains the heme-ligand stabilization. -- Abstract: Propionates, as peripheral groups of the heme active center in hemeproteins have been described to contribute in the modulation of heme reactivity and ligand selection. These electronic characteristics prompted the question of whether the presence of hydrogen bonding networks between propionates and distal amino acids present in the heme ligand moiety can modulate physiological relevant events, like ligand binding association and dissociation activities. Here, the role of these networks was evaluated by NMR spectroscopy using the hemoglobin I PheB10Tyr mutant from Lucina pectinata as model for TyrB10 and GlnE7 hemeproteins. {sup 1}H-NMR results for the rHbICN PheB10Tyr derivative showed chemical shifts of TyrB10 OH{eta} at 31.00 ppm, GlnE7 N{sub {epsilon}1}H/N{sub {epsilon}2}H at 10.66 ppm/-3.27 ppm, and PheE11 C{sub {delta}}H at 11.75 ppm, indicating the presence of a crowded, collapsed, and constrained distal pocket. Strong dipolar contacts and inter-residues crosspeaks between GlnE7/6-propionate group, GlnE7/TyrB10 and TyrB10/CN suggest that this hydrogen bonding network loop between GlnE7, TyrB10, 6-propionate group, and the heme ligand contribute significantly to the modulation of the heme iron electron density as well as the ligand stabilization mechanism. Therefore, the network loop presented here support the fact that the electron withdrawing character of the hydrogen bonding is controlled by the interaction of the propionates and the nearby electronic environments contributing to the modulation of the heme electron density state. Thus, we hypothesize that in hemeproteins with similar electrostatic environment the flexibility of the heme-6-propionate promotes a hydrogen bonding network loop between the 6-propionate, the heme ligand and nearby amino acids, tailoring in this way the electron density in the heme-ligand moiety.

  17. Phasing Loops

    E-Print Network [OSTI]

    Guinski, Rodrigo 1980-

    2012-11-30T23:59:59.000Z

    -access memory RGB red, blue and green RGBA red, blue, green and alpha SWF Shockwave Flash, multimedia, vector graphics and ActionScript file format vi TABLE OF CONTENTS Page INTRODUCTION... variations before repetitions begin to happen. The images are chosen at random and slowly fade in and out; the duration of each image is also randomly determined. The speed in which the images fade in and out can be 29 chosen by the user in the DVD...

  18. 2002 AUGUST 24 LIMB FLARE LOOP: DYNAMICS OF MICROWAVE BRIGHTNESS DISTRIBUTION

    SciTech Connect (OSTI)

    Reznikova, V. E.; Ji, H. [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Melnikov, V. F.; Gorbikov, S. P.; Pyatakov, N. P. [Radiophysical Research Institute (NIRFI), Nizhny Novgorod 603950 (Russian Federation); Shibasaki, K. [Nobeyama Solar Radio Observatory/NAOJ, Nagano 384-1305 (Japan); Myagkova, I. N. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)], E-mail: vreznikova@nirfi.sci-nnov.ru

    2009-05-20T23:59:59.000Z

    High-resolution radio observation of Nobeyama Radioheliograph at 17 and 34 GHz allowed studying the dynamics of microwave brightness distribution along the giant limb flaring loop in the event of 2002 August 24. It is found that on the rising phase of the radio burst the brightness distribution was highly asymmetric, with a strong maximum near the southern footpoint (SFP) and much weaker brightness enhancements near the loop top (LT) and northern footpoint. On the decay phase, the LT gradually became most bright. The similar dynamics of brightness distribution are shown to happen for all major temporal subpeaks of the burst. Results of our diagnostics show two important properties: (1) the number density of mildly relativistic electrons in the LT is much higher than near the footpoints (FPs) during rise, maximum and decay of each major peak; and (2) the ratio of the electron number densities in the LT and an FP increases from the maximum to decay phase. Model simulations with making use of the nonstationary Fokker-Planck equation have allowed us to find the model explaining the major properties of the microwave brightness distribution and dynamics. The model is characterized by a compact source of electrons located near the center of an asymmetric magnetic loop; the source is nonstationary, long lasting, and injecting high-energy electrons with the pitch-angle distribution mostly directed toward the SFP but also having a very weak isotropic component. This easily explains the observed brightness asymmetry. The observed dynamics comes due to two reasons: faster precipitation of electrons having their mirror points near the ends of the magnetic trap, and relatively faster decay of the lower energy electrons responsible for the gyrosynchrotron emission near the FPs with higher magnetic field.

  19. Investigation of chemical looping combustion by solid fuels. 1. Process analysis

    SciTech Connect (OSTI)

    Yan Cao; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

    2006-10-15T23:59:59.000Z

    This paper is the first in a series of two, where we present the concept of a CLC process of solid fuels using a circulating fluidized bed with three loop seals. The riser of this circulating fluidized bed was used as the oxidizer of the oxygen carrier; one of the loop seals was used as the reducer of the oxygen carrier and the separator for ash and oxygen carrier, and the other two loop seals were used for pressure balance in the solid recycle process. Pressure profiles of recycled solids using this process are presented in detail. For the development of an oxygen carrier, we focused on the establishment of a theoretical frame of oxygen transfer capability, reaction enthalpy, a chemical equilibrium, and kinetics. Analysis results indicated that Cu-, Ni-, and Co-based oxygen carriers may be the optimum oxygen carriers for the CLC of solid fuels. Thermodynamic analysis indicated that CO{sub 2} can be concentrated and purified to at least 99% purity for the gas-solid reaction mode or even higher for the solid-solid reaction mode on the basis of the selected oxygen carriers. A Cu-based oxygen carrier is the choice that has the potential to make the reducer self-sustaining or autothermal because of its exothermic nature during reduction. This would be beneficial for simplifying the operation of the reducer. The tendency of the Cu-based oxygen carriers to agglomerate can be eliminated by decreasing the operating temperature in the CLC system. In the second part of the series, we will evaluate the reduction kinetics of selected Cu-based oxygen carriers by coal and other 'opportunity solid fuels' using a simultaneous differential scanning calorimetry-thermogravimetric analysis to simulate a microreactor, using an X-ray diffractometer and a scanning electron microscope to characterize the solid residues, and a thermogravimetric analysis coupled with mass spectra to characterize the evolved gas compositions. 46 refs., 5 figs., 2 tabs.

  20. Wilson-'t Hooft loops in finite-temperature noncommutative dipole field theory from dual supergravity

    SciTech Connect (OSTI)

    Huang, W.-H. [Department of Physics, National Cheng Kung University, Tainan, Taiwan (China)

    2007-11-15T23:59:59.000Z

    We first study the temporal Wilson loop in the finite-temperature noncommutative dipole field theory from the string/gauge correspondence. The associated dual supergravity background is constructed from the near-horizon geometry of near-extremal D branes, after applying T duality and smeared twist. We investigate the string configuration therein and find that while the temperature produces a maximum distance L{sub max} in the interquark distance the dipole in there could produce a minimum distance L{sub min}. The quark boundary pair therefore could be found only if their distance is between L{sub min} and L{sub max}. We also show that, beyond a critical temperature the quark pair becomes totally free due to screening by thermal bath. We next study the spatial Wilson loop and find the confining nature in the zero temperature 3D and 4D nonsupersymmetry dipole gauge theory. The string tension of the linear confinement potential is obtained and found to be a decreasing function of the dipole field. We also investigate the associated t'Hooft loop and determine the corresponding monopole antimonopole potential. The conventional screening of magnetic charge which indicates the confinement of the electric charge is replaced by a strong repulsive however. Finally, we show that the dual string which is rotating along the dipole deformed S{sup 5} will behave as a static one without dipole field, which has no minimum distance and has larger energy than a static one with dipole field. We discuss the phase transition between these string solutions.

  1. Predictive wavefront control for Adaptive Optics with arbitrary control loop delays

    SciTech Connect (OSTI)

    Poyneer, L A; Veran, J

    2007-10-30T23:59:59.000Z

    We present a modification of the closed-loop state space model for AO control which allows delays that are a non-integer multiple of the system frame rate. We derive the new forms of the Predictive Fourier Control Kalman filters for arbitrary delays and show that they are linear combinations of the whole-frame delay terms. This structure of the controller is independent of the delay. System stability margins and residual error variance both transition gracefully between integer-frame delays.

  2. Why are the effective equations of loop quantum cosmology so accurate?

    E-Print Network [OSTI]

    Carlo Rovelli; Edward Wilson-Ewing

    2014-07-25T23:59:59.000Z

    We point out that the relative Heisenberg uncertainty relations vanish for non-compact spaces in homogeneous loop quantum cosmology. As a consequence, for sharply peaked states quantum fluctuations in the scale factor never become important, even near the bounce point. This shows why quantum back-reaction effects remain negligible and explains the surprising accuracy of the effective equations in describing the dynamics of sharply peaked wave packets. This also underlines the fact that minisuperspace models ---where it is global variables that are quantized--- do not capture the local quantum fluctuations of the geometry.

  3. Temporal Loop Multiplexing: A resource efficient scheme for multiplexed photon-pair sources

    E-Print Network [OSTI]

    Francis-Jones, Robert J A

    2015-01-01T23:59:59.000Z

    Single photons are a vital resource for photonic quantum information processing. However, even state-of-the-art single photon sources based on photon-pair generation and heralding detection have only a low probability of delivering a single photon when one is requested. We analyse a scheme that uses a switched fibre delay loop to increase the delivery probability per time bin of single photons from heralded sources. We show that, for realistic experimental parameters, combining the output of up to 15 pulses can yield a performance improvement of a factor of 10. We consider the future performance of this scheme with likely component improvements.

  4. Power Hardware-in-the-Loop (PHIL) Testing Facility for Distributed Energy Storage (Poster)

    SciTech Connect (OSTI)

    Neubauer.J.; Lundstrom, B.; Simpson, M.; Pratt, A.

    2014-06-01T23:59:59.000Z

    The growing deployment of distributed, variable generation and evolving end-user load profiles presents a unique set of challenges to grid operators responsible for providing reliable and high quality electrical service. Mass deployment of distributed energy storage systems (DESS) has the potential to solve many of the associated integration issues while offering reliability and energy security benefits other solutions cannot. However, tools to develop, optimize, and validate DESS control strategies and hardware are in short supply. To fill this gap, NREL has constructed a power hardware-in-the-loop (PHIL) test facility that connects DESS, grid simulator, and load bank hardware to a distribution feeder simulation.

  5. Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units 

    E-Print Network [OSTI]

    Guan, W.; Liu, M.; Wang, J.

    1998-01-01T23:59:59.000Z

    across the hot water control valve is 5 psi and 2 psi for the coil and pipeline. The flow coefficient of the control valves are 9 GPIW~S~~,~ for hot water valve and 13 GPIW~S~~.~ for the chilled water control valve. The designed loop pressure is 7... 14: Using dry coil model will introduce certain error for the cooling coil simulation since the heat transfer coefficient is higher when the coil is wet. Thermostat Model: The thermostat generates a pneumatic pressure signal from 3 to 15 psig...

  6. Free energy of static quarks and the renormalized Polyakov loop in full QCD

    E-Print Network [OSTI]

    K. Petrov; for the RBC-Bielefeld Collaboration

    2007-10-23T23:59:59.000Z

    We present results from a detailed study of singlet free energies in full QCD with realistic quark masses. An improved scheme for the non-perturbative renormalization of the Polyakov loop is used and we compare its temperature dependence for QCD with different flavor content. We also analyze screening masses extracted from singlet free energies at various temperatures close to and above the QCD transition temperature. We conclude that the temperature dependence of screening masses is well described by perturbation theory up to a non-perturbative pre-factor. An effective running coupling has been determined for all temperature values giving additional insight into screening phenomena at high temperature.

  7. Automated one-loop calculations with GoSam 2.0

    E-Print Network [OSTI]

    H. van Deurzen; N. Greiner; G. Heinrich; G. Luisoni; P. Mastrolia; E. Mirabella; G. Ossola; T. Peraro; J. Schlenk; J. F. von Soden-Fraunhofen; F. Tramontano

    2014-07-03T23:59:59.000Z

    We present the version 2.0 of the program GoSam, which is a public program package to compute one-loop corrections to multi-particle processes. The extended version of the "Binoth-Les-Houches-Accord" interface to Monte Carlo programs is also implemented. This allows a large flexibility regarding the combination of the code with various Monte Carlo programs to produce fully differential NLO results, including the possibility of parton showering and hadronisation. We describe the new features of the code and illustrate the wide range of applicability for multi-particle processes at NLO, both within and beyond the Standard Model.

  8. Fundamental-Mode Oscillations of Two Coronal Loops within a Solar Magnetic Arcade

    E-Print Network [OSTI]

    Jain, Rekha; Hindman, B W

    2015-01-01T23:59:59.000Z

    We analyse intensity variations, as measured by the Atmospheric Imaging Assembly (AIA) in the 171 {\\AA} passband, in two coronal loops embedded within a single coronal magnetic arcade. We detect oscillations in the fundamental mode with periods of roughly 2 minutes and decay times of 5 minutes. The oscillations were initiated by interaction of the arcade with a large wavefront issuing from a flare site. Further, the power spectra of the oscillations evince signatures consistent with oblique propagation to the field lines and for the existence of a 2-D waveguide instead of a 1-D one.

  9. Optimal open-loop and feedback control of spacecraft using single gimbal control moment gyroscopes

    E-Print Network [OSTI]

    Hoelscher, Brian Ray

    1992-01-01T23:59:59.000Z

    . The development employs an integrated model of the spacecraft dynamics with the control moment gyroscope dynamics. Open-loop control profiles are found which optimize a performance index that is a weighted function of maneuver time, magnitude of control effort... ? [tt ? T?]) / Tap t & t, ? T? (g) where TR is the control rise arne and tf is the maneuver time. In order to simplify the notation for the derivation of the optimal control theory in the next two sections, equations (I) to (8), which define...

  10. Kinks, loops, and protein folding, with protein A as an example

    SciTech Connect (OSTI)

    Krokhotin, Andrey, E-mail: Andrei.Krokhotine@cern.ch [Department of Physics and Astronomy and Science for Life Laboratory, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden)] [Department of Physics and Astronomy and Science for Life Laboratory, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Liwo, Adam, E-mail: adam@chem.univ.gda.pl [Faculty of Chemistry, University of Gdansk, ul. Sobieskiego 18, 80-952 Gdansk (Poland)] [Faculty of Chemistry, University of Gdansk, ul. Sobieskiego 18, 80-952 Gdansk (Poland); Maisuradze, Gia G., E-mail: gm56@cornell.edu; Scheraga, Harold A., E-mail: has5@cornell.edu [Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301 (United States); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy and Science for Life Laboratory, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours, France and Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

    2014-01-14T23:59:59.000Z

    The dynamics and energetics of formation of loops in the 46-residue N-terminal fragment of the B-domain of staphylococcal protein A has been studied. Numerical simulations have been performed using coarse-grained molecular dynamics with the united-residue (UNRES) force field. The results have been analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrödinger (DNLS) equation. In the case of proteins, the DNLS equation arises from a C{sup ?}-trace-based energy function. Three individual kink profiles were identified in the experimental three-?-helix structure of protein A, in the range of the Glu16-Asn29, Leu20-Asn29, and Gln33-Asn44 residues, respectively; these correspond to two loops in the native structure. UNRES simulations were started from the full right-handed ?-helix to obtain a clear picture of kink formation, which would otherwise be blurred by helix formation. All three kinks emerged during coarse-grained simulations. It was found that the formation of each is accompanied by a local free energy increase; this is expressed as the change of UNRES energy which has the physical sense of the potential of mean force of a polypeptide chain. The increase is about 7 kcal/mol. This value can thus be considered as the free energy barrier to kink formation in full ?-helical segments of polypeptide chains. During the simulations, the kinks emerge, disappear, propagate, and annihilate each other many times. It was found that the formation of a kink is initiated by an abrupt change in the orientation of a pair of consecutive side chains in the loop region. This resembles the formation of a Bloch wall along a spin chain, where the C{sup ?} backbone corresponds to the chain, and the amino acid side chains are interpreted as the spin variables. This observation suggests that nearest-neighbor side chain–side chain interactions are responsible for initiation of loop formation. It was also found that the individual kinks are reflected as clear peaks in the principal modes of the analyzed trajectory of protein A, the shapes of which resemble the directional derivatives of the kinks along the chain. These observations suggest that the kinks of the DNLS equation determine the functionally important motions of proteins.

  11. Hard Thermal Loops, Weak Gravitational Fields and The Quark Gluon Energy Momentum Tensor

    E-Print Network [OSTI]

    E. A. Gaffney

    1994-09-13T23:59:59.000Z

    We use an auxiliary field construction to discuss the hard thermal loop effective action associated with massless thermal SU(N) QCD interacting with a weak gravitational field. It is demonstrated that the previous attempt to derive this effective action has only been partially successful and that it is presently only known to first order in the graviton coupling constant. This is still sufficient to enable a calculation of a symmetric traceless quark gluon plasma energy momentum tensor. Finally, we comment on the conserved currents and charges of the derived energy momentum tensor.

  12. Dual Loop Parallel/Series Waste Heat Recovery System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner About Us DrewDual Loop Parallel/Series

  13. SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Yang, Liheng; Zhang, Jun; Li, Ting [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Liu, Wei [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Shen, Yuandeng, E-mail: yangliheng@bao.ac.cn, E-mail: zjun@bao.ac.cn, E-mail: liting@bao.ac.cn [Kwasan and Hida Observatories, Kyoto University, Kyoto 607-8471 (Japan)

    2013-09-20T23:59:59.000Z

    We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup –1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wave transit, the original redshift increased by about 3 km s{sup –1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.

  14. SDO/AIA and Hinode/EIS Observations of Interaction Between an EUV Wave and Active Region Loops

    E-Print Network [OSTI]

    Yang, Liheng; Liu, Wei; Li, Ting; Shen, Yuandeng

    2013-01-01T23:59:59.000Z

    We present detailed analysis of an extreme ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430--910 km\\s. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wave transit, the original redshift increased by about 3 km\\s, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on...

  15. CONTAGIOUS DISEASE MODULE FOR THE JOINT EFFECTS MODEL Mr. Jason Rodriguez, Ms. Karen E. Cheng, Dr. Gene E. McClellan, Dr. David J. Crary, and Dr.

    E-Print Network [OSTI]

    Ray, Jaideep

    CONTAGIOUS DISEASE MODULE FOR THE JOINT EFFECTS MODEL Mr. Jason Rodriguez, Ms. Karen E. Cheng, Dr to modeling the spread of contagious diseases across a population-at-risk represented by the LandScan database the effectiveness of contagious disease controls such as quarantine and prophylaxis. We are working with Sandia

  16. Loop-closure events during protein folding: Rationalizing the shape of Phi-value distributions

    E-Print Network [OSTI]

    Thomas R. Weikl

    2005-02-15T23:59:59.000Z

    In the past years, the folding kinetics of many small single-domain proteins has been characterized by mutational Phi-value analysis. In this article, a simple, essentially parameter-free model is introduced which derives folding routes from native structures by minimizing the entropic loop-closure cost during folding. The model predicts characteristic folding sequences of structural elements such as helices and beta-strand pairings. Based on few simple rules, the kinetic impact of these structural elements is estimated from the routes and compared to average experimental Phi-values for the helices and strands of 15 small, well-characterized proteins. The comparison leads on average to a correlation coefficient of 0.62 for all proteins with polarized Phi-value distributions, and 0.74 if distributions with negative average Phi-values are excluded. The diffuse Phi-value distributions of the remaining proteins are reproduced correctly. The model shows that Phi-value distributions, averaged over secondary structural elements, can often be traced back to entropic loop-closure events, but also indicates energetic preferences in the case of a few proteins governed by parallel folding processes.

  17. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    SciTech Connect (OSTI)

    Donna Post Guillen

    2012-11-01T23:59:59.000Z

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  18. Wide tracking range, auto ranging, low jitter phase lock loop for swept and fixed frequency systems

    DOE Patents [OSTI]

    Kerner, Thomas M. (Manorville, NY)

    2001-01-01T23:59:59.000Z

    The present invention provides a wide tracking range phase locked loop (PLL) circuit that achieves minimal jitter in a recovered clock signal, regardless of the source of the jitter (i.e. whether it is in the source or the transmission media). The present invention PLL has automatic harmonic lockout detection circuitry via a novel lock and seek control logic in electrical communication with a programmable frequency discriminator and a code balance detector. (The frequency discriminator enables preset of a frequency window of upper and lower frequency limits to derive a programmable range within which signal acquisition is effected. The discriminator works in combination with the code balance detector circuit to minimize the sensitivity of the PLL circuit to random data in the data stream). In addition, the combination of a differential loop integrator with the lock and seek control logic obviates a code preamble and guarantees signal acquisition without harmonic lockup. An adaptive cable equalizer is desirably used in combination with the present invention PLL to recover encoded transmissions containing a clock and/or data. The equalizer automatically adapts to equalize short haul cable lengths of coaxial and twisted pair cables or wires and provides superior jitter performance itself. The combination of the equalizer with the present invention PLL is desirable in that such combination permits the use of short haul wires without significant jitter.

  19. ATMOSPHERIC IMAGING ASSEMBLY OBSERVATIONS OF CORONAL LOOPS: CROSS-FIELD TEMPERATURE DISTRIBUTIONS

    SciTech Connect (OSTI)

    Schmelz, J. T.; Jenkins, B. S.; Pathak, S., E-mail: jschmelz@memphis.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2013-06-10T23:59:59.000Z

    We construct revised response functions for the Atmospheric Imaging Assembly (AIA) using the new atomic data, ionization equilibria, and coronal abundances available in CHIANTI 7.1. We then use these response functions in multithermal analysis of coronal loops, which allows us to determine a specific cross-field temperature distribution without ad hoc assumptions. Our method uses data from the six coronal filters and the Monte Carlo solutions available from our differential emission measure (DEM) analysis. The resulting temperature distributions are not consistent with isothermal plasma. Therefore, the observed loops cannot be modeled as single flux tubes and must be composed of a collection of magnetic strands. This result is now supported by observations from the High-resolution Coronal Imager, which show fine-scale braiding of coronal strands that are reconnecting and releasing energy. Multithermal analysis is one of the major scientific goals of AIA, and these results represent an important step toward the successful achievement of that goal. As AIA DEM analysis becomes more straightforward, the solar community will be able to take full advantage of the state-of-the-art spatial, temporal, and temperature resolution of the instrument.

  20. Self-avoiding worm-like chain model for dsDNA loop formation

    E-Print Network [OSTI]

    Yaroslav Pollak; Sarah Goldberg; Roee Amit

    2014-11-06T23:59:59.000Z

    We compute for the first time the effects of excluded volume on the probability for double-stranded DNA to form a loop. We utilize a Monte-Carlo algorithm for generation of large ensembles of self- avoiding worm-like chains, which are used to compute the J-factor for varying lengthscales. In the entropic regime, we confirm the scaling-theory prediction of a power-law drop off of -1.92, which is significantly stronger than the -1.5 power-law predicted by the non-self-avoiding worm-like chain model. In the elastic regime, we find that the angle-independent end-to-end chain distribution is highly anisotropic. This anisotropy, combined with the excluded volume constraints, lead to an increase in the J-factor of the self-avoiding worm-like chain by about half an order of magnitude relative to its non-self-avoiding counterpart. This increase could partially explain the anomalous results of recent cyclization experiments, in which short dsDNA molecules were found to have an increased propensity to form a loop.