Powered by Deep Web Technologies
Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

heating heating Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar energy. Passive Solar Space Heating Passive solar space heating takes advantage of warmth from the sun through design features, such as large south-facing windows, and materials in the floors or walls that absorb warmth during the day and release that warmth

2

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Solar space heating (Redirected from - Solar Ventilation Preheat) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar

3

Section D: SPACE HEATING - Energy Information Administration  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey Form EIA-457A (2001)--Household Questionnaire OMB No.: 1905-0092, Expiring February 29, 2004 19 Section D: SPACE HEATING

4

Geothermal Energy: Residential Space Heating  

DOE Green Energy (OSTI)

The purpose of this study, which was carried out under the auspices of the DGRST, was to determine the best way to use geothermal hot water for residential space heating. It quickly became apparent that the type of heating apparatus used in the housing units was most important and that heat pumps could be a valuable asset, making it possible to extract even more geothermal heat and thus substantially improve the cost benefit of the systems. Many factors play a significant role in this problem. Therefore, after a first stage devoted to analyzing the problem through a manual method which proved quite useful, the systematic consideration of all important aspects led us to use a computer to optimize solutions and process a large number of cases. The software used for this general study can also be used to work out particular cases: it is now available to any interested party through DGRST. This program makes it possible to: (1) take climatic conditions into account in a very detailed manner, including temperatures as well as insolation. 864 cases corresponding to 36 typical days divided into 24 hours each were chosen to represent the heating season. They make it possible to define the heating needs of any type of housing unit. (2) simulate and analyze the behavior in practice of a geothermal heating system when heat is extracted from the well by a simple heat exchanger. This simulation makes it possible to evaluate the respective qualities of various types of heating apparatus which can be used in homes. It also makes it possible to define the best control systems for the central system and substations and to assess quite accurately the presence of terminal controls, such as radiators with thermostatically controlled valves. (3) determine to what extent the addition of a heat pump makes it possible to improve the cost benefit of geothermal heating. When its average characteristics and heating use conditions (price, coefficient of performance, length of utilization, electrical rates, etc.) are taken into account, the heat pump should not be scaled for maximum heating power. Consequently, the program considers several possible sizes, with different installation schemes, and selects for each case the value which corresponds to the lowest cost of heating.

None

1977-03-01T23:59:59.000Z

5

Passive Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

Solar Space Heat Jump to: navigation, search TODO: Add description List of Passive Solar Space Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titlePassive...

6

Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

icon Solar Space Heat Jump to: navigation, search TODO: Add description List of Solar Space Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarS...

7

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 278 Passive Solar Space Heat Incentives. CSV (rows 1 - 278) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Massachusetts Commercial Biomass Fuel Cells Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Municipal Solid Waste Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy and Energy Conservation Patent Exemption (Personal) (Massachusetts) Industry Recruitment/Support Massachusetts General Public/Consumer Biomass

8

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

9

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

10

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

11

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

12

Space Heating & Cooling Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating & Cooling Research Space Heating & Cooling Research Space Heating & Cooling Research The Emerging Technology team conducts research in space heating and cooling technologies, with a goal of realizing aggregate energy savings of 20% relative to a 2010 baseline. In addition to work involving the development of products, the U.S. Department of Energy (DOE), along with industry partners and researchers, develops best practices, tests, and guides designed to reduce market barriers and increase public awareness of these energy saving technologies. Research is currently focusing on: Geothermal Heat Pumps Photo of a home with a geothermal heat pump, showing how it can regulate the temperature of a home using the temperature underground to cool warm air or heat cold air.

13

Ft Bidwell Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ft Bidwell Space Heating Low Temperature Geothermal Facility Ft Bidwell Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ft Bidwell Space Heating Low Temperature Geothermal Facility Facility Ft Bidwell Sector Geothermal energy Type Space Heating Location Ft. Bidwell, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

14

YMCA Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

YMCA Space Heating Low Temperature Geothermal Facility YMCA Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name YMCA Space Heating Low Temperature Geothermal Facility Facility YMCA Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

15

Olene Gap Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Olene Gap Space Heating Low Temperature Geothermal Facility Olene Gap Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Olene Gap Space Heating Low Temperature Geothermal Facility Facility Olene Gap Sector Geothermal energy Type Space Heating Location Klamath County, Oregon Coordinates 42.6952767°, -121.6142133° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

16

LDS Church Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

LDS Church Space Heating Low Temperature Geothermal Facility LDS Church Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Church Space Heating Low Temperature Geothermal Facility Facility LDS Church Sector Geothermal energy Type Space Heating Location Almo, Idaho Coordinates 42.1001924°, -113.6336192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

17

Baranof Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Baranof Space Heating Low Temperature Geothermal Facility Facility Baranof Sector Geothermal energy Type Space Heating Location Sitka, Alaska Coordinates 57.0530556°, -135.33° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

18

Melozi Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Melozi Space Heating Low Temperature Geothermal Facility Facility Melozi Sector Geothermal energy Type Space Heating Location Yukon, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

19

Ophir Creek Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ophir Creek Space Heating Low Temperature Geothermal Facility Ophir Creek Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ophir Creek Space Heating Low Temperature Geothermal Facility Facility Ophir Creek Sector Geothermal energy Type Space Heating Location SW, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

20

Health Spa Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Health Spa Space Heating Low Temperature Geothermal Facility Health Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Health Spa Space Heating Low Temperature Geothermal Facility Facility Glenwood Springs Health Spa Sector Geothermal energy Type Space Heating Location Glenwood Springs, Colorado Coordinates 39.5505376°, -107.3247762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Bell Island Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bell Island Space Heating Low Temperature Geothermal Facility Facility Bell Island Sector Geothermal energy Type Space Heating Location Ketchikan, Alaska Coordinates 55.3422222°, -131.6461111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

22

Table CE2-5.1u. Space-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Space-Heating Energy Consumption and Expenditures by Household Member and Demographics, 2001 Household ... Total Households Using a Major Space-Heating

23

Energy Basics: Space Heating and Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating...

24

Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

0. Space-Heating Energy Sources, Number of Buildings, 1999" 0. Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",4657,4016,1880,2380,377,96,307,94 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,926,1082,214,"Q",162,"Q" "5,001 to 10,000 ..............",1110,946,379,624,73,"Q",88,"Q" "10,001 to 25,000 .............",708,629,324,389,52,19,42,"Q"

25

On Variations of Space-heating Energy Use in Office Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

On Variations of Space-heating Energy Use in Office Buildings Title On Variations of Space-heating Energy Use in Office Buildings Publication Type Journal Article LBNL Report...

26

Solar energy collector for mounting over windows of buildings for space heating thereof  

SciTech Connect

The ornamental design for a solar energy collector for mounting over windows of buildings for space heating thereof, as shown.

Arrington, P.M.

1982-09-07T23:59:59.000Z

27

Focus on Energy - Commercial Solar Space-Heating Grant (WPS Customers...  

Open Energy Info (EERE)

Summary Focus on Energy (FOE) and Wisconsin Public Service (WPS) are partnering to offer solar space-heating grants for feasibility studies and installations. Commercial projects...

28

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network (OSTI)

In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source in complement of this heating system. The system is used to heat a building using heating floor. The building considered is located in Constantine-East of Algeria (Latitude 36.28 N, Longitude 6.62 E, Altitude 689m). For the calculation, the month of February was chosen, which is considered as the coldest month according to the weather data of Constantine. The performances of this system were compared to the performances of the traditional solar heating system using solar collectors and an auxiliary heating load to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage tank. The heat pump assisted by solar energy can contribute to the conservation of conventional energy and can be competitive with the traditional systems of heating.

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

29

Space heating systems in the Northwest: energy usage and cost analysis  

DOE Green Energy (OSTI)

The question of energy usage and cost of providing space heat in the Northwest is discussed. Though space heating needs represents only 18% of the U.S.'s total energy consumption, it nevertheless appears to offer the greatest potential for conservation and near term applications of alternate energy sources. Efficiency and economic feasibility factors are considered in providing for space heating demands. These criteria are presented to establish energy usage, cost effectiveness and beneficial conservation practices for space heating of residential, commercial, and industrial buildings. Four Northwestern cities have been chosen whose wide range of climate conditions are used to formulate the seasonal fuel and capital cost and hence the annual heating cost covering a broad spectrum of heating applications, both the traditional methods, the newer alternate forms of energy, and various methods to achieve more efficient utilization of all types.

Keller, J.G.; Kunze, J.F.

1976-01-01T23:59:59.000Z

30

Space heating systems in the Northwest: energy usage and cost analysis  

SciTech Connect

The question of energy usage and cost of providing space heat in the Northwest is discussed. Though space heating needs represents only 18% of the U.S.'s total energy consumption, it nevertheless appears to offer the greatest potential for conservation and near term applications of alternate energy sources. Efficiency and economic feasibility factors are considered in providing for space heating demands. These criteria are presented to establish energy usage, cost effectiveness and beneficial conservation practices for space heating of residential, commercial, and industrial buildings. Four Northwestern cities have been chosen whose wide range of climate conditions are used to formulate the seasonal fuel and capital cost and hence the annual heating cost covering a broad spectrum of heating applications, both the traditional methods, the newer alternate forms of energy, and various methods to achieve more efficient utilization of all types.

Keller, J.G.; Kunze, J.F.

1976-01-01T23:59:59.000Z

31

Active space heating and hot water supply with solar energy  

DOE Green Energy (OSTI)

Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

Karaki, S.; Loef, G. O.G.

1981-04-01T23:59:59.000Z

32

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty

33

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households by Four Most Populated States, 2001 RSE Column Factor: Total U.S. Four Most Populated States

34

"Table B21. Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Space-Heating Energy Sources, Floorspace, 1999" 1. Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",67338,61612,32291,37902,5611,5534,2728,945 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,2651,3250,598,"Q",469,"Q" "5,001 to 10,000 ..............",8238,7090,2808,4613,573,"Q",688,"Q" "10,001 to 25,000 .............",11153,9865,5079,6069,773,307,682,"Q"

35

"Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Primary Space-Heating Energy Sources, Floorspace, 1999" 3. Primary Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",67338,61602,17627,32729,3719,5077 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,1567,3080,482,"Q" "5,001 to 10,000 ..............",8238,7090,1496,4292,557,"Q" "10,001 to 25,000 .............",11153,9865,3035,5320,597,232 "25,001 to 50,000 .............",9311,8565,2866,4416,486,577

36

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

DOE Green Energy (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

37

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

2005 Residential Energy Consumption Survey Form EIA-457A (2005)--Household Questionnaire OMB No.: 1905-0092, Expiring May 31, 2008 33 Section D: SPACE HEATING

38

Space Heating and Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Supporting Equipment for Heating and Cooling Systems Addthis Related Articles Glossary of Energy-Related Terms Water Heating Basics Heating and Cooling System Support...

39

Solar Space Heating Rebate Program (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

40

Category:Solar Space Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages...

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table CE2-3c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household4,a Physical Units of Space-Heating Consumption per Household,3 Where the Main Space-Heating Fuel Is:

42

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

43

Table CE2-12c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

44

Table CE2-4c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

45

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3 Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

46

Consumer thermal energy storage costs for residential hot water, space heating and space cooling systems  

DOE Green Energy (OSTI)

The cost of household thermal energy storage (TES) in four utility service areas that are representative for hot water, space heating, and space cooling systems in the United States is presented. There are two major sections of the report: Section 2.0 is a technology characterization of commercially available and developmental/conceptual TES systems; Section 3.0 is an evaluation of the consumer cost of the three TES systems based on typical designs in four utility service areas.

None

1976-11-30T23:59:59.000Z

47

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

48

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

49

"Table B27. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",64783,60028,28600,36959,5988,5198,3204,842 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,2367,2829,557,"Q",665,183 "5,001 to 10,000 ..............",6585,5786,2560,3358,626,"Q",529,"Q" "10,001 to 25,000 .............",11535,10387,4872,6407,730,289,597,"Q"

50

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

51

The influence of indoor temperature on the difference between actual and theoretical energy consumption for space heating  

Science Conference Proceedings (OSTI)

The Energy Advice procedure (EAP) is developed to evaluate the energetic performance of "existing" dwellings to generate a useful advice for the occupants of the dwelling to invest in rational energy measures. The EAP is based on a theoretical calculation ... Keywords: actual energy consumption, consumer behaviour, indoor temperature, space heating, theoretical energy consumption

Amaryllis Audenaert; Katleen Briffaerts; Dries De Boeck

2011-11-01T23:59:59.000Z

52

Electricity displacement by wood used for space heating in PNWRES (Pacific Northwest Residential Energy Survey) (1983) households  

DOE Green Energy (OSTI)

This report evaluates the amount of electricity for residential space heating displaced by the use of wood in a sample of single-family households that completed the 1983 Pacific Northwest Residential Energy Survey. Using electricity bills and daily weather data from the period of July 1981 to July 1982, it was determined that the average household used 21,800 kWh per year, normalized with respect to weather. If no households had used any wood, electricity use would have increased 9%, to 23,700 kWh; space heating electricity use would also have increased, by 21%, to 47% of total electricity use. In the unlikely event that all households had used a great deal of wood for space heating, electricity use could have dropped by 23.5% from the average use, to 16,700 kWh; space heating electricity use would have dropped by 56%, to 24% of total electricity use. Indications concerning future trends regarding the displacement of electricity by wood use are mixed. On one hand, continuing to weatherize homes in the Pacific Northwest may result in less wood use as households find using electricity more economical. On the other hand, historical trends in replacement decisions regarding old space heating systems show a decided preference for wood. 11 refs., 6 figs., 8 tabs.

White, D.L.; Tonn, B.E.

1988-12-01T23:59:59.000Z

53

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network (OSTI)

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studied (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

54

System for thermal energy storage, space heating and cooling and power conversion  

DOE Patents (OSTI)

An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

1981-04-21T23:59:59.000Z

55

Data:C868f147-966c-4913-a752-b20fe8969456 | Open Energy Information  

Open Energy Info (EERE)

7-966c-4913-a752-b20fe8969456 7-966c-4913-a752-b20fe8969456 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Holy Cross Electric Assn, Inc Effective date: 2011/07/01 End date if known: Rate name: STREET, HIGHWAY AND AREA LIGHTING: 175 Watt MV Sector: Lighting Description: This rate applies when all fixtures are mounted on Holy Cross wood poles, either primary or secondary. Source or reference: http://www.holycross.com/about-us/rates-charges Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months):

56

Data:Dd970074-b298-4754-91a4-b28077373b20 | Open Energy Information  

Open Energy Info (EERE)

70074-b298-4754-91a4-b28077373b20 70074-b298-4754-91a4-b28077373b20 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Hustisford Utilities Effective date: 2008/09/30 End date if known: Rate name: Rg-1 Residential Service Single Phase Sector: Residential Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0720 per kilowatt-hour.

57

Data:5652592d-b20e-4dfa-8988-28514f86d3ed | Open Energy Information  

Open Energy Info (EERE)

d-b20e-4dfa-8988-28514f86d3ed d-b20e-4dfa-8988-28514f86d3ed No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Ameren Illinois Company Effective date: 2010/11/19 End date if known: Rate name: DS-3 Zone 1 - General Delivery Service 15kV to 100kV Sector: Industrial Description: Availability: Service under this Rate is available for any eligible Non-Residential Customer within the territory served by Company that has demand metering installed and a maximum monthly Demand equal to or greater than 150 kilowatts (kW) but less than 1,000 kW as qualified in the Delivery Service Rate Reassignment section.

58

Data:7c848926-376a-415a-9993-578367125b20 | Open Energy Information  

Open Energy Info (EERE)

8926-376a-415a-9993-578367125b20 8926-376a-415a-9993-578367125b20 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Mascoutah, Illinois (Utility Company) Effective date: 2011/05/01 End date if known: Rate name: Municipal Street Lighting Service- Rate 6: Mercury Vapor, 11000 Lumen, 250 watts, Class B Sector: Lighting Description: Class B: Mercury Vapor Lamps or Sodium Vapor Lamps on standard overhead wood pole construction, owned and operated by utility. Source or reference: Rates Binder 1, Illinois State University Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):

59

Data:Dafcb97b-20ec-4964-b554-114baacee5a5 | Open Energy Information  

Open Energy Info (EERE)

Dafcb97b-20ec-4964-b554-114baacee5a5 Dafcb97b-20ec-4964-b554-114baacee5a5 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Village of New Glarus, Wisconsin (Utility Company) Effective date: 2009/05/21 End date if known: Rate name: Pgs-3 Solar Renewable Energy Distributed Generation Sector: Description: Availability Available to customers who own small solar photovoltaic (PV) electric generating facilities that are approved by the Utility. Individual project nameplate rated capacity is limited to a maximum of 3.2 kW dc or the total PV generation nameplate capacity allowable under this tariff, whichever is less. Under this tariff, the total PV generation nameplate capacity for all the Utility's participating customers shall be limited to a maximum capacity of 2 kW dc or, provided that there is sufficient unsubscribed PV capacity available under WPPI Energy's Schedule for Purchase of Solar Photovoltaic Energy, the Utility's total PV generation nameplate capacity may be increased by an amount not to exceed 6 kW dc. Rates: 1. Metering Charge: $1.00 per month. This is in addition to any customer charge applicable under the retail tariff the customer is currently receiving service under. A separate meter is required to measure the electricity produced by the customer. 2. Energy Purchase Rate: The Utility will purchase 100% of the generator output from the customer. The Utility will then resell the PV energy to WPPI Energy. The PV generator's output shall be measured separately from the customer's usage. The energy buy-back rate provided under this tariff shall be equal to WPPI Energy's wholesale PV energy buy-back rate as specified in WPPI Energy's Schedule for Purchase of Solar Photovoltaic Energy in effect at the time the customer enters into a buy-back contract with the Utility. The customer will receive a monthly credit on their electric utility bill for the energy sold to the Utility at the above rate. The Utility shall maintain copies of each revision of WPPI Energy's Schedule for Purchase of Solar Photovoltaic Energy with the Utility's authorized tariffs.

60

Data:5f057b20-4645-4c96-99d4-760516132708 | Open Energy Information  

Open Energy Info (EERE)

7b20-4645-4c96-99d4-760516132708 7b20-4645-4c96-99d4-760516132708 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Whitehall Electric Utility Effective date: 2010/02/15 End date if known: Rate name: General Service- Time-of-Day- Single-Phase- Peak: 7am-7pm Sector: Commercial Description: This rate schedule is optional to all Gs-1, General Service customers. Customers that wish to be served on this rate schedule must apply to the utility for service. Once an optional customer begins service on this rate schedule, the customer shall remain on the rate for a minimum of one year. Any customer choosing to be served on this rate schedule waives all rights to billing adjustments arising from a claim that the bill for service would be less on another rate schedule than under this rate schedule.

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Data:Bbdbdb34-d791-4b20-8045-6d2973b40378 | Open Energy Information  

Open Energy Info (EERE)

Bbdbdb34-d791-4b20-8045-6d2973b40378 Bbdbdb34-d791-4b20-8045-6d2973b40378 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Connecticut Light & Power Co Effective date: 2013/07/01 End date if known: Rate name: Rate 27 - Small Time-Of-Day General Electric Service (Bundled Service Facilities Ownership) Sector: Commercial Description: AVAILABLE for the entire electrical requirements at a single service location measured through one metering installation where the customer's maximum demand is less than 350 kW. Notwithstanding the applicability provisions of other rates, this rate is also available to fullrequirements customers that (i) prior to March 1, 1992, had a maximum monthly 30-minute demand in excess of 350 kW; (ii) had a maximum monthly 30-minute demand in the twelve billing periods prior to March 1, 1992, that equaled or exceeded twice the average of the customer's maximum monthly 30-minute demands during the same billing periods; (iii) as of March 1, 1992, had established, and had a reasonable expectation of continuing, a seasonal pattern of electrical usage approximating that established during the twelve billing periods prior to March 1, 1992; and (iv) had not discontinued taking service under this rate or Rate 30 after March 1, 1992.

62

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

63

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

64

Passive solar space heating  

DOE Green Energy (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

65

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

66

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

67

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network (OSTI)

installing energy management system, educating and traininginstalling energy management system, and the most important

Lin, Hung-Wen

2013-01-01T23:59:59.000Z

68

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network (OSTI)

experimental data, Energy and Buildings 36, 543-555. O.G.consumption for heating, Energy and Buildings 43, 2662-2672.reduction for a net zero energy building, ACEEE Summer Study

Lin, Hung-Wen

2013-01-01T23:59:59.000Z

69

Space-Heating energy used by households in the residential sector.  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Energy End Uses Ranked by Energy Consumption, 1989 The following 28 tables present detailed data describing the consumption of and expenditures for energy used by households in the residential sector. The data are presented at the national level, Census region and division levels, for climate zones and for the most populous States, as well as for other selected characteristics of households. This section provides assistance in reading the tables by explaining some of the headings for the categories of data. It also explains the use of the row and column factors to compute the relative standard error of the estimates given in the tables. Organization of the Tables The tables cover consumption and expenditures for six topical areas: Major Energy Source

70

Data:A66adac6-ddb6-4529-ae34-db5b20cd220e | Open Energy Information  

Open Energy Info (EERE)

adac6-ddb6-4529-ae34-db5b20cd220e adac6-ddb6-4529-ae34-db5b20cd220e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Community Electric Coop Effective date: 2014/08/24 End date if known: Rate name: Schedule LP- Large Power Service Sector: Commercial Description: Available throughout the Cooperative's service territory to large power consumers subject to the Cooperative's Terms and Conditions of Service. Source or reference: http://comelec.coopwebbuilder.com/sites/comelec.coopwebbuilder.com/files/schedule_lp_0.pdf Source Parent: Comments Energy charge = Energy delivery charges + Energy Supply charges

71

Data:9d3377ff-228c-456c-8dc2-3b20e862d523 | Open Energy Information  

Open Energy Info (EERE)

7ff-228c-456c-8dc2-3b20e862d523 7ff-228c-456c-8dc2-3b20e862d523 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Peabody, Massachusetts (Utility Company) Effective date: 2010/05/01 End date if known: Rate name: Commercial Power Service Sector: Commercial Description: Source or reference: http://www.pmlp.com/pdfs/RateP.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

72

Data:D38eee9d-f3ae-413b-8926-91cf50b8b20b | Open Energy Information  

Open Energy Info (EERE)

d-f3ae-413b-8926-91cf50b8b20b d-f3ae-413b-8926-91cf50b8b20b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Landis, North Carolina (Utility Company) Effective date: 2012/07/01 End date if known: Rate name: Residential All Electric Senior Citizens Service Sector: Residential Description: A tax of $.003379 is included in this rate Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category:

73

Data:Ab1f879e-195e-44c0-83ea-0b20aadf95f9 | Open Energy Information  

Open Energy Info (EERE)

9e-195e-44c0-83ea-0b20aadf95f9 9e-195e-44c0-83ea-0b20aadf95f9 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Union, South Carolina (Utility Company) Effective date: 2013/07/01 End date if known: Rate name: Commercial Service Rate Sector: Commercial Description: see source for more information. Source or reference: http://www.cityofunion.net/site/cpage.asp?cpage_id=140016447&sec_id=140005136#Electrical Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V):

74

Data:5e22d91c-e9ad-4f32-b20c-2c1244d4275c | Open Energy Information  

Open Energy Info (EERE)

c-e9ad-4f32-b20c-2c1244d4275c c-e9ad-4f32-b20c-2c1244d4275c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Sacramento Municipal Utility District Effective date: 2012/01/01 End date if known: Rate name: SL-DOM Sector: Lighting Description: Source or reference: https://www.smud.org/en/residential/customer-service/rate-information/rates-rules-regulations.htm Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring:

75

Data:42cdf5d9-7b20-4e16-857b-90c5a46fcac2 | Open Energy Information  

Open Energy Info (EERE)

7b20-4e16-857b-90c5a46fcac2 7b20-4e16-857b-90c5a46fcac2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Consumers Power, Inc Effective date: 2011/10/01 End date if known: Rate name: 150 W HPS, Metered Sector: Lighting Description: * Applicable to customers who receive dusk to dawn area lighting service. Rate when light is metered through customer service. Source or reference: Rate binder # 4(Illinios State University) Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V):

76

Data:4109ebc2-1bb9-4e6a-970e-35148b20e304 | Open Energy Information  

Open Energy Info (EERE)

9ebc2-1bb9-4e6a-970e-35148b20e304 9ebc2-1bb9-4e6a-970e-35148b20e304 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Murray, Kentucky (Utility Company) Effective date: 2013/06/01 End date if known: Rate name: Outdoor Lighting- 175W Incandescent Sector: Lighting Description: Available for service to street and park lighting systems, traffic signal systems, athletic field lighting installations, and outdoor lighting for individual customers. Source or reference: http://www2.murray-ky.net/outdoor_lighting_with_murray_electric_system.html Source Parent: Comments Applicability Demand (kW)

77

Data:0c2a2a8f-5b20-4310-bb06-3a62084e6a38 | Open Energy Information  

Open Energy Info (EERE)

a8f-5b20-4310-bb06-3a62084e6a38 a8f-5b20-4310-bb06-3a62084e6a38 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Kosciusko County Rural E M C Effective date: 2011/02/01 End date if known: Rate name: Industrial - Schedule I Sector: Industrial Description: DETERMINATION OF CONSUMER SPECIFIC FACILITY CHARGE The consumer specific facility charge is based upon the monthly amortized cost of the outstanding balance (of original investment), plus an ongoing charge for operations and maintenance, taxes, and administration. It is applied to all facilities that are sole-use facilities for the industrial-type customer.

78

Data:2eb137a6-a7d0-4a63-b20a-0f180691ea73 | Open Energy Information  

Open Energy Info (EERE)

eb137a6-a7d0-4a63-b20a-0f180691ea73 eb137a6-a7d0-4a63-b20a-0f180691ea73 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Lebanon, Indiana (Utility Company) Effective date: 2013/04/01 End date if known: Rate name: OL - Outdoor Lighting Special Contract 175 watt mercury vapor Sector: Lighting Description: Availability Available only for continuous year-round service for outdoor lighting to any residential, farm, commercial or industrial customer located adjacent to an electric distribution line of Utility. Character of Service Outdoor Lighting Service using lamps available under this schedule.

79

Table SH1. Total Households Using a Space Heating Fuel, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households Using a Space Heating Fuel, 2005 Million U.S. Households Using a Non-Major Fuel 5 ... Space Heating (millions) Energy Information Administration

80

Data:8d487701-c1da-437a-b20e-87dc9dbe518d | Open Energy Information  

Open Energy Info (EERE)

01-c1da-437a-b20e-87dc9dbe518d 01-c1da-437a-b20e-87dc9dbe518d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Taylor County Rural E C C Effective date: 2011/06/01 End date if known: Rate name: Schedule B2 - Large Industrial Rate Sector: Industrial Description: Applicable to contracts with demands of 5,000 to 9,999 KW with a monthly energy usage equal to or greater than 400 hours per KW of billing demand. Source or reference: Kentucky Public Service Commission Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh):

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Data:0d13ebdc-c02e-4c33-b9c5-841b20c94969 | Open Energy Information  

Open Energy Info (EERE)

ebdc-c02e-4c33-b9c5-841b20c94969 ebdc-c02e-4c33-b9c5-841b20c94969 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Prairie Land Electric Coop Inc Effective date: 2010/01/14 End date if known: Rate name: Monthly Unmetered Investment Facility(Private Area Light on existing Pole 100W P.A.L-Option E) Sector: Lighting Description: Customer-100% Cooperative-0% There is an additional $0.35 for the service on New Pole(wood). Source or reference: http://www.prairielandelectric.com/Rates_PDF/MKEC%20Rates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh)

82

Data:52d743f4-7dd5-4b20-89fb-4abb6a8707b7 | Open Energy Information  

Open Energy Info (EERE)

3f4-7dd5-4b20-89fb-4abb6a8707b7 3f4-7dd5-4b20-89fb-4abb6a8707b7 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Etna Green, Indiana (Utility Company) Effective date: 2012/01/01 End date if known: Rate name: Muncipal Service - Non Metered Demand- Single Phase Sector: Commercial Description: Source or reference: http://www.timesuniononline.com/print.asp?ArticleID=50294&SectionID=52&SubSectionID=277 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

83

Data:21466bc7-2c8e-4669-b20d-835b4a4c8d06 | Open Energy Information  

Open Energy Info (EERE)

bc7-2c8e-4669-b20d-835b4a4c8d06 bc7-2c8e-4669-b20d-835b4a4c8d06 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Benton County Effective date: 2013/05/01 End date if known: Rate name: WS-DE Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous 1 2 3 Next >> Seasonal/Monthly Demand Charge Structures

84

Data:A777f39c-4709-4b20-9389-48a95d258d30 | Open Energy Information  

Open Energy Info (EERE)

f39c-4709-4b20-9389-48a95d258d30 f39c-4709-4b20-9389-48a95d258d30 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: NSTAR Electric Company Effective date: 2012/06/01 End date if known: Rate name: ACTON Time-of-Use Rate T-2 (B7/B8),(G8/G9)kw>1000 Sector: Industrial Description: Service under this rate is available for all use at a single location where the service voltage is less than 10,000 volts and the monthly demand is equal to or greater than 10 kilowatts. Customers with monthly demands less than 150 kW will be evaluated for transfer to Rate G-2. Service under this rate is subject to both the Company's printed requirements and the Company's Terms and

85

Data:62b3977b-7b6c-49e4-80dd-bb49b20e0216 | Open Energy Information  

Open Energy Info (EERE)

b-7b6c-49e4-80dd-bb49b20e0216 b-7b6c-49e4-80dd-bb49b20e0216 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Kaukauna, Wisconsin (Utility Company) Effective date: 2011/02/01 End date if known: Rate name: Cp-1 TOD Small Power Optional Time-of-Day Service between 50kW and 200kW Demand 8am-8pm Primary Metering Discount (2,300-15,000 volts) Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0605 per kilowatt-hour.

86

Data:2cc741f2-8f17-49ec-8e24-155d15b20a45 | Open Energy Information  

Open Energy Info (EERE)

41f2-8f17-49ec-8e24-155d15b20a45 41f2-8f17-49ec-8e24-155d15b20a45 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Cotton Electric Coop, Inc Effective date: 2010/02/01 End date if known: Rate name: Commercial Time -Of- Use Service-Three Phase Sector: Commercial Description: * Available for commercial customers up to 50 kVA of transformer capacity. Further capacity available at the discretion of the Cooperative, up to 150 kVA. Subject to power cost adjustment and tax adjustment on-Peak period is June 20 through September 9, from 4p.m to 8p.m Source or reference: ISU Documentation Rate Binder Kelly # 4

87

Data:9dbae606-8b20-44d5-adbe-98752fd2c194 | Open Energy Information  

Open Energy Info (EERE)

dbae606-8b20-44d5-adbe-98752fd2c194 dbae606-8b20-44d5-adbe-98752fd2c194 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Nodak Electric Coop Inc Effective date: 2012/05/20 End date if known: Rate name: Street Lighting 250 W HPS (400 W MV) Sector: Lighting Description: The Cooperative shall install, own, provide power, and service the lights included in this rate. The installation shall include wood poles, and it is assumed that an existing transformer can be used to provide secondary service. If a separate transformer is required and/or decorative lighting is requested by the member, the Cooperative may require an aid to construction to cover the added expense or negotiate a special rate to include the added costs incurred by the Cooperative.

88

Data:Abe526c1-9c10-4b5c-a982-dbd652ca6b20 | Open Energy Information  

Open Energy Info (EERE)

Abe526c1-9c10-4b5c-a982-dbd652ca6b20 Abe526c1-9c10-4b5c-a982-dbd652ca6b20 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Halifax Electric Member Corp Effective date: 2012/10/01 End date if known: Rate name: RESIDENTIAL SERVICE Sector: Residential Description: AVAILABILITY: This Schedule is available in all territory served by the Cooperative, subject to its established Service Rules and Regulations. APPLICABILITY: This Schedule is applicable when electric service is used for domestic purposes in and about a residential dwelling unit. Service under this Schedule is not applicable for farm operations such as crop dryers or tobacco barns, or for other commercial purposes. However, where this type of service is in combination with residential service and the total demand of the nonresidential usage is not greater than the total demand of the residential service requirements, the consumer may be served under this Schedule. If the predominant demand is nonresidential in nature, the Member must be served under a General Service schedule or the residential and nonresidential loads will be metered separately and billed under the appropriate schedule for each service. Service shall be provided at one location through one meter.

89

Data:Cd009354-6be6-46d8-b20f-f035693b044a | Open Energy Information  

Open Energy Info (EERE)

4-6be6-46d8-b20f-f035693b044a 4-6be6-46d8-b20f-f035693b044a No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Village of Mazomanie, Wisconsin (Utility Company) Effective date: 2006/06/15 End date if known: Rate name: Ms-1 Street Lighting Service Ornamental 150 W HPS Sector: Lighting Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0574 per kilowatt-hour.

90

Data:044401f2-efa3-4acc-9b20-14bd7afa4b41 | Open Energy Information  

Open Energy Info (EERE)

f2-efa3-4acc-9b20-14bd7afa4b41 f2-efa3-4acc-9b20-14bd7afa4b41 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Eugene, Oregon (Utility Company) Effective date: 2013/05/01 End date if known: Rate name: Schedule L-3 - Private Property Lighting Service 400 Watt HPS High Pressure Sodium Sector: Lighting Description: To overhead outdoor lighting from dusk-to-dawn each day throughout the year for lighting private property with facilities supplied by EWEB. The 100-, 200- and 400-watt applications are no longer available for new installations, in accordance with Eugene City Code 9.6725. Existing fixtures will be replaced as part of a maintenance program.

91

Data:0b39b5fd-a7d5-4b20-883f-ac0cc2336531 | Open Energy Information  

Open Energy Info (EERE)

fd-a7d5-4b20-883f-ac0cc2336531 fd-a7d5-4b20-883f-ac0cc2336531 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Eastern Illinois Elec Coop Effective date: 2010/03/27 End date if known: Rate name: OPTIONAL INTERRUPTIBLE LARGE POWER SERVICE RATE SCHEDULE NO. 24 (Multi Phase) Sector: Commercial Description: For three-phase services requiring more than 75 kVA of transformer capacity, the monthly facilities charge under this rate shall be increased at the rate of $1.00 for each additional kVA thereof required. Interruptible/Curtailment Service Rider Charge:$8.25 per kW of demand during a notice of interruption. Such charge shall be billed beginning with the next bill for electric service and the 11 succeeding monthly bills.

92

Data:6ccc5b20-f14d-41b5-a781-a8f48168217f | Open Energy Information  

Open Energy Info (EERE)

ccc5b20-f14d-41b5-a781-a8f48168217f ccc5b20-f14d-41b5-a781-a8f48168217f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern Indiana Pub Serv Co Effective date: 2011/12/27 End date if known: Rate name: Railroad Power Service Sector: Industrial Description: TO WHOM AVAILABLE This rate is available only to existing railroads or to non-profit commuter transportation district operating said railroads, subject to the conditions set forth in this Rate Schedule and the Company Rules. Electricity will be supplied hereunder for the operation of trains on a continuous electrified right-of-way of the Customer and the associated requirements furnished through the eight existing substations which were in service on December 31, 2007; provided, however, that electricity will not be furnished hereunder for resale.

93

Data:9e3b7ddf-af2c-4ec9-b321-21bb6b20e5ce | Open Energy Information  

Open Energy Info (EERE)

ddf-af2c-4ec9-b321-21bb6b20e5ce ddf-af2c-4ec9-b321-21bb6b20e5ce No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Electrical Dist No3 Pinal Cnty Effective date: 2012/08/22 End date if known: Rate name: RATE NO. 02 SMALL COMMERCIAL SERVICE-Underground Primary Service Sector: Commercial Description: Applicability: To all small retail businesses such as stores, shops, schools and other enterprises without demand metering and whose estimated monthly maximum demand is less than 50kW. Service is applied at one(1) point of delivery and measured through one meter. Source or reference: http://www.ed3online.org/view/70

94

Data:E80ccb28-f33b-417b-85a2-73b20d0540f7 | Open Energy Information  

Open Energy Info (EERE)

ccb28-f33b-417b-85a2-73b20d0540f7 ccb28-f33b-417b-85a2-73b20d0540f7 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Washington, North Carolina (Utility Company) Effective date: 2012/07/01 End date if known: Rate name: Residential- Inside Corporate Limits- Three-Phase Sector: Residential Description: Service under this Schedule is available for separately metered and billed supply of electricity to single family residences, including residential farms where the farm uses are not taken through a separate meter, and common area residential lighting strictly used for residence owned decorative or security lighting for electric service delivered to premises located within the corporate limits of the City of Washington.

95

Data:391a926b-20b2-4c78-a27a-51fb9a3ec6b2 | Open Energy Information  

Open Energy Info (EERE)

Data Data Edit with form History Facebook icon Twitter icon » Data:391a926b-20b2-4c78-a27a-51fb9a3ec6b2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Duke Energy Ohio Inc Effective date: 2013/05/06 End date if known: Rate name: Rate GS-FL: OPTIONAL UNMETERED GENERAL SERVICE RATE FOR SMALL FIXED LOADS - 540 - 720 hours used a month Sector: Commercial Description: Applicable to electric service in the Company's entire territory where secondary distribution lines exist for any fixed electric load that can be served by a standard service drop from the Company's existing secondary distribution system.

96

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

97

Data:2b8b800d-2d19-4b20-93d6-714b133410e3 | Open Energy Information  

Open Energy Info (EERE)

b800d-2d19-4b20-93d6-714b133410e3 b800d-2d19-4b20-93d6-714b133410e3 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Haywood Electric Member Corp Effective date: 2012/06/01 End date if known: Rate name: RGS General Renewable Generation Service 55G (>25<50 kW w/ trans) - 5 Year Fixed Sector: Description: AVAILABILITY Available only to members located in the Cooperative's service territory who have Renewable Generation interconnected directly with the Cooperative's system with a capacity of 75 kW or less and contract with the Cooperative to sell all generated capacity and energy to the Cooperative. Renewable Generation, or Renewable Energy Resource, shall be as defined as adopted by NC G.S. 62-133.8(a)(8). Service necessary for the delivery of the member's power into the Cooperative's system under this schedule shall be furnished solely to the individual contracting member in a single enterprise, located entirely on a single, contiguous premise. Service hereunder shall be restricted to the capacity of the member's generating facilities which may be operated in parallel with the Cooperative's system. Service necessary to supply the member's Auxiliary Load when the member's generating facilities are not operating, shall be billed under the Energy Charges in this schedule, increased or decreased in accordance with the Wholesale Power Cost Adjustment Rider. Power delivered to the Cooperative under this schedule shall not offset or be substituted for power contracted for or which may be contracted for under any other schedule of the Cooperative. The obligations of the Cooperative in regard to service under this Rider are dependent upon its securing and retaining all necessary rights-of-way, privileges, franchises, and permits for such service. The Cooperative shall not be liable to any member or applicant for power in the event it is delayed in, or is prevented from purchasing power by its failure to secure and retain such rights-of-way, rights, privileges, franchises, and permits. The Cooperative also reserves the right to review and determine on a case by case basis whether it has the need and system capacity to absorb the amount of proposed generation on the Cooperatives distribution system due to size and/or location.

98

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

99

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

100

Geothermal Energy Market Study on the Atlantic Coastal Plain. A Review of Recent Energy Price Projections for Traditional Space Heating Fuel 1985-2000  

DOE Green Energy (OSTI)

In order to develop an initial estimate of the potential competitiveness of low temperature (45 degrees C to 100 degrees C) geothermal resources on the Eastern Coastal Plain, the Center for Metropolitant Planning and Research of The Johns Hopkins University reviewed and compared available energy price projections. Series of projections covering the post-1985 period have been made by the Energy Information Administration, Brookhaven National Laboratory, and by private research firms. Since low temperature geothermal energy will compete primarily for the space and process heating markets currently held by petroleum, natural gas, and electricity, projected trends in the real prices for these fuels were examined. The spread in the current and in projected future prices for these fuels, which often serve identical end uses, underscores the influence of specific attributes for each type of fuel, such as cleanliness, security of supply, and governmental regulation. Geothermal energy possesses several important attributes in common with electricity (e.g., ease of maintenance and perceived security of supply), and thus the price of electric space heating is likely to be an upper bound on a competitive price for geothermal energy. Competitiveness would, of course, be increased if geothermal heat could be delivered for prices closer to those for oil and natural gas. The projections reviewed suggest that oil and gas prices will rise significantly in real terms over the next few decades, while electricity prices are projected to be more stable. Electricity prices will, however, remain above those for the other two fuels. The significance of this work rests on the fact that, in market economies, prices provide the fundamental signals needed for efficient resource allocation. Although market prices often fail to fully account for factors such as environmental impacts and long-term scarcity value, they nevertheless embody a considerable amount of information and are the primary guideposts for suppliers and consumers.

Weissbrod, Richard; Barron, William

1979-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Impact of the national energy plan on solar economics. [Economic analysis of solar space heating and solar water heating by state  

SciTech Connect

The National Energy Plan (NEP) sets as a goal the use of solar energy in two and a half million homes in 1985. A key provision of the NEP (as well as congressional alternatives) provides for the subsidization of solar equipment. The extent to which these subsidies (income tax credits) might offset the impact of continued energy price control is examined. Regional prices and availability of conventional energy sources (oil, gas, and electricity) were compiled to obtain a current and consistent set of energy prices by state and energy type. These prices are converted into equivalent terms ($/10/sup 6/ Btu) which account for combustion and heat generation efficiencies. Projections of conventional fuel price increases (or decreases) are made under both the NEP scenario and a projected scenario where all wellhead price controls are removed on natural gas and crude oil production. The economic feasibility (life-cycle cost basis) of solar energy for residential space heating and domestic hot water is examined on a state-by-state basis. Solar system costs are developed for each state by fraction of Btu heating load provided. The total number of homes, projected energy savings, and sensitivity to heating loads, alternative energy costs and prices are included in the analysis.

Ben-David, S.; Noll, S.; Roach, F.; Schulze, W.

1977-01-01T23:59:59.000Z

102

Solar air heating system for combined DHW and space heating  

E-Print Network (OSTI)

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren ?stergaard Jensen

103

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

104

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

105

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

106

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

107

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

108

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

109

Burgdorf Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Burgdorf Hot Springs Sector Geothermal energy Type Space Heating Location Burgdorf, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

110

Residential space heating cost: geothermal vs conventional systems  

SciTech Connect

The operating characteristics and economies of several representative space heating systems are analyzed. The analysis techniques used may be applied to a larger variety of systems than considered herein, thereby making this document more useful to the residential developer, heating and ventilating contractor, or homeowner considering geothermal space heating. These analyses are based on the use of geothermal water at temperatures as low as 120/sup 0/F in forced air systems and 140/sup 0/F in baseboard convection and radiant floor panel systems. This investigation indicates the baseboard convection system is likely to be the most economical type of geothermal space heating system when geothermal water of at least 140/sup 0/F is available. Heat pumps utilizing water near 70/sup 0/F, with negligible water costs, are economically feasible and they are particularly attractive when space cooling is included in system designs. Generally, procurement and installation costs for similar geothermal and conventional space heating systems are about equal, so geothermal space heating is cost competitive when the unit cost of geothermal energy is less than or equal to the unit cost of conventional energy. Guides are provided for estimating the unit cost of geothermal energy for cases where a geothermal resource is known to exist but has not been developed for use in residential space heating.

Engen, I.A.

1978-02-01T23:59:59.000Z

111

Table SH5. Total Expenditures for Space Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Space Heating Fuel 4 (millions) Fuel Oil U.S. Households ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Natural Gas

112

"Table HC4.4 Space Heating Characteristics by Renter-Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption Survey. " " Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables" "Table HC4.4 Space Heating...

113

"Table HC11.4 Space Heating Characteristics by Northeast Census...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption Survey. " " Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables" "Table HC11.4 Space Heating...

114

Medical Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Hot Springs Space Heating Low Temperature Geothermal Facility Facility Medical Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

115

Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature  

Open Energy Info (EERE)

Space Heating Low Temperature Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for Rehab. Sector Geothermal energy Type Space Heating Location Warm Springs, Georgia Coordinates 32.8904081°, -84.6810381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

116

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Facility Vichy Hot Springs Sector Geothermal energy Type Space Heating Location Ukiah, California Coordinates 39.1501709°, -123.2077831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

117

Jump Steady Resort Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jump Steady Resort Space Heating Low Temperature Geothermal Facility Jump Steady Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jump Steady Resort Space Heating Low Temperature Geothermal Facility Facility Jump Steady Resort Sector Geothermal energy Type Space Heating Location Buena Vista, Colorado Coordinates 38.8422178°, -106.1311288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

118

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake Hot Springs Sector Geothermal energy Type Space Heating Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

119

Stroppel Hotel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Stroppel Hotel Space Heating Low Temperature Geothermal Facility Facility Stroppel Hotel Sector Geothermal energy Type Space Heating Location Midland, South Dakota Coordinates 44.0716539°, -101.1554178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

120

Van Norman Residences Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Norman Residences Space Heating Low Temperature Geothermal Facility Norman Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Van Norman Residences Space Heating Low Temperature Geothermal Facility Facility Van Norman Residences Sector Geothermal energy Type Space Heating Location Thermopolis, Wyoming Coordinates 43.6460672°, -108.2120432° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Desert Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot Springs Sector Geothermal energy Type Space Heating Location Desert Hot Springs, California Coordinates 33.961124°, -116.5016784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

122

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Facility Ouray Municipal Pool Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

123

Canon City Area Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Canon City Area Space Heating Low Temperature Geothermal Facility Canon City Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Canon City Area Space Heating Low Temperature Geothermal Facility Facility Canon City Area Sector Geothermal energy Type Space Heating Location Canon City, Colorado Coordinates 38.439949°, -105.226097° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

124

Chena Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Chena Hot Springs Space Heating Low Temperature Geothermal Facility Facility Chena Hot Springs Sector Geothermal energy Type Space Heating Location Fairbanks, Alaska Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

125

Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

(Poncha Spring) Space Heating Low Temperature Geothermal (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Facility Salida Hot Springs (Poncha Spring) Sector Geothermal energy Type Space Heating Location Salida, Colorado Coordinates 38.5347193°, -105.9989022° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

126

Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Memorial Hospital Space Heating Low Temperature Geothermal Facility Memorial Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility Facility Modesto Memorial Hospital Sector Geothermal energy Type Space Heating Location Modesto, California Coordinates 37.6390972°, -120.9968782° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

127

Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Facility Peppermill Hotel Casino Sector Geothermal energy Type Space Heating Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

128

Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Lodge Space Heating Low Temperature Geothermal Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Glenwood Hot Springs Lodge Sector Geothermal energy Type Space Heating Location Glenwood Springs, Colorado Coordinates 39.5505376°, -107.3247762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

129

St. Mary's Hospital Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Mary's Hospital Space Heating Low Temperature Geothermal Facility Mary's Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name St. Mary's Hospital Space Heating Low Temperature Geothermal Facility Facility St. Mary's Hospital Sector Geothermal energy Type Space Heating Location Pierre, South Dakota Coordinates 44.3683156°, -100.3509665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

130

Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Facility Steamboat Villa Hot Springs Spa Sector Geothermal energy Type Space Heating Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

131

Vale Slaughter House Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Vale Slaughter House Space Heating Low Temperature Geothermal Facility Vale Slaughter House Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Slaughter House Space Heating Low Temperature Geothermal Facility Facility Vale Slaughter House Sector Geothermal energy Type Space Heating Location Vale, Oregon Coordinates 43.9821055°, -117.2382311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

132

Pagosa Springs Private Wells Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Private Wells Space Heating Low Temperature Geothermal Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility Facility Pagosa Springs Private Wells Sector Geothermal energy Type Space Heating Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

133

Avila Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Avila Hot Springs Space Heating Low Temperature Geothermal Facility Facility Avila Hot Springs Sector Geothermal energy Type Space Heating Location San Luis Obispo, California Coordinates 35.2827524°, -120.6596156° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

134

Hunters Hot Spring Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Facility Hunters Hot Spring Sector Geothermal energy Type Space Heating Location Lakeview, Oregon Coordinates 42.1887721°, -120.345792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

135

Maywood Industries of Oregon Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Maywood Industries of Oregon Space Heating Low Temperature Geothermal Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Facility Maywood Industries of Oregon Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

136

Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Facility Bozeman Hot Springs Sector Geothermal energy Type Space Heating Location Bozeman, Montana Coordinates 45.68346°, -111.050499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

137

Radium Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Radium Hot Springs Space Heating Low Temperature Geothermal Facility Radium Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Space Heating Low Temperature Geothermal Facility Facility Radium Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

138

Cedarville Elementary & High School Space Heating Low Temperature  

Open Energy Info (EERE)

Cedarville Elementary & High School Space Heating Low Temperature Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Facility Cedarville Elementary & High School Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606°, -120.1732781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

139

Miracle Hot Spring Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Facility Miracle Hot Spring Sector Geothermal energy Type Space Heating Location Bakersfield, California Coordinates 35.3732921°, -119.0187125° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

140

Hot Springs National Park Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility Facility Hot Springs National Park Sector Geothermal energy Type Space Heating Location Hot Springs, Arkansas Coordinates 34.5037004°, -93.0551795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Lolo Hot Springs Resort Sector Geothermal energy Type Space Heating Location Missoula County, Montana Coordinates 47.0240503°, -113.6869923° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

142

Klamath Schools (7) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Schools (7) Space Heating Low Temperature Geothermal Facility Schools (7) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Schools (7) Space Heating Low Temperature Geothermal Facility Facility Klamath Schools (7) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

143

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Facility Shoshone Motel & Trailer Park Sector Geothermal energy Type Space Heating Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

144

Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hospital Space Heating Low Temperature Geothermal Facility Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Surprise Valley Hospital Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606°, -120.1732781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

145

Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Facility Facility Wiesbaden Motel & Health Resort Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

146

Marlin Hospital Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Marlin Hospital Space Heating Low Temperature Geothermal Facility Marlin Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Marlin Hospital Space Heating Low Temperature Geothermal Facility Facility Marlin Hospital Sector Geothermal energy Type Space Heating Location Marlin, Texas Coordinates 31.3062874°, -96.8980439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

147

White Sulphur Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sulphur Springs Space Heating Low Temperature Geothermal Facility Sulphur Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility White Sulphur Springs Sector Geothermal energy Type Space Heating Location White Sulphur Springs, Montana Coordinates 46.548277°, -110.9021561° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

148

Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Facility Hillbrook Nursing Home Sector Geothermal energy Type Space Heating Location Clancy, Montana Coordinates 46.4652096°, -111.9863826° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

149

Miracle Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Springs Space Heating Low Temperature Geothermal Facility Facility Miracle Hot Springs Sector Geothermal energy Type Space Heating Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

150

LDS Wardhouse Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

LDS Wardhouse Space Heating Low Temperature Geothermal Facility LDS Wardhouse Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Wardhouse Space Heating Low Temperature Geothermal Facility Facility LDS Wardhouse Sector Geothermal energy Type Space Heating Location Newcastle, Utah Coordinates 37.6666413°, -113.549406° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

151

The Wilderness Lodge Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

The Wilderness Lodge Space Heating Low Temperature Geothermal Facility The Wilderness Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name The Wilderness Lodge Space Heating Low Temperature Geothermal Facility Facility The Wilderness Lodge Sector Geothermal energy Type Space Heating Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

152

Senior Citizens' Center Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Facility Senior Citizens' Center Sector Geothermal energy Type Space Heating Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

153

Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Facility Schutz's Hot Spring Sector Geothermal energy Type Space Heating Location Crouch, Idaho Coordinates 44.1151717°, -115.970954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

154

Mount Princeton Area Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Area Space Heating Low Temperature Geothermal Facility Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Mount Princeton Area Space Heating Low Temperature Geothermal Facility Facility Mount Princeton Area Sector Geothermal energy Type Space Heating Location Mount Princeton, Colorado Coordinates 38.749167°, -106.2425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

155

Warm Springs State Hospital Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

State Hospital Space Heating Low Temperature Geothermal State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Facility Warm Springs State Hospital Sector Geothermal energy Type Space Heating Location Warm Springs, Montana Coordinates 46.1813145°, -112.78476° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

156

Vale Residences Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Residences Space Heating Low Temperature Geothermal Facility Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Residences Space Heating Low Temperature Geothermal Facility Facility Vale Residences Sector Geothermal energy Type Space Heating Location Vale, Oregon Coordinates 43.9821055°, -117.2382311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

157

Cotulla High School Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Cotulla High School Space Heating Low Temperature Geothermal Facility Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility Facility Cotulla High School Sector Geothermal energy Type Space Heating Location Cotulla, Texas Coordinates 28.436934°, -99.2350322° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

158

Indian Valley Hospital Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Valley Hospital Space Heating Low Temperature Geothermal Facility Valley Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Indian Valley Hospital Sector Geothermal energy Type Space Heating Location Greenville, California Coordinates 40.1396126°, -120.9510675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

159

Lakeview Residences Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Lakeview Residences Space Heating Low Temperature Geothermal Facility Lakeview Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lakeview Residences Space Heating Low Temperature Geothermal Facility Facility Lakeview Residences Sector Geothermal energy Type Space Heating Location Lakeview, Oregon Coordinates 42.1887721°, -120.345792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

160

Boulder Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Space Heating Low Temperature Geothermal Facility Facility Boulder Hot Springs Sector Geothermal energy Type Space Heating Location Boulder, Montana Coordinates 46.2365947°, -112.1208336° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Langel Valley Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Langel Valley Space Heating Low Temperature Geothermal Facility Langel Valley Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Langel Valley Space Heating Low Temperature Geothermal Facility Facility Langel Valley Sector Geothermal energy Type Space Heating Location Bonanza, Oregon Coordinates 42.1987607°, -121.4061076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

162

Henley High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Henley High School Space Heating Low Temperature Geothermal Facility Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility Henley High School Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

163

Broadwater Athletic Club & Hot Springs Space Heating Low Temperature  

Open Energy Info (EERE)

Athletic Club & Hot Springs Space Heating Low Temperature Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Facility Broadwater Athletic Club & Hot Springs Sector Geothermal energy Type Space Heating Location Helena, Montana Coordinates 46.6002123°, -112.0147188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

164

Homestead Resort Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Resort Space Heating Low Temperature Geothermal Facility Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Homestead Resort Space Heating Low Temperature Geothermal Facility Facility Homestead Resort Sector Geothermal energy Type Space Heating Location Hot Springs, Virginia Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

165

Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility Facility Cottonwood Hot Springs Sector Geothermal energy Type Space Heating Location Buena Vista, Colorado Coordinates 38.8422178°, -106.1311288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

166

Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Jackson Hot Springs Lodge Sector Geothermal energy Type Space Heating Location Jackson, Montana Coordinates 45.3679793°, -113.4089438° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

167

Box Canyon Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Motel Space Heating Low Temperature Geothermal Facility Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Box Canyon Motel Space Heating Low Temperature Geothermal Facility Facility Box Canyon Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

168

Modoc High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Modoc High School Space Heating Low Temperature Geothermal Facility Modoc High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc High School Sector Geothermal energy Type Space Heating Location Alturas, California Coordinates 41.4871146°, -120.5424555° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

169

East Middle School and Cayuga Community College Space Heating Low  

Open Energy Info (EERE)

Middle School and Cayuga Community College Space Heating Low Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name East Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Facility East Middle School and Cayuga Community College Sector Geothermal energy Type Space Heating Location Auburn, New York Coordinates 42.9317335°, -76.5660529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

170

Indian Springs School Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

School Space Heating Low Temperature Geothermal Facility School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs School Space Heating Low Temperature Geothermal Facility Facility Indian Springs School Sector Geothermal energy Type Space Heating Location Big Bend, California Coordinates 39.6982182°, -121.4608015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

171

Manley Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Space Heating Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Space Heating Location Manley Hot Springs, Alaska Coordinates 65.0011111°, -150.6338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

172

Klamath Residence (500) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Residence (500) Space Heating Low Temperature Geothermal Facility Residence (500) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Residence (500) Space Heating Low Temperature Geothermal Facility Facility Klamath Residence (500) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

173

Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Apartment Buildings (13) Space Heating Low Temperature Geothermal Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Facility Klamath Apartment Buildings (13) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

174

Klamath Churches (5) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Churches (5) Space Heating Low Temperature Geothermal Facility Churches (5) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Churches (5) Space Heating Low Temperature Geothermal Facility Facility Klamath Churches (5) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

175

Klamath County Jail Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

County Jail Space Heating Low Temperature Geothermal Facility County Jail Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath County Jail Space Heating Low Temperature Geothermal Facility Facility Klamath County Jail Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

176

Merle West Medical Center Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Merle West Medical Center Space Heating Low Temperature Geothermal Facility Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal Facility Facility Merle West Medical Center Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

177

Lava Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Space Heating Low Temperature Geothermal Facility Facility Lava Hot Springs Sector Geothermal energy Type Space Heating Location Lava Hot Springs, Idaho Coordinates 42.6193625°, -112.0110712° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

178

Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Rio Hot Springs Space Heating Low Temperature Geothermal Facility Rio Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility Facility Del Rio Hot Springs Sector Geothermal energy Type Space Heating Location Preston, Idaho Coordinates 42.0963133°, -111.8766173° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

179

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's Hot Springs Resort Sector Geothermal energy Type Space Heating Location Genoa, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

180

Utah State Prison Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Prison Space Heating Low Temperature Geothermal Facility Prison Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Utah State Prison Space Heating Low Temperature Geothermal Facility Facility Utah State Prison Sector Geothermal energy Type Space Heating Location Salt Lake City, Utah Coordinates 40.7607793°, -111.8910474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Twin Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Springs Resort Space Heating Low Temperature Geothermal Facility Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Springs Resort Space Heating Low Temperature Geothermal Facility Facility Twin Springs Resort Sector Geothermal energy Type Space Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

182

Twin Peaks Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Peaks Motel Space Heating Low Temperature Geothermal Facility Peaks Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Peaks Motel Space Heating Low Temperature Geothermal Facility Facility Twin Peaks Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

183

Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Facility Geronimo Springs Museum Sector Geothermal energy Type Space Heating Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

184

Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility Facility Arrowhead Hot Springs Sector Geothermal energy Type Space Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

185

Medical Center Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Medical Center Space Heating Low Temperature Geothermal Facility Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Center Space Heating Low Temperature Geothermal Facility Facility Medical Center Sector Geothermal energy Type Space Heating Location Caliente, Nevada Coordinates 37.6149648°, -114.5119378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

186

Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility Hot Sulphur Springs Sector Geothermal energy Type Space Heating Location Hot Sulphur Springs, Colorado Coordinates 40.0730411°, -106.1027991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

187

Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Facility Tecopa Hot Springs Sector Geothermal energy Type Space Heating Location Inyo County, California Coordinates 36.3091865°, -117.5495846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

188

Saratoga Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Resort Space Heating Low Temperature Geothermal Facility Facility Saratoga Springs Resort Sector Geothermal energy Type Space Heating Location Lehi, Utah Coordinates 40.3916172°, -111.8507662° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

189

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner Springs Ranch Resort Sector Geothermal energy Type Space Heating Location San Diego, California Coordinates 32.7153292°, -117.1572551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

190

Jackson Well Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Well Springs Space Heating Low Temperature Geothermal Facility Well Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Well Springs Space Heating Low Temperature Geothermal Facility Facility Jackson Well Springs Sector Geothermal energy Type Space Heating Location Ashland, Oregon Coordinates 42.1853257°, -122.6980457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

191

Banbury Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Space Heating Low Temperature Geothermal Facility Facility Banbury Hot Springs Sector Geothermal energy Type Space Heating Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

192

Qualitative choice modeling of energy-conservation decisions: a micro-economic analysis of the determinants of residential space-heating energy demand  

Science Conference Proceedings (OSTI)

This study develops an economic model of household decisions to install major conservation measures such as storm windows, attic insulation, and wall insulation. The structural core of the model is the neoclassical economic paradigm of constrained discounted expected utility maximization. Household choices are modeled as being determined by household preferences across space-heating comfort levels and a composite of all other goods and services. These preferences interact with alternative household budget constraints which are determined by the household's conservation decisions. Nested Logit estimation techniques, using the observed discrete choices of a representative sample of households (in owner-occupied, single-family dwellings), are shown to be superior to simple Multinomial Logit estimation. This superiority arises from the importance of correlation among the error terms associated with indirect utility derived from certain subsets of available conservation alternatives.

Cameron, T.A.

1982-01-01T23:59:59.000Z

193

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

DOE Green Energy (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

194

Modeling Space Heating Demand in Massachusetts Housing Stock and the Implications for Climate Change Mitigation Policy.  

E-Print Network (OSTI)

??This research examines variation in average household energy consumption for space heating in municipalities in Massachusetts in order to explore the magnitude of variation among (more)

Robinson, Nathan H.

2011-01-01T23:59:59.000Z

195

Table SH2. Total Households by Space Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Space Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: ... Electricity Natural Gas Fuel Oil Kerosene LPG Other

196

Total U.S. Main Space Heating Fuel Used U.S. Using Any Households ...  

U.S. Energy Information Administration (EIA)

Average Heating Degree Days by Main Space Heating Fuel Used, ... 2005 Residential Energy Consumption Survey: ... Any Fuel Natural Gas Fuel Oil Age of Main Heating ...

197

RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

RTD Biodiesel (B20) Transit RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary K. Proc, R. Barnitt, and R.L. McCormick Technical Report NREL/TP-540-38364 August 2005 RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary K. Proc, R. Barnitt, and R.L. McCormick Prepared under Task No. FC05.9400 Technical Report NREL/TP-540-38364 August 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

198

Data:93fcb9a5-01dc-4217-bcc5-1b6b20c2c4f6 | Open Energy Information  

Open Energy Info (EERE)

the consumer may switch to the appropriate tariff following 12 months of service on this tariff. Energy Charge Distribution demand charge + Transmission charge + Generation...

199

Data:D7f3a2ad-a2cc-4417-b20f-96b3fd8d7b55 | Open Energy Information  

Open Energy Info (EERE)

a2cc-4417-b20f-96b3fd8d7b55 a2cc-4417-b20f-96b3fd8d7b55 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Public Service Co of Colorado Effective date: 2012/10/11 End date if known: Rate name: ENERGY ONLY STREET LIGHTING SERVICE - SCHEDULE ESL - 108.1-111.0 kWh per light Sector: Lighting Description: Source or reference: www.xcelenergy.com/staticfiles/xe/Regulatory/Regulatory PDFs/psco_elec_entire_tariff.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

200

2008 B20 Survey Results (Presentation)  

DOE Green Energy (OSTI)

Describes results of a sample survey of the quality of B20, a biodiesel blend, collected from U.S. public pumps and fleets as part of a joint effort by NREL, the NBB, and engine manufacturers.

Alleman, T. L.; McCormick, R. L.

2009-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Circle Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Circle Hot Springs Sector Geothermal energy Type Space Heating Location Fairbanks, Alaska Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

202

Buckhorn Mineral Wells Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Buckhorn Mineral Wells Sector Geothermal energy Type Space Heating Location Mesa, Arizona Coordinates 33.4222685°, -111.8226402° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

203

Chico Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Chico Hot Springs Sector Geothermal energy Type Space Heating Location Pray, Montana Coordinates 45.3802143°, -110.6815999° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

204

Jemez Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Jemez Springs Sector Geothermal energy Type Space Heating Location Jemez Springs, New Mexico Coordinates 35.7686356°, -106.692258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

205

Breitenbush Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Breitenbush Hot Springs Sector Geothermal energy Type Space Heating Location Marion County, Oregon Coordinates 44.8446393°, -122.5927411° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

206

Data:B87b20ce-2f88-4005-afca-3d7ad6b94ffd | Open Energy Information  

Open Energy Info (EERE)

ce-2f88-4005-afca-3d7ad6b94ffd ce-2f88-4005-afca-3d7ad6b94ffd No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Walton Electric Member Corp Effective date: 2006/06/01 End date if known: Rate name: Directional FLoodlight- HPS 400 Watt Bronze (UG) Sector: Lighting Description: Source or reference: http://www.waltonemc.com/commercial/ Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

207

Data:C84b20b6-8c7a-465a-880c-3befa99a0c5d | Open Energy Information  

Open Energy Info (EERE)

b6-8c7a-465a-880c-3befa99a0c5d b6-8c7a-465a-880c-3befa99a0c5d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Borough of Chambersburg, Pennsylvania (Utility Company) Effective date: 2004/05/03 End date if known: Rate name: Area Lighting Rate- Customer Installed (175W) Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1

208

Data:B20d2a2f-4ce1-403c-9481-eb63080ae500 | Open Energy Information  

Open Energy Info (EERE)

a2f-4ce1-403c-9481-eb63080ae500 a2f-4ce1-403c-9481-eb63080ae500 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Southeast Electric Coop, Inc Effective date: 2010/01/01 End date if known: Rate name: Security Light 150 and 175 watt Sector: Lighting Description: Source or reference: Rate Binder Kelly 11 ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

209

Data:E399b20c-1600-4059-ab26-da6d829a2d89 | Open Energy Information  

Open Energy Info (EERE)

c-1600-4059-ab26-da6d829a2d89 c-1600-4059-ab26-da6d829a2d89 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: C & L Electric Coop Corp Effective date: 2012/09/24 End date if known: Rate name: Outdoor Lighting Service - 400 Watt HPS/MH Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

210

Data:1c7b20fd-e28a-49ca-a57b-bebb1edfc295 | Open Energy Information  

Open Energy Info (EERE)

fd-e28a-49ca-a57b-bebb1edfc295 fd-e28a-49ca-a57b-bebb1edfc295 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Dover, Delaware (Utility Company) Effective date: 2008/07/01 End date if known: Rate name: Private Outdoor Lighting: Roadway/Area Lighting, Metered, 100 watt HPS Sector: Lighting Description: "METERED- This classification will be available at the City's discretion and only when it is not feasible to install the lighting service from an unmetered source. These lights will have the energy supplied through the customers meter and the monthly rental fee shall be reduced to reflect this customers expense."

211

Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Facility Facility Jump to: navigation, search Name Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Fairmont Hot Springs Resort Sector Geothermal energy Type Space Heating Location Fairmont, Montana Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

212

Data:8b97e98b-6b20-4d06-a8d8-3c776e596e20 | Open Energy Information  

Open Energy Info (EERE)

e98b-6b20-4d06-a8d8-3c776e596e20 e98b-6b20-4d06-a8d8-3c776e596e20 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Minnesota Power Inc Effective date: 2013/01/01 End date if known: Rate name: OUTDOOR AND AREA LIGHTING SERVICE-MV 175 W(OPT 2) Sector: Lighting Description: To all classes of retail customers for outdoor lighting purposes (Rate Codes 76) and to persons other than governmental subdivisions for the purpose of lighting streets, alleys, roads, driveways and parking lots (Rate Code 77) subject to any applicable Riders. Rate Code 76 is not available on a seasonal or temporary basis.

213

Data:6a6b5c3e-b20f-4e3d-a8e5-fcf4c996b227 | Open Energy Information  

Open Energy Info (EERE)

b5c3e-b20f-4e3d-a8e5-fcf4c996b227 b5c3e-b20f-4e3d-a8e5-fcf4c996b227 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Adams Electric Coop Effective date: 2011/04/01 End date if known: Rate name: Rate Schedule CAC (Controlled Air Conditioning) Sector: Commercial Description: This rate is no longer available for new accounts after December 31, 2008. Accounts on this rate prior to January 1, 2009 are allowed to stay on the rate. The fixed monthly is the average of the facility charge of $5.00 for six summer months. Source or reference: Rate Binder #7 (Illinois State University) Source Parent:

214

Data:4b20b33a-7b8f-4d5f-b443-d42b70397ea8 | Open Energy Information  

Open Energy Info (EERE)

b33a-7b8f-4d5f-b443-d42b70397ea8 b33a-7b8f-4d5f-b443-d42b70397ea8 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: El Paso Electric Co Effective date: 2012/05/01 End date if known: Rate name: COM - TOU Alternate Secondary Voltage Sector: Commercial Description: Customers electing this rate must continue to take service under this rate for a minimum of twelve (12) months. The on-peak period shall be from 12:00 P.M. through 6:00P.M., Mountain Daylight Time. Monday through Friday, for the months of June through September. Off-Peak period shall be all other hours not covered in the on-peak period.

215

Energy resource alternatives competition. Progress report for the period February 1, 1975--December 31, 1975. [Space heating and cooling, hot water, and electricity for homes, farms, and light industry  

DOE Green Energy (OSTI)

This progress report describes the objectives and results of the intercollegiate Energy Resource Alternatives competition. The one-year program concluded in August 1975, with a final testing program of forty student-built alternative energy projects at the Sandia Laboratories in Albuquerque, New Mexico. The goal of the competition was to design and build prototype hardware which could provide space heating and cooling, hot water, and electricity at a level appropriate to the needs of homes, farms, and light industry. The hardware projects were powered by such nonconventional energy sources as solar energy, wind, biologically produced gas, coal, and ocean waves. The competition rules emphasized design innovation, economic feasibility, practicality, and marketability. (auth)

Matzke, D.J.; Osowski, D.M.; Radtke, M.L.

1976-01-01T23:59:59.000Z

216

Warm Springs State Hospital Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal...

217

Klamath Apartment Buildings (13) Space Heating Low Temperature...  

Open Energy Info (EERE)

Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature...

218

Merle West Medical Center Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal...

219

Geothermal Energy Development in the Eastern United States: Technical assistance report No. 6 geothermal space heating and airconditioning -- McGuire Air Force Base, New Jersey  

DOE Green Energy (OSTI)

A method of utilizing the geothermal (66 F) water resource for space heating and cooling of 200 of the 1452 housing units at McGuire AFB is suggested. Using projections of future costs of gas, coal and electricity made by DOD and by industry (Westinghouse), the relative costs of the geothermal-water-plus-heat-pump system and the otherwise-planned central gas heating (to be converted to coal in 1984) and air-conditioning (using individual electric units) system are compared. For heating with the geothermal/heat-pump system, an outlet temperature of 130 F is selected, requiring a longer running time than the conventional system (at 180 F) but permitting a COP (coefficient of performance) of the heat pump of about 3.4. For cooling (obtained in this study by changing directions of water flow, not refrigerant cycles), the change in temperature is less, and a COP near 4.5 is obtained. The cost of cooling in the summer months would be significantly less than the cost of using individual electric air-conditioners. Thus, by using nonreversible heat pumps, geothermal water is used to heat and to cool a section of the housing compound, minimizing operating expenditures. It is estimated that, to drill 1000 ft deep production and reinjection wells and to install ten heat pumps, heat exchangers and piping, would require a capital outlay of $643 K. This cost would replace the capital cost of purchasing and installing 200 air-conditioning units and 14% of the cost of the future coal-fired central heating system (which would otherwise serve all 1452 housing units at McGuire). The net additional capital outlay would be $299 K, which could be amortized in 10 years by the lower operating cost of the geothermal system if electricity and coal prices escalate as industry suggests. If the coal and electricity costs rise at the more modest rates that DOD projects, the capital costs would be amortized in a 15 year period.

Hill, F.K.; Briesen R. von

1980-12-01T23:59:59.000Z

220

U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling, Federal Energy Management Program (FEMP) (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Program Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Located near Louisville, Kentucky, Fort Knox is home to the U.S. Army's Armor Center, Armor School, Recruiting Command, and numerous other facilities. The post has a daytime population of more than 30,000 people and more than 3,000 family housing units. In total, Fort Knox encompasses 11 million square feet of conditioned space across more than 109,000 acres. A military post of this size consumes a significant amount of energy. Fort Knox is acutely aware of the need for sustainability to ensure continuous operations and meet Federal energy goals and requirements.

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling, Federal Energy Management Program (FEMP) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Program Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Located near Louisville, Kentucky, Fort Knox is home to the U.S. Army's Armor Center, Armor School, Recruiting Command, and numerous other facilities. The post has a daytime population of more than 30,000 people and more than 3,000 family housing units. In total, Fort Knox encompasses 11 million square feet of conditioned space across more than 109,000 acres. A military post of this size consumes a significant amount of energy. Fort Knox is acutely aware of the need for sustainability to ensure continuous operations and meet Federal energy goals and requirements.

222

Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Facility Hi-Tech Fisheries Sector Geothermal energy Type Space Heating Location Bluffdale, Utah Coordinates 40.4896711°, -111.9388244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

223

City of Twenty-Nine Palms Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Twenty-Nine Palms Space Heating Low Temperature Geothermal Facility Facility City of Twenty-Nine Palms Sector Geothermal energy Type Space Heating Location Twenty-Nine Palms, California Coordinates 34.1355582°, -116.0541689° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

224

Hot Lake RV Park Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Park Space Heating Low Temperature Geothermal Facility Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Lake RV Park Space Heating Low Temperature Geothermal Facility Facility Hot Lake RV Park Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

225

Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Facility Reno-Moana Area (300) Sector Geothermal energy Type Space Heating Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

226

Passive space heating with a self-pumping vapor system  

DOE Green Energy (OSTI)

In this system, which should be useful for space or water heating, a refrigerant is evaporated in a solar collector and condensed within thermal storage located in the building below the collector. The vapor pressure generated in the collector periodically forces the condensed liquid upward to the location of the collector. This paper reports results of an operational test, in which this system provided passive space heating for an outdoor test cell during a winter season. The daily average energy yield and the elevation of collector temperature caused by self-pumping are reported, as well as observations on failure modes, system reliability, and suggestions for a practical configuration.

Hedstrom, J.C.; Neeper, D.A.

1986-01-01T23:59:59.000Z

227

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

228

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

229

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

Heating Refrigeration Air Conditioning Space Heating EnergyRefrigeration Air Conditioning Space Heating Savings inTorchiere Space heating Air conditioning Electric motors

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

230

Space Heating Trends in Prince Edward Island and Nova Scotia1 Mandeep Dhaliwal and Larry Hughes  

E-Print Network (OSTI)

in energy intensity. The residential sector uses energy for space heating, water heating, appliances Heating 60% Water Heating 21% Appliances 13% Lighting 5% Space Cooling 1% Figure 1: Residential Sector Scotia's energy policy goes one step further and supports R-2000 and Energuide for new houses (NSDOE

Hughes, Larry

231

Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa...

232

H A&S 222a: Introduction to Energy and Environment (Life Under the Pale Sun) Problem Set 1b: 20 April 2006 More Mechanical Energy problems (if you did not  

E-Print Network (OSTI)

speed. 6. Hybrid cars use both gasoline engines and electric motors. The gasoline powered engine is used're curious look up the stats on a Smart Car and compare). 4. ·If your SUV climbs a mountain road with slope 1 to charge the batteries and run the electric motor (using an alternator which converts mechanical energy

233

RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary  

DOE Green Energy (OSTI)

A summary of the data NREL collected from a project to evaluate the in-use performance of buses from the Regional Transportation District of Denver operating on B20.

Proc, K.; Barnitt, R.; McCormick, R. L.

2005-08-01T23:59:59.000Z

234

Table HC3-1a. Space Heating by Climate Zone, Million U.S ...  

U.S. Energy Information Administration (EIA)

Table HC3-1a. Space Heating by Climate Zone, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Climate Zone1 RSE

235

Econometric model of the joint production and consumption of residential space heat  

Science Conference Proceedings (OSTI)

This study models the production and comsumption of residential space heat, a nonmarket good. Production reflects capital investment decisions of households; consumption reflects final demand decisions given the existing capital stock. In the model, the production relationship is represented by a translog cost equation and an anergy factor share equation. Consumption is represented by a log-linear demand equation. This system of three equations - cost, fuel share, and final demand - is estimated simultaneously. Results are presented for two cross-sections of households surveyed in 1973 and 1981. Estimates of own-price and cross-price elasticities of factor demand are of the correct sign, and less than one in magnitude. The price elasticity of final demand is about -0.4; the income elasticity of final demand is less than 0.1. Short-run and long-run elasticities of demand for energy are about -0.3 and -0.6, respectively. These results suggest that price-induced decreases in the use of energy for space heat are attributable equally to changes in final demand and to energy conservation, the substitution of capital for energy in the production of space heat. The model is used to simulate the behavior of poor and nonpoor households during a period of rising energy prices. This simulation illustrates the greater impact of rising prices on poor households.

Klein, Y.L.

1985-12-01T23:59:59.000Z

236

Low Temperature Direct Use Space Heating Geothermal Facilities | Open  

Open Energy Info (EERE)

Low Temperature Direct Use Space Heating Geothermal Facilities Low Temperature Direct Use Space Heating Geothermal Facilities Jump to: navigation, search Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":800,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":"Geothermal

237

District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report  

DOE Green Energy (OSTI)

A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

McDevitt, P.K.; Rao, C.R.

1978-10-01T23:59:59.000Z

238

Feasibility study for aquaculture and space heating, Ft. Bidwell, California  

DOE Green Energy (OSTI)

Expansion of the aquaculture facilities and geothermal space heating at Ft. Bidwell, California were investigated. The lack of cold water is the limiting factor for aquaculture expansion and is also a problem for the town domestic water supply. A new cold water well approximately 1200 feet deep would provide for the aquaculture expansion and additional domestic water. A 2900 foot test well can be completed to provide additional hot water at approximately 200/sup 0/F and an estimated artesian flow of 500 gpm. If these wells are completed, the aquaculture facility could be expanded to produce 6000 two pound catfish per month on a continuous basis and provide space heating of at least 20 homes. The design provided allows for heating 11 homes initially with possible future expansion. 9 figs.

Culver, G.

1985-10-01T23:59:59.000Z

239

Hospital Energy Benchmarking Guidance - Version 1.0  

E-Print Network (OSTI)

use attribution to thermal services (cooling, space heating,a. Identify thermal energy flows (cooling, space heating,s). 1a. Identify thermal energy flows (cooling, heating,

Singer, Brett C.

2010-01-01T23:59:59.000Z

240

Biodiesel Blends in Space Heating Equipment: January 31, 2001 -- September 28, 2001  

DOE Green Energy (OSTI)

This report documents an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications.

Krishna, C. R.

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Operating Experience and Teardown Analysis for Engines Operated on Biodiesel Blends (B20)  

DOE Green Energy (OSTI)

In this study, eight engines and fuel systems were removed from trucks operating on B20 or diesel. Results indicate little difference in operational and maintenance costs between the B20- and diesel.

Fraer, R.; Dinh, H.; Proc, K.; McCormick, R. L.; Chandler, K.; Buchholz, B.

2005-11-01T23:59:59.000Z

242

Residential Energy Consumption Survey data show decreased ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, ... Improvements in efficiency for space heating, ...

243

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, ... particularly for space heating, ...

244

Large hospitals tend to be energy-intensive - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, ... natural gas was the most common main space heating fuel, ...

245

Optimization of design and control strategies for geothermal space heating systems. Final report  

DOE Green Energy (OSTI)

The efficient design and operation of geothermal space heating systems requires careful analysis and departure from normal design practices. Since geothermal source temperatures are much lower than either fossil fuel or electrical source temperatures, the temperature of the delivered energy becomes more critical. Also, since the geothermal water is rejected after heat exchange, it is necessary to extract all of the energy that is practical in one pass; there is no second change for energy recovery. The present work examines several heating system configurations and describes the desired design and control characteristics for operation on geothermal sources. Specific design methods are outlined as well as several generalized guidelines that should significantly improve the operation of any geothermally heated system.

Batdorf, J.A.; Simmons, G.M.

1984-07-01T23:59:59.000Z

246

"Table HC13.4 Space Heating Characteristics by South Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by South Census Region, 2005" 4 Space Heating Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Space Heating Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Do Not Have Space Heating Equipment",1.2,"Q","Q","N","Q" "Have Main Space Heating Equipment",109.8,40.3,21.4,6.9,12 "Use Main Space Heating Equipment",109.1,40.1,21.2,6.9,12 "Have Equipment But Do Not Use It",0.8,"Q","Q","N","N"

247

"Table HC14.4 Space Heating Characteristics by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by West Census Region, 2005" 4 Space Heating Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Space Heating Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Do Not Have Space Heating Equipment",1.2,0.7,"Q",0.7 "Have Main Space Heating Equipment",109.8,23.4,7.5,16 "Use Main Space Heating Equipment",109.1,22.9,7.4,15.4 "Have Equipment But Do Not Use It",0.8,0.6,"Q",0.5 "Main Heating Fuel and Equipment" "Natural Gas",58.2,14.7,4.6,10.1 "Central Warm-Air Furnace",44.7,11.4,4,7.4

248

"Table HC12.4 Space Heating Characteristics by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Midwest Census Region, 2005" 4 Space Heating Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Do Not Have Space Heating Equipment",1.2,"Q","Q","N" "Have Main Space Heating Equipment",109.8,25.6,17.7,7.9 "Use Main Space Heating Equipment",109.1,25.6,17.7,7.9 "Have Equipment But Do Not Use It",0.8,"N","N","N" "Main Heating Fuel and Equipment"

249

Table SH7. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil (gallons) Main Space Heating Fuel Used (physical units of consumption per household using the fuel as a main heating source) Table SH7.

250

Table SH8. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Main Space Heating Fuel Used (million Btu of consumption per household using the fuel as a main heating source) Any Major Fuel 4 Table SH8.

251

Table SH3. Total Consumption for Space Heating by Major Fuels Used ...  

U.S. Energy Information Administration (EIA)

Natural Gas (billion cf) Major Fuels Used 4 (physical units) Table SH3. Total Consumption for Space Heating by Major Fuels Used, 2005 Physical Units

252

100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)  

DOE Green Energy (OSTI)

Evaluates the emissions, fuel economy, and maintenance of five 40-foot transit buses operated on B20 compared to four on petroleum diesel.

Proc, K.; Barnitt, R.; Hayes, R. R.; Ratcliff, M.; McCormick, R. L.; Ha, L.; Fang, H. L.

2006-11-01T23:59:59.000Z

253

Press Room - Press Releases - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, ... Terminate annual data collection and report on geothermal space heating ...

254

Table B19. Energy End Uses, Number of Buildings and Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manufact-uring",,"Space Heating","Cooling","Water...

255

Interaction of a solar space heating system with the thermal behavior of a building  

DOE Green Energy (OSTI)

The thermal behavior of a building in response to heat input from an active solar space heating system is analyzed to determine the effect of the variable storage tank temperature on the cycling rate, on-time, and off-time of a heating cycle and on the comfort characteristics of room air temperature swing and of offset of the average air temperature from the setpoint (droop). A simple model of a residential building, a fan coil heat-delivery system, and a bimetal thermostat are used to describe the system. A computer simulation of the system behavior has been developed and verified by comparisons with predictions from previous studies. The system model and simulation are then applied to determine the building response to a typical hydronic solar heating system for different solar storage temperatures, outdoor temperatures, and fan coil sizes. The simulations were run only for those cases where there was sufficient energy from storage to meet the building load requirements.

Vilmer, C.; Warren, M.L.; Auslander, D.

1980-12-01T23:59:59.000Z

256

"Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Household Income, 2005" 5 Space Heating Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

257

Non-Space Heating Electrical Consumption in Manufactured Homes: Residential Construction Demonstration Project Cycle II : Final Report.  

SciTech Connect

This report summarizes submeter data of the non-space heating electrical energy use in a sample of manufactured homes. These homes were built to Super Good Cents insulation standards in 1988 and 1989 under the auspices of RCDP Cycle 2 of the Bonneville Power Administration. They were designed to incorporate innovations in insulation and manufacturing techniques developed to encourage energy conservation in this important housing type. Domestic water heating (DWH) and other non-space heat energy consumption, however, were not generally affected by RCDP specifications. The purpose of this study is to establish a baseline for energy conservation in these areas and to present a method for estimating total energy saving benefits associated with these end uses. The information used in this summary was drawn from occupant-read submeters and manufacturersupplied specifications of building shell components, appliances and water heaters. Information was also drawn from a field review of ventilation systems and building characteristics. The occupant survey included a census of appliances and occupant behavior in these manufactured homes. A total of 150 manufactured homes were built under this program by eight manufacturers. An additional 35 homes were recruited as a control group. Of the original 185 houses, approximately 150 had some usable submeter data for domestic hot water and 126 had usable submeter data for all other nonheating consumption. These samples were used as the basis for all consumption analysis. The energy use characteristics of these manufactured homes were compared with that of a similar sample of RCDP site-built homes. In general, the manufactured homes were somewhat smaller and had fewer occupants than the site-built homes. The degree to which seasonal variations were present in non-space heat uses was reviewed.

Onisko, Stephen A.; Roos, Carolyn; Baylon, David

1993-06-01T23:59:59.000Z

258

St. Louis Metro Biodiesel (B20) Transit Bus Evaluation: 12-Month Final Report  

DOE Green Energy (OSTI)

The St. Louis Metro Bodiesel Transit Bus Evaluation project is being conducted under a Cooperative Research and Development Agreement between NREL and the National Biodiesel Board to evaluate the extended in-use performance of buses operating on B20 fuel. The objective of this research project is to compare B20 and ultra-low sulfur diesel buses in terms of fuel economy, veicles maintenance, engine performance, component wear, and lube oil performance.

Barnitt, R.; McCormick, R. L.; Lammert, M.

2008-07-01T23:59:59.000Z

259

Space Heating and Cooling Products and Services | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Incentives for Renewables & Efficiency Addthis Related Articles Choosing an efficient water heater will help you save money and Energy. | Photo Credit Energy Department Water...

260

Energy manager design for microgrids  

E-Print Network (OSTI)

refrigeration, space heating, water heating, and loads that can only be met by combustible Energy Manager Design

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 .4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Space Heating Equipment....... 1.2 0.6 Q Q Q 0.3 Q Have Main Space Heating Equipment.......... 109.8 32.3 8.0 3.3 5.8 14.1 1.1 Use Main Space Heating Equipment............ 109.1 31.8 8.0 3.2 5.6 13.9 1.1 Have Equipment But Do Not Use It.............. 0.8 0.5 N Q Q Q Q Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 16.4 4.5 2.1 3.2 6.2 0.3 Central Warm-Air Furnace........................ 44.7 10.0 3.3 1.4 1.6 3.3 0.3 For One Housing Unit........................... 42.9 8.6 3.3 1.2 1.4 2.4 0.3 For Two Housing Units..........................

262

Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Number of Household Members, 2005 4 Space Heating Characteristics by Number of Household Members, 2005 Total..................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Space Heating Equipment............ 1.2 0.3 0.3 Q 0.2 0.2 Have Main Space Heating Equipment............... 109.8 29.7 34.5 18.2 15.6 11.8 Use Main Space Heating Equipment................. 109.1 29.5 34.4 18.1 15.5 11.6 Have Equipment But Do Not Use It................... 0.8 Q Q Q Q Q Main Heating Fuel and Equipment Natural Gas....................................................... 58.2 15.6 18.0 9.5 8.4 6.7 Central Warm-Air Furnace............................. 44.7 10.7 14.3 7.6 6.9 5.2 For One Housing Unit................................ 42.9 10.1 13.8 7.3 6.5 5.2 For Two Housing Units...............................

263

Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Number of Household Members, 2005 5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None............................................................ 3.6 1.0 0.8 0.5 0.5 0.7 1 to 499........................................................ 6.1 3.0 1.6 0.6 0.6 0.3 500 to 999.................................................... 27.7 11.6 8.3 3.6 2.7 1.6 1,000 to 1,499..............................................

264

Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 .4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Space Heating Equipment....... 1.2 0.6 0.3 N Q Q Q Have Main Space Heating Equipment.......... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Main Space Heating Equipment............ 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have Equipment But Do Not Use It.............. 0.8 0.3 Q N Q Q Q Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 41.8 35.3 2.8 1.2 1.0 1.6 Central Warm-Air Furnace........................ 44.7 34.8 29.7 2.3 0.7 0.6 1.4 For One Housing Unit........................... 42.9 34.3 29.5 2.3 0.6 0.6 1.4 For Two Housing Units..........................

265

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

loans for renewable energy and energy efficiency projects. Eligible renewable energy technologies include solar thermal, solar space heat, solar process heat,...

266

"Table HC10.5 Space Heating Usage Indicators by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by U.S. Census Region, 2005" 5 Space Heating Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Usage Indicators",,"Northeast","Midwest","South","West" "Total U.S. Housing Units",111.1,20.6,25.6,40.7,24.2 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have But Do Not Use Equipment",0.8,"N","N","Q",0.6 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

267

"Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Urban/Rural Location, 2005" 5 Space Heating Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating Usage Indicators",,"City","Town","Suburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Do Not Have Heating Equipment",1.2,0.7,"Q",0.2,"Q" "Have Space Heating Equipment",109.8,46.3,18.9,22.5,22.1 "Use Space Heating Equipment",109.1,45.6,18.8,22.5,22.1 "Have But Do Not Use Equipment",0.8,0.7,"Q","N","N" "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

268

"Table HC12.5 Space Heating Usage Indicators by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Midwest Census Region, 2005" 5 Space Heating Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Usage Indicators",,,"East North Central","West North Central" "Total U.S. Housing Units",111.1,25.6,17.7,7.9 "Do Not Have Heating Equipment",1.2,"Q","Q","N" "Have Space Heating Equipment",109.8,25.6,17.7,7.9 "Use Space Heating Equipment",109.1,25.6,17.7,7.9 "Have But Do Not Use Equipment",0.8,"N","N","N" "Space Heating Usage During 2005"

269

"Table HC15.4 Space Heating Characteristics by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Four Most Populated States, 2005" 4 Space Heating Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Space Heating Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Main Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Main Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have Equipment But Do Not Use It",0.8,"N","Q","N",0.5 "Main Heating Fuel and Equipment" "Natural Gas",58.2,3.8,0.4,3.8,8.4

270

"Table HC11.5 Space Heating Usage Indicators by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Northeast Census Region, 2005" 5 Space Heating Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Space Heating Usage Indicators",,,"Middle Atlantic","New England" "Total U.S. Housing Units",111.1,20.6,15.1,5.5 "Do Not Have Heating Equipment",1.2,"Q","Q","Q" "Have Space Heating Equipment",109.8,20.5,15.1,5.4 "Use Space Heating Equipment",109.1,20.5,15.1,5.4 "Have But Do Not Use Equipment",0.8,"N","N","N" "Space Heating Usage During 2005"

271

"Table HC15.5 Space Heating Usage Indicators by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Four Most Populated States, 2005" 5 Space Heating Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Space Heating Usage Indicators",,"New York","Florida","Texas","California" "Total U.S. Housing Units",111.1,7.1,7,8,12.1 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have But Do Not Use Equipment",0.8,"N","Q","N",0.5 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

272

"Table HC10.4 Space Heating Characteristics by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by U.S. Census Region, 2005" 4 Space Heating Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Main Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Main Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have Equipment But Do Not Use It",0.8,"N","N","Q",0.6 "Main Heating Fuel and Equipment" "Natural Gas",58.2,11.4,18.4,13.6,14.7

273

Energy Consumption and Expenditures RECS 2001  

U.S. Energy Information Administration (EIA)

Water Heating. Space Heating. Appliances. Air-Conditioning. About the Data. Tables: Total Energy Consumption in U.S ...

274

Maryvale Terrace: geothermal residential district space heating and cooling  

DOE Green Energy (OSTI)

A preliminary study of the technical and economic feasibility of installing a geothermal district heating and cooling system is analyzed for the Maryvale Terrace residential subdevelopment in Phoenix, Arizona, consisting of 557 residential houses. The design heating load was estimated to be 16.77 million Btu/h and the design cooling load was estimated to be 14.65 million Btu/h. Average annual energy use for the development was estimated to be 5870 million Btu/y and 14,650 million Btu/y for heating and cooling, respectively. Competing fuels are natural gas for heating and electricity for cooling. A geothermal resource is assumed to exist beneath the site at a depth of 6000 feet. Five production wells producing 1000 gpm each of 220/sup 0/F geothermal fluid are required. Total estimated cost for installing the system is $5,079,300. First year system operations cost (including debt service) is $974,361. The average annual geothermal heating and cooling cost per home is estimated to be $1750 as compared to a conventional system annual cost of $1145. Further, the cost of geothermal heating and cooling is estimated to be $47.50 per million Btu when debt service is included and $6.14 per million Btu when only operating costs are included. Operating (or fuel) costs for conventional heating and cooling are estimated to be $15.55 per million Btu.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

275

Utah State Prison Space Heating with Geothermal Heat Third Semi-Annual Report for the Period January 1981 - July 1981  

DOE Green Energy (OSTI)

Facing certain cost overruns and lacking information about the long term productivity of the Crystal Hot Springs geothermal resource, costs of construction for the geothermal retrofit, and the method of disposal of geothermal waste water, the Energy Office embarked on a strategy that would enable the project participants to develop accurate cost information on the State Prison Space Heating Program through the completion of Task 5-Construction. The strategy called for: (1) Completion of the resource assessment to determine whether test well USP/TH-1 could be used as a production well. If well USP/TH-1 was found to have sufficient production capacity, money would not have to be expended on drilling another production well. (2) Evaluation of disposal alternatives and estimation of the cost of each alternative. There was no contingency in the original budget to provide for a reinjection disposal system. Cooperative agreement DE EC07-ET27027 indicated that if a disposal system requiring reinjection was selected for funding that task would be negotiated with DOE and the budget amended accordingly. (3) Completion of the preliminary engineering and design work. Included in this task was a thorough net present value cash flow analysis and an assessment of the technical feasibility of a system retrofit given the production characteristics of well USP/TH-1 . In addition, completion of the preliminary design would provide cost estimates for the construction and commissioning of the minimum security geothermal space heating system. With this information accurate costs for each task would be available, allowing the Energy Office to develop strategies to optimize the use of money in the existing budget to ensure completion of the program. Reported herein is a summary of the work towards the completion of these three objectives conducted during the period of January 1981 through June 1981.

None

1981-11-01T23:59:59.000Z

276

"Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" 4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Space Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Main Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

277

Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling  

SciTech Connect

We investigate the existence of the principal-agent (PA) problem in non-government, non-mall commercial buildings in the U.S. in 2003. The analysis concentrates on space heating and cooling energy consumed by centrally installed equipment in order to verify whether a market failure caused by the PA problem might have prevented the installation of energy-efficient devices in non-owner-occupied buildings (efficiency problem) and/or the efficient operation of space-conditioning equipment in these buildings (usage problem). Commercial Buildings Energy Consumption Survey (CBECS) 2003 data for single-owner, single-tenant and multi-tenant occupied buildings were used for conducting this evaluation. These are the building subsets with the appropriate conditions for assessing both the efficiency and the usage problems. Together, these three building types represent 51.9percent of the total floor space of all buildings with space heating and 59.4percent of the total end-use energy consumption of such buildings; similarly, for space cooling, they represent 52.7percent of floor space and 51.6percent of energy consumption. Our statistical analysis shows that there is a usage PA problem. In space heating it applies only to buildings with a small floor area (<_50,000 sq. ft.). We estimate that in 2003 it accounts for additional site energy consumption of 12.3 (+ 10.5 ) TBtu (primary energy consumption of 14.6 [+- 12.4] TBtu), corresponding to 24.0percent (+- 20.5percent) of space heating and 10.2percent (+- 8.7percent) of total site energy consumed in those buildings. In space cooling, however, the analysis shows that the PA market failure affects the complete set of studied buildings. We estimate that it accounts for a higher site energy consumption of 8.3 (+-4.0) TBtu (primary energy consumption of 25.5 [+- 12.2]TBtu), which corresponds to 26.5percent (+- 12.7percent) of space cooling and 2.7percent (+- 1.3percent) of total site energy consumed in those buildings.

Blum, Helcio; Sathaye, Jayant

2010-05-14T23:59:59.000Z

278

Federal Energy Management Program: Energy Savings Calculator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings Calculator for Commercial Boilers (Closed Loop, Space Heating Applications Only) This cost calculator is a screening tool that estimates a product's lifetime energy cost...

279

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Features Heating and cooling no longer majority of U.S. home energy use. Release Date: March 7, 2013. For decades, space heating and cooling (space conditioning ...

280

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

Features Heating and cooling no longer majority of U.S. home energy use. Release Date: March 7, 2013. For decades, space heating and cooling (space ...

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

"Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,33,8,3.4,5.9,14.4,1.2 "Do Not Have Heating Equipment",1.2,0.6,"Q","Q","Q",0.3,"Q" "Have Space Heating Equipment",109.8,32.3,8,3.3,5.8,14.1,1.1

282

"Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

283

Development of a coal fired pulse combustor for residential space heating. Phase I, Final report  

SciTech Connect

This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

NONE

1988-04-01T23:59:59.000Z

284

Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report  

DOE Green Energy (OSTI)

A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

1980-05-01T23:59:59.000Z

285

Use of hot-dry-rock geothermal resources for space heating: a case study  

DOE Green Energy (OSTI)

This study shows that a hot dry rock (HDR) geothermal space heat system proposed for the National Aeronautics and Space Administrations's Wallops Flight Center (WFC) will cost $10.9 million, saving $4.1 million over the existing oil heating system over a 30-yr lifetime. The minimal, economically feasible plan for HDR at WFC is shown to be the design of a single-fracture reservoir using a combined HDR preheat and a final oil burner after the first 4 years of operation. The WFC cost savings generalize and range from $3.1 million to $7.2 million for other HDR sites having geothermal temperature gradients ranging from 25/sup 0/C/km to 40/sup 0/C/km and depths to basement rock of 2400 ft or 5700 ft compared to the 30/sup 0/C/km and 9000 ft to basement rock at WFC.

Cummings, R.G.; Arundale, C.J.; Bivins, R.L.; Burness, H.S.; Drake, R.H.; Norton, R.D.

1982-09-01T23:59:59.000Z

286

U.S. Department of Energy Energy Information Administration  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey Form EIA-457C ... what was the main fuel used for home space heating? ... Fuel oil ...

287

A neural-fuzzy based inferential sensor for improving the control of boilers in space heating systems  

Science Conference Proceedings (OSTI)

Conventionally the boilers in space heating systems are controlled by open-loop control systems due to the absence of a practical method for measuring the overall thermal comfort level in the building. This paper describes a neural-fuzzy based inferential ...

Zaiyi Liao

2005-08-01T23:59:59.000Z

288

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Energy Technology Description Geothermal energy is heat from within the Earth. Hot water or steam are used to produce electricity or applied directly for space heating...

289

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, ... Heating degree days are used in energy analysis as an indicator of space heating energy requirements or use.

290

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network (OSTI)

and a hot-water gas-fired boiler. Figure 1(a) illustratesloads, window type, boiler/furnace efficiency, envelopeenergy use. The High Boiler/Furnace Efficiency cases,

Lin, Hung-Wen

2013-01-01T23:59:59.000Z

291

"Table B22. Primary Space-Heating Energy Sources, Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

.....",894,894,213,498,79,5 "District Heat ...",96,96,"Q",2,"Q",77 "Boilers ...",581,581,40,364,136,"Q" "Packaged Heating Units...

292

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network (OSTI)

climate zones City ASHRAE Climate Zone CBECS Census Regionclimate zone information for the three cities based on ASHRAE

Lin, Hung-Wen

2013-01-01T23:59:59.000Z

293

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network (OSTI)

climate, three typical climate zones, Chicago, Minneapolis,study. Table 1 lists the climate zone information for theof selected cities and climate zones City ASHRAE Climate

Lin, Hung-Wen

2013-01-01T23:59:59.000Z

294

| Table CE2-6.2u. Space-Heating Energy Consumption and ...  

U.S. Energy Information Administration (EIA)

No Insulation..... 0.7 0.04 0.39 49.8 526 1,135 43.9 0.46 | 14.9 Don't Know..... 0.9 0.03 0.32 34.1 366 1,204 ...

295

Optimal design of seasonal storage for 100% solar space heating in buildings  

DOE Green Energy (OSTI)

An analysis is presented of seasonal solar systems that contain water as the sensible heat storage medium. A concise model is developed under the assumption of a fully mixed, uniform temperature, storage tank that permits efficient simulation of long-term (multi-day) system performance over the course of the year. The approach explicitly neglects the effects of short-term (sub-daily) fluctuations in insolation and load, effects that will be extremely small for seasonal solar systems. This approach is useful for examining the major design tradeoffs of concern here. The application considered is winter space heating. The thermal performance of seasonal solar systems that are designed to supply 100% of load without any backup is solved for, under ''reference year'' monthly normal ground temperature and insolation conditions. Unit break-even costs of seasonal storage are estimated by comparing the capital and fuel costs of conventional heating technologies against those of a seasonal solar system. A rough comparison between the alternatives for more severe winters was made by examining statistical variations in winter season conditions over the past several decades. (MHR)

Mueller, R.O.; Asbury, J.G.; Caruso, J.V.; Connor, D.W.; Giese, R.F.

1978-01-01T23:59:59.000Z

296

Utah State Prison Space Heating with Geothermal Heat - Resource Assessment Report Crystal Hot Springs Geothermal Area  

DOE Green Energy (OSTI)

Reported herein is a summary of work conducted under the Resource Assessment Program-Task 2, for the Utah State Prison Geothermal Space Heating Project at Crystal Hot Springs, Draper, Utah. Assessment of the geothermal resource in and around the Utah State Prison property began in october of 1979 with an aeromagnetic and gravity survey. These tasks were designed to provide detailed subsurface structural information in the vicinity of the thermal springs so that an informed decision as to the locations of test and production holes could be made. The geophysical reconnaissance program provided the structural details needed to focus the test drilling program on the most promising production targets available to the State Prison. The subsequent drilling and well testing program was conducted to provide information to aid fin the siting and design of a production well and preliminary design activities. As part of the resource assessment portion of the Utah State Prison Geothermal Project, a program for periodic geophysical monitoring of the Crystal Hot Springs resource was developed. The program was designed to enable determination of baseline thermal, hydraulic, and chemical characteristics in the vicinity of Crystal Hot Springs prior to production and to provide a history of these characteristics during resource development.

None

1981-12-01T23:59:59.000Z

297

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Space-Heating Energy SourcesBuildings using at least one of the major fuels, ...

298

Home and Building Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home and Building Technologies Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for...

299

Energy Basics: Home and Building Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's...

300

Energy Basics: Home and Building Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Cooling Water Heating Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for...

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Model Development and Heating Energy Investigation of the Nested Thermal Envelope Design (NTED (tm)).  

E-Print Network (OSTI)

??Space heating accounts for approximately 60% of residential energy use in Canada. Minimizing envelope heat losses is one approach to reducing this percentage. Preliminary research (more)

DIxon, Erin Elizabeth

2010-01-01T23:59:59.000Z

302

Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating  

SciTech Connect

Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

Kingston, T.; Scott, S.

2013-03-01T23:59:59.000Z

303

Residential Energy Consumption Survey (RECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. ... Major Energy Source; Space-Heating End Use; Air-Conditioning End Use;

304

Press Room - Press Releases - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, ... "EIA expects household bills for space-heating fuels will be about 3 percent higher than a year ...

305

Un Seminar On The Utilization Of Geothermal Energy For Electric...  

Open Energy Info (EERE)

icon Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to:...

306

Renewable Energy Tax Credit (Corporate) (North Carolina) | Open...  

Open Energy Info (EERE)

Solar Space Heat, Solar Thermal Electric, Solar Thermal Process Heat, Solar Water Heat, Wind, Spent pulping liquor Active Incentive Yes Implementing Sector StateTerritory Energy...

307

Home and Building Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water,...

308

Clean Energy Incentive Act (Personal Credit) (Maryland) | Open...  

Open Energy Info (EERE)

Eligible Technologies Solar Water Heat, Solar Space Heat, Photovoltaics, Landfill Gas, Biomass Active Incentive No Implementing Sector StateTerritory Energy Category Renewable...

309

Clean Energy Incentive Act (Corporate Credit) (Maryland) | Open...  

Open Energy Info (EERE)

Water Heat, Solar Space Heat, Solar Thermal Process Heat, Photovoltaics, Landfill Gas, Biomass Active Incentive No Implementing Sector StateTerritory Energy Category Renewable...

310

b20.xls  

U.S. Energy Information Administration (EIA) Indexed Site

64,783 64,783 45,144 10,960 1,958 1,951 2,609 2,161 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 6,789 5,613 916 Q Q N 223 5,001 to 10,000 ................................. 6,585 5,304 1,031 Q N Q Q 10,001 to 25,000 ............................... 11,535 9,098 1,732 383 Q Q Q 25,001 to 50,000 ............................... 8,668 5,807 1,837 355 Q Q Q 50,001 to 100,000 ............................. 9,057 6,218 1,739 273 337 Q Q 100,001 to 200,000 ........................... 9,064 6,102 1,545 539 Q Q Q 200,001 to 500,000 ........................... 7,176 4,246 1,361 Q 389 531 Q Over 500,000 .................................... 5,908 2,756 800 Q Q 1,522 Q Principal Building Activity Education .......................................... 9,874 8,714 946 Q N N N Food Sales .......................................

311

b20.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4,657 4,657 4,016 1,880 2,380 377 96 307 94 Building Floorspace (Square Feet) 1,001 to 5,000 .............................................. 2,348 1,982 926 1,082 214 Q 162 Q 5,001 to 10,000 ............................................ 1,110 946 379 624 73 Q 88 Q 10,001 to 25,000 .......................................... 708 629 324 389 52 19 42 Q 25,001 to 50,000 .......................................... 257 237 129 143 20 17 7 Q 50,001 to 100,000 ........................................ 145 137 74 89 9 13 5 Q 100,001 to 200,000 ...................................... 59 57 34 35 6 7 Q Q 200,001 to 500,000 ...................................... 23 22 11 13 3 3 Q Q Over 500,000 ............................................... 7 7 4 4 1 2 Q Q Principal Building Activity Education ....................................................

312

Heating and cooling no longer majority of U.S. home energy use ...  

U.S. Energy Information Administration (EIA)

For decades, space heating and cooling (space conditioning) accounted for more than half of all residential energy consumption. Estimates from the ...

313

Apartments in buildings with 5 or more units use less energy than ...  

U.S. Energy Information Administration (EIA)

Households in the larger apartment buildings in 1980 consumed almost as much energy for space heating ... than older apartmentsmore air conditioning ...

314

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

315

Solar-assisted heat pump system for cost-effective space heating and cooling  

DOE Green Energy (OSTI)

The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

Andrews, J W; Kush, E A; Metz, P D

1978-03-01T23:59:59.000Z

316

Analysis of selected surface characteristics and latent heat storage for passive solar space heating  

DOE Green Energy (OSTI)

Results are presented of an analysis of the value of various technical improvements in the solar collector and thermal storage subsystems of passive solar residential, agricultural, and industrial systems for two regions of the country. The evaluated improvements are: decreased emissivity and increased absorptivity of absorbing surfaces, decreased reflectivity, and decreased emissivity of glazing surface, and the substitution of sensible heat storage media with phase change materials. The value of each improvement is estimated by the additional energy savings resulting from the improvement.

Fthenakis, V.; Leigh, R.

1981-12-01T23:59:59.000Z

317

Data:C9308c29-bdf2-4145-860b-2877ea5ad9b3 | Open Energy Information  

Open Energy Info (EERE)

3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Nebraska Public Power District Effective date: 20130101 End date if known: Rate name: Commercial Space Heating...

318

Data:Da0f4eb6-b004-4fc8-8819-5c22432b0f1e | Open Energy Information  

Open Energy Info (EERE)

3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Nebraska Public Power District Effective date: 20130101 End date if known: Rate name: Commercial Space Heating...

319

Geothermal Space Heating Applications for the Fort Peck Indian Reservation in the Vicinity of Poplar, Montana. Phase I Report, August 20, 1979--December 31, 1979  

DOE Green Energy (OSTI)

This engineering and economic study is concerned with the question of using the natural heat of the earth, or geothermal energy, as an alternative to other energy sources such as oil and natural gas which are increasing in cost. This document represents a quarterly progress report on the effort directed to determine the availability of geothermal energy within the Fort Peck Indian Reservation, Montana (Figure 1), and the feasibility of beneficial use of this resource including engineering, economic and environmental considerations. The project is being carried out by the Tribal Research office, Assinboine and Sioux Tribes, Fort Peck Indian Reservation, Poplar, Montana under a contract to the United States Department of Energy. PRC TOUPS, the major subcontractor, is responsible for engineering and economic studies and the Council of Energy Resource Tribes (CERT) is providing support in the areas of environment and finance, the results of which will appear in the Final Report. The existence of potentially valuable geothermal resource within the Fort Peck Indian Reservation was first detected from an analysis of temperatures encountered in oil wells drilled in the area. This data, produced by the Montana Bureau of Mines and Geology, pointed to a possible moderate to high temperature source near the town of Poplar, Montana, which is the location of the Tribal Headquarters for the Fort Peck Reservation. During the first phase of this project, additional data was collected to better characterize the nature of this geothermal resource and to analyze means of gaining access to it. As a result of this investigation, it has been learned that not only is there a potential geothermal resource in the region but that the producing oil wells north of the town of Poplar bring to the surface nearly 20,000 barrels a day (589 gal/min) of geothermal fluid in a temperature range of 185-200 F. Following oil separation, these fluids are disposed of by pumping into a deep groundwater aquifer. While beneficial uses may be found for these geothermal fluids, even higher temperatures (in excess of 260 F) may be found directly beneath the town of Poplar and the new residential development which is being planned in the area. This project is primarily concerned with the use of geothermal energy for space heating and domestic hot water for the town of Poplar (Figure 2 and Photograph 1) and a new residential development of 250 homes which is planned for an area approximately 4 miles east of Poplar along U.S. Route 2 (Figure 2 and Photograph 2). A number of alternative engineering design approaches have been evaluated, and the cost of these systems has been compared to existing and expected heating costs.

Spencer, Glenn J.; Cohen, M. Jane

1980-01-04T23:59:59.000Z

320

Comparative economics of passive and active systems: residential space heating applications  

SciTech Connect

The economic performance of alternative designs are evaluated. One passive design is emphasized, the thermal mass storage wall. The economic performance of this design is examined and subsequently contrasted with one active design, the air collector/rock storage system. Architectural design criteria, solar performance characteristics, and the incremental solar cost of each design is briefly reviewed. Projections of conventional energy prices are discussed, along with the optimal sizing/feasibility criterion employed in the economic performance analysis. In addition, the effects of two incentive proposals, income tax credits and low interest loans, upon each design are examined. Results are reported on a state-by-state basis, with major conclusions summarized for each design. It is generally the case that incentives greatly enhance the economics of both system designs, although the contrast is greater for the passive design. Also, against the less expensive conventional fuels (natural gas and heating oil) the passive design was shown to offer a more cost effective alternative than the active system for most states.

Roach, F.; Noll, S.; Ben-David, S.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lightning dock geothermal space heating project, Lightning Dock KGRA, New Mexico. Final report  

DOE Green Energy (OSTI)

The proposed project was to take the existing geothermal greenhouse and home heating systems, which consisted of pumping geothermal water and steam through passive steam heaters, and convert the systems to one using modern heat exchange units. It was proposed to complete the existing unfinished, re-inforced glass side wall, wood framed structure, as a nursery lath house, the purpose of which would be to use geothermal water in implementing university concepts on the advantages of bottom heat to establish hardy root systems in nursery and bedding plants. The use of this framework was abandoned in favor of erecting new structures for the proposed purpose. The final project of the proposal was the establishment of a drip irrigation system, to an area just west of the existing greenhouse and within feet of the geothermal well. Through this drip irrigation system geothermal water would be pumped, to prevent killing spring frosts. The purpose of this area of the proposal is to increase the potential use of existing geothermal waters of the Lightning Dock KGRA, in opening a new geothermal agri-industry which is economically feasible for the area and would be extremely energy efficient.

McCants, T.W.

1980-12-01T23:59:59.000Z

322

Geothermal space heating applications for the Fort Peck Indian Reservation in the vicinity of Poplar, Montana. Final report, August 20, 1979-May 31, 1980  

DOE Green Energy (OSTI)

The results of a first-stage evaluation of the overall feasibility of utilizing geothermal waters from the Madison aquifer in the vicinity of Poplar, Montana for space heating are reported. A preliminary assessment of the resource characteristics, a preliminary design and economic evaluation of a geothermal heating district and an analysis of environmental and institutional issues are included. Preliminary investigations were also made into possible additional uses of the geothermal resource, including ethanol production. The results of the resource analysis showed that the depth to the top of the Madison occurs at approximately 5,500 feet at Poplar, and the Madison Group is characterized by low average porosity (about 5 percent) and permeability (about 0.004 gal/day-ft), and by hot water production rates of a few tens of gallons per minute from intervals a few feet thick. The preliminary heating district system effort for the town of Poplar included design heat load estimates, a field development concept, and preliminary design of heat extraction and hot water distribution systems. The environmental analysis, based on current data, indicated that resource development is not expected to result in undue impacts. The institutional analysis concluded that a Tribal geothermal utility could be established, but no clear-cut procedure can be identified without a more comprehensive evaluation of legal and jurisdistional issues. The economic evaluation found that, if the current trend of rapidly increasing prices for fossil fuels continues, a geothermal heating district within Poplar could be a long-term, economically attractive alternative to current energy sources.

Birman, J.H.; Cohen, J.; Spencer, G.J.

1980-10-01T23:59:59.000Z

323

HOSPITAL ENERGY AUDITS: A BIBLIOGRAPHY  

E-Print Network (OSTI)

the performance of the solar heating and/or cooling system.the use of solar energy for heating water, heating space,including solar water hea ting, space heating. and air

Pollack, R. I.

2011-01-01T23:59:59.000Z

324

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

3,037 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity Education .................................. 371 15 74 83 11 113 2 16 4 32 21 Food Sales ................................ 208 6 12 7 Q 46 2 119 2 2 10 Food Service .............................

325

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

50.7 50.7 2.4 6.9 6.2 1.3 19.1 0.3 5.4 1.0 2.2 6.0 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 60.6 2.9 6.8 2.8 1.7 14.8 1.1 21.2 1.2 1.8 6.0 5,001 to 10,000 .......................... 44.0 2.6 5.7 2.8 1.1 14.3 0.7 8.6 0.9 1.4 5.8 10,001 to 25,000 ........................ 38.8 2.1 4.4 4.1 1.1 14.7 0.2 4.5 0.8 1.6 5.1 25,001 to 50,000 ........................ 43.7 2.0 6.8 6.1 1.3 15.4 0.2 4.0 0.8 1.9 5.3 50,001 to 100,000 ...................... 50.9 2.7 7.5 7.6 1.4 19.6 0.3 3.4 0.7 2.0 5.8 100,001 to 200,000 .................... 57.7 2.3 8.0 8.9 1.1 23.0 0.1 2.9 1.3 3.2 6.7 200,001 to 500,000 .................... 51.8 1.5 7.4 7.5 0.8 23.0 0.2 1.3 1.1 2.7 6.2 Over 500,000 ............................. 65.4 3.0 9.0 8.8 1.5 28.7 0.3 2.4 1.2 3.2 7.3 Principal Building Activity Education .................................. 37.6 1.5

326

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

Central warm-air furnace with ducts to individual rooms other than a heat pump ..... 03 Steam/Hot water ... REVERSE Heat pump ... Don't have a separate water heater ...

327

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

,043 ,043 49 141 128 26 393 7 112 20 46 122 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 115 6 13 5 3 28 2 40 2 3 11 5,001 to 10,000 .......................... 86 5 11 5 2 28 1 17 2 3 11 10,001 to 25,000 ........................ 142 8 16 15 4 54 1 17 3 6 19 25,001 to 50,000 ........................ 116 5 18 16 3 41 (*) 11 2 5 14 50,001 to 100,000 ...................... 153 8 22 23 4 59 1 10 2 6 17 100,001 to 200,000 .................... 172 7 24 27 3 68 (*) 9 4 10 20 200,001 to 500,000 .................... 112 3 16 16 2 50 (*) 3 2 6 13 Over 500,000 ............................. 147 7 20 20 3 64 1 5 3 7 16 Principal Building Activity Education .................................. 109 4 22 24 3 33 (*) 5 1 9 6 Food Sales ................................ 61 2 4 2 Q 14 1 35 1 1 3 Food Service ............................. 63 3 8 7 3 12 4 20 (*) 1 4 Health Care ...............................

328

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

3,559 3,559 167 481 436 88 1,340 24 381 69 156 418 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 392 19 44 18 11 96 7 138 8 12 39 5,001 to 10,000 .......................... 293 18 38 18 8 95 4 57 6 10 39 10,001 to 25,000 ........................ 485 26 55 52 14 184 3 57 10 20 63 25,001 to 50,000 ........................ 397 18 62 55 12 140 2 37 7 17 48 50,001 to 100,000 ...................... 523 28 77 78 15 202 3 35 7 20 59 100,001 to 200,000 .................... 587 23 82 91 11 234 1 30 14 33 68 200,001 to 500,000 .................... 381 11 55 56 6 170 2 10 8 20 46 Over 500,000 ............................. 501 23 69 67 12 220 2 19 9 25 56 Principal Building Activity Education .................................. 371 15 74 83 11 113 2 16 4 32 21 Food Sales ................................ 208 6 12 7 Q 46 2 119 2 2 10 Food Service .............................

329

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

48.0 48.0 1.8 6.3 6.1 0.8 18.1 0.3 5.6 1.0 2.3 5.6 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 60.8 2.9 6.8 2.9 1.7 14.6 1.1 21.6 1.2 1.9 6.0 5,001 to 10,000 .......................... 42.2 2.0 5.6 2.8 0.9 13.3 0.7 9.0 0.9 1.5 5.7 10,001 to 25,000 ........................ 35.8 1.7 4.1 3.9 0.7 13.3 0.3 4.6 0.8 1.7 4.7 25,001 to 50,000 ........................ 41.8 1.8 6.6 6.0 1.0 14.4 0.2 4.1 0.8 1.9 5.0 50,001 to 100,000 ...................... 44.8 1.8 6.4 7.2 0.8 17.5 0.3 3.3 0.7 2.0 5.0 100,001 to 200,000 .................... 53.5 1.8 6.9 8.8 0.5 21.7 0.1 2.7 Q 3.5 6.2 200,001 to 500,000 .................... 51.2 1.2 7.2 7.6 0.7 23.0 0.2 1.2 1.1 2.7 6.1 Over 500,000 ............................. 64.9 1.4 7.9 9.5 0.5 30.6 0.3 2.1 1.4 3.9 7.3 Principal Building Activity Education .................................. 37.6 1.5 7.5

330

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

89.8 89.8 34.0 6.7 5.9 6.9 17.6 2.6 5.5 1.0 2.3 7.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 98.9 30.5 6.7 2.7 7.1 13.7 7.1 20.2 1.2 1.7 8.1 5,001 to 10,000 .......................... 78.3 30.0 5.4 2.6 6.1 12.5 5.2 8.4 0.8 1.4 5.9 10,001 to 25,000 ........................ 67.3 28.1 4.1 3.9 3.7 13.1 2.1 4.6 0.8 1.6 5.3 25,001 to 50,000 ........................ 77.6 30.2 6.6 5.8 6.3 13.9 1.6 3.9 0.8 1.9 6.7 50,001 to 100,000 ...................... 83.8 32.4 6.5 7.2 6.0 17.4 1.2 3.3 0.7 2.0 7.1 100,001 to 200,000 .................... 103.0 41.3 7.1 8.8 7.9 21.5 0.9 2.7 Q 3.4 8.0 200,001 to 500,000 .................... 101.0 39.0 7.6 7.5 9.4 22.6 1.9 1.2 1.1 2.7 8.1 Over 500,000 ............................. 129.7 44.9 11.5 9.5 11.7 30.6 2.2 2.1 Q 3.9 11.9 Principal Building Activity Education ..................................

331

Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as...

332

Optimal Combination of Distributed Energy System in an Eco-Campus of Japan  

E-Print Network (OSTI)

, and end-use energy loads such as space heating, cooling, hot water, and electricity only. E-GAMS reports in 2003. Figure 2 shows the measured result of the electricity, cooling, space heating, and hot water-GAMS. It is itemized by natural gas engine (GE), gas turbine (GT), micro turbine (MT), fuel cell (FC), and photovoltaic

333

Property:EnergyServicesType | Open Energy Information  

Open Energy Info (EERE)

EnergyServicesType EnergyServicesType Jump to: navigation, search Property Name EnergyServicesType Property Type String Description Type of energy services provided. Allows Values Lighting;Cooking and water heating;Space heating;Cooling;Information and communications;Earning a living Pages using the property "EnergyServicesType" Showing 8 pages using this property. B Benin: Increased Access to Modern Energy Project + Lighting +, Cooking and water heating +, Space heating +, ... E Ethiopia Energy Access Project + Lighting +, Cooking and water heating +, Information and communications + G Ghana Energy Development and Access Project (GEDAP) + Lighting +, Cooking and water heating +, Information and communications + M Mongolia Renewable Energy and Rural Electricity Access Project + Lighting +, Cooking and water heating +, Space heating +, ...

334

Patterns of residential energy demand by type of household: white, black, Hispanic, and low- and nonlow-income  

SciTech Connect

This report compares patterns of residential energy use by white, black, Hispanic, low-income, and nonlow-income households. The observed downward trend in residential energy demand over the period of this study can be attributed primarily to changes in space-heating energy demand. Demand for space-heating energy has experienced a greater decline than energy demand for other end uses for two reasons: (1) it is the largest end use of residential energy, causing public attention to focus on it and on strategies for conserving it; and (2) space-heating expenditures are large relative to other residential energy expenditures. The price elasticity of demand is thus greater, due to the income effect. The relative demand for space-heating energy, when controlled for the effect of climate, declined significantly over the 1978-1982 period for all fuels studied. Income classes do not differ significantly. In contrast, black households were found to use more energy for space heating than white households were found to use, although those observed differences are statistically significant only for houses heated with natural gas. As expected, the average expenditure for space-heating energy increased significantly for dwellings heated by natural gas and fuel oil. No statistically significant increases were found in electricity expenditures for space heating. Electric space heat is, in general, confined to milder regions of the country, where space heating is relatively less essential. As a consequence, we would expect the electricity demand for space heating to be more price-elastic than the demand for other fuels.

Klein, Y.; Anderson, J.; Kaganove, J.; Throgmorton, J.

1984-10-01T23:59:59.000Z

335

Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity  

DOE Green Energy (OSTI)

Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

2012-10-01T23:59:59.000Z

336

Energy-consumption modelling  

SciTech Connect

A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

Reiter, E.R.

1980-01-01T23:59:59.000Z

337

Missouri Gas Energy (MGE)- Residential and Small Business Efficiency Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Missouri Gas Energy (MGE) offers its residential and small business customers rebates for the purchase and installation of efficient natural gas water heating and space heating equipment within its...

338

Data:36e9298f-ec12-4790-aee5-4f724b981b20 | Open Energy Information  

Open Energy Info (EERE)

to electric service loads which have registered a peak demand of 1,000-3,000 kilowatts more than once in any consecutive 18-month period. Source or reference: http:...

339

Energy Efficiency Indicators Methodology Booklet  

E-Print Network (OSTI)

hotel), and those that by their nature consume little energy (energy use per subsector or building type within the service sector, such as retail, office, hotel,Hotel Office TWh Air Conditioning Space Heating Cooking & Water Heating Lighting Appliances Other Appliances TVs Washing Machines Commercial EJ Residential Refrigerators Energy

Sathaye, Jayant

2010-01-01T23:59:59.000Z

340

Energy-Efficient Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy-Efficient Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

342

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network (OSTI)

energy savings by solar heating a public building. They arefrom solar space heating of other Eureka public buildingssolar heating and cooling concepts, adobe wall construction, and the uniform building

Case, C.W.

2011-01-01T23:59:59.000Z

343

A discrete, stochastic simulation model for the analysis and design of solar energy heating systems  

Science Conference Proceedings (OSTI)

This paper presents a stochastic simulation approach to the generalized solar energy space heating performance analysis and design problem. Specifically, Markov chain models are developed to represent ambient temperature, insolation, hot water load and ...

Gerard F. Lameiro; Robert A. Rademacher

1978-03-01T23:59:59.000Z

344

Industrial food processing and space heating with geothermal heat. Final report, February 16, 1979-August 31, 1982  

Science Conference Proceedings (OSTI)

A competitive aware for a cost sharing program was made to Madison County, Idaho to share in a program to develop moderate-to-low temperature geothermal energy for the heating of a large junior college, business building, public shcools and other large buildings in Rexburg, Idaho. A 3943 ft deep well was drilled at the edge of Rexburg in a region that had been probed by some shallower test holes. Temperatures measured near the 4000 ft depth were far below what was expected or needed, and drilling was abandoned at that depth. In 1981 attempts were made to restrict downward circulation into the well, but the results of this effort yielded no higher temperatures. The well is a prolific producer of 70/sup 0/F water, and could be used as a domestic water well.

Kunze, J.F.; Marlor, J.K.

1982-08-01T23:59:59.000Z

345

Energy and cost analysis of residential heating systems  

SciTech Connect

Several energy-saving design changes in residential space-heating systems were examined to determine their energy-conservation potential and cost effectiveness. Changes in conventional and advanced systems (such as the gas heat pump) were considered. The energy and cost estimates were developed from current literature, conversations with heating and equipment manufacturers and dealers, and discussions with individuals doing research and testing on residential space-heating equipment. Energy savings as large as 26, 20, 57% were estimated for design changes in conventional gas, oil, and electric space-heating systems, respectively. These changes increased capital cost of the three systems by 27, 16, and 26%, respectively. For advanced gas and electric systems, energy savings up to 45 and 67%, respectively, were calculated. The design changes needed to produce these energy savings increased capital costs 80 and 35%. The energy use and cost relationships developed for the space heating systems were used as input to the ORNL residential energy-use simulation model to evaluate the effect of space-heating improvements on national energy use to the year 2000. Results indicated a large reduction in national energy use if improved conventional and advanced systems were made available to consumers and if consumers minimized life-cycle costs when purchasing these systems.

O' Neal, D.L.

1978-07-01T23:59:59.000Z

346

Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA Report No. 6  

DOE Green Energy (OSTI)

This feasibility study and preliminary conceptual design effort assesses the conversion of Colorado School District 50 facilities - a high school and gym, and a middle school building - at Pagosa Springs, Colorado to geothermal space heating. A preliminary cost-benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 150/sup 0/F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system-compatible components would be used for the building modifications. Asbestos-cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates. In view of the favorable economics and the uncertain future availability and escalating cost of natural gas, the conversion appears economicaly feasible and desirable.

Engen, I.A.

1981-11-01T23:59:59.000Z

347

What is a low-energy house?  

Science Conference Proceedings (OSTI)

Traditionally, a ``low-energy`` house has been one that used little energy for space heating. But space heating typically accounts for less than half of the energy used by new US homes, and for low heating energy homes, space heating is often the third largest end use, behind water heating and appliances, and sometimes behind cooling. Low space heat alone cannot identify a low-energy house. To better understand the determinants of a low-energy house, we collected data on housing characteristics, incremental costs, and energy measurements from energy-efficient houses around the world and in a range of climates. We compare the energy required to provide thermal comfort as well as water heating, and other appliances. We do not have a single definition of a low-energy house, but through comparisons of actual buildings, we show how different definitions and quantitative indicators fail. In comparing the energy use of whole houses, weather normalization can be important, but for cases in which heating or cooling energy is surpassed by other end uses, other normalization methods must be used.

Litt, B.R.; Meier, A.K.

1994-08-01T23:59:59.000Z

348

Residential | Open Energy Information  

Open Energy Info (EERE)

Residential Residential Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating.[1] Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

349

Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling  

E-Print Network (OSTI)

In 13th National Energy Services Conference Proceedings,Association of Energy Service Professionals. Jupiter, FL,space-conditioning energy service (end-use energy intensity,

Blum, Helcio

2010-01-01T23:59:59.000Z

350

Solar Energy in Cold Climates Adam Gladen, Shingo Kobayashi,  

E-Print Network (OSTI)

Solar Energy in Cold Climates Adam Gladen, Shingo Kobayashi, Josh Quinnell, Jane Davidson, Susan Mantell, and Marc Hillmyer #12;Residential Energy Use Space Htg Space Clg Water Htg Lighting Refrigeration and space heating represent 10% of total U.S. energy consumption. q Energy storage is critical for heating

Reich, Peter B.

351

Validation of the Manufactured Home Energy Audit (MHEA)  

SciTech Connect

The Manufactured Home Energy Audit (MHEA) is an energy audit tool designed specifically to identify recommended weatherization measures for mobile homes as part of the U.S. Department of Energy's (DOE's) Weatherization Assistance Program. A field validation of MHEA was performed using billing/delivery data collected on 86 mobile homes heated primarily by electricity, natural gas, or propane to assess the audit's accuracy and the validity of its recommendations. The validation found that MHEA overpredicts the annual space-heating energy savings of weatherization measures to be installed in mobile homes, which leads to low realization rates, primarily because of its large overprediction of annual pre-weatherization space-heating energy consumption. However, MHEA's annual space-heating energy savings estimates and realization rates can be improved considerably using MHEA's built-in billing adjustment feature. In order to improve the accuracy of MHEA's annual space-heating energy savings estimates and realization rate, the cause of MHEA's overprediction of annual pre-weatherization space-heating energy consumption needs to be further investigated and corrected. Although MHEA's billing adjustment feature improved MHEA's annual space-heating energy savings estimates, alternative methods of making the correction that may provide improved performance should be investigated. In the interim period before permanent improvements to MHEA can be made, the following recommendations should be followed: (a) do not enter into MHEA insulation thicknesses of 1 in. or less and especially zero (0 in.) unless such low levels have been verified through visual inspection of several parts of the envelope area in question; (b) use MHEA's billing adjustment feature to develop a list of recommended measures based on adjusted energy savings if possible, especially in mobile homes that have several major energy deficiencies; and (c) do not use MHEA's "evaluate duct sealing" option at this time (although certainly seal all duct leaks and use diagnostics as appropriate to find leakage sites and quantify improvements).

Ternes, Mark P [ORNL

2007-12-01T23:59:59.000Z

352

Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling  

E-Print Network (OSTI)

Commercial Buildings Energy Consumption Survey website.Commercial Buildings Energy Consumption Survey (CBECS) 2003of the total end-use energy consumption of such buildings;

Blum, Helcio

2010-01-01T23:59:59.000Z

353

Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Energy Basics Services » Energy Basics Energy Basics The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics Hydrogen and Fuel Cell Technology Basics Hydropower Technology Basics Ocean Energy Technology Basics Solar Energy Technology Basics Wind Energy Technology Basics More HOME & BUILDING TECHNOLOGIES Lighting and Daylighting Basics Passive Solar Building Design Basics Space Heating and Cooling Basics

354

Residential Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rewards Program Rewards Program Residential Rewards Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Appliances & Electronics Water Heating Program Info Funding Source Focus On Energy Program Expiration Date 12/31/2013 State Wisconsin Program Type State Rebate Program Rebate Amount Furnace (90% AFUE with ECM): $125 Furnace (95% AFUE with ECM): $275 Furnace (95% AFUE with ECM) and AC (16 SEER): $400 Air Source Heat Pump (16 SEER): $300 Natural gas space heating boiler (90% AFUE): $300 Natural gas space heating boiler (95% AFUE): $400 Indirect Water Heater (with high efficiency space heating boiler): $100 Tankless Water Heater (0.82 EF or higher): $100 Storage Water Heater (0.67 EF or higher): $50

355

TRW technical progress report, February-July 1977. [Energy conservation potential for US  

DOE Green Energy (OSTI)

Progress in a program for identifying methods and policies for improving the effiency of the end use of energy in the US is reported. This program includes evaluation of current and future energy supplies and consumption, energy policy, analysis, and studies of thermal energy storage, fuel cells, potential production of methane from coal beds, and the efficiency of residential space heating equipment. (LCL)

None

1977-01-01T23:59:59.000Z

356

Energy Investment Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment Loan Program Investment Loan Program Energy Investment Loan Program < Back Eligibility Commercial Industrial Savings Category Other Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Heating & Cooling Heating Water Heating Maximum Rebate $500,000 Program Info Funding Source Oil overcharge restitution funds from the U.S. Department of Energy State Mississippi Program Type State Loan Program Rebate Amount $15,000 - $500,000 Provider Mississippi Development Authority Mississippi offers low-interest loans for renewable energy and energy efficiency projects. Eligible renewable energy technologies include solar thermal, solar space heat, solar process heat, photovoltaics (PV), alternative fuels, geothermal, biomass, landfill gas and hydropower. All

357

Support in statistical analysis and data processing to the Office of Energy Markets and End Use, Energy Information Administration (EIA), at the Dept. of Energy. Final report  

SciTech Connect

Energy consumption and expenditure data were tabulated by various demographic characteristics on regional and divisional levels. The amount of energy used at the household level for space heating and other uses were determined from the monthly utility data on natural gas and electricity usage. Joint consumption of home fuels and motor fuels was tabulated.

Not Available

1984-02-28T23:59:59.000Z

358

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Glossary Glossary Acronyms and Initialisms Technology Descriptions Residential Space Heating Residential Space Cooling Residential Water Heating Commercial Space Cooling Commercial Space Heating Commercial Refrigeration Lighting Building Descriptions Commercial Residential Acronyms and Initialisms A B C D E F G H I L M N O P Q R S U V AAMA - American Architectural Manufacturers Association ACEEE - American Council for an Energy Efficient Economy AEO - EIA's Annual Energy Outlook AFEAS - Alternative Fluorocarbons Environmental Acceptability Study AFUE - Annual Fuel Utilization Efficiency AHAM - Association of Home Appliance Manufacturers ARI - Air-Conditioning and Refrigeration Institute ASHRAE - American Society of Heating, Refrigerating and Air-Conditioning Engineers BTS - DOE's Office of Building Technology, State and Community Programs

359

Wood-based Energy Technologies Michigan offers some significant advantages  

E-Print Network (OSTI)

on municipal solid waste. Both district heating and CHP plants can also pro- duce pellets for local housing tech- nology and heat trans- fer systems allow more energy to be directed to space heating and less be connected to the system. It can also work for collections of cooperating homes. Use of District Energy

360

UES - Renewable Energy Credit Purchase Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UES - Renewable Energy Credit Purchase Program UES - Renewable Energy Credit Purchase Program UES - Renewable Energy Credit Purchase Program < Back Eligibility Commercial Residential Savings Category Bioenergy Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Energy Sources Water Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate Up-front incentives can pay for no more than 50% of the cost Residential solar water heating and space heating: $1,750 Small commercial solar water heating and space heating: $200,000 Program Info Start Date 2004 State Arizona Program Type Utility Rebate Program Rebate Amount PV incentives may be de-rated based on expected performance Residential PV: Funding has been depleted

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Un Seminar On The Utilization Of Geothermal Energy For Electric Power  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Details Activities (3) Areas (1) Regions (0) Abstract: Unavailable Author(s): o ozkocak Published: Geothermics, 1985 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey (Ozkocak, 1985) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=Un_Seminar_On_The_Utilization_Of_Geothermal_Energy_For_Electric_Power_Production_And_Space_Heating,_Florence_1984,_Section_2-_Geothermal_Resources&oldid=386949"

362

Sustainable Energy Science and Engineering Center EML 4930/EML 5930 Energy Conversion Systems II  

E-Print Network (OSTI)

. District heating - distributing heat from waste heat from power generating plants. Water heating: passive Energy Science and Engineering Center Solar Heating Quadrillion Btu 1 Btu = 1,055.0559 joule 1 Quadrillion = 1015 Domestic active solar heating: Space heating - Cost effective to invest in home insulation

Krothapalli, Anjaneyulu

363

Residential energy consumption and expenditure patterns of black and nonblack households in the United States  

Science Conference Proceedings (OSTI)

Residential energy consumption and expenditures by black and nonblack households are presented by Census region and for the nation based on the Energy Information Administration's 1982-83 Residential Energy Consumption Survey (RECS). Black households were found to have significantly lower levels of electricity consumption at both the national and regional level. Natural gas is the dominant space heating fuel used by black households. Natural gas consumption was typically higher for black households. However, when considering natural gas consumption conditional on natural gas space heating no significant differences were found. 10 refs., 1 fig., 8 tabs.

Vyas, A.D.; Poyer, D.A.

1987-01-01T23:59:59.000Z

364

TEP - Renewable Energy Credit Purchase Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TEP - Renewable Energy Credit Purchase Program TEP - Renewable Energy Credit Purchase Program TEP - Renewable Energy Credit Purchase Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate Residential PV: 50% of system cost. Systems greater than 30 kW DC will receive incentives on the first 30 kW DC only. Residential Solar Water Heating and Space Heating: $1,750 Program Info Funding Source RES Surchage State Arizona Program Type Utility Rebate Program Rebate Amount Incentives for PV may be de-rated based on expected performance Residential grid-tied PV: $0.10/W-DC Residential Solar Water Heating and Space Heating: $0.40/kWh-equivalent Provider Tucson Electric Power '''''Note: The Arizona Corporation Commission (ACC) recently approved

365

Nicor Gas - Commercial Energy Efficiency Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nicor Gas - Commercial Energy Efficiency Rebates Nicor Gas - Commercial Energy Efficiency Rebates Nicor Gas - Commercial Energy Efficiency Rebates < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Construction Commercial Weatherization Appliances & Electronics Water Heating Maximum Rebate Business Custom Incentive Program: $500,000/year Program Info Expiration Date 5/31/2014 State Illinois Program Type Utility Rebate Program Rebate Amount Space Heating Non-Condensing Steam Boilers: $400 - $2,500 Space Heating Condensing Boilers: $500 - $7,500 Natural Gas Furnaces: $300 - $400 Condensing Unit Heaters: $2.50 per MBH Infrared Heaters: $700 Storage Water Heaters: $150-$200 Steam Trap Repairs/Replacements: $100 - $500/trap Boiler Controls: $0.50/MBTUH

366

Household Energy Expenditure and Income Groups: Evidence from Great Britain  

E-Print Network (OSTI)

and 0.024 for districtheatingHowever,asincomeisnotobserveditseffectcannotbeanalysed. Wuetal.(2004)examinethedemandforspaceheatinginArmenia,Moldova,and Kyrgyz Republic using household survey data. In these countries... andinsomeregionsincomesarenotsufficientto affordspaceheatingfromdistrictheatingsystemsmakingthesesystemsunviable. We analyse electricity, gas and overall energy spending for a large sample of households in Great Britain. We discern inflection points and discuss...

Jamasb, Tooraj; Meier, H

367

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

368

Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling  

E-Print Network (OSTI)

efficient operation of space-conditioning equipment in thesethe PA Problem for Space Conditioning in U.S. Commercial9 Figure 2: Higher space conditioning end-use energy

Blum, Helcio

2010-01-01T23:59:59.000Z

369

Prospects for investment in solar energy  

SciTech Connect

The prospects for solar energy and the growth of the solar industry are discussed. Some misconceptions, capital requirements, energy payback, and growth rate are reviewed. Technologies briefly discussed in the order in which they will likely be commercialized are: conservation, passive solar, biomass, flat plate collectors for water and space heating, wind power, solar ponds, photovoltaics, concentrating collectors for high temperature heat and electricity generation, ocean thermal energy conversion systems, and the solar power satellite. (MCW)

Edesess, M.

1979-12-01T23:59:59.000Z

370

Clean Energy Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Tax Credit (Corporate) Clean Energy Tax Credit (Corporate) Clean Energy Tax Credit (Corporate) < Back Eligibility Agricultural Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Maximum Rebate PV, solar thermal electric, active solar space heating, biomass, wind: $500,000 Solar hot water, Energy Star-certified geothermal heat pumps, lighting retrofit projects, energy-efficient products: $100,000; Solar hot water, Energy Star-certified geothermal heat pumps, lighting retrofit projects,

371

Covered Product Categories | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies » Energy-Efficient Products » Covered Product Technologies » Energy-Efficient Products » Covered Product Categories Covered Product Categories October 7, 2013 - 10:26am Addthis Federal agencies are required by law to purchase products that are designated by the Federal Energy Management Program (FEMP-designated) or qualified by ENERGY STAR. Choose a product category for information about purchasing, installing, and using energy-efficient products. Heating & Cooling (Space & Water) Lighting IT & Electronics Food Service Appliances Other Commercial Space Heating and Cooling Boilers Light Commercial Heating and Cooling Chillers: Air-Cooled Electric Water-Cooled Electric Ground-Source Heat Pumps Commercial Water Heating Gas Water Heaters Residential Space Heating and Cooling Air-Source Heat Pumps Boilers

372

Proposed Energy Provisions of the California Green Building Standards Code  

E-Print Network (OSTI)

· Service Water Heating in Large Restaurants ­ 15% Solar Fraction or 95% water heater efficiency Tier I · 95 · Removal of Maximum Hot Water Pipe Volume from Prerequisites for Newly Constructed Residential · Removal Building Energy Design Rating Space Cooling Space Heating Water Heating Refrigerator Dishwasher Range

373

Solar energy task force report technical training guidelines  

DOE Green Energy (OSTI)

Guidelines are offered for programs oriented to commercial applications in solar energy, specifically water and space heating. These technologies are examined because they are, in some cases, economicaly feasible. Sample curricula and programs, technical jobs and skills, and equipment are suggested to assist those institutions contemplating the development of technical training. (MHR)

O'Connor, K

1979-10-01T23:59:59.000Z

374

Minnesota Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 0.833therm. Electricity prices were set to 0.103kWh for space heating and 0.108kWh for air conditioning. Oil prices were set to 23.7MBtu. Energy...

375

Michigan Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 0.971therm. Electricity prices were set to 0.123kWh for space heating and 0.131kWh for air conditioning. Oil prices were set to 23.7MBtu. Energy...

376

Maine Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.353therm. Electricity prices were set to 0.158kWh for space heating and 0.155kWh for air conditioning. Oil prices were set to 22.21MBtu. Energy...

377

District of Columbia Energy and Cost Savings for New Single-...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.202therm. Electricity prices were set to 0.135kWh for space heating and 0.143kWh for air conditioning. Oil prices are 23.7MBtu. Energy prices are...

378

Nebraska Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 0.762therm. Electricity prices were set to 0.079kWh for space heating and 0.102kWh for air conditioning. Oil prices are 23.7MBtu. Energy prices are...

379

Vermont Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.433therm. Electricity prices were set to 0.158kWh for space heating and 0.155kWh for air conditioning. Oil prices were set to 23.13MBtu. Energy...

380

Pennsylvania Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.101therm. Electricity prices were set to 0.125kWh for space heating and 0.133kWh for air conditioning. Oil prices were set to 23.41MBtu. Energy...

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Virginia Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.077therm. Electricity prices were set to 0.098kWh for space heating and 0.108kWh for air conditioning. Oil prices were set to 23.7MBtu. Energy...

382

Massachusetts Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.405therm. Electricity prices were set to 0.148kWh for space heating and 0.149kWh for air conditioning. Oil prices were set to 24.06MBtu. Energy...

383

Idaho Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 0.869therm. Electricity prices were set to 0.078kWh for space heating and 0.084kWh for air conditioning. Oil prices were set to 23.7MBtu. Energy...

384

Utah Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

prices were set to 0.843therm. Electricity prices were set to 0.0825kWh for space heating and 0.0941kWh for air conditioning. Oil prices are 23.7MBtu. Energy prices are...

385

Lawrence Berkeley Laboratory, Berkeley, California solar energy system performance evaluation, July 1980-June 1981  

SciTech Connect

The Lawrence Berkeley Laboratory site is an office building in California with an active solar energy system designed to supply from 23 to 33% of the space heating load and part of the hot water load. The solar heating system is equipped with 1428 square feet of flat-plate collectors, a 2000-gallon water storage tank, and two gas-fired boilers to supply auxiliary heat for both space heating and domestic hot water. Poor performance is reported, with the solar fraction being only 4%. Also given are the solar savings ratio, conventional fuel savings, system performance factor, and the coefficient of performance. The performance data are given for the collector, storage, solar water heating and solar space heating subsystems as well as the total system. Typical system operation and solar energy utilization are briefly described. The system design, performance evaluation techniques, weather data, and sensor technology are presented. (LEW)

Wetzel, P.E.

1981-01-01T23:59:59.000Z

386

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 19170 of 31,917 results. 61 - 19170 of 31,917 results. Event RETECH 2013 RETECH provides up-to-date and cutting-edge information on the renewable energy technology industry. Attendees include business leaders, investors, technology innovators, federal, state, and local... http://energy.gov/indianenergy/events/retech-2013 Article Space Heating and Cooling Basics A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as thermostats and ducts, which provide opportunities for saving energy. http://energy.gov/eere/energybasics/articles/space-heating-and-cooling-basics Contributor Matthew Theall Matthew Theall is a Presidential Innovation Fellow working on MyData

387

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

coal Residential coal Residential market trends icon Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating. See more issues Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy

388

Solar-energy-system performance evaluation: Page Jackson Elementary School, Charles Town, West Virginia, November 1978-March 1979  

DOE Green Energy (OSTI)

The solar energy system reported is designed to provide space heating and cooling for a West Virginia elementary school. It has an array of water-based flat plate collectors freeze protected through a drain-down system, two 10,000-gallon storage tanks, and an absorption chiller. There are an oil-fired boiler and a centrifugal chiller for back-up. The system and its operation are briefly described, and its space heating performance is analyzed using a system energy balance technique. The performance of major subsystems is also presented. (LEW)

Smith, H.T.

1979-01-01T23:59:59.000Z

389

Renewable Energy Case Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy » Renewable Energy Case Studies Energy » Renewable Energy Case Studies Renewable Energy Case Studies October 7, 2013 - 9:46am Addthis Photo of photovoltaic arrays in front of a red mountain with a blue sky backdrop. Federal agencies often turn to photovoltaics for energy, like this National Park Service deployment. These case studies and application briefs feature examples of renewable energy projects at Federal facilities. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air: The transpired solar collector on NREL's Waste handling Facility uses solar thermal technology to reduce electric heating loads. U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling: Overview of the geothermal/ground source heat pump project at the U.S. Army

390

Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Ohio (Gas) - Energy Star Home Rebate Vectren Energy Delivery of Ohio (Gas) - Energy Star Home Rebate Vectren Energy Delivery of Ohio offers a flat rebate to builders of residential single-family Energy Star certified homes that receive gas service from the company. In order to qualify, homes must either meet Energy Star version 2.5 standards or meet a HERS rating of 70 or less. In addition, homes must use natural gas for all space heating and water heating. Furnaces, boilers and water heaters are also offered through this program and are subject to additional efficiency requirements. October 16, 2013 Vectren Energy Delivery of Ohio (Gas) - Commercial Energy Efficiency Rebates Vectren Energy Delivery offers commercial natural gas customers in Ohio rebates for the installation of certain types of efficient natural gas

391

Data:Babce0ee-7843-41e1-8208-5fbb616c359e | Open Energy Information  

Open Energy Info (EERE)

Babce0ee-7843-41e1-8208-5fbb616c359e Babce0ee-7843-41e1-8208-5fbb616c359e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Independence, Missouri (Utility Company) Effective date: 2013/07/01 End date if known: Rate name: General Service Electric Space Heating Sector: Commercial Description: To any customer whose normal power and energy requirements are billed on Schedules GS-1 or LGS-1, supplied through one meter at one point of delivery for all power and energy used for qualifying electric space heating equipment. Space heating equipment shall be operated at 208 volts or more and be of a design approved by the Department.

392

Data:8e7f87bf-2382-466d-8f26-5a0d90139cdd | Open Energy Information  

Open Energy Info (EERE)

bf-2382-466d-8f26-5a0d90139cdd bf-2382-466d-8f26-5a0d90139cdd No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Borough of Perkasie, Pennsylvania (Utility Company) Effective date: 2009/11/01 End date if known: Rate name: Rate Schedule D: Commercial Space Heating - Single Metered Sector: Commercial Description: The commercial space heating Rate D is applicable to all commercial and industrial customers, supplied at secondary voltage, where electricity supplied through one meter is the sole source of the customer's energy requirements or where space heating requirements are provided solely by electric energy supplied through a separate meter, all in accord with the conditions of application contained herein.

393

Data:23bff209-2ff1-49e0-8bd2-26a0b0b20bb2 | Open Energy Information  

Open Energy Info (EERE)

date: 20120401 End date if known: Rate name: Electric Traction Systems Large Standby Service High Tension Service At 138 kV Demand 8 AM - 10 PM (Distribution Service)...

394

Residential energy use in Lithuania: The prospects for energy efficiency  

SciTech Connect

While the potential for saving energy in Lithuania`s residential sector (especially, space heating in apartment buildings) is large, significant barriers (financial, administration, etc.) to energy efficiency remain. Removing or ameliorating these barriers will be difficult since these are systematic barriers that require societal change. Furthermore, solutions to these problems will require the cooperation and, in some cases, active participation of households and homeowner associations. Therefore, prior to proposing and implementing energy-efficiency solutions, one must understand the energy situation from a household perspective.

Vine, E. [Lawrence Berkeley National Lab., CA (United States); Kazakevicius, E. [Kazakevicius (Eduardas), Vilnius (Lithuania)

1998-06-01T23:59:59.000Z

395

Technology assessment of solar energy systems: residential use of fuelwood in the Pacific Northwest  

DOE Green Energy (OSTI)

The evidence of impacts associated with the use of fuelwood for residential space heating in the region including the states of Washington, Oregon, and Idaho is identified and evaluated. The use of fuelwood for space heating was projected into the future, and then the potential size of the impacts that had been identified and estimated was evaluated. These projections are provided in five year increments beginning in 1980 and proceeding to the year 2000. Policy options are suggested which may mitigate the adverse impacts identified, while preserving the positive effect of reducing residential demand for energy derived from nonrenewable sources.

Petty, P.N.; Hopp, W.J.

1981-08-01T23:59:59.000Z

396

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

trends in residential space conditioning are affected byinto space heating, air conditioning, appliances, cookingSpace heating North Transition Ordinary efficient Highly efficient Incandescent Florescent CFL Air conditioning

Zhou, Nan

2010-01-01T23:59:59.000Z

397

Validation of the Manufactured Home Energy Audit (MHEA)  

SciTech Connect

The Manufactured Home Energy Audit (MHEA) is an energy audit tool designed specifically to identify recommended weatherization measures for mobile homes as part of the U.S. Department of Energy's (DOE's) Weatherization Assistance Program. A field validation of MHEA was performed using billing/delivery data collected on 86 mobile homes heated primarily by electricity, natural gas, or propane to assess the audit's accuracy and the validity of its recommendations. The validation found that MHEA overpredicts the annual space-heating energy savings of weatherization measures to be installed in mobile homes, which leads to low realization rates, primarily because of its large overprediction of annual pre-weatherization space-heating energy consumption. However, MHEA's annual space-heating energy savings estimates and realization rates can be improved considerably using MHEA's built-in billing adjustment feature. In order to improve the accuracy of MHEA's annual space-heating energy savings estimates and realization rate, the cause of MHEA's overprediction of annual pre-weatherization space-heating energy consumption needs to be further investigated and corrected. Although MHEA's billing adjustment feature improved MHEA's annual space-heating energy savings estimates, alternative methods of making the correction that may provide improved performance should be investigated. In the interim period before permanent improvements to MHEA can be made, the following recommendations should be followed: (a) do not enter into MHEA insulation thicknesses of 1 in. or less and especially zero (0 in.) unless such low levels have been verified through visual inspection of several parts of the envelope area in question; (b) use MHEA's billing adjustment feature to develop a list of recommended measures based on adjusted energy savings if possible, especially in mobile homes that have several major energy deficiencies; and (c) do not use MHEA's "evaluate duct sealing" option at this time (although certainly seal all duct leaks and use diagnostics as appropriate to find leakage sites and quantify improvements).

Ternes, Mark P [ORNL

2007-12-01T23:59:59.000Z

398

Solar Energy Technologies Program: Multi-Year Technical Plan 2003-2007 and Beyond  

DOE Green Energy (OSTI)

This publication charts a 5-year planning cycle for the U.S. Department of Energy Solar Energy Technologies Program. The document includes anticipated technical plans for the next 5 years for photovoltaics, concentrating solar power, solar water and space heating, solar hybrid lighting, and other new concepts that can take advantage of the solar resource. Solar energy is described as a clean, abundant, renewable energy resource that can benefit the nation by diversifying our energy supply.

Not Available

2004-01-01T23:59:59.000Z

399

Evaluation of geothermal energy in Arizona. Quarterly progress report, July 1-September 30, 1981  

SciTech Connect

Progress is reported on the following: legislative and institutional program, cities program, geothermal applications utilization technology, integrated alcohol/feedlot/geothermal operation, geothermal energy in the mining industry, geothermal space heating and cooling, identification of a suitable industry for a remote geothermal site, irrigation pumping, coal-fired/geothermal-assisted power plants, area development plans, and outreach. (MHR)

White, D.H.; Goldstone, L.A.

1981-01-01T23:59:59.000Z

400

South Carolina Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.018therm. Electricity prices were set to 0.107kWh for space heating and 0.106kWh for air conditioning. Oil prices are 23.7MBtu. Energy prices are...

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

West Virginia Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 0.988therm. Electricity prices were set to 0.088kWh for space heating and 0.089kWh for air conditioning. Oil prices were set to 23.7MBtu. Energy...

402

New Hampshire Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.299therm. Electricity prices were set to 0.164kWh for space heating and 0.163kWh for air conditioning. Oil prices were set to 22.47MBtu. Energy...

403

South Dakota Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 0.749therm. Electricity prices were set to 0.083kWh for space heating and 0.097kWh for air conditioning. Oil prices were set to 23.7MBtu. Energy...

404

New York Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.177therm. Electricity prices were set to 0.175kWh for space heating and 0.192kWh for air conditioning. Oil prices were set to 23.87MBtu. Energy...

405

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Buildings.............................. Buildings.............................. 1,644 1,429 131 Q 72 0.10 0.09 0.01 Q (*) Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 228 Q (*) Q 0.41 0.38 Q (*) Q 5,001 to 10,000 .......................... 262 237 Q 1 Q 0.36 0.32 Q (*) Q 10,001 to 25,000 ........................ 201 179 11 (*) Q 0.19 0.17 0.01 (*) Q 25,001 to 50,000 ........................ 124 115 Q (*) 4 0.14 0.13 Q (*) (*) 50,001 to 100,000 ...................... 209 188 10 Q 7 0.11 0.10 0.01 Q (*) 100,001 to 200,000 .................... 270 250 Q Q 10 0.09 0.08 Q Q (*) 200,001 to 500,000 .................... 258 183 Q Q 11 0.08 0.05 0.02 Q (*) Over 500,000 ............................. 72 Q Q Q 15 0.02 Q Q Q (*) Principal Building Activity Education .................................. 342 322 11 Q Q 0.18 0.17 0.01 Q (*) Food Sales ................................

406

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

636 636 580 46 1 Q 114.0 103.9 8.3 0.2 Q Building Floorspace (Square Feet) 1,001 to 5,000 ........................... Q Q Q Q Q Q Q Q Q Q 5,001 to 10,000 .......................... Q Q Q Q Q Q Q Q Q Q 10,001 to 25,000 ........................ Q Q Q Q Q Q Q Q Q Q 25,001 to 50,000 ........................ Q Q Q Q Q Q Q Q Q Q 50,001 to 100,000 ...................... Q Q Q Q Q Q Q Q Q Q 100,001 to 200,000 .................... 165 154 10 Q Q 118.1 109.9 Q Q Q 200,001 to 500,000 .................... 123 112 11 Q Q 121.2 110.2 10.5 Q Q Over 500,000 ............................. 171 147 16 Q Q 93.6 80.6 8.9 Q Q Principal Building Activity Education .................................. 134 122 8 Q Q 116.6 106.6 6.9 Q Q Food Service ............................. N N N N N N N N N N Health Care ............................... Q Q Q Q Q Q Q Q Q Q Inpatient ..................................

407

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

28 28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 34 32 Q (*) Q 56.9 52.2 Q (*) Q 5,001 to 10,000 .......................... 36 33 Q (*) Q 49.4 44.7 Q 0.1 Q 10,001 to 25,000 ........................ 28 25 1 (*) Q 26.7 23.8 1.4 0.1 Q 25,001 to 50,000 ........................ 17 16 Q (*) 1 19.1 17.8 Q (*) 0.6 50,001 to 100,000 ...................... 29 26 1 Q 1 15.6 14.1 0.7 Q 0.5 100,001 to 200,000 .................... 37 35 Q Q 1 12.5 11.5 Q Q 0.5 200,001 to 500,000 .................... 36 25 Q Q 2 10.5 7.4 2.4 Q 0.5 Over 500,000 ............................. 10 Q Q Q 2 2.1 Q Q Q 0.4 Principal Building Activity Education .................................. 47 45 2 Q Q 25.4 23.9 0.8 Q 0.3 Food Sales ................................ Q Q Q Q Q Q Q Q Q Q Food Service ............................. Q Q Q Q Q Q Q Q Q Q

408

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

634 634 578 46 1 Q 116.4 106.3 8.4 0.2 Q Building Floorspace (Square Feet) 1,001 to 5,000 ........................... Q Q Q Q Q Q Q Q Q Q 5,001 to 10,000 .......................... Q Q Q Q Q Q Q Q Q Q 10,001 to 25,000 ........................ Q Q Q Q Q Q Q Q Q Q 25,001 to 50,000 ........................ Q Q Q Q Q Q Q Q Q Q 50,001 to 100,000 ...................... Q Q Q Q Q Q Q Q Q Q 100,001 to 200,000 .................... 165 154 10 Q Q 118.1 109.9 Q Q Q 200,001 to 500,000 .................... 123 112 11 Q Q 121.2 110.2 10.5 Q Q Over 500,000 ............................. 169 146 16 Q Q 99.9 86.2 9.5 Q Q Principal Building Activity Education .................................. 134 122 8 Q Q 116.6 106.6 6.9 Q Q Food Service ............................. N N N N N N N N N N Health Care ............................... Q Q Q Q Q Q Q Q Q Q Inpatient ..................................

409

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2013 6, 2013 The President's Plan to Reduce Carbon Pollution: Myths v. Reality Get the facts on President Obama's plan to address climate change. June 26, 2013 Installing a rooftop solar array as part of Los Angeles County's Feed-in Tariff program. | Photo courtesy of the Los Angeles Business Council. LA Rooftop Solar Project Goes Online in San Fernando Valley Los Angeles steps into the forefront of solar innovation with launch of feed-in tariff program. June 25, 2013 Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Learn how a New York startup is trying to change the way we store energy. June 24, 2013 This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography.

410

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 26, 2013 June 26, 2013 The President's Plan to Reduce Carbon Pollution: Myths v. Reality Get the facts on President Obama's plan to address climate change. June 26, 2013 Installing a rooftop solar array as part of Los Angeles County's Feed-in Tariff program. | Photo courtesy of the Los Angeles Business Council. LA Rooftop Solar Project Goes Online in San Fernando Valley Los Angeles steps into the forefront of solar innovation with launch of feed-in tariff program. June 25, 2013 Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Learn how a New York startup is trying to change the way we store energy. June 24, 2013 This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography.

411

Efficient Energy Use and Well-Being: The Swedish Example  

SciTech Connect

A detailed comparison is made between the per capita energy consumption in the US and Sweden. Sweden uses between 55% and 65% of the per capita energy (depending on the way hydro-electricity is counted) at essentially the same per capita income. It is shown that this difference arises both from differences in the mix of economic activities and from the differences in the energy consumption per unit output of these activities. The most important contributions to the differences in energy use arise from higher efficiencies in transportation, materials processing, and space heating in Sweden. Differences in the mode mix in transportation, particularly the reliance on the automobile in the US, also contribute significantly to the lower Swedish energy use. The more severe Swedish climate substantially increases the need for space heat relative to the US, obscuring dramatic differences in space heating efficiencies. Energy costs have played an important role in creating a more energy efficient economy in Sweden, aided by institutional and cultural factors. The comparison suggests that more efficient energy use will not interfere with and can in fact improve the functions of the United States economy over the long run.

Schipper, Lee; Lichtenberg, A.J.

1976-04-01T23:59:59.000Z

412

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network (OSTI)

absorption chiller and space-heating. optimal dispatch The full optimizationabsorption chiller and space-heating. optimal dispatch The full optimization

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

413

Comprehensive Energy Savings Plan for State Facilities (Minnesota...  

Open Energy Info (EERE)

Pumps, Passive Solar Space Heat, Photovoltaics, Solar Space Heat, Solar Water Heat, Wind, Building and Systems Commissioning Active Incentive Yes Implementing Sector State...

414

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

Torchiere Space heating Air conditioning Electric motorsCommercial Space heating Air conditioning Ventilation GasResidential End Use: Air conditioning Product: Room air

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

415

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network (OSTI)

Standby Power, Oven, Water Heating and Space Heating Television Water Heating Oven Air Conditioner Fan Standbyby Power Devices Oven Water Heating Space Heating Lighting

McNeil, Michael A

2008-01-01T23:59:59.000Z

416

Bottom-Up Energy Analysis System - Methodology and Results  

E-Print Network (OSTI)

A Worldwide Review of Standby Power Use in Homes. 2001,Refrigeration, Space Heating, Standby, Televisions, WaterElectric Space Heating Standby Standby Television Television

McNeil, Michael A.

2013-01-01T23:59:59.000Z

417

Data:D84018a6-3209-48d8-825c-87604f96e037 | Open Energy Information  

Open Energy Info (EERE)

4018a6-3209-48d8-825c-87604f96e037 4018a6-3209-48d8-825c-87604f96e037 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: Commercial space heating-separately metered Sector: Commercial Description: Service under this price is available for commercial premises with an electric resistance space heating system, an electric heat pump system or an electric storage space heating system that is capable of heating 50% or more of the premises. Electricity used under this price shall be exclusively limited to separately metered commercial space heating. Water heating may be included in conjunction with the space heating. The Company reserves the right to inspect any facility to ensure eligibility under this price schedule. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost.

418

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

0, 2012 | Release Date: October 11, 0, 2012 | Release Date: October 11, 2012 | Next Release: October 18, 2012 Previous Issues Week: 12/29/2013 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: EIA's Winter Fuels Outlook Projects Higher Heating Expenditures. The U.S. Energy Information Administration (EIA) projects that household consumption of all heating fuels will increase this winter, as temperatures are expected to be close to normal. Last year's unusually warm winter resulted in relatively low consumption of the primary space heating energy sources, including natural gas, propane, heating oil, and electricity. EIA's Winter Fuels Outlook projects that overall consumption of natural gas for space heating this winter (October 2012 - March 2013) will increase

419

About: Why Energy Efficiency Upgrades  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Energy Efficiency Upgrades Why Energy Efficiency Upgrades Two photos side by side showing energy loss through the use of infrared technology. As part of a home energy evaluation, an energy professional can use an infrared camera to pinpoint where air leaks and drafts are occurring in your home or building. Although normally difficult to see, these infrared photos clearly show in color where energy losses are occurring in a typical house. How We Use Energy in Our Buildings How We Use Energy in Our Homes (% of Energy Consumption) A pie chart illustrating the following breakdown: Space heating 43%, space cooling 9.7%, water heating 17.1%, lighting 6.2%, refrigeration 3.9%, electronics 3%, wet cleaning 3.2%, cooking 3.1%, computers 1.6%. Source: 2010 Buildings Energy Data Book, Table 2.1.6

420

Data:E91887c3-50bb-403c-83fe-1f090db91b25 | Open Energy Information  

Open Energy Info (EERE)

c3-50bb-403c-83fe-1f090db91b25 c3-50bb-403c-83fe-1f090db91b25 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Mt Carmel Public Utility Co Effective date: End date if known: Rate name: Residential Electric Space Heating Service Sector: Residential Description: AVAILABILITY Available upon application for any residential customer served by the Company under the Residential Electric Service Rate who has permanently installed and is using a heat pump or resistance heating as the primary source of space heating the customer's premises used for residential purposes. Source or reference: http://www.mtcpu.com/includes/tariff_electric.htm?t=Residential_Electric_Space_Heating_Service

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Data:7229270f-c0fb-4678-81de-f1f316f2634d | Open Energy Information  

Open Energy Info (EERE)

270f-c0fb-4678-81de-f1f316f2634d 270f-c0fb-4678-81de-f1f316f2634d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Mt Carmel Public Utility Co Effective date: End date if known: Rate name: Commercial Electric Space Heating Service Sector: Commercial Description: AVAILABILITY Available upon application for any commercial customer who is normally served under Company's Commercial Electric Service Schedule who has permanently installed and is using a heat pump or resistance heating as the primary source of space heating in that section of the customer's premises where it is used and the space so heated is adequately separated from spaces heated by other than electric heating.

422

Passive Solar Home Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Solar Home Design Passive Solar Home Design Passive Solar Home Design June 24, 2013 - 7:18pm Addthis This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. What does this mean for me? A passive solar home means a comfortable home that gets at least part of its heating, cooling, and lighting energy from the sun. How does it work?

423

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

424

Mille Lacs Energy Cooperative | Open Energy Information  

Open Energy Info (EERE)

Mille Lacs Energy Cooperative Mille Lacs Energy Cooperative (Redirected from Mille Lacs Electric Coop) Jump to: navigation, search Name Mille Lacs Energy Cooperative Place Minnesota Utility Id 12546 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dual Fuel Space Heating Rate Electric Combination Heating Rate Freedom Heating Rate Residential General Service Residential Green Power Energy Large Power Commercial Large Power - Industrial Industrial Light - 100 watt HPS Lighting Light - 150 watt HPS Lighting

425

Solar Rights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Rights Solar Rights Solar Rights < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State North Carolina Program Type Solar/Wind Access Policy Provider North Carolina Department of Commerce Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for water heating, active space heating and cooling, passive heating, or generating electricity for residential property."* However, city and county ordinances may prohibit the installation of solar-energy collectors that are visible from the

426

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 2003 Commercial Buildings Delivered Energy End-Use Intensities, by Building Activity (Thousand Btu per SF) (1) Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Note(s): Source(s): 43.5 45.2 164.4 20.9 1) Due to rounding, end-uses do not sum to total. EIA, 2003 Commercial Building Energy Consumption Survey, Energy End-Uses, Oct. 2008, Table E.2A. 0.3 0.6 3.0 N.A. 4.9 4.8 18.9 3.1 1.7 3.5 6.0 N.A. 0.1 0.2 N.A. N.A. 4.4 13.1 34.1 1.7 0.8 N.A. N.A. N.A. 1.4 2.0 6.1 0.4 0.8 0.6 2.1 0.1 26.2 19.3 79.4 14.4 2.9 1.3 10.5 0.6 Religious

427

List of Microturbines Incentives | Open Energy Information  

Open Energy Info (EERE)

Microturbines Incentives Microturbines Incentives Jump to: navigation, search The following contains the list of 66 Microturbines Incentives. CSV (rows 1 - 66) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial Industrial Biomass CHP/Cogeneration Fuel Cells Microturbines Photovoltaics Renewable Fuels Solar Pool Heating

428

Solar-energy-system performance-evaluation update: Wood Road School, Ballston Spa, New York, October 1982-April 1983  

DOE Green Energy (OSTI)

The Wood Road School Solar Project is a 216,000 square foot combined elementary and middle school in Ballston Spa, New York. The solar energy system supplies energy to the space heating and domestic hot water subsystems. Heat is collected by flat plate collector panels and stored in two storage tanks. Performance data are given for the system overall and for each of the four subsystems - energy collection, storage, space heating, and domestic hot water. Data are also provided on operating energy, energy savings, and weather conditions. Design and actual system solar fraction are compared, and percentage of incident solar energy and collected solar energy utilized are given. Also given are building loads analysis, system thermal losses, and system coefficient of performance. (LEW)

Kendall, P

1983-01-01T23:59:59.000Z

429

Become One In A Million: Partnership Updates. Million Solar Roofs and Interstate Renewable Energy Council Annual Meeting, Washington, D.C., October 2005  

SciTech Connect

The U.S. Department of Energy's Million Solar Roofs Initiative (MSR) is a unique public-private partnership aimed at overcoming market barriers for photovoltaics (PV), solar water heating, transpired solar collectors, solar space heating and cooling, and pool heating. This report contains annual progress reports from 866 partners across the United States.

Tombari, C.

2005-09-01T23:59:59.000Z

430

Become One In A Million: Partnership Updates. Million Solar Roofs and Interstate Renewable Energy Council Annual Meeting, Washington, D.C., October 2005  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Million Solar Roofs Initiative (MSR) is a unique public-private partnership aimed at overcoming market barriers for photovoltaics (PV), solar water heating, transpired solar collectors, solar space heating and cooling, and pool heating. This report contains annual progress reports from 866 partners across the United States.

Tombari, C.

2005-09-01T23:59:59.000Z

431

Energy Savings Calculator for Commercial Boilers: Closed Loop, Space  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Calculator for Commercial Boilers: Closed Loop, Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only October 8, 2013 - 2:23pm Addthis This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable fluid type? Water Steam What fuel is used? Gas Oil How many boilers will you purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtu/hr* What is the thermal efficiency of the existing boiler? % Et New What is the capacity of the new boiler?

432

Duke Energy Ohio Inc | Open Energy Information  

Open Energy Info (EERE)

Duke Energy Ohio Inc Duke Energy Ohio Inc Place Ohio Utility Id 3542 Utility Location Yes Ownership I NERC Location RFC NERC ERCOT Yes NERC NPCC Yes NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RATE RS - Residential Service Residential Rate - EH OPTIONAL RATE FOR ELECTRIC SPACE HEATING - Single Phase Service

433

Mille Lacs Energy Cooperative | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Mille Lacs Energy Cooperative Place Minnesota Utility Id 12546 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dual Fuel Space Heating Rate Electric Combination Heating Rate Freedom Heating Rate Residential General Service Residential Green Power Energy Large Power Commercial Large Power - Industrial Industrial Light - 100 watt HPS Lighting Light - 150 watt HPS Lighting Off-Peak Energy Rate Residential Peak Shave Water Heating Rate Residential

434

List of Daylighting Incentives | Open Energy Information  

Open Energy Info (EERE)

Daylighting Incentives Daylighting Incentives Jump to: navigation, search The following contains the list of 166 Daylighting Incentives. CSV (rows 1 - 166) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative and Clean Energy State Grant Program (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Local Government Multi-Family Residential Nonprofit Schools Boilers

435

Annual Cycle Energy System concept and application  

DOE Green Energy (OSTI)

The Annual Cycle Energy System (ACES), under development at ERDA's Oak Ridge National Laboratory, promises to provide space heating, air conditioning, and water heating at a significantly lower expenditure of energy than conventional space conditioning and water heating systems. The ACES embodies heat pumping, thermal storage and, where climate dictates, solar assistance. The concept is described, along with variations in design that permit flexibility to maximize energy conservation or to provide load management capabilities. Installations that exist or are under construction are described and variations that are incorporated to meet specific objectives are discussed.

Moyers, J. C.; Hise, E. C.

1977-01-01T23:59:59.000Z

436

Energy Saver 101: Home Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Saver 101: Home Heating Energy Saver 101: Home Heating Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download individual sections of the infographic or a high resolution version now. homeHeating.pdf homeHeating_slide-01.png homeHeating_slide-02.png homeHeating_slide-03.png homeHeating_slide-04.png homeHeating_slide-05.png

437

East Central Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Central Energy - Residential Energy Efficiency Rebate Program East Central Energy - Residential Energy Efficiency Rebate Program East Central Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount LEDs: $3/bulb (limit 3 bulbs) CFL Recycling: $0.50 per bulb Central AC: $30 - $330 Air-Source Heat Pump: $300 - $630 Heat Pump/AC Tune Up: $25 Refrigerator/Freezer (with recycling of old unit): $75 Ductless Air-Source Heat Pumps: $300 Geothermal Heat Pump: $400/ton HVAC ECM: $100 Storage Water Heating: $100 - $200 Storage Space Heating: $25/KW Provider East Central Energy

438

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

Waste Incentives Waste Incentives Jump to: navigation, search The following contains the list of 172 Municipal Solid Waste Incentives. CSV (rows 1 - 172) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Clean Energy Project Grants (Texas) State Grant Program Texas Commercial Industrial Utility Biomass Municipal Solid Waste No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Law (AEL) (Iowa) Renewables Portfolio Standard Iowa Investor-Owned Utility Anaerobic Digestion

439

Other Incentive | Open Energy Information  

Open Energy Info (EERE)

Other Incentive Other Incentive Jump to: navigation, search Incentive that does not fit under any of the other incentive types. Other Incentive Incentives CSV (rows 1 - 12) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Air-Quality Improvement Tax Incentives (Ohio) Other Incentive Ohio Commercial Industrial Boilers Central Air conditioners Chillers Custom/Others pending approval Lighting Processing and Manufacturing Equipment Biomass CHP/Cogeneration Landfill Gas Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Commercial Solar Hot Water Financing Program (Massachusetts) Other Incentive Massachusetts Commercial Institutional Local Government Nonprofit Schools State Government Solar Thermal Electric

440

Clean Energy Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Tax Credit (Personal) Clean Energy Tax Credit (Personal) Clean Energy Tax Credit (Personal) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate Solar water heat: 2,500 PV, active space heating, wind energy: 10,500 Energy Star-certified geothermal heat pump: 2,000 Program Info Start Date 7/1/2008 State Georgia Program Type Personal Tax Credit Rebate Amount 35% Provider Georgia Department of Revenue '''''NOTE: Due to a high level of interest, the Clean Energy Tax Credit annual funding of $5 million for years 2012, 2013 and 2014 has been fully allocated to compensate applicants wait listed from previous years. The Georgia Environmental Finance Authority is continuing to accept and process

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Tanzania Energy Development and Access Expansion Project | Open Energy  

Open Energy Info (EERE)

Energy Development and Access Expansion Project Energy Development and Access Expansion Project Jump to: navigation, search Name of project Tanzania Energy Development and Access Expansion Project Location of project Tanzania Energy Services Lighting, Cooking and water heating, Space heating, Cooling Year initiated 2007 Organization World Bank Website http://documents.worldbank.org Coordinates -6.369028°, 34.888822° References The World Bank[1] The objective of the Energy Development and Access Expansion Project of Tanzania is to improve the quality and efficiency of the electricity service provision in the three main growth centers of Dar es Salaam, Arusha, and Kilimanjaro and to establish a sustainable basis for energy access expansion. The project is consistent with the latest Joint Assistance Strategy (2007-2010) by specifically supporting the goals of the

442

Benin: Increased Access to Modern Energy Project | Open Energy Information  

Open Energy Info (EERE)

Benin: Increased Access to Modern Energy Project Benin: Increased Access to Modern Energy Project Jump to: navigation, search Name of project Benin: Increased Access to Modern Energy Project Location of project Benin Energy Services Lighting, Cooking and water heating, Space heating, Information and communications Year initiated 2009 Organization World Bank Website http://documents.worldbank.org Coordinates 9.30769°, 2.315834° References The World Bank[1] The objective of the Increased Access to Modern Energy Project is to improve reliability, efficiency, and access to modern energy services in Benin. There are three components to the project, the first component being electrical network upgrading. This component will provide for necessary investments to allow for continued operation of the existing transmission

443

Energy Saver 101: Home Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Energy Saver 101: Home Heating Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download individual sections of the infographic or a high resolution version now. homeHeating.pdf homeHeating_slide-01.png homeHeating_slide-02.png homeHeating_slide-03.png homeHeating_slide-04.png homeHeating_slide-05.png

444

Alternative Energy Portfolio Standard (Pennsylvania) | Open Energy...  

Open Energy Info (EERE)

Space Heat, Solar Thermal Electric, Solar Thermal Process Heat, Solar Water Heat, Wind, Coal with CCS, Waste Coal, Coal Mine Methane, Coal Gasification Active Incentive Yes...

445

List of Biomass Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 757 Biomass Incentives. CSV (rows 1-500) CSV (rows 501-757) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Net Metering (Arizona) Net Metering Arizona Commercial Industrial Residential Nonprofit Schools Local Government State Government Fed. Government Agricultural Institutional Solar Thermal Electric Photovoltaics Wind energy Biomass No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

446

Residential Energy Consumption Survey: housing characteristics, 1982  

Science Conference Proceedings (OSTI)

Data in this report cover fuels and their use in the home, appliances, square footage of floor space, heating equipment, thermal characteristics of the housing unit, conservation activities, wood consumption, indoor temperatures, and weather. The 1982 survey included a number of questions on the reasons households make energy conservation improvements to their homes. Results of these questions are presented. Discussion also highlights data pertaining to: trends in home heating fuels, trends in conservation improvements, and characteristics of households whose energy costs are included in their rent.

Thompson, W.

1984-08-01T23:59:59.000Z

447

Role of electric power in the southeast Alaska energy economy. Phase II. 1981 Juneau energy balance  

SciTech Connect

The economic base for Juneau and its energy sources and geographic location has resulted in a pattern of energy usage that is atypical in Alaska and the Pacific Northwest. Juneau is a community with a high dependency on government for employment, little industrial activity and fewer driving opportunities than communities with more extensive highway networks. However, some significant shifts in the pattern of energy usage were discerned that may be significant. Among these observed changes in the pattern of energy usage, most significant is the shift from fuel oil to electricity for residential space heating. The total energy used per capita went up fractionally in the 3.5 year period while there were significant decreases in two sectors - residential and surface transportation. This savings was offset by increased levels of energy used in the commercial/industrial, government, marine and air transportation sectors. A third trend was the shift to wood as a source of space heating in residences. In the 1980 to 1981 energy year, wood played a significant role in the residential sector, comprising approximately 9% of the residential energy load. A fourth change was the dramatic rise in energy usage in the commercial/industrial sector and the smaller though still significant rise in the government sector.

1982-02-01T23:59:59.000Z

448

Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Programs Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Natural Gas Furnace/Boiler: $400 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft. ENERGY STAR rated homes: $650 - $900 Replacement of Electric Straight Resistance Space Heat: $750 Provider

449

List of CHP/Cogeneration Incentives | Open Energy Information  

Open Energy Info (EERE)

CHP/Cogeneration Incentives CHP/Cogeneration Incentives Jump to: navigation, search The following contains the list of 279 CHP/Cogeneration Incentives. CSV (rows 1 - 279) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Advanced Energy Gross Receipts Tax Deduction (New Mexico) Sales Tax Incentive New Mexico Commercial Construction Installer/Contractor Retail Supplier CHP/Cogeneration Geothermal Electric Photovoltaics

450

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

451

Legal and regulatory issues affecting aquifer thermal energy storage  

DOE Green Energy (OSTI)

This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

Hendrickson, P.L.

1981-10-01T23:59:59.000Z

452

Solar Energy Gross Receipts Tax Deduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Gross Receipts Tax Deduction Energy Gross Receipts Tax Deduction Solar Energy Gross Receipts Tax Deduction < Back Eligibility Commercial Construction Installer/Contractor Residential Retail Supplier Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Program Info Start Date 7/1/2007 State New Mexico Program Type Sales Tax Incentive Rebate Amount 100% of gross receipts from sale and installation of solar energy systems Provider New Mexico Energy, Minerals and Natural Resources Department New Mexico has a gross receipts tax structure for businesses instead of a sales tax. Businesses are taxed on the gross amount of their business receipts each year before expenses are deducted. Revenue generated by the sale and installation of solar systems used to provide space heat, hot

453

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Estimation of Energy End-use Consumption Estimation of Energy End-use Consumption 2003 CBECS The energy end-use consumption tables for 2003 (Detailed Tables E1-E11 and E1A-E11A) provide estimates of the amount of electricity, natural gas, fuel oil, and district heat used for ten end uses: space heating, cooling, ventilation, water heating, lighting, cooking, refrigeration, personal computers, office equipment (including servers), and other uses. Although details vary by energy source (Table 1), there are four basic steps in the end-use estimation process: Regressions of monthly consumption on degree-days to establish reference temperatures for the engineering models, Engineering modeling by end use, Cross-sectional regressions to calibrate the engineering estimates and account for additional energy uses, and

454

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 23120 of 28,560 results. 11 - 23120 of 28,560 results. Rebate Mason County PUD 3- Residential Energy Rebates Mason County PUD 3 encourages customers to use energy efficient products and home equipment by offering incentives for the purchase of qualifying products. The utility offers residential customers... http://energy.gov/savings/mason-county-pud-3-residential-energy-rebates Rebate Missouri Gas Energy (MGE)- Residential and Small Business Efficiency Rebates Missouri Gas Energy (MGE) offers its residential and small business customers rebates for the purchase and installation of efficient natural gas water heating and space heating equipment within its... http://energy.gov/savings/missouri-gas-energy-mge-residential-and-small-business-efficiency-rebates Rebate Montana-Dakota Utilities (Gas)- Residential Energy Efficiency Rebate

455

Household energy consumption and expenditures 1993  

Science Conference Proceedings (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

456

Saving energy in occupied buildings: results from the Lawrence Berkeley Laboratory residential data bases  

SciTech Connect

This paper summarizes results to date from the residential portion of the Building Energy Use Compilation and Analysis (BECA) project, comprising findings from several hundred studies of new and retrofitted buildings. The following are discussed for both new and retrofitted homes: (1) energy savings and the range of savings for given types of measures; (2) cost and cost-effectiveness of various measures; and (3) methodology. In existing residences, data compiled from roughly 70 retrofit projects, with sample sizes that range from 1 to 33,000 homes, strongly indicate that retrofits often significantly reduce annual space heating energy consumption. But, results are highly variable. The maximum energy savings from individual measures installed in different households are 3 to 7 times greater than the median value. Nineteen conservation programs sponsored by utilities achieved annual space heat savings of 38.5 million Btu at an average investment level of $1050. Twenty-nine of 215 new homes in our BECA-A database have detailed sub-metered data that permits normalization of space heat loads for both indoor temperature and internal gains. In these homes, the standardized heating energy requirement ranges from 10 to 25 kBtu/ft/sup 2/ over various climatic regions, a value that is roughly 50% less than current building practice.

Goldman, C.A.; Wagner, B.S.

1983-09-01T23:59:59.000Z

457

Summary of annual cycle energy system workshop I held October 29--30, 1975, at Oak Ridge, Tennessee  

DOE Green Energy (OSTI)

The Annual Cycle Energy System (ACES) concept provides space heating, air conditioning, and water heating by means of a heat pump and an energy storage tank. Heat is removed in winter from the water in the tank and is added during the following summer. A workshop was held on October 29-30, 1975 in Oak Ridge, Tenn. to disseminate information on ACES. This report gives summaries of the presentations, which covered technical, economic, and institutional aspects of the concept.

Fischer, H.C.; Moyers, J.C.; Hise, E.C.; Nephew, E.A. (eds.)

1976-07-01T23:59:59.000Z

458

Energy End-Use Intensities in Commercial Buildings 1989 -- Executive  

U.S. Energy Information Administration (EIA) Indexed Site

9 Energy End-Use Intensities > Executive Summary 9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1989 Commercial Buildings Energy Consumption Survey. divider line The demand for energy in U.S. stores, offices, schools, hospitals, and other commercial buildings has been increasing. This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and "other." The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand.

459

Thermal energy storage for cogeneration applications  

DOE Green Energy (OSTI)

Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be coupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy`s Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

Drost, M.K.; Antoniak, Z.I.

1992-04-01T23:59:59.000Z

460

Residential wood burning: Energy modeling and conventional fuel displacement in a national sample  

SciTech Connect

This research studied the natural, built, and behavioral factors predictive of energy consumption for residential space heating with wood or conventional fuels. This study was a secondary analysis of survey data from a nationwide representative sample of 5,682 households collected DOE in the 1984-1985 REC survey. Included were: weather, census division and utility data, interviewer-supplied dwelling measurements and respondent-reported energy-related family behaviors. Linear-regression procedures were used to develop a model that identified key determinants accounting for the variability in wood consumption. A nonlinear-regression model was employed to estimate the amount of conventional fuels used for space heating. The model was also used to estimate the amount of conventional fuels being displaced by wood-heating systems. There was a significant (p {le} .05) linear relationship between the dependent variable, square root of cords burned, various independent variables.

Warsco, K.S.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "b20 space-heating energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Minnesota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

processes." Thus the exemption is very broad and could apply to solar electric (PV) systems, solar water-heating systems and solar space-heating systems. All components...

462