Powered by Deep Web Technologies
Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Bahrain National Gas and Oil Authority | Open Energy Information  

Open Energy Info (EERE)

Bahrain National Gas and Oil Authority Bahrain National Gas and Oil Authority Jump to: navigation, search Logo: Bahrain National Gas and Oil Authority Country Bahrain Name Bahrain National Gas and Oil Authority Address 1435 Manama-Bahrain City Manama, Bahrain Website http://www.noga.gov.bh/en/defa Coordinates 26.231155°, 50.5705391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.231155,"lon":50.5705391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Bahrain oil and development 1929-1989  

SciTech Connect

This book describes the economic, political, and social elements of relations between international oil companies and Bahrain. It also provides insights into Middle East regional oil and gas development, oil pricing and production evolution, and relations between Persian Gulf states and such western powers as Great Britain and the U.S.

Clarke, A.

1990-01-01T23:59:59.000Z

3

Labor, nationalism, and imperialism in eastern Arabia: Britain, the Shaikhs, and the Gulf oil workers in Bahrain, Kuwait and Qatar, 1932-1956  

SciTech Connect

This study examines the lack of a noticeable indigenous labor movement in the contemporary Gulf Arab countries of Bahrain, Kuwait and Qatar; it focuses on the emergence, after the discovery of oil, of an industrial Gulf labor force, and on the evolution of the British policy towards oil and Gulf oil workers. The period examined begins with the discovery of oil in Bahrain in 1932 (the first such discovery on the Arab side of the Gulf), and ends with the Suez Crisis of 1956. The latter is a watershed event in Gulf history. It is argued that the Suez Crisis was in large part responsible for the long-term defeat of the indigenous labor movement in the Gulf. Attention is given to the parts played by the British Government of India, the Foreign Office, the local Shaikhs, the Gulf nationalists, and by the workers themselves. Policies towards workers passed through two different periods. In the first, 1932-1945, the Government of India had no direct interest in the Gulf labor situation; in the second, 1946-1956, the Foreign Office took increased interest in the welfare of local oil workers, primarily because of the importance of oil to reconstruction of the British economy after the war. However, the Suez Crisis in 1956 convinced the British to withdraw their support for the workers.

Saleh, H.M.A.

1991-01-01T23:59:59.000Z

4

Bahrain: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bahrain: Energy Resources Bahrain: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26,"lon":50.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

5

Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Pacific Gas and Electric Company to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Google Bookmark Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Delicious Rank Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Pacific Gas and Electric Company on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program

6

Managing the National Greenhouse Gas Inventory Process | Open Energy  

Open Energy Info (EERE)

Managing the National Greenhouse Gas Inventory Process Managing the National Greenhouse Gas Inventory Process Jump to: navigation, search Tool Summary Name: Managing the National Greenhouse Gas Inventory Process Agency/Company /Organization: United Nations Development Programme, United Nations Environment Programme, Global Environment Facility Topics: GHG inventory Resource Type: Guide/manual, Training materials, Lessons learned/best practices Website: ncsp.undp.org/document/managing-national-greenhouse-gas-inventory-proc Managing the National Greenhouse Gas Inventory Process Screenshot References: Managing the National Greenhouse Gas Inventory Process[1] The objective of the handbook is to provide non-AnnexI Parties with a strategic and logical approach to a sustainable inventory process. About "The handbook was developed by United Nations Development Programme with

7

Category:Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search This category includes companies and information related to oil (petroleum) or natural gas. Pages in category "Oil and Gas" The following 114 pages are in this category, out of 114 total. A Abu Dhabi National Oil Company Abu Dhabi Supreme Petroleum Council Al Furat Petroleum Company Alabama Oil and Gas Board Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Algeria Ministry of Energy and Mining Archaeological Resource Protection Act Archaeological Resources Protection Act Arizona Oil and Gas Commission Arkansas Oil and Gas Commission B Bahrain National Gas and Oil Authority Bald and Golden Eagle Protection Act C California Division of Oil, Gas, and Geothermal Resources California Environmental Quality Act

8

Agriculture and Land Use National Greenhouse Gas Inventory Software | Open  

Open Energy Info (EERE)

Agriculture and Land Use National Greenhouse Gas Inventory Software Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas Inventory Software Agency/Company /Organization: Colorado State University Partner: United States Agency for International Development, United States Forest Service, United States Environmental Protection Agency Sector: Land Focus Area: Forestry, Agriculture Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.nrel.colostate.edu/projects/ghgtool/index.php Cost: Free Agriculture and Land Use National Greenhouse Gas Inventory Software Screenshot References: Agriculture and Land Use National Greenhouse Gas Inventory Software[1]

9

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

10

IPCC Guidelines for National Greenhouse Gas Inventories | Open Energy  

Open Energy Info (EERE)

IPCC Guidelines for National Greenhouse Gas Inventories IPCC Guidelines for National Greenhouse Gas Inventories Jump to: navigation, search Tool Summary Name: IPCC Guidelines for National Greenhouse Gas Inventories Agency/Company /Organization: World Meteorological Organization, United Nations Environment Programme Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Guide/manual, Training materials References: 2006 IPCC Guidelines for National Greenhouse Gas Inventories[1] Logo: IPCC Guidelines for National Greenhouse Gas Inventories "The 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 Guidelines) were produced at the invitation of the United Nations Framework Convention on Climate Change(UNFCCC) to update the Revised 1996 Guidelines and associated good practice guidance which provide internationally agreed

11

,"Selected National Average Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected National Average Natural Gas Prices" Selected National Average Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Average Natural Gas Prices",11,"Monthly","11/2013","1/15/1973" ,"Data 2","Annual Average Natural Gas Prices",11,"Annual",2012,"6/30/1922" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm03vmall.xls" ,"Available from Web Page:","http://www.eia.gov/oil_gas/natural_gas/data_publications/natural_gas_monthly/ngm.html"

12

Ethiopia-National Greenhouse Gas Emissions Baseline Scenarios...  

Open Energy Info (EERE)

Website http:www.ens.dksitesens.dk Program Start 2011 Country Ethiopia Eastern Africa References National Greenhouse Gas Emissions Baseline Scenarios: Learning from...

13

The nexus between electricity consumption and economic growth in Bahrain  

Science Journals Connector (OSTI)

Abstract This paper explores the relationship between electricity consumption, foreign direct investment, capital and economic growth in the case of the Kingdom of Bahrain. The CobbDouglas production is used over the period of 1980Q12010Q4. We have applied the ARDL bounds testing approach and found that cointegration exists among the series. Electricity consumption, foreign direct investment and capital add in economic growth. The VECM Granger causality analysis has exposed the feedback effect between electricity consumption and economic growth and the same is true for foreign direct investment and electricity consumption. This study suggests government authorities to explore new sources of energy to achieve sustainable economic development for the long run.

Helmi Hamdi; Rashid Sbia; Muhammad Shahbaz

2014-01-01T23:59:59.000Z

14

National Grid (Gas) - Commercial Energy Efficiency Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Grid (Gas) - Commercial Energy Efficiency Programs National Grid (Gas) - Commercial Energy Efficiency Programs National Grid (Gas) - Commercial Energy Efficiency Programs < Back Eligibility Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Incentive for New Construction: 50% up to $250,000 Incentive for Existing Buildings: 50% up to $100,000 Custom Projects including Combined Heat and Power: 50% up to $100,000 Steam Trap Survey or Energy Efficiency Engineering Study: $10,000 Steam Trap Survey and Replacement: 100 units Insulation: $10,000/account Programmable Thermostats: $125

15

Sandia National Laboratories: oil and gas technology  

NLE Websites -- All DOE Office Websites (Extended Search)

industriell og teknisk forskning) will now tackle energy challenges such as renewable-energy integration, grid modernization, gas technologies, and algae-based biofuels. SINTEF is...

16

National Fuel (Gas) - Residential Energy Efficiency Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Rebate amount cannot exceed the purchase price Program Info Start Date 1/1/2013 Expiration Date 3/31/2014 State New York Program Type Utility Rebate Program Rebate Amount Furnace: $250 Forced Air Furnace with ECM: $350 Hot Water Boiler: $350 Steam Boiler: $200 Programmable Thermostat: $25 Indirect Water Heater: $250 Provider Energy Federation Incorporated (EFI) National Fuel offers pre-qualified equipment rebates for the installation of certain energy efficiency measures to residential customers in Western

17

NETL: News Release - National Labs to Strengthen Natural Gas Pipeline's  

NLE Websites -- All DOE Office Websites (Extended Search)

National Labs to Strengthen Natural Gas Pipelines' Integrity, Reliability National Labs to Strengthen Natural Gas Pipelines' Integrity, Reliability DOE Receives 24 Proposals, Valued at Half Billion Dollars, For Technologies to Improve Power Plants, Cut Emissions MORGANTOWN, WV - To identify and develop advanced technology for the nation's natural gas pipelines, the Energy Department is calling upon the national labs to assist private industry in developing innovative technologies that establish a framework for future natural gas transmission and distribution systems. The laboratories will help 11 government-industry cost-shared projects, many of which center around detection devices designed to prevent pipeline damage, DOE selected earlier this year (see May 31, 2001, announcement). DOE estimates that natural gas consumption will increase by 60 percent by 2020, placing an unaccustomed demand on the U.S.'s aging natural gas infrastructure. The already-selected 11 projects address that need by demonstrating robotics and other sophisticated ways of bolstering strength, and, therefore, the integrity and reliability of the pipelines the crisscross the country.

18

National Grid (Gas) - Commercial Energy Efficiency Rebate Programs (Upstate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Commercial Energy Efficiency Rebate Programs Gas) - Commercial Energy Efficiency Rebate Programs (Upstate New York) National Grid (Gas) - Commercial Energy Efficiency Rebate Programs (Upstate New York) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Sealing Your Home Ventilation Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Buying & Making Electricity Maximum Rebate Custom Projects: $100,000 Energy Efficiency Engineering Study: $10,000 Steam Trap Survey: $2500 (+$2500 if complete recommended repairs) ENERGY STAR Programmable Thermostats: 5 units Boiler Reset Controls: 2 unit max Pipe Insulation: 500 ln. ft. Building Insulation: $10,000/account for roof, attic and wall insulation

19

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas and Liquefied Petroleum Gas Conversions: Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Robert C. Motta Kenneth J. Kelly William W. Warnock Executive Summary The National Renewable Energy Laboratory (NREL) contracted with conversion companies in six states to convert approximately 900 light-duty Federal fleet vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas (LPG). The contracts were initiated in order to help the Federal government meet the vehicle acquisition requirements of the Energy Policy Act of 1992 (EPACT) during a period of limited

20

National Fuel (Gas) - Small Commercial Conservation Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Small Commercial Conservation Program (Gas) - Small Commercial Conservation Program National Fuel (Gas) - Small Commercial Conservation Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Custom Rebates: $25,000 Program Info State New York Program Type Utility Rebate Program Rebate Amount Custom Rebates: $15/Mcf x the gas savings Unit Heater: $1000 Hot Air Furnace: $500 Low Intensity Infrared Heating: $500 Programmable Thermostat: $25 Hot Water Boiler: $600-$3500 Steam Boiler: $600-$2000 + $2/kBtuh Tankless Water Heaters: $350 Storage Tank Water Heater: $150 Fryer: $750 Convection Oven: $500 Combination Oven: $750 Broiler: $500 Steamer: $750 Griddle: $500 Provider New York State Energy Research and Development Authority

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

National Energy Board Act Part VI (Oil and Gas) Regulations (Canada)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations from the National Energy Board cover licensing for oil and gas, including the exportation and importation of natural gas. The regulations also cover inspections, reporting...

22

National Grid (Gas) - Commercial Energy Efficiency Rebate Programs (Metro  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Metro New York) Metro New York) National Grid (Gas) - Commercial Energy Efficiency Rebate Programs (Metro New York) < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Other Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Custom Incentives including Combined Heat and Power: $250,000 Large Industrial Gas Incentives: $250,000 Energy Efficiency Engineering Study: $10,000 Steam Traps: $2,500 All Insulation: $10,000/account Boiler Controls: 2 units ENERGY STAR Programmable Thermostats: 5 units Pipe Insulation: 500 ft Program Info State New York Program Type

23

EIA - The National Energy Modeling System: An Overview 2003-Oil and Gas  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The National Energy Modeling System: An Overview 2003 Oil and Gas Supply Module The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline–quality gas from Mexico and Canada Imported liquefied natural gas. Figure 12. Oil and Gas Supply Module Regions. Need help, contact the National Energy Information Center at 202-202-586-8800. Figure 13. Oil and Gas Suppply Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Oil and Gas Supply Module Table. Need help, contact the National Energy Information Center at 202-586-8800.

24

EIA - The National Energy Modeling System: An Overview 2003-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module The National Energy Modeling System: An Overview 2003 Natural Gas Transmission and Distribution Module Figure 15. Natural Gas Transmission and Distribution Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Figure 16. Natural Gas Transmission and distribution Module Network. Need help, contact the National Energy Information Center at 202-586-8800. Natural Gas Transmission and distribution Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market–clearing prices for natural gas supplies and for end–use consumption, given the

25

National Grid (Gas) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows, Doors, & Skylights Windows, Doors, & Skylights Program Info Expiration Date 12/31/2012 State New York Program Type Utility Rebate Program Rebate Amount Multifamily: Free Energy Evaluation and hot water pipe insulation Boilers: $350-$560 Boiler Reset Controls: $70 Furnaces: $140-$420, depending on efficiency Indirect Water Heater: $210 7 Day Programmable Thermostats: $18 National Grid's High Efficiency Heating Rebates are offered to gas heating customers in the Upstate New York counties of Albany, Columbia, Fulton, Herkimer, Jefferson, Madison, Montgomery, Oneida, Onondaga, Oswego, Rensselaer, Saratoga, Schenectady, Warren and Washington. All equipment must meet certain energy standards provided on the website. Applications are to be completed and sent in after equipment installation. Eligible

26

DOE Leads National Research Program in Gas Hydrates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leads National Research Program in Gas Hydrates Leads National Research Program in Gas Hydrates DOE Leads National Research Program in Gas Hydrates July 30, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. Read Dr. Boswell's testimony Dr. Ray Boswell, Senior Management and Technology Advisor at the Office of Fossil Energy's National Energy Technology Laboratory, testified before the House Natural Resources Subcommittee on Energy and Mineral Resources that the R&D program in gas hydrates is working to integrate and leverage

27

Surface Gas Sampling At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

28

Idaho National Laboratory's FY13 Greenhouse Gas Report  

SciTech Connect

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INLs GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Kimberly Frerichs

2014-03-01T23:59:59.000Z

29

Fact Sheet: DOE/National Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership  

Energy.gov (U.S. Department of Energy (DOE))

In one of a series of actions to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions, DOE will work with the National Association of Regulatory Utility Commissioners (NARUC) to encourage investments in infrastructure modernization to enhance pipeline safety, efficiency and deliverability.

30

Impact of Kuwait`s oil-fire smoke cloud on the sky of Bahrain  

SciTech Connect

The effects of the Kuwaiti oil well fires of 1991 on the atmospheric parameters of Bahrain (approximately 600 km southeast of Kuwait) were observed. Solar radiation, optical thickness, ultraviolet radiation, horizontal visibility, temperature, and solar spectral distribution were measured for 1991 and compared to the long-term values of 1985-1990. The relative monthly solar radiation in Bahrain was reduced by 8% (February) when 50 oil wells were burning and reduced further to 20% when 470 oil wells were on fire (April-July). In November 1991, when there were 12 oil wells burning, the recorded solar radiation became nearly equal to the long-term average. The monthly average daily optical thickness, {tau}, for the direct or beam solar radiation was calculated. The values of {tau} were found to be larger in 1991 than the average for the years 1985-1990 by nearly 58% during June and returned to normal in October (after nearly all the oil well fires were extinguished). The clear and smoked sky solar spectra distribution were detected before and during the burning of the Kuwait oil wells. Large absorption of the solar radiation was noticed on the 2nd and 3rd of March, 1991. The daily average infrared radiation during 1990 was found to be 6700.4 Whm{sup -2} and shifted to 9182.1 Whm{sup -2} in 1991. Comparison was also made between 1990 and 1991 data of the global solar radiation and the temperature. 13 refs., 12 figs., 1 tab.

Alnaser, W.E. [Univ. of Bahrain (Bahrain)] [Univ. of Bahrain (Bahrain)

1995-06-01T23:59:59.000Z

31

The National Energy Modeling System: An Overview 2000 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market-clearing prices for natural gas supplies and for end-use consumption, given the information passed from other NEMS modules. A transmission and distribution network (Figure 15), composed of nodes and arcs, is used to simulate the interregional flow and pricing of gas in the contiguous United States and Canada in both the peak (December through March) and offpeak (April through November) period. This network is a simplified representation of the physical natural gas pipeline system and establishes the possible interregional flows and associated prices as gas moves from supply sources to end users. natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market-clearing prices for natural gas supplies and for end-use consumption, given the information passed from other NEMS modules. A transmission and distribution network (Figure 15), composed of nodes and arcs, is used to simulate the interregional flow and pricing of gas in the contiguous United States and Canada in both the peak (December through March) and offpeak (April through November) period. This network is a simplified representation of the physical natural gas pipeline system and establishes the possible interregional flows and associated prices as gas moves from supply sources to end users. Figure 15. Natural Gas Transmission and Distribution Module Network

32

EIA-Assumptions to the Annual Energy Outlook - National Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumptions to the Annual Energy Outlook 2007 National Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and Distribution Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

33

The National Energy Modeling System: An Overview 1998 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

NATURAL GAS TRANSMISSION AND DISTRIBUTION MODULE NATURAL GAS TRANSMISSION AND DISTRIBUTION MODULE blueball.gif (205 bytes) Annual Flow Submodule blueball.gif (205 bytes) Capacity Expansion Submodule blueball.gif (205 bytes) Pipeline Tariff Submodule blueball.gif (205 bytes) Distributor Tariff Submodule The natural gas transmission and distribution module (NGTDM) is the component of NEMS that represents the natural gas market. The NGTDM models the natural gas transmission and distribution network in the lower 48 States, which links suppliers (including importers) and consumers of natural gas. The module determines regional market-clearing prices for natural gas supplies (including border prices) and end-use consumption. The NGTDM has four primary submodules: the annual flow submodule, the capacity expansion submodule, the pipeline tariff submodule, and the

34

Sandia National Laboratories: More California Gas Stations Can...  

NLE Websites -- All DOE Office Websites (Extended Search)

ECFacilitiesCenter for Infrastructure Research and Innovation (CIRI)More California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says More...

35

Idaho National Laboratorys Greenhouse Gas FY08 Baseline  

SciTech Connect

A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

36

National Grid (Gas)- Residential Energy Efficiency Rebate Programs (Upstate New York)  

Energy.gov (U.S. Department of Energy (DOE))

National Grids High Efficiency Heating Rebates are offered to residential gas heating customers in the New York City metro area and Long Island. Rebates vary depending on equipment type and where...

37

Surface Gas Sampling At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) (Redirected from Water-Gas Samples At Lassen Volcanic National Park Area (Janik & Mclaren, 2010)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid

38

USGS National Oil and Gas Assessment: GIS Data | OpenEI  

Open Energy Info (EERE)

National Oil and Gas Assessment: GIS Data National Oil and Gas Assessment: GIS Data Dataset Summary Description The USGS Central Region Energy Team assessed the oil and gas resources of the United States. Cell maps for each oil and gas production area were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play. Each cell represents a one-mile (or a one-quarter mile) square of the land surface, and the cells are coded to represent whether the wells included with the cell are predominantly oil-producing, gas-producing, or dry. The data used are current as of December, 1990. Source USGS Date Released March 26th, 1996 (18 years ago) Date Updated Unknown Keywords gas oil Data application/zip icon 1/4 mile cells (well information); plus metadata (zip, 41.8 MiB)

39

NETL: News Release - Nation May Have Less Access To Natural Gas Than  

NLE Websites -- All DOE Office Websites (Extended Search)

June 6, 2001 June 6, 2001 Nation May Have Less Access To Natural Gas Than Thought Study of Rocky Mountain Region Continues Implementation of National Energy Policy; Reviews Restrictions to Energy Exploration on Federal Lands WASHINGTON, DC - Access to one of the nation's most promising natural gas-bearing regions in the Rocky Mountains may be much more restricted than previously thought, a U.S. Department of Energy study has concluded. - Greater Green River Basin Map Working virtually on a tract-by-tract basis, analysts studied federal lands in the Greater Green River Basin of Wyoming and Colorado and found that nearly 68 percent of the area's technically recoverable natural gas resource - as much as 79 trillion cubic feet of natural gas - is either closed to development or under significant access restrictions.

40

Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain  

SciTech Connect

On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO{sub 2} emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO{sub 2} emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO{sub 2} emissions from three contributors, namely, chemical reactions during production processes (Pco{sub 2}), embodied energy (Eco{sub 2}) and operational energy (OPco{sub 2}). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80-90%). However, embodied CO{sub 2} emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70-90% of the total CO{sub 2} emissions of facade construction, mainly due to their physical characteristics. The highest Pco{sub 2} emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO{sub 2} emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO{sub 2} emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO{sub 2} emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO{sub 2} emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters. - Highlights: Black-Right-Pointing-Pointer Life cycle carbon assessment of facade parameters. Black-Right-Pointing-Pointer Greatest environmental impact occurs during the operational phase. Black-Right-Pointing-Pointer Masonry blocks are responsible for 70-90% of the total CO2 emissions of facade construction. Black-Right-Pointing-Pointer Window contribution of CO2 emissions depends on the number and size of windows. Black-Right-Pointing-Pointer Without insulation, AAC walls offer more savings in CO2 emissions.

Radhi, Hassan, E-mail: h_alradhi@yahoo.com [Global Engineering Bureau, P.O Box 33130, Manama, Kingdom of Bahrain (Bahrain); Sharples, Stephen, E-mail: steve.sharples@liverpool.ac.uk [School of Architecture, University of Liverpool (United Kingdom)

2013-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Information Administration survey of national oil and gas reserves  

SciTech Connect

A description is given of the reserves estimation program of the Energy Information Administration (EIA). EIA sends survey forms to the top 500 operators in the United States and to about 750 small operators who account for significant amounts of production within selected states. An 8% random sample is taken of the remaining small operators. Data are presented which compare the findings of EIA with those of the American Petroleum Institute and the American Gas Association for 1977, 1978, and 1979. 21 figures. (JMT)

Boyd, E.R.

1981-06-01T23:59:59.000Z

42

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Btu Content The natural gas received and transported by the major intrastate and interstate mainline transmission systems must be within a specific energy (Btu) content range. Generally, the acceptable Btu content is 1,035 Btu per cubic foot, with an acceptable deviation of +/-50 Btu. However, when natural gas is extracted, its Btu content can be very different from acceptable pipeline specifications. The Btu content of natural gas extracted varies depending on the presence of water, NGLs, as well as CO2, nitrogen, helium, and others. Significant amounts of NGLs in natural gas is generally associated with higher Btu values. Consistent with this, Btu values reported by plants in Texas and other Gulf of Mexico States are comparatively high (Table 3). On

43

LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun | National  

National Nuclear Security Administration (NNSA)

Conducts First Plutonium Shot Using the JASPER Gas Gun | National Conducts First Plutonium Shot Using the JASPER Gas Gun | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > LLNL Conducts First Plutonium Shot Using the ... LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun July 08, 2003 Nevada Test Site, NV

44

Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1  

SciTech Connect

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

NONE

1998-01-01T23:59:59.000Z

45

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Capacity Processing plants are typically clustered close to major producing areas, with a high number of plants close to the Federal Gulf of Mexico offshore and the Rocky Mountain production areas (Figure 1). In terms of both the number of plants and processing capacity, about half of these plants are concentrated in the States along the Gulf of Mexico. Gulf States have been some of the most prolific natural gas producing areas. U.S. natural gas processing capacity showed a net increase of about 12 percent between 2004 and 2009 (not including the State of Alaska), with the largest increase occurring in Texas, where processing capacity rose by more than 4 Bcf per day. In fact, increases in Texas' processing capacity accounted for 57 percent of the total lower 48 States' capacity increase

46

Natural gas transmission and distribution model of the National Energy Modeling System  

SciTech Connect

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

NONE

1997-02-01T23:59:59.000Z

47

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Plant Utilization Data collected for 2009 show that the States with the highest total processing capacity are among the States with the highest average utilization rates. This is to be expected as most of the plants are located in production areas that have been prolific for many years. In fact, the five States situated along the Gulf of Mexico accounted for nearly 49 percent of total processing volume in 2009. The total utilization rate in the United States averaged 66 percent of total capacity in 2009 (Table 2). Plants in Alaska ran at 86 percent of total capacity during the year, the highest capacity utilization rate in the country. Texas had significant utilization capacity at 71 percent, for an average of 14 Bcf per day of natural gas in 2009. However, a number of

48

Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98  

SciTech Connect

The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

Deborah L. Layton; Kimberly Frerichs

2010-07-01T23:59:59.000Z

49

Analysis of Oil and Gas Production in the Arctic National Wildlife Refuge  

Gasoline and Diesel Fuel Update (EIA)

4-04 4-04 Analysis of Oil and Gas Production in the Arctic National Wildlife Refuge March 2004 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor.

50

Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study  

SciTech Connect

Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

Christopher Orme

2012-08-01T23:59:59.000Z

51

The National Energy Modeling System: An Overview 1998 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

OIL AND GAS SUPPLY MODULE OIL AND GAS SUPPLY MODULE blueball.gif (205 bytes) Lower 48 Onshore and Shallow Offshore Supply Submodule blueball.gif (205 bytes) Deep Water Offshore Supply Submodule blueball.gif (205 bytes) Alaska Oil and Gas Submodule blueball.gif (205 bytes) Enhanced Oil Recovery Submodule blueball.gif (205 bytes) Foreign Natural Gas Supply Submodule The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline-quality gas from Mexico and Canada Imported liquefied natural gas. The OGSM regions are shown in Figure 12. The driving assumption of the OGSM is that domestic oil and gas exploration and development are undertaken if the discounted present value of the

52

Idaho National Laboratorys FY09 & FY10 Greenhouse Gas Report  

SciTech Connect

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

53

Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report Site Visit Report Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System INTRODUCTION AND OVERVIEW This report documents the results of the Office of Health, Safety and Security's (HSS) review of a safety system oversight (SSO) assessment of the Los Alamos National Laboratory (LANL) Weapons Engineering Tritium Facility (WETF) tritium gas handling system (TGHS). The assessment evaluated the TGHS's ability to perform as required by safety bases and other applicable requirements. The assessment was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and was conducted October 25 - November 5, 2010. LASO was the overall lead organization for the evaluation, which included independent

54

Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Containment Vital Safety System, January 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review of the Independent Oversight Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Containment Vital Safety System January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose............................................................................................................................................. 1 2.0 Background...................................................................................................................................... 1 3.0 Scope................................................................................................................................................ 1

55

The National Energy Modeling System: An Overview 2000 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline-quality gas from Mexico and Canada Imported liquefied natural gas. The OGSM regions are shown in Figure 12. Figure 12. Oil and Gas Supply Module Regions The driving assumption of OGSM is that domestic oil and gas exploration and development are undertaken if the discounted present value of the recovered resources at least covers the present value of taxes and the cost of capital, exploration, development, and production. In contrast, international gas trade is determined in part by scenario-dependent, noneconomic factors. Crude oil is transported to refineries, which are simulated in the petroleum market module, for conversion and blending into refined petroleum products. The individual submodules of the oil and gas supply module are solved independently, with feedbacks achieved through NEMS solution iterations (Figure 13).

56

Beyond Consultation: First Nations and the Governance of Shale Gas in British Columbia.  

E-Print Network (OSTI)

??As the province of British Columbia seeks to rapidly develop an extensive natural gas industry, it faces a number of challenges. One of these is (more)

Garvie, Kathryn Henderson

2013-01-01T23:59:59.000Z

57

Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicle and Infrastructure Codes and Standards Citations Natural Gas Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find natural gas vehicle and infrastructure codes and standards in these categories: * Fire Code Requirements * General CNG Requirements and Equipment Qualifications * CNG Engine Fuel Systems * CNG Compression, Gas Processing, Storage, and Dispensing Systems

58

Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility  

SciTech Connect

Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T{sub 2}-gas filled CH-shell implosions equipped with 4 ?m thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8??m have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Edwards, M. J.; Fittinghoff, D.; Glenn, S.; Haan, S. W.; Hamza, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2014-09-15T23:59:59.000Z

59

NO gas loss from biologically crusted soils in Canyonlands National Park, Utah  

E-Print Network (OSTI)

. This is an important quantity, especially if one wants to compare SID using various surfaces with gas-phase collisional- internal energy (T-V) conversion was 17% for the octadecanethiolate monolayer and 28% for the 2 projectiles, though they indicate somewhat higher energy conversion. In addition, excitation of the projectile

Barger, Nichole

60

The oil policies of the Gulf Arab Nations  

SciTech Connect

At its heart, Arab oil policy is inseparable from Arab economic and social policy. This holds whether we are talking about the Arab nations as a group or each separately. The seven Arab nations covered in this report-Bahrain, Iraq, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates--participate in several organizations focusing on regional cooperation regarding economic development, social programs, and Islamic unity, as well as organizations concerned with oil policies. This report focuses on the oil-related activities of the countries that may reveal the de facto oil policies of the seven Persian Gulf nations. Nevertheless it should be kept in mind that the decision makers participating in the oil policy organizations are also involved with the collaborative efforts of these other organizations. Oil policies of five of the seven Arab nations are expressed within the forums of the Organization of Petroleum Exporting Countries (OPEC) and the Organization of Arab Petroleum Exporting Countries (OAPEC). Only Oman, among the seven, is not a member of either OAPEC or OPEC; Bahrain is a member of OAPEC but not of OPEC. OPEC and OAPEC provide forums for compromise and cooperation among their members. Nevertheless, each member state maintains its own sovereignty and follows its own policies. Each country deviates from the group prescription from time to time, depending upon individual circumstances.

Ripple, R.D.; Hagen, R.E.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Emerging energy security issues: Natural gas in the Gulf Nations, An overview of Middle East resources, export potentials, and markets. Report Series No. 4  

SciTech Connect

This paper proceeds with a presentation of the natural gas resource base of the Gulf nations of the Middle East. The resource base is put in the context of the world natural gas resource and trade flows. This is followed by a discussion of the existing and planned project to move Gulf natural gas to consuming regions. Then a discussion of the source of demand in the likely target markets for the Gulf resource follows. Next, the nature of LNG pricing is discussed. A brief summary concludes the paper.

Ripple, R.D.; Hagen, R.E.

1995-09-01T23:59:59.000Z

62

Impacts of Sedimentation from Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds of the Allegheny National Forest of Northwestern Pennsylvania  

SciTech Connect

Fritz, Kelley'*, Steven Harris', Harry Edenborn2, and James Sams2. 'Clarion University of Pennsylvania, Clarion, PA 16214, 2National Energy Technology Laboratory, U.S. Dept. Energy, Pittsburgh, PA 15236. Impacts a/Sedimentation/rom Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds a/the Allegheny National Forest a/Northwestern Pennsylvania - The Allegheny National Forest (ANF), located in northwestern Pennsy Ivania, is a multiuse forest combining commercial development with recreational and conservation activities. As such, portions of the ANF have been heavily logged and are now the subject of widespread oil and gas development. This rapid increase in oil and gas development has led to concerns about sediment runoff from the dirt and gravel roads associated with development and the potential impact on the aquatic biota of the receiving streams. We examined and compared the benthic macroinvertebrate communities in two adjacent watersheds of similar size and topography in the ANF; the Hedgehog Run watershed has no oil and gas development, while the adjacent Grunder Run watershed has extensive oil and gas development. In Hedgehog and Grunder Run, we collected monthly kicknet samples from riffles and glides at two sites from April to October 2010. At the same intervals, we measured standard water quality parameters, including conductivity and turbidity. Preliminary results have indicated much higher turbidity in Grunder Run, but little difference in the diversity and abundance of benthic macro invertebrates inhabiting the two streams.

Fritz, K.; Harris, S.; Edenborn, H.M.; Sams, J.

2011-01-01T23:59:59.000Z

63

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

64

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

65

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

66

Reducing greenhouse gas emissions from deforestation : the United Nations Framework Convention on Climate Change and policy-making in Panama.  

E-Print Network (OSTI)

??The Framework Convention on Climate Change has yet to deal with tropical deforestation although it represents an important source of greenhouse gas emissions. In December (more)

Guay, Bruno.

2007-01-01T23:59:59.000Z

67

Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicle and Infrastructure Codes and Standards Chart Natural Gas Vehicle and Infrastructure Codes and Standards Chart Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas. Vehicle Safety: Vehicle Fuel Systems: Vehicle Containers: Vehicle Fuel System Components: Dispensing Component Standards: Dispensing Operations: Dispensing Vehicle Interface: Storage Containers: Storage Pressure Relief Devices: Storage System Siting: Storage and Production: Building and Fire Code Requirements: Organization Name Standards Development Areas AGA American Gas Association Materials testing standards API American Petroleum Institute

68

Measurements of an Ablator-Gas Atomic Mix in Indirectly Driven Implosions at the National Ignition Facility  

E-Print Network (OSTI)

. Town,1 K. Widmann,1 D. C. Wilson,2 and C. B. Yeamans1 1 Lawrence Livermore National Laboratory, Livermore, California 94550, USA 2 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 3 (NIF) [3,4] uses a 1.6 MJ laser pulse at a peak power of 410 TW to accelerate the DT fuel to a peak

69

National Gateway GWPC/EIA  

Annual Energy Outlook 2012 (EIA)

Developing a National Gateway to oil and gas well data Interstate Oil & Gas Compact Commission Midyear Issues Summit May 19, 2014 | Biloxi, MS By Adam Sieminski, EIA Administrator...

70

Sampling and Analysis of the Headspace Gas in 3013 Type Plutonium Storage Containers at Los Alamos National Laboratory  

SciTech Connect

Department of Energy (DOE) sites have packaged approximately 5200 3013 containers to date. One of the requirements specified in DOESTD-3013, which specifies requirements for packaging plutonium bearing materials, is that the material be no greater than 0.5 weight percent moisture. The containers are robust, nested, welded vessels. A shelf life surveillance program was established to monitor these cans over their 50 year design life. In the event pressurization is detected by radiography, it will be necessary to obtain a head space gas sample from the pressurized container. This technique is also useful to study the head space gas in cans selected for random destructive evaluation. The atmosphere is sampled and the hydrogen to oxygen ratio is measured to determine the effects of radiolysis on the moisture in the container. A system capable of penetrating all layers of a 3013 container assembly and obtaining a viable sample of the enclosed gas and an estimate of internal pressure was designed.

Jackson, Jay M. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Hill, Dallas D. [Los Alamos National Laboratory; Worl, Laura A. [Los Alamos National Laboratory; Veirs, Douglas K. [Los Alamos National Laboratory

2012-07-11T23:59:59.000Z

71

THE COMPONENT TEST FACILITY A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

David S. Duncan; Vondell J. Balls; Stephanie L. Austad

2008-09-01T23:59:59.000Z

72

Historical Natural Gas Annual 1999  

U.S. Energy Information Administration (EIA) Indexed Site

1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

73

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

74

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

75

Natural Gas and Hydrogen Infrastructure Opportunities Workshop, October 18-19, 2011, Argonne National Laboratory, Argonne, IL : Summary Report.  

SciTech Connect

The overall objective of the Workshop was to identify opportunities for accelerating the use of both natural gas (NG) and hydrogen (H{sub 2}) as motor fuels and in stationary power applications. Specific objectives of the Workshop were to: (1) Convene industry and other stakeholders to share current status/state-of-the-art of NG and H{sub 2} infrastructure; (2) Identify key challenges (including non-technical challenges, such as permitting, installation, codes, and standards) preventing or delaying the widespread deployment of NG and H{sub 2} infrastructure. Identify synergies between NG and H{sub 2} fuels; and (3) Identify and prioritize opportunities for addressing the challenges identified above, and determine roles and opportunities for both the government and industry stakeholders. Plenary speakers and panel discussions summarized the current status of the NG and H{sub 2} infrastructure, technology for their use in transportation and stationary applications, and some of the major challenges and opportunities to more widespread use of these fuels. Two break-out sessions of three groups each addressed focus questions on: (1) infrastructure development needs; (2) deployment synergies; (3) natural gas and fuel cell vehicles (NGVs, FCVs), specialty vehicles, and heavy-duty trucks; (4) CHP (combined heat and power), CHHP (combined hydrogen, heat, and power), and synergistic approaches; and (5) alternative uses of natural gas.

Kumar, R. comp.; Ahmed, S. comp. (Chemical Sciences and Engineering Division)

2012-02-21T23:59:59.000Z

76

Liquid Fuels and Natural Gas in the Americas  

Annual Energy Outlook 2012 (EIA)

Spain Sweden Switzerland Turkey United Kingdom Middle East Bahrain Iran Iraq Israel Jordan Kuwait Lebanon Oman Palestinian Territories Qatar Saudi Arabia Syria United Arab...

77

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

78

" Level: National Data;" " ...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" "...

79

Detailed compositional analysis of gas seepage at the National Carbon Storage Test Site, Teapot Dome, Wyoming, USA  

Science Journals Connector (OSTI)

A baseline determination of CO2 and CH4 fluxes and soil gas concentrations of CO2 and CH4 was made over the Teapot Dome oil field in the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, USA. This was done in anticipation of experimentation with CO2 sequestration in the Pennsylvanian Tensleep Sandstone underlying the field at a depth of 1680m. The baseline data were collected during the winter, 2004 in order to minimize near-surface biological activity in the soil profile. The baseline data were used to select anomalous locations that may be the result of seeping thermogenic gas, along with background locations. Five 10-m holes were drilled, 3 of which had anomalous gas microseepage, and 2 were characterized as background. These were equipped for nested gas sampling at depths of 10-, 5-, 3-, 2-, and 1-m depths. Methane concentrations as high as 170,000ppmv (17%) were found, along with high concentrations of C2H6, C3H8, n-C4H10, and i-C4H10. Much smaller concentrations of C2H4 and C3H6 were observed indicating the beginning of hydrocarbon oxidation in the anomalous holes. The anomalous 10-m holes also had high concentrations of isotopically enriched CO2, indicating the oxidation of hydrocarbons. Concentrations of the gases decreased upward, as expected, indicating oxidation and transport into the atmosphere. The ancient source of the gases was confirmed by 14C determinations on CO2, with radiocarbon ages approaching 38ka within 5m of the surface. Modeling was used to analyze the distribution of hydrocarbons in the anomalous and background 10-m holes. Diffusion alone was not sufficient to account for the hydrocarbon concentration distributions, however the data could be fit with the addition of a consumptive reaction. First-order rate constants for methanotrophic oxidation were obtained by inverse modeling. High rates of oxidation were found, particularly near the surface in the anomalous 10-m holes, demonstrating the effectiveness of the process in the attenuation of CH4 microseepage. The results also demonstrate the importance of CH4 measurements in the planning of a monitoring and verification program for geological CO2 sequestration in sites with significant remaining hydrocarbons (i.e. spent oil reservoirs).

Ronald W. Klusman

2006-01-01T23:59:59.000Z

80

Environmental Assessment for the Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Environmental Assessment for the Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico July 24, 2002 Department of Energy National Nuclear Security Administration Office of Los Alamos Site Operations Proposed Pipeline Easement Environmental Assessment DOE OLASO July 24, 2002 iii CONTENTS ACRONYMS AND TERMS................................................................................................................vii EXECUTIVE SUMMARY...................................................................................................................ix 1.0 PURPOSE AND NEED................................................................................................................1

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Reversible Acid Gas Capture  

SciTech Connect

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2009-08-01T23:59:59.000Z

82

Reversible Acid Gas Capture  

ScienceCinema (OSTI)

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2012-12-31T23:59:59.000Z

83

NETL: Oil & Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Gas Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Efficient recovery of our nation's fossil fuel resources...

84

Natural Gas Infrastructure Modernization  

Energy.gov (U.S. Department of Energy (DOE))

In order to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions through common-sense standards, smart investments, and innovative research to advance the state of the art in natural gas system performance, the Department of Energy has launched several new initiatives and enhanced existing programs.

85

Workplace Charging Challenge Partner: National Grid | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Grid Workplace Charging Challenge Partner: National Grid As a leading international electricity and gas company, National Grid is committed to creating new, sustainable energy...

86

Historical Natural Gas Annual - 1930 Through 2000  

U.S. Energy Information Administration (EIA) Indexed Site

2000 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

87

NATIONAL NEWS  

NLE Websites -- All DOE Office Websites (Extended Search)

March 5, 2010 National News......................................................................3 Schumer Proposal to Halt ARRA Funds for Renewable Projects Would Cause Immediate Job Loss in U.S., DOE Officials Tell Congress .................................................................................................................................. 3 Geothermal Energy Holds Strong Presence at Renewable Energy World Conference; Applications with Oil and Gas Coproduction Gain Attention .......................................................................................................................... 4 House Subcommittee on Energy and Mineral Resources Hold Legislative Hearing on the Geothermal Production and Expansion Act, HR 3709 ..............................................................................................................

88

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases  

SciTech Connect

Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

Peterson, S

2007-08-15T23:59:59.000Z

89

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

90

Natural gas annual 1995  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

91

EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct  

NLE Websites -- All DOE Office Websites (Extended Search)

National National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology to someone by E-mail Share EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Facebook Tweet about EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Twitter Bookmark EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Google Bookmark EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Delicious Rank EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Digg

92

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

93

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

94

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

95

National Energy Strategy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy Strategy Background Paper - 2001 Natural Gas In the 1988 Energy Council National Energy Strategy background paper, the role of natural gas was characterized as a transition fuel, a bridge to a cleaner fuel future. Over the intervening decade, the growth of the importance of natural gas has been dramatic and it now appears that the "transition fuel" may have a role of its own for a long time to come. The inherent efficiency of gas, its environmental advantages and the removal of regulatory constraints are all important factors in its su:cess. The U.S. is the world's largest gas producer, followed by the former Soviet Union. Estimates of supplies of gas are icasin dug nt nnl ^ -nloration. but better assesment tchniues. The deman'd outo fatnres gas dominating the burgeoning U.S. elecmic gei mket. Long-

96

Modernization Magnitude: An Interval Measure Applicable to Post- and Pre-Industrial Societies  

E-Print Network (OSTI)

to reflect. Qatar, and several other oil producing nations,X in oil producing countries such as Qatar and Bahrain. (NoTable 8. Oil producing countries such as Qatar and Bahrain

Denton, Trevor D.

2008-01-01T23:59:59.000Z

97

Property:Country | Open Energy Information  

Open Energy Info (EERE)

Country Country Jump to: navigation, search This is a property of type Page. Pages using the property "Country" Showing 25 pages using this property. (previous 25) (next 25) 4 4C Offshore Limited + United Kingdom + A A1 Sun, Inc. + United States + ALDACOR INC + United States + Abu Dhabi Supreme Petroleum Council + United Arab Emirates + Algeria Ministry of Energy and Mining + Algeria + Alternate Energy LLC + United States + B Bahrain National Gas and Oil Authority + Bahrain + Balloon Eólica + Brazil + Buffalo Software + United States + C CSBC Corporation + Taiwan + Community Energy Inc + United States + E EXEN Holdings LLC + United States + Ecoforest + Spain + H HOMER + Armenia + HOMER + Yugoslavia + HOMER + Gabon + HOMER + Sri Lanka + HOMER + Canada +

98

Clean Cities: National Clean Fleets Partner: Staples  

NLE Websites -- All DOE Office Websites (Extended Search)

Staples Staples to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Staples on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Staples on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Staples on Google Bookmark Clean Cities: National Clean Fleets Partner: Staples on Delicious Rank Clean Cities: National Clean Fleets Partner: Staples on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Staples on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

99

Clean Cities: National Clean Fleets Partner: Verizon  

NLE Websites -- All DOE Office Websites (Extended Search)

Verizon Verizon to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Verizon on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Verizon on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Verizon on Google Bookmark Clean Cities: National Clean Fleets Partner: Verizon on Delicious Rank Clean Cities: National Clean Fleets Partner: Verizon on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Verizon on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

100

NGVs: Driving to the 21st Century. 17th National Natural Gas Vehicle Conference and Exhibition, October 3-5, 1999 [conference organizational literature and agenda  

SciTech Connect

By attending the conference, participants learn about new and planned OEM vehicle and engine technologies; studies comparing Diesel and gasoline emissions to natural gas; new state and federal legislation; and innovative marketing programs they can use to help sell their products and services.

None

1999-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Natural Gas Regulation - Other Gas-Related Information Sources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Regulation - Other Gas-Related Information Sources Natural Gas Regulation - Other Gas-Related Information Sources Natural Gas Regulation - Other Gas-Related Information Sources The single largest source of energy information available is the Department of Energy's Energy Information Administration (EIA). The EIA publishes extensive reports on natural gas and other energy sources. Domestic natural gas markets are regulated in part by the Federal Energy Regulatory Commission. The commission's chief area of concern is the interstate natural gas market. Natural gas moves for the most part by pipeline in the United States. The safety of those pipelines is the concern of the Department of Transportation's Office of Pipeline Safety. In Canada the regulation of interprovincial and international natural gas is the responsibility of the National Energy Board. Their areas of

102

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

is National Hurricane Preparedness Week. Natural Gas Transportation Update: Texas Gas Transmission (TGT) announced that the company will reduce capacity through the...

103

Finding of No Significant Impact for the Proposed Issuance of an Easement to the Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline Within Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear Security Administration Finding of No Significant Impact for the Proposed Issuance of an Easement to the Public Service Company of New Mexico for the Construction and Operation of a 120inch Natural Gas Pipeline Within Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Office of Los Alamos Site Operations 528 35th Street Los Alamos, NM 87544 DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECUIRTY ADMINISTRATION FINDING OF NO SIGNIFICANT IMPACT Proposed Issuance of an Easement to the Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico FINAL ENVIRONMENTAL ASSESSMENT: The Environmental Assessment (EA) for the

104

Arizona - Natural Gas 2012 Million  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Arizona - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6 6 5 5 5 Production (million cubic feet) Gross Withdrawals From Gas Wells 523 711 183 168 117 From Oil Wells * * 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

105

Analysis of U.S. Greenhouse Gas Tax Proposals  

E-Print Network (OSTI)

The U.S. Congress is considering a set of bills designed to limit the nations greenhouse gas (GHG)

Metcalf, Gilbert E.

106

Greenhouse Gas Initiatives - Analysis of McCain-Lieberman Bill S.280 The ClimateStewardship and Innovation Act of 2007 Using the National Energy Modeling System  

E-Print Network (OSTI)

assumptions to SAIC-NEMS. Some key technical, societal and political uncertainties include: (1) the number of new nuclear generation builds, (2) availability of renewable generation (bio-power and wind power), (3) the technological development...) Installed Electric Generating Capacity, (3) Produced Electric Energy, (4) Prices of CO 2 Offsets and Permits (5) Natural Gas Prices, (6) Electricity Prices, and (7) Other Energy Prices. While the study ran seven scenarios for each focus area, two...

Ellsworth, C.

2008-01-01T23:59:59.000Z

107

Natural gas annual 1997  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

108

Safety System Oversight Assessment, Los Alamos National Laboratory- May 2011  

Energy.gov (U.S. Department of Energy (DOE))

Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System

109

Sandia National Laboratories: Research: Research Foundations...  

NLE Websites -- All DOE Office Websites (Extended Search)

by recent attention in domestic shale gas, carbon capture and storage, and geothermal energy. In addition, the question of future geologic storage of the nation's nuclear...

110

Oversight Reports - Los Alamos National Laboratory | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 2011 Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System February 8, 2011 Independent...

111

Appendix C Selected Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Recurring Recurring Natural Gas Reports * Natural Gas Monthly, DOE/EIA-0130. Published monthly. Other Reports Covering Natural Gas, Natural Gas Liquids, and Other Energy Sources * Monthly Energy Review, DOE/EIA-0035. Published monthly. Provides national aggregate data for natural gas, natural gas liquids, and other energy sources. * Short-Term Energy Outlook, DOE/EIA-0202. Published quarterly. Provides forecasts for next six quarters for natural gas and other energy sources. * Natural Gas 1996: Issues and Trends, DOE/EIA- 0560(96), December 1996. * U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves -1996 Annual Report, DOE/EIA-0216(96)/Ad- vance Summary, September 1997. * Annual Energy Review 1996, DOE/ EIA-0384(96), July 1997. Published annually. * State Energy Data Report, Consumption Estimates, 1960- 1994, DOE/EIA-0214(94), October 1996. * Annual

112

Natural Gas and Hydrogen Infrastructure Opportunities: Markets...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

h presentation slides: Natural Gas and hydrogen Infrastructure opportunities: markets and Barriers to Growth Matt Most, Encana Natural Gas 1 OctOber 2011 | ArgOnne nAtiOnAl...

113

Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory  

SciTech Connect

The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

2007-10-01T23:59:59.000Z

114

Natural Gas and Hydrogen Infrastructure Opportunities Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Argonne National Laboratory held a Natural Gas and Hydrogen Infrastructure Opportunities Workshop October 18-19, 2011, in Lemont, Illinois. The workshop objectives were to convene industry and...

115

Historical Natural Gas Annual 1999  

Gasoline and Diesel Fuel Update (EIA)

1999 1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1999 and detailed annual historical information by State for 1967-1999. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CSV file formats. Tables 1-3 present annual historical data at the national level for 1930-1999. The remaining tables contain detailed annual historical information, by State, for 1967-1999. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

116

Natural Gas Annual, 2000  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 2000 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 2000, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1996-2000 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2000 (Table 2) ASCII TXT, are also available.

117

Clean Cities: Clean Cities National Parks Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities National Parks Initiative Clean Cities National Parks Initiative to someone by E-mail Share Clean Cities: Clean Cities National Parks Initiative on Facebook Tweet about Clean Cities: Clean Cities National Parks Initiative on Twitter Bookmark Clean Cities: Clean Cities National Parks Initiative on Google Bookmark Clean Cities: Clean Cities National Parks Initiative on Delicious Rank Clean Cities: Clean Cities National Parks Initiative on Digg Find More places to share Clean Cities: Clean Cities National Parks Initiative on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

118

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sources » Fossil » Natural Gas Sources » Fossil » Natural Gas Natural Gas July 30, 2009 DOE Leads National Research Program in Gas Hydrates The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. May 18, 2009 DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators A comprehensive publication detailing the oil-rich fields of Utah and nearby states, sponsored by the U.S. Department of Energy, can now provide petroleum companies and related service providers with the geologic, geographic, and engineering data needed to tap into these resources.

119

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

120

Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation  

Science Journals Connector (OSTI)

...MENA): Algeria, Bahrain, Egypt, Iran...Biofuels use 48 ZZQQhy60 5 ZZQQhy6% Energy efficiency 12 ZZQQhy15 1% Hydroelectric power...8 ZZQQhy10% Other alternative energy 26 ZZQQhy33 3% Grand total 966 ZZQQhy1...

Avery S. Cohn; Aline Mosnier; Petr Havlk; Hugo Valin; Mario Herrero; Erwin Schmid; Michael OHare; Michael Obersteiner

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

national | OpenEI  

Open Energy Info (EERE)

national national Dataset Summary Description Gate to gate life cycle inventory (LCI) data for the US national grid. Includes generation and transmission of electricity for US electricity grid. Representative of year 2008 mix of fuels used for utility electricity generation in US. Fuels include biomass, coal, petroleum, geothermal, natural gas, nuclear, solar, hydroelectric and wind energy sources.This data was developed by:- Alberta Carpenter, NREL- Chris Goemans, Athena Institute Source NREL Date Released Unknown Date Updated Unknown Keywords 2008 Electricity LCI national US Data application/vnd.ms-excel icon SS_Electricity_at_Grid_US_2008.xls (xls, 176.6 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2008

122

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

123

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

124

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

125

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

126

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

127

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

128

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

129

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

130

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

131

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

132

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

133

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

134

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

135

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

136

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

137

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

138

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

139

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

140

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

142

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

143

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

144

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

145

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

146

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

147

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

148

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

149

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

150

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

151

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

152

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

153

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

154

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

155

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

156

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

157

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

158

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

159

Liquefied Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Natural gas plays a vital role in the U.S. energy supply and in achieving the nation's economic and environmental goals. One of several supply options involves increasing imports of liquefied natural gas (LNG) to ensure that American consumers have adequate supplies of natural gas for the future. Natural gas consumption in the United States is expected to increase slightly from about 24.3 trillion cubic feet (Tcf) in 2011 to 26.6 Tcf by 2035. Currently, most of the demand for natural gas in the United States is met with domestic production and imports via pipeline from Canada. A small percentage of gas supplies are imported and received as liquefied natural gas. A significant portion of the world's natural gas resources are

160

Clean Cities: National Clean Fleets Partner: GE  

NLE Websites -- All DOE Office Websites (Extended Search)

GE to GE to someone by E-mail Share Clean Cities: National Clean Fleets Partner: GE on Facebook Tweet about Clean Cities: National Clean Fleets Partner: GE on Twitter Bookmark Clean Cities: National Clean Fleets Partner: GE on Google Bookmark Clean Cities: National Clean Fleets Partner: GE on Delicious Rank Clean Cities: National Clean Fleets Partner: GE on Digg Find More places to share Clean Cities: National Clean Fleets Partner: GE on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame Contacts National Clean Fleets Partner: GE

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Clean Cities: National Clean Fleets Partner: UPS  

NLE Websites -- All DOE Office Websites (Extended Search)

UPS to UPS to someone by E-mail Share Clean Cities: National Clean Fleets Partner: UPS on Facebook Tweet about Clean Cities: National Clean Fleets Partner: UPS on Twitter Bookmark Clean Cities: National Clean Fleets Partner: UPS on Google Bookmark Clean Cities: National Clean Fleets Partner: UPS on Delicious Rank Clean Cities: National Clean Fleets Partner: UPS on Digg Find More places to share Clean Cities: National Clean Fleets Partner: UPS on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame Contacts National Clean Fleets Partner: UPS

162

Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory  

SciTech Connect

This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation.

NONE

1995-01-01T23:59:59.000Z

163

Implementing the National Broadband  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumer and the Consumer and the Smart Grid: Data Access, Third Party Use and Privacy NBP RFI: Data Access, Third Party Use and Privacy COMMENTS OF BALTIMORE GAS & ELECTRIC COMPANY I. Introduction BGE is the nation's oldest and most experienced utility company. It has met the energy needs of Central Maryland for nearly 200 years. Today, it serves more than 1.2 million business and residential electric customers and approximately 650,000 gas customers in an economically diverse, 2,300-square-mile area encompassing Baltimore City and all or part of ten central Maryland counties. BGE already has many systems that it considers to be "smart." For example:

164

Philadelphia Gas Works Looking for a challenge and ready to power up your career?  

E-Print Network (OSTI)

Philadelphia Gas Works Looking for a challenge and ready to power up your career? The Philadelphia Gas Works (PGW) is the largest municipally-owned gas utility in the nation, supplying gas service into the large, modern facility that exists today. As one of the nation's leading natural gas providers, PGW

Plotkin, Joshua B.

165

Historical Natural Gas Annual - 1930 Through 2000  

Gasoline and Diesel Fuel Update (EIA)

Historical Natural Gas Annual Historical Natural Gas Annual 1930 Through 2000 EIA Home > Natural Gas > Natural Gas Data Publications Historical Natural Gas Annual The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-2000 and detailed annual historical information by State for 1967-2000. To read reports in PDF format download a free copy of Adobe Acrobat Reader.

166

Coalbed Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Environmental Science Division Argonne National Laboratory Observations on a Montana Water Quality Proposal argonne_comments.pdf 585 KB Comments from James A. Slutz Deputy Assistant Secretary Oil and Natural Gas To the Secretary, Board of Environmental Review Montana Department of Environmental Quality BER_Comments_letter.pdf 308 KB ALL Consulting Coalbed Methane Primer: New Source of Natural Gas–Environmental Implications Background and Development in the Rocky Mountain West CBMPrimerFinal.pdf 18,223 KB ALL Consulting Montana Board of Oil & Gas Conservation Handbook on Best Management Practices and Mitigation Strategies for Coal Bed Methane in the Montana Portion of the Powder River Basin April 2002 CBM.pdf 107,140 KB ALL Consulting Montana Board of Oil & Gas Conservation

167

Implementing the National Broadband  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Before the Before the Department of Energy Washington, D.C. 20585 In the Matter of Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal Smart Grid Policy NBP RFI: Communications Requirements COMMENTS OF BALTIMORE GAS & ELECTRIC COMPANY I. Introduction BGE is the nation's oldest and most experienced utility company. It has met the energy needs of central Maryland for nearly 200 years. Today, it serves more than 1.2 million business and residential electric customers, and approximately 650,000 gas customers in an economically diverse, 2,300-square-mile area encompassing Baltimore City and all or part of ten central Maryland counties.

168

EIA - International Energy Outlook 2009-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2009 Chapter 3 - Natural Gas In the IEO2009 reference case, natural gas consumption in the non-OECD countries grows more than twice as fast as in the OECD countries. Production increases in the non-OECD region account for more than 80 percent of the growth in world production from 2006 to 2030. Figure 33. World Natural Gas Consumption, 1980-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 34. Natural Gas Consumption in North America by Country and Sector, 2006-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 35. Natural Gas Consumption in OECD Asia by Country and Sector, 2006 and 2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

169

EIA - International Energy Outlook 2008-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2008 Chapter 3 - Natural Gas In the IEO2008 reference case, natural gas consumption in the non-OECD countries grows more than twice as fast as in the OECD countries. Production increases in the non-OECD region account for more than 90 percent of the growth in world production from 2005 to 2030. Figure 35. World Natural Gas Consumption, 1980-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 36. Natural Gas Consumption in North America by Country, 2005-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 37. Natural Gas Consumption in OECD Europe, 2005-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

170

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 26, 2012 January 26, 2012 The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing nearly half of all U.S. natural gas production. | Image courtesy of the Office of Fossil Energy. Producing Natural Gas From Shale By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet. When you consider that 1 tcf of natural gas is enough to heat 15 million homes for one year, the importance of this resource to the nation becomes obvious. January 26, 2012 Natural Gas Production and U.S. Oil Imports Take a look at the Energy Information Administration's projections for

171

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 23, 2013 May 23, 2013 Secretary Moniz on Natural Gas and Renewables May 17, 2013 Energy Department Authorizes Second Proposed Facility to Export Liquefied Natural Gas Freeport LNG Terminal on Quintana Island, Texas Authorized to Export Liquefied Natural Gas to Non-Free Trade Agreement Countries May 17, 2013 FE DOCKET NO. 10-161-LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE FREEPORT LNG TERMINAL ON QUINTANA ISLAND, TEXAS TO NON-FREE TRADE AGREEMENT NATIONS April 24, 2013 The new hybrid solar-natural gas system from Pacific Northwest National Laboratory (PNNL) works through concentrating solar power, which uses a reflecting surface to concentrate the sun's rays like a magnifying glass. In the case of the new system from PNNL, a mirrored parabolic dish directs sunbeams to a central point, where a device absorbs the solar heat to make syngas.| Photo courtesy of PNNL.

172

Oversight Reports - Los Alamos National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Laboratory Los Alamos National Laboratory Oversight Reports - Los Alamos National Laboratory January 18, 2013 Independent Oversight Review, Los Alamos National Laboratory - January 2013 Review of the Los Alamos National Laboratory Corrective Action Effectiveness Review January 14, 2013 Independent Oversight Review, Los Alamos National Laboratory - January 2013 Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Containment Vital Safety System October 2, 2012 Independent Activity Report, Los Alamos National Laboratory - August 2012 Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory [HIAR LANL-2012-08-16] August 24, 2012 Independent Activity Report, Los Alamos National Laboratory - July 2012

173

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" 3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

174

EPA's Liquefied Natural Gas Regulatory Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquefied Natural Gas Liquefied Natural Gas Regulatory Roadmap July 2006 EPA230-B-06-001 About this Roadmap Natural gas continues to play an important role in meeting our nation's growing energy needs. In 2005, natural gas accounted for 23% of our nation's total energy consumption. 1 The Department of Energy's Energy Information Administration (EIA) projects that domestic consumption of natural gas will continue to increase and that imports of liquefied natural gas (LNG) will meet much of the increased demand. 2 LNG, created when natural gas is converted into a liquid state by cooling it to a temperature close to negative 260°F, presents an efficient way to transport natural gas via ship from foreign production areas to the United States. The cooling process reduces the

175

International Energy Outlook 2006 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2006 Chapter 4: Natural Gas Natural gas trails coal as the fastest growing primary energy source in IEO2006. The natural gas share of total world energy consumption increases from 24 percent in 2003 to 26 percent in 2030. Figure 34. World Natural Gas Consumption by Region, 1990-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 35. World Natural Gas Consumption by End-Use Sector, 2003-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Consumption of natural gas worldwide increases from 95 trillion cubic feet in 2003 to 182 trillion cubic feet in 2030 in the IEO2006 reference case

176

EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Departments action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

177

Sandia National Laboratories: Sandia National Laboratories: Locations...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Park District Joshua Tree National Park Lassen Volcanic National Park Sequoia & Kings Canyon National Parks Yosemite National Park Cave exploring Diablo Grotto Moaning...

178

Innovations for a secure nation  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations for a Secure Nation Innovations for a Secure Nation /about/_assets/images/icon-70th.jpg Innovations for a Secure Nation LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. image description Plasma technology for textile finishing applications gets a boost from LANL APJeT received a $100,000 Venture Acceleration Fund award from LANS helping to complete design and engineering of a commercial-scale production unit. - 4/3/12 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells already producing oil and gas and drilling operations for new wells.

179

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

180

Outlook dims for decontrol of natural gas  

Science Journals Connector (OSTI)

Outlook dims for decontrol of natural gas ... A lot of people in the chemical industry are watching the nation's capital to see if, by some miracle, they will get some action on decontrol of natural gas prices. ... And there was a time when it appeared as if they would get their wishto get out from under the shackles of the Natural Gas Policy Act of 1978 (NGPA) and switch to total, phased decontrol of natural gas prices. ...

EARL V. ANDERSON

1982-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Transportation Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow patterns. 5 major routes extend from the producing areas of the Southwest 4 routes enter the United States from Canada 2 originate in the Rocky Mountain area. A summary of the major corridors and links to details about each corridor are provided below. Corridors from the Southwest Region

182

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

183

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

184

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

185

National Environmental Research Institute Ministry of the Environment . Denmark  

E-Print Network (OSTI)

National Environmental Research Institute Ministry of the Environment . Denmark Quality manual Environmental Research Institute Ministry of the Environment . Denmark Quality manual for the greenhouse gas.: Research Notes from NERI No. 224 Publisher: National Environmental Research Institute Ministry

186

National Labs Commission Phase I Public Schedule | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Labs Commission Phase I Public Schedule More Documents & Publications Hydrogen Generator Appliance Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda...

187

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Gasoline and Diesel Fuel Update (EIA)

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column:...

188

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Annual Energy Outlook 2012 (EIA)

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

189

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Annual Energy Outlook 2012 (EIA)

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

190

Level: National and Regional Data; Row: NAICS Codes, Value of...  

Annual Energy Outlook 2012 (EIA)

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

191

National Security  

NLE Websites -- All DOE Office Websites (Extended Search)

because NIF provides the only process for scientists to gain access to and examine thermonuclear burn. These experiments will also help the nation maintain the skills of nuclear...

192

Argonne National Laboratory Launches Bioenergy Assessment Tools |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools September 30, 2013 - 4:00pm Addthis A researcher loads a biomass sample into spinning ring cup. Argonne National Laboratory has launched two online tools that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory A researcher loads a biomass sample into spinning ring cup. Argonne National Laboratory has launched two online tools that assess the resource consumption and greenhouse gas emissions associated with biofuel production. | Photo courtesy of National Renewable Energy Laboratory Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable

193

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

194

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

195

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

196

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

197

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

198

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

199

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

200

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

202

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

203

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

204

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

205

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

206

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

207

Natural Gas Annual, 1998  

Gasoline and Diesel Fuel Update (EIA)

8 8 Historical The Natural Gas Annual, 1998 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1998. Summary data are presented for each Census Division and State for 1994 to 1998. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1998 are available as self-extracting executable files in ASCII TXT or CDF file formats. This volume emphasizes information for 1998, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

208

Natural Gas Annual, 1997  

Gasoline and Diesel Fuel Update (EIA)

7 7 Historical The Natural Gas Annual, 1997 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1997. Summary data are presented for each Census Division and State for 1993 to 1997. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1997 are available as self-extracting executable files in ASCII TXT or CDF file formats. This volume emphasizes information for 1997, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

209

gas | OpenEI  

Open Energy Info (EERE)

gas gas Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

210

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

SciTech Connect

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

211

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

SciTech Connect

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

212

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

November 18 (No issue Thanksgiving week; next release 2:00 p.m. on December 2) November 18 (No issue Thanksgiving week; next release 2:00 p.m. on December 2) Natural gas spot and futures prices fell for a third consecutive week (Wednesday to Wednesday, November 10-17), as temperatures for most of the nation continued to be moderate to seasonal. At the Henry Hub, the spot price declined 6 cents on the week, for the smallest week-on-week decrease in the nation. Spot gas traded there yesterday (Wednesday, November 17) at $6.06 per MMBtu. Price declines at the majority of market locations ranged from around a dime to nearly 60 cents per MMBtu. On the NYMEX, the price for the near-month natural gas futures contract (for December delivery) fell by almost 40 cents on the week, settling yesterday at $7.283 per MMBtu. EIA reported that working gas inventories in underground storage were 3,321 Bcf as of Friday, November 12, which is 9 percent greater than the previous 5-year average. The spot price for West Texas Intermediate (WTI) crude oil declined for a fourth consecutive week, dropping $1.85 per barrel ($0.32 per MMBtu), or nearly 4 percent, from last Wednesday's level, to trade yesterday at $46.85 per barrel ($8.08 per MMBtu).

213

Global Climate Change and National Security  

E-Print Network (OSTI)

5/16/2014 1 Global Climate Change and National Security RADM Jon White Oceanographer and Navigator months. · Oil, gas, and mineral resource exploitation expected to continue · Production/transportatio n

Howat, Ian M.

214

Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned  

SciTech Connect

The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

Carpenter, A.; Hotchkiss, E.; Kandt, A.

2013-02-01T23:59:59.000Z

215

NNSA implements nondestructive gas sampling technique for nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

implements ... NNSA implements nondestructive gas sampling technique for nuclear weapon components Posted: June 12, 2012 - 1:34pm The National Nuclear Security Administration...

216

Microsoft Word - Shale Gas Primer Update v2  

NLE Websites -- All DOE Office Websites (Extended Search)

by: NATIONAL ENERGY TECHNOLOGY LABORATORY (NETL) Strategic Center for Natural Gas and Oil September 2013 Disclaimer: Reference herein to any specific commercial product,...

217

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

generation has increased substantially in Mexico, while the national petroleum company PEMEX has reported declines in natural gas production. Spot Prices NYMEX price declines were...

218

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn National Parks Clean Up with Alternative Fuels Many National Parks are adopting clean alternative fuel vehicles, advanced vehicles technologies and other fuel saving measures to maintain their air quality and keep the parks pristine. February 7, 2011 DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources Focusing on reducing the upfront costs of geothermal development as well as improve its effectiveness, the U.S. Department of Energy today announced plans to leverage oil and gas expertise to test the reliability and efficiency of geothermal power generation at oil and gas fields.

219

A Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

503 * July 2012 503 * July 2012 Hydrogen photoproduction by 500 mL of sulfur/phosphorus- deprived (-S -P) algal cultures placed in PhBRs with different headspace volumes (165-925 mL). The final percentages of H 2 gas in the gas phase of the PhBRs are indicated in the figure inset; the Y-axis reports actual amounts of H 2 produced. The yield of H 2 gas in the PhBR with a historically small gas phase volume is shown as a dotted line. A Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume Project: Biological Systems for Hydrogen Photoproduction Team: Maria L. Ghirardi and Michael Seibert, NREL; Sergey N. Kosourov, Khorcheska A. Batyrova, Ekaterina P. Petushkova, and Anatoly A. Tsygankov, IBBP, Russian Academy of Sciences, Russia

220

National Renewable Energy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Because original equipment Because original equipment manufacturer (OEM) vehicles designed to run on compressed natural gas (CNG) and liquefied petroleum gas (LPG) have only been available in limited models in past years, many fleets have had to rely on conversions as a source for alternative fuel vehicles (AFVs). The Federal fleet is no different-so far it has converted approximately 900 vehicles to CNG or LPG, providing the National Renewable Energy Laboratory (NREL) with an opportunity to test a variety of conversion kits. When buying a new AFV or having a gasoline vehicle convert- ed, fleet managers need to ask the right questions about the emis- sions performance they can expect, according to researchers at NREL. "Question them. Don't take [good emissions performance] for granted," said Robert Motta,

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2013 Unconventional Oil and Gas Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Fossil Energys National Energy Technology Laboratoryhas an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory...

222

Synergies in Natural Gas and Hydrogen Fuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F presentation slides: synergies in Natural Gas and hydrogen Fuels Brian Bonner, Air Products and Chemicals, Inc. 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary...

223

High Temperature Optical Gas Sensing  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Gas Sensing Optical Gas Sensing Opportunity Research is active on optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing applications. Patent applications have been filed for two inventions in this area and several other methods are currently under development. These technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Organizations or individuals with capabilities in optical sensor packaging for harsh environment and high temperature applications are encouraged to contact NETL to explore potential collaborative opportunities. Overview Contact NETL Technology Transfer Group techtransfer@netl.doe.gov

224

NATIONAL ENERGY POLICY A  

NLE Websites -- All DOE Office Websites (Extended Search)

merica's energy strength lies in merica's energy strength lies in the abundance and diversity of its energy resources, and in its technological leadership in de veloping and efficiently using these resources. Our nation has rich depos- its of coal, oil, and natural gas. The United Energy for a New Century Increasing Domestic Energy Supplies Figure 5-1 U.S. Energy Production: 1970-2000 Production of coal, the nation's most abundant fuel source, ex- ceeded 1 billion tons in 2000. Electricity generation accounted for about 90 percent of U.S. coal consumption last year. ________ Source: U.S. Department of Energy, Energy Information Administration. Coal Oil Nuclear 25 20 15 10 5 0 Non-hydro Renewables Hydropower 1970 80 90 00

225

The National Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

National Renewable National Renewable Energy Laboratory's (NREL) Alternative Fuels Utilization Program, which is widely known for its alternative fuel vehicle (AFV) emissions information, is also doing much to bring better alternative fuel vehicles to the field. Many of the AFVs of tomor- row will include components developed through NREL's research, which is sponsored by the U.S. Department of Energy (DOE). Most of NREL's projects involve ethanol, methanol, natural gas, biodiesel, and propane, but researchers are also working on future fuels such as hydrogen and dimethyl ether. In this issue of AFDC Update, we highlight a few of these projects. Up-to-date fact sheets are available on line through the AFDC World Wide Web (WWW) site at: http://www. afdc.doe.gov/fuelutil/engoptim.html.

226

Compressed natural gas measurement issues  

SciTech Connect

The Natural Gas Vehicle Coalition`s Measurement and Metering Task Group (MMTG) was established on July 1st, 1992 to develop suggested revisions to National Institute of Standards & Technology (NIST) Handbook 44-1992 (Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices) and NIST Handbook 130-1991 (Uniform Laws & Regulations). Specifically, the suggested revisions will address the sale and measurement of compressed natural gas when sold as a motor vehicle fuel. This paper briefly discusses the activities of the MMTG and its interaction with NIST. The paper also discusses the Institute of Gas Technology`s (IGT) support of the MMTG in the area of natural gas composition, their impact on metering technology applicable to high pressure fueling stations as well as conversion factors for the establishment of ``gallon gasoline equivalent`` of natural gas. The final portion of this paper discusses IGT`s meter research activities and its meter test facility.

Blazek, C.F.; Kinast, J.A.; Freeman, P.M.

1993-12-31T23:59:59.000Z

227

Clean Cities: National Clean Fleets Partner: Enterprise Holdings  

NLE Websites -- All DOE Office Websites (Extended Search)

Enterprise Holdings to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Google Bookmark Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Delicious Rank Clean Cities: National Clean Fleets Partner: Enterprise Holdings on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Enterprise Holdings on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

228

Environmental Assessment and Finding of No Significant Impact: The Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico  

SciTech Connect

The National Nuclear Security Administration (NNSA) has assigned a continuing role to Los Alamos National Laboratory (LANL) in carrying out NNSAs national security mission. To enable LANL to continue this enduring responsibility requires that NNSA maintain the capabilities and capacities required in support of its national mission assignments at LANL. To carry out its Congressionally assigned mission requirements, NNSA must maintain a safe and reliable infrastructure at LANL. Upgrades to the various utility services at LANL have been ongoing together with routine maintenance activities over the years. However, the replacement of a certain portion of natural gas service transmission pipeline is now necessary as this delivery system element has been operating well beyond its original design life for the past 20 to 30 years and components of the line are suffering from normal stresses, strains, and general failures. The Proposed Action is to grant an easement to the Public Service Company of New Mexico (PNM) to construct, operate, and maintain approximately 15,000 feet (4,500 meters) of 12-inch (in.) (30-centimeter [cm]) coated steel natural gas transmission mainline on NNSA-administered land within LANL along Los Alamos Canyon. The new gas line would begin at the existing valve setting located at the bottom of Los Alamos Canyon near the Los Alamos County water well pump house and adjacent to the existing 12-in. (30-cm) PNM gas transmission mainline. The new gas line (owned by PNM) would then cross the streambed and continue east in a new easement obtained by PNM from the NNSA, paralleling the existing electrical power line along the bottom of the canyon. The gas line would then turn northeast near State Road (SR) 4 and be connected to the existing 12-in. (30-cm) coated steel gas transmission mainline, located within the right-of-way (ROW) of SR 502. The Proposed Action would also involve crossing a streambed twice. PNM would bore under the streambed for pipe installation. PNM would also construct and maintain a service road along the pipeline easement. In addition, when construction is complete, the easement would be reseeded. Portions of the Proposed Action are located within potential roosting and nesting habitat for the Mexican spotted owl (Strix occidentalis lucida), a Federally protected threatened species. Surveys over the last seven years have identified no owls within this area. The Proposed Action would be conducted according to the provisions of the LANL Threatened and Endangered Species Habitat Management Plan. Effects would not be adverse to either individuals or potential critical habitat for protected species. Cultural resources within the vicinity of the proposed easement would be avoided with the exception of an historic trail. However, the original trail has been affected by previous activities and no longer has sufficient historical value to be eligible for listing on the National Register of Historic Places. Minimal undisturbed areas would be involved in the Proposed Action. Most of the proposed easement follows an established ROW for the existing electrical power line. There are several potentially contaminated areas within Los Alamos Canyon; however, these areas would be avoided, where possible, or, if avoidance isn't possible or practicable under the Proposed Action, the contaminated areas would be sampled and remediated in accordance with New Mexico Environment Department requirements before construction.

N /A

2002-07-30T23:59:59.000Z

229

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

230

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

231

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

232

DOE Showcases Websites for Tight Gas Resource Development | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Showcases Websites for Tight Gas Resource Development Showcases Websites for Tight Gas Resource Development DOE Showcases Websites for Tight Gas Resource Development July 30, 2009 - 1:00pm Addthis Washington, D.C. -- Two U.S. Department of Energy (DOE) projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays. Operators can use the data on the websites to expand natural gas recovery in the San Juan Basin of New Mexico and the central Appalachian Basin of West Virginia and Pennsylvania. As production from conventional natural gas resources declines, natural gas from tight-gas sandstone formations is expected to contribute a growing percentage to the nation's energy supply. "Tight gas" is natural gas

233

Historical Natural Gas Annual - 1930 Through 2000  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-2000 and detailed annual historical information by State for 1967-2000. Entire . The entire report as a single file. PDF 1.5 MB Front Matter . Historical Natural Gas Annual Cover Page, Preface, Common Abbreviations Used, and Table of Contents PDF . . Tables . 1 Quantity and Average Price of Natural Gas Production in the United States, 1930-1998 PDF

234

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2013 , 2013 CX-010816: Categorical Exclusion Determination Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion and Emissions in Advanced Gas... CX(s) Applied: A9, B3.6 Date: 08/01/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory August 1, 2013 CX-010815: Categorical Exclusion Determination Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion and Emissions in Advanced Gas... CX(s) Applied: A9, B3.6 Date: 08/01/2013 Location(s): Indiana Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010826: Categorical Exclusion Determination Evaluation of Flow and Heat Transfer Inside Lean Pre-Mixed Combustor Systems under Reacting Flow Conditions CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

235

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

236

Oak Ridge National Laboratory National Security Programs  

E-Print Network (OSTI)

Oak Ridge National Laboratory National Security Programs Dr. Michael A. Kuliasha, Chief Scientist National Security Technologies Oak Ridge National Laboratory #12;2 OAK RIDGE NATIONAL LABORATORY U. S Security Challenges #12;3 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY How Will Our Enemies

237

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 31, 2012 August 31, 2012 Department of Energy Advance Methane Hydrates Science and Technology Projects Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012 August 23, 2012 Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study The nation's large resource base of natural gas can be used for cost-effective power generation, with environmental burdens coming primarily from fuel combustion, not resource extraction, according to a new Department of Energy study. August 15, 2012 Alex-andra "Ale" Hakala is an award-winning geoscientist at DOE's National Energy Technology Laboratory. | Photo from the National Energy Technology Laboratory. Energy Department Lab Researcher Wins HENAAC Award for Outstanding

238

Natural gas pipeline technology overview.  

SciTech Connect

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

239

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, July 21, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, July 13, 2011) Nearly all pricing points were up somewhat for the week on a heat wave that affected nearly half the country’s population according to national news reports. Despite the record heat, the Henry Hub price increased a modest 9 cents per million Btu (MMBtu) over the week (2.0 percent) to close at $4.43 per MMBtu on July 13. At the New York Mercantile Exchange (NYMEX), the price response was more robust (up 4.4 percent) with the August 2011 natural gas contract price gaining ground over the week, closing at $4.403 per MMBtu on Wednesday. Working natural gas in storage rose last week to 2,611 billion cubic

240

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

242

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

243

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

244

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

245

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

246

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

247

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

248

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

249

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

250

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

251

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

252

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

253

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

254

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

255

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

256

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

257

Gas Hydrate: A Realistic Future Source of Gas Supply? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? August 24, 2009 - 1:00pm Addthis Washington, D.C - A Department of Energy scientist writes in this week's Science magazine that a search is underway for a potentially immense untapped energy resource that, given its global distribution, has the potential to alter existing energy production and supply paradigms. In the article, Is Gas Hydrate Energy Within Reach?, Dr. Ray Boswell, technology manager for the Office of Fossil Energy's National Energy Technology Laboratory methane hydrates program, discusses recent findings and new research approaches that are clarifying gas hydrates energy potential. Driving the current interest in gas hydrate resource appraisal is the focus

258

Gas Hydrate: A Realistic Future Source of Gas Supply? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? August 24, 2009 - 1:00pm Addthis Washington, D.C - A Department of Energy scientist writes in this week's Science magazine that a search is underway for a potentially immense untapped energy resource that, given its global distribution, has the potential to alter existing energy production and supply paradigms. In the article, Is Gas Hydrate Energy Within Reach?, Dr. Ray Boswell, technology manager for the Office of Fossil Energy's National Energy Technology Laboratory methane hydrates program, discusses recent findings and new research approaches that are clarifying gas hydrates energy potential. Driving the current interest in gas hydrate resource appraisal is the focus

259

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

260

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Clean Cities: National Clean Fleets Partner: FedEx  

NLE Websites -- All DOE Office Websites (Extended Search)

FedEx to FedEx to someone by E-mail Share Clean Cities: National Clean Fleets Partner: FedEx on Facebook Tweet about Clean Cities: National Clean Fleets Partner: FedEx on Twitter Bookmark Clean Cities: National Clean Fleets Partner: FedEx on Google Bookmark Clean Cities: National Clean Fleets Partner: FedEx on Delicious Rank Clean Cities: National Clean Fleets Partner: FedEx on Digg Find More places to share Clean Cities: National Clean Fleets Partner: FedEx on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame Contacts National Clean Fleets Partner: FedEx

262

National System Templates: Building Sustainable National Inventory  

Open Energy Info (EERE)

National System Templates: Building Sustainable National Inventory National System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building Sustainable National Inventory Management Systems Agency/Company /Organization: United States Environmental Protection Agency, United States Agency for International Development Sector: Energy, Land Focus Area: Non-renewable Energy, Forestry, Agriculture Topics: GHG inventory Resource Type: Guide/manual, Training materials Website: www.epa.gov/climatechange/emissions/ghginventorycapacitybuilding/templ National System Templates: Building Sustainable National Inventory Management Systems Screenshot References: National System Templates: Building Sustainable National Inventory Management Systems[1]

263

EIA - International Energy Outlook 2008-Natural Gas Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

8 8 Figure 35. World Natural Gas Consumption, 1980-2030 Figure 35 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 36. Natural Gas Consumption in North America by Country, 2005-2030 Figure 36 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 37. Natural Gas Consumption in OECD Europe, 2005-2030 Figure 37 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 38. Natural Gas Consumption in OECD Asia by Country, 2005-2030 Figure 38 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 39. Natural Gas Consumption in Non-OECD Europe and Eurasia, 2005-2030 Figure 39 Data. Need help, contact the National Energy Information Center at 202-586-8800.

264

EIA - International Energy Outlook 2007-Natural Gas Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

7 7 Figure 40. World Natural Gas Consumption by End-Use Sector, 2004-2030 Figure 40 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 41. World Natural Gas Consumption by Region, 2004-2030 Figure 41 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 42. World Natural Gas Reserves by Region, 1980-2007 Figure 42 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 43. World Natural Gas Reserves by Geographic Region as of January 1, 2007 Figure 43 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 44. World Natural Gas Resources by Geographic Region, 2006-2025 Figure 44 Data. Need help, contact the National Energy Information Center at 202-586-8800.

265

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

Science Journals Connector (OSTI)

...Kerr RA ( 2010 ) Energy. Natural gas from...1626 . 3 US Energy Information Administration...March 2013 (US Energy Information Administration...Agency, Office of Research and Development, National Risk...isotopes in Icelandic geothermal systems. 1. He-3...

Robert B. Jackson; Avner Vengosh; Thomas H. Darrah; Nathaniel R. Warner; Adrian Down; Robert J. Poreda; Stephen G. Osborn; Kaiguang Zhao; Jonathan D. Karr

2013-01-01T23:59:59.000Z

266

2-D numerical simulation of digital rock experiments with lattice gas automation for electrical properties of reservoir formation  

Science Journals Connector (OSTI)

......41074103 from National Natural Science Foundation...law from lattice-gas hydrodynamics, Phys...equation using a lattice gas Boltzmann method...1991b. Lattice gas automata for flow...Logging Analysist, Corpus Christi, TX, 1982 July......

Wenzheng Yue; Guo Tao; Shangxu Wang; Bin Tian

2010-12-01T23:59:59.000Z

267

Clean Cities: Clean Cities National Parks Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

National Parks Initiative National Parks Initiative Submit a Project, National Park Service logo Clean Cities partners with the National Park Service (NPS) through the Clean Cities National Parks Initiative to support transportation projects that educate park visitors on the benefits of reducing petroleum use and greenhouse gas emissions. This initiative complements the NPS Climate Friendly Parks program by demonstrating the environmental benefits of reducing petroleum use. Glacier Greater Yellowstone Area Rocky Mountain Denali National Mall and Memorial Park Mississippi River Sleeping Bear Dunes Yellowstone Grand Teton Mammoth Cave Zion Blue Ridge Parkway Great Smoky Mountains Shenandoah Acadia San Antonio Missions Grand Canyon Golden Gate Mesa Verde Project Locations - Photo of the snow-covered Teton Mountain range in Grand Teton National Park.

268

Gas Storage Technology Consortium  

SciTech Connect

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

269

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 25, 2013 March 25, 2013 Image of how methane hydrates can form in arctic and marine environments. | Illustration by the Energy Department. Data from Alaska Test Could Help Advance Methane Hydrate R&D Methane Hydrates present an enormous energy resource. The Energy Department is working to advance technologies and reap the possible benefits for a more secure energy future. March 22, 2013 ARPA-E Announces $40 Million for Research Projects to Develop Cleaner and Cheaper Transportation Choices for Consumers Two New ARPA-E Programs Will Engage Nation's Brightest Scientists, Engineers and Entrepreneurs in Research Competition to Improve Vehicle Manufacturing Techniques and Natural Gas Conversion January 10, 2013 Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA.

270

Greenhouse Gas Reductions: SF6  

ScienceCinema (OSTI)

Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

Anderson, Diana

2013-04-19T23:59:59.000Z

271

Greenhouse Gas Reductions: SF6  

SciTech Connect

Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

Anderson, Diana

2012-01-01T23:59:59.000Z

272

National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

273

Gas Turbine Engine Collaborative Research - NASA Glenn Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Engine Collaborative Gas Turbine Engine Collaborative Research-NASA Glenn Research Center Background Advancing the efficiency and performance levels of gas turbine technology requires high levels of fundamental understanding of the actual turbine component level technology systems. The National Aeronautics and Space Administration Glenn Research Center (NASA Glenn), with support from the Ohio State University, is planning research to compile

274

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

275

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

276

SOUTH-CENTRAL ALASKA NATURAL GAS STUDY  

NLE Websites -- All DOE Office Websites (Extended Search)

South-Central Alaska Natural Gas Study South-Central Alaska Natural Gas Study Strategic Center for Natural Gas & Oil SOUTH-CENTRAL ALASKA NATURAL GAS STUDY Charles P. Thomas Tom C. Doughty David D. Faulder David M. Hite Final Report June 2004 Prepared for the U.S. Department of Energy National Energy Technology Laboratory Arctic Energy Office Contract DE-AM26-99FT40575 Page Intentionally Blank FOREWORD This assessment and analysis of south-central Alaska natural gas supply and demand was performed for the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) by Science Applications International Company's (SAIC) Alaska Energy Office, Anchorage, Alaska. The work was initiated in August 2003 and completed and published in June 2004 following reviews by the Steering Committee, state and federal stakeholders, local

277

The Influence of Shale gas on U.S. Energy and Environmental Policy  

E-Print Network (OSTI)

The emergence of U.S. shale gas resources to economic viability affects the nations energy outlook and the expected role of natural gas in climate policy. Even in the face of the current shale gas boom, however, questions ...

Jacoby, H.D.

278

Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation  

Science Journals Connector (OSTI)

...collection of the natural gas. Fracking can be done in vertical...as mechanical or chemical fracking, is often required...C (2011) The greenhouse impact of unconventional gas...Subgroup of the Operations and Environment Task Group of the National...

Garvin A. Heath; Patrick ODonoughue; Douglas J. Arent; Morgan Bazilian

2014-01-01T23:59:59.000Z

279

Clean Cities: National Clean Fleets Partner: Best Buy  

NLE Websites -- All DOE Office Websites (Extended Search)

Best Buy Best Buy to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Best Buy on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Best Buy on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Best Buy on Google Bookmark Clean Cities: National Clean Fleets Partner: Best Buy on Delicious Rank Clean Cities: National Clean Fleets Partner: Best Buy on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Best Buy on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

280

Clean Cities: National Clean Fleets Partner: Coca-Cola  

NLE Websites -- All DOE Office Websites (Extended Search)

Coca-Cola to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Coca-Cola on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Coca-Cola on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Coca-Cola on Google Bookmark Clean Cities: National Clean Fleets Partner: Coca-Cola on Delicious Rank Clean Cities: National Clean Fleets Partner: Coca-Cola on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Coca-Cola on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Clean Cities: National Clean Fleets Partner: AMP Americas  

NLE Websites -- All DOE Office Websites (Extended Search)

AMP AMP Americas to someone by E-mail Share Clean Cities: National Clean Fleets Partner: AMP Americas on Facebook Tweet about Clean Cities: National Clean Fleets Partner: AMP Americas on Twitter Bookmark Clean Cities: National Clean Fleets Partner: AMP Americas on Google Bookmark Clean Cities: National Clean Fleets Partner: AMP Americas on Delicious Rank Clean Cities: National Clean Fleets Partner: AMP Americas on Digg Find More places to share Clean Cities: National Clean Fleets Partner: AMP Americas on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

282

Clean Cities: National Clean Fleets Partner: PepsiCo  

NLE Websites -- All DOE Office Websites (Extended Search)

PepsiCo PepsiCo to someone by E-mail Share Clean Cities: National Clean Fleets Partner: PepsiCo on Facebook Tweet about Clean Cities: National Clean Fleets Partner: PepsiCo on Twitter Bookmark Clean Cities: National Clean Fleets Partner: PepsiCo on Google Bookmark Clean Cities: National Clean Fleets Partner: PepsiCo on Delicious Rank Clean Cities: National Clean Fleets Partner: PepsiCo on Digg Find More places to share Clean Cities: National Clean Fleets Partner: PepsiCo on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

283

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

284

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

285

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

286

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

287

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

288

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

289

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

290

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

291

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

292

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

293

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

294

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

295

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

296

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

297

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

298

Gas vesicles.  

Science Journals Connector (OSTI)

...the gas vesicles simply reduce their sinking rates and...remaining suspended in the water column. A microorganism...phenomena as stratification, water- bloom formation, and...the many proteins that make up the phycobilisome (73...flagellate bacteria in natural waters. The natural selection...

A E Walsby

1994-03-01T23:59:59.000Z

299

Gas vesicles.  

Science Journals Connector (OSTI)

...these costs can be compared is in units of energy expenditure per time (joules per second...requires 7.24 x 10-18 kg of Gvp. The energy cost of making this protein, Eg, is...Eg = 2.84 x 101- o J. The rate of energy expenditure in gas vesicle synthesis then...

A E Walsby

1994-03-01T23:59:59.000Z

300

Gas sensor  

DOE Patents (OSTI)

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Presentation for National Governors’ Association  

Gasoline and Diesel Fuel Update (EIA)

Presentation for National Governors’ Association Presentation for National Governors’ Association 1/26/01 Click here to start Table of Contents Presentation for National Governors’ Association WTI Crude Oil Price: Base Case and 95% Confidence Interval Real and Nominal Crude Oil Prices OPEC Crude Oil Production 1999-2001 Supply/Demand Forecasts Begin to Show Stock Rebuilding Total OECD Oil Stocks* Fundamentals Explain High Prices U.S. Crude Oil Inventory Outlook U.S. Distillate Inventory Outlook Distillate Stocks Are Important Part of East Coast Winter Supply Retail Heating Oil and Diesel Fuel Prices U.S. Total Gasoline Inventory Outlook Retail Motor Gasoline Prices* U.S. Propane Total Stocks Average Weekly Propane Spot Prices Retail Propane Prices U.S. Natural Gas -. Working Gas in Underground Storage Current Natural Gas Spot Prices: Well Above the Recent Price Range

302

EIA - Annual Energy Outlook 2008 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Demand Natural Gas Demand Annual Energy Outlook 2008 with Projections to 2030 Natural Gas Demand Figure 72. Natural gas consumption by sector, 1990-2030 (trillion cubic feet). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 73. Total natural gas consumption, 1990-2030 (trillion cubic feet). Need help, contact the National Energy Information Center at 202-586-8800. figure data Fastest Increase in Natural Gas Use Is Expected for the Buildings Sectors In the reference case, total natural gas consumption increases from 21.7 trillion cubic feet in 2006 to a peak value of 23.8 trillion cubic feet in 2016, followed by a decline to 22.7 trillion cubic feet in 2030. The natural gas share of total energy consumption drops from 22 percent in 2006

303

National System Templates: Building Sustainable National Inventory...  

Open Energy Info (EERE)

Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building Sustainable...

304

Sandia National Laboratories: Japanese National Institute of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Japanese National Institute of Advanced Industrial Science and Technology Sandia-California Partners with Japanese National Institute of Advanced Industrial Science and Technology...

305

Groundbreaking at National Ignition Facility | National Nuclear...  

National Nuclear Security Administration (NNSA)

Ignition Facility May 29, 1997 Groundbreaking at National Ignition Facility Livermore, CA Secretary Pena participates in the ground breaking ceremony for the National Ignition...

306

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

All Documents listed below are part of the Photon Sciences Directorate and All Documents listed below are part of the Photon Sciences Directorate and will be updated as needed. Photon Sciences ESH Standard Operating Procedures (SOPs) SOP No. Standard Operating Procedure for: LS-ES-0002 Procedure for Acid Etching of Silicon and Germanium Crystals LS-ESH-0004 NSLS Operations Group Chemical Spill and Gas Release Response LS-ESH-0010 VUV Injection Shutter LOTO LS-ESH-0012 LINAC LOTO LS-ESH-0013 Controlled Access to the VUV Ring LS-ESH-0014 Radiation Safety Interlocks at the National Synchrotron Light Source LS-ESH-0019 Beam Line Configuration Control Checklist Requirements LS-ESH-0020 Biosafety Requirements at the NSLS LS-ESH-0021 Biosafety Level 2 work at the NSLS/ A Technical Basis LS-ESH-0022 Beam Line Configuration Control Checklist Requirements

307

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

308

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

309

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

310

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

311

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

312

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

313

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

314

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

315

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

316

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0

317

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Colorado - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 25,716 27,021 28,813 30,101 32,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 496,374 459,509 526,077 563,750 1,036,572 From Oil Wells 199,725 327,619 338,565

318

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 South Dakota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 71 71 89 102 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 422 R 1,098 R 1,561 1,300 933 From Oil Wells 11,458 10,909 11,366 11,240 11,516 From Coalbed Wells 0 0

319

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Illinois - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 43 45 51 50 40 Production (million cubic feet) Gross Withdrawals From Gas Wells RE 1,389 RE 1,188 RE 1,438 RE 1,697 2,114 From Oil Wells E 5 E 5 E 5 E 5 7 From Coalbed Wells RE 0 RE

320

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Colorado - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 22,949 25,716 27,021 28,813 30,101 Production (million cubic feet) Gross Withdrawals From Gas Wells R 436,330 R 496,374 R 459,509 R 526,077 563,750 From Oil Wells 160,833 199,725 327,619

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Alaska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 239 261 261 269 277 Production (million cubic feet) Gross Withdrawals From Gas Wells 165,624 150,483 137,639 127,417 112,268 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654

322

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Ohio - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 34,416 34,416 34,963 34,931 46,717 Production (million cubic feet) Gross Withdrawals From Gas Wells R 82,812 R 79,769 R 83,511 R 73,459 30,655 From Oil Wells 5,268 5,072 5,301 4,651 45,663 From Coalbed Wells

323

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Kentucky - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 16,563 16,290 17,152 17,670 14,632 Production (million cubic feet) Gross Withdrawals From Gas Wells 95,437 R 112,587 R 111,782 133,521 122,578 From Oil Wells 0 1,529 1,518 1,809 1,665 From Coalbed Wells 0

324

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Utah - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,197 5,578 5,774 6,075 6,469 Production (million cubic feet) Gross Withdrawals From Gas Wells R 271,890 R 331,143 R 340,224 R 328,135 351,168 From Oil Wells 35,104 36,056 36,795 42,526 49,947 From Coalbed Wells

325

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 California - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 1,540 1,645 1,643 1,580 1,308 Production (million cubic feet) Gross Withdrawals From Gas Wells 93,249 91,460 82,288 73,017 63,902 From Oil Wells R 116,652 R 122,345 R 121,949 R 151,369 120,880

326

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Utah - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,578 5,774 6,075 6,469 6,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,143 340,224 328,135 351,168 402,899 From Oil Wells 36,056 36,795 42,526 49,947 31,440 From Coalbed Wells 74,399

327

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Louisiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18,145 19,213 18,860 19,137 21,235 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,261,539 R 1,288,559 R 1,100,007 R 911,967 883,712 From Oil Wells 106,303 61,663 58,037 63,638 68,505

328

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Oklahoma - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 38,364 41,921 43,600 44,000 41,238 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,583,356 R 1,452,148 R 1,413,759 R 1,140,111 1,281,794 From Oil Wells 35,186 153,227 92,467 210,492 104,703

329

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 New Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 42,644 44,241 44,784 44,748 32,302 Production (million cubic feet) Gross Withdrawals From Gas Wells R 657,593 R 732,483 R 682,334 R 616,134 556,024 From Oil Wells 227,352 211,496 223,493 238,580 252,326

330

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 West Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 48,215 49,364 50,602 52,498 56,813 Production (million cubic feet) Gross Withdrawals From Gas Wells R 189,968 R 191,444 R 192,896 R 151,401 167,113 From Oil Wells 701 0 0 0 0 From Coalbed Wells

331

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Michigan - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 9,995 10,600 10,100 11,100 10,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 16,959 20,867 7,345 18,470 17,041 From Oil Wells 10,716 12,919 9,453 11,620 4,470 From Coalbed Wells 0

332

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 West Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 49,364 50,602 52,498 56,813 50,700 Production (million cubic feet) Gross Withdrawals From Gas Wells 191,444 192,896 151,401 167,113 397,313 From Oil Wells 0 0 0 0 1,477 From Coalbed Wells 0

333

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

334

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 New York - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,675 6,628 6,736 6,157 7,176 Production (million cubic feet) Gross Withdrawals From Gas Wells 49,607 44,273 35,163 30,495 25,985 From Oil Wells 714 576 650 629 439 From Coalbed Wells 0

335

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

336

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,426 7,303 7,470 7,903 7,843 Production (million cubic feet) Gross Withdrawals From Gas Wells 7,419 16,046 23,086 20,375 21,802 From Oil Wells 0 0 0 0 9 From Coalbed Wells 101,567 106,408

337

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Kentucky - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 16,290 17,152 17,670 14,632 17,936 Production (million cubic feet) Gross Withdrawals From Gas Wells 112,587 111,782 133,521 122,578 106,122 From Oil Wells 1,529 1,518 1,809 1,665 0 From Coalbed Wells 0

338

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Pennsylvania - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 52,700 55,631 57,356 44,500 54,347 Production (million cubic feet) Gross Withdrawals From Gas Wells 182,277 R 188,538 R 184,795 R 173,450 242,305 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0

339

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Texas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 87,556 93,507 95,014 100,966 96,617 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,285,458 4,860,377 4,441,188 3,794,952 3,619,901 From Oil Wells 745,587 774,821 849,560 1,073,301 860,675

340

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Alabama - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,860 6,913 7,026 7,063 6,327 Production (million cubic feet) Gross Withdrawals From Gas Wells 158,964 142,509 131,448 116,872 114,407 From Oil Wells 6,368 5,758 6,195 5,975 10,978

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Louisiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 19,213 18,860 19,137 21,235 19,792 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,288,559 1,100,007 911,967 883,712 775,506 From Oil Wells 61,663 58,037 63,638 68,505 49,380

342

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 South Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 71 89 102 100 95 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,098 1,561 1,300 933 14,396 From Oil Wells 10,909 11,366 11,240 11,516 689 From Coalbed Wells 0 0 0 0 0

343

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Kansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 17,862 21,243 22,145 25,758 24,697 Production (million cubic feet) Gross Withdrawals From Gas Wells 286,210 269,086 247,651 236,834 264,610 From Oil Wells 45,038 42,647 39,071 37,194 0 From Coalbed Wells 44,066

344

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Arkansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,592 6,314 7,397 8,388 8,538 Production (million cubic feet) Gross Withdrawals From Gas Wells 173,975 164,316 152,108 132,230 121,684 From Oil Wells 7,378 5,743 5,691 9,291 3,000

345

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 California - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 1,645 1,643 1,580 1,308 1,423 Production (million cubic feet) Gross Withdrawals From Gas Wells 91,460 82,288 73,017 63,902 120,579 From Oil Wells 122,345 121,949 151,369 120,880 70,900

346

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Oklahoma - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 41,921 43,600 44,000 41,238 40,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,452,148 1,413,759 1,140,111 1,281,794 1,394,859 From Oil Wells 153,227 92,467 210,492 104,703 53,720

347

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Alaska - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 261 261 269 277 185 Production (million cubic feet) Gross Withdrawals From Gas Wells 150,483 137,639 127,417 112,268 107,873 From Oil Wells 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918

348

NETL: News Release - DOE Selects Projects Targeting America's "Tight" Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2006 7, 2006 DOE Selects Projects Targeting America's "Tight" Gas Resources Research to Help Unlock Nation's Largest Growing Source of Natural Gas WASHINGTON, DC - The Department of Energy today announced the selection of two cost-shared research and development projects targeting America's major source of natural gas: low-permeability or "tight" gas formations. Tight gas is the largest of three so-called unconventional gas resources?the other two being coalbed methane (natural gas) and gas shales. Production of unconventional gas in the United States represents about 40 percent of the Nation's total gas output in 2004, but could grow to 50 percent by 2030 if advanced technologies are developed and implemented. The constraints on producing tight gas are due to the impermeable nature of the reservoir rocks, small reservoir compartments, abnormal (high or low) pressures, difficulty in predicting natural fractures that aid gas flow rates, and need to predict and avoid reservoirs that produce large volumes of water.

349

Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia to Join National Clean Fleets Partnership Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia to Join National Clean Fleets Partnership March 5, 2012 - 12:15pm Addthis INDIANAPOLIS, IN -- Energy Secretary Steven Chu today announced that four new corporate partners - Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia - are joining the Energy Department's National Clean Fleets Partnership, a broad public-private partnership that assists the nation's largest fleet operators in reducing the amount of gasoline and diesel they use nationwide. The new partners announced today join with 14 other major national companies in committing to improve the fuel economy

350

Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Buy, Johnson Controls, Pacific Gas and Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia to Join National Clean Fleets Partnership Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia to Join National Clean Fleets Partnership March 5, 2012 - 12:15pm Addthis INDIANAPOLIS, IN -- Energy Secretary Steven Chu today announced that four new corporate partners - Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia - are joining the Energy Department's National Clean Fleets Partnership, a broad public-private partnership that assists the nation's largest fleet operators in reducing the amount of gasoline and diesel they use nationwide. The new partners announced today join with 14 other major national companies in committing to improve the fuel economy

351

NATURAL GAS MARKET ASSESSMENT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

352

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

353

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

354

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

355

Gas Chromatography  

Science Journals Connector (OSTI)

Researchers from the University of Missouri and ICx Nomadics have reported on the use of a optofluidic ring resonator (OFRR) sensor for on-column detection ?. ... Although substantial differences were noted between fresh and aged (or oxidized) oils, many of the compounds in the oxidized oil went unidentified due to lack of library mass spectral data. ... A high resolution MEMS based gas chromatography column for the analysis of benzene and toluene gaseous mixtures ...

Frank L. Dorman; Joshua J. Whiting; Jack W. Cochran; Jorge Gardea-Torresdey

2010-05-26T23:59:59.000Z

356

Lawrence Livermore National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security.

357

Sandia National Laboratories  

Energy.gov (U.S. Department of Energy (DOE))

Sandia National Laboratories' (SNL) primary mission is to provide scientific and technology support to national security programs.

358

Intern experience at Electricity Directorate of Bahrain: an internship report  

E-Print Network (OSTI)

n ......................................27 8. A VDU Picture of a Substation .............................................................. 35 9. A VDU Picutre of the Alarm List................................................................ 38 10... consists of : - Over-head lines : 33kv &66kv - Underground cables : 33kv & 66kv & 220kv - Substations: 33 /llkv & 66 /llkv & 220/66kv. Associated with this equipment is a protection system which utilises a network of pilot cables. The transmission...

Aljamea, Najeeb Ahmad

2013-03-13T23:59:59.000Z

359

Emerging Hubs: South Korea, Sri Lanka, Mauritius, and Bahrain  

Science Journals Connector (OSTI)

A crosscutting analysis of the six case studies and an examination of key issues and challenges related to education hub development are the focus of this chapter. The key themes for the comparative analysis i...

Lois Dou; Jane Knight

2014-01-01T23:59:59.000Z

360

Natural gas monthly, November 1997  

SciTech Connect

This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through November for many data series, and through August for most natural gas prices. Highlights of the most recent data estimates are: (1) Preliminary estimates of dry natural gas production and total consumption available through November 1997 indicate that both series are on track to end the year at levels close to those of 1996. Cumulative dry production is one-half percent higher than in 1996 and consumption is one-half percent lower. (2) Natural gas production is estimated to be 52.6 billion cubic feet per day in November 1997, the highest rate since March 1997. (3) After falling 8 percent in July 1997, the national average wellhead price rose 10 percent in August 1997, reaching an estimated $2.21 per thousand cubic feet. (4) Milder weather in November 1997 compared to November 1996 has resulted in significantly lower levels of residential consumption of natural gas and net storage withdrawls than a year ago. The November 1997 estimates of residential consumption and net withdrawls are 9 and 20 percent lower, respectively, than in November 1996.

NONE

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Rapid Gas Hydrate Formation Process Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Formation Process Gas Hydrate Formation Process Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Non-provisional Patent Application entitled "Rapid Gas Hydrate Formation Process." Disclosed in this application is a method and device for producing gas hydrates from a two-phase mixture of water and a hydrate forming gas such as methane (CH 4 ) or carbon dioxide (CO 2 ). The two-phase mixture is created in a mixing zone, which may be contained within the body of the spray nozzle. The two-phase mixture is subsequently sprayed into a reaction vessel, under pressure and temperature conditions suitable for gas hydrate formation. The reaction

362

Clean Cities: Natural Gas Vehicle Technology Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

Forum Forum Natural Gas Vehicle Technology Form (NGVTF) logo The Natural Gas Vehicle Technology Forum (NGVTF) supports development and deployment of commercially competitive natural gas engines, vehicles, and infrastructure. Learn about NGVTF's purpose, activities, meetings, stakeholders, steering committee, and webinars. Purpose Led by the National Renewable Energy Laboratory in partnership with the U.S. Department of Energy and the California Energy Commission, NGVTF unites a diverse group of stakeholders to: Share information and resources Identify natural gas engine, vehicle, and infrastructure technology targets Facilitate government-industry research, development, demonstration, and deployment (RDD&D) to achieve targets Communicate high-priority needs of natural gas vehicle end users to natural gas equipment and vehicle manufacturers

363

Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technology Forum Vehicle Technology Forum Leadership Committee Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum Leadership Committee Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership

364

Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation  

Open Energy Info (EERE)

Greenhouse Gas Emissions and Mitigation Greenhouse Gas Emissions and Mitigation Potential in Agriculture Jump to: navigation, search Logo: Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Name Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Climate, Land Focus Area Agriculture, Greenhouse Gas Topics GHG inventory, Low emission development planning, -LEDS Resource Type Dataset, Technical report Website http://www.fao.org/climatechan References MICCA Website[1] The overall objective of the MAGHG project is to support developing countries assess and report their greenhouse gas (GHG) emissions from

365

Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19  

U.S. Energy Information Administration (EIA) Indexed Site

4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" 4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

366

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

367

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

368

Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 20  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

369

Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology  

SciTech Connect

The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPEs technology refines coal by employing a novel catalyst to crack the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild catalytic gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPEs catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to fluidize the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A PdCu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

Swanson, Michael; Henderson, Ann

2012-04-01T23:59:59.000Z

370

Security analysis of the interaction between the UK gas and electricity transmission systems  

E-Print Network (OSTI)

Natural gas has become the UKs foremost primary energy source, providing some 39% of our energy needs. The National Transmission System (NTS) has developed from its humble beginnings when natural gas was first discovered ...

Whiteford, James Raymond George

2012-06-25T23:59:59.000Z

371

Gas Sampling Considerations  

Science Journals Connector (OSTI)

Gas sampling is carried out to measure the quality of a gas. Gas samples are sometimes acquired by in situ observation within the main gas body by using remote or visual observation for specific properties. A mor...

Alvin Lieberman

1992-01-01T23:59:59.000Z

372

Georgia Tech Dangerous Gas  

E-Print Network (OSTI)

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

373

Market Digest: Natural Gas  

Reports and Publications (EIA)

The Energy Information Administration's Natural Gas Market Digest provides information and analyses on all aspects of natural gas markets.

2014-01-01T23:59:59.000Z

374

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

375

Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure- EAC 2011  

Energy.gov (U.S. Department of Energy (DOE))

Recommendations from the Electricity Advisory Committee on actions to be taken by the Department of Energy given the interdependence of the Nations electric infrastructure and natural gas...

376

Gas Chromatography  

Science Journals Connector (OSTI)

He received his B.S. degree in 1970 from Rhodes College in Memphis, TN, his M.S. degree in 1973 from the University of Missouri, Columbia, MO, and his Ph.D. degree in 1975 from Dalhousie University, Halifax, Nova Scotia, Canada. ... A review (with 145 references) on the role of carrier gases on the separation process (A4) demonstrates that carrier gas interactions are integral to the chromatographic process. ... In another report, activity coefficients for refrigerants were evaluated with a polyol ester oil stationary phase (C22). ...

Gary A. Eiceman; Herbert H. Hill, Jr.; Jorge Gardea-Torresdey

2000-04-25T23:59:59.000Z

377

PVT measurements for five natural gas mixtures  

E-Print Network (OSTI)

PVT MEASUREMENTS FOR FIVE NATURAL GAS MIXTURES A Thesis by PHILIP PARAYIL SIMON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1991..., The Netherlands), Ruhrgas (Germany), National Institute of Standards and Technology (Boulder, Colorado, USA), and Texas A&M University (USA). This work involved the measurement of the compressibility factors of the five natural gas mixtures at temperatures...

Simon, Philip Parayil

2012-06-07T23:59:59.000Z

378

Clean Cities: Natural Gas Transit and School Bus Users Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Transit and School Bus Transit and School Bus Users Group to someone by E-mail Share Clean Cities: Natural Gas Transit and School Bus Users Group on Facebook Tweet about Clean Cities: Natural Gas Transit and School Bus Users Group on Twitter Bookmark Clean Cities: Natural Gas Transit and School Bus Users Group on Google Bookmark Clean Cities: Natural Gas Transit and School Bus Users Group on Delicious Rank Clean Cities: Natural Gas Transit and School Bus Users Group on Digg Find More places to share Clean Cities: Natural Gas Transit and School Bus Users Group on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

379

Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Meeting to someone by E-mail 1 Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2011 Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

380

Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Meeting to someone by E-mail 2 Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2012 Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program

382

Oil and gas drilling despoils Alaska environment  

Science Journals Connector (OSTI)

Oil and gas drilling despoils Alaska environment ... Oil and gas development on Alaska's North Slope is causing "alarming environmental problems," accompanied by "a disturbing record of industry compliance with environmental laws and regulations," charges a report just released jointly by Trustees for Alaska, the Natural Resources Defense Council, and the National Wildlife Federation. ... Further oil development in the Arctic should be frozen until the environment is safeguarded, NRDC says, rather than yielding to lobbying in Congress to open the Arctic National Wildlife Refuge to drilling. ...

1988-02-01T23:59:59.000Z

383

Internet Dial-In Infodisk E-Mail Diskette Natural Gas Annual,  

Gasoline and Diesel Fuel Update (EIA)

Internet Internet Dial-In Infodisk E-Mail Diskette Natural Gas Annual, 1996 Provides information on supply and disposition of natural gas in the United States. Information is provided nationally, regionally, and by State for 1996. Historical Natural Gas Annual, 1930 through 1996 Contains historical information about supply and disposition of natural gas at the national, regional, and State level, as well as prices at selected points in the flow of gas from wellhead to burnertip. Natural Gas 1996: Issues and Trends Examines how industry restructuring continues to expand choices, and challenges, for industry, participants, and natural gas customers. Natural Gas 1995: Issues and Trends Addresses current issues affecting the natural gas industry and markets, and analyzes trends in the most recent natural gas data. Natural Gas 1994: Issues and Trends Provides an overview of the natural

384

Previous Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Previous Sandia National Laboratories | National Nuclear Security Previous Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Previous Sandia National Laboratories Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Sandia National Laboratories > Previous Sandia

385

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebates  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Vehicle Natural Gas Vehicle (NGV) Rebates to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebates on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebates on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebates on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebates on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebates on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Vehicle (NGV) Rebates National Grid rebates on a case-by-case basis to customers who purchase

386

AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS  

E-Print Network (OSTI)

AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS 14UD TAI'1K OPENING REPORT No. 39 5th. Measurements made with a test corona assembly suggest a production rate of reactive fluorine in the accelerator that the circulating gas passes first through the Vivalyme, then through the alumina (35/8). At 2.30 p.m. recirculation

Chen, Ying

387

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network (OSTI)

;Abstract A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing furnaces were tested for air moving performance. Three different types of blower and motor combinations

388

AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS  

E-Print Network (OSTI)

. No oil was expected this time because there had been no accidental trapping of tank gas in the oilerAUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS l4Uti TANK OPENING REPORT NO.24 9th January, 1981 (1 day open) REFERENCES: Earlier Tank Opening Reports are referenced by the notation 12

Chen, Ying

389

AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS  

E-Print Network (OSTI)

must be made during the long tank opening scheduled for February 6. 2/ .. #12;#12;2 - A patch of oil~ While it was possible that the oil had come from the gas handling system it was assumed to be due to ourAUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS l4UD TANK OPENING REPORT NO. 10 Two

Chen, Ying

390

AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS  

E-Print Network (OSTI)

AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS 14 UD TANK OPENING REPORT # 89 27th vacuum leak. The column was wiped down with RBS and water and then the HV gap test was done. It was noted in readiness for gas up next day. ACCELERATOR TUBE The high energy tube pressure had been rising for some time

Chen, Ying

391

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Monday, January 28, 2002 Monday, January 28, 2002 Natural gas prices generally declined last week as mild temperatures continued in most of the country and working gas storage stocks remain at very high levels. Spot prices at most major markets that serve the eastern two-thirds of the country ended the week down from the previous Friday with weather forecasts for the past weekend calling for daytime temperatures to be in the mid 50s to the low 60s in an area stretching from Chicago to Boston. At the Henry Hub prices moved down 9 cents on Friday to end at $2.04 per MMBtu--$0.25 below the previous Friday. The National Weather Service's (NWS) latest 6- to 10-day forecast is calling for above normal temperatures to continue through this week in most areas east of the Mississippi River. (See Temperature Map) (See Deviation Map) At the NYMEX futures market, the February contract continued to trend down as it ended the week trading at $2.037 per MMBtu-off almost $0.20 from previous Friday. The spot price for West Texas Intermediate (WTI) crude oil gained almost $1.80 per barrel reaching $19.80 on Friday or about $3.40 per MMBtu.

392

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

11, 2002 11, 2002 On Friday, spot gas traded at the Henry Hub for $2.20 per MMBtu, marking no change from the price on the previous Friday. Last week spot prices at the Henry Hub traded within a tight range of $2.14-$2.20 per MMBtu. Temperatures in much of the country returned to above normal in the second half of the week and the National Weather Service's (NWS) latest 6-to 10-day forecast called for this pattern to continue through the weekend and all of this week. (See Temperature Map) (See Deviation Map) This dominant pattern of above normal temperatures has resulted in heating degree days thus far this winter that are 16 percent lower than normal. At the NYMEX, the settlement price for the March contract ended the week up almost 5 cents at $2.191 per MMBtu. Natural gas stocks remained well above last year's level as estimated net withdrawals were 82 Bcf during the last week of January. The spot price for West Texas Intermediate (WTI) crude oil moved down 15 cents last week and ended Friday trading at $20.25 per barrel or $3.49 per MMBtu.

393

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2 (next release 2:00 p.m. on August 19) 2 (next release 2:00 p.m. on August 19) Natural gas spot and futures prices moved lower on the week (Wednesday to Wednesday, August 4-11), as unseasonably cool temperatures prevailed in most high gas-consuming regions of the nation. At the Henry Hub, the spot price declined 6 cents on the week, or just over 1 percent, to yesterday's (Wednesday, August 11) level of $5.64 per MMBtu. On the NYMEX, the futures contract for September delivery edged down nearly 5 cents per MMBtu, or about 1 percent, to settle yesterday at $5.614. EIA reported that inventories were 2,452 Bcf as of Friday, August 6, which is 5.0 percent greater than the average for the previous 5 years (1999-2003). The spot price for West Texas Intermediate (WTI) crude oil rose sharply in last Thursday's (August 5) trading to top $44 per barrel and stayed above that level for 4 of the 5 trading days in the week. The WTI spot price ended trading yesterday at $44.72 per barrel, or $7.71 per MMBtu, which is $1.99 per barrel, or almost 5 percent, higher than last Wednesday's (August 4) price.

394

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2 (next release 2:00 p.m. on December 9) 2 (next release 2:00 p.m. on December 9) Although temperatures remain generally moderate, December's arrival has brought some of the coldest temperatures of the current winter and a reminder of the prospect of higher demand as the nation continues into the heating season. This contributed to widespread price increases in spot markets across the Lower 48 States during this week (Wednesday-Wednesday, November 24 to December 1). At the Henry Hub, the spot gas price gained $1.82 per MMBtu on the week to trade at $6.77 yesterday (December 1). In contrast, at the New York Mercantile Exchange (NYMEX), futures prices dropped dramatically. The price of the futures contract for January delivery traded lower on the week by about $1.23 per MMBtu, closing yesterday at $7.413. Natural gas in storage as of Friday, November 26, decreased to 3,299 Bcf, which is 11.2 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil dropped $3.58 per barrel on the week to trade yesterday at $45.56, or $7.86 per MMBtu.

395

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2003 (next release 2:00 p.m. on April 3) 7, 2003 (next release 2:00 p.m. on April 3) At the Henry Hub, the spot price declined 29 cents per MMBtu from the previous Wednesday (March 19), as spot gas traded yesterday (Wednesday, March 26) for $4.91. Both spot and futures prices trended lower for the week (Wednesday to Wednesday, March 19-26), as mild temperatures in most of the nation accompanied the first week of spring. On the NYMEX, the settlement price for the futures contract for April delivery fell a cumulative $0.181 per MMBtu from last Wednesday's level, to $5.097 per MMBtu at yesterday's close of trading. Natural gas stocks as of Friday, March 21 stood at 643 Bcf, which is 47.4 percent less than the previous 5-year (1998-2002) average. The war in Iraq has caused significant volatility in oil prices over the past week. In yesterday's trading, the spot price for West Texas Intermediate crude oil fell $4.71 to $28.71 per barrel, or $4.95 per MMBtu. This is $1.30 per barrel ($0.22 per MMBtu) less than last Wednesday's price.

396

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

23, 2001 23, 2001 Another mid-summer week of relatively mild temperatures in many of the nation's major gas consuming market regions and a large estimate of net injections of working gas into storage put downward pressure on spot and futures prices. Some parts of New England saw high temperatures only in the 70s for several days last week, while highs in the 80s stretched down the mid-Atlantic region as far as northern Georgia and well into the Midwest. On the West Coast, highs rarely exceeded 80 degrees, with a number of locations reporting highs in the 60s. (See Temperature Map) (See Deviation from Normal Temperatures Map). Spot prices declined for the week in nearly all markets, with spot gas at the Henry Hub trading at $2.95 per MMBtu on Friday, down $0.21 from the previous Friday. The NYMEX futures contract for August delivery fell even more, ending the week down $0.295 per MMBtu at $2.955-the first sub-$3 settlement for a near-month contract since April 11 of last year. The spot price for West Texas Intermediate (WTI) crude oil fell four days in a row and traded on Wednesday and Thursday below $25 per barrel before recovering Friday to $25.60 per barrel, or $4.41 per MMBtu. This, too, is the first time since last April that WTI has fallen below $25 per barrel, and is the second week in a row of losses of $1 or more per barrel.

397

Natural Gas Annual, 1999 (HISTORICAL)  

Gasoline and Diesel Fuel Update (EIA)

9 9 The Natural Gas Annual, 1999 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1999. Summary data are presented for each Census Division and State for 1995 to 1999. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1999 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 1999, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1995-1999 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 1999 (Table 2) ASCII TXT, are also available.

398

American Gas Association (AGA) for DOE Furnace Product Class  

Energy.gov (U.S. Department of Energy (DOE))

Thank you for the opportunity to brief your staff in recent weeks on an impact analysis of a national condensing furnace standard, which was conducted jointly by the American Gas Association (AGA),...

399

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Fossil Energy's National Energy Technology Laboratory (NETL) has given rise to a major new research consortium to promote advanced technology for low-impact oil and gas drilling...

400

Liquefied Natural Gas (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquefied Natural Gas (Iowa) Liquefied Natural Gas (Iowa) Liquefied Natural Gas (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Public Safety This document adopts the standards promulgated by the National Fire Protection Association as rules for the transportation, storage, handling,

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural gas annual 1992: Volume 1  

SciTech Connect

This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

Not Available

1993-11-22T23:59:59.000Z

402

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

403

Chemical and Isotopic Composition and Gas Concentrations of Ground Water and Surface Water from Selected Sites At and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994-97  

SciTech Connect

>From May 1994 through May 1997, the US Geological Survey, in cooperation with the US Department of Energy, collected water samples from 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory. The samples were analyzed for a variety of chemical constituents including all major elements and 22 trace elements. Concentrations of scandium, yttrium, and the lanthanide series were measured in samples from 11 wells and 1 hot spring. The data will be used to determine the fraction of young water in the ground water. The fraction of young water must be known to calculate the ages of ground water using chlorofluorocarbons. The concentrations of the isotopes deuterium, oxygen-18, carbon-13, carbon-14, and tritium were measured in many ground water, surface-water and spring samples. The isotopic composition will provide clues to the origin and sources of water in the Snake River Plain aquifer. Concentrations ! of helium-3 , helium-4, total helium, and neon were measured in most groundwater samples, and the results will be used to determine the recharge temperature, and to date the ground waters.

E. Busenberg; L. N. Plummer; M. W. Doughten; P. K. Widman; R. C. Bartholomay (USGS)

2000-05-30T23:59:59.000Z

404

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 13, 2010 January 13, 2010 CX-000726: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: B3.6 Date: 01/13/2010 Location(s): Birmingham, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000727: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Bridgewater, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9

405

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 27, 2010 December 27, 2010 CX-004778: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6 Date: 12/27/2010 Location(s): Point Comfort, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 27, 2010 CX-004777: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6 Date: 12/27/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory December 27, 2010 CX-004776: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6

406

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-001674: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Veolia) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1 Date: 04/22/2010 Location(s): Veolia, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-001672: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Miami) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1 Date: 04/22/2010 Location(s): Miami, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-001670: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Florida) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1

407

Sandia National Laboratories: National Security Missions: Defense...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cybersecurity Delivering experience & expertise Training the next generation of cyber defenders Cybersecurity computing Defending national security Applying science and engineering...

408

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 30, 2009 July 30, 2009 DOE Leads National Research Program in Gas Hydrates The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. July 30, 2009 DOE Showcases Websites for Tight Gas Resource Development Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays. May 18, 2009 DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators A comprehensive publication detailing the oil-rich fields of Utah and

409

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2011 20, 2011 CX-007453: Categorical Exclusion Determination Paving the Way with Propane: The AutoGas Corridor Development Program CX(s) Applied: B5.1 Date: 12/20/2011 Location(s): Georgia Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007452: Categorical Exclusion Determination Utah Expansion of Alternative Fueling Infrastructure - Electric Charging Stations CX(s) Applied: B5.23 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007451: Categorical Exclusion Determination Commuter Services Compressed Natural Gas Station CX(s) Applied: B5.1, B5.22 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007450: Categorical Exclusion Determination

410

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2010 23, 2010 CX-003463: Categorical Exclusion Determination Carbon Dioxide Capture by Sub-Ambient Membrane Operation CX(s) Applied: A9, B3.6 Date: 08/23/2010 Location(s): Newark, Delaware Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003462: Categorical Exclusion Determination Visitor's Center Conference Room CX(s) Applied: B1.7, B1.15 Date: 08/23/2010 Location(s): Morgantown,West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003461: Categorical Exclusion Determination Low-Cost Wet Gas Compressor for Stripper Gas Wells CX(s) Applied: B3.6 Date: 08/23/2010 Location(s): Cambridge, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003460: Categorical Exclusion Determination

411

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2013 21, 2013 CX-010780: Categorical Exclusion Determination Advanced Analytical Methods for Air and Stray Gas Emissions and Produced Brine Characterization CX(s) Applied: A9, A11, B3.6 Date: 08/21/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory August 21, 2013 CX-010782: Categorical Exclusion Determination A Geomechanical Model for Gas Shales Based on Integration of Stress CX(s) Applied: A9 Date: 08/21/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 20, 2013 CX-010783: Categorical Exclusion Determination Isothermal Compressed Air Energy Storage (ICAES) to Support Renewable Energy Integration - Phase Three CX(s) Applied: B3.6, B5.1 Date: 08/20/2013 Location(s): New Hampshire Offices(s): National Energy Technology Laboratory

412

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2010 0, 2010 CX-002626: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 06/10/2010 Location(s): Kansas City, Kansas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 10, 2010 CX-002625: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas Station/Store #191 CX(s) Applied: B5.1 Date: 06/10/2010 Location(s): Carlisle, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 10, 2010 CX-002622: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas Station/Store #426 CX(s) Applied: B5.1 Date: 06/10/2010 Location(s): Carlisle, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy

413

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2010 16, 2010 CX-004689: Categorical Exclusion Determination Single-Molecule Imaging System Combined with Nano-Fluidic Chip to Understand Fluid Flow in Shale Gas CX(s) Applied: B3.6 Date: 12/16/2010 Location(s): Golden, Colorado Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2010 CX-004688: Categorical Exclusion Determination Single-Molecule Imaging System Combined with Nano-Fluidic Chip to Understand Fluid Flow in Shale Gas CX(s) Applied: B3.6 Date: 12/16/2010 Location(s): Rolla, Missouri Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2010 CX-004755: Categorical Exclusion Determination State Energy Program: Program Support/Administration CX(s) Applied: A1, A9, A11, B5.1 Date: 12/16/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy, National Energy

414

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-004409: Categorical Exclusion Determination Petroleum Processing Efficiency Improvement CX(s) Applied: B3.6 Date: 11/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004408: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Haskell County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004407: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Pittsburg County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004406: Categorical Exclusion Determination

415

Real-TIme Raman Gas Composition Analyzer  

NLE Websites -- All DOE Office Websites (Extended Search)

Analyzer Analyzer Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research partners interested in implementing United States Provisional Patent Application entitled "Gas Sensing System Employing Raman Scattering". Disclosed in this application is a gas analyzing sensor that characterizes gaseous fuel, exhaust gases, or other process gas streams. The sensor reports concentrations of all majority gases at better than 0.3% accuracy in 1 second or less, and can be used for real-time gas analysis and system control. The sensor relies on novel techniques to enhance usually weak spontaneous Raman emissions from sample gases, enabling the application of Raman spectroscopy to rapid gas analysis. No commercially available sensor or sensing

416

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY  

E-Print Network (OSTI)

1 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Amroc - A Cartesian SAMR Framework for Compressible Gas Dynamics Ralf Deiterding Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge, Tennessee SIAM Conference on Computational Science and Engineering Costa Mesa

Deiterding, Ralf

417

An approach to designing a national climate service  

Science Journals Connector (OSTI)

...national, and global space scales. This information informs...winter, record construction levels), the lead...flooding, and reducing heating costs to consumers...natural gas and heating oil rather than...national, and global space scales. This...for the private sector to use government...

E. L. Miles; A. K. Snover; L. C. Whitely Binder; E. S. Sarachik; P. W. Mote; N. Mantua

2006-01-01T23:59:59.000Z

418

Renewable Energy | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy Accelerating the transition to alternative energy sources requires significant improvement in materials, chemicals, processes, and devices. To produce more cost-effective energy sources for the nation, Argonne is focused on renewable energy research. World energy demand is expected to double by 2050, and oil, coal and natural gas will have to supply much of that energy unless we can make renewable and "green" alternatives cheap enough to replace them. Argonne is using its expertise and creativity to explore the development, use and consequences of non-fossil energies. Our renewable energy research helps create groundbreaking technologies that will quickly put new options within our nation's reach. Argonne's work includes research in biofuels, as well as hydropower, solar

419

Savannah River National Laboratory - Home  

NLE Websites -- All DOE Office Websites

SRNL Logo SRNL and DOE logo art SRNL Logo SRNL and DOE logo art Top Menu Bar SRNL Update: Embassy Fellows Report A report co-authored by Savannah River National Laboratory Senior Advisory Engineer, Dr. Robert Sindelar, has been released. The report to the Government of Japan - Ministry of the Environment provides observations and recommendations on decontamination work and progress... >>MORE Portable Power Research at SRNL Hadron Technologies, Inc., a microwave technology and systems development and manufacturing company with offices in Tennessee and Colorado, has signed a license for a Hybrid Microwave and Off-Gas Treatment System developed by the Savannah River National Laboratory, the Department of Energy's applied science laboratory located at the Savannah River Site. >>MORE

420

Argonne's National Security Information Systems National  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security National Security Information Systems National Security The NSIS team has worked with various government agencies and programs over the past 15 years to create customized technological solutions that meet specific needs, while also fulfilling national security objectives, improving efficiency and reducing costs. Applying a broad range of expertise and experience, the Argonne team develops both unclassified and classified information technology (IT) systems for national security and nonproliferation programs, with a focus on security operations, international treaty implementation, export control and law enforcement support. Some examples of NSIS-developed systems include:  Electronic Facility Clearance (e-FCL) System for the U.S. Department of Defense (DOD)

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

National Science Bowl Finals  

ScienceCinema (OSTI)

National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

None

2010-09-01T23:59:59.000Z

422

Sandia National Laboratories: Photovoltaics  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

423

Sandia National Laboratories: PV  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

424

Sandia National Laboratories: Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

425

Sandia National Laboratories: solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

426

Sandia National Laboratories: ACEC  

NLE Websites -- All DOE Office Websites (Extended Search)

ACEC Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar...

427

title Estimating Policy Driven Greenhouse Gas Emissions Trajectories  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and

428

Chemist, Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Chemist, Sandia National Laboratories | National Nuclear Security Chemist, Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Jerilyn Timlin Chemist, Sandia National Laboratories Jerilyn Timlin Jerilyn Timlin Role: Chemist, Sandia National Laboratories Award: National Institutes of Health (NIH) New Innovator Award

429

Neutron Gas  

Science Journals Connector (OSTI)

We assume that the neutron-neutron potential is well-behaved and velocity-dependent. We can then apply perturbation theory to find the energy per particle of a neutron gas, in the range of Fermi wave numbers 0.5

J. S. Levinger and L. M. Simmons

1961-11-01T23:59:59.000Z

430

Natural gas annual 1992. Volume 2  

SciTech Connect

This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data for the Nation from 1930 to 1992, and by State from 1967 to 1992. The Supplement of this report presents profiles of selected companies.

Not Available

1993-11-22T23:59:59.000Z

431

Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Meeting and Presentations to someone by E-mail 2005 Meeting and Presentations to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2005 Meeting and Presentations on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative

432

Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Meeting and Presentations to someone by E-mail 10 Meeting and Presentations to someone by E-mail Share Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Facebook Tweet about Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Twitter Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Google Bookmark Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Delicious Rank Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on Digg Find More places to share Clean Cities: Natural Gas Vehicle Technology Forum 2010 Meeting and Presentations on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative

433

Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Favorable Supplies, Costs, Environmental Profile for Natural Gas Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study August 23, 2012 - 1:00pm Addthis Washington, DC - The nation's large resource base of natural gas can be used for cost-effective power generation, with environmental burdens coming primarily from fuel combustion, not resource extraction, according to a new Department of Energy (DOE) study. The report, Role of Alternative Energy Sources: Natural Gas Power Technology Assessment, was prepared by the Office of Fossil Energy's National Energy Technology Laboratory (NETL). Analysts focused on seven criteria to evaluate the role of natural gas in the U.S. energy supply

434

Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Favorable Supplies, Costs, Environmental Profile for Natural Gas Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study August 23, 2012 - 1:00pm Addthis Washington, DC - The nation's large resource base of natural gas can be used for cost-effective power generation, with environmental burdens coming primarily from fuel combustion, not resource extraction, according to a new Department of Energy (DOE) study. The report, Role of Alternative Energy Sources: Natural Gas Power Technology Assessment, was prepared by the Office of Fossil Energy's National Energy Technology Laboratory (NETL). Analysts focused on seven criteria to evaluate the role of natural gas in the U.S. energy supply

435

NETL: Oil & Natural Gas Projects: Alaska North Slope Oil and Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 DE-FE0001240 Goal The primary objectives of this project are to develop analysis and management tools related to Arctic transportation networks (e.g., ice and snow road networks) that are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho National Laboratory, Idaho Falls, ID 83415 Background Oil and gas development on the North Slope is critical for maintaining U.S. energy supplies and is facing a period of new growth to meet the increasing energy needs of the nation. A majority of all exploration and development activities, pipeline maintenance, and other field support projects take

436

EIA - Assumptions to the Annual Energy Outlook 2008 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumptions to the Annual Energy Outlook 2008 Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and Distribution Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

437

Natural Gas Monthly (NGM) - Energy Information Administration - November  

U.S. Energy Information Administration (EIA) Indexed Site

SEE CURRENT NATURAL GAS MONTHLY UPDATE SEE CURRENT NATURAL GAS MONTHLY UPDATE Natural Gas Monthly Data for September 2013 | Release Date: December 12, 2013 | Next Release: January 7, 2014 | full report  | Previous Issues Month: October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 September 2012 prior issues Go Table of Contentsall tables Tables 1 Summary of Natural Gas Supply and Disposition in the United States, 2008-2013 XLS PDF CSV 2 Natural Gas Consumption in the United States, 2008-2013 XLS PDF CSV 3 Selected National Average Natural Gas Prices, 2008-2013 XLS PDF CSV 4 U.S. Natural Gas Imports, 2011-2013 XLS PDF CSV 5 U.S. Natural Gas Exports, 2011-2013 XLS PDF CSV

438

EIA - Assumptions to the Annual Energy Outlook 2009 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumptions to the Annual Energy Outlook 2009 Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and distribution Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

439

Assumptions to the Annual Energy Outlook - Natural Gas Transmission and  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumption to the Annual Energy Outlook Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and Distribution Model Regions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

440

EIA - Assumptions to the Annual Energy Outlook 2010 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumptions to the Annual Energy Outlook 2010 Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and distribution Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

442

Gas Kick Mechanistic Model  

E-Print Network (OSTI)

Gas kicks occur during drilling when the formation pressure is greater than the wellbore pressure causing influx of gas into the wellbore. Uncontrolled gas kicks could result in blowout of the rig causing major financial loss and possible injury...

Zubairy, Raheel

2014-04-18T23:59:59.000Z

443

Novel Gas Isotope Interpretation Tools to Optimize Gas Shale  

NLE Websites -- All DOE Office Websites (Extended Search)

Final Report to Final Report to Report Number 08122.15.Final Novel Gas Isotope Interpretation Tools to Optimize Gas Shale Production Contract: 08122-15 Principal Investigator: William A. Goddard, III Title: Director, Materials and Process Simulation Center California Institute of Technology Wag@wag.caltech.edu Co-PIs: Yongchun Tang, Ph.D. Title: Director, Power Environmental Energy Research Institute Other Author(s) Sheng Wu, Ph.D Andrew Deev, Ph.D Qisheng Ma, Ph.D Gao Li, Ph.D. June 5, 2013 2 LEGAL NOTICE This report was prepared by California Institute of Technology as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA members of RPSEA, the National Energy Technology Laboratory, the U.S. Department of Energy, nor any person acting on behalf of

444

Sandia National Laboratories: National Fire Protection Association  

NLE Websites -- All DOE Office Websites (Extended Search)

Fire Protection Association More California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says On July 29, 2014, in Center for Infrastructure Research and...

445

National Nuclear Security Administration Los Alamos National  

National Nuclear Security Administration (NNSA)

of schedule; and met the targets for metering, fleet, pollution prevention, and renewable energy, while making expected progress on Green House Gas reduction and electronic...

446

DOE National Laboratory Breakthrough Could Enhance Use of Domestic Natural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Could Enhance Use of Domestic Breakthrough Could Enhance Use of Domestic Natural Gas, Methane Hydrate Resources DOE National Laboratory Breakthrough Could Enhance Use of Domestic Natural Gas, Methane Hydrate Resources August 25, 2010 - 1:00pm Addthis Washington, DC - A process and related technology that could enhance the nation's ability to use natural gas and vast methane hydrate energy resources has been developed by researchers at the U.S. Department of Energy's National Energy Technology Laboratory (NETL). The method for rapidly forming methane hydrate, along with concurrent development of specialized nozzles to facilitate the process are breakthroughs that could lead to significant reductions in the cost of storing and transporting natural gas, potentially increasing utilization of

447

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FRANKLIN COUNTY SANITARY FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search and Contacts Made...................................................................2 Task 2B.2 - LFG Resource/Resource Collection System - Project Phase One.......................3 Conclusion.................................................................................................................................5

448

Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling  

Energy.gov (U.S. Department of Energy (DOE))

A memorandum of understanding to perform collaborative research related to airborne emissions and air quality at natural gas drilling sites has been signed by the Office of Fossil Energys National Energy Technology Laboratory and the National Institute for Occupational Safety and Health.

449

Future of Natural Gas  

Office of Environmental Management (EM)

technology is improving - Producers are drilling in liquids rich gas and crude oil shale plays due to lower returns on dry gas production - Improved well completion time...

450

Natural Gas Industrial Price  

Annual Energy Outlook 2012 (EIA)

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

451

First National Technology Center  

Energy.gov (U.S. Department of Energy (DOE))

Speaker presentation prepared by Dennis Hughes, a lead property manager with First National Buildings Inc.

452

Cognitive Informatics, Pacific Northwest National Laboratory | National  

National Nuclear Security Administration (NNSA)

Cognitive Informatics, Pacific Northwest National Laboratory | National Cognitive Informatics, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Frank Greitzer Cognitive Informatics, Pacific Northwest National Laboratory Frank Greitzer Frank Greitzer Role: Cognitive Informatics, Pacific Northwest National Laboratory

453

Lawrence Livermore National Laboratory | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory DE-AC52-07NA27344 Operated by Lawrence Livermore National Security, LLC BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LLNL Sec A (SF33) (pdf, 91KB) See Modifications Section under Conformed Contract Link LLNS Conformed Contract (weblink) LLNL Sec B-H (pdf, 306KB) LLNL Sec I pdf 687KB LLNL Sec J Appx A (pdf, 67KB) LLNL Sec J Appx B (pdf, 191KB) LLNL Sec J Appx C (pdf, 11KB) LLNL Sec J Appx D (pdf, 18KB)

454

The Potential of Using Natural Gas in HCCI Engines: Results from Zero- and Multi-dimensional Simulations  

E-Print Network (OSTI)

With the depletion of petroleum based fuels and the corresponding concerns of national energy security issues, natural gas as an alternative fuel in IC engine applications has become an attractive option. Natural gas requires minimum mixture...

Zheng, Junnian

2012-07-16T23:59:59.000Z

455

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 12, 2011 August 12, 2011 Statement from National Security Council Spokesman Tommy Vietor on U.S.-Brazil Strategic Energy Dialogue Launch THE WHITE HOUSE Office of the Press Secretary August 1, 2011 DOE Selects Projects Totaling $12.4 Million Aimed at Increasing Domestic Energy Production While Enhancing Environmental Protection A total of 11 research projects that will help find ways to extract more energy from unconventional oil and gas resources while reducing environmental risks have been selected totaling $12.4 million by DOE's Office of Fossil Energy. July 27, 2011 Fossil Energy R&D Returns Significant National Benefit in More Than Three Decades of Achievement Research and development activities at DOE's Office of Fossil Energy have helped increase domestic energy supplies and security, lowered costs,

456

Argonne National Laboratory | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory Fighting friction Graphene offers dramatic improvement over conventional mechanical lubricants Read More Forecasting supply Researchers use real-world...

457

Sandia National Laboratories: National Security Missions: Internationa...  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Security casks We reduce proliferation and terrorism threats to U.S. national security through global technical engagement. Enhance security of vulnerable nuclear weapons...

458

Sandia National Laboratories: Jawaharlal Nehru Solar National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jawaharlal Nehru Solar National Solar Energy Mission Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power,...

459

Sandia National Laboratories: National Rotor Testbed  

NLE Websites -- All DOE Office Websites (Extended Search)

National Rotor Testbed (NRT) includes research to quantify the degree to which the blade design load distribution influences the rotor near- and mid-wake velocity deficits and...

460

Sandia National Laboratories: National Security Missions: Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Technology National labs provide the science and technology to maintain and certify the nuclear stockpile in the absence of full-scale weapons testing. The facilities and...

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Sandia National Laboratories: National Rotor Testbed Functional...  

NLE Websites -- All DOE Office Websites (Extended Search)

"Definition of the National Rotor Testbed: An Aeroelastically Relevant Research-Scale Wind Turbine Rotor." Approximately 60 researchers from various institutions and countries...

462

Sandia National Laboratories: Idaho National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels,...

463

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9 (next release 2:00 p.m. on December 16) 9 (next release 2:00 p.m. on December 16) Both natural gas spot and futures prices fell significantly over the week (Wednesday to Wednesday, December 1-8), as temperatures in most major gas-consuming areas of the nation were above normal most days, with differences reaching double digits in the past several days in many locations east of the Mississippi River. The Henry Hub spot price fell 79 cents per MMBtu, or nearly 12 percent, since last Wednesday (December 1) trading yesterday (Wednesday, December 8) at $5.98. The NYMEX futures contract for January 2005 delivery declined by a similar amount for the week (73 cents per MMBtu), settling yesterday) at $6.683 per MMBtu, or about 10 percent less than last Wednesday's settlement price ($7.413). EIA reported that inventories were 3,211 Bcf as of Friday, December 3, which is 12 percent greater than the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil fell by over $3 per barrel for the second week in a row, declining in 4 of 5 trading days and ending the week down $3.60 per barrel ($0.62 per MMBtu), at yesterday's price of $41.96 ($7.23). Since reaching its record-high spot price of $56.37 per barrel on October 26, the WTI spot price has declined in 5 of the 6 ensuing weeks, with yesterday's price representing a nearly26 percent drop in value.

464

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

21, 2002 (next release 2:00 p.m. on December 5) 21, 2002 (next release 2:00 p.m. on December 5) Both spot and futures prices recorded significant gains over the past week (Wednesday, November 13 to Wednesday, November 20), as temperatures in many regions of the country headed below normal and the National Weather Service (NWS) predicted more of the same through the end of the month for at least the eastern two-thirds of the nation. Most of the gains came in large one-day price increases on Monday. At the Henry Hub, the average spot price increased 5 days in a row, and ended trading yesterday (November 20) at $4.27 per MMBtu, 44 cents higher than last Wednesday, 27 cents of which was gained on Monday. The NYMEX futures contract for December delivery at the Henry Hub ended trading yesterday at $4.254 per MMBtu, up $0.377 for the week. Nearly 75 percent of this increase ($0.282) came in Monday's trading. Natural gas in storage as of Friday, November 15 decreased by 1 Bcf to 3,096 Bcf, which exceeds the 5-year average by 3.3 percent. The spot price of West Texas Intermediate (WTI) crude oil, after reaching a 5-month low last Wednesday, at $25.28 per barrel ($4.36 per MMBtu), increased $1.72, settling at $27.00 per barrel, ($4.66 per MMBtu) in trading yesterday (Wednesday, November 20).

465

EIA - Assumptions to the Annual Energy Outlook 2009 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2009 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. Table 9.1. Crude Oil Technically Recoverable Resources. Need help, contact the Naitonal Energy Information Center at 202-586-8800. printer-friendly version Table 9.2. Natural Gas Technically Recoverable Resources. Need help, contact the National Energy Information Center at 202-586-8800. Table 9.2. Continued printer-friendly version Table 9.3. Assumed Size and Initial Production year of Major Announced Deepwater Discoveries. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 9.4. Assumed Annual Rates of Technological Progress for Conventional Crude Oil and Natural Gas Sources. Need help, contact the National Energy Information Center at 202-586-8800.

466

Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into Fuels and Chemicals  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Suresh Babu, Senior Program Manager, Biomass Program Development, Brookhaven National Laboratory

467

Finalize Historic National Program to Reduce Greenhouse Gases and Improve  

Open Energy Info (EERE)

Finalize Historic National Program to Reduce Greenhouse Gases and Improve Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Agency/Company /Organization: EPA and NHTSA Focus Area: Standards - Incentives - Policies - Regulations Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.epa.gov/oms/climate/regulations/420f10014.pdf This document establish a national program consisting of new standards for model year 2012 through 2016 light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. EPA is finalizing the first-ever national greenhouse gas (GHG) emissions standards under the

468

NETL: Gasification - National Carbon Capture Center at the Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Gasification National Carbon Capture Center at the Power Systems Development Facility National Carbon Capture Center Participants The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. The PSDF now houses the National Carbon Capture Center (NCCC) to address the nation's need for cost-effective, commercially viable CO2 capture options for flue gas from pulverized coal power plants and syngas from coal gasification power plants. The NCCC focuses national efforts on reducing greenhouse gas emissions through technological innovation, and serve as a neutral test center for emerging carbon capture technologies. PSDF-NCCC Background

469

Safety System Oversight Assessment, Los Alamos National Laboratory - May  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety System Oversight Assessment, Los Alamos National Laboratory Safety System Oversight Assessment, Los Alamos National Laboratory - May 2011 Safety System Oversight Assessment, Los Alamos National Laboratory - May 2011 May 2011 Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System This report documents the results of the Office of Health, Safety and Security's (HSS) review of a safety system oversight (SSO) assessment of the Los Alamos National Laboratory (LANL) Weapons Engineering Tritium Facility (WETF) tritium gas handling system (TGHS). The assessment evaluated the TGHS's ability to perform as required by safety bases and other applicable requirements. The assessment was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and was conducted

470

File:EIA-AK-NPRA-ANWR-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

National Petroleum Reserve-Alaska and Arctic National Wildlife Refuge 1002 Area By 2001 Gas Reserve Class National Petroleum Reserve-Alaska and Arctic National Wildlife Refuge 1002 Area By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 6.78 MB, MIME type: application/pdf) Description National Petroleum Reserve-Alaska and Arctic National Wildlife Refuge 1002 Area By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

471

Raman gas analyzer for determining the composition of natural gas  

Science Journals Connector (OSTI)

We describe a prototype of a Raman gas analyzer designed for measuring the composition of natural gas. Operation of the gas analyzer was tested on a real natural gas. We show that our Raman gas analyzer prototype...

M. A. Buldakov; B. V. Korolev; I. I. Matrosov

2013-03-01T23:59:59.000Z

472

Clean Cities: Natural Gas Vehicle Technology Forum 2014 Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Forum 2014 Meeting Forum 2014 Meeting Natural Gas Vehicle Technology Form (NGVTF) logo The Natural Gas Vehicle Technology Forum (NGVTF) will hold a meeting for stakeholders on Jan. 14-15, 2014, at Brookhaven National Laboratory in Upton, New York. Meeting Details Date: Jan. 14-15, 2014 | Icon of a calendar. Add to my calendar Location: Brookhaven National Laboratory 33 Lewis Rd. Upton, NY 11961 The National Renewable Energy Laboratory is hosting this meeting in partnership with the U.S. Department of Energy and the California Energy Commission to support the development and deployment of commercially competitive natural gas engines, vehicles, and infrastructure. NGVTF is free and open to stakeholders, so join the conversation about natural gas engines, vehicles, infrastructure, and codes and standards.

473

Noble gas magnetic resonator  

DOE Patents (OSTI)

Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

2014-04-15T23:59:59.000Z

474

OIL & GAS INSTITUTE Introduction  

E-Print Network (OSTI)

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

475

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES  

E-Print Network (OSTI)

River Inter-Tribal Fish Commission, the National Research Council's Board on Environmental Studies Board (ISAB) and Independent Scientific Review Panel (ISRP). To help evaluate potential nominees, Dr. David Policansky of the National Research Council's Board on Environmental Studies and Toxicology sought

476

Nonproliferation and National Security Multimedia - Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation and National Security Nonproliferation and National Security > Multimedia Multimedia Nuclear Systems Analysis Engineering Analysis Nonproliferation and National Security Detection & Diagnostic Systems Engineering Development & Applications Argonne's Nuclear Science & Technology Legacy Other Multimedia Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Bookmark and Share Nonproliferation and National Security: Multimedia Related Resources Nonproliferation and National Security Vulnerability Assessment Team (VAT) Click on the "Date" header to sort the videos/podcasts in chronological order (ascending or descending). You may also search for a specific keyword; click on the reset button refresh to remove the keyword filter and show again all the Videos/Podcasts.

477

Sandia National Laboratories | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories Sandia National Laboratories Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories DE-AC04-94AL85000 Operated by Sandia Corporation a Subsidiary of Lockheed Martin Corporation Contract Updated to Modification 515 dated 09/09/2013 View previous Sandia Contract and Mods (M081-A201). BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Updated to Mod 515 dated 09/09/2013) (Unofficial) SNL M202 Section A (Supersedes Basic and all Mods) (pdf, 397KB) SNL M216 (9/15/04) (pdf, 439KB) SNL M202 SecA (Supersedes Basic and all Mods) (pdf, 397KB) SNL Sec B-H (doc, 314KB) SNL M218

478

SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL  

E-Print Network (OSTI)

1 SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL Hébrard, J.1 linked with Hydrogen/Natural gas mixtures transport by pipeline, the National Institute of Industrial scenario, i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential

Boyer, Edmond

479

Integrated Reservoir Characterization and Simulation Studies in Stripper Oil and Gas Fields  

E-Print Network (OSTI)

The demand for oil and gas is increasing yearly, whereas proven oil and gas reserves are being depleted. The potential of stripper oil and gas fields to supplement the national energy supply is large. In 2006, stripper wells accounted for 15% and 8...

Wang, Jianwei

2010-01-14T23:59:59.000Z

480

NETL: News Release - DOE, Penn State To Establish Gas Storage Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

September 11, 2003 September 11, 2003 DOE, Penn State To Establish Gas Storage Technology Consortium Goal is to Improve Performance of the Nation's Underground Gas Storage Infrastructure Map of U.S. natural gas storage sites - click for larger image FOSSIL FACT: The nation's gas industry stores natural gas in more than 400 underground storage reservoirs and salt caverns throughout the country. Click here for larger image UNIVERSITY PARK , PA - The Pennsylvania State University has been selected by the U.S. Department of Energy to establish and operate an underground gas storage technology consortium. The agreement between Penn State and DOE's National Energy Technology Laboratory Strategic Center for Natural Gas will last four-and-a-half years at a total cost of $3 million. The first phase of the agreement will last

Note: This page contains sample records for the topic "bahrain national gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

482

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2003 (next release 2:00 p.m. on June 5) 9, 2003 (next release 2:00 p.m. on June 5) Spot and futures prices trended down for the second consecutive week, as cool, rainy weather continued to dominate much of the nation, with the few pockets of summer-like temperatures generating swing demand and higher prices only in limited areas. At the Henry Hub, prices declined by nearly 6 percent for the week (Wednesday to Wednesday, May 22-29), falling 36 cents to $5.71 per MMBtu. The NYMEX futures contract for June delivery declined by $0.253 per MMBtu on the week, expiring yesterday (Wednesday, May 28) at the closing price of $5.945 per MMBtu. The Energy Information Administration (EIA) reported that natural gas inventories reached 1,085 Bcf as of Friday, May 23, which is 31.9 percent below the 5-year average. The spot price for West Texas Intermediate crude oil declined by just over $1 from the previous Wednesday (May 21), falling $1.05 per barrel to $28.46, or $4.91 per MMBtu.

483

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16 (next release 2:00 p.m. on December 30) 16 (next release 2:00 p.m. on December 30) A drop in temperatures in the eastern half of the nation beginning this past Monday (December 13) helped push natural gas spot prices up sharply on the week (Wednesday to Wednesday, December 8-15). Futures prices rose by smaller, but still significant, amounts. The spot price at the Henry Hub increased by $1.06 per MMBtu, or nearly 18 percent, for the week, to $7.04 in yesterday's (Wednesday, December 15) trading. On the New York Mercantile Exchange (NYMEX), the futures contract for January delivery added 55.3 cents to its settlement price of one week ago, settling yesterday at $7.236 per MMBtu. The Energy Information Administration (EIA) reported that inventories were 3,150 Bcf as of Friday, December 10, which is 14.3 percent greater than the previous 5-year average. The spot price for West Texas Intermediate (WTI) crude oil surged upward by $2.45 per barrel in yesterday's trading, bringing the WTI spot price to $44.21 per barrel ($7.62 per MMBtu). The WTI spot price gained $2.25 per barrel ($0.39 per MMBtu), an increase of more than 5 percent.

484

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2004 (next release 2:00 p.m. on March 18) 1, 2004 (next release 2:00 p.m. on March 18) Spot price changes were mixed while futures prices edged up by a penny or two over the past week (Wednesday to Wednesday, March 3-10). Warmer-than-normal temperatures over nearly the entire nation early in the week gave way to considerably cooler temperatures in parts of the South and to colder-than-normal temperatures in the Midwest, the Middle Atlantic, and New England beginning over the weekend. At the Henry Hub, the spot price declined a penny on the week, ending trading yesterday (Wednesday, March 10) at $5.33 per MMBtu. On the NYMEX, the futures contract for April delivery settled yesterday at $5.397 per MMBtu, just 2.2 cents higher than its settlement price one week ago. EIA reported that inventories were 1,143 Bcf as of Friday, March 5, which is 8.3 percent below the 5-year average. Crude oil prices have generally been rising over the past 3 to 4 weeks as uncertainty over OPEC's production levels and continuing civil unrest in Venezuela apply upward pressure on oil prices and, to some extent, on gas prices. Nonetheless, the WTI price declined over the past 3 days, and ended the week with a net gain of 41 cents per barrel (7 cents per MMBtu), at $36.21, or $6.24 per MMBtu.

485

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

15, 2002 (next release 2:00 p.m. on August 22) 15, 2002 (next release 2:00 p.m. on August 22) Spot and futures prices reversed their downward trends from the previous week, as sweltering temperatures returned to many parts of the nation early this week. At the Henry Hub, average spot prices increased 4 days in a row from last Wednesday (August 7), gaining 30 cents per MMBtu to reach $3.03 per MMBtu on Tuesday (August 13), which was repeated yesterday. This pattern was mirrored by the price of the NYMEX futures contract for September delivery at the Henry Hub, which rose a cumulative 25 cents per MMBtu for the week to settle at $2.910 per MMBtu on Wednesday, August 14. Working gas in storage for the week ended Friday, August 9 was 2,620 Bcf, which exceeds the average for the previous 5 years by just under 15 percent. The spot price for West Texas Intermediate (WTI) crude oil posted a gain of $1.61 per barrel for the week, highlighted by a near-$1 increase on Monday, August 12. WTI ended trading yesterday at $28.19 per barrel, or $4.86 per MMBtu.

486

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

December 3, 2001 December 3, 2001 Spot prices at the Henry Hub remain low for this time of year, as prices declined 16 cents from Friday-to-Friday. The spot price rose $0.50 per MMBtu from Monday to Wednesday, and then fell almost 60 cents by Friday to trade for $1.77 at the end of the week. Concern about the final resolution of the surprising decline of the Enron Corporation appears to be contributing to the price variability on the spot market. On the NYMEX futures market the December contract closed on Wednesday at $2.316 per MMBtu, more than $1.00 below what it began trading for as the near-month contract in late October. The unseasonably warm temperatures that have dominated the weather in much of the country continued last week in the eastern portion of the country. (Temperature Map) (Temperature Deviation Map) In addition, the National Weather Service's (NWS) latest 6 to 10 day forecast is calling for a warm weather pattern to continue into early December. Because of the combination of warmer-than-normal temperatures and favorable prices, this year's refill season has continued into the 2nd half of November with an estimated 12 Bcf added to working gas stocks during the third week of last month. The spot price of West Texas Intermediate (WTI) crude oil moved up about $0.85 per barrel on Friday and ended the week at $19.50 or about $3.36 per MMBtu.

487

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Wednesday, January 02, 2002 Wednesday, January 02, 2002 Spot prices in the Midwest and the East moved up most days during the holiday period as cold weather blanketed much of the area. .(See Temperature Map) (See Deviation Map) (Temperature map) (Temperature Deviation Map). Prices in Chicago moved close to $3.00 per MMBtu last week, while prices in the New York City area approached $5.00 on the last day of the year. Daytime temperatures early this week in the Northeast remained in the 20s and 30s from Washington, DC to Boston. The National Weather Service is calling for the wintry temperatures to continue through the end of the week in most areas in the eastern two thirds of the country. On the NYMEX, the daily settlement price for the futures contract for February delivery has declined in recent trading as the higher-than-average storage levels continue to be the main contributor to the current strong natural gas supply situation. An estimated 2,992 Bcf remains in storage as of December 21, 2001. The spot price for West Texas Intermediate (WTI) crude oil moved down in last week's trading and ended the year at $19.96 per barrel or $3.44 per MMBtu on Monday.

488

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2003 (next release 2:00 p.m. on January 16) 9, 2003 (next release 2:00 p.m. on January 16) Spot prices overall showed strong gains since Tuesday, December 31. Futures prices were mixed, with the February and March contracts retreating slightly from their levels of Thursday, January 2 (the first day of trading in the New Year), while out-month contracts had slight gains. Temperatures were relatively warm throughout most of the nation for a third consecutive week, while at the same time a weekend snow storm in the Middle Atlantic and Northeast helped push spot prices higher at the end of last week. At the Henry Hub, the average spot price rose 47 cents for the week (prices for Wednesday, January 1, deliveries were established in trading on December 31), to end trading yesterday (Wednesday, January 8) at $5.07 per MMBtu. The NYMEX futures contract for February delivery declined 9 cents per MMBtu, settling yesterday at $5.161. Natural gas in storage as of Friday, January 3 decreased to 2,331 Bcf, which is just 2 Bcf below the 5-year (1998-2002) average. The spot price for West Texas Intermediate (WTI) crude oil, which had reached $33.26 per barrel on Friday, fell to $30.66 per barrel, or $5.29 per MMBtu yesterday.

489

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2002 1, 2002 Lingering low temperatures last week prompted spot prices at the Henry Hub to start the week up sharply gaining 19 cents to trade on Monday at $2.68 per MMBtu. Prices then declined sharply before rebounding on Thursday and Friday to end the week at $2.81 per MMBtu-32 cents higher than the previous Friday. Prices on the NYMEX futures market moved up most days to end the week up almost $0.45 per MMBtu at $2.800. Temperatures moderated in many parts of the country last week and rose to the 60s and 70s on Friday and Saturday in much of the Northeast. The latest National Weather Service (NWS) 6- to 10-day forecast calls for cool temperatures in the Midwest but for above normal temperatures to return to the Northeast. (See Temperature Map) (See Deviation Map) Net withdrawals from stocks increased to132 Bcf during the last week of February, which is more than double the level of a week earlier. Even though natural gas stocks continue to be 45 percent, or 577 Bcf, above the previous 5-year average, reports of the increase in storage withdrawals may have contributed to last week's spot and futures contract price rise. The price for West Texas Intermediate (WTI) crude oil rose above $23 per barrel on Tuesday and ended trading on Friday at its highest level since September 21, 2001--$23.87 per barrel, or $4.15 per MMBtu.

490

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

June 24 (next release 2:00 p.m. on July 1) June 24 (next release 2:00 p.m. on July 1) Cooler-than-normal temperatures over much of the nation and relative calm in petroleum and products futures markets facilitated a downward slide in natural gas spot and futures prices on the week (Wednesday to Wednesday, June 16-23). At the Henry Hub, the spot price ended the week a dime lower than last Wednesday (June 16), trading yesterday (June 23) at $6.29 per MMBtu. The NYMEX futures contract for July delivery edged down just over 7 cents on the week, settling yesterday at $6.415 per MMBtu. EIA reported that inventories were 1,845 Bcf as of Friday, June 18, which is 0.1 percent below the previous 5-year (1999-2003) average. The spot price for West Texas Intermediate crude oil increased on 3 of 5 trading days during the week and traded yesterday at $37.56 per barrel, or $6.48 per MMBtu, up 23 cents per barrel (4 cents per MMBtu) since last Wednesday.

491

Interstate Oil and Gas Conservation Compact (Multiple States) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Oil and Gas Conservation Compact (Multiple States) Interstate Oil and Gas Conservation Compact (Multiple States) Interstate Oil and Gas Conservation Compact (Multiple States) < Back Eligibility Commercial Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Alabama Program Type Environmental Regulations Provider Interstate Oil and Gas Compact Commission The Interstate Oil and Gas Compact Commission assists member states efficiently maximize oil and natural gas resources through sound regulatory practices while protecting the nation's health, safety and the environment. The Commission serves as the collective voice of member governors on oil and gas issues and advocates states' rights to govern petroleum resources within their borders. The Commission formed the Geological CO2 Sequestration Task Force, which

492