Powered by Deep Web Technologies
Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

2

Thermal Conversion Process (TCP) Technology  

Broader source: Energy.gov (indexed) [DOE]

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

3

Development of 10B2O3 processing for use as a neutron conversion material  

Science Journals Connector (OSTI)

Development of thermal neutron detectors is critical for a number of homeland security and physics applications. In this work, we describe our efforts towards developing boron-10 oxide (10B2O3) as a thermal neutr...

L. F. Voss; J. Oiler; A. M. Conway…

2012-01-01T23:59:59.000Z

4

Thermal stability of hexagonal OsB2  

SciTech Connect (OSTI)

The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 C and cooling in vacuo down to 225 C. During the heating, the sacrificial reaction 2OsB2+3O2 2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276 426 C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.

Xie, Zhilin [University of Central Florida; Blair, Richard G. [University of Central Florida; Orlovskaya, Nina [University of Central Florida; Cullen, David A [ORNL; Payzant, E Andrew [ORNL

2014-01-01T23:59:59.000Z

5

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

1980. Ocean Thermal Energy Conversion Draft ProgrammaticPlan. Ocean Thermal Energy Conversion. U.S. DOE Assistantl OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENT

Sands, M.Dale

2013-01-01T23:59:59.000Z

6

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.ocean thermal energy conversion. A preliminary engineeringCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

7

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion (OTEC) plants byFifth Ocean Thermal Energy Conversion Conference, February1980. Ocean thermal energy conversion (OTEC) pilot plant

Sullivan, S.M.

2014-01-01T23:59:59.000Z

8

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.Sixth Ocean Thermal Energy conversion Conference. June 19-

Sullivan, S.M.

2014-01-01T23:59:59.000Z

9

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Nanoporous Thermal-to-Electrical Energy Conversion System (of Wasted Energy : Thermal to Electrical Energy Conversion AArticles: 1. “ Thermal to electrical energy conversion” , Yu

Lim, Hyuck

2011-01-01T23:59:59.000Z

10

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean depths of 20 m (surface water) and 1,000 m. OTEC Ocean Thermal Energy Conversion, the process Energy Conversion. At first, OTEC plantships providing electricity, via submarine power cables, to shore

11

Status of Solar Thermal Conversion in China  

Science Journals Connector (OSTI)

China has an abundant solar energy resource. Solar thermal conversion systems have been studied for more than 25 years and solar thermal industry has been developing since 1990’s....2 solar collectors were sold a...

Yin Zhiqiang

2009-01-01T23:59:59.000Z

12

Thermal properties of La2O3-doped ZrB2- and HfB2-based ultra-high temperature ceramics  

Science Journals Connector (OSTI)

Abstract Thermal properties of La2O3-doped ZrB2- and HfB2-based ultra high temperature ceramics (UHTCs) have been measured at temperatures from room temperature to 2000 °C and compared with SiC-doped ZrB2- and HfB2-based \\{UHTCs\\} and monolithic ZrB2 and HfB2. Thermal conductivities of La2O3-doped \\{UHTCs\\} remain constant around 55–60 W/mK from 1500 °C to 1900 °C while SiC-doped \\{UHTCs\\} showed a trend to decreasing values over this range.

E. Zapata-Solvas; D.D. Jayaseelan; P.M. Brown; W.E. Lee

2013-01-01T23:59:59.000Z

13

Assessment of ocean thermal energy conversion  

E-Print Network [OSTI]

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

14

Evaluation of Thermal to Electrical Energy Conversion of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

15

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega or other energy carriers to be delivered to shore... 13luisvega@hawaii.edu #12;US Federal Government OTEC period estimated at 3 to 4 years. #12;luisvega@hawaii.edu 20 Energy Carriers · OTEC energy could

16

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network [OSTI]

Assessment, Ocean Thermal Energy Conversion (OTEC) ProgramOcean Thermal Energy Conversion (OTEC), U.S. Department offor Ocean Thermal Energy Conversion (OTEC) plants. Argonne,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

17

Ocean Thermal Energy Conversion Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

18

Ocean Thermal Energy Conversion Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

19

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of an open cycle ocean thermal difference power plant. M.S.screens for ocean thermal energy conversion power plants.1958. Ocean cooling water system for 800 MW power station.

Sands, M. D.

2011-01-01T23:59:59.000Z

20

Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

Abstract In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location.

Rodrigo Soto; Julio Vergara

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Water Heating Maximum Rebate None Program Info State Ohio Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Ohio Department of Taxation Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed, constructed, or installed after December 31, 1974. Qualifying energy conversion facilities are those that are used for the

22

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power  

E-Print Network [OSTI]

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission in virtually all energy conversion devices and systems. One may think of the jet engine as a mechanical device, power generation, the flow of liquids and gases, and the transfer of thermal energy (heat) by means

New Hampshire, University of

23

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherOffice of Solar Power Applications. Division of Ocean Energy

Sullivan, S.M.

2014-01-01T23:59:59.000Z

24

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherpower from the temperature differential between warm surface and cold deep-ocean

Sullivan, S.M.

2014-01-01T23:59:59.000Z

25

Microsoft Word - table_B2.doc  

U.S. Energy Information Administration (EIA) Indexed Site

8 Table B2. Thermal conversion factors and data, 2009-2013 Conversion Factor (Btu per cubic foot) Production Marketed 1,101 1,098 1,142 R 1,091 1,100 NGPL Production 2,627 2,598...

26

Thermal transport of the single-crystal rare-earth nickel borocarbides RNi2B2C  

E-Print Network [OSTI]

-order phase transition. FIG. 1. k(mW/cm-K) vs T(K) for TmNi2B2C?s and ErNi2B2C sample number 2?n over several temperature ranges. Arrows show superconducting and magnetic transitions. 214512- A sharp increase in the low temperature thermal conduc- tivity... that the normal, i.e., uncondensed, electron den- sity at TN for HoNi2B2C is significant. This explanation is consistent with the critical-field data of HoNi2B2C,1 which show a peak for the temperature range FIG. 2. k(mW/cm K) vs T(K) for HoNi2B2C?s and DyNi2...

Hennings, BD; Naugle, Donald G.; Canfield, PC.

2002-01-01T23:59:59.000Z

27

Portfolio Manager Technical Reference: Thermal Conversion Factors | ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Conversion Factors Thermal Conversion Factors Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

28

Thermal energy conversion to motive power  

SciTech Connect (OSTI)

Performance evaluations of both ideal and actual organic Rankine cycle (ORC) and steam Rankine cycles (SRC) are presented for systems that may be candidates for Solar Total Energy Systems (STES). Many organic fluids and heat engines (turbines or expanders) are being developed; therefore, performance of a few representative ORCs are evaluated. The electrical power outputs range from several kW to <10 MW with maximum cycle temperatures of 482/sup 0/C (900 F). Conclusions from basic Rankine cycle analyses are that the Carnot cycle concept should not be used as a standard of comparison for different cycle fluids, even when they are operating at the same inlet and exhaust temperatures. The ideal Rankine cycle with the maximum conversion efficiency, when based on exact physical properties of fluids, should provide a better standard for actual cycles. Three sets of maximum (ideal) Rankine cycle efficiency (n/sub r/) curves are estimated for steam and several organic fluids for exhaust temperatures of 38/sup 0/C, 100/sup 0/C, and 149/sup 0/C (100 F, 212 F, and 300F). These curves of n/sub r/ versus peak temperature at the expander inlet are referred to as Criterion Curves for basic Rankine cycles, in which corresponding inlet pressures are selected such that n/sub r/ will be a maximum. Basic cycle efficiencies indicate some fluids preferred for solar total energy applications.

Meador, J.T.

1980-01-01T23:59:59.000Z

29

Thermal to electricity conversion using thermal magnetic properties  

DOE Patents [OSTI]

A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

2010-04-27T23:59:59.000Z

30

Release of Inorganic Constituents from Leached Biomass during Thermal Conversion  

Science Journals Connector (OSTI)

Release of Inorganic Constituents from Leached Biomass during Thermal Conversion ... This suggests that while leaching reduces fuel nitrogen, it may also affect the nitrogen combustion chemistry in that a larger fraction of the fuel-bound nitrogen was converted to NO(g) during combustion of the leached samples compared to the unleached samples. ... Six biomasses with different chemical compositions ... ...

D. C. Dayton; B. M. Jenkins; S. Q. Turn; R. R. Bakker; R. B. Williams; D. Belle-Oudry; L. M. Hill

1999-04-28T23:59:59.000Z

31

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC )...

32

2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion COUNTRY NOTES  

E-Print Network [OSTI]

2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion 573 and personal communication. Valuable inputs were provided by Don Lennard of Ocean Thermal Energy Conversion in the technology. #12;2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion 574

33

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network [OSTI]

02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORTto potential Ocean Thermal Energy Conversion (OTEC) sites inOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,

Commins, M.L.

2010-01-01T23:59:59.000Z

34

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...Proceedings of the Ocean Thermal Energy Conversion...Claude, G. 1930. Power from the tropical seas...Metz, W. D. 1977. Ocean thermal energy: the biggest gamble in solar power. Science 198:178-180...studies, p. 1-53. In Ocean Thermal Energy Conversion...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

35

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demandsources include solar thermal energy, geo-thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

36

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal Energy...

37

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...Press Inc., New York. 14. Hirshman...Ocean Thermal Energy Conversion...Press Inc., New York. 24. Mathis...Ocean thermal energy: the biggest...Department of Energy, part II. U...Pergamon Press, New York. 28. Perrigo...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

38

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network [OSTI]

Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France. Thermophotovoltaic devices are energy-conversion , IR sensing and spectroscopy11,12 and has paved the way to a new generation of NTPV energy-conversion

Paris-Sud XI, Université de

39

FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties  

E-Print Network [OSTI]

FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties, thermoelectrics, and photovoltaics. However, energy transport and conversion, at the organic­inorganic interface and as an energy conversion technology. Aviram and Ratner's revolutionary suggestion that molecules could behave

Malen, Jonathan A.

40

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC)  

Broader source: Energy.gov [DOE]

Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

density, making direct thermal energy storage methods, e.g.reduced. Conventional thermal energy harvesting and storageharvesting, storage, and utilization of thermal energy has

Lim, Hyuck

2011-01-01T23:59:59.000Z

42

Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies  

Science Journals Connector (OSTI)

Photovoltaic and solar-thermal are two conversion technologies receiving a great deal of attention. ... Solar-thermal conversion uses the full solar spectrum and generates electricity by conventional electromagnetic induction methods. ... Resource and environmental impact considerations will play an increasingly important role in reaching decisions concerning the practicality of thermoelectric power generation systems. ...

Ming Xie; Dieter M. Gruen

2010-03-02T23:59:59.000Z

43

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...publication 23 July 1979 A project to investigate biofouling...to ocean thermal energy conversion heat exchangers...in ocean thermal energy conversion heat exchangers...for man to harvest solar energy involves exploitation...exchanger units. The project was conducted from...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

44

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense Water Temperature Delta 2 A New Clean Renewable 24/7 Energy Source #12;Ocean Thermal Energy Conversion and Commercial Applications 1 Dr. Ted Johnson Director of Alternative Energy Programs Development Lockheed Martin

45

Economics of Ocean Thermal Energy Conversion Luis A. Vega, Ph.D.  

E-Print Network [OSTI]

Economics of Ocean Thermal Energy Conversion (OTEC) by Luis A. Vega, Ph.D. Published and 100 MW Plants 15 Co-Products of OTEC 16 OTEC Energy Carriers 19 Externalities in the Production Thermal Energy Conversion (OTEC) Luis A. Vega, Ph.D.1, 2 Abstract A straightforward analytical model

46

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

power plants, solar thermal energy, geothermal energy, oceanpower plants, distributed solar thermal energy, geo/ocean-power plants [59]. Other LGH sources include solar thermal energy, geo-thermal energy, ocean

Lim, Hyuck

2011-01-01T23:59:59.000Z

47

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Other LGH sources include solar thermal energy, geo-thermalThe heat source can be solar thermal energy, biologicalsources include the coolants in coal and nuclear power plants, solar thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

48

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

Lim, Hyuck

2011-01-01T23:59:59.000Z

49

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

biological thermal energy, geothermal energy, wasted heatpower plants, solar thermal energy, geothermal energy, oceansolar radiation, and the geothermal energy. [16] Fig. 1.1.

Lim, Hyuck

2011-01-01T23:59:59.000Z

50

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

solar radiation, and the geothermal energy. [16] Fig. 1.1.thermal energy, geothermal energy, wasted heat from athermal energy, geothermal energy, ocean thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

51

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters  

Broader source: Energy.gov [DOE]

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

52

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

We investigate the molecular and structural origins of energy conversion (absorption, carrier generation and recombination processes, transport) phenomena in organic and hybrid...

53

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In the Inorganic PV thrust, we develop nanostructured materials architectures for solar energy conversion by engineering absorption and transport properties not available in the...

54

Science Highlights- Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 - Abstracts and Highlight Slides Efficiency of Thermoelectric Energy Conversion in Biphenyl-dithiol Junctions: Effect of Electron-Phonon Interactions Plasmonic Backscattering...

55

Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Experimental Study  

Science Journals Connector (OSTI)

The direct non-oxidative conversion of methane to higher hydrocarbons in non-thermal plasma, namely dielectric barrier discharge and corona discharge, has been investigated experimentally at atmospheric pressure....

Yun Yang

2003-06-01T23:59:59.000Z

56

Secondary Capture of Chlorine and Sulfur during Thermal Conversion of Biomass  

Science Journals Connector (OSTI)

Secondary Capture of Chlorine and Sulfur during Thermal Conversion of Biomass ... Six biomasses with different chemical compositions ... ... Therefore, different types of woody biomass and biomass residues (shells) were thermochemically converted in an atmospheric flow ... ...

Jacob N. Knudsen; Peter A. Jensen; Weigang Lin; Kim Dam-Johansen

2005-02-10T23:59:59.000Z

57

Electrodeposition and characterization of nanostructured black nickel selective absorber coatings for solar–thermal energy conversion  

Science Journals Connector (OSTI)

Selective coatings consisting of a bright nickel interlayer and black nickel overlayer for solar-to-thermal energy conversion have been electrodeposited onto stainless steel...2, NiOOH, Ni2O3..., NiO, water and m...

F. I. Lizama-Tzec; J. D. Macías…

2014-08-01T23:59:59.000Z

58

Quantum-coupled single-electron thermal to electric conversion scheme  

E-Print Network [OSTI]

Thermal to electric energy conversion with thermophotovoltaics relies on radiation emitted by a hot body, which limits the power per unit area to that of a blackbody. Microgap thermophotovoltaics take advantage of evanescent ...

Wu, D. M.

59

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods  

E-Print Network [OSTI]

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two. The performance of energy conversion processes can be evaluated using several types of efficiencies.2 Nowadays Gross,*, Ad Verkooijen, and Signe Kjelstrup, Department of Process & Energy, Delft Uni

Kjelstrup, Signe

60

Science Highlights- Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emission in Type-II GaSbGaAs Quantum Dots and Prospects for intermediate band solar energy conversion Angular Selective Semi-Transparent Photovoltaics Mechanisms of Nanorod...

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thrust of CSTEC focuses on fundamental transport processes that govern solid state energy conversion, i.e., how the charge and energy flow through the atomic lattice or an...

62

Science Highlights- Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Physics Letters, 97, 171908 (2010) Sb2Te3 is a key material for thermoelectric energy conversion technology. We have found that the crystal structure of Sb2Te3 thin...

63

Energy Down-Conversion and Thermalization in Metal Absorbers  

Science Journals Connector (OSTI)

There are the two significant factors associated with down-conversion phonons. The first is the dependence of the energy loss on the distance of the absorption ... from the escape interface. A photon of energy E....

A. Kozorezov

2012-05-01T23:59:59.000Z

64

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

below. Organic and Hybrid Systems for TE Improving Thermoelectric Efficiency via Low Thermal Boundary Conductance Heat dissipation in Atomic-Scale Junctions A General Strategy to...

65

Energy Conversion of Fully Random Thermal Relaxation Times  

E-Print Network [OSTI]

Thermodynamic random processes in thermal systems are generally associated with one or several relaxation times, the inverse of which are formally homogeneous with energy. Here, we show in a precise way that the periodic modification of relaxation times during temperature-constant thermodynamic cycles can be thermodynamically beneficiary to the operator. This result holds as long as the operator who adjusts relaxation times does not attempt to control the randomness associated with relaxation times itself as a Maxwell 'demon' would do. Indirectly, our result also shows that thermal randomness appears satisfactorily described within a conventional quantum-statistical framework, and that the attempts advocated notably by Ilya Prigogine to go beyond a Hilbert space description of quantum statistics do not seem justified - at least according to the present state of our knowledge. Fundamental interpretation of randomness, either thermal or quantum mechanical, is briefly discussed.

François Barriquand

2005-07-26T23:59:59.000Z

66

Potential environmental consequences of ocean thermal energy conversion (OTEC) plants. A workshop  

SciTech Connect (OSTI)

The concept of generating electrical power from the temperature difference between surface and deep ocean waters was advanced over a century ago. A pilot plant was constructed in the Caribbean during the 1920's but commercialization did not follow. The US Department of Energy (DOE) earlier planned to construct a single operational 10MWe Ocean Thermal Energy Conversion (OTEC) plant by 1986. However, Public Law P.L.-96-310, the Ocean Thermal Energy Conversion Research, Development and Demonstration Act, and P.L.-96-320, the Ocean Thermal Energy Conversion Act of 1980, now call for acceleration of the development of OTEC plants, with capacities of 100 MWe in 1986, 500 MWe in 1989, and 10,000 MWe by 1999 and provide for licensing and permitting and loan guarantees after the technology has been demonstrated.

Walsh, J.J. (ed.)

1981-05-01T23:59:59.000Z

67

On the transition from photoluminescence to thermal emission and its implication on solar energy conversion  

E-Print Network [OSTI]

Photoluminescence (PL) is a fundamental light-matter interaction, which conventionally involves the absorption of energetic photon, thermalization and the emission of a red-shifted photon. Conversely, in optical-refrigeration the absorption of low energy photon is followed by endothermic-PL of energetic photon. Both aspects were mainly studied where thermal population is far weaker than photonic excitation, obscuring the generalization of PL and thermal emissions. Here we experimentally study endothermic-PL at high temperatures. In accordance with theory, we show how PL photon rate is conserved with temperature increase, while each photon is blue shifted. Further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also show how endothermic-PL generates orders of magnitude more energetic photons than thermal emission at similar temperatures. Relying on these observations, we propose and theoretically study thermally enhanced PL (TEPL) for highly eff...

Manor, Assaf; Rotschild, Carmel

2014-01-01T23:59:59.000Z

68

Microsoft Word - table_B2.doc  

Gasoline and Diesel Fuel Update (EIA)

81 81 Table B2. Thermal Conversion Factors and Data, 2004-2008 Conversion Factor (Btu per cubic foot) Production Marketed...................................................... R 1,104 R 1,104 1,103 1,104 1,100 Extraction Loss ............................................ 2,666 2,660 2,639 2,648 2,643 Total Dry Production.................................. R 1,026 R 1,028 1,028 1,029 1,027 Supply Dry Production ............................................. R 1,026 R 1,028 1,028 1,029 1,027 Receipts at U.S. Borders Imports....................................................... 1,025 1,025 1,025 1,025 1,025 Intransit Receipts ....................................... 1,025 1,025 1,025 1,025 1,025 Withdrawals from Storage Underground Storage.................................

69

Microsoft Word - table_B2.doc  

Gasoline and Diesel Fuel Update (EIA)

81 81 Table B2. Thermal Conversion Factors and Data, 2005-2009 Conversion Factor (Btu per cubic foot) Production Marketed...................................................... 1,104 1,103 1,104 1,100 1,101 Extraction Loss ............................................ 2,660 2,639 2,648 2,643 2,627 Total Dry Production.................................. 1,028 1,028 1,029 1,027 1,025 Supply Dry Production ............................................. 1,028 1,028 1,029 1,027 1,025 Receipts at U.S. Borders Imports....................................................... 1,025 1,025 1,025 1,025 1,025 Intransit Receipts ....................................... 1,025 1,025 1,025 1,025 1,025 Withdrawals from Storage Underground Storage.................................

70

Microsoft Word - table_B2.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 Table B2. Thermal Conversion Factors and Data, 2006-2010 Conversion Factor (Btu per cubic foot) Production Marketed...................................................... 1,103 R 1,102 1,100 1,101 1,097 Extraction Loss ............................................ 2,639 2,648 2,643 2,627 2,590 Total Dry Production.................................. 1,028 R 1,027 1,027 1,025 1,023 Supply Dry Production ............................................. 1,028 R 1,027 1,027 1,025 1,023 Receipts at U.S. Borders Imports....................................................... 1,025 1,025 1,025 1,025 1,025 Intransit Receipts ....................................... 1,025 1,025 1,025 1,025 1,025 Withdrawals from Storage Underground Storage.................................

71

Microsoft Word - table_B2.doc  

Gasoline and Diesel Fuel Update (EIA)

81 81 Table B2. Thermal Conversion Factors and Data, 2003-2007 Conversion Factor (Btu per cubic foot) Production Marketed...................................................... 1,106 1,105 1,105 1,103 1,104 Extraction Loss ............................................ 2,747 2,666 2,660 2,639 2,648 Total Dry Production.................................. 1,031 1,027 1,029 1,028 1,029 Supply Dry Production ............................................. 1,031 1,027 1,029 1,028 1,029 Receipts at U.S. Borders Imports....................................................... 1,025 1,025 1,025 1,025 1,025 Intransit Receipts ....................................... 1,025 1,025 1,025 1,025 1,025 Withdrawals from Storage Underground Storage.................................

72

Microsoft Word - table_B2.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table B2. Thermal Conversion Factors and Data, 2002-2006 Conversion Factor (Btu per cubic foot) Production Marketed...................................................... 1,106 1,106 1,105 R 1,105 1,103 Extraction Loss ............................................ 2,671 2,747 2,666 2,660 2,639 Total Dry Production.................................. 1,027 1,031 1,027 1,029 1,028 Supply Dry Production ............................................. 1,027 1,031 1,027 1,029 1,028 Receipts at U.S. Borders Imports....................................................... 1,022 1,025 1,025 1,025 1,025 Intransit Receipts ....................................... 1,022 1,025 1,025 1,025 1,025 Withdrawals from Storage Underground Storage.................................

73

Thermal component of residuum conversion in two-stage coal liquefaction  

SciTech Connect (OSTI)

An experimental investigation was conducted to ascertain the contribution of thermal reactions to the conversion of residuum in the hydroprocessing reactor of two-stage liquefaction processes. Feedstocks prepared from residuum produced at the Wilsonville Advanced Coal Liquefaction Test Facility (ACLTF) and solvents produced by the catalytic hydrotreatment of solvent obtained from the Wilsonville ACLTF were reacted in the absence of a catalyst at temperatures ranging from 720/sup 0/F to 850/sup 0/F. Detailed characterization of the composite feedstock and product samples as well as of three fractions of each obtained by vacuum distillation was performed to ascertain the extent of residuum conversion, heteroatom removal, and hydrogen rearrangement. The results showed that hydrogenation of the solvent portion of the hydrotreater feedstock neither enhances residuum conversion nor results in the transfer of hydrogen to the residuum. Higher reaction temperatures enhanced the removal of sulfur but had little effect on other reactions. The results suggest that the conversion of residuum in the hydroprocessing reactor of two-stage liquefaction processes must occur catalytically rather than thermally. 10 refs., 1 fig., 30 tabs.

Stiegel, G.J.; Lett, R.G.; Cillo, D.L.; Mima, J.A.; Tischer, R.E.; Narain, N.K.

1985-06-01T23:59:59.000Z

74

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

clean and efficient energy conversion in power systems," inSteam Power Plant," in Energy conversion, YG Goswami and Fazeotropic mixture energy conversion," Energy Conversion and

Ho, Tony

2012-01-01T23:59:59.000Z

75

Study of thermal conversion of naphthenic oils on the basis of analysis of their middle fractions  

SciTech Connect (OSTI)

The composition of the middle fractions of the thermal decomposition products of naphthenic oils obtained at 300, 350, and 400{degrees}C was studied. It was shown that the character of conversions of petroleum hydrocarbons is governed by the intensity of thermal treatment and by the chemical nature of the starting oil. The removal of aliphatic chains from high-boiling components of the petroleum at a temperature below 350{degrees}C results in the new formation of linear and isoprene alkanes in their middle fractions similarly to the catagenic transformations of oils in deposits. The rise in temperature up to 400{degrees}C enhances the destruction processes related to extension of the reactions of the homolytic cleavage of C-C bonds in aliphatic chains. This results in practically complete destruction of isoprene alkanes and in predominance of low-molecular homologs among the linear alkanes. On the basis of the results obtained it can be supposed that the thermal treatment is an important factor in the conversion of naphthenic oils into paraffin oils. 10 refs., 2 figs., 3 tabs.

Kayukova, G.P.; Kurbskii, G.P.; Mutalapova, R.I. [A.E. Arbuzov Inst. of Organic and Physical Chemistry, Kazan (Russian Federation)] [and others

1994-05-10T23:59:59.000Z

76

Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management  

SciTech Connect (OSTI)

The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B. [eds.

1996-12-31T23:59:59.000Z

77

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

and Techniques,” Energy Conversion and Management, 39 (11),and Applications,” Energy Conversion and Management, 45 ,and direct solar energy conversion to work. Focus should be

Coso, Dusan

2013-01-01T23:59:59.000Z

78

Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants  

SciTech Connect (OSTI)

The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

Bowyer, J.M.

1984-04-15T23:59:59.000Z

79

Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants  

SciTech Connect (OSTI)

The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.

Bowyer, J.M.

1984-04-01T23:59:59.000Z

80

NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)  

SciTech Connect (OSTI)

This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

Not Available

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Performance analysis of an absorption power cycle for ocean thermal energy conversion  

Science Journals Connector (OSTI)

Abstract An absorption power cycle with two ejectors is proposed for ocean thermal energy conversion. The ammonia–water is used as the working fluid. The ejectors are driven by vapor and solution from the sub-generator. Based on the first and second law, the mathematical model for this cycle is developed and theoretical analysis is conducted to evaluate the effects of thermodynamic parameters on the performance of this cycle. Results show that the absorption temperature is increased by 2.0–6.5 °C by employing the two-stage ejector sub-cycle, which indicates that this proposed cycle can be driven with a lower temperature difference. Further, the thermal efficiency, net thermal efficiency and exergy efficiency of this cycle can reach to 4.17%, 3.10% and 39.92% respectively. Besides, the generation pressure, the heating source temperature, the solution concentration, and the expansion ratio, as well as the entrainment ratio of the first stage ejector have significant effects on the absorption temperature, the thermal efficiency, the exergy efficiency and the exergy loss of this cycle. In addition, 49.80% of exergy loss in this proposed cycle occurs in the generators and reheater, followed by the ejectors of 36.12%.

Han Yuan; Ning Mei; Peilin Zhou

2014-01-01T23:59:59.000Z

82

A computational analysis of the evaporator/artery of an alkali metal thermal to electric conversion (AMTEC) PX series cell  

E-Print Network [OSTI]

, while minimizing mass. Current technology, such as Radioisotope Thermoelectric Generators (RTG's) are reliable, but do not supply the power conversion efficiencies desired for future space missions. That leads to Alkali Metal Thermal to Electric...-series cells to generate electricity for the deep space vehicle. The higher efficiency of AMTEC compared to other conversion technologies, such as Radioisotope Thermoelectric Generators (RTG's), results in less energy source material being launched...

Pyrtle, Frank

1999-01-01T23:59:59.000Z

83

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network [OSTI]

Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.

Riccardo Messina; Philippe Ben-Abdallah

2012-07-05T23:59:59.000Z

84

Microsoft Word - table_B2.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table B2. Thermal conversion factors and data, 2007-2011 Conversion Factor (Btu per cubic foot) Production Marketed 1,102 1,100 1,101 R 1,098 1,094 Extraction Loss 2,648 2,643 2,627 R 2,598 2,550 Total Dry Production 1,027 1,027 1,025 1,023 1,022 Supply Dry Production 1,027 1,027 1,025 1,023 1,022 Receipts at U.S. Borders Imports 1,025 1,025 1,025 1,025 1,025 Intransit Receipts 1,025 1,025 1,025 1,025 1,025 Withdrawals from Storage Underground Storage 1,027 1,027 1,025 1,023 1,022 LNG Storage 1,027 1,027 1,025 1,023 1,022 Supplemental Gas Supplies 1,027 1,027 1,025 1,023 1,022 Balancing Item 1,093 548 1,272 R 793 1,163 Total Supply NA NA NA NA NA

85

Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor  

Science Journals Connector (OSTI)

Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods to Reduce Exergy Losses in a Sulfuric Acid Decomposition Reactor ... The first design uses optimal control theory to obtain a more uniform distribution of the entropy production. ... This optimized design is found to perform the best, but it requires significant changes in the heating equipment in order to approximately realize the optimal temperature profiles. ...

Leen V. van der Ham; Joachim Gross; Ad Verkooijen; Signe Kjelstrup

2009-08-06T23:59:59.000Z

86

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

on Sustainable thermal Energy Storage Technologies, Part I:2009, “Review on Thermal Energy Storage with Phase Change2002, “Survey of Thermal Energy Storage for Parabolic Trough

Coso, Dusan

2013-01-01T23:59:59.000Z

87

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage,” Angewandtescale molecular solar thermal energy storage system, in

Coso, Dusan

2013-01-01T23:59:59.000Z

88

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

89

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

Coso, Dusan

2013-01-01T23:59:59.000Z

90

Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012  

SciTech Connect (OSTI)

The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

2012-06-30T23:59:59.000Z

91

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Thermal Energy Storage,” Renewable and Sustainable EnergyReview on Sustainable thermal Energy Storage Technologies,Energy Storage Using Phase Change Materials,” Renewable and Sustainable Energy

Coso, Dusan

2013-01-01T23:59:59.000Z

92

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Nonconventional Fluids," ASME Jour of Engineering for Power,fluids for Organic Rankine Cycles," Applied Thermal Engineering,fluid in waste heat recovery," Applied Thermal Engineering,

Ho, Tony

2012-01-01T23:59:59.000Z

93

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Solar Thermal Energy Research," in Sandia National Laboratory Science and Engineering Exposition 2011, Albuquerque, New Mexico,

Ho, Tony

2012-01-01T23:59:59.000Z

94

A novel thermally biased mechanical energy conversion cycle Ian M. McKinley, Sam Goljahi, Christopher S. Lynch, and Laurent Pilona)  

E-Print Network [OSTI]

organic Rankine cycles,3 and thermoelectric devices.4,5 Stirling engines and organic Rankine cyclesA novel thermally biased mechanical energy conversion cycle Ian M. McKinley, Sam Goljahi) This paper demonstrates a new power cycle for direct conversion of mechanical energy into electrical energy

Pilon, Laurent

95

Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Modeling Study  

Science Journals Connector (OSTI)

The direct non-oxidative conversion of methane to higher hydrocarbons ... dielectric barrier discharges has been investigated theoretically at atmospheric pressure. Preliminary modeling of the results is...2...hy...

Yun Yang

2003-06-01T23:59:59.000Z

96

Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating  

Science Journals Connector (OSTI)

Abstract This article reports the off-design performance analysis of a closed-cycle ocean thermal energy conversion (OTEC) system when a solar thermal collector is integrated as an add-on preheater or superheater. Design-point analysis of a simple OTEC system was numerically conducted to generate a gross power of 100 kW, representing a base OTEC system. In order to improve the power output of the OTEC system, two ways of utilizing solar energy are considered in this study: (1) preheating of surface seawater to increase its input temperature to the cycle and (2) direct superheating of the working fluid before it enters a turbine. Obtained results reveal that both preheating and superheating cases increase the net power generation by 20–25% from the design-point. However, the preheating case demands immense heat load on the solar collector due to the huge thermal mass of the seawater, being less efficient thermodynamically. The superheating case increases the thermal efficiency of the system from 1.9% to around 3%, about a 60% improvement, suggesting that this should be a better approach in improving the OTEC system. This research provides thermodynamic insight on the potential advantages and challenges of adding a solar thermal collection component to OTEC power plants.

Hakan Aydin; Ho-Saeng Lee; Hyeon-Ju Kim; Seung Kyoon Shin; Keunhan Park

2014-01-01T23:59:59.000Z

97

Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal carbonization (HTC) is a novel thermal conversion process. Black-Right-Pointing-Pointer HTC converts wastes into value-added resources. Black-Right-Pointing-Pointer Carbonization integrates majority of carbon into solid-phase. Black-Right-Pointing-Pointer Carbonization results in a hydrochar with high energy density. Black-Right-Pointing-Pointer Using hydrochar as an energy source may be beneficial. - Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 Degree-Sign C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO{sub 2}-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage).

Lu Xiaowei; Jordan, Beth [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Berge, Nicole D., E-mail: berge@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

2012-07-15T23:59:59.000Z

98

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

such as in solar energy and geothermal energy [183]. Solar128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become an

Ho, Tony

2012-01-01T23:59:59.000Z

99

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

temperature energy resources such as solar thermal,low temperature energy resources such as solar ponds (70 orenewable energy resources such as non-concentrated solar

Ho, Tony

2012-01-01T23:59:59.000Z

100

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become ansolar field, and geothermal energy, where energy is obtained

Ho, Tony

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules  

Science Journals Connector (OSTI)

The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential ...

James R. Salvador; Jung Y. Cho; Zuxin Ye…

2013-07-01T23:59:59.000Z

102

The magnesium silicide germanide stannide alloy: A new concept in ocean thermal energy conversion  

SciTech Connect (OSTI)

In devices hitherto used for the direct conversion of heat into electricity, commonly known as ''thermoelectric energy converters'', the efficiency of conversion is appreciably lower than that of conventional reciprocating or rotary heat engines. This low efficiency is brought about by the physical properties of the materials selected for the manufacture of these devices. The materials that are currently being used for this purpose are either simple elements and alloys thereof, such as silicon and germanium, or intermetallic compounds, either simple or alloys and solid solutions thereof. Of the latter, mention may be made of bismuth telluride, antimony telluride, lead telluride, antimony silver telluride, lead selenide, bismuth selenide, antimony selenide, etc., as well as mixtures and solid solutions of these and other compounds. A search in respect of these materials carried out in the U.S. Patent literature indicates indeed a quite substantial and impressive record.

Nicolaou, M.C.

1983-12-01T23:59:59.000Z

103

Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals  

DOE Patents [OSTI]

A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

Peters, William A. (Lexington, MA); Howard, Jack B. (Winchester, MA); Modestino, Anthony J. (Hanson, MA); Vogel, Fredreric (Villigen PSI, CH); Steffin, Carsten R. (Herne, DE)

2009-02-24T23:59:59.000Z

104

Ocean Thermal Energy Conversion Primer L. A. Vega, Ph.D.  

E-Print Network [OSTI]

source and the heat sink required for a heat engine. A practical application is found in a system (heat engine) designed to transform the thermal energy into electricity. This is referred to as OTEC for Ocean seawater is flash-evaporated in a vacuum chamber. The resulting low-pressure steam is used to drive

105

Assessing the Power Generation Solution by Thermal-chemical Conversion of Meat Processing Industry Waste  

Science Journals Connector (OSTI)

Abstract The paper presents a waste to energy conversion solution using a pyro-air-gasification process applied to biodegradable residues from meat processing industry integrated with small scale thermodynamic cycle for power generation. The solution of air- gasification at atmospheric pressure is based on experimental research and engineering computation developed during the study. The input data, such as: waste chemical composition, low/high heating value and proximate analysis, correspond to real waste products, sampled directly from the industrial processing line. Separate drying as first stage pre-treatment and integrated partial drying inside the reactor was used. The syngas low heating value of about 4.3 MJ/Nm3 is insured by its combustible fraction (H2– 12.2%, CO – 19.2%, CH4 – 1.6%). According to syngas composition the thermodynamic cycle was chosen – Otto gas engine. For a given waste feed-in flow considered in our computation of about 110 kg/h the power output obtained is about 50 kWel. The global energy efficiency of the unit is about 15%. The results offer answers to energy recovery waste disposal for residues with characteristics that are not suitable for classic incineration or limit the energy efficiency of the process making it non-economical (the average humidity of the raw waste is about 42% in mass). The research focused on waste to energy conversion process energy efficiency, waste neutralization and power generation.

Cosmin Marculescu; Florin Alexe

2014-01-01T23:59:59.000Z

106

Energy partition and conversion of solar and thermal radiation into sensible and latent heat in a greenhouse under arid conditions  

Science Journals Connector (OSTI)

For a greenhouse thermal analysis, it is essential to know the energy partition and the amount of solar and thermal radiation converted into sensible and latent heat in the greenhouse. Factors that are frequently needed are: efficiency of utilization of incident solar radiation (?), and sensible and latent heat factors (? and ?). Previous studies considered these factors as constant parameters. However, they depend on the environmental conditions inside and outside the greenhouse, plants and soil characteristics, and structure, orientation and location of the greenhouse. Moreover, these factors have not yet been evaluated under the arid climatic conditions of the Arabian Peninsula. In this study, simple energy balance equations were applied to investigate ?, ? and ?; energy partitioning among the greenhouse components; and conversion of solar and thermal radiation into sensible and latent heat. For this study, we used an evaporatively cooled, planted greenhouse with a floor area of 48 m2. The parameters required for the analysis were measured on a sunny, hot summer day. The results showed that value of ? was almost constant (?0.75); whereas the values of ? and ? strongly depended on the net radiation over the canopy (Rna); and could be represented by exponential decay functions of Rna. At a plant density corresponding to a leaf area index (LAI) of 3 and an integrated incident solar energy of 27.7 MJ m?2 d?1, the solar and thermal radiation utilized by the greenhouse components were 20.7 MJ m?2 d?1 and 3.74 MJ m?2 d?1, respectively. About 71% of the utilized radiation was converted to sensible heat and 29% was converted to latent heat absorbed by the inside air. Contributions of the floor, cover and plant surfaces on the sensible heat of the inside air were 38.6%, 48.2% and 13.2%, respectively.

I.M. Al-Helal; A.M. Abdel-Ghany

2011-01-01T23:59:59.000Z

107

Organic Rankine power conversion subsystem development for the small community solar thermal power system  

SciTech Connect (OSTI)

The development and preliminary test results for an air-cooled, hermetically sealed 20 kW sub E organic Rankine cycle engine/alternator unit for use with point focussing distributed receiver solar thermal power system. A 750 F toluene is the working fluid and the system features a high speed, single-stage axial flow turbine direct-coupled to a permanent magnet alternator. Good performance was achieved with the unit in preliminary tests.

Barber, R.E.; Boda, F.P.

1982-07-01T23:59:59.000Z

108

Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power  

E-Print Network [OSTI]

DETERMINATION OF THERMAL-DEGRADATION RATES OF SOME CANDIDATE RANKINE-CYCLE ORGANIC WORKING FLUIDS FOR CONVERSION OF INDUSTRIAL WASTE HEAT INTO POWER Mohan L. Jain, Jack Demirgian, John L. Krazinski, and H. Bushby Argonne National Laboratory..., Argonne, Illinois Howard Mattes and John Purcell U.S. Department of Energy ABSTRACT Serious concerns over the long-term thermal In a previous study [1] based on systems stability of organic working fluids and its effect analysis and covering...

Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

1984-01-01T23:59:59.000Z

109

Direct thermal to electrical energy conversion using very low bandgap TPV cells in a gas-fired furnace system  

Science Journals Connector (OSTI)

Abstract In this paper, electricity generation using very low bandgap InGaAsSb thermophotovoltaic (TPV) cells whose bandgap is 0.53 eV was investigated in a gas-fired furnace system where thermal radiation was emitted from a metal alloy emitter. The electric output of the InGaAsSb TPV cells was characterized under various operating conditions. The cell short circuit density was measured to be 3.01 A/cm2 at an emitter temperature of 1197 °C. At this emitter temperature, an electric power density of 0.65 W/cm2 was produced by the TPV cells. Experimental results show that direct thermal to electrical energy conversion was achieved in a gas-fired heating furnace system. Such a system could be employed to form a micro-combined heat and power (micro-CHP) process where exhaust heat is utilized for home heating needs. The TPV integrated energy system provides an effective means for primary energy savings.

K. Qiu; A.C.S. Hayden

2014-01-01T23:59:59.000Z

110

Solar Thermoelectric Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

111

An economic and environmental assessment of transporting bulk energy from a grazing ocean thermal energy conversion facility  

Science Journals Connector (OSTI)

Abstract An ocean thermal energy conversion (OTEC) facility produces electrical power without generating carbon dioxide (CO2) by using the temperature differential between the reservoir of cold water at greater depths and the shallow mixed layer on the ocean surface. As some of the best sites are located far from shore, one option is to ship a high-energy carrier by tanker from these open-ocean or “grazing” OTEC platforms. We evaluate the economics and environmental attributes of producing and transporting energy using ammonia (NH3), liquid hydrogen (LH2) and methanol (CH3OH). For each carrier, we develop transportation pathways that include onboard production, transport via tanker, onshore conversion and delivery to market. We then calculate the difference between the market price and the variable cost for generating the product using the OTEC platform without and with a price on CO2 emissions. Finally, we compare the difference in prices to the capital cost of the OTEC platform and onboard synthesis equipment. For all pathways, the variable cost is lower than the market price, although this difference is insufficient to recover the entire capital costs for a first of a kind OTEC platform. With an onboard synthesis efficiency of 75%, we recover 5%, 25% and 45% of the capital and fixed costs for LH2, CH3OH and NH3, respectively. Improving the capital costs of the OTEC platform by up to 25% and adding present estimates for the damages from CO2 do not alter these conclusions. The near-term potential for the grazing OTEC platform is limited in existing markets. In the longer term, lower capital costs combined with improvements in onboard synthesis costs and efficiency as well as increases in CO2 damages may allow the products from OTEC platforms to enter into markets.

Elisabeth A. Gilmore; Andrew Blohm; Steven Sinsabaugh

2014-01-01T23:59:59.000Z

112

Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis  

Science Journals Connector (OSTI)

Energy and exergy analyses are reported of hydrogen production via an ocean thermal energy conversion (OTEC) system coupled with a solar-enhanced proton exchange membrane (PEM) electrolyzer. This system is composed of a turbine, an evaporator, a condenser, a pump, a solar collector and a PEM electrolyzer. Electricity is generated in the turbine, which is used by the PEM electrolyzer to produce hydrogen. A simulation program using Matlab software is developed to model the PEM electrolyzer and OTEC system. The simulation model for the PEM electrolyzer used in this study is validated with experimental data from the literature. The amount of hydrogen produced, the exergy destruction of each component and the overall system, and the exergy efficiency of the system are calculated. To better understand the effect of various parameters on system performance, a parametric analysis is carried out. The energy and exergy efficiencies of the integrated OTEC system are 3.6% and 22.7% respectively, and the exergy efficiency of the PEM electrolyzer is about 56.5% while the amount of hydrogen produced by it is 1.2 kg/h.

Pouria Ahmadi; Ibrahim Dincer; Marc A. Rosen

2013-01-01T23:59:59.000Z

113

Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

A pertinent question, however, is: what is the worldwide power resource that could be extracted with OTEC plants without affecting the thermohaline ocean circulation? The estimate is that the maximum steady-state...

Dr. Luis A. Vega Ph.D.

2013-01-01T23:59:59.000Z

114

Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

A pertinent question, however, is: what is the worldwide power resource that could be extracted with OTEC plants without affecting the thermohaline ocean circulation? The estimate is that the maximum steady-state...

Dr. Luis A. Vega Ph.D.

2012-01-01T23:59:59.000Z

115

Categorical Exclusion Determinations: B2.1 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 19, 2010 April 19, 2010 CX-002099: Categorical Exclusion Determination Solar Thermal Water Heaters CX(s) Applied: B2.1, A9, B5.1 Date: 04/19/2010 Location(s): Logan, Utah Office(s): Energy Efficiency and Renewable Energy April 19, 2010 CX-002098: Categorical Exclusion Determination Condensing Summer Boiler CX(s) Applied: B2.1, B2.5, A9, B5.1 Date: 04/19/2010 Location(s): Logan, Utah Office(s): Energy Efficiency and Renewable Energy April 19, 2010 CX-002097: Categorical Exclusion Determination Additional Thermostatic Zones CX(s) Applied: B2.1, B2.2, A9, B1.4, B5.1 Date: 04/19/2010 Location(s): Logan, Utah Office(s): Energy Efficiency and Renewable Energy April 19, 2010 CX-001861: Categorical Exclusion Determination Park County's Activity Area 1 (Development of Energy Efficiency and

116

Countermeasures to Microbiofouling in Simulated Ocean Thermal Energy Conversion Heat Exchangers with Surface and Deep Ocean Waters in Hawaii  

Science Journals Connector (OSTI)

...thermal energy from warm ocean waters. A small fraction...converted to electrical power and waste heat is rejected...water pumped from the ocean depth. Solar energy absorbed by the ocean surface provides the heat...Thermal losses, the power requirements to pump large...

Leslie Ralph Berger; Joyce A. Berger

1986-06-01T23:59:59.000Z

117

Effect of a non-thermal, atmospheric-pressure, plasma brush on conversion of model self-etch adhesive formulations compared to conventional photo-polymerization  

Science Journals Connector (OSTI)

Objective To determine the effectiveness and efficiency of non-thermal, atmospheric plasmas for inducing polymerization of model dental self-etch adhesives. Methods The monomer mixtures used were bis-[2-(methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA), with mass ratios of 70/30, 50/50 and 30/70. Water was added to the above formulations: 10–30 wt%. These monomer/water mixtures were treated steadily for 40 s under a non-thermal atmospheric plasma brush working at temperatures from 32 to 35 °C. For comparison, photo-initiators were added to the above formulations for photo-polymerization studies, which were light-cured for 40 s. The degree of conversion (DC) of both the plasma- and light-cured samples was measured using FTIR spectroscopy with an attenuated total reflectance attachment. Results The non-thermal plasma brush was effective in inducing polymerization of the model self-etch adhesives. The presence of water did not negatively affect the DC of plasma-cured samples. Indeed, DC values slightly increased, with increasing water content in adhesives: from 58.3% to 68.7% when the water content increased from 10% to 30% in the adhesives with a 50/50 (2MP/HEMA) mass ratio. Conversion values of the plasma-cured groups were higher than those of light-cured samples with the same mass ratio and water content. Spectral differences between the plasma- and light-cured groups indicate subtle structural distinctions in the resultant polymer networks. Significance This research if the first to demonstrate that the non-thermal plasma brush induces polymerization of model adhesives under clinical settings by direct/indirect energy transfer. This device shows promise for polymerization of dental composite restorations having enhanced properties and performance.

Mingsheng Chen; Ying Zhang; Xiaomei Yao; Hao Li; Qingsong Yu; Yong Wang

2012-01-01T23:59:59.000Z

118

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9, 2011 9, 2011 CX-005228: Categorical Exclusion Determination Alaska-Tribe-Healy Lake Traditional Council CX(s) Applied: B2.5, B5.1 Date: 02/09/2011 Location(s): Healy Lake, Alaska Office(s): Energy Efficiency and Renewable Energy February 3, 2011 CX-005514: Categorical Exclusion Determination 2F Evaporator Feed Pump Flush Water Piping Pipe Support CX(s) Applied: B2.5 Date: 02/03/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office January 25, 2011 CX-005073: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant Subgrant: Lums Pond State Park Natural Gas Conversion CX(s) Applied: B2.5 Date: 01/25/2011 Location(s): Delaware Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

119

Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335  

SciTech Connect (OSTI)

The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

Netter, J.

2013-08-01T23:59:59.000Z

120

Fabrication and testing of an infrared spectral control component for thermophotovoltaic power conversion applications  

E-Print Network [OSTI]

Thermophotovoltaic (TPV) power conversion is the direct conversion of thermal radiation to electricity. Conceptually, TPV power conversion is a very elegant means of energy conversion. A thermal source emits a radiative ...

O'Sullivan, Francis M. (Francis Martin), 1980-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Categorical Exclusion Determinations: B2.2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 12, 2010 May 12, 2010 CX-002592: Categorical Exclusion Determination Competitive Renewable Grants Program - Furman University Solar CX(s) Applied: B2.2, A9, B5.1 Date: 05/12/2010 Location(s): Greenville, South Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 12, 2010 CX-002590: Categorical Exclusion Determination Competitive Renewable Grants Program - Columbia College Solar Thermal CX(s) Applied: B2.2, A9, B1.5, B5.1 Date: 05/12/2010 Location(s): Columbia, South Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 12, 2010 CX-002281: Categorical Exclusion Determination Ball State University Ground Source Geothermal District Heating and Cooling System CX(s) Applied: B2.2, A9, B5.1

122

Project Profile: Brayton Solar Power Conversion System  

Broader source: Energy.gov [DOE]

Brayton Energy, under the CSP R&D FOA, is looking to demonstrate the viability and economics of a new concentrating solar thermal power conversion system.

123

Direct Conversion of Light into Work - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Solar Thermal Industrial Technologies Industrial Technologies Find More Like This Return to Search Direct Conversion of Light into Work Lawrence Berkeley National...

124

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

broad importance in many thermal conversion and efficiency applications beyond solar energy. The RG3 team is establishing fundamental principles for thermal photon harvesting...

125

Appendix 2011 95 B.2 Subproject Brokate  

E-Print Network [OSTI]

Appendix 2011 95 B.2 Subproject Brokate Simulating CO2 Sequestration Hysteretic Aspects of CO2 is to develop and implement models describing the hysteresis in the context of the CO2 sequestration process of the annual report 2010). It is based on Darcy's law and assumes the phases to be weakly compressible

Turova, Varvara

126

Conversion Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

127

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan…

2012-01-01T23:59:59.000Z

128

TiB2/Ni coatings on surface of copper alloy electrode prepared by electrospark deposition  

Science Journals Connector (OSTI)

In order to improve the lifespan of spot-welding electrodes used for welding zinc coated steel sheets, titanium diboride was deposited onto their surface after precoating nickel as an intermediate layer. The microstructures and phase compositions of TiB2 and Ni coatings were characterized by SEM and XRD. The coating hardness was measured using a microhardness tester. The results indicate that a satisfactory TiB2 coating is obtained as a result of the intermediate nickel layer acting as a good binder between the TiB2 coating and the copper alloy substrate. Owing to its capacity of deforming, the precoated nickel layer is dense and crack free, while cracks and pores are observed in the TiB2 coating. The hardness of the TiB2/Ni coating decreases with the increase of voltage and capacitance because of the diffusion of copper and nickel and the oxidation of the coating materials. Because of the good thermal and electrical conductivities and high hardness properties of TiB2, the deformation of the electrode with TiB2/Ni coating is reduced and its spot-welding life is by far prolonged than that of the uncoated one.

Cheng LUO; Xiang XIONG; Shi-jie DONG

2011-01-01T23:59:59.000Z

130

Microsoft Word - SyrB2.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Figure 1. Crystal structure of the non-heme iron halogenase SyrB2. A. Overall structure showing cupin fold. B. Active site iron coordination. Iron (brown) is coordinated by two histidines, α- ketoglutarate (grey sticks), water (cyan), and chloride (green). Crystal Structure of Iron-dependent Halogenase Over 4000 natural products contain halide atoms such as chlorine, bromine, or iodine. 1 Halogenated natural products are medically valuable and include antibiotics (chlorotetracycline and vancomycin), antitumor agents (rebeccamycin and calichemycin), and human thyroid hormone (thyroxine). 2 Halogenation is essential to the biological activity and chemical reactivity of such compounds, and often generates versatile molecular building

131

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

132

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

Sugama, T.

1997-02-18T23:59:59.000Z

133

Stability maps to predict anomalous ductility in B2 materials  

E-Print Network [OSTI]

While most B2 materials are brittle, a new class of B2 (rare-earth) intermetallic compounds is observed to have large ductility. We analytically derive a necessary condition for ductility (dislocation motion) involving ...

Sun, Ruoshi

134

Solar energy conversion.  

SciTech Connect (OSTI)

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

135

Microsoft Word - table_B2.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 2000 2001 2002 2003 2004 Conversion Factor (Btu per cubic foot) Production Marketed....................................................... 1,107 1,105 1,106 1,106 1,104 Extraction Loss ............................................. 2,662 2,687 2,671 2,747 2,666 Total Dry Production .................................. 1,025 1,028 1,027 1,031 1,027 Supply Dry Production .............................................. 1,025 1,028 1,027 1,031 1,027 Receipts at U.S. Borders Imports........................................................ 1,023 1,023 1,022 1,025 1,025 Intransit Receipts ........................................ 1,023 1,023 1,022 1,025 1,025 Withdrawals from Storage Underground Storage ................................. 1,025

136

Quantum Solar Energy Conversion and Application to Organic Solar Cells  

Science Journals Connector (OSTI)

When studying the limits of solar energy conversion, either by thermal or quantum processes, the sun has traditionally been treated as a blackbody (thermal equilibrium) radiator with surface temperature 5 800 ...

Gottfried H. Bauer; Peter Würfel

2003-01-01T23:59:59.000Z

137

Colorado Centre for Biorefining and Biofuels C2B2 | Open Energy Information  

Open Energy Info (EERE)

Biorefining and Biofuels C2B2 Biorefining and Biofuels C2B2 Jump to: navigation, search Name Colorado Centre for Biorefining and Biofuels (C2B2) Place Boulder, Colorado Zip 80309 Sector Biofuels, Biomass Product The Colorado Centre for Biorefining and Biofuels (C2B2) is a cooperative research and educational centre devoted to the conversion of biomass to fuels and other products. Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Thermally activated delayed fluorescence from {sup 3}n?* to {sup 1}n?* up-conversion and its application to organic light-emitting diodes  

SciTech Connect (OSTI)

Intense n?* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the n?* transition and the higher energy of the {sup 3}??* state than the {sup 3}n?* one lead to a small energy difference between the lowest singlet (S{sub 1}) and triplet (T{sub 1}) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T{sub 1} ? S{sub 1} pathway in the electroluminescent process.

Li, Jie; Zhang, Qisheng; Nomura, Hiroko [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Miyazaki, Hiroshi [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Functional Materials Laboratory, Nippon Steel and Sumikin Chemical Co., Ltd, 46–80 Nakabaru, Sakinohama, Tobata, Kitakyushu, Fukuoka 804–8503 (Japan); Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

2014-07-07T23:59:59.000Z

139

Society Evaluation of point defect concentrations in B2-FeAl intermetallic compound  

E-Print Network [OSTI]

Thermal defects are studied for three compositions (49, 50 and 52 at.%Fe) of the intermetallic compound FeAl with B2 structure. Magnetic measurements are used to determine the thermal defect concentrations. These concentrations are determined from fitting the experimental curves of magnetic susceptibility, obtained during an isochronal annealing after a quench. Next we have evaluated theoretically the concentrations of different point defects that exist in this compound. The used model is based in the Bragg-Williams approximation assuming the nearest-neighbour interaction. The calculated concentrations describe well the experimental values. I.

S. Zaroual; O. Sassi; J. Aride; J. Bernardini; G. Moya; Supérieure Takaddoum; B. P. Rabat-morocco

2001-01-01T23:59:59.000Z

140

Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant  

E-Print Network [OSTI]

has grown in energy technologies that use renewable resources such as solar (thermal conversion, ocean thermal energy conversion, photovoltaics, wind and biomass conversion), geothermal and magnetohydrodynamics (MHD) . A new concept that can...

Raiji, Ashok

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced nanofabrication of thermal emission devices  

E-Print Network [OSTI]

Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

Hurley, Fergus (Fergus Gerard)

2008-01-01T23:59:59.000Z

142

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

Proceedings on thermal energy storage and energy conversion;polymer microcomposites for thermal energy storage. SAE SocLow temperature thermal energy storage: a state of the art

Roshandell, Melina

2013-01-01T23:59:59.000Z

143

Categorical Exclusion Determinations: B2.1 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 27, 2011 December 27, 2011 CX-007570: Categorical Exclusion Determination EL-11-002 East Marshall High School Geothermal Project CX(s) Applied: B5.19, B2.1 Date: 12/27/2011 Location(s): Iowa Offices(s): Golden Field Office December 15, 2011 CX-007519: Categorical Exclusion Determination Waste Management Construction Support CX(s) Applied: B1.3, B1.11, B1.23, B1.24, B1.27, B1.28, B1.29, B1.31, B2.1 Date: 12/15/2011 Location(s): Tennessee Offices(s): Y-12 Site Office December 9, 2011 CX-007482: Categorical Exclusion Determination B94 Hazardous Gas Alarms CX(s) Applied: B1.29, B2.1, B2.2, B2.3, B2.5 Date: 12/09/2011 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory December 6, 2011 CX-007490: Categorical Exclusion Determination B-2 Area 40 Office Reconfiguration

144

Categorical Exclusion Determinations: B2.1 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 19, 2012 November 19, 2012 CX-009636: Categorical Exclusion Determination Ventilation Activities CX(s) Applied: B1.4, B1.16, B2.1, B2.3 Date: 11/19/2012 Location(s): Tennessee, California, California, Virginia Offices(s): Oak Ridge Office November 9, 2012 CX-009615: Categorical Exclusion Determination Y646 (Y189), Renovation of E-Wing Ventilation, Building 773-A CX(s) Applied: B2.1 Date: 11/09/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office September 21, 2012 CX-009238: Categorical Exclusion Determination Routine and Non-Routine Activities at the Grand Junction, Colorado, Office Site CX(s) Applied: B1.3, B1.4, B1.7, B1.13, B1.15, B1.16, B1.23, B1.24, B1.28, B2.1, B2.2, B2.4, B2.5, B3.1, B5.16, B6.1 Date: 09/21/2012 Location(s): Grand Junction

145

Application of Planck's law to thermionic conversion  

SciTech Connect (OSTI)

A simple, highly accurate, mathematical model of heat-to-electricity conversion is developed from Planck's law for the distribution of the radiant exitance of heat at a selected temperature. An electrical power curve is calculated by integration of the heat law over a selected range of electromagnetic wavelength corresponding to electrical voltage. A novel wavelength-voltage conversion factor, developed from the known wavelength-electron volt conversion factor, establishes the wavelength ({lambda}) for the integration. The Planck law is integrated within the limits {lambda} to 2{lambda}. The integration provides the ideal electrical power that is available from heat at the emitter temperature. When multiplied by a simple ratio, the calculated ideal power closely matches published thermionic converter experimental data. The thermal power model of thermionic conversion is validated by experiments with thermionic emission of ordinary electron tubes. A theoretical basis for the heat law based model of thermionic conversion is found in linear oscillator theory.

Caldwell, F.

1998-07-01T23:59:59.000Z

146

Categorical Exclusion Determinations: B2.2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 13, 2012 September 13, 2012 CX-009389: Categorical Exclusion Determination Security Camera Installation CX(s) Applied: A11, B1.7, B1.15, B2.2, B2.3 Date: 09/13/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 12, 2012 CX-009263: Categorical Exclusion Determination Design for High Performance Sustainable Building Modifications Based on E4 Report - PGH CX(s) Applied: B1.15, B1.23, B2.2 Date: 09/12/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 12, 2012 CX-009262: Categorical Exclusion Determination Design for High Performance Sustainable Building Modifications Based on E4 Report - MGN CX(s) Applied: B1.15, B1.23, B2.2 Date: 09/12/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

147

Categorical Exclusion Determinations: B2.2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 30, 2010 September 30, 2010 CX-004110: Categorical Exclusion Determination New Rochelle Energy Efficient Upgrades CX(s) Applied: A9, B1.24, B2.2, B5.1 Date: 09/30/2010 Location(s): New Rochelle, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2010 CX-004168: Categorical Exclusion Determination Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus CX(s) Applied: A1, A9, B2.2, B3.6, B5.1 Date: 09/28/2010 Location(s): Brevard County, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 25, 2010 CX-009401: Categorical Exclusion Determination Fire Protection Upgrade Major Construction Project CX(s) Applied: B1.15, B1.16, B2.2, B2.5

148

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

B2.5 B2.5 Categorical Exclusion Determinations: B2.5 Existing Regulations B2.5: Facility safety and environmental improvements Safety and environmental improvements of a facility (including, but not limited to, replacement and upgrade of facility components) that do not result in a significant change in the expected useful life, design capacity, or function of the facility and during which operations may be suspended and then resumed. Improvements include, but are not limited to, replacement/upgrade of control valves, in-core monitoring devices, facility air filtration systems, or substation transformers or capacitors; addition of structural bracing to meet earthquake standards and/or sustain high wind loading; and replacement of aboveground or belowground tanks and related

149

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 16, 2013 April 16, 2013 CX-010191: Categorical Exclusion Determination Site Arc Flash Electrical Upgrades CX(s) Applied: B1.3, B2.5 Date: 04/16/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory April 10, 2013 CX-010196: Categorical Exclusion Determination B903 Renovation CX(s) Applied: B1.16, B1.29, B2.1, B2.5 Date: 04/10/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory April 1, 2013 CX-010103: Categorical Exclusion Determination Alaska-TRIBE-ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC CX(s) Applied: B2.5, B5.1 Date: 04/11/2013 Location(s): Alaska Offices(s): Energy Efficiency and Renewable Energy March 11, 2013 CX-010137: Categorical Exclusion Determination Correct Obstruction in the Sprinkler System on Level 3 of HB-Line

150

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 24, 2012 January 24, 2012 CX-007626: Categorical Exclusion Determination Lapeyre Stair Installation CX(s) Applied: B2.5 Date: 01/24/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office January 19, 2012 CX-007634: Categorical Exclusion Determination Replace 802-H Platform/Control Valve Ladder with New Lapeyre Stairs CX(s) Applied: B2.5 Date: 01/19/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office January 18, 2012 CX-007640: Categorical Exclusion Determination Fire Suppression System Modifications, 772-1F CX(s) Applied: B2.5 Date: 01/18/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office January 17, 2012 CX-007526: Categorical Exclusion Determination Kentucky-County-Kenton CX(s) Applied: B2.5, B5.1

151

Categorical Exclusion Determinations: B2.3 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October 25, 2011 October 25, 2011 CX-007674: Categorical Exclusion Determination Replace Degraded Chemical Hood Exhaust Duct in 735-A, D-wing Service Floor CX(s) Applied: B2.3 Date: 10/25/2011 Location(s): South Carolina Offices(s): Savannah River Operations Office September 13, 2011 CX-006758: Categorical Exclusion Determination Versailles Borough Stray Gas Mitigation - Continuation CX(s) Applied: B2.3, B2.5, B6.1 Date: 09/13/2011 Location(s): Versailles, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory September 1, 2011 CX-007792: Categorical Exclusion Determination Gore Substation Safety Lighting CX(s) Applied: B2.3 Date: 09/01/2011 Location(s): Oklahoma Offices(s): Southwestern Power Administration August 25, 2011 CX-006514: Categorical Exclusion Determination

152

(12) United States Patent US006597600B2  

E-Print Network [OSTI]

.S. Patent Jul. 22, 2003 Sheet 5 0f 11 US 6,597,600 B2 0mg" mm) A08 E2mag inm6E ~®mUCo>+O>|/\\IIon?8 N@ SK

Baker, R. Jacob

153

Properties of L=1 B1 and B2* Mesons  

Science Journals Connector (OSTI)

This Letter presents the first strong evidence for the resolution of the excited B mesons B1 and B2* as two separate states in fully reconstructed decays to B+(*)?-. The mass of B1 is measured to be 5720.6±2.4±1.4??MeV/c2 and the mass difference ?M between B2* and B1 is 26.2±3.1±0.9??MeV/c2, giving the mass of the B2* as 5746.8±2.4±1.7??MeV/c2. The production rate for B1 and B2* mesons is determined to be a fraction (13.9±1.9±3.2)% of the production rate of the B+ meson.

V. M. Abazov et al. (The D0 Collaboration)

2007-10-23T23:59:59.000Z

154

Cloning and expression of equine NF-kB2  

E-Print Network [OSTI]

Cloning and Expression of Equine NF-#1;B2. (May 2008) Negin Mirhosseini, B.A., Shahid Bahonar University Chair of Advisory Committee: Dr. Susan Payne Equine infectious anemia virus (EIAV) is a macrophage-tropic retrovirus that causes persistent... Cloning and Expression of Equine NF-#1;B2. (May 2008) Negin Mirhosseini, B.A., Shahid Bahonar University Chair of Advisory Committee: Dr. Susan Payne Equine infectious anemia virus (EIAV) is a macrophage-tropic retrovirus that causes persistent...

Mirhosseini, Negin

2009-05-15T23:59:59.000Z

155

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 6, 2009 November 6, 2009 CX-000298: Categorical Exclusion Determination Maryland Revision 1 - EmPOWERing Financing Initiative CX(s) Applied: A1, A7, A9, A11, B1.3, B1.4, B1.5, B1.15, B1.22, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/06/2009 Location(s): Maryland Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 6, 2009 CX-000297: Categorical Exclusion Determination Maryland Revision 1 - Multi-Family Housing Retrofits for Low and Moderate Income Families CX(s) Applied: A7, B1.3, B1.4, B1.15, B1.22, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/06/2009 Location(s): Maryland Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 6, 2009 CX-000296: Categorical Exclusion Determination

156

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 16, 2012 July 16, 2012 CX-008511: Categorical Exclusion Determination Building 1 Renovation CX(s) Applied: B1.15, B1.16, B2.1, B2.2, B2.5 Date: 07/16/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory July 16, 2012 CX-009076: Categorical Exclusion Determination Add Redundant Safety Significant Relief Valve to 773-2A CX(s) Applied: B2.5 Date: 07/16/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office July 16, 2012 CX-008432: Categorical Exclusion Determination Puerto Rico-City-Toa Baja CX(s) Applied: A9, A11, B2.5, B5.1 Date: 07/16/2012 Location(s): Puerto Rico Offices(s): Energy Efficiency and Renewable Energy July 16, 2012 CX-008425: Categorical Exclusion Determination North Carolina-City-Jacksonville CX(s) Applied: A9, A11, B2.5, B5.1

157

Categorical Exclusion Determinations: B2.1 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 23, 2010 September 23, 2010 CX-004039: Categorical Exclusion Determination Replacement of Heating Systems CX(s) Applied: B1.3, B2.1, B2.5, B5.1 Date: 09/23/2010 Location(s): Bozeman, Montana Office(s): Energy Efficiency and Renewable Energy September 23, 2010 CX-004037: Categorical Exclusion Determination Insulation of the Gallatin County Weed Shop CX(s) Applied: B2.1, B2.5, B5.1 Date: 09/23/2010 Location(s): Bozeman, Montana Office(s): Energy Efficiency and Renewable Energy September 21, 2010 CX-004078: Categorical Exclusion Determination The Joint Center for Artificial Photosynthesis CX(s) Applied: A7, B1.4, B1.5, B1.7, B1.15, B1.24, B2.1, B2.2, B3.6 Date: 09/21/2010 Location(s): Chicago, Illinois Office(s): Science, Chicago Office September 10, 2010 CX-003839: Categorical Exclusion Determination

158

Thermodynamic Optimization in Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

As alternative energy sources to oil and uranium, we can consider well known alternative sources such as solar power, geothermal power and wind power. However when we consider the 21st century energy sources, ocean

Y. Ikegami; H. Uehara

1999-01-01T23:59:59.000Z

159

BETO Conversion Program  

Broader source: Energy.gov [DOE]

Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing BETO Conversion Program Bryna Berendzen, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

160

Photoelectrochemical solar energy conversion  

Science Journals Connector (OSTI)

In the present paper the progress in the field of solar energy conversion for the production of electricity and storable ... critically analyzed in view of their stability and conversion efficiency. A number of factors

Rüdiger Memming

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Techno-economic analysis of biomass to fuel conversion via the MixAlco process  

Science Journals Connector (OSTI)

Figure 2 depicts biomass-to-hydrocarbon fuels conversion via the MixAlco process. To make hydrocarbon ... -efficiency vapor-compression evaporator, (4) thermal conversion of salts to ketones, (5) hydrogenation...

Viet Pham; Mark Holtzapple…

2010-11-01T23:59:59.000Z

162

Sustainable systems for the storage and conversion of energy are dependent on interconnected  

E-Print Network [OSTI]

SEMTE abstract Sustainable systems for the storage and conversion of energy are dependent performance buildings, renewable energy conversion, and energy storage can be streamlined by identifying energy systems for harvesting low availability thermal energy and for providing integrated power, cooling

Reisslein, Martin

163

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 19, 2010 August 19, 2010 CX-003418: Categorical Exclusion Determination Energy Revolving Loan Program Market Title - State Energy Program American Recovery and Reinvestment Act CX(s) Applied: A8, B1.24, B2.2, B2.5, B5.1 Date: 08/19/2010 Location(s): Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 18, 2010 CX-003481: Categorical Exclusion Determination California - City - Compton CX(s) Applied: A9, A11, B2.5, B5.1 Date: 08/18/2010 Location(s): Compton, California Office(s): Energy Efficiency and Renewable Energy August 16, 2010 CX-003440: Categorical Exclusion Determination DuPage County Energy Savings and Green Initiatives Project CX(s) Applied: A9, B2.2, B2.5, B5.1 Date: 08/16/2010 Location(s): DuPage, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy

164

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 3, 2011 August 3, 2011 CX-006433: Categorical Exclusion Determination Texas-City-Conroe CX(s) Applied: B1.32, B2.5, B5.1 Date: 08/03/2011 Location(s): Conroe, Texas Office(s): Energy Efficiency and Renewable Energy August 2, 2011 CX-006415: Categorical Exclusion Determination Lawrence Government Energy Efficiency Retrofit Project CX(s) Applied: B1.4, B2.2, B2.5, B5.1 Date: 08/02/2011 Location(s): Lawrence, Indiana Office(s): Energy Efficiency and Renewable Energy, Nevada Site Office August 1, 2011 CX-009403: Categorical Exclusion Determination Building 20 Fleet Interactive Display Equipment Facility Expansion CX(s) Applied: B1.15, B1.16, B2.2, B2.5 Date: 08/01/2011 Location(s): New York Offices(s): Naval Nuclear Propulsion Program July 28, 2011 CX-006328: Categorical Exclusion Determination

165

Categorical Exclusion Determinations: B2.1 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 19, 2009 November 19, 2009 CX-000318: Categorical Exclusion Determination Massachusetts Revision 1 - Leading By Example CX(s) Applied: A1, A9, A11, B1.3, B1.4, B1.5, B1.7, B1.15, B1.22, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/19/2009 Location(s): Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 19, 2009 CX-000317: Categorical Exclusion Determination Massachusetts Revision 1 - Massachusetts Solar Stimulus CX(s) Applied: A1, A9, A11, B1.7, B1.15, B1.24, B1.31, B2.1, B2.2, B5.1 Date: 11/19/2009 Location(s): Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 19, 2009 CX-000316: Categorical Exclusion Determination Massachusetts Revision 1 - High Performance Buildings Program

166

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 9, 2010 February 9, 2010 CX-001109: Categorical Exclusion Determination Texas State Energy Program American Recovery and Reinvestment Act - Alternative Fuels and Technology Program CX(s) Applied: B2.5, B5.1 Date: 02/09/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 8, 2010 CX-000787: Categorical Exclusion Determination Generic Categorical Exclusion for Site-Wide Miscellaneous Installation and Maintenance Activities CX(s) Applied: B1.3, B1.4, B1.5, B1.9, B1.11, B1.15, B1.16, B1.17, B1.22, B1.27, B1.31, B2.1, B2.2, B2.3, B2.5 Date: 02/08/2010 Location(s): Illinois Office(s): Science, Argonne Site Office February 8, 2010 CX-001103: Categorical Exclusion Determination State of South Carolina American Recovery and Reinvestment Act Energy

167

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

a novel method of solar energy conversion that can lead tofundamentals of plasmonic energy conversion are reviewed in3. Plasmonic energy conversion fundamentals Surface plasmons

Clavero, Cesar

2014-01-01T23:59:59.000Z

168

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

30, 2010 30, 2010 CX-002174: Categorical Exclusion Determination Karuk Tribe Energy Efficiency and Conservation Strategy CX(s) Applied: B2.5, A9, A11, B5.1 Date: 04/30/2010 Location(s): Karuk Tribe, California Office(s): Energy Efficiency and Renewable Energy April 29, 2010 CX-002186: Categorical Exclusion Determination Bensalem Township's Technical Services and Design and Installation of a Ground Source Heat Pump CX(s) Applied: B2.5, A9, A11, B5.1 Date: 04/29/2010 Location(s): Bensalem Township, Pennsylvania Office(s): Energy Efficiency and Renewable Energy April 29, 2010 CX-002183: Categorical Exclusion Determination New Brunswick's Energy Efficiency and Conservation Strategy CX(s) Applied: B2.5, B3.6, A9, A11, B5.1 Date: 04/29/2010 Location(s): New Brunswick, New Jersey

169

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

23, 2009 23, 2009 CX-000147: Categorical Exclusion Determination Galloway's Rooftop Heating, Ventilating, and Air Conditioning Unit Replacement, Boiler Replacement, Lighting Upgrade CX(s) Applied: B2.5, B5.1, B1.4 Date: 12/23/2009 Location(s): Galloway, New Jersey Office(s): Energy Efficiency and Renewable Energy December 23, 2009 CX-000146: Categorical Exclusion Determination Galloway's Programmable Thermostats, Power Management Systems, Heating, Ventilating, and Air Conditioning Controls, Occupancy Sensors CX(s) Applied: B2.5, B5.1, B2.2 Date: 12/23/2009 Location(s): Galloway, New Jersey Office(s): Energy Efficiency and Renewable Energy December 22, 2009 CX-001278: Categorical Exclusion Determination Energy Efficiency (EE) and Conservation Strategy, Technical Consultant,

170

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 26, 2010 July 26, 2010 CX-003254: Categorical Exclusion Determination County Building Energy Efficiency Retrofits CX(s) Applied: A1, B1.5, B2.5, B5.1 Date: 07/26/2010 Location(s): Cerro Gordo County, Iowa Office(s): Energy Efficiency and Renewable Energy July 26, 2010 CX-003253: Categorical Exclusion Determination Illinois-City-Wheaton CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 07/26/2010 Location(s): Wheaton, Illinois Office(s): Energy Efficiency and Renewable Energy July 26, 2010 CX-003250: Categorical Exclusion Determination California-Tribe-Redwood Valley Rancheria of Pomo Indians CX(s) Applied: A9, B2.5, B5.1 Date: 07/26/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy July 26, 2010 CX-003246: Categorical Exclusion Determination

171

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 30, 2010 December 30, 2010 CX-004851: Categorical Exclusion Determination Crawford County Energy Efficiency Retrofits CX(s) Applied: B1.4, B2.5, B5.1 Date: 12/30/2010 Location(s): Crawford County, Kansas Office(s): Energy Efficiency and Renewable Energy December 30, 2010 CX-004856: Categorical Exclusion Determination Sullivan County Health Care Window Replacement CX(s) Applied: B2.5, B5.1 Date: 12/30/2010 Location(s): Sullivan County, New Hampshire Office(s): Energy Efficiency and Renewable Energy December 30, 2010 CX-004855: Categorical Exclusion Determination Cooperative Extension Energy Conservation Upgrades CX(s) Applied: B2.5, B5.1 Date: 12/30/2010 Location(s): Newport, New Hampshire Office(s): Energy Efficiency and Renewable Energy December 30, 2010 CX-004852: Categorical Exclusion Determination

172

Categorical Exclusion Determinations: B2.2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 9, 2010 July 9, 2010 CX-002978: Categorical Exclusion Determination Renewable Energy Program - Saranac Lake Central School District CX(s) Applied: B2.2, A9, B5.1 Date: 07/09/2010 Location(s): Saranac Lake, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 7, 2010 CX-002946: Categorical Exclusion Determination Gamma Radiation Detection System (GaRDS) Vehicle X-Ray System Procurement, Installation and Operations CX(s) Applied: B2.2 Date: 07/07/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy July 7, 2010 CX-002921: Categorical Exclusion Determination Professional Design Services for Oak Park Village Hall Lighting Improvements CX(s) Applied: B2.2, A1, B5.1 Date: 07/07/2010 Location(s): Oak Park, Illinois

173

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 17, 2010 June 17, 2010 CX-002764: Categorical Exclusion Determination Arkansas-City-Fayetteville CX(s) Applied: B2.5, A1, A9, A11, B5.1 Date: 06/17/2010 Location(s): Fayetteville, Arkansas Office(s): Energy Efficiency and Renewable Energy June 16, 2010 CX-002991: Categorical Exclusion Determination Installation of Turbidity Meter Discharge Check Valves CX(s) Applied: B2.5 Date: 06/16/2010 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office June 16, 2010 CX-002784: Categorical Exclusion Determination Utah-County-Washington CX(s) Applied: B2.5, B5.1 Date: 06/16/2010 Location(s): Washington County, Utah Office(s): Energy Efficiency and Renewable Energy June 15, 2010 CX-002776: Categorical Exclusion Determination California-City-Elk Grove

174

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 21, 2011 September 21, 2011 CX-006949: Categorical Exclusion Determination Indiana-City-Lafayette CX(s) Applied: A9, A11, B2.5, B5.1 Date: 09/21/2011 Location(s): Lafayette, Indiana Office(s): Energy Efficiency and Renewable Energy September 20, 2011 CX-006996: Categorical Exclusion Determination North Carolina-City-Concord CX(s) Applied: B1.32, B2.5, B5.1 Date: 09/20/2011 Location(s): Concord, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 16, 2011 CX-006965: Categorical Exclusion Determination Provide Design to Install a Seismic Switch to Shut Down Both Supply Fans and Both Room Exhaust Fans During a Seismic Event CX(s) Applied: B2.5 Date: 09/16/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, National Energy Technology Laboratory

175

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 23, 2011 June 23, 2011 CX-006309: Categorical Exclusion Determination Florida-City-Pembroke Pines CX(s) Applied: B2.5, B5.1 Date: 06/23/2011 Location(s): Pembroke Pines, Florida Office(s): Energy Efficiency and Renewable Energy June 23, 2011 CX-006349: Categorical Exclusion Determination Ohio-City-Cuyahoga Falls CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 06/23/2011 Location(s): Cuyahoga Falls, Ohio Office(s): Energy Efficiency and Renewable Energy June 23, 2011 CX-006347: Categorical Exclusion Determination North Carolina-City-Chapel Hill, Town of CX(s) Applied: A1, A9, B2.5, B5.1 Date: 06/23/2011 Location(s): Chapel Hill, North Carolina Office(s): Energy Efficiency and Renewable Energy June 23, 2011 CX-006331: Categorical Exclusion Determination Massachusetts-City-Springfield

176

Categorical Exclusion Determinations: B2.2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 17, 2012 May 17, 2012 CX-008753: Categorical Exclusion Determination Nuclear Instrumentation Upgrade for University of Missouri Research Reactor Power Level Monitoring - University of Missouri CX(s) Applied: B2.2 Date: 05/17/2012 Location(s): Idaho Offices(s): Idaho Operations Office May 17, 2012 CX-008749: Categorical Exclusion Determination Reactor Power Up Rate, Compressor Replacement, Neutron Radiography Restore, Liquid Scintillation Counter - Texas Agricultural & Mechanical University CX(s) Applied: B2.2, B3.6 Date: 05/17/2012 Location(s): Idaho Offices(s): Idaho Operations Office May 17, 2012 CX-008756: Categorical Exclusion Determination Equipment Upgrade for the University of New Mexico AGN-201M Reactor - University of New Mexico CX(s) Applied: B2.2, B3.6 Date: 05/17/2012

177

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 23, 2011 May 23, 2011 CX-006017: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant Program - Louisiana-City-Kenner CX(s) Applied: A9, A11, B2.5, B5.1 Date: 05/23/2011 Location(s): Kenner, Louisiana Office(s): Energy Efficiency and Renewable Energy May 13, 2011 CX-005932: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant - North Carolina-City-Wilmington CX(s) Applied: A9, A11, B2.5, B5.1 Date: 05/13/2011 Location(s): Wilmington, North Carolina Office(s): Energy Efficiency and Renewable Energy May 13, 2011 CX-005931: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant - New York-City-Hempstead, Village of CX(s) Applied: B2.5, B5.1 Date: 05/13/2011 Location(s): Hempstead, New York

178

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 1, 2010 November 1, 2010 CX-004361: Categorical Exclusion Determination Oklahoma-Tribe-Muscogee (Creek) Nation CX(s) Applied: A9, A11, B2.5, B5.1 Date: 11/01/2010 Location(s): Oklahoma Office(s): Energy Efficiency and Renewable Energy November 1, 2010 CX-004352: Categorical Exclusion Determination Alabama-City-Mobile CX(s) Applied: A9, B1.32, B2.5, B5.1 Date: 11/01/2010 Location(s): Mobile, Alabama Office(s): Energy Efficiency and Renewable Energy October 28, 2010 CX-004338: Categorical Exclusion Determination Photovoltaic Panels, Light Bulb Replacement and Light-Emitting Diode Street Lights CX(s) Applied: B2.5, B5.1 Date: 10/28/2010 Location(s): Draper City, Utah Office(s): Energy Efficiency and Renewable Energy October 27, 2010 CX-004312: Categorical Exclusion Determination

179

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 25, 2011 March 25, 2011 CX-005548: Categorical Exclusion Determination Crittendon County Courthouse Window Replacement and Building Lighting Retrofit CX(s) Applied: A1, B2.5, B5.1 Date: 03/25/2011 Location(s): Crittendon County, Arkansas Office(s): Civilian Radioactive Waste Management, Energy Efficiency and Renewable Energy March 17, 2011 CX-005518: Categorical Exclusion Determination Minnesota-City-Rochester CX(s) Applied: A9, B2.5, B5.1 Date: 03/17/2011 Location(s): Rochester, Minnesota Office(s): Energy Efficiency and Renewable Energy March 17, 2011 CX-005398: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant - Illinois-City-Schaumburg, Village of CX(s) Applied: A1, A9, B2.5, B5.1 Date: 03/17/2011 Location(s): Schaumburg, Illinois Office(s): Energy Efficiency and Renewable Energy

180

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

16, 2010 16, 2010 CX-002192: Categorical Exclusion Determination Site Wide Well Abandonment Activities CX(s) Applied: B2.5, B3.1 Date: 04/16/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 15, 2010 CX-001553: Categorical Exclusion Determination Charlotte Activities 1, 4, 5, 6, 7, 10, 11, 17, and 19 American Recovery and Reinvestment Act (ARRA)-Energy Efficiency and Conservation Block Grant (EECBG) Strategy-Only CX(s) Applied: B2.5, A9, A11, B5.1 Date: 04/15/2010 Location(s): Charlotte, North Carolina Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 13, 2010 CX-001747: Categorical Exclusion Determination Alaska-Tribe-Bristol Bay Native Association CX(s) Applied: B2.5, A9, A11, B5.1 Date: 04/13/2010 Location(s): Alaska

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 1, 2010 July 1, 2010 CX-002927: Categorical Exclusion Determination Montana-Tribe-Fort Belknap Indian Community of the Fort Belknap Reservation of Montana CX(s) Applied: B2.5, B5.1 Date: 07/01/2010 Location(s): Montana Office(s): Energy Efficiency and Renewable Energy July 1, 2010 CX-002926: Categorical Exclusion Determination Mississippi-County-DeSoto CX(s) Applied: B2.5, A9, B5.1 Date: 07/01/2010 Location(s): DeSoto County, Mississippi Office(s): Energy Efficiency and Renewable Energy July 1, 2010 CX-002867: Categorical Exclusion Determination California-Tribe-Big Sandy Rancheria Band of Western Mono Indians CX(s) Applied: B2.5, B5.1 Date: 07/01/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 30, 2010 CX-002933: Categorical Exclusion Determination

182

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

30, 2010 30, 2010 CX-001740: Categorical Exclusion Determination Berks County, Pennsylvania, Boiler Plant Improvements - American Recovery and Reinvestment Act-Energy Efficiency and Conservation Block Grant CX(s) Applied: B2.5, B5.1 Date: 03/30/2010 Location(s): Pennsylvania Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 30, 2010 CX-006888: Categorical Exclusion Determination Cahto Indian Tribe of the Laytonville Rancheria, California CX(s) Applied: B2.5, B5.1 Date: 03/30/2010 Location(s): Tribe of Laytonville Rancheria, California Office(s): Energy Efficiency and Renewable Energy March 30, 2010 CX-006983: Categorical Exclusion Determination Energy Efficiency and Conservation Strategy and Audits, Retrofit Program CX(s) Applied: A9, A11, B2.5, B5.1

183

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 17, 2012 September 17, 2012 CX-009379: Categorical Exclusion Determination Site-Wide CFC Reduction by Replacing 13 Existing Water Fountains and Eight Air Conditioning Units at National Energy Technology Laboratory CX(s) Applied: B2.5 Date: 09/17/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009174: Categorical Exclusion Determination Missouri-County-Christian CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 09/17/2012 Location(s): Missouri Offices(s): Energy Efficiency and Renewable Energy September 13, 2012 CX-009384: Categorical Exclusion Determination Morgantown Parking Garage Fire Alarm System CX(s) Applied: B1.3, B1.7, B1.15, B2.5 Date: 09/13/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

184

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

22, 2011 22, 2011 CX-005307: Categorical Exclusion Determination Florida-City-Miramar CX(s) Applied: A1, A9, B1.32, B2.5, B5.1 Date: 02/22/2011 Location(s): Miramar, Florida Office(s): Energy Efficiency and Renewable Energy February 18, 2011 CX-007147: Categorical Exclusion Determination Flagstaff Substation Breaker Replacement & Control Cable Addition CX(s) Applied: B2.5 Date: 02/18/2011 Location(s): Coconino County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region February 18, 2011 CX-005310: Categorical Exclusion Determination Minnesota-County-Washington CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 02/18/2011 Location(s): Washington County, Minnesota Office(s): Energy Efficiency and Renewable Energy February 17, 2011 CX-005292: Categorical Exclusion Determination

185

Iterated multidimensional wave conversion  

SciTech Connect (OSTI)

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

186

Categorical Exclusion Determinations: B2.4 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4 4 Categorical Exclusion Determinations: B2.4 Existing Regulations B2.4: Equipment qualification Activities undertaken to (1) qualify equipment for use or improve systems reliability or (2) augment information on safety-related system components. These activities include, but are not limited to, transportation container qualification testing, crane and lift-gear certification or recertification testing, high efficiency particulate air filter testing and certification, stress tests (such as "burn-in" testing of electrical components and leak testing), and calibration of sensors or diagnostic equipment. Previous Regulations Categorical Exclusion Determinations dated before November 14th, 2011 were issued under previous DOE NEPA regulations. See the Notice of Final

187

Categorical Exclusion Determinations: B2.2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2 2 Categorical Exclusion Determinations: B2.2 Existing Regulations B2.2: Building and equipment instrumentation Installation of, or improvements to, building and equipment instrumentation (including, but not limited to, remote control panels, remote monitoring capability, alarm and surveillance systems, control systems to provide automatic shutdown, fire detection and protection systems, water consumption monitors and flow control systems, announcement and emergency warning systems, criticality and radiation monitors and alarms, and safeguards and security equipment). Previous Regulations Categorical Exclusion Determinations dated before November 14th, 2011 were issued under previous DOE NEPA regulations. See the Notice of Final Rulemaking (76 FR 63763, 10/13/2011) for information changes to this

188

Categorical Exclusion Determinations: B2.1 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1 1 Categorical Exclusion Determinations: B2.1 Existing Regulations B2.1: Workplace enhancements Modifications within or contiguous to an existing structure, in a previously disturbed or developed area, to enhance workplace habitability (including, but not limited to, installation or improvements to lighting, radiation shielding, or heating/ventilating/air conditioning and its instrumentation, and noise reduction). Previous Regulations Categorical Exclusion Determinations dated before November 14th, 2011 were issued under previous DOE NEPA regulations. See the Notice of Final Rulemaking (76 FR 63763, 10/13/2011) for information changes to this categorical exclusion. DOCUMENTS AVAILABLE FOR DOWNLOAD September 11, 2013 CX-011028: Categorical Exclusion Determination

189

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1, 2010 1, 2010 CX-002096: Categorical Exclusion Determination Texas-City-Richardson CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 04/21/2010 Location(s): Richardson, Texas Office(s): Energy Efficiency and Renewable Energy April 21, 2010 CX-001873: Categorical Exclusion Determination Fluorecycle, Inc. CX(s) Applied: B2.5, B5.1 Date: 04/21/2010 Location(s): Ingleside, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 21, 2010 CX-001853: Categorical Exclusion Determination Michigan-City-Shelby, Charter Township of CX(s) Applied: A9, A11, B2.5, B5.1 Date: 04/21/2010 Location(s): Shelby, Michigan Office(s): Energy Efficiency and Renewable Energy April 21, 2010 CX-001785: Categorical Exclusion Determination Louisiana-City-Shreveport CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1

190

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11, 2010 11, 2010 CX-006424: Categorical Exclusion Determination North Carolina-County-Randolph CX(s) Applied: A9, A11, B2.5, B5.1 Date: 03/11/2010 Location(s): Randolph County, North Carolina Office(s): Energy Efficiency and Renewable Energy March 11, 2010 CX-006109: Categorical Exclusion Determination Texas-City-Killeen CX(s) Applied: B2.5, B5.1 Date: 03/11/2010 Location(s): Killeen, Texas Office(s): Energy Efficiency and Renewable Energy March 10, 2010 CX-006361: Categorical Exclusion Determination Tennessee-City-Johnson City CX(s) Applied: B1.15, B2.5, B5.1 Date: 03/10/2010 Location(s): Johnson City, Tennessee Office(s): Energy Efficiency and Renewable Energy March 10, 2010 CX-006326: Categorical Exclusion Determination Illinois-City-Tinley Park, Village of CX(s) Applied: A9, B2.5, B5.1

191

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 17, 2010 May 17, 2010 CX-002578: Categorical Exclusion Determination Maine-County-Kennebec CX(s) Applied: B2.5, A9, A11, B5.1 Date: 05/17/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy May 17, 2010 CX-002582: Categorical Exclusion Determination Colorado-City-Thornton CX(s) Applied: B2.5, A9, A11, B5.1 Date: 05/17/2010 Location(s): Thornton, Colorado Office(s): Energy Efficiency and Renewable Energy May 17, 2010 CX-002425: Categorical Exclusion Determination Municipal Building Energy Efficiency Retrofits CX(s) Applied: B2.5, B1.4, B5.1 Date: 05/17/2010 Location(s): Attleboro, Massachusetts Office(s): Energy Efficiency and Renewable Energy May 13, 2010 CX-002317: Categorical Exclusion Determination Nevada-Tribe-Summit Lake Paiute Tribe CX(s) Applied: B2.5, B5.1

192

(12) United States Patent US007577044B2  

E-Print Network [OSTI]

,577,044 B2 m5 O mgH maoou N a0%2%\\SQ2N"o5 EBMWNommwukR)8d..2n.7 8m.WKGEM?.. .`8N.EN 2%$wQSWK8.FEM/na..1I..Ion

Baker, R. Jacob

193

B.2 Subproject Brokate Simulating CO2 Sequestration  

E-Print Network [OSTI]

79 B.2 Subproject Brokate Simulating CO2 Sequestration Hysteretic Aspects of CO2 Sequestration and implement models describing the hysteresis in the context of the CO2 sequestration process. The hysteresis's law but in contrast to most Darcy's law based models it assumes the phases to be weakly compressible

Turova, Varvara

194

Concerted Interconversion between Ionic Lock Substates of the b2 Adrenergic Receptor Revealed by Microsecond  

E-Print Network [OSTI]

Concerted Interconversion between Ionic Lock Substates of the b2 Adrenergic Receptor Revealed substates (2,5). Recently solved crystallographic structures of b2-adren- ergic receptor (B2AR) have shown

195

US008355198B2 (12) Ulllted States Patent (10) Patent N0.: US 8,355,198 B2  

E-Print Network [OSTI]

for generating an optical See application ?le for Complete Search history rogue Wave comprises the steps/1991 Chaffee5,136,599 A * 8/1992 WilcoX ......................... .. 372/26 6,813,429 B2 11/2004 Price et al threat to ships, deep-sea oil platforms"iScience News Online, 170, 2006, 5 pages. Broad, W

Jalali. Bahram

196

Processing and Conversion  

Broader source: Energy.gov [DOE]

The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts...

197

Algae Harvest Energy Conversion  

Science Journals Connector (OSTI)

Resolution of many workshops on algae harvest energy conversion is that low productivity, high capital intensity ... and maintenance, respiration, and photoinhibition are few factors militating against viability ...

Yung-Tse Hung Ph.D.; P.E.; DEE; O. Sarafadeen Amuda Ph.D.…

2010-01-01T23:59:59.000Z

198

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network [OSTI]

QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

Calvin, Melvin

2008-01-01T23:59:59.000Z

199

Norbornadiene-quadricyclane system in the photochemical conversion and storage of solar energy  

Science Journals Connector (OSTI)

Norbornadiene-quadricyclane system in the photochemical conversion and storage of solar energy ... Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ... Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ...

Constantine Philippopoulos; Dimitrios Economou; Constantine Economou; John Marangozis

1983-12-01T23:59:59.000Z

200

Categorical Exclusion Determinations: B2.6 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6 6 Categorical Exclusion Determinations: B2.6 Existing Regulations B2.6: Recovery of radioactive sealed sources Recovery of radioactive sealed sources and sealed source-containing devices from domestic or foreign locations provided that (1) the recovered items are transported and stored in compliant containers, and (2) the receiving site has sufficient existing storage capacity and all required licenses, permits, and approvals. Previous Regulations Categorical Exclusion Determinations dated before November 14th, 2011 were issued under previous DOE NEPA regulations. See the Notice of Final Rulemaking (76 FR 63763, 10/13/2011) for information changes to this categorical exclusion. DOCUMENTS AVAILABLE FOR DOWNLOAD November 30, 2012 CX-009798: Categorical Exclusion Determination

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 14, 2009 December 14, 2009 CX-000686: Categorical Exclusion Determination Pennsylvania - Energy Harvest Mined Grants - Crawford Central School District CX(s) Applied: B1.15, B1.24, B1.31, B2.5, B5.1 Date: 12/14/2009 Location(s): Crawford, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 14, 2009 CX-000685: Categorical Exclusion Determination Pennsylvania - Energy Harvest Mined grants - Lancaster City Conservation District CX(s) Applied: B1.24, B1.31, B2.5, B5.1 Date: 12/14/2009 Location(s): Lancaster, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-001287: Categorical Exclusion Determination Hire a Consultant, Energy Equipment Upgrades, Building Retrofits,

202

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 2, 2009 December 2, 2009 CX-000330: Categorical Exclusion Determination West Virginia Revision 1 - Energy Efficiency in State Buildings: Corrections - Project 1 Huttonsville Correctional Center CX(s) Applied: B1.31, B2.5, B5.1, B5.4, B5.5 Date: 12/02/2009 Location(s): Huttonsville, West Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 2, 2009 CX-001251: Categorical Exclusion Determination Energy Efficiency and Conservation, Energy Audits, Heating, Ventilation, Air Conditioning Upgrades, and Lighting Retrofits CX(s) Applied: A9, A11, B2.5, B5.1 Date: 12/02/2009 Location(s): San Marcos, California Office(s): Energy Efficiency and Renewable Energy November 30, 2009 CX-001288: Categorical Exclusion Determination Energy Efficiency Retrofits and Upgrades, and Purchase Electrical Vehicles

203

Categorical Exclusion Determinations: B2.2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 25, 2011 January 25, 2011 CX-005536: Categorical Exclusion Determination Rework Fire-rated Penetration Seal Per F-DCF-H-00591HB-Line Room 602A Floor CX(s) Applied: B2.2 Date: 01/25/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office January 25, 2011 CX-005535: Categorical Exclusion Determination HB-Line Standpipe Installation CX(s) Applied: B2.2 Date: 01/25/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office January 4, 2011 CX-004863: Categorical Exclusion Determination Arkansas Energy Technology Loan Program - General Energy Solutions Anaerobic Digester Loan Request Date: 01/04/2011 Location(s): Clarksville, Arkansas Office(s): Energy Efficiency and Renewable Energy, National Energy

204

Categorical Exclusion Determinations: B2.3 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3 3 Categorical Exclusion Determinations: B2.3 Existing Regulations B2.3: Personnel safety and health equipment Installation of, or improvements to, equipment for personnel safety and health (including, but not limited to, eye washes, safety showers, radiation monitoring devices, fumehoods, and associated collection and exhaust systems), provided that the covered actions would not have the potential to cause a significant increase in emissions. Previous Regulations Categorical Exclusion Determinations dated before November 14th, 2011 were issued under previous DOE NEPA regulations. See the Notice of Final Rulemaking (76 FR 63763, 10/13/2011) for information changes to this categorical exclusion. DOCUMENTS AVAILABLE FOR DOWNLOAD August 1, 2013 CX-010835: Categorical Exclusion Determination

205

Categorical Exclusion Determinations: B2.2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 19, 2010 February 19, 2010 CX-001100: Categorical Exclusion Determination Oregon Energy Efficiency and Conservation Block Grant - Formula - Energy Efficiency and Conservation Block Grant (T) CX(s) Applied: A11, B2.2, B5.1 Date: 02/19/2010 Location(s): Oregon Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 10, 2010 CX-007912: Categorical Exclusion Determination Utah State Energy Program - Energy Improvement Fund CX(s) Applied: A9, A11, B1.32, B1.35, B2.1, B2.2, B5.1 Date: 02/10/2010 Location(s): Utah Offices(s): Golden Field Office February 8, 2010 CX-000787: Categorical Exclusion Determination Generic Categorical Exclusion for Site-Wide Miscellaneous Installation and Maintenance Activities CX(s) Applied: B1.3, B1.4, B1.5, B1.9, B1.11, B1.15, B1.16, B1.17, B1.22,

206

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 16, 2009 November 16, 2009 CX-001279: Categorical Exclusion Determination Hire a Technical Consultant, Revolving Loan Program, Sub-grants for Commercial Projects, and Energy Upgrades CX(s) Applied: B2.5, A1, A9, A11, B5.1 Date: 11/16/2009 Location(s): Elizabeth, New Jersey Office(s): Energy Efficiency and Renewable Energy November 16, 2009 CX-000080: Categorical Exclusion Determination Elizabeth's Revolving Loan Program, Technical Consultants, Sub-grantee Program, and Energy Efficiency Retrofits CX(s) Applied: B5.1, B2.5, A1, A9, A11 Date: 11/16/2009 Location(s): Elizabeth, New Jersey Office(s): Energy Efficiency and Renewable Energy November 16, 2009 CX-000308: Categorical Exclusion Determination Connecticut Revision 2 - Retrofit 9 State Buildings CX(s) Applied: A9, A11, B1.3, B1.4, B1.5, B1.15, B1.23, B1.24, B1.31, B2.1,

207

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3, 2010 3, 2010 CX-001770: Categorical Exclusion Determination Colorado-City-Pueblo Energy Efficiency and Conservation Strategy CX(s) Applied: A1, A9, A11, B1.32, B2.5, B3.6, B5.1 Date: 04/23/2010 Location(s): Pueblo, Colorado Office(s): Energy Efficiency and Renewable Energy April 23, 2010 CX-001786: Categorical Exclusion Determination Energy Efficiency and Renewable Energy Retrofits for Knox County Courthouse CX(s) Applied: B2.5, B5.1 Date: 04/23/2010 Location(s): Knox County, Maine Office(s): Energy Efficiency and Renewable Energy April 23, 2010 CX-001778: Categorical Exclusion Determination Illinois-City-Berwyn CX(s) Applied: A9, A11, B2.5, B5.1 Date: 04/23/2010 Location(s): Berwyn, Illinois Office(s): Energy Efficiency and Renewable Energy April 23, 2010 CX-001776: Categorical Exclusion Determination

208

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 20, 2011 April 20, 2011 CX-005713: Categorical Exclusion Determination Mississippi-County-Jones CX(s) Applied: B2.5, B5.1 Date: 04/20/2011 Location(s): Jones County, Mississippi Office(s): Energy Efficiency and Renewable Energy April 20, 2011 CX-005712: Categorical Exclusion Determination Michigan-City-Ypsilanti, Charter Township of CX(s) Applied: B2.5, B5.1 Date: 04/20/2011 Location(s): Ypsilanti, Michigan Office(s): Energy Efficiency and Renewable Energy April 19, 2011 CX-005707: Categorical Exclusion Determination Florida-City-Largo CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 04/19/2011 Location(s): Largo, Florida Office(s): Energy Efficiency and Renewable Energy April 15, 2011 CX-005771: Categorical Exclusion Determination Install Alternate Diesel Generator and Tie-In Connection for HB-Line

209

Categorical Exclusion Determinations: B2.2 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 17, 2010 August 17, 2010 CX-003434: Categorical Exclusion Determination Context-Aware Smart Home Energy Manager CX(s) Applied: A9, B2.2, B5.1 Date: 08/17/2010 Location(s): Golden Valley, Minnesota Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 17, 2010 CX-003426: Categorical Exclusion Determination Alternative Energy Education CX(s) Applied: A9, B1.2, B1.7, B2.2, B3.6, B4.4, B5.1 Date: 08/17/2010 Location(s): Rochester, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 16, 2010 CX-003449: Categorical Exclusion Determination Energy Efficiency through Clean Combined Heat and Power (CHP) CX(s) Applied: A9, A11, B1.24, B2.2, B5.1 Date: 08/16/2010 Location(s): New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy

210

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 2, 2010 September 2, 2010 CX-003657: Categorical Exclusion Determination South Carolina - City - Charleston CX(s) Applied: A9, A11, B1.32, B2.5, B5.1 Date: 09/02/2010 Location(s): Charleston, South Carolina Office(s): Energy Efficiency and Renewable Energy September 2, 2010 CX-003656: Categorical Exclusion Determination South Carolina - City - North Charleston CX(s) Applied: A9, A11, B1.32, B2.5, B5.1 Date: 09/02/2010 Location(s): North Charleston, South Carolina Office(s): Energy Efficiency and Renewable Energy September 2, 2010 CX-003651: Categorical Exclusion Determination Florida - City - Tallahassee CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 09/02/2010 Location(s): Tallahassee, Florida Office(s): Energy Efficiency and Renewable Energy September 2, 2010 CX-003649: Categorical Exclusion Determination

211

Categorical Exclusion Determinations: B2.5 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2, 2010 2, 2010 CX-001032: Categorical Exclusion Determination Development of an Autogas Network (Highway 6) CX(s) Applied: A9, B2.5, B3.6, B5.1 Date: 03/02/2010 Location(s): Houston, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 2, 2010 CX-001031: Categorical Exclusion Determination Development of an Autogas Network (Kress Street) CX(s) Applied: A9, B2.5, B3.6, B5.1 Date: 03/02/2010 Location(s): Houston, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 2, 2010 CX-001030: Categorical Exclusion Determination Development of an Autogas Network (Hollow Tree Lane) CX(s) Applied: A9, B2.5, B3.6, B5.1 Date: 03/02/2010 Location(s): Houston, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy

212

Novel ex situ MgB2 barrier for  

Science Journals Connector (OSTI)

The in situ technique for producing MgB2 conductors consists of filling a mixture of Mg powder and B powder into a tube, deformation to the shape of the conductor, and reaction at the end of the process. To make tapes by the in situ method, a low cost and ductile sheath material is needed. Unfortunately precursor powder partially reacts with a lot of materials, such as Cu, Fe and Ni, which can be used as a sheath. In order to produce cheap, high-performance MgB2 conductors a barrier able to prevent this reaction is needed. In this study ex situ  MgB2 is used as this barrier. This paper compares the effectiveness of the barrier in preventing reaction in Fe and Cu tapes heat treated under ambient pressure and under high gas pressure conditions. It was found that this barrier is effective at preventing reaction between Fe and B, and sufficient to prevent Cu–Mg reaction in the case of high pressure sintering. This novel technique allows one to obtain good Je values in a parallel field because of the possibility of achieving a high superconductor filling factor (in excess of 60%), which is usually very challenging in powder in tube (PIT) composite conductors with a diffusion barrier.

A Kario; A Morawski; W Häßler; M Herrmann; C Rodig; M Schubert; K Nenkov; B Holzapfel; L Schultz; B A Glowacki; S C Hopkins

2010-01-01T23:59:59.000Z

213

Photovoltaic Energy Conversion  

E-Print Network [OSTI]

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Make solar cells more efficient Theoretical energy conversion efficiency limit of single junction-bandgap photons are not absorbed: Carrier relaxation to band edges: Photon energy exceeding bandgap is lost

Glashausser, Charles

214

Microsoft Word - 2009-014655 - 2010 SGSR Appendix B 2 2 2012 print ready  

Broader source: Energy.gov (indexed) [DOE]

Electricity Service Provider Interviews Department of Energy | February 2012 Smart Grid System Report | Page B.iii Table of Contents B.1 Background Concerning the Interviews ..................................................................................................... B.1 B.2 Approach .................................................................................................................................................................. B.1 B.2.1 Plan ................................................................................................................................................................. B.1 B.2.2 Data Collection ........................................................................................................................................... B.2

215

Surface Tension Mediated Conversion of Light to Work David Okawa,,  

E-Print Network [OSTI]

to a high energy intermediate (e.g., electrical potential, thermal loading, or chemical fuel), which- taics for conversion to electricity, solar thermal for water heating, fast growing plants to produce rely on weak momentum transfer from photons. Harnessing the energy of photons is a far more powerful

Zettl, Alex

216

IONIZED GAS KINEMATICS AND MORPHOLOGY IN Sgr B2 Main ON 1000 AU SCALES  

SciTech Connect (OSTI)

We have imaged the Sgr B2 Main region with the Very Large Array in the BnA configuration ({theta}{sub beam} = 0.''13) in both the H52{alpha} (45.453 GHz) radio recombination line and 7 mm continuum emission. At a distance of 8500 pc, this spatial resolution corresponds to a physical scale of 0.005 pc ({approx}1100 AU). The current observations detect H52{alpha} emission in 12 individual ultracompact and hypercompact H II regions. Two of the sources with detected H52{alpha} emission have broad ({Delta}V{sub FWHM} {approx} 50 km s{sup -1}) recombination lines, and two of the sources show lines with peaks at more than one velocity. We use line parameters from the H52{alpha} lines and our previous H66{alpha} line observations to determine the relative contribution of thermal, pressure, and kinematic broadening, and electron density. These new observations suggest that pressure broadening can account for the broad lines in some of the sources, but that gas motions (e.g., turbulence, accretion, or outflow) contribute significantly to the broad lines in at least one of the sources (Sgr B2 F3).

De Pree, C. G. [Department of Physics and Astronomy, Agnes Scott College, Decatur, GA 30030 (United States); Wilner, D. J. [Harvard Center for Astrophysics, Cambridge, MA (United States); Goss, W. M., E-mail: cdepree@agnesscott.edu, E-mail: dwilner@cfa.harvard.edu, E-mail: mgoss@nrao.edu [National Radio Astronomy Observatory, Socorro, NM (United States)

2011-11-15T23:59:59.000Z

217

Graduate School of Energy Science Outlines of Laboratories Department of ENERGY CONVERSION SCIENCE  

E-Print Network [OSTI]

Graduate School of Energy Science ­ Outlines of Laboratories Department of ENERGY CONVERSION SCIENCE 1 / 2 Group Code: H-1 Group Name: Thermal Energy Conversion Takuji ISHIYAMA, Professor; Hiroshi energy conversion systems with high efficiency and safety while protecting the environment

Takada, Shoji

218

Dynamical mechanism for the conversion of energy at a molecular scale Naoko Nakagawa  

E-Print Network [OSTI]

Dynamical mechanism for the conversion of energy at a molecular scale Naoko Nakagawa Department mechanism of a molecular machine for energy conversion, by considering a simple model describing is thermal ratchet 4­7 , which gives one plausible mechanism for the conversion of energy to mechanical work

Kaneko, Kunihiko

219

Mass loss of copper alloy electrode during TiB2 coating by electrospark deposition  

Science Journals Connector (OSTI)

Titanium diboride was deposited on the surface of spot-welding electrodes for zinc coated steel sheets due to its high electrical and thermal conductivity and potential to prolong the lifespan of the electrodes, and mass of the electrodes was measured after every 30 s during depositing. The results showed that the as-deposited electrodes are losing their mass during the process, which is completely different from the deposition of TiC. Evaporation of copper and oxidation of TiB2 at high temperature generated by electrosparking play the most important roles in the mass loss. Cutting and flaking of the brittle coating also contribute to the mass loss. The cracks within the coating are channels for the leakage of the evaporated substrate material. The mass of the electrodes decreases as the pulse energy increases with the voltage increasing. Pre-coated nickel contributes to the mass loss of the electrodes too.

Cheng Luo; Shijie Dong; Xiang Xiong; Norman Zhou

2009-01-01T23:59:59.000Z

220

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Thermophotovoltaic Energy Conversion for Space  

Science Journals Connector (OSTI)

Heat is converted to electricity by using a heated surface (the emitter) that radiates infrared (IR) photons to an adjacent low bandgap photovoltaic cell (typically made with binary, ternary, or quaternary semiconductors such as InGaAs, GaSb, InAs, or InGaAsSb), which converts these IR photons to electricity. ... Solid-state TPV energy conversion uses photovoltaic devices in the form of a p?n diode to convert radiant thermal photons directly into electricity. ... The overall system efficiency of a TPV system is the product of factors attributable to the TPV cell efficiency, the spectral filter, and the cell module factor which includes effects of parasitic photon absorption in the nonactive diode area and is defined as the total photonic energy absorbed in the active diode area divided by the total photonic energy absorption. ...

V. L. Teofilo; P. Choong; J. Chang; Y.-L. Tseng; S. Ermer

2008-05-22T23:59:59.000Z

222

Wave Energy Conversion Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

223

Avatar augmented online conversation  

E-Print Network [OSTI]

One of the most important roles played by technology is connecting people and mediating their communication with one another. Building technology that mediates conversation presents a number of challenging research and ...

Vilhjálmsson, Hannes Högni

2003-01-01T23:59:59.000Z

224

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

225

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

226

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network [OSTI]

of applications, notably energy conversion. As researchnanowires for energy conversion. Chemical Reviews, 2010.Implications for solar energy conversion. Physical Review

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

227

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov [DOE]

This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

228

Structured luminescence conversion layer  

DOE Patents [OSTI]

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

229

Conversion Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation of new and converted filesdatabases; coordinates the...

230

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

of solar energy into electricity in photovoltaic cells orsolar energy conversion aimed at photovoltaic applicationsenergy conversion, opening a new venue for photovoltaic and

Clavero, Cesar

2014-01-01T23:59:59.000Z

231

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

of carriers allows maintaining the energy conversionenergy conversion 8 Timescale of charge separation, carrierin this energy conversion method, i.e. carrier regeneration

Clavero, Cesar

2014-01-01T23:59:59.000Z

232

Mr. Carl Spreng RFLMA Project Coordinator HMWMD-B2  

Office of Legacy Management (LM)

Spreng Spreng RFLMA Project Coordinator HMWMD-B2 Department of Energy Washington , DC 20585 September 9, 2013 Colorado Department of Public Health and Environment 4300 Cherry Creek Drive South Denver, CO 80246-1530 Subject: Notification that GS01 is no longer an RFLMA Point of Compliance (POC) Reference: Rocky Flats Legacy Management Agreement (RFLMA) Attachment 2, Section 5.1, "Monitoring Requirements" Dear Mr. Spreng: In accordance with the criteria provided in Section 5.1 of RFLMA Attachment 2, this is to certify that surface water monitoring location WOMPOC has been functioning as an RFLMA POC for 2 years and now replaces surface water monitoring location GS01 as the POC. This notification completes the process to remove the RFLMA Attachment 2 requirement for monitoring at GSO 1.

233

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

234

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

235

Lockheed Testing the Waters for Ocean Thermal Energy System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin is developing a design for an OTEC system that would produce...

236

Proceedings of the 25th intersociety energy conversion engineering conference  

SciTech Connect (OSTI)

This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

Nelson, P.A.; Schertz, W.W.; Till, R.H.

1990-01-01T23:59:59.000Z

237

Energy Conversion to Electricity  

Science Journals Connector (OSTI)

30 May 1974 research-article Energy Conversion to Electricity D. Clark...continuing growth in the demand for energy, and of electricity as the route...the electricity share of the total energy market and of the substitution of electricity...

1974-01-01T23:59:59.000Z

238

Solar Energy Conversion  

Science Journals Connector (OSTI)

If solar energy is to become a practical alternative to fossil fuels we must have efficient ways to convert photons into electricity fuel and heat. The need for better conversion technologies is a driving force behind many recent developments in biology materials and especially nanoscience.

George W. Crabtree; Nathan S. Lewis

2008-01-01T23:59:59.000Z

239

Campus Conversations: CLIMATE CHANGE  

E-Print Network [OSTI]

review and input from scholars with expertise in climate change and communication. #12; Welcome Thank youCampus Conversations: CLIMATE CHANGE AND THE CAMPUS Southwestern Pennsylvania Program booklet is an adaptation and updating of Global Warming and Climate Change, a brochure developed in 1994

Attari, Shahzeen Z.

240

Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates  

E-Print Network [OSTI]

conversion (3). Conversely, the thermal resistance of interfaces degrades the performance of materials dissimilar materials may provide a route for the production of thermal barriers with ultra-low thermal and improve the performance of thermal bar- riers (2) and of materials used in thermoelec- tric energy

George, Steven M.

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

SciTech Connect (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

242

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network [OSTI]

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

243

Thermal stability of nano-structured selective emitters for thermophotovoltaic systems  

E-Print Network [OSTI]

A fundamental challenge in solar-thermal-electrical energy conversion is the thermal stability of materials and devices at high operational temperatures. This study focuses on the thermal stability of tungsten selective ...

Lee, Heon Ju, 1977-

2012-01-01T23:59:59.000Z

244

Wind energy conversion system  

DOE Patents [OSTI]

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

245

Session: Energy Conversion  

SciTech Connect (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

246

Ocean energy conversion systems annual research report  

SciTech Connect (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

247

Conversion of Questionnaire Data  

SciTech Connect (OSTI)

During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

Powell, Danny H [ORNL] [ORNL; Elwood Jr, Robert H [ORNL] [ORNL

2011-01-01T23:59:59.000Z

248

Data:26a0fca6-c8b2-43fb-995b-493e85981551 | Open Energy Information  

Open Energy Info (EERE)

fca6-c8b2-43fb-995b-493e85981551 fca6-c8b2-43fb-995b-493e85981551 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Indiana Michigan Power Co (Michigan) Effective date: 2013/01/01 End date if known: Rate name: ECLS - Metallic Pole - 150 Watt HPS - Open Access Sector: Lighting Description: Energy Conversation Lighting Service Available for streetlighting service to municipalities, counties, and other governmental subdivisions. This rate is applicable for service that is supplied through new or rebuilt streetlight systems, including extension of streetlighting systems to additional locations where service is requested by customer.

249

Data:Ad2361b2-a47c-4d62-bfdd-da2e7eedebe5 | Open Energy Information  

Open Energy Info (EERE)

b2-a47c-4d62-bfdd-da2e7eedebe5 b2-a47c-4d62-bfdd-da2e7eedebe5 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Indiana Michigan Power Co (Michigan) Effective date: 2013/01/01 End date if known: Rate name: ECLS - Metallic Pole - 400 Watt MV - Open Access Sector: Lighting Description: Energy Conversation Lighting Service Available for streetlighting service to municipalities, counties, and other governmental subdivisions. This rate is applicable for service that is supplied through new or rebuilt streetlight systems, including extension of streetlighting systems to additional locations where service is requested by customer.

250

Data:835ac221-8bae-412e-b2cf-cb31dc0188f0 | Open Energy Information  

Open Energy Info (EERE)

ac221-8bae-412e-b2cf-cb31dc0188f0 ac221-8bae-412e-b2cf-cb31dc0188f0 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Indiana Michigan Power Co (Michigan) Effective date: 2013/01/01 End date if known: Rate name: ECLS - 1000 Watt MV - Open Access Sector: Lighting Description: Energy Conversation Lighting Service Available for streetlighting service to municipalities, counties, and other governmental subdivisions. This rate is applicable for service that is supplied through new or rebuilt streetlight systems, including extension of streetlighting systems to additional locations where service is requested by customer.

251

Data:Ad6728d9-f983-4258-b76c-ba854b2cbffb | Open Energy Information  

Open Energy Info (EERE)

d9-f983-4258-b76c-ba854b2cbffb d9-f983-4258-b76c-ba854b2cbffb No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Indiana Michigan Power Co (Michigan) Effective date: 2013/01/01 End date if known: Rate name: ECLS - 400 Watt MV - Open Access Sector: Lighting Description: Energy Conversation Lighting Service Available for streetlighting service to municipalities, counties, and other governmental subdivisions. This rate is applicable for service that is supplied through new or rebuilt streetlight systems, including extension of streetlighting systems to additional locations where service is requested by customer.

252

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network [OSTI]

Nanowires and Nanotubes for Energy Conversion By MelissaNanowires and Nanotubes for Energy Conversion by MelissaNanowires and Nanotubes for Energy Conversion by Melissa

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

253

Advanced Conversion Roadmap Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Conversion Roadmap Workshop DOE introduction slides to the Advanced Conversion Roadmap Workshop webinar. ctabwebinardoe.pdf More Documents & Publications Conversion...

254

Encapsulation Strategies in Energy Conversion Materials  

Science Journals Connector (OSTI)

For instance, light is converted to electrical energy in photovoltaic devices and back to light in LEDs, electrical energy is converted to chemical energy and vice versa in batteries or fuel cells, light is converted to chemical energy in water splitting catalysts or related systems, or one form of chemical energy is converted to another form over various types of catalysts. ... Thermoelectric materials are an interesting class of energy conversion materials that convert thermal gradients directly to electricity. ... energy densities ranging up to a factor of 5 beyond conventional Li-ion systems. ...

Ferdi Schüth

2013-10-24T23:59:59.000Z

255

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

energy conversion . . . . . . . . . . . . . . . . . . . . . . . . . .other pyroelectric energy conversion methods . . . . Chapter6 Pyroelectric Energy Conversion using PLZT and

Lee, Felix

2012-01-01T23:59:59.000Z

256

Data:1b40f60e-215b-4ce4-b2b2-6bb102e77cbf | Open Energy Information  

Open Energy Info (EERE)

215b-4ce4-b2b2-6bb102e77cbf 215b-4ce4-b2b2-6bb102e77cbf No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Etna Green, Indiana (Utility Company) Effective date: 2012/01/01 End date if known: Rate name: Muncipal Service - Metered Demand- Three Phase Sector: Commercial Description: Source or reference: http://www.timesuniononline.com/print.asp?ArticleID=50294&SectionID=52&SubSectionID=277 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

257

Data:Daf123b2-d60f-4d22-839b-2ad8a2ab1a64 | Open Energy Information  

Open Energy Info (EERE)

Daf123b2-d60f-4d22-839b-2ad8a2ab1a64 Daf123b2-d60f-4d22-839b-2ad8a2ab1a64 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Broad River Electric Coop, Inc Effective date: 2012/07/01 End date if known: Rate name: Rate Code 16, 6Lots Per Light Single-Phase Sector: Lighting Description: * Available to residential consumers of the cooperative in residences,condominiums,mobile homes or individually metered apartment. Subject to taxes and wholesale power cost adjustment. Source or reference: Rate binder # 4(Illinios State University) Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW):

258

Data:4c9a713d-93a7-4564-9b2c-626ddf5f36b2 | Open Energy Information  

Open Energy Info (EERE)

3d-93a7-4564-9b2c-626ddf5f36b2 3d-93a7-4564-9b2c-626ddf5f36b2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Rockwood, Tennessee (Utility Company) Effective date: 2012/12/01 End date if known: Rate name: General (GSA Part 1) - Customer Charge #2 Sector: Industrial Description: * < 50 kW Demand General Power Rate - "applies to the firm power requirements for electric service to commercial, industrial, and governmental customers; institutional customers including but not limited to, churches, clubs, and like customers, except to whom service is available under other resale rate schedules."

259

Data:D85d035b-2a02-45ac-8b2c-973f0f74dfd0 | Open Energy Information  

Open Energy Info (EERE)

35b-2a02-45ac-8b2c-973f0f74dfd0 35b-2a02-45ac-8b2c-973f0f74dfd0 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Cornhusker Public Power Dist Effective date: 2012/01/01 End date if known: Rate name: Irrigation and Grain-Drying Service I-3 (13, 14)- Three Control Days - With No Capacitor Sector: Residential Description: Source or reference: Illinois State University Binder #10 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category:

260

Abrasive wear of ZrB2-containing spark-deposited and combined coatings on titanium alloy. I. microstructure and composition of ZrB2-containing coatings  

Science Journals Connector (OSTI)

To improve the abrasive wear resistance of titanium alloys, ZrB2-containing protective coatings are deposited by electrospark alloying (ESA). As electrode materials, composite ceramics with different amounts of Z...

I. A. Podchernyaeva; A. D. Panasyuk…

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Improving efficiency of thermoelectric energy conversion devices is a major  

E-Print Network [OSTI]

Abstract · Improving efficiency of thermoelectric energy conversion devices is a major challenge Interdisciplinary Program in Material Science Thermal Physics Lab Vanderbilt University, Nashville, TN 2 S T ZT dominates over increase in Seebeck coefficient leading to poor device performance. Thermoelectric figure

Walker, D. Greg

262

22 - Conversion Factors  

Science Journals Connector (OSTI)

Abstract This chapter details the viscosity and pressure conversion chart. To convert absolute or dynamic viscosity from one set of units to another, one must locate the given set of units in the left-hand column then multiply the numerical value by the factor shown horizontally to the right-hand side, under the set of units desired. The chapter also explains that to convert kinematic viscosity from one set of units to another, one must locate the given set of units in the left-hand column and multiply the numerical value by the factor shown horizontally to the right-hand side, under the set of units desired. The chapter also defines how the conversion from natural gas to other fuels has progressed from possibility to reality for many companies and will become necessary for many others in months and years ahead. Fuels that are considered practical replacements for gas include coal, heavy fuel oils, middle distillates (such as kerosine–typeturbo fuel and burner fuel oils) and liquefied petroleum gas.

2014-01-01T23:59:59.000Z

263

Energy conversion system  

DOE Patents [OSTI]

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

264

Energy conversion system  

DOE Patents [OSTI]

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

265

Flexible Conversion Ratio Fast Reactor Systems Evaluation  

SciTech Connect (OSTI)

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

Neil Todreas; Pavel Hejzlar

2008-06-30T23:59:59.000Z

266

SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Thermionic Solar Next-Generation Thermionic Solar Energy Conversion to someone by E-mail Share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Facebook Tweet about SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Twitter Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Google Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Delicious Rank SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Digg Find More places to share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload

267

Wind energy conversion system  

SciTech Connect (OSTI)

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

268

Quantum optical waveform conversion  

E-Print Network [OSTI]

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

D Kielpinski; JF Corney; HM Wiseman

2010-10-11T23:59:59.000Z

269

Incompressibility and Hardness of Solid Solution Transition Metal Diborides: Os1-xRuxB2  

E-Print Network [OSTI]

cannot be used to cut steel or other ferrous metals because of the formation of iron carbide at elevatedIncompressibility and Hardness of Solid Solution Transition Metal Diborides: Os1-xRuxB2 Michelle B materials has prompted studies of transition metal diboride solid solutions. We have synthesized pure RuB2

Tolbert, Sarah

270

Transport and superconducting properties of RNi2B2C (R=Y, Lu) single crystals  

E-Print Network [OSTI]

The in-plane resistivity, in-plane absolute thermopower, and upper critical held measurements are reported for single-crystal samples of YNi2B2C and LuNi2B2C superconductors. The in-plane resistivity shows metallic behavior and varies approximately...

Rathnayaka, KDD; Bhatnagar, AK; Parasiris, A.; Naugle, Donald G.

1997-01-01T23:59:59.000Z

271

An MO study of bridge bonds in B2H6  

Science Journals Connector (OSTI)

An ab initio molecular orbital calculation is carried out on diborane (B2H6). Regarding B2H6 as an interacting system of two BH3, we investigate the charge density in the area between these BH3 within the framewo...

Shinichi Yamabe; Tsutomu Minato; Hiroshi Fujimoto; Kenichi Fukui

1974-01-01T23:59:59.000Z

272

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

273

Biochemical Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by enhancing fuel yields in integrated biorefineries which combine conversion types with heat and power efficiencies to produce fuel and products. Lignocellulose (mainly lignin,...

274

Energy conversion by gravitational waves  

Science Journals Connector (OSTI)

... out that if such particles are charged, the accelerations will constitute a mechanism for the conversion of gravitational ... of gravitational energy into electromagnetic ...

H. BONDI; F. A. E. PIRANI

1988-03-17T23:59:59.000Z

275

Experimental testing and modelling of a resistive type superconducting fault current limiter using MgB2 wire  

Science Journals Connector (OSTI)

A prototype resistive superconducting fault current limiter (SFCL) was developed using single-strand round magnesium diboride (MgB2) wire. The MgB2 wire was wound with an interleaved arrangement to minimize coil inductance and provide adequate inter-turn voltage withstand capability. The temperature profile from 30 to 40 K and frequency profile from 10 to 100 Hz at 25 K were tested and reported. The quench properties of the prototype coil were tested using a high current test circuit. The fault current was limited by the prototype coil within the first quarter-cycle. The prototype coil demonstrated reliable and repeatable current limiting properties and was able to withstand a potential peak current of 372 A for one second without any degradation of performance. A three-strand SFCL coil was investigated and demonstrated scaled-up current capacity. An analytical model to predict the behaviour of the prototype single-strand SFCL coil was developed using an adiabatic boundary condition on the outer surface of the wire. The predicted fault current using the analytical model showed very good correlation with the experimental test results. The analytical model and a finite element thermal model were used to predict the temperature rise of the wire during a fault.

A C Smith; A Oliver; X Pei; M Husband; M Rindfleisch

2012-01-01T23:59:59.000Z

276

Alternative Fuels Data Center: Conversion Regulations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversion Regulations Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on AddThis.com... Conversion Regulations All vehicle and engine conversions must meet standards instituted by the U.S. Environmental Protection Agency (EPA), the National Highway Traffic Safety Administration (NHTSA), and state agencies like the California Air Resources Board (CARB).

277

5, 35333559, 2005 Catalytic conversion  

E-Print Network [OSTI]

measurement technique, employing selective gas- phase catalytic conversion of methanol to formaldehyde it the second most abundant organic trace gas after methane. Methanol can play an important role in upper tropoACPD 5, 3533­3559, 2005 Catalytic conversion of methanol to formaldehyde S. J. Solomon et al. Title

Paris-Sud XI, Université de

278

Prediction of a Dirac state in monolayer TiB2  

Science Journals Connector (OSTI)

We predict the existence of a Dirac state in a monolayer TiB2 sheet (m?TiB2), a two-dimensional metal diboride, based on first-principles calculations. The band structure of m?TiB2 is found to be characterized with anisotropic Dirac cones with the largest Fermi velocity of 0.57×106 m/s, which is about one-half of that of graphene. The Dirac point is located at the Fermi level between the K and ? points, with the Dirac states arising primarily from the d orbitals of Ti. Freestanding m?TiB2 exhibits a bending instability, so that a planar m?TiB2 needs to be stabilized on a substrate. The calculation of m?TiB2 on a h-BN substrate reveals a negligible influence of the h-BN substrate on the electronic properties of m?TiB2. Our findings extend the Dirac materials to metal diborides.

L. Z. Zhang; Z. F. Wang; S. X. Du; H.-J. Gao; Feng Liu

2014-10-03T23:59:59.000Z

279

Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages  

SciTech Connect (OSTI)

Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-?B through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-?, IL-1?, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor ?B and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-? and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development and progression of many chronic diseases.

Sung, Nak-Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)] [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yang, Mi-So [Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of)] [Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Song, Du-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of) [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)] [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of)] [School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)] [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Baek, E-mail: ebbyun80@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)] [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Hong, E-mail: ehbyun80@kongju.ac.k [Department of Food Science and Technology, Kongju National University, Yesan 340-800 (Korea, Republic of)] [Department of Food Science and Technology, Kongju National University, Yesan 340-800 (Korea, Republic of)

2013-08-16T23:59:59.000Z

280

A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon  

E-Print Network [OSTI]

A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon of a novel cycle converting thermal and mechanical energy directly into electrical energy. The new cycle is adaptable to changing thermal and mechanical conditions. The new cycle can generate electrical power

Pilon, Laurent

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Data:F25344bd-5407-439f-b26b-67b7b2d453b2 | Open Energy Information  

Open Energy Info (EERE)

44bd-5407-439f-b26b-67b7b2d453b2 44bd-5407-439f-b26b-67b7b2d453b2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Reedsburg Utility Comm Effective date: 2011/06/01 End date if known: Rate name: Cp-2 Large Power Time-of-Day Service Primary Metering Discount Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0785 per kilowatt-hour.

282

Data:C609551b-83b2-4cb7-b0cb-281be24b2cd2 | Open Energy Information  

Open Energy Info (EERE)

551b-83b2-4cb7-b0cb-281be24b2cd2 551b-83b2-4cb7-b0cb-281be24b2cd2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jackson Electric Member Corp Effective date: 2013/03/01 End date if known: Rate name: Commercial Net Metering Rider-Single Directional* Sector: Commercial Description: *Applicable for Customers desiring to sell electrical energy to the Cooperative produced by a distributed generation facility, which must be eligible for participation subject to terms and provisions of O.C.G.A. § 46-3-50 et seq. (Georgia Cogeneration and Distributed Generation Act of 2001). A distributed generation facility must 1. Be owned and operated by a Customer of the Cooperative for production of electrical energy, and 2. Be located on the Customer's premises, and 3. Be connected to and operate in parallel with the Cooperative's distribution facilities, and 4. Be intended primarily to offset part or all of the Customer generator's requirement for electricity, and 5. Have peak generating capacity of not more than 10 kW for residential applications and not more than 100 kW for commercial applications. 6. Use solar photovoltaic system, fuel cell or wind generation

283

Data:C489d086-ef4b-45b2-ba5e-4c297bafb3b2 | Open Energy Information  

Open Energy Info (EERE)

9d086-ef4b-45b2-ba5e-4c297bafb3b2 9d086-ef4b-45b2-ba5e-4c297bafb3b2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: GreyStone Power Corporation Effective date: 2008/11/01 End date if known: Rate name: Outdoor Lighting HPS 175 W Sector: Lighting Description: Additional Charges: Poles and Conductor (a) Overhead Service Length, Facility Rate, Contribution 30 ft. Wood Pole $ 2.25 $ 210 35 ft. Wood Pole $ 2.50 $ 235 40 ft. Wood Pole $ 2.95 $ 275 45 ft. Wood Pole $ 3.30 $ 310 (b) Underground Service Length, Facility Rate, Contribution 30 ft. Wood Pole $ 2.25 $ 210 30& ft. Wood Pole $ 6.25 $ 395 35 ft. Wood Pole $ 7.10 $ 415

284

Data:9705b027-7b79-4f5a-8dc1-7b2b2b412107 | Open Energy Information  

Open Energy Info (EERE)

7-7b79-4f5a-8dc1-7b2b2b412107 7-7b79-4f5a-8dc1-7b2b2b412107 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Avista Corp Effective date: 2013/01/01 End date if known: Rate name: Area Lighting - HPS- 25ft steel 200W Sector: Lighting Description: Public Purposes Rider = base rate x %2.85. Source or reference: http://www.avistautilities.com/services/energypricing/wa/elect/Pages/default.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

285

Data:4ecac073-42f5-4b2e-b0fc-7763308c92b2 | Open Energy Information  

Open Energy Info (EERE)

ecac073-42f5-4b2e-b0fc-7763308c92b2 ecac073-42f5-4b2e-b0fc-7763308c92b2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Whitewater Valley Rural EMC Effective date: 2010/05/01 End date if known: Rate name: Schedule SP TOU - Small Power Service Time-of-Use (Single Phase) Sector: Commercial Description: Time of use Source or reference: http://www.wwvremc.com/documents/2010_Small_Power_TOU.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

286

Solar energy conversion apparatus  

SciTech Connect (OSTI)

Apparatus is disclosed for converting solar energy to more useful forms, I.E., thermal and electrical energy. Such apparatus includes a photoelectric transducer (E.G., an array of photovoltaic cells), means for concentrating solar energy on the transducer, and means for circulating a liquid between the transducer and the solar energy concentrator. The spectral properties of the liquid are such that the liquid functions as a bandpass filter, transmitting solar energy to which the transducer is responsive and absorbing solar energy to which the transducer is non-responsive. The transmitted solar energy is converted to electrical energy by the transducer, and the absorbed solar energy is converted to heat by the liquid. Preferably, the liquid is circulated through a container which, in the vicinity of the transducer, is constructed so as to provide optical gain to the system and to integrate incident solar energy for the purpose of eliminating ''hot spots'' which could overheat, and thereby damage, the transducer.

Powell, R.A.

1981-07-14T23:59:59.000Z

287

Management and Uses Conversion Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion Depleted UF6 Conversion DOE is planning to build two depleted UF6 conversion facilities, and site-specific environmental impact statements (EISs) to evaluate project alternatives. The Final Plan for Conversion and the Programmatic EIS The eventual disposition of depleted UF6 remains the subject of considerable interest within the U.S. Congress, and among concerned citizens and other stakeholders. Congress stated its intentions in Public Law (P. L.) 105-204, signed by the President in July 1998. P. L. 105-204 required DOE to develop a plan to build two depleted UF6 conversion facilities, one each at Portsmouth, Ohio, and Paducah, Kentucky. DOE submitted the required plan, Final Plan for the Conversion of Depleted Uranium Hexafluoride, to Congress in July 1999. This document provided a discussion of DOE's technical approach and schedule to implement this project. Although much of the information provided in this report is still valid, a few aspects of this plan have changed since its publication.

288

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

289

Expanding Buildings-to-Grid (B2G) Objectives in India  

E-Print Network [OSTI]

and Jayant Sathaye. 2011. DSM Electricity Savings PotentialPower. 2012. Tata_power_DSM_initiatives_20_July 12, 2012.16 4. Potential for Integrated B2G and DSM Initiatives in

Ghatikar, Girish

2014-01-01T23:59:59.000Z

290

Expanding Buildings-to-Grid (B2G) Objectives in India  

E-Print Network [OSTI]

across the Smart Grid, the largest benefits are intended forplanned Smart Grid pilots in India that could benefit B2GSmart Grid roadmap for the Calcutta Electric Supply Corporation Limited (CESC) that will evaluate the cost/benefit

Ghatikar, Girish

2014-01-01T23:59:59.000Z

291

Dimensional dependence of electric resistance of thin TiB2 films  

Science Journals Connector (OSTI)

The dimensional effect of electrical resistance in thin films of TiB2 has been studied. Experimental results were processed within the framework of the Fuchs-Sondheimer theory. This has enabled us to estimate the...

A. S. Dranenko; L. A. Dvorina

292

EPA Redesigns Conversion Certification Policies  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EPA Redesigns EPA Redesigns Conversion Certification Policies At a recent meeting held in Washington, DC, officials from the U.S. Environmental Protection Agency (EPA) opened dialogue about proposed changes to its emission certification policies that affect alternative fuel vehicles (AFVs). "We are trying to accommo- date the Energy Policy Act (EPAct) and Executive Order requirements while trying to change enforce- ment policies and guidance with respect to conversions," said Rich Ackerman of EPA's Enforcement Office. The meeting, attended by representatives of more than 60 organizations, was held to discuss actions addressing AFV emission certification. Specifically, topics included * Conversion emissions perfor- mance data * Status of environmental laws pertaining to alternative fuel

293

Constraining resonant photon-axion conversions in the early universe  

SciTech Connect (OSTI)

The presence of a primordial magnetic field would have induced resonant conversions between photons and axion-like particles (ALPs) during the thermal history of the Universe. These conversions would have distorted the blackbody spectrum of the cosmic microwave background (CMB). In this context, we derive bounds on the photon-ALP resonant conversions using the high precision CMB spectral data collected by the FIRAS instrument on board of the Cosmic Background Explorer. We obtain upper limits on the product of the photon-ALP coupling constant g times the magnetic field strength B down to gB ?< 10{sup ?13} GeV{sup ?1} nG for ALP masses below the eV scale.

Mirizzi, Alessandro [Max-Planck-Institut für Physik (Werner Heisenberg Institut), Föhringer Ring 6, 80805 München (Germany); Redondo, Javier [Deutsches Elektronen Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Sigl, Günter, E-mail: amirizzi@mppmu.mpg.de, E-mail: javier.redondo@desy.de, E-mail: sigl@iap.fr [II. Institut für theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

2009-08-01T23:59:59.000Z

294

Photovoltaic and photoelectrochemical conversion of solar energy  

Science Journals Connector (OSTI)

...multiple carrier generation...renewable energy|solar energy conversion|photovoltaic...photovoltaic energy conversion process...minority carriers in the p-type...efficiency carrier multiplication...for solar energy conversion. Phys...

2007-01-01T23:59:59.000Z

295

Alternative Fuels Data Center: Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversions Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversions on AddThis.com... Vehicle Conversions Photo of converted to run on propane. What kinds of conversions are available? Natural Gas Propane Electric Hybrid Ethanol An aftermarket conversion is a vehicle or engine modified to operate using

296

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

297

Apparatus and method for pyroelectric power conversion  

DOE Patents [OSTI]

Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected.

Olsen, Randall B. (Olivenhain, CA)

1984-01-01T23:59:59.000Z

298

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979, Rosslyn, VA. U.S. Dept. of Energy and Argonne NationalLaboratory, Argonne, IL. ANL/OTEC- BCM-002. Bretschneider,Environmental Systems Division, Argonne National Laboratory.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

299

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

stored on the platform and these two chemicals will explodeChemical Categories Nutrients Dissolved Oxygen Biological Categories Phyto- plankton Zooplankton lchthyo- plankton Micro- nekton Nekton Hammals, Birds Benthos Issue Platform

Sullivan, S.M.

2014-01-01T23:59:59.000Z

300

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

stored on the platform and these two chemicals will explodeplatform continuously releases chlorine along with its discharge waters at a concentration of 0.1 mg liter . Chemical

Sullivan, S.M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

stored on the platform and these two chemicals explode whenhandling chemical contaminants on OTEC platforms. The Coastof chemicals or processes used on OTEC platforms, there is a

Sands, M. D.

2011-01-01T23:59:59.000Z

302

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Division of Central Solar Technology, U.s. Dept. of Energy.Div. of Central Solar Technology. U.S. Dept. of Energy.Division of Central Solar Technology, u.s. Dept. of Energy.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

303

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Div. of Central Solar Technology. U.S. Dept. of Energy.Division of Central Solar Technology. , U.S. Dept. ofDivision of Central Solar Technology. USDOE paper 7D-3/1.

Sands, M. D.

2011-01-01T23:59:59.000Z

304

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Div. of Central Solar Technology. U.S. Dept. of Energy.Division of Central Solar Technology, U.S. Dept. of Energy.Division of Central Solar Technology, U.S. Dept. of Energy.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

305

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

as Organic Rankine Cycle (ORC) mahines, Sterling engines,Organic Rankine Cycle (ORC) system or Sterling Engine (SE)an organic Rankine cycle (ORC) system generates electricity

Lim, Hyuck

2011-01-01T23:59:59.000Z

306

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

delivered to the local power grid either directly (for Land-Oahu, Hawaii) • • • • Electrical Power Grid for Oahu,Hawaii Electrical Power Grid for Key West, Florida ••

Sullivan, S.M.

2014-01-01T23:59:59.000Z

307

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Oahu, Hawaii) • . • • . Electrical Power Grid for Oahu,Hawaii • • • Electrical Power Grid for Key West,Florida • • . • . . Electrical Power Grid for Puerto

Sullivan, S.M.

2014-01-01T23:59:59.000Z

308

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Occupational Safety and Health Administration (OSHA) safety, and the Coast Guard covers mar1ne covers some offshore

Sands, M. D.

2011-01-01T23:59:59.000Z

309

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

SciTech Connect (OSTI)

This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.

Sands, M. D.

1980-01-01T23:59:59.000Z

310

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Mexico. Energy Research and Development Administration, Division of SolarMexico. Energy Research and Development Administration, Division of Solar

Sands, M. D.

2011-01-01T23:59:59.000Z

311

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

various types of Stirling engine have been developed, whichThermogalvanic cell Stirling Engine ORC Internal Combustion

Lim, Hyuck

2011-01-01T23:59:59.000Z

312

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

50 ing a turning basin in the bight. (See Notice to Marinersbasin to a basin in the SW part of the bight. In 1972. theturning basin just in- side the entrance of Garrison Bight.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

313

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

upper turning basin off Key West Bight, and then 12 feet toso ing a turnmg basin in the bight. (See Nutice to :V1annersbasin to a basin in the SW part of the bight. ln 197 2. the

Sullivan, S.M.

2014-01-01T23:59:59.000Z

314

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

1 1.1. Low Grade Heat (LGH) isvoltage (V) as a function of the LGH temperature (T): (a) Ptresults of the output voltage as a function of the LGH

Lim, Hyuck

2011-01-01T23:59:59.000Z

315

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Organic Rankine Cycle achieved by using Organic Rankine Cycle or Sterling Engines.technologies such as Organic Rankine Cycle (ORC) mahines,

Lim, Hyuck

2011-01-01T23:59:59.000Z

316

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

la. Supplies and repairs. - Bunker C. die-,el oib. and wateragricultur- Supplies. -No bunkers are available; in emergen·3, Vessel Arrival In- cies bunkers and lube oils may be

Sullivan, S.M.

2014-01-01T23:59:59.000Z

317

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

de Ratones. Supplies. -No bunkers are available; in emergen-and agricultur· cies bunkers and lube oils may be deliveredr'..:w h'>urs. Fr..:shwater. bunker C otl. and dtesd oil are

Sullivan, S.M.

2014-01-01T23:59:59.000Z

318

Conversion of Concentrated Solar Thermal Energy into Chemical Energy  

Science Journals Connector (OSTI)

When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500–2500 kW/m2 is absorbed by an excess Frenkel defect formation. This non-equilibrium state ...

Yutaka Tamaura

2012-03-01T23:59:59.000Z

319

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

total energy received by today’s solar panels and is beings best solar panels can convert only ~16% of solar energy to

Lim, Hyuck

2011-01-01T23:59:59.000Z

320

Science Highlights- Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modes by an Integrated Acoustic Etalon Heterobarrier for Converting Hot-Phonon Energy to Electric Potential MOCVD Growth of Vertically Aligned InGaN Nanowires Resolving...

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Papers Published - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heterojunction Photovoltaic Cells with Fullerene-Based Electron Filtering Buffers," Adv. Energy Mater. 4, 1301557 (2014). S. Huang, S. J. Kim, X. Q. Pan, and R. S. Goldman,...

322

Science Highlights- Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiencies Approaching 100% Exciton Management in Organic Photovoltaic Multi-donor Energy Cascades Decorative Power Generating Panels Creating Various Colors Benchmarking...

323

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

aspects of siting OTEC plants offshore the United States ongas. phosgene Offshore ammonia plant-ships will presentan facility offshore may expose the plant to power outages

Sands, M. D.

2011-01-01T23:59:59.000Z

324

Facilities - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities CSTEC investigators will have access to high-tech facilities located at the University of Michigan. Center for Ultrafast Optics (CUOS) The Center for Ultrafast Optical...

325

Advisory Board - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advisory Board Dr. Sheila G. Bailey Senior Physicist at NASA Glenn Research Center Dr. David J. Eaglesham CEO at Pellion Technologies Dr. Alex Jen (website) BoeingJohnson...

326

Investigators - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigators Director Name Department Email Peter Green MSEChemE pfgreen@umich.edu Principal Investigators Name Department Email Akram Boukai MSE boukai@umich.edu Roy Clarke...

327

Chapter 7 - Geothermal and ocean-thermal energy conversion  

Science Journals Connector (OSTI)

Publisher Summary Geothermal heat sources are utilized by means of thermodynamic engines such as Brayton cycles, in cases where the geothermal heat is in the form of steam. In some regions, geothermal sources exist that provide a mixture of water and steam, including suspended soil and rock particles, such that conventional turbines cannot be used. In most regions the geothermal resources are in the form of heat-containing rock or sediments, with little possibility of direct use. If an aquifer passes through the region, it may collect heat from the surrounding layers and allow a substantial rate of heat extraction such as by drilling two holes from the surface to the aquifer, separated from each other. If no aquifer is present to establish a heat exchange surface in the heat-containing rock, it may be feasible to create suitable fractures artificially. Downward gradients of temperature exist in most oceans, and they are particularly stable in the tropical oceans. The utilization of such temperature gradients for electricity generation such as by use of a Rankine cycle, are considered several times. The temperature differences available over the first 500-1000 m of water depth are only about 25?C. Considering a closed Rankine cycle, with a working fluid such as ammonia, which evaporates and condenses at convenient temperatures, placed near the ocean surface, it will be required to pump colder water through a pipe from the depth to a heat exchanger for condensation of the working fluid. A warm water heat exchanger is required for evaporating the working fluid. The converters must be placed in strong currents such as the Gulf Stream in order to save energy to pump the hot water through the heat exchanger.

Bent Sørensen

2007-01-01T23:59:59.000Z

328

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

fossil-fuel intake canals for withdrawing marine waters;Some marine supplies and water are available. Bunker fuels.marine ecosystem effects caused by Pilot Plant operation are associated with the seawater discharge and approximately fossil-fuel

Sullivan, S.M.

2014-01-01T23:59:59.000Z

329

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

fuel or nuclear-powered plants use intake canals for withdrawing marineSome marine supplies and water are available. Uunker fuels.marine supplies are available at Key West. Gasoline and diesel fuel

Sullivan, S.M.

2014-01-01T23:59:59.000Z

330

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

seawater. produce can be generated electrolytically Producing chlorine on an OTEC plant eliminates storage

Sands, M. D.

2011-01-01T23:59:59.000Z

331

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Electricity - Hawaii is almost totally dependent upon imported petroleum A natural energy source of geothermal

Sands, M. D.

2011-01-01T23:59:59.000Z

332

Welcome - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

To Bridge LEDs' Green Gap, Scientists Think Small ... Really Small Read about CSTEC's latest Research Energy Transport in Organic and Hybrid Systems Absorption and Carrier...

333

Management Council - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organization  MANAGEMENT COUNCIL Peter Green, Dir. MSE Rachel Goldman MSE Ctirad Uher Physics Jamie Phillips EECS Max Shtein MSE Roy Clarke Physics Ted Goodson III Chemistry...

334

Contact - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Prof. Peter Green, CSTEC Director Research Group Leader for Thrust 3 - Energy transport in organic and hybrid systems Materials Science & Engineering Dept. H H Dow...

335

Directors - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

He is a Fellow of the American Physical Society and of the American Ceramics Society. Green was a member of the decadal study on Condensed Matter and Materials Physics...

336

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

W of Fort Taylor. the flood (NNE) and the ebb (SSW) currentswas available in the Largo; it floods S and ebbs NW. Islacurrents u: ~1aunalua Bav flood W and ebb E: slack watci'

Sullivan, S.M.

2014-01-01T23:59:59.000Z

337

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

reported that a tidal current floods W and ebbs E along thethe authority for navigation, flood control, and productionW of Fort Taylor, the flood (NNE) and the ebb (SSW) currents

Sullivan, S.M.

2014-01-01T23:59:59.000Z

338

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

ECONOMIC ISSUES Baseload Electricity Baseload electricity production in the Gulf Coast States relies primarily on oil, natural gas, and coal.

Sands, M. D.

2011-01-01T23:59:59.000Z

339

Chemical Conversions of Natural Precursors  

Science Journals Connector (OSTI)

Many products from the flavour industry are primary products from renewable resources or secondary products obtained by chemical conversions of the primary products. In general these secondary products are key...

Peter H. van der Schaft

2007-01-01T23:59:59.000Z

340

Solar Energy Conversion Efficiency Project  

Science Journals Connector (OSTI)

Report of a discussion on possible collaborative experimentation to test and refine biomass production models based on the conversion of solar energy by plant stands, and to evaluate alternative models.

J. S. Pereira; J. J. Landsberg

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

Clavero, Cesar

2014-01-01T23:59:59.000Z

342

Energy Conversion Devices | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Energy Conversion Devices Place: Rochester Hills, MI Website: http:www.energyconversiondev References: Energy Conversion Devices1...

343

Solar thermal power generation: a bibliography with abstracts. Quarterly update, October-December 1979  

SciTech Connect (OSTI)

This annotated bibliography contains the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, biomass and photochemical energy, and large-scale photovoltaics. (MHR)

Not Available

1980-04-01T23:59:59.000Z

344

Outdoor and Indoor Testing to Increase the Efficiency and Durability of Flat Plate Solar Thermal Collectors  

Science Journals Connector (OSTI)

This paper presents the test performed on the solar thermal flat plate collector and the effect of saline aerosol on the solar thermal conversion; an assembly of testing rigs developed ... presented; the rigs all...

Daniela Ciobanu; Ion Visa; Anca Duta…

2014-01-01T23:59:59.000Z

345

Data:24ff6b2b-60cb-48b2-8721-eca6f973e10e | Open Energy Information  

Open Energy Info (EERE)

b-60cb-48b2-8721-eca6f973e10e b-60cb-48b2-8721-eca6f973e10e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Prairie Land Electric Coop Inc Effective date: 2010/01/14 End date if known: Rate name: Monthly Unmetered Investment Facility(MULT GLOBE 150W HPS-Option E) Sector: Lighting Description: Customer-100% Cooperative-0% Source or reference: http://www.prairielandelectric.com/Rates_PDF/MKEC%20Rates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

346

Data:391a926b-20b2-4c78-a27a-51fb9a3ec6b2 | Open Energy Information  

Open Energy Info (EERE)

Data Data Edit with form History Facebook icon Twitter icon » Data:391a926b-20b2-4c78-a27a-51fb9a3ec6b2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Duke Energy Ohio Inc Effective date: 2013/05/06 End date if known: Rate name: Rate GS-FL: OPTIONAL UNMETERED GENERAL SERVICE RATE FOR SMALL FIXED LOADS - 540 - 720 hours used a month Sector: Commercial Description: Applicable to electric service in the Company's entire territory where secondary distribution lines exist for any fixed electric load that can be served by a standard service drop from the Company's existing secondary distribution system.

347

Data:027b2be4-12f8-49f5-bd7b-10b2aa57bdaa | Open Energy Information  

Open Energy Info (EERE)

be4-12f8-49f5-bd7b-10b2aa57bdaa be4-12f8-49f5-bd7b-10b2aa57bdaa No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Washington Elec Member Corp Effective date: End date if known: Rate name: 250 Watt HPS Sector: Lighting Description: Source or reference: http://facts.psc.state.ga.us/Public/GetDocument.aspx?ID=129296 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

348

Interpreting the electronic structure of the hydrogen-bridge bond in B2H6 through a hypothetical reaction  

Science Journals Connector (OSTI)

In order to elucidate the electronic structure of the hydrogen-bridge bond in B2H6 molecule, the formation process of B2H6 had been created by a hypothetical reaction of “B2H4 2? + 2H+...”, and th...

Rongbao Liao

2012-04-01T23:59:59.000Z

349

Reactor Thermal-Hydraulics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

350

Building to Grid (B2G) (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

to Grid (B2G) (Smart Grid Project) to Grid (B2G) (Smart Grid Project) Jump to: navigation, search Project Name Building to Grid (B2G) Country Austria Headquarters Location Salzburg, Austria Coordinates 47.80949°, 13.05501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.80949,"lon":13.05501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

GRR/Elements/14-CA-b.2 - Review of application for completeness | Open  

Open Energy Info (EERE)

application for completeness application for completeness < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-b.2 - Review of application for completeness RWQCB reviews the initial application to ensure that all the required information is included and all the appropriate forms have been submitted. RWQCB will notify the applicant within 30 days of any required additional submissions. Estimated Time Clock.png 30 days0.0821 years 720 hours 4.286 weeks 0.986 months No explanation of time estimate. Logic Chain No Parents \V/ GRR/Elements/14-CA-b.2 - Review of application for completeness (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-b.2_-_Review_of_application_for_completeness&oldid=482574

352

Field dependence of the superconducting basal plane anisotropy of TmNi2B2C  

SciTech Connect (OSTI)

The superconductor TmNi2B2C possesses a significant fourfold basal plane anisotropy, leading to a square vortex lattice (VL) at intermediate fields. However, unlike other members of the borocarbide superconductors, the anisotropy in TmNi2B2C appears to decrease with increasing field, evident by a reentrance of the square VL phase. We have used small-angle neutron scattering measurements of the VL to study the field dependence of the anisotropy. Our results provide a direct, quantitative measurement of the decreasing anisotropy. We attribute this reduction of the basal plane anisotropy to the strong Pauli paramagnetic effects observed in TmNi2B2C and the resulting expansion of vortex cores near Hc2.

Das, P.; Densmore, J.M.; Rastovski, C.; Schlesinger, K.J.; Laver, M.; Dewhurst, C.D.; Littrell, K.; Budko, Serguei L.; Canfield, Paul C.; Eskildsen, M.R.

2012-10-01T23:59:59.000Z

353

Magnetic and superconducting phase diagrams in ErNi2B2C  

SciTech Connect (OSTI)

We present measurements of the superconducting upper critical field Hc2(T) and the magneticphasediagram of the superconductor ErNi2B2C made with a scanning tunneling microscope (STM). The magnetic field was applied in the basal plane of the tetragonal crystal structure. We have found large gapless regions in the superconductingphasediagram of ErNi2B2C, extending between different magnetic transitions. A close correlation between magnetic transitions and Hc2(T) is found, showing that superconductivity is strongly linked to magnetism.

Galvis, J.A.; Crespo, M.; Guillamon, I.; Suderow, Hermann; Vieira, S.; Garcia Hernandez, M.; Budko, Serguei; Canfield, Paul

2012-03-30T23:59:59.000Z

354

Conversion Electrons of Radium D  

Science Journals Connector (OSTI)

The conversion electrons of radium D have been studied with thin sources on thin backings in a beta-ray spectrograph using calibrated photographic emulsions. The number of conversion electrons due to the 47-kev gamma-ray has been measured to be 74±5 per hundred disintegrations. The L:M:N ratio is 1:0.26:0.077. This implies a complex decay scheme for radium D, since earlier results give 3.5 unconverted 47-kev gamma-rays per hundred disintegrations.

Lawrence Cranberg

1950-01-15T23:59:59.000Z

355

Recirculation in multiple wave conversions  

SciTech Connect (OSTI)

A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

2008-07-30T23:59:59.000Z

356

Jet-dilepton conversion in spherical expanding quark-gluon plasma  

E-Print Network [OSTI]

We calculate the production of large mass dileptons from the jet-dilepton conversion in spherical expanding quark-gluon plasma at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. The jet-dilepton conversion exceeds the thermal dilepton production and Drell-Yan process in the large mass region of 4.5 GeV$energies. The energy loss of jets in the hot and dense medium is also included.

Fu, Yong-Ping

2014-01-01T23:59:59.000Z

357

Jet-dilepton conversion in spherical expanding quark-gluon plasma  

E-Print Network [OSTI]

We calculate the production of large mass dileptons from the jet-dilepton conversion in spherical expanding quark-gluon plasma at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. The jet-dilepton conversion exceeds the thermal dilepton production and Drell-Yan process in the large mass region of 4.5 GeV$energies. The energy loss of jets in the hot and dense medium is also included.

Yong-Ping Fu; Qin Xi

2014-10-19T23:59:59.000Z

358

MUTUAL CONVERSION SOLAR AND SIDEREAL  

E-Print Network [OSTI]

TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

Roegel, Denis

359

HELIOPHYSICS II. ENERGY CONVERSION PROCESSES  

E-Print Network [OSTI]

of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other forms approaches to the problems involved in phys- ically characterizing the solar atmosphere; see also the lecture

Hudson, Hugh

360

LIANG GOU () 650 Harry Rd. B2-249, San Jose, CA 95123, USA  

E-Print Network [OSTI]

LIANG GOU () 650 Harry Rd. B2-249, San Jose, CA 95123, USA Office: 1-408-927-1152 / Cell: 1, China B.M., Information Management& Information System, 2004 PUBLICATIONS Refereed Journal Papers [J.2 TVCG/InfoVis'11, Vol. 17, No. 12, pp. 2449-2458. [J.1] Gou, L., Zhang, S. K., Wang, J. & Zhang, X. L

Giles, C. Lee

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

B2B Services: Worksheet-Driven Development of Modeling Artifacts and Code  

Science Journals Connector (OSTI)

......B2B Services 1007 long-term contributors to UN...the example of a waste management transport...mechanism and methods for storage and retrieval of...authority about a waste transport using a...acceptance envelope or a waste movement rejection...tagged values for storage within the process......

Christian Huemer; Philipp Liegl; Rainer Schuster; Marco Zapletal

2009-11-01T23:59:59.000Z

362

Spectral imaging of the Sagittarius B2 region in multiple 7-mm molecular lines  

Science Journals Connector (OSTI)

......B2 region in multiple 7-mm molecular lines P. A. Jones 1 2 * M. G. Burton 1 N...EX4 4QL We have undertaken a spectral-line imaging survey of a 6 6 arcmin2 area around...velocity-integrated emission images for 47 lines: 38 molecular lines and nine radio recombination......

P. A. Jones; M. G. Burton; N. F. H. Tothill; M. R. Cunningham

2011-03-11T23:59:59.000Z

363

Environmental Pollution (Series B) 2 (1981) 2135 AGE-SPECIFIC LEAD DISTRIBUTION IN XYLEM RINGS  

E-Print Network [OSTI]

concentrations to pollution histories. INTRODUCTION The global historical record of atmospheric and environmentalEnvironmental Pollution (Series B) 2 (1981) 21­35 AGE-SPECIFIC LEAD DISTRIBUTION IN XYLEM RINGS environmental pollution records. Lead in xylem from Liriodendron tulipifera, Quercus alba, and Carya spp. trees

Baes, Fred

364

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

365

Expanding Buildings-to-Grid (B2G) Objectives in India  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Expanding Buildings-to-Grid (B2G) Objectives in India Expanding Buildings-to-Grid (B2G) Objectives in India Title Expanding Buildings-to-Grid (B2G) Objectives in India Publication Type Report LBNL Report Number LBNL-6369E Year of Publication 2013 Authors Ghatikar, Girish, Venkata Ganti, and Chandrayee Basu Date Published 07/2013 Keywords market sectors, technologies Abstract India faces significant challenges in providing a reliable electricity supply. This was manifest in a power grid failure that resulted in the country's worst blackout, which affected states where 50% of India's 1.2 billion people live. The Government of India is taking measures to address the situation of aging grid infrastructure and integrated demand-side management. The National Action Plan on Climate Change of 2008 outlines a National Mission on Enhanced Energy Efficiency with actions for electricity sector reform. The U.S.-India Energy Dialogue provides a mechanism for joint activities to address energy issues and electric grid integration. The scope of the buildings-to-grid (B2G) activities by Lawrence Berkeley National Laboratory (LBNL) have been delineated primarily based on the expertise of LBNL understanding responsive loads for Smart Grid deployments in the United States. This study leverages parallel Smart Grid activities by the Indian and U.S. stakeholders. Its goal is to establish a sustainable B2G collaboration between the U.S. and India, which will facilitate integration of demand-side systems with supply-side systems to advance India's electricity reliability goals. The study will motivate Indian electricity markets by disseminating U.S. experiences and technologies for the uptake of demand response (DR) pilot studies in India. The study delineates immediate and long-term intervention through systematic review of issues, U.S. experiences, and technologies that support local missions. It provides background and description of energy efficiency and DR framework through an organized review of the literature pertaining to various aspects of India's B2G activities. The results are short-term and long-term DR and energy-efficiency integrated action plans for pilot studies and transformative technologies for mitigation and adaptation of electricity reliability. The findings will aid Smart Grid market transformation and policy interventions through technology demonstrations. Based on the priorities identified, a plan for B2G technology pilot studies in India is proposed.

366

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Electricity & Solar Thermal HW Module Electricity Solar thermal space heating Baseline Solar Thermal Inverte r To Grid 2012 GMZ Energy, Proprietary and Confidential Bosch -...

367

Implications of Fast Reactor Transuranic Conversion Ratio  

SciTech Connect (OSTI)

Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

2010-11-01T23:59:59.000Z

368

ihLSEVIFR Optical Materials 3 (1994) 115--121 Absolute non-radiative energy conversion efficiency scanning  

E-Print Network [OSTI]

, in optical materials. 1. Introduction reported optical absorptions and optical-to-thermal energy conversion of transparent, high-qual- which PPES 11NR studies have been reported have itylaser materials, ~NR (A) the absence of irre- radiativecenters during the quadrature scan, as corn- producible thermal resistances

Mandelis, Andreas

369

Data:5ac3a822-b2d2-40e8-9566-f0aa5ad1d30e | Open Energy Information  

Open Energy Info (EERE)

a822-b2d2-40e8-9566-f0aa5ad1d30e a822-b2d2-40e8-9566-f0aa5ad1d30e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Anaheim, California (Utility Company) Effective date: 2012/09/12 End date if known: Rate name: Thermal Energy Storage- Schedule TES Sector: Commercial Description: Applicable to electric service for load in a facility with a monthly maximum demand of 500kW per meter for which the customer installs and utilizes thermal energy storage equipment for air conditioning. Customers must execute an application with APU for service under this rate schedule. For a customer whose monthly maximum demand is between 200 kW and 500kW for a given meter, the customer must shift a minimum of 20 percent (20%) of the monthly maximum on-peak demand for a given meter to off-peak demand as a result of the installation and utilization of thermal energy storage equipment for air conditioning. If the customer fails to shift 20 percent (20%) of the monthly maximum on-peak demand for a given meter and/or exceeds 500 kW for a given meter for any three (3) months during the preceding 12 months, the customer will be ineligible for service under this rate schedule and the customer's account for that meter shall transfer immediately to the otherwise applicable tariff based on commercial energy usage.

370

Photovoltaic and photoelectrochemical conversion of solar energy  

Science Journals Connector (OSTI)

...photoelectrochemical conversion of solar energy Michael Gratzel * * ( michael...industry, have dominated photovoltaic solar energy converters. These systems have...promising perspectives. renewable energy|solar energy conversion|photovoltaic...

2007-01-01T23:59:59.000Z

371

Grounded Situation Models for Situated Conversational Assistants  

E-Print Network [OSTI]

A Situated Conversational Assistant (SCA) is a system with sensing, acting and speech synthesis/recognition abilities, which engages in physically situated natural language conversation with human partners and assists them ...

Mavridis, Nikolaos

2007-01-01T23:59:59.000Z

372

Biofuel Conversion Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

373

Photochemical conversion and storage of solar energy  

Science Journals Connector (OSTI)

Photochemical conversion and storage of solar energy ... In this article, the author considers the use of inorganic photochemical reactions for the conversion and storage of solar energy. ... HOMO?LUMO energy difference values compared ... ...

Charles Kutal

1983-01-01T23:59:59.000Z

374

The National Conversion Pilot Project  

SciTech Connect (OSTI)

The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

Roberts, A.V. [BNFL, Inc., Golden, CO (United States)

1995-12-31T23:59:59.000Z

375

Solar?energy conversion at high solar intensities  

Science Journals Connector (OSTI)

The concentration of sunlight offers distinct advantages for solar–electrical generation either by thermal conversion or by photovoltaics. A large variety of concentration techniques are available with concentration ratios of 1–1000. Concentration is required for thermal conversion systems to attain the high temperatures needed for efficiencies in the desired range of about 25%–35%. The projected costs for some of the solar thermal systems (especially the central receiver and the fixed mirror) indicate that they could be economically competitive in the southwestern states. The southwest may be required for these high?concentration systems to overcome the main disadvantage of concentration which is the use of the direct component of sunlight only. Other concerns of high?intensity systems are in tracking requirements reflective surface accuracy and material lifetimes of both the reflecting and absorbing components. Selective surface absorbers will be required for systems with concentration ratios below a few hundred. The present high cost of solar?cell?generated electricity can be reduced considerably by using concentrators. Cells can be used with any of the concentrator designs and the major concern is keeping them at acceptable operating temperatures. Planar silicon cells vertical multijunction and gallium–aluminum–arsenide cells all look attractive for concentrating systems.

Charles E. Backus

1975-01-01T23:59:59.000Z

376

Methanol conversion to higher hydrocarbons  

SciTech Connect (OSTI)

Several indirect options exist for producing chemicals and transportation fuels from coal, natural gas, or biomass. All involve an initial conversion step to synthesis gas (CO and H{sub 2}). Presently, there are two commercial technologies for converting syngas to liquids: Fischer-Tropsch, which yields a range of aliphatic hydrocarbons with molecular weights determined by Schulz-Flory kinetics, and methanol synthesis. Mobil`s diversity of technology for methanol conversion gives the methanol synthesis route flexibility for production of either gasoline, distillate or chemicals. Mobil`s ZSM-5 catalyst is the key in several processes for producing chemicals and transportation fuels from methanol: MTO for light olefins, MTG for gasoline, MOGD for distillates. The MTG process has been commercialized in New Zealand since 1985, producing one-third of the country`s gasoline supply, while MTO and MOGD have been developed and demonstrated at greater than 100 BPD scale. This paper will discuss recent work in understanding methanol conversion chemistry and the various options for its use.

Tabak, S.A. [Mobil Research and Development Corp., Princeton, NJ (United States). Central Research Lab.

1994-12-31T23:59:59.000Z

377

3. Energy conversion, balances, efficiency, equilibrium  

E-Print Network [OSTI]

1/124 3. Energy conversion, balances, efficiency, equilibrium (Introduction to Thermodynamics) Ron h�dm, h = u + p/ Picture: SEHB06 56/124 3.5: Energy balances; Conversion work work, work heat 96/124 Energy conversion heat work /1 "the essential rules" Picture:IO06 #12;97/124 Energy

Zevenhoven, Ron

378

Energy Conversion Technologies 1.0 Introduction  

E-Print Network [OSTI]

1 Energy Conversion Technologies 1.0 Introduction In these notes, we describe the infrastructure. By "energy conversion," we mean the conversion of energy into some form of electric energy. By "available now that is available to be considered in the generation and planning functions. We classify this information by Energy

McCalley, James D.

379

GUIDED ANGLER FISH ANNUAL CONVERSION FACTORS  

E-Print Network [OSTI]

GUIDED ANGLER FISH ANNUAL CONVERSION FACTORS FOR THE 2014 FISHING YEAR NOAA FISHERIES, ALASKA via the GAF electronic reporting system. If no GAF were harvested in a year, the conversion factor is the first calendar year that GAF regulations will be in effect. Therefore, the conversion factors are based

380

Data:7bbae6b2-bcac-4596-b507-bcd264676719 | Open Energy Information  

Open Energy Info (EERE)

bbae6b2-bcac-4596-b507-bcd264676719 bbae6b2-bcac-4596-b507-bcd264676719 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Georgetown, South Carolina (Utility Company) Effective date: 2012/02/01 End date if known: Rate name: Residential Rate Sector: Residential Description: Applicable for use in private residence or an individual family apartment. Subject to Purchased Power Cost Adjustment Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal tolerant avicelase from Acidothermus cellulolyticus  

DOE Patents [OSTI]

The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of the glycoside hydrolase (GH) family. AviIII was isolated and characterized from Acidothermus cellulolyticus and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

Ding, Shi-You (Golden, CO); Adney, William S. (Golden, CO); Vinzant, Todd B. (Golden, CO); Himmel, Michael E. (Littleton, CO)

2008-04-29T23:59:59.000Z

382

Corrosion rate and anodic dissolution behavior of a B2-iron aluminide alloy in sulfuric acid  

SciTech Connect (OSTI)

An electrochemical investigation was conducted to evaluate the corrosion behavior of an iron aluminide (B2-FeAl) alloy (with 24 wt% Al) in sulfuric acid (H{sub 2}SO{sub 3}) under potentiodynamic polarization conditions. Corrosion rates were determined using the polarization resistance (R{sub p}) technique, in which simultaneous computations of the Tafel slopes were obtained by a curve-fitting procedure. The corrosion rate of B2-FeAl was comparable to high-purity iron at the beginning of immersion but increased noticeably with time, showing significantly diminished corrosion resistance after several hours of immersion. At small anodic overpotentials, the polarization curve showed an active dissolution region, with the anodic current dependent upon potential and pH, which suggested an anodic process under iron dissolution control. Active corrosion of B2-FeAl was believed to follow an initial selective dissolution of the aluminum constituent. The rate-determining step of the process was the charge-transfer reaction of iron, similar to that for iron-chromium alloys. However, a significant difference between aluminum and chromium existed in the poorer performance of aluminum as an alloying element in inhibiting active dissolution of iron-based alloys.

Frangini, S. [ENEA Centro Ricerche Energie, Rome (Italy). Div. Nuovi Materiali

1999-01-01T23:59:59.000Z

383

Ionic Liquids as Solvents for Catalytic Conversion of Lignocellulosic Feedstocks  

E-Print Network [OSTI]

to the development of biomass conversion technologies, it isefficient and selective biomass conversion technologies is athe conversion of both carbohydrate components of biomass.

Dee, Sean Joseph

2012-01-01T23:59:59.000Z

384

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

E-Print Network [OSTI]

cost and improve the energy conversion efficiency, to enableefficiency solar energy conversion devices. AcknowledgementsPhotoelectrochemical Energy Conversion Neil P. Dasgupta and

Dasgupta, Neil

2014-01-01T23:59:59.000Z

385

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network [OSTI]

of Steady-State Energy Conversion. Applied ScientificElectrokinetic energy conversion efficiency in nanofluidicElectrokinetic energy conversion efficiency in nanofluidic

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

386

2008 Guidelines to Defra's GHG Conversion Factors Guidelines to Defra's GHG Conversion Factors  

E-Print Network [OSTI]

with the standard conversion factors at Annex 1. If, however, you export energy or heat to another business (or2008 Guidelines to Defra's GHG Conversion Factors 2008 Guidelines to Defra's GHG Conversion Factors yellow = Calculation results Page 1 of 15 #12;2008 Guidelines to Defra's GHG Conversion Factors Annex 1

387

Exceeding the Limit in Solar Energy Conversion with Multiple Excitons  

Science Journals Connector (OSTI)

The former comes from the transparence of the semiconductor material to solar radiation with photon energies below the bandgap (Eg), while the latter results from the cooling of hot carriers, initially generated by photon energies above Eg, to the band edges before they are extracted to do work. ... Carrier multiplication or singlet fission can be used to decrease the thermalization loss by converting part of the excess photon energy to multiple electron–hole pairs, thus increasing photocurrent. ... (9) However, such enhancement has little effect on the power conversion efficiency because significant carrier multiplication only occurs at photon energies as high as 4Eg. ...

Xiaoyang Zhu

2013-06-18T23:59:59.000Z

388

NREL: Biomass Research - Biochemical Conversion Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

389

First-principles study of non-heme Fe(II) halogenase SyrB2 reactivity  

E-Print Network [OSTI]

We present here a computational study of reactions at a model complex of the SyrB2 enzyme active site. SyrB2, which chlorinates l-threonine in the syringomycin biosynthetic pathway, belongs to a recently discovered class ...

Kulik, Heather J.

390

Disintermediation of traditional chemical intermediary roles in the Electronic Business-to-Business (e-B2B) exchange world  

Science Journals Connector (OSTI)

The traditional chemical distribution industry is a multi-billion dollar business and with the introduction of Electronic Business-to-Business (e-B2B) exchanges to the global chemical industry there is some concern about the future roles of traditional ... Keywords: Chemical industry, Disintermediation, Supply chain management, e-B2B exchanges

Kin Bee Tay; John Chelliah

2011-09-01T23:59:59.000Z

391

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques  

Science Journals Connector (OSTI)

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques ... (80-86) These energetic electrons that are not in thermal equilibrium with the metal atoms are called “hot electrons”. ... The activation energies are 22-33 kcal/mol, close to the desorption energy of CO from these surfaces. ...

Gabor A. Somorjai; Heinz Frei; Jeong Y. Park

2009-11-04T23:59:59.000Z

392

Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors  

Science Journals Connector (OSTI)

...University of Florida, Gainesville...processes and solar energy harvesting. Plants...energy by fossil fuels, solar thermal...convert light energy directly into...the conversion rate decreases a little...processes and solar energy harvesting...University of Florida, Gainesville...

Quan Yuan; Yunfei Zhang; Yan Chen; Ruowen Wang; Chaoling Du; Emir Yasun; Weihong Tan

2011-01-01T23:59:59.000Z

393

Conversion of raw carbonaceous fuels  

DOE Patents [OSTI]

Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

Cooper, John F. (Oakland, CA)

2007-08-07T23:59:59.000Z

394

A new cascade-type heat conversion system  

SciTech Connect (OSTI)

Various heat conversion systems have different operating temperatures. This paper shows how, in a solar energy system some of the waste heat from a thermophotovoltaic arrangement can be made to operate a thermionic power generator. The waste heat of the thermionic power generator can then be made to operate an alkali-metal thermal electric converter, and the waste heat from the alkali-metal thermal electric converter as well as the rest of the waste heat of the thermophotovoltaic system can be made to operate a methane reformation system. Stored heat from the methane reformation system can be made to operate the system at night. The overall system efficiency of the example shown is 42.6%. As a prime source of heat a nuclear pile or burning hydrogen may be used.

Newman, E. [Twenty-First Century Power Co., Northridge, CA (United States)

1996-12-31T23:59:59.000Z

395

Thermal treatment  

Science Journals Connector (OSTI)

Thermal treatment can be regarded as either a pre-treatment of waste prior to final disposal, or as a means of valorising waste by recovering energy. It includes both the burning of mixed MSW in municipal inciner...

Dr. P. White; Dr. M. Franke; P. Hindle

1995-01-01T23:59:59.000Z

396

Thermal Processes  

Broader source: Energy.gov [DOE]

Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

397

Photopyroelectric deconvolution of bulk and surface optical-absorption and nonradiative energy conversion efficiency spectra in Ti:A1203 crystals  

E-Print Network [OSTI]

- mental scheme to obtain high-resolution spectra of the optical-to-thermal energy conversion efficiency for quantitatively. When dealing with relatively highly absorbing condensed phases, bulk absorptions usually dominate conversion efficiency spectra in Ti:A1203 crystals J. Vanniasinkam, A. Mandelis, and S. Buddhudu Photothermal

Mandelis, Andreas

398

2011 Biomass Program Platform Peer Review: Thermochemical Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

399

Waste Gasification by Thermal Plasma: A Review Frdric Fabry*, Christophe Rehmet, Vandad Rohani, Laurent Fulcheri  

E-Print Network [OSTI]

12 Waste Gasification by Thermal Plasma: A Review Frédéric Fabry*, Christophe Rehmet, Vandad Rohani proposes an overview of waste-to-energy conversion by gasification processes based on thermal plasma, of various waste gasification processes based on thermal plasma (DC or AC plasma torches) at lab scale versus

Paris-Sud XI, Université de

400

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels  

Science Journals Connector (OSTI)

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels ... Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. ... Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. ...

Alexie M. Kolpak; Jeffrey C. Grossman

2011-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The B$^2\\Pi-$X$^2\\Pi$ electronic origin band of $^{13}$C$_6$H  

E-Print Network [OSTI]

The rotationally resolved spectrum of the B$^2\\Pi-$X$^2\\Pi$ electronic origin band transition of $^{13}$C$_6$H is presented. The spectrum is recorded using cavity ring-down spectroscopy in combination with supersonic plasma jets by discharging a $^{13}$C$_2$H$_2$/He/Ar gas mixture. A detailed analysis of more than a hundred fully-resolved transitions allows for an accurate determination of the spectroscopic parameters for both the ground and electronically excited state of $^{13}$C$_6$H.

Bacalla, Xavier; Salumbides, Edcel J; Haddad, Mohammad Ali; Linnartz, Harold; Ubachs, Wim

2015-01-01T23:59:59.000Z

402

Thermal Energy Transport in Nanostructured Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

403

Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system  

SciTech Connect (OSTI)

Solar energy is one of the most promising energy resources on Earth and in space, because it is clean and inexhaustible. Therefore, we have been developing a solar-powered high-efficiency thermionic-thermoelectric conversion system which combines a thermionic converter (TIC) with a thermoelectric converter (TEC) to use thermal energy efficiently and to achieve high efficiency conversion. The TIC emitter must uniformly heat up to 1800 K. The TIC emitter can be heated using thermal radiation from a solar receiver maintained at a high temperature by concentrated solar irradiation. A cylindrical cavity-type solar receiver constructed from graphite was designed and heated in a vacuum by using the solar concentrator at Tohoku University. The maximum temperature of the solar receiver enclosed by a molybdenum cup reached 1965 K, which was sufficiently high to heat a TIC emitter using thermal radiation from the receiver. 4 refs., 6 figs., 1 tab.

Naito, H.; Kohsaka, Y.; Cooke, D.; Arashi, H. [Tohoku Univ., Aramaki (Japan)] [Tohoku Univ., Aramaki (Japan)

1996-10-01T23:59:59.000Z

404

Energy Calculator- Common Units and Conversions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

405

Documents: DUF6 Conversion EIS Supporting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DUF6 Conversion EIS DUF6 Conversion EIS Search Documents: Search PDF Documents View a list of all documents NEPA Compliance: DUF6 Conversion EIS Supporting Documents PDF Icon Notice of Change in National Environmental Policy Act (NEPA) Compliance Approach for the Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project 38 KB details PDF Icon Press Release: DOE Seeks Public Input for Depleted Uranium Hexafluoride Environmental Impact Statement 90 KB details PDF Icon Advance Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 52 KB details PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program

406

DUF6 Conversion Facility EIS Alternatives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternatives Alternatives Depleted UF6 Conversion Facility EIS Alternatives Alternatives included in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each EIS is to construct and operate a conversion facility at each site for conversion of the DOE DUF6 inventory. The time period considered is a construction period of approximately 2 years, an operational period of 25 years at Paducah and 18 years at Portsmouth, and the decontamination and decommissioning (D&D) of the facility of about 3 years. The EISs assess the potential environmental impacts from the following proposed activities: Construction, operation, maintenance, and D&D of the proposed DUF6 conversion facility at each site; Transportation of uranium conversion products and waste materials to a disposal facility;

407

Advanced Coal Conversion Process Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOE/NETL-2005/1217 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory April 2005 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

408

Power conversion apparatus and method  

DOE Patents [OSTI]

A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

Su, Gui-Jia (Knoxville, TN)

2012-02-07T23:59:59.000Z

409

Nanoscale thermal transport. II. 2003–2012  

SciTech Connect (OSTI)

A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

2014-03-15T23:59:59.000Z

410

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

Thermionic Solar Energy Conversion SLAC National Accelerator Laboratory Award Number: CPS 25659 | April 15, 2013 | Melosh * Fabricate heterostructure semiconductor cathodes based...

411

Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will enable energy-efficient biochemical conversion of lignocellulosic biomass into biofuels that are compatible with today's vehicles and infrastructure. Photos (clockwise from...

412

Solar Energy, Its Conversion and Utilization  

Science Journals Connector (OSTI)

The basis of the discussions is the University of Florida Solar Energy and Energy Conversion Laboratory with its Solar House and its Solar-Electric Car.

Erich A. Farber

1974-01-01T23:59:59.000Z

413

Economic Considerations of Biomass Conversion Processes  

Science Journals Connector (OSTI)

Earlier chapters have described various biomass conversion processes and processing procedures. This chapter provides a systematic method of estimating biomass process economics and determining the revenue requir...

Fred A. Schooley

1981-01-01T23:59:59.000Z

414

LED Street Lighting Conversion Workshop Presentations  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

415

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

416

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Broader source: Energy.gov (indexed) [DOE]

Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

417

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information Project ID ace47lagrandeur Automotive Waste Heat Conversion to Power Program- 2009 Hydrogen Program and Vehicle Technologies Program...

418

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

Start Date: Oct '04 Program End date: Oct '10 Percent Complete: 80% 2 Automotive Waste Heat Conversion to Power Program- Vehicle Technologies Program Annual Merit Review- June...

419

Developing Functionalized Graphene Materials for Biomass Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Functionalized Graphene Materials for Biomass Conversion The goal of this research is to develop low cost catalysts based on graphene-derived nanomaterials, and use them...

420

Surreptitious interception of conversations with lasers  

Science Journals Connector (OSTI)

Methods are described for surreptitiously intercepting conversations by reflecting a low-power laser beam from a window pane. The essential components and optical configurations of...

Mims III, Forrest M

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Conversion, an Energy Frontier Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electricity, will become increasingly important. Indeed enhancements in efficiencies of energy conversion technologies that are readily adaptable in any environment will con-...

422

Energy Conversion, an Energy Frontier Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

most pressing problems. Indeed, our success at discovering new paradigms for efficient energy conversion, with minimal environmental impact, will largely determine humankind's...

423

Solid-State Energy Conversion Overview  

Broader source: Energy.gov (indexed) [DOE]

eere.energy.gov 1 Solid-State Energy Conversion Overview John W. Fairbanks Department of Energy Vehicle Technologies Annual Merit Review June 11, 2010 Vehicle Technologies Program...

424

Conversion Technologies for Advanced Biofuels ? Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

balance measurements Biological Conversion of Sugars to Hydrocarbons - R&D Activities Energy Efficiency & Renewable Energy eere.energy.gov 5 Feedstocks Organism design for...

425

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

Microscale-enhanced thermionic emitters will enable high-efficiency, solar-to-electrical conversion by taking advantage of both heat and light. Image from Stanford University...

426

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

427

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

428

Thermochemical Conversion Related Links | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

website's Information Resources section. Some key publications are: Using Heat and Chemistry to Make Fuel and Power: Thermochemical Conversion (January 2011) Thermochemical...

429

Effect of cracks on the thermal resistance of aligned fiber composites Department of Mechanical and Materials Engineering, University of Western Ontario, London,  

E-Print Network [OSTI]

Effect of cracks on the thermal resistance of aligned fiber composites J. Dryden Department are bridged by the fibers, and this crack- ing causes an increase in the longitudinal thermal resistance of the matrix and the fiber, respectively. The thermal resistance of a pristine unit cell is R0 L b2 kz . 4

Zok, Frank

430

A SEARCH FOR l-C{sub 3}H{sup +} AND l-C{sub 3}H IN Sgr B2(N), Sgr B2(OH), AND THE DARK CLOUD TMC-1  

SciTech Connect (OSTI)

Pety et al. recently reported the detection of several transitions of an unknown carrier in the Horsehead PDR and attribute them to l-C{sub 3}H{sup +}. Here, we have tested the predictive power of their fit by searching for, and identifying, the previously unobserved J = 1-0 and J = 2-1 transitions of the unknown carrier (B11244) toward Sgr B2(N) in data from the publicly available PRIMOS project. Also presented here are observations of the J = 6-5 and J = 7-6 transitions toward Sgr B2(N) and Sgr B2(OH) using the Barry E. Turner Legacy Survey and results from the Kaifu et al. survey of TMC-1. We calculate an excitation temperature and column density of B11244 of {approx}10 K and {approx}10{sup 13} cm{sup -2} in Sgr B2(N) and {approx}79 K with an upper limit of {<=}1.5 Multiplication-Sign 10{sup 13} cm{sup -2} in Sgr B2(OH) and find trace evidence for the cation's presence in TMC-1. Finally, we present spectra of the neutral species in both Sgr B2(N) and TMC-1, and comment on the robustness of the assignment of the detected signals to l-C{sub 3}H{sup +}.

McGuire, Brett A.; Carroll, P. Brandon [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); Loomis, Ryan A. [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Blake, Geoffrey A. [Division of Chemistry and Chemical Engineering and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Hollis, Jan M. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lovas, Frank J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Jewell, Philip R.; Remijan, Anthony J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

2013-09-01T23:59:59.000Z

431

Improving UccNet-compliant B2B Supply-chain Applications Using a Context Interchange Framework  

E-Print Network [OSTI]

UccNet is a globally centralized B2B electronic data platform for storing trading product item information and hosted by the non-profit international standardization institute EAN-UCC. It is an emerging ...

Tu, Steven

2004-12-10T23:59:59.000Z

432

Energy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program  

E-Print Network [OSTI]

for several groups of electrocatalysts ECD PEMFC Catalyst Development Evaluation programs exist for severalEnergy Conversion Devices PEMFC Electrocatalyst Development Program Contact information: Dr. Peter Faguy pfaguyEnergy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program

433

Gene conversion in the rice genome  

E-Print Network [OSTI]

. Over 60% of the conversions we detected were between chromosomes. We found that the inter-chromosomal conversions distributed between chromosome 1 and 5, 2 and 6, and 3 and 5 are more frequent than genome average (Z-test, P < 0.05). The frequencies...

Xu, Shuqing; Clark, Terry; Zheng, Hongkun; Vang, SÃ ¸ ren; Li, Ruiqiang; Wong, Gane Ka-Shu; Wang, Jun; Zheng, Xiaoguang

2008-02-25T23:59:59.000Z

434

Approaches for biological and biomimetic energy conversion  

Science Journals Connector (OSTI)

...biological and biomimetic energy conversion 10.1073...that are related to energy conversion: specifically...synthetic and/or hybrid devices is still...systems that produce energy in an efficient...costs are related to infrastructure, such as supporting...inverters, and grid connections. For...

David A. LaVan; Jennifer N. Cha

2006-01-01T23:59:59.000Z

435

Parameterizing energy conversion on rough topography  

E-Print Network [OSTI]

Parameterizing energy conversion on rough topography using bottom pressure sensors to measure form and mixing U0 Form drag pressure Tidal energy conversion Form drag causes: - internal wave generation - eddy Sound, WA Point Three Tree Previous work McCabe et al., 2006 > Measured the internal form drag

Warner, Sally

436

Microsoft Word - India B2G Project Final-v3.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

69E 69E Expanding Buildings-to-Grid (B2G) Objectives in India Girish Ghatikar and Venkata Ganti Lawrence Berkeley National Laboratory Chandrayee Basu University of California, Berkeley July 2013 1 Acknowledgements The work described in this report was funded by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under Contract No. DE-AC02-05CH11231. The U.S. Department of Energy's (DOE) Energy Efficiency Renewable Energy (EERE) International Program, in support of the U.S.-India Power and Energy Efficiency Working Group, funded this study. The authors acknowledge the assistance and thank all the reviewers, in particular, Elena Berger and Mike Mills from the U.S. DOE's EERE Office; Jamie Merriman from the U.S.

437

High-Resolution Spectroscopy of G191-B2B in the Extreme Ultraviolet  

E-Print Network [OSTI]

We report a high-resolution (R=3000-4000) spectroscopic observation of the DA white dwarf G191-B2B in the extreme ultraviolet band 220-245 A. A low- density ionised He component is clearly present along the line-of-sight, which if completely interstellar implies a He ionisation fraction considerably higher than is typical of the local interstellar medium. However, some of this material may be associated with circumstellar gas, which has been detected by analysis of the C IV absorption line doublet in an HST STIS spectrum. A stellar atmosphere model assuming a uniform element distribution yields a best fit to the data which includes a significant abundance of photospheric He. The 99-percent confidence contour for the fit parameters excludes solutions in which photospheric He is absent, but this result needs to be tested using models allowing abundance gradients.

R. G. Cruddace; M. P. Kowalski; D. J. Yentis; C. M. Brown; H. Gursky; M. A. Barstow; N. P. Bannister; G. W. Fraser; J. E. Spragg; J. S. Lapington; J. A. Tandy; B. Sanderson; J. L. Culhane; T. W. Barbee; J. F. Kordas; W. Goldstein; G. G. Fritz

2001-12-11T23:59:59.000Z

438

B2B e-business reference architecture for tailored logistics  

Science Journals Connector (OSTI)

Based on a literature review of previous research and case studies, this paper develops a conceptual model that traces and categorises different interorganisation information coordination and control mechanisms in the logistics domain. The conceptual model is referred to as the B2B E-business Reference Architecture (ERA). Studies in system architecture have largely focused on the technical perspective of e-business within an enterprise, with little research on the interorganisation perspective especially in the context of tailored logistics. Via the synthesis of literature, four fundamental architectures, dealing with different logistics scenarios, are proposed and discussed in detail with supporting case examples identified from the literature. This paper concludes by drawing implications for current research as well as highlighting future research opportunities.

Yingli Wang; Mohamed M. Naim

2007-01-01T23:59:59.000Z

439

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

440

Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors  

E-Print Network [OSTI]

, 63.22.+m, 65.80.+n, 66.60.+a The performance of thermoelectric energy conversion devices depends to achieve high carrier mobility. The lowest thermal conduc- tivity in crystalline solids is generally

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Thermal shock resistance of solids associated with hyperbolic heat conduction theory  

Science Journals Connector (OSTI)

...damage. Examples are as varied as energy conversion systems, electronic devices and...that was coupled with the local energy balance-[21,22]. Since then...frequency of the molecules within the energy carrier. The thermal relaxation time...

2013-01-01T23:59:59.000Z

442

Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda  

E-Print Network [OSTI]

by the programmer; this can be both burdensome and error­prone, since the conversion factors used by the programmer guidelines for use of SI units and tables of conversion factors. Several books provide conversion factors, the accuracy of the conversion factors, and the algorithms that some books present for unit conversion

Novak Jr., Gordon S.

443

Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove  

E-Print Network [OSTI]

.lovegrove@anu.edu.au Hydrogen from Biomass as an energy carrier has generated increasing interest in recent years in connection with the use of solar heat as energy source for the conversion reaction. Biomass gasification effective as high energy density transport fuels. Gas derived from solar thermal conversion of biomass

444

STANDARD OPERATING PROCEDURE FOR TUBE "B2-Ox-Alloy" furnace in TRL.  

E-Print Network [OSTI]

the generation of water vapors by Pyrogenic reaction. The gas control is provided by the Argus 581 Gas Control_Alloy" is an Atmospheric furnace designed to grow thermal SiO2 in the temperature range of 800- 1050C, on Silicon wafers up

Reif, Rafael

445

FUTURE DIRECTIONS FOR THERMAL DISTRIBUTION STANDARDS  

SciTech Connect (OSTI)

This report details development paths for advanced versions of ASHRAE Standard 152, Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Efficiency. During the course of conversations within the ASHRAE committee responsible for developing the standard (SPC152P), three areas of development for Standard 152 were proposed: (1) extend the scope of the standard to include thermal comfort variables; (2) extend the scope of the standard to include small commercial buildings; and (3) improve the existing standard with respect to accuracy and economy of effort. Research needs associated with each of the three options are identified.

ANDREWS,J.W.

2003-10-31T23:59:59.000Z

446

Utilizing Nature's Designs for Solar Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nature's Designs for Solar Energy Conversion Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations:  Large solvent, molecular dependencies  Diffusion  Lifetimes  Uncontrolled back-reactions  Most PS contain noble metals  Organic solvent/high proton

447

Paducah DUF6 Conversion Final EIS - Appendix G: Consultation Letters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX G: CONSULTATION LETTERS Consultation Letters G-2 Paducah DUF 6 Conversion Final EIS Consultation Letters G-3 Paducah DUF 6 Conversion Final EIS U.S. DEPARTMENT OF ENERGY LETTERS TO STATE AGENCIES AND RECOGNIZED NATIVE AMERICAN GROUPS Consultation Letters G-4 Paducah DUF 6 Conversion Final EIS Consultation Letters G-5 Paducah DUF 6 Conversion Final EIS Consultation Letters G-6 Paducah DUF 6 Conversion Final EIS Consultation Letters G-7 Paducah DUF 6 Conversion Final EIS Consultation Letters G-8 Paducah DUF 6 Conversion Final EIS Consultation Letters G-9 Paducah DUF 6 Conversion Final EIS Consultation Letters G-10 Paducah DUF 6 Conversion Final EIS Consultation Letters G-11 Paducah DUF 6 Conversion Final EIS Consultation Letters G-12 Paducah DUF 6 Conversion Final EIS

448

Micro Electret Energy Harvesting Device with Analogue Impedance Conversion Circuit  

E-Print Network [OSTI]

Micro Electret Energy Harvesting Device with Analogue Impedance Conversion Circuit Yuji Suzuki1 using a low-power-consumption impedance conversion circuit. Key words: Energy harvesting, Electret, CYTOP, Parylene spring, Impedance conversion 1. INTRODUCTION Energy harvesting from environmental

Kasagi, Nobuhide

449

Health Risks Associated with Conversion of Depleted UF6  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

450

NREL: Biomass Research - Thermochemical Conversion Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Capabilities Conversion Capabilities NREL researchers are developing gasification and pyrolysis processes for the cost-effective thermochemical conversion of biomass to biofuels. Gasification-heating biomass with about one-third of the oxygen necessary for complete combustion-produces a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis-heating biomass in the absence of oxygen-produces a liquid bio-oil. Both syngas and bio-oil can be used directly or can be converted to clean fuels and other valuable chemicals. Areas of emphasis in NREL's thermochemical conversion R&D are: Gasification and fuel synthesis R&D Pyrolysis R&D Thermochemical process integration. Gasification and Fuel Synthesis R&D Get the Adobe Flash Player to see this video.

451

NREL: Biomass Research - Biochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biochemical Conversion Projects Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these biomass intermediates using biocatalysts (microorganisms including yeast and bacteria) Processing the fermentation product to yield fuel-grade ethanol and other fuels. Among the current biochemical conversion RD&D projects at NREL are: Pretreatment and Enzymatic Hydrolysis

452

Depleted UF6 Conversion facility EIS Topics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

453

Overview of Capabilities Conversion System Technology  

E-Print Network [OSTI]

cycles Heat exchanger design and optimization TES Material Integration & Optimization: Solar power plantOverview of Capabilities Conversion System Technology - Power System Demonstrations - Systems Conceptual Design/Trade Space Exploration - Simulation Modeling for Manufacturing - Hybrid Energy Systems

Lee, Dongwon

454

Summer Series 2012 - Conversation with Omar Yaghi  

ScienceCinema (OSTI)

Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

Omar Yaghi

2013-06-24T23:59:59.000Z

455

Ris Energy Report 2 Bioenergy conversion  

E-Print Network [OSTI]

6.3 Risø Energy Report 2 Bioenergy conversion There is a wide range of technologies to derive operate automatically and are in many regions an economic alternative, e.g. Austria and Finland

456

Analyzing Biomass Conversion into Liquid Hydrocarbons  

Science Journals Connector (OSTI)

Variants of the Fischer–Tropsch producer-gas conversion into liquid hydrocarbons are analyzed under the ... is attained in the reactions occurring in the biomass gasification. When the raw material is wood ... th...

V. D. Meshcheryakov; V. A. Kirillov

2002-09-01T23:59:59.000Z

457

Chapter 13 - Heterogeneous Catalysts and Biomass Conversion  

Science Journals Connector (OSTI)

Abstract The application of heterogeneous catalysts to conversion processes based on biomasses is described and discussed. The role of heterogeneous catalysts in the development of renewable industrial chemistry is emphasized.

Guido Busca

2014-01-01T23:59:59.000Z

458

CO2 Conversion to CH4  

Science Journals Connector (OSTI)

A power-to-gas technology that converts renewable energy to methane...16]. Conversion of renewable energy, that is, solar or wind, into fuel is an easy way to store solar energy, characterized by low energy densi...

V. Barbarossa; C. Bassano; P. Deiana; G. Vanga

2013-01-01T23:59:59.000Z

459

Energy Balances for Biomass Conversion Systems  

Science Journals Connector (OSTI)

Biomass conversion systems of any type, irrespective of ... measured on a consistent scale which identifies the energy efficiency of the process and of the overall system. Accurate energy balances, as well as mat...

Raphael Katzen

1983-01-01T23:59:59.000Z

460

Energy conversions of a desert depression  

Science Journals Connector (OSTI)

This work is concerned with the energy conversions of a developing atmospheric system in subtropical ... and temporal variations of various components of the energy budget are presented in a detailed analysis. T...

H. Abdel Basset

2001-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Conversion of Waste to Energy  

E-Print Network [OSTI]

Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining...

John, T.; Cheek, L.

1980-01-01T23:59:59.000Z

462

Energy Conversion, an Energy Frontier Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 Awards ... 12 S p r I N g 2 0 1 1 Intermediate Band Solar Energy Conversion in ZnTe:O and ZnTeZnSe Affordable photovoltaic solar cells are highly...

463

Principles of photoelectrochemical, solar energy conversion  

Science Journals Connector (OSTI)

Photoelectrochemical devices for conversion of solar energy into both electrical energy and chemical energy are discussed with emphasis on how the ... parameters as band gap, doping level, minority carrier lifeti...

M. A. Butler; D. S. Ginley

1980-01-01T23:59:59.000Z

464

Materials aspects of photoelectrochemical energy conversion  

Science Journals Connector (OSTI)

Stabilization of the light-harvesting semiconductor electrode is a key factor in the design of a photoelectrochemical (PEC) system for solar energy conversion. Approaches to circumvent the problem of PEC...

K. Rajeshwar

1985-01-01T23:59:59.000Z

465

Network Analysis of Photovoltaic Energy Conversion  

Science Journals Connector (OSTI)

Photovoltaic energy conversion in photovoltaic cells has been analyzed by the detailed balance approach or by thermodynamic arguments. Here we introduce a network representation to analyze the performance of such systems once a suitable kinetic model (...

Mario Einax; Abraham Nitzan

2014-11-03T23:59:59.000Z

466

Summer Series 2012 - Conversation with Kathy Yelick  

ScienceCinema (OSTI)

Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

Kathy Yelick

2013-06-24T23:59:59.000Z

467

Atlantic Biomass Conversions Inc | Open Energy Information  

Open Energy Info (EERE)

Conversions Inc Conversions Inc Jump to: navigation, search Name Atlantic Biomass Conversions Inc Place Frederick, Maryland Sector Biomass Product Atlantic Biomass Conversions is working on a system and a genetically modified bacteria to convert sugar beet pulp waste into methanol. Coordinates 45.836395°, -98.507249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.836395,"lon":-98.507249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

E-Print Network 3.0 - advanced conversion technologies Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

establish efficient clean energy systems, we offer education Summary: * Advanced Energy Conversion * Highly Qualified Energy Conversion * Functional Energy Conversion...

469

Lattice effect in solid state internal conversion  

SciTech Connect (OSTI)

The effect of the crystal lattice on nuclear fusion reactions p+d{yields}{sup 3}He taking place in internal conversion channels is studied. Fusionable particles solved in the investigated crystalline material form a sublattice. Fusion reaction is generated by a flux of incoming fusionable particles. The calculated cross sections are compared with those of an ordinary fusion reaction. The internal conversion coefficients are also calculated.

Kalman, Peter; Keszthelyi, Tamas [Budapest University of Technology and Economics, Department of Experimental Physics, Budafoki ut 8. F. I.I.10, H-1521 Budapest (Hungary)

2009-03-15T23:59:59.000Z

470

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

471

The Southern California Conversion Technology Demonstration Project | Open  

Open Energy Info (EERE)

The Southern California Conversion Technology Demonstration Project The Southern California Conversion Technology Demonstration Project Jump to: navigation, search Tool Summary Name: The Southern California Conversion Technology Demonstration Project Agency/Company /Organization: The Southern California Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website Website: www.socalconversion.org/resources.html Cost: Free The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L. A. County. Overview The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L.

472

First-of-its-Kind Carbon Capture and Conversion Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas...

473

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

474

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop...

475

WEC up! Energy Department Announces Wave Energy Conversion Prize...  

Broader source: Energy.gov (indexed) [DOE]

WEC up Energy Department Announces Wave Energy Conversion Prize Administrator WEC up Energy Department Announces Wave Energy Conversion Prize Administrator September 24, 2014 -...

476

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

477

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

478

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The...

479

Process Design and Economics for the Conversion of Lignocellulosic...  

Broader source: Energy.gov (indexed) [DOE]

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion...

480

2011 Biomass Program Platform Peer Review: Biochemical Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent...

Note: This page contains sample records for the topic "b2 thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

482

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of biomass to fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

483

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

484

Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle...

485

Conversation/Culture Partner Program Would you like to help  

E-Print Network [OSTI]

Conversation/Culture Partner Program Would you like to help another student improve their English different cultures; *Help another student improve their conversation English; and *Assist another student

Thomas, Andrew

486

Left Coast Electric Formerly Left Coast Conversions | Open Energy...  

Open Energy Info (EERE)

Left Coast Electric Formerly Left Coast Conversions Jump to: navigation, search Name: Left Coast Electric (Formerly Left Coast Conversions) Place: California Sector: Services...

487

Golden Fuel Systems formerly Greasel Conversions Inc | Open Energy...  

Open Energy Info (EERE)

Golden Fuel Systems formerly Greasel Conversions Inc Jump to: navigation, search Name: Golden Fuel Systems (formerly Greasel Conversions Inc) Place: Drury, Montana Zip: 65638...

488

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

489

Single-step conversion of cellulose to 5-hydroxymethylfurfural...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatileplatform chemical. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a...

490

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner of landfill gas plant. References: Penrose Landfill Gas Conversion LLC1 This article is a stub....

491

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

492

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

493

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conversion efficiency for non-tracking converters must be reasonably independent of light incidence angle. To improve energy conversion efficiency with photonic design and...

494

U.S. domestic reactor conversion program  

SciTech Connect (OSTI)

The RERTR U.S. Domestic Conversion program continues in its support of the Global Treat Reduction Initiative (GTRI) to convert seven U.S reactors to low enriched uranium (LEU) by 2010. These reactors are located at the University of Florida, Texas A and M University, Purdue University, Washington State University, Oregon State University, the University of Wisconsin, and the Idaho National Laboratory. The reactors located at the University of Florida and Texas A and M Nuclear Science Center were successfully converted to LEU in September of 2006 through an integrated and collaborative effort involving INL, Argonne National Laboratory (ANL), DOE (headquarters and the field office), the Nuclear Regulatory Commission (NRC), the universities, and the contractors involved in analyses, fuel design and fabrication, and spent nuclear fuel (SNF) shipping and disposition. With this work completed and in anticipation of other impending conversion projects, a meeting was established to engage the project participants in a structured discussion to capture the lessons learned. The objectives of this meeting were to document the observations, insights, issues, concerns, and ideas of those involved in the reactor conversions so that future efforts could be conducted with greater effectiveness, efficiency, and with fewer challenges. The lessons learned from completing the University of Florida and Texas A and M conversions, the Purdue reactor conversion status, and an overview of the upcoming reactor conversions will be presented at the meeting. (author)

Meyer, Dana M.; Woolstenhulme, Eric C. [Idaho National Laboratory, Idaho Falls, Idaho 83415 (United States)

2008-07-15T23:59:59.000Z

495

Generating random thermal momenta  

E-Print Network [OSTI]

Generation of random thermal particle momenta is a basic task in many problems, such as microscopic studies of equilibrium and transport properties of systems, or the conversion of a fluid to particles. In heavy-ion physics, the (in)efficiency of the algorithm matters particularly in hybrid hydrodynamics + hadronic transport calculations. With popular software packages, such as UrQMD 3.3p1 or THERMINATOR, it can still take ten hours to generate particles for a single Pb+Pb "event" at the LHC from fluid dynamics output. Below I describe reasonably efficient simple algorithms using the MPC package, which should help speed momentum generation up by at least one order of magnitude. It is likely that this wheel has been reinvented many times instead of reuse, so there may very well exist older and/or better algorithms that I am not aware of (MPC has been around only since 2000). The main goal here is to encourage practitioners to use available efficient routines, and offer a few practical solutions.

Denes Molnar

2012-12-09T23:59:59.000Z

496

Cosmological constraints on axionic dark radiation from axion-photon conversion in the early Universe  

SciTech Connect (OSTI)

Axions seem ubiquitous in string theories and some of them may be produced non-thermally by heavy scalar decays, contributing to dark radiation. We study various cosmological effects of photons produced from the axionic dark radiation through axion-photon conversion in the presence of primordial magnetic fields, and derive tight constraints on the combination of the axion-photon coupling and the primordial magnetic field.

Higaki, Tetsutaro [Theory Center, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nakayama, Kazunori [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Takahashi, Fuminobu, E-mail: thigaki@post.kek.jp, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

2013-09-01T23:59:59.000Z

497

How colors influence numbers: Photon statistics of parametric down-conversion  

Science Journals Connector (OSTI)

Parametric down-conversion (PDC) is a technique of ubiquitous experimental significance in the production of nonclassical, photon-number-correlated twin beams. Standard theory of PDC as a two-mode squeezing process predicts and homodyne measurements observe a thermal photon number distribution per beam. Recent experiments have obtained conflicting distributions. In this article, we explain the observation by an a priori theoretical model solely based on directly accessible physical quantities. We compare our predictions with experimental data and find excellent agreement.

Wolfgang Mauerer; Malte Avenhaus; Wolfram Helwig; Christine Silberhorn

2009-11-10T23:59:59.000Z

498

PSO-2002 FU-2207 final report Fundamental mechanisms for conversion of  

E-Print Network [OSTI]

11 2. Gas-phase conversion of Cl, S, and K/Na in biomass combustion (I) 13 2.1. Mechanism Biomass Combustion 33 2.3. The Effect of NO and SO2 on the Oxidation of CO-H2 mixtures 65 2.4. Thermal-phase mechanisms for NOx formation in biomass combustion (II) 119 3.1. Ammonia Chemistry under Fuel-Rich Conditions

499

Data:E03c626c-91b2-40b2-a2fd-fdf7b1d4b476 | Open Energy Information  

Open Energy Info (EERE)

6c-91b2-40b2-a2fd-fdf7b1d4b476 6c-91b2-40b2-a2fd-fdf7b1d4b476 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: 4-County Electric Power Assn Effective date: End date if known: Rate name: Time of Day TGSA (Over 1000 kW) Sector: Industrial Description: *This rate shall be available for the firm power requirements (where the higher of a customer's onpeak or offpeak contract demand is 5,000 kW or less) for electric service to commercial, industrial, and governmental customers, and to institutional customers including, without limitation, churches, clubs, fraternities, orphanages, nursing homes, rooming or boarding houses, and like customers, provided that the other conditions of this section are met.

500

Assessing Surface Solar Irradiance From ISCCP-B2 Data Sets Lefvre M., Diabat L., Wald L., Using reduced data sets ISCCP-B2 from the Meteosat satellites to  

E-Print Network [OSTI]

to assess the daily mean of the surface solar irradiance at any geographical site in Europe and Africa-00363664,version1-24Feb2009 Author manuscript, published in "Solar Energy 81 (2007) 240-253" DOI : 10Assessing Surface Solar Irradiance From ISCCP-B2 Data Sets Lefèvre M., Diabaté L., Wald L., Using

Paris-Sud XI, Université de