Powered by Deep Web Technologies
Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Avista Utilities (Gas)- Prescriptive Commercial Incentive Program  

Broader source: Energy.gov [DOE]

Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including cooking...

2

Avista Utilities (Gas) - Oregon Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Oregon Residential Energy Efficiency Oregon Residential Energy Efficiency Rebate Program Avista Utilities (Gas) - Oregon Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Forced Air Furnaces and Boilers: $200 Programmable Thermostats: $50 Windows: $2.25/sq. ft. Insulation: 50% of cost Provider Avista Utilities Avista Utilities offers a variety of equipment rebates to Oregon residential customers. Rebates are available for boilers, furnaces, insulation measures, windows and programmable thermostats. All equipment must meet certain energy efficiency standards listed on the program web

3

Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Programs Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Natural Gas Furnace/Boiler: $400 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft. ENERGY STAR rated homes: $650 - $900 Replacement of Electric Straight Resistance Space Heat: $750 Provider

4

Avista Utilities 1411 East Mission Avenue  

E-Print Network [OSTI]

Avista Utilities 1411 East Mission Avenue Spokane, WA 99220-3727 TOM LIENHARDPE, CMVP, CEM | Chief Energy Efficiency Engineer | Avista Utilities As the Chief Energy Efficiency Engineer for Avista Utilities, Tom is responsible for managing customer energy efficiency projects and supervises a team

5

Workplace Charging Challenge Partner: Avista Utilities  

Broader source: Energy.gov [DOE]

Avista Utilities is committed to effective support for plug-in electric vehicle (PEV) adoption in its service territories. Avista installed two stations for a total of four charging outlets for...

6

Avista Utilities - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Avista Utilities - Net Metering Avista Utilities - Net Metering Avista Utilities - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Avista Utilities Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar,

7

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info Start Date 1/1/2011 State Idaho Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

8

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Broader source: Energy.gov (indexed) [DOE]

Commercial Lighting Commercial Lighting Lighting Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

9

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov (indexed) [DOE]

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Idaho) Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Idaho) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost. Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Replacement of Electric Straight Resistance: $750 Air Source Heat Pump: $100 Variable Speed Motor: $100 Refrigerator/Freezer Recycling: $30 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft.

10

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov (indexed) [DOE]

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Incentives will not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Variable Speed Motor: $100 Water Heater: $30 Replacement of Electric Straight Resistance: $750 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft.

11

Avista Utilities Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Avista Utilities Smart Grid Project Avista Utilities Smart Grid Project Jump to: navigation, search Project Lead Avista Utilities Country United States Headquarters Location Spokane, Washington Additional Benefit Places Idaho Recovery Act Funding $20,000,000.00 Total Project Value $40,000,000.00 Coverage Area Coverage Map: Avista Utilities Smart Grid Project Coordinates 47.6587802°, -117.4260466° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

12

Comments of Avista Corporation  

Broader source: Energy.gov (indexed) [DOE]

Avista Corporation Avista Corporation (1) Who owns energy consumption data? Utility customers consume electricity and gas minute by minute which is measured in kilowatt-hours aggregated for a period of time known as an interval. Certainly, customers have both an interest and a right to acquire their usage information. Whether that be information interval-by-interval or provided as an aggregation for the billing period. The trend in other industries is to provide more detailed usage information. The utility invests a great deal of money to install, maintain and operate the infrastructure that both measures and delivers gas and electric products to the customer. Consumption data is a necessary input for effective planning and operation of that infrastructure. The

13

Overview of Avista GHG Modeling NPCC Greenhouse Gas and the Regional Power System Conference  

E-Print Network [OSTI]

6/5/2013 1 Overview of Avista GHG Modeling NPCC Greenhouse Gas and the Regional Power System Pricing $70 $80 Weighted Average Expected Case 2020 Hi h GHG P i i C $20 $30 $40 $50 $60 dollarspermetricton 2020 High GHG Pricing Case 2020 Low GHG Pricing Case 2025 High GHG Pricing Case 2025 Low GHG

14

Avista Corp | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Avista Utilities) (Redirected from Avista Utilities) Jump to: navigation, search Name Avista Corp Place Spokane, Washington Utility Id 20169 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Utility Rate Schedules Grid-background.png 1 Residential 11 (Single Phase) Commercial 11 (Three Phase) Commercial 12 Residential 21 Commercial

15

Avista Corp | Open Energy Information  

Open Energy Info (EERE)

Avista Corp Avista Corp Place Spokane, Washington Utility Id 20169 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Utility Rate Schedules Grid-background.png 1 Residential 11 (Single Phase) Commercial 11 (Three Phase) Commercial 12 Residential 21 Commercial 22 Commercial 25 Commercial 31 Commercial 32 Commercial Area Lighting - DSV 100W (Granville Capital only) Direct Burial Lighting

16

Avista 2003 Wind RFP Final  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 2003 WIND RFP 7 2003 WIND RFP REQUEST FOR PROPOSALS Wind Power Up To 50 MW Avista Corporation August 2003 Introduction Avista's 2003 Integrated Resource Plan ("IRP") includes wind within its acquisition strategy beginning in the 2008-10 timeframe. Based on this result, the IRP includes an action item for Avista to investigate wind integration issues. In support of an integration issues study, Avista is interested in purchasing up to 50 MW of nameplate wind capability over a term of between two and five years to gain operational experience with this innovative resource. Because the Company has identified a wind resource preference beginning in 2008, options for project

17

Avista Corp (Montana) | Open Energy Information  

Open Energy Info (EERE)

Montana) Montana) Jump to: navigation, search Name Avista Corp Place Montana Utility Id 20169 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0526/kWh Commercial: $0.0661/kWh The following table contains monthly sales and revenue data for Avista Corp (Montana). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 0.715 14.92 8 3.342 52.867 12 4.057 67.787 20

18

Avista Corp (Idaho) | Open Energy Information  

Open Energy Info (EERE)

Idaho) Idaho) Jump to: navigation, search Name Avista Corp Place Idaho Utility Id 20169 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS - Schedule 11 Commercial LGS - Schedule 21 Commercial RS - Schedule 1 Residential Average Rates Residential: $0.0854/kWh Commercial: $0.0851/kWh Industrial: $0.0530/kWh The following table contains monthly sales and revenue data for Avista Corp (Idaho). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

19

Avista 2011 Integrated Resource Plan Clint Kalich  

E-Print Network [OSTI]

SM "Avista Portfolio" Efficient Frontier Fuel Prices Fuel Availability Resource Availability Demand Emission Effective T&D Projects/Costs Cost Effective Conservation Measures/Costs Mid-Columbia Prices Stochastic Scenarios: Change to Monthly Average Mid-C Prices #12;- 200 400 600 800 1,000 1,200 1,400 1,600 Expected

20

Comments of Avista Corporation on DOE Request for  

Broader source: Energy.gov (indexed) [DOE]

Avista Corporation on DOE Request for Avista Corporation on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of Avista Corporation on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of Avista Corporation on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of Avista Corporation on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy More Documents & Publications

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gas Utility Pipeline Tax (Texas)  

Broader source: Energy.gov [DOE]

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

22

Gas Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Utilities (Maine) Gas Utilities (Maine) Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Siting and Permitting Provider Public Utilities Commission Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one customer when any portion

23

Avista Turbine Power, Inc | Open Energy Information  

Open Energy Info (EERE)

Id 1049 Utility Location Yes Ownership W NERC Location WECC NERC WECC Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

24

Liberty Utilities (Gas) - Commercial Energy Efficiency Programs |  

Broader source: Energy.gov (indexed) [DOE]

Liberty Utilities (Gas) - Commercial Energy Efficiency Programs Liberty Utilities (Gas) - Commercial Energy Efficiency Programs Liberty Utilities (Gas) - Commercial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Custom Projects: $100,000 (existing facilities); $250,000 (new construction) Energy Efficiency Engineering Study: $10,000 Steam Traps: $2500 Programmable Thermostats: up to five units Boiler Reset Controls: up to two units Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount

25

Avista Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Inc Energy Inc Place Spokane, Washington State Zip 99220-3727 Sector Hydro, Services Product Provider of electricity, natural gas and hydroelectric portfolio optimization and management and of risk management services. Coordinates 47.65726°, -117.412279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.65726,"lon":-117.412279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

(Gas) - Commercial Natural Gas Efficiency (Gas) - Commercial Natural Gas Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate Program < Back Eligibility Commercial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $300 Custom: Varies by project Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers rebates on energy efficient natural gas furnaces to its eligible commercial customers. New furnaces are eligible for a rebate incentive between $150 and $300, if the equipment meets program efficiency standards. Furnaces with AFUE between 92% of 95% are eligible for rebates if they are being installed as replacement units

27

Natural Gas Utilities Options Analysis for the Hydrogen Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Utilities Options Analysis for the Hydrogen Economy Natural Gas Utilities Options Analysis for the Hydrogen Economy Presentation by 12-Richards to DOE Hydrogen Pipeline...

28

Natural Gas Utilities Options Analysis for the Hydrogen Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Utilities Options Analysis for the Hydrogen Economy Natural Gas Utilities Options Analysis for the Hydrogen Economy Objectives: Identify business opportunities and...

29

Federal Utility Partnership Working Group: Atlanta Gas Light...  

Broader source: Energy.gov (indexed) [DOE]

Group: Atlanta Gas Light Resources Federal Utility Partnership Working Group: Atlanta Gas Light Resources Presentation-given at the April 2012 Federal Utility Partnership Working...

30

Gas concentration cells for utilizing energy  

DOE Patents [OSTI]

An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

Salomon, R.E.

1987-06-30T23:59:59.000Z

31

Gas concentration cells for utilizing energy  

DOE Patents [OSTI]

An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

Salomon, Robert E. (Philadelphia, PA)

1987-01-01T23:59:59.000Z

32

SPP Success Story AvistaFoodLion 2-27-06  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Avista Advantage Food Lion, LLC Avista Advantage Food Lion, LLC 1313 North Atlantic, 5 th Floor, Spokane, WA 99201 2110 Executive Drive, Salisbury, NC 28147 Business: Provider of Facility IQ TM Services Business: Grocery chain Ed Schlect, Founder & VP - Consulting Services Gina Rye, Energy Engineer Phone: 509-329-7602 / Fax: 509-329-7230 Phone: 704-633-8250 / Fax: 704-636-4940 Email: eschlect@avistaadvantage.com Email: glrye@foodlion.com Automated ENERGY STAR benchmarking, provided by Avista Advantage, allows Food Lion to manage and save energy - 25% over five years! Project Scope Food Lion, with Avista's help, has benchmarked more than 42 million square feet within 1,200 facilities and produces monthly updates of the energy performance rating for all of those facilities.

33

Alternative Fuels Data Center: Utility District Natural Gas Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Utility District Utility District Natural Gas Fueling Station Regulation to someone by E-mail Share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Facebook Tweet about Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Twitter Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Google Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Delicious Rank Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Digg Find More places to share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on AddThis.com... More in this section... Federal

34

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

35

Gas and Electric Utilities Regulation (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Generation Disclosure Provider South Dakota Public Utilities Commission This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the

36

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

37

Natural Gas Utility Restructuring and Customer Choice Act (Montana)  

Broader source: Energy.gov [DOE]

These regulations apply to natural gas utilities that have restructured in order to acquire rate-based facilities. The regulations address customer choice offerings by natural gas utilities, which...

38

Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Programmable Thermostat: 1 per address Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $300 Programmable Thermostat: $20 Natural Gas Water Heater: $50 - $100 Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient measures and natural gas equipment. New furnaces, water heaters and programmable thermostats are eligible for a rebate incentive if the

39

Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Norwich Public Utilities (Gas) - Residential Energy Efficiency Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Furnaces: $400 Boilers: $600 Tankless Boiler/Water Heater Combined: $850 - $1050 Indirect Fired/Tankless Water Heaters: $250 - $450 Provider Norwich Public Utilities Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $1050 for natural gas furnaces, boilers,

40

Uniform System of Accounts for Gas Utilities (Maine)  

Broader source: Energy.gov [DOE]

This rule establishes a uniform system of accounts and annual report filing requirements for natural gas utilities operating in Maine.

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov (indexed) [DOE]

Alternate Energy Systems, Inc. Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 1 BioGas Project Applications for Federal Agencies and Utilities Wolfgang H. Driftmeier Alternate Energy Systems, Inc. 210 Prospect Park - Peachtree City, GA 30269 wdriftmeier@altenergy.com www.altenergy.com 770 - 487 - 8596 Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 2 BioGas Project Applications for Federal Agencies and Utilities Objective

42

Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Emerging gas technologies to enhance industrial energy efficiency, challenges of integrating into the marketplace and an overview of DTE Energys energy efficiency programs for natural gas customers.

43

Orange and Rockland Utilities (Gas) - Residential Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Orange and Rockland Utilities (Gas) - Residential Efficiency Orange and Rockland Utilities (Gas) - Residential Efficiency Program Orange and Rockland Utilities (Gas) - Residential Efficiency Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Water Heating Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140 - $420 Water Boiler: $350 or $700 Steam Boiler: $350 Boiler Reset Control: $70 Indirect Water Heater: $210 Programmable Thermostat: $18 Duct and Air Sealing: up to $420 Provider Orange and Rockland Utilities, Inc. Orange and Rockland Utilities provides rebates for residential customers

44

Cost of Gas Adjustment for Gas Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Generation Disclosure Provider Public Utilities Commission This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports required to be filed with

45

Natural Gas Utility Conservation Programs (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Natural Gas Utility Conservation Programs (Maine) Natural Gas Utility Conservation Programs (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Public Utilities Commission This Chapter describes how natural gas utilities serving more than 5,000 residential customers must implement natural gas energy conservation programs. The regulations describe

46

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov [DOE]

Presentation covers BioGas Project Applications for Federal Agencies and Utilities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

47

California Natural Gas % of Total Electric Utility Deliveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Utility Deliveries (Percent) California Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

48

David Thompson EM & V Engineer  

E-Print Network [OSTI]

to Avista's demand side management energy efficiency programs for residential, commercial and industrial an Evaluation, Measurement and Verification Engineer with Avista Utilities, an electric and natural gas utility. Prior to joining Avista, David was the Director of Energy Analytics at Avista subsidiary Advantage IQ

49

Natural Gas Utilities Options Analysis for the Hydrogen  

E-Print Network [OSTI]

> Natural Gas Utilities Options Analysis for the Hydrogen Economy Hydrogen Pipeline R&D Project > GTI focuses on energy & environmental issues ­ Specialize on natural gas & hydrogen > Our main Natural Gas Gas Hydrates Kent Perry Executive Director Exploration & Production Technology Distributed

50

Odorization system upgrades gas utility`s pipelines  

SciTech Connect (OSTI)

Mountain Fuel Supply Co., a subsidiary of Questar Corp., salt Lake City, is a natural gas holding company with $1.6 billion in assets. From 1929 to 1984, Mountain Fuel Supply Co. owned and operated many natural gas wells, gathering systems, and transmission pipelines to serve its Utah and Wyoming customers. Gas is odorized at convenient points on the transmission lines and at each downstream location where unodorized gas entered the system. Since 40 to 60% of the gas delivered to the company`s customers passes through Coalville Station, it was vital that a reliable, state-of-the-art odorant station be constructed at this site. Construction began during the summer of 1994 and the system came on line Sept. 1, 1994. The station odorized 435 MMcfd with 330 lbs. of odorant during last winter`s peak day, a mild winter. Mountain Fuel is subject to Department of Transportation (DOT) codes which mandate that gas be readily detectable at one fifth the lower explosive limit (LEL), or about 1% gas in air. However, the company strives to maintain a readily detectable odor at 0.25% of gas in air as measured by odormeter tests throughout the distribution system. Experience has shown that maintaining an odorant injection rate of 0.75 lbs/MMcf provides adequate odor levels. A blend of odorant consisting of 50% tertiary butyl mercaptan (TBM) and 50% tetrahydrothiophene (THT) was used for many years by Questar Pipeline. Presently, it is used at all Mountain Fuel stations. This paper reviews the design and operation of this odorization station.

Niebergall, B. [Mountain Fuel Supply, Salt Lake City, UT (United States)

1995-07-01T23:59:59.000Z

51

Montana-Dakota Utilities (Gas) - Residential New Construction Rebate  

Broader source: Energy.gov (indexed) [DOE]

Montana-Dakota Utilities (Gas) - Residential New Construction Montana-Dakota Utilities (Gas) - Residential New Construction Rebate Program Montana-Dakota Utilities (Gas) - Residential New Construction Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Eligible Furnace: $300 Natural Gas Water Heater: $50 - $100 Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers rebates to customers who install energy efficient natural gas equipment in new construction. New furnaces and water heaters are eligible for incentives through this offering. All new eligible homes with qualifying furnaces will receive a $300 rebate and

52

DOE Considers Natural Gas Utility Service Options: Proposal Includes  

Broader source: Energy.gov (indexed) [DOE]

Considers Natural Gas Utility Service Options: Proposal Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford DOE Considers Natural Gas Utility Service Options: Proposal Includes 30-mile Natural Gas Pipeline from Pasco to Hanford January 23, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE , (509) 376-5365, Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is considering natural gas transportation and distribution requirements to support the Waste Treatment Plant (WTP) and evaporator operations at the Hanford Site in southeastern Washington State. DOE awarded a task order worth up to $5 million to the local, licensed supplier of natural gas in the Hanford area, Cascade Natural Gas Corporation (Cascade). Cascade will support DOE and its Environmental

53

NBP RFI: Communications Requirements- Comments of Avista Corporation...  

Broader source: Energy.gov (indexed) [DOE]

the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy NBP RFI: Communications Requirements- Comments...

54

Natural Gas Utilities Options Analysis for the Hydrogen  

E-Print Network [OSTI]

> Natural Gas Utilities Options Analysis for the Hydrogen Economy Hydrogen Pipeline R&D Project of strategic options for the natural gas industry as hydrogen energy systems evolve ­ Vehicle to encourage of tradeoffs ­ NY state qualifies natural gas-run fuel cells, CA only renewable hydrogen (potential for partial

55

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Balefill Landfill Gas Utilization Proj Biomass Facility Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Bergen County, New Jersey Coordinates 40.9262762°, -74.07701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9262762,"lon":-74.07701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hartford Landfill Gas Utilization Proj Biomass Facility Hartford Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Hartford County, Connecticut Coordinates 41.7924343°, -72.8042797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans  

E-Print Network [OSTI]

market potential or avoided costs. Nine utilities (Avista,It then derived the avoided cost of that portfolio forbe acquired based on the avoided cost values derived in its

Barbose, Galen

2008-01-01T23:59:59.000Z

59

Austin Utilities (Gas and Electric) - Commercial and Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

Austin Utilities (Gas and Electric) - Commercial and Industrial Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Commercial Weatherization Water Heating Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Custom Gas Measures: $75,000 per commercial location per year, $5,000 per industrial location per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: See Program Website Air Source Heat Pumps: $20-$25/ton, plus bonus rebate of $4/ton for each

60

Florida Public Utilities (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Florida Public Utilities offers the Energy for Life Conservation Program to its residential natural gas customers to save energy in their homes. Rebates are available for existing residences and...

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...  

Broader source: Energy.gov (indexed) [DOE]

NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011 Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2011...

63

Gas Utilization Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Utilization Facility Biomass Facility Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type Non-Fossil Waste Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

City of Gas City, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City, Indiana (Utility Company) City, Indiana (Utility Company) Jump to: navigation, search Name City of Gas City Place Indiana Utility Id 6993 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Heat for Library or School Service Commercial Commercial and General Power Service Commercial Outdoor Lighting- 1000 W Lighting Outdoor Lighting- 175 W Lighting Outdoor Lighting- 400 W Lighting Public Street Lighting and Highway Lighting- 175 W Mercury Vapor/100 W HPS Lighting Public Street Lighting and Highway Lighting-400 W Mercury Vapor/250 W HPS

65

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

66

Radiology utilizing a gas multiwire detector with resolution enhancement  

DOE Patents [OSTI]

This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

Majewski, Stanislaw (Grafton, VA); Majewski, Lucasz A. (Grafton, VA)

1999-09-28T23:59:59.000Z

67

Utilization of Process Off-Gas as a Fuel for Improved Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination ADVANCED MANUFACTURING OFFICE Utilization of Process Off-Gas as a Fuel for Improved...

68

Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams  

DOE Patents [OSTI]

A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

Wilding, Bruce M; Turner, Terry D

2014-12-02T23:59:59.000Z

69

Economics of Alaska North Slope gas utilization options  

SciTech Connect (OSTI)

The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

1996-08-01T23:59:59.000Z

70

SUBSTITUTION OF NATURAL GAS FOR COAL: CLIMATIC EFFECTS OF UTILITY SECTOR EMISSIONS  

E-Print Network [OSTI]

SUBSTITUTION OF NATURAL GAS FOR COAL: CLIMATIC EFFECTS OF UTILITY SECTOR EMISSIONS KATHARINE HAYHOE. Substitution of natural gas for coal is one means of reducing carbon dioxide (CO2) emissions. However, natural of coal by natural gas are evaluated, and their modeled net effect on global mean-annual temperature

Jain, Atul K.

71

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Broader source: Energy.gov (indexed) [DOE]

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

72

Survey of state regulatory activities on least cost planning for gas utilities  

SciTech Connect (OSTI)

Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. Incorporating the concept of meeting customer energy service needs entails a recognition that customers' costs must be considered along with the utility's costs in the economic analysis of energy options. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. All state commissions were surveyed to assess the current status of gas planning and demand-side management and to identify significant regulatory issues faced by commissions during the next several years. The survey was to determine the extent to which they have undertaken least-cost planning for gas utilities. The survey included the following topics: (1) status of state PUC least-cost planning regulations and practices for gas utilities; (2) type and scope ofnatural gas DSM programs in effect, includeing fuel substitution; (3) economic tests and analysis methods used to evaluate DSM programs; (4) relationship between prudence reviews of gas utility purchasing practices and integrated resource planning; and (5) key regulatory issues facing gas utilities during the next five years. 34 refs., 6 figs., 10 tabs.

Goldman, C.A. (Lawrence Berkeley Lab., CA (United States) National Association of Regulatory Utility Commissioners, Washington, DC (United States)); Hopkins, M.E. (Fleming Group, Washington, DC (United States))

1991-04-01T23:59:59.000Z

73

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or  

E-Print Network [OSTI]

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or a generator? NOTIFY the University Police. FOLLOW evacuation procedures. NOTIFY Building Safety personnel

Fernandez, Eduardo

74

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas  

E-Print Network [OSTI]

UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas. . What should I do if the if the building does not have emergency lighting or a generator? NOTIFY

Fernandez, Eduardo

75

Natural Gas Utilities Options Analysis for the Hydrogen Economy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 January 2005 6 January 2005 Oak Ridge National Laboratory Oak Ridge, TN Mark E. Richards Manager, Advanced Energy Systems 2 Gas Technology Institute > GTI is an independent non-profit R&D organization > GTI focuses on energy & environmental issues - Specialize on natural gas & hydrogen > Our main facility is an 18- acre campus near Chicago - Over 350,000 ft 2 GTI's Main Research Facility GTI's Energy & Environmental Technology Center 3 GTI RD&D Organization Robert Stokes Vice-President Research & Deployment Hydrogen Fuel Processing Low-Temperature Fuel Cells High-Temperature Fuel Cells Vehicle Fuel Infrastructure Gerry Runte Executive Director Hydrogen Energy Systems Gasification & Hot Gas Cleanup Process Engineering Thermal Waste Stabilization

76

Optimization of gas utilization efficiency for short-pulsed electron cyclotron resonance ion source  

SciTech Connect (OSTI)

Numerical analysis of {sup 6}He atoms utilizing efficiency in the ion source with powerful gyrotron heating is performed in present work using zero-dimensional balanced model of ECR discharge in a magnetic trap. Two ways of creation of ion source with high gas utilization efficiency (up to 60%-90%) are suggested.

Izotov, I. V.; Skalyga, V. A.; Zorin, V. G. [Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod (Russian Federation)

2012-02-15T23:59:59.000Z

77

Utilization of low-quality natural gas: A current assessment. Final report  

SciTech Connect (OSTI)

The objective of this report is to evaluate the low quality natural gas (LQNG) resource base, current utilization of LQNG, and environmental issues relative to its use, to review processes for upgrading LQNG to pipeline quality, and to make recommendations of research needs to improve the potential for LQNG utilization. LQNG is gas from any reservoir which contains amounts of nonhydrocarbon gases sufficient to lower the heating value or other properties of the gas below commercial, pipeline standards. For the purposes of this study, LQNG is defined as natural gas that contains more than 2% carbon dioxide, more than 4% nitrogen, or more than 4% combined CO{sub 2} plus N{sub 2}. The other contaminant of concern is hydrogen sulfide. A minor contaminant in some natural gases is helium, but this inert gas usually presents no problems.

Acheson, W.P.; Hackworth, J.H.; Kasper, S.; McIlvried, H.G.

1993-01-01T23:59:59.000Z

78

DOE Report to Congress„Energy Efficient Electric and Natural Gas Utilities  

Broader source: Energy.gov (indexed) [DOE]

AND REGIONAL POLICIES THAT AND REGIONAL POLICIES THAT PROMOTE ENERGY EFFICIENCY PROGRAMS CARRIED OUT BY ELECTRIC AND GAS UTILITIES A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 139 OF THE ENERGY POLICY ACT OF 2005 MARCH 2007 U.S. DEPARTMENT OF ENERGY Sec. 139. Energy Efficient Electric and Natural Gas Utilities Study. a) IN GENERAL.-Not later than 1 year after the date of enactment of this Act, the Secretary, in consultation with the National Association of Regulatory Utility Commis- sioners and the National Association of State Energy Offi- cials, shall conduct a study of State and regional policies that promote cost-effective programs to reduce energy con- sumption (including energy efficiency programs) that are carried out by- (1) utilities that are subject to State regulation; and

79

Fact Sheet: DOE/National Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership  

Broader source: Energy.gov [DOE]

In one of a series of actions to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions, DOE will work with the National Association of Regulatory Utility Commissioners (NARUC) to encourage investments in infrastructure modernization to enhance pipeline safety, efficiency and deliverability.

80

A new airfuel WSGGM (weighted sum of gray gas model) for better utility  

E-Print Network [OSTI]

1 A new airfuel WSGGM (weighted sum of gray gas model) for better utility boiler simulation properties. · For each condition: use the validated EWBM to generate emissivity database, spanning a larger). Large emissivity database matrix: 146 discrete values for PL times 101 data points for Tg. · For each

Yin, Chungen

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Carbon and Hydrogen Analyses of the Components of a Mixture Utilizing Separation-Combustion Gas Chromatography  

Science Journals Connector (OSTI)

......Utilizing Separation-Combustion Gas Chromatography...temperature copper oxide combustion tube which feeds...solution of brominated hydrocarbons (1% v/v) in...was passed into a combustion tube. Following...Wisconsin) was used to heat the combustion tube...indi- cated by the data of Table II. The......

Sam N. Pennington; Harry D. Brown

1968-10-01T23:59:59.000Z

82

Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review  

SciTech Connect (OSTI)

Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

Lesh, Pamela G.

2009-10-15T23:59:59.000Z

83

Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization  

Science Journals Connector (OSTI)

The performance of Natural Gas Processing Plants (NGPPs) can be enhanced with the integration of Combined Cooling, Heating and Power (CCHP) generation schemes. This paper analyzes the integration of a trigeneration scheme within a NGPP, that utilizes waste heat from gas turbine exhaust gases to generate process steam in a Waste Heat Recovery Steam Generator (WHRSG). Part of the steam generated is used to power double-effect waterlithium bromide (H2OLiBr) absorption chillers that provide gas turbine compressor inlet air-cooling. Another portion of the steam is utilized to meet part furnace heating load, and supplement plant electrical power in a combined regenerative Rankine cycle. A detailed techno-economic analysis of scheme performance is presented based on thermodynamic predictions obtained using Engineering Equation Solver (EES). The results indicate that the trigeneration system could recover 79.7MW of gas turbine waste heat, 37.1MW of which could be utilized by three steam-fired H2OLiBr absorption chillers to provide 45MW of cooling at 5C. This could save approximately 9MW of electric energy required by a typical compression chiller, while providing the same amount of cooling. In addition, the combined cycle generates 22.6MW of additional electrical energy for the plant, while process heating reduces furnace oil consumption by 0.23 MSCM per annum. Overall, the trigeneration scheme would result in annual natural gas fuel savings of approximately 1879 MSCM, and annual operating cost savings of approximately US$ 20.9 million, with a payback period of 1year. This study highlights the significant economical and environmental benefits that could be achieved through implementation of the proposed integrated cogeneration scheme in NGPPs, particularly in elevated ambient temperature and humidity conditions such as encountered in Middle East facilities.

Sahil Popli; Peter Rodgers; Valerie Eveloy

2012-01-01T23:59:59.000Z

84

Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas  

SciTech Connect (OSTI)

Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

Kelsall, G.J.; Smith, M.A. (British Coal Corp., Glos (United Kingdom). Coal Research Establishment); Cannon, M.F. (European Gas Turbines Ltd., Lincoln (United Kingdom). Aero and Technology Products)

1994-07-01T23:59:59.000Z

85

Stimulating utilities to promote energy efficiency: Process evaluation of Madison Gas and Electric's Competition Pilot Program  

SciTech Connect (OSTI)

This report describes the process evaluation of the design and implementation of the Energy Conservation Competition Pilot (hereafter referred to as the Competition), ordered by the Public Service Commission of Wisconsin (PSCW) with a conceptual framework defined by PSCW staff for the Madison Gas and Electric (MGE) Company. This process evaluation documents the history of the Competition, describing the marketing strategies adopted by MGE and its competitors, customer service and satisfaction, administrative issues, the distribution of installed measures, free riders, and the impact of the Competition on MGE, its competitors, and other Wisconsin utilities. We also suggest recommendations for a future Competition, compare the Competition with other approaches that public utility commissions (PUCs) have used to motivate utilities to promote energy efficiency, and discuss its transferability to other utilities. 48 refs., 8 figs., 40 tabs.

Vine, E.; De Buen, O.; Goldfman, C.

1990-12-01T23:59:59.000Z

86

Cascade utilization of chemical energy of natural gas in an improved CRGT cycle  

Science Journals Connector (OSTI)

In this paper three advanced power systems: the chemically recuperated gas turbine (CRGT) cycle, the steam injected gas turbine (STIG) cycle and the combined cycle (CC), are investigated and compared by means of exergy analysis. Making use of the energy level concept, cascaded use of the chemical exergy of natural gas in a CRGT cycle is clarified, and its performance of the utilization of chemical energy is evaluated. Based on this evaluation, a new CRGT cycle is designed to convert the exergy of natural gas more efficiently into electrical power. As a result, the exergy efficiency of the new CRGT cycle is about 55%, which is 8 percentage points higher than that of the reference CRGT cycle. The analysis gave a better interpretation of the inefficiencies of the CRGT cycle and suggested improvement options. This new approach can be used to design innovative energy systems.

Wei Han; Hongguang Jin; Na Zhang; Xiaosong Zhang

2007-01-01T23:59:59.000Z

87

A Sealed, UHV Compatible, Soft X-ray Detector Utilizing Gas Electron Multipliers  

SciTech Connect (OSTI)

An advanced soft X-ray detector has been designed and fabricated for use in synchrotron experiments that utilize X-ray absorption spectroscopy in the study a wide range of materials properties. Fluorescence X-rays, in particular C{sub K} at 277eV, are converted in a low pressure gas medium, and charge multiplication occurs in two gas electron multipliers, fabricated in-house from glass reinforced laminate, to enable single photon counting. The detector satisfies a number of demanding characteristics often required in synchrotron environments, such as UHV compatibility compactness, long-term stability, and energy resolving capability.

Schaknowski, N.A.; Smith, G.

2009-10-25T23:59:59.000Z

88

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect (OSTI)

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

89

Resource planning for gas utilities: Using a model to analyze pivotal issues  

SciTech Connect (OSTI)

With the advent of wellhead price decontrols that began in the late 1970s and the development of open access pipelines in the 1980s and 90s, gas local distribution companies (LDCs) now have increased responsibility for their gas supplies and face an increasingly complex array of supply and capacity choices. Heretofore this responsibility had been share with the interstate pipelines that provide bundled firm gas supplies. Moreover, gas supply an deliverability (capacity) options have multiplied as the pipeline network becomes increasing interconnected and as new storage projects are developed. There is now a fully-functioning financial market for commodity price hedging instruments and, on interstate Pipelines, secondary market (called capacity release) now exists. As a result of these changes in the natural gas industry, interest in resource planning and computer modeling tools for LDCs is increasing. Although in some ways the planning time horizon has become shorter for the gas LDC, the responsibility conferred to the LDC and complexity of the planning problem has increased. We examine current gas resource planning issues in the wake of the Federal Energy Regulatory Commission`s (FERC) Order 636. Our goal is twofold: (1) to illustrate the types of resource planning methods and models used in the industry and (2) to illustrate some of the key tradeoffs among types of resources, reliability, and system costs. To assist us, we utilize a commercially-available dispatch and resource planning model and examine four types of resource planning problems: the evaluation of new storage resources, the evaluation of buyback contracts, the computation of avoided costs, and the optimal tradeoff between reliability and system costs. To make the illustration of methods meaningful yet tractable, we developed a prototype LDC and used it for the majority of our analysis.

Busch, J.F.; Comnes, G.A.

1995-11-01T23:59:59.000Z

90

Electric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University No. 5501 Rev.: 0  

E-Print Network [OSTI]

-licensed gas- or electric-powered utility-type vehicles) that are operated on the main campus in Blacksburg, VAElectric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University __________________________________________________________________________________ Subject: Electric/Gas Utility-type Vehicle

Beex, A. A. "Louis"

91

NO, Reduction in a Gas Fired Utility Boiler by Combustion Modifications  

E-Print Network [OSTI]

Data on the effect of several combustion modifications on the for-math of nitrogen oxides and on boiler efficiency were acquired and analyzed for a 110 MW gas fired utility boiler. The results from the study showed that decreasing the oxygen in the flue gas from 2.2% to 0.6 % reduced the NO, formation by 33 % and also gave better boiler efficiencies. Flue gas recirculation through the bottom of the fire4mx WBS founb to be Ineffective. Staged combustion was found to reduce the NO, emlssions by as much as 55 % while decreasing the efficiency by about 5%. Adjustment of the burner air registers reduced the NO, formation by about 20 ppm. The lowest NO, emisdons of 42 ppm (at about 3 % 02) in the stack was obtained for air only to one top burner and 0.5 % oxygen in the flue gas. The reduction of nitrogen oxides (NO,) emissions from steam boilers has been under study for several years. The NO, from boilers consist almost entirely of nitric oxide (NO) and nitrogen dioxide (N02) with NO2 usually only l or 2 % of the total. After leaving the stack, the NO eventually combines with atmospheric oxygen to form NOp. The Environmental Protection Agency has sponsored several studies1-I0 on reducing NO, emissions while maintaining thermal efficiency of boilers. Other studies have been sponsored by The Electric Power Research Institute (EPRI) " and Argonne National

Jerry A. Bullin; Dan Wilkerson

1982-01-01T23:59:59.000Z

92

Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals  

SciTech Connect (OSTI)

Air Products has developed a potentially ground-breaking technology Sour Pressure Swing Adsorption (PSA) to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

Kloosterman, Jeff

2012-12-31T23:59:59.000Z

93

Flue Gas Purification Utilizing SOx/NOx Reactions During Compressin of CO2 Derived from Oxyfuel Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flue Gas Purification Flue Gas Purification Utilizing SO X /NO X Reactions During Compression of CO 2 Derived from Oxyfuel Combustion Background Oxy-combustion in a pulverized coal-fired power station produces a raw carbon dioxide (CO 2 ) product containing contaminants such as water vapor, oxygen, nitrogen, and argon from impurities in the oxygen used and any air leakage into the system. Acid gases are also produced as combustion products, such as sulfur oxides (SO

94

Implementing the National Broadband  

Broader source: Energy.gov (indexed) [DOE]

AVISTA CORPORATION AVISTA CORPORATION I. Introduction Founded in 1889, Avista engages in energy production, transmission and distribution, as well as other energy-related activities. An investor-owned utility (New York Stock Exchange ticker symbol: AVA) with annual revenues of more than $1.5 billion, Avista provides electric service to 356,000 customers and natural gas to 316,000 customers in a service territory of more than 30,000 square miles. We serve those customers with a mix of hydro, natural gas, coal, biomass, wind and other generation delivered over 2,600 miles of transmission line, 17,800 miles of distribution lines and 7,600 miles of natural gas distribution mains. Avista is headquartered in Spokane, Washington, and our nearly 1,600 employees work in

95

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of opportunity fuels will avoid greenhouse gas emissions from the combustion of natural gas and increase the diversity of fuel sources for U.S. industry. Introduction Gas turbines...

96

Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast  

E-Print Network [OSTI]

of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

Leu, Tzong-Shyng "Jeremy"

97

Natural gas demand at the utility level: An application of dynamic elasticities  

Science Journals Connector (OSTI)

Previous studies provide strong evidence that energy demand elasticities vary across regions and states, arguing in favor of conducting energy demand studies at the smallest unit of observation for which good quality data are readily available, that is the utility level. We use monthly data from the residential sector of Xcel Energy's service territory in Colorado for the period January 1994 to September 2006. Based on a very general Autoregressive Distributed Lag model this paper uses a new approach to simulate the dynamic behavior of natural gas demand and obtain dynamic elasticities. Knowing consumers' response on a unit time basis enables one to answer a number of questions, such as, the length of time needed to reach demand stability. Responses to price and income were found to be much lowereven in the long runthan has been commonly suggested in the literature. Interestingly, we find that the long run equilibrium is reached relatively quickly, around 18months after a change in price or income has occurred, while the literature implies a much longer period for complete adjustments to take place.

Leila Dagher

2012-01-01T23:59:59.000Z

98

Emerging technologies for the management and utilization of landfill gas. Final report, August 1994-August 1997  

SciTech Connect (OSTI)

The report gives information on emerging technologies that are considered to be commercially available (Tier 1), currently undergoing research and development (Tier 2), or considered as potentially applicable (Tier 3), for the management of landfill gas (LFG) emissions or for the utilization of methane (CH4) and carbon dioxide (CO2) from LFG. The emerging technologies that are considered to be Tier 1 are: (1) phosphoric acid fuel cells, (2) processes for converting CH4 from LFG to compressed LFG for vehicle fuel or other fuel uses, and (3) use of LFG as a fuel source for leachate evaporation systems. The Tier 2 technologies covered in the report are: (1) operation of landfills as anaerobic bioreactors, (2) operation of landfills are aerobic bioreactors, (3) production of ethanol from LFG, (4) production of commercial CO2 from LFG, and (5) use of LFG to provide fuel for heat and CO2 enhancement in greenhouses. Tier 3 technologies, considered as potentially applicable for LFG. include Stirling and Organic Rankine Cycle engines.

Roe, S.; Reisman, J.; Strait, R.; Doorn, M.

1998-02-01T23:59:59.000Z

99

Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

Dolan, S. L.; Heath, G. A.

2012-04-01T23:59:59.000Z

100

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels  

Broader source: Energy.gov [DOE]

Gas turbines are commonly used in industry for onsite power and heating needs because of their high efficiency and clean environmental performance. Natural gas is the fuel most frequently used to...

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Utilization and Mitigation of VAM/CMM Emissions by a Catalytic Combustion Gas Turbine  

Science Journals Connector (OSTI)

A system configured with a catalytic combustion gas turbine generator unit is introduced. The system has ... Heavy Industries, Ltd., such as small gas turbines, recuperators and catalytic combustors, and catalyti...

K. Tanaka; Y. Yoshino; H. Kashihara; S. Kajita

2013-01-01T23:59:59.000Z

102

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels- Fact Sheet, 2011  

Broader source: Energy.gov [DOE]

Factsheet summarizing how this project will modify a gas turbine combustion system to operate on hydrogen-rich opportunity fuels

103

The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas  

E-Print Network [OSTI]

. During low demand periods, the unit is gas-fired and produces 150 psi steam at high efficiency. In the fall, the heat exchanger is converted to accept flue gas from the large original water tube boilers. The flue gas heats water, which preheats make...

Henderson, W. R.; DeBiase, J. F.

1983-01-01T23:59:59.000Z

104

New Markets, Outmoded Manufacturing: The Transition from Manufactured Gas to Natural Gas by Northeastern Utilities after World War II  

E-Print Network [OSTI]

For more than a century, large manufactured gas plants dotted the industrial landscape of the urban Northeast. Using a variety of technologies, these factories applied heat and pressure to coke, coal, and oil to produce a gas suitable for use in space heating and cooking. Yet this well-established, vital industry literally ceased to exist in the two decades after World War II, as natural gas transported from the southwestern United States replaced manufactured gas in all of the major markets in the Northeast. This abrupt victory of a new product was a modem variant of "creative destruction " as described by Joseph Schumpeter in his classic study Capitalism, Socialism and Democracy [10]. While creating a more efficient fuel supply, the coming of natural gas also destroyed the existing system for the production and distribution of manufactured gas. Yet this mid-20th century case of creative destruction differed sharply from Schumpeter's descriptions of the same process during the era of high capitalism in the late 19th century. In that dynamic period, innovations took place in a largely unfettered

Chris Castaneda; Joseph Pratt

105

"1. Colstrip","Coal","PPL Montana LLC",2094 "2. Noxon Rapids","Hydroelectric","Avista Corp",568  

U.S. Energy Information Administration (EIA) Indexed Site

Montana" Montana" "1. Colstrip","Coal","PPL Montana LLC",2094 "2. Noxon Rapids","Hydroelectric","Avista Corp",568 "3. Libby","Hydroelectric","USCE-North Pacific Division",525 "4. Hungry Horse","Hydroelectric","U S Bureau of Reclamation",428 "5. Yellowtail","Hydroelectric","U S Bureau of Reclamation",287 "6. Kerr","Hydroelectric","PPL Montana LLC",206 "7. Fort Peck","Hydroelectric","USCE-Missouri River District",200 "8. J E Corette Plant","Coal","PPL Montana LLC",154 "9. Judith Gap Wind Energy Center","Other Renewables","Invenergy Services LLC",135

106

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

C. Jean Bustard

2003-12-01T23:59:59.000Z

107

Utilization of CO2 as cushion gas for porous media compressed air energy storage  

E-Print Network [OSTI]

energy storage for large-scale deployment of intermittent solar andsolar energy systems. The number of cycles that occur in 30 years in a natural gas storage

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

108

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

Kenneth E. Baldrey

2003-01-01T23:59:59.000Z

109

Economic evaluation and market analysis for natural gas utilization. Topical report  

SciTech Connect (OSTI)

During the past decade, the U.S. has experienced a surplus gas supply. Future prospects are brightening because of increased estimates of the potential size of undiscovered gas reserves. At the same time, U.S. oil reserves and production have steadily declined, while oil imports have steadily increased. Reducing volume growth of crude oil imports was a key objective of the Energy Policy Act of 1992. Natural gas could be an important alternative energy source to liquid products derived from crude oil to help meet market demand. The purpose of this study was to (1) analyze three energy markets to determine whether greater use could be made of natural gas or its derivatives and (2) determine whether those products could be provided on an economically competitive basis. The following three markets were targeted for possible increases in gas use: transportation fuels, power generation, and chemical feedstock. Gas-derived products that could potentially compete in these three markets were identified, and the economics of the processes for producing those products were evaluated. The processes considered covered the range from commercial to those in early stages of process development. The analysis also evaluated the use of both high-quality natural gas and lower-quality gases containing CO{sub 2} and N{sub 2} levels above normal pipeline quality standards.

Hackworth, J.H.; Koch, R.W.; Rezaiyan, A.J.

1995-04-01T23:59:59.000Z

110

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

SciTech Connect (OSTI)

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle, May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

111

DEVELOPMENT OF A NEW HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES  

E-Print Network [OSTI]

Symposium on Solar Thermal Power and Energy Systems,solar to thermal conversion is accomplished by a dispersion of ultra~fine partlcles suspended in a gas to absorb radlant energy

Hunt, Arlon J.

2012-01-01T23:59:59.000Z

112

Offshore gas conservation utilizing a turbo-expander based refrigeration extraction cycle  

SciTech Connect (OSTI)

Gas associated with the crude produced from Occidental's Piper Field is conserved by drying it and condensing out the heavier components. This renders the gas with water and hydrocarbon dew points acceptable for transfer to St. Fergus via Total's Frigg Field Pipeline. A process which includes a turbo expander/compressor is used to extract the condensate which is spiked into the crude pipeline for eventual recovery as liquid product and fuel gas at Flotta. The turbo expander can extract 30% more condensate than a simple Joule-Thompson expansion. Gas transferred to St. Fergus is 80% methane with a net calorific value of 1000 btu/scf and a water dew point of -20 F at 1700 psig.

Ross, I.; Robinson, T.

1981-01-01T23:59:59.000Z

113

Use of piston expanders in plants utilizing energy of compressed natural gas  

Science Journals Connector (OSTI)

A comparative analysis has been performed of the suitability of using turbo-and piston (reciprocating) expanders in low-consumption units of natural gas...i...= 35 MPa. Two versions have been investigated: 1) mo...

A. I. Prilutskii

2008-03-01T23:59:59.000Z

114

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect (OSTI)

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

None

1981-01-01T23:59:59.000Z

115

The future of natural gas consumption in Beijing, Guangdong and Shanghai: An assessment utilizing MARKAL  

Science Journals Connector (OSTI)

Natural gas could possibly become a si0gnificant portion of the future fuel mix in China. However, there is still great uncertainty surrounding the size of this potential market and therefore its impact on the global gas trade. In order to identify some of the important factors that might drive natural gas consumption in key demand areas in China, we focus on three regions: Beijing, Guangdong, and Shanghai. Using the economic optimization model MARKAL, we initially assume that the drivers are government mandates of emissions standards, reform of the Chinese financial structure, the price and available supply of natural gas, and the rate of penetration of advanced power generating and end-use. The results from the model show that the level of natural gas consumption is most sensitive to policy scenarios, which strictly limit SO2 emissions from power plants. The model also revealed that the low cost of capital for power plants in China boosts the economic viability of capital-intensive coal-fired plants. This suggests that reform within the financial sector could be a lever for encouraging increased natural gas use.

BinBin Jiang; Chen Wenying; Yu Yuefeng; Zeng Lemin; David Victor

2008-01-01T23:59:59.000Z

116

Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller  

SciTech Connect (OSTI)

Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

1996-12-31T23:59:59.000Z

117

Evaluation of naturally fractured gas shale production utilizing multiwell transient tests: A field study  

SciTech Connect (OSTI)

A series of multiple well transient tests were conducted in a Devonian shale gas field in Meigs County, Ohio. Production parameters were quantified and it was determined that the reservoir is highly anisotropic, which is a significant factor in calculating half-fracture length from pressure transient data. Three stimulation treatments, including conventional explosive shooting, nitrogen foam frac, and high energy gas frac (HEGF), were compared on the basis of overall effectiveness and performance. Based on the evaluation of results, the nitrogen foam frac provided the most improved productivity. The study provided new type curves and analytical solutions for the mathematical representation of naturally fractured reservoirs and confirmed that the shale reservoir in Meigs County can be modeled as a dual porosity system using pseudosteady-state gas transfer from the matrix to the fracture system.

Chen, C.C.; Alam, J.; Blanton, T.L.; Vozniak, J.P.

1984-05-01T23:59:59.000Z

118

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-05-01T23:59:59.000Z

119

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-07-01T23:59:59.000Z

120

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

Kenneth E. Baldrey

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

Kenneth E. Baldrey

2003-07-30T23:59:59.000Z

122

Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas  

DOE Patents [OSTI]

In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

Durai-Swamy, Kandaswamy (Culver City, CA)

1982-01-01T23:59:59.000Z

123

Study of integrated metal hydrides heat pump and cascade utilization of liquefied natural gas cold energy recovery system  

Science Journals Connector (OSTI)

The traditional cold energy utilization of the liquefied natural gas system needs a higher temperature heat source to improve exergy efficiency, which barricades the application of the common low quality thermal energy. The adoption of a metal hydride heat pump system powered by low quality energy could provide the necessary high temperature heat and reduce the overall energy consumption. Thus, an LNG cold energy recovery system integrating metal hydride heat pump was proposed, and the exergy analysis method was applied to study the case. The performance of the proposed integration system was evaluated. Moreover, some key factors were also theoretically investigated about their influences on the system performance. According to the results of the analysis, some optimization directions of the integrated system were also pointed out.

Xiangyu Meng; Feifei Bai; Fusheng Yang; Zewei Bao; Zaoxiao Zhang

2010-01-01T23:59:59.000Z

124

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

Kenneth E. Baldrey

2001-09-01T23:59:59.000Z

125

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

Kenneth E. Baldrey

2003-02-01T23:59:59.000Z

126

NSLS Utilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilities Utilities The Utilities Group, led by project engineer Ron Beauman, is responsible for providing Utilities Engineering and Technical services to NSLS, Users, and SDL including cooling water at controlled flow rates, pressures, and temperatures, compressed air and other gases. In addition, they provide HVAC engineering, technical, and electrical services as needed. Utilities systems include cooling and process water, gas, and compressed air systems. These systems are essential to NSLS operations. Working behind the scenes, the Utilities group continuously performs preventative maintenance to ensure that the NSLS has minimal downtime. This is quite a feat, considering that the Utilities group has to maintain seven very large and independent systems that extent throughout NSLS. Part of the group's

127

Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion  

SciTech Connect (OSTI)

The United States wishes to decrease foreign energy dependence by utilizing the countrys significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Fogash, Kevin

2010-09-30T23:59:59.000Z

128

Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion  

SciTech Connect (OSTI)

The United States wishes to decrease foreign energy dependence by utilizing the countrys significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Kevin Fogash

2010-09-30T23:59:59.000Z

129

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

51 - 22560 of 28,905 results. 51 - 22560 of 28,905 results. Rebate Texas Uranium Exploration, Surface Mining, and Reclamation Act (Texas) The Railroad Commission of Texas is the regulatory authority for uranium surface mining. Law authorizes the Commission to assure that reclamation of mining sites is possible, to protect land owners... http://energy.gov/savings/texas-uranium-exploration-surface-mining-and-reclamation-act-texas Rebate Avista Utilities (Gas)- Prescriptive Commercial Incentive Program Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including cooking... http://energy.gov/savings/avista-utilities-gas-prescriptive-commercial-incentive-program

130

Development of efficiency-enhanced cogeneration system utilizing high-temperature exhaust-gas from a regenerative thermal oxidizer for waste volatile-organic-compound gases  

Science Journals Connector (OSTI)

We have developed a gas-turbine cogeneration system that makes effective use of the calorific value of the volatile organic compound (VOC) gases exhausted during production processes at a manufacturing plant. The system utilizes the high-temperature exhaust-gas from the regenerative thermal oxidizer (RTO) which is used for incinerating VOC gases. The high-temperature exhaust gas is employed to resuperheat the steam injected into the gasturbine. The steam-injection temperature raised in this way increases the heat input, resulting in the improved efficiency of the gas-turbine. Based on the actual operation of the system, we obtained the following results: Operation with the steam-injection temperature at 300C (45C resuperheated from 255C) increased the efficiency of the gasturbine by 0.7%. The system can enhance the efficiency by 1.3% when the steam-injection temperature is elevated to 340C (85C resuperheated). In this case, up to 6.6 million yen of the total energy cost and 400 tons of carbon dioxide (CO2) emissions can be reduced annually. A gas-turbine cogeneration and RTO system can reduce energy consumption by 23% and CO2 emission by 30.1% at the plant.

Masaaki Bannai; Akira Houkabe; Masahiko Furukawa; Takao Kashiwagi; Atsushi Akisawa; Takuya Yoshida; Hiroyuki Yamada

2006-01-01T23:59:59.000Z

131

Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995  

SciTech Connect (OSTI)

A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

1995-12-01T23:59:59.000Z

132

ENERGY COMMISSION PUBLIC UTILITIES COMMISSION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA PUBLIC UTILITIES COMMISSION FOR IMMEDIATE RELEASE Prosper, California Public Utilities Commission, 415.703.2160 GREENHOUSE GAS STRATEGIES OPINION RELEASED SACRAMENTO -- The California Energy Commission and the California Public Utilities Commission today released

133

Method for recovering power according to a cascaded rankine cycle by gasifying liquefied natural gas and utilizing the cold potential  

SciTech Connect (OSTI)

The present invention discloses a method for recovering effective energy as power between liquefied natural gas and a high temperature source by cascading two kinds of Rankine cycles when the liquefied natural gas is re-gasified. The method is characterized in that a first medium performs a first Rankine cycle with the liquefied natural gas as a low temperature source, the first medium being mainly a mixture of hydrocarbons having 1-6 carbon atoms or a mixture of halogenated hydrocarbons of boiling points close to those of said hydrocarbons, the first medium having compositions according to which the vapor curve of gasifying the liquefied natural gas substantially corresponds to the low pressure cooling curve of the first medium, the power generated thereby is recovered by a first turbine during the first Rankine cycle, a second medium having a higher boiling point than said first medium performs a second Rankine cycle with part of said first Rankine cycle as the low temperature source, the second medium, being a single hydrocarbon component having 1-6 carbon atoms or a mixture thereof, a single halogenated hydrocarbon whose boiling point is close to that of this hydrocarbon or a mixture thereof, or ammonia, whose low pressure cooling curve substantially corresponds to the vapor curve of the high pressure first medium, said first and second Rankine cycles are cascaded, and a second turbine is disposed to recover power during the second Rankine cycle.

Matsumoto, O.; Aoki, I.

1984-04-24T23:59:59.000Z

134

Utilization of Common Automotive Three-Way NO{sub x} Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094  

SciTech Connect (OSTI)

Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO{sub x} reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO{sub x} reduction performance of the THOR process, a common Three-Way catalytic NO{sub x} reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO{sub x} unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO{sub x} to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO{sub x} concentration upstream and downstream of the catalytic DeNO{sub x} unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO{sub x} reduction capability of the catalytic DeNO{sub x} unit. The NO{sub x} destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO{sub x} reduction efficiencies of greater than 99.9% with an average NO{sub x} reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO{sub x} concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm), dry basis with an average concentration of approximately 17 ppm, dry basis. There were no signs of catalyst deactivation throughout the 6 day demonstration program, even under the high steam (>50%) content and chemically reducing conditions inherent to the THOR process. Utilization of the common Three-Way automotive catalyst may prove to be a cost effective method for improving NO{sub x} emissions from thermal treatment processes that utilize similar processing conditions. This paper will discuss the details of the implementation and performance of the Three-Way catalytic DeNO{sub x} unit at the THOR ESTD, as well as a discussion of future work to determine the long-term durability of the catalyst in the THOR process. (authors)

Foster, Adam L.; Ki Song, P.E. [Studsvik, Inc. 5605 Glenridge Drive Suite 705, Atlanta, GA 30342 (United States)] [Studsvik, Inc. 5605 Glenridge Drive Suite 705, Atlanta, GA 30342 (United States)

2013-07-01T23:59:59.000Z

135

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

136

ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES  

SciTech Connect (OSTI)

Air Products set out to investigate the impact of additives on the deposition rate of both ???µCSi and ???±Si-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air Products?¢???? electronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties.

Ridgeway, R.G.; Hegedus, S.S.; Podraza, N.J.

2012-08-31T23:59:59.000Z

137

Fact Sheet: DOE/National Association of Regulatory Utility Commissione...  

Energy Savers [EERE]

DOENational Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Fact Sheet: DOENational Association of Regulatory Utility...

138

Alternative Fuels Data Center: Metropolitan Utilities District Fuels  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Metropolitan Utilities Metropolitan Utilities District Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on

139

By-Products Utilization  

E-Print Network [OSTI]

wood with supplementary fuels such as coal, oil, natural gas, and coke by pulp and paper mills and wood, knots, chips, etc. with other supplementary fuels such as coal, oil, natural gas, and coke to generateCenter for By-Products Utilization DEVELOPMENT OF CLSM USING COAL ASH AND WOOD ASH, A SOURCE OF NEW

Wisconsin-Milwaukee, University of

140

By-Products Utilization  

E-Print Network [OSTI]

with supplementary fuels such as coal, oil, natural gas, and coke by pulp and paper mills and wood, such as bark, twigs, knots, chips, etc. with other supplementary fuels such as coal, oil, natural gas, and cokeCenter for By-Products Utilization CLSM CONTAINING MIXTURES OF COAL ASH AND A NEW POZZOLANIC

Wisconsin-Milwaukee, University of

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Potential for Natural Gas Storage in Deep Basalt Formations at Canoe Ridge, Washington State: A Hydrogeologic Assessment  

SciTech Connect (OSTI)

Between 1999 and 2002, Pacific Gas Transmission Company (PGT) (now TransCanada Pipeline Company) and AVISTA Corporation, together with technical support provided by the Pacific Northwest National Laboratory and the U.S. Department of Energy (DOE) examined the feasibility of developing a subsurface, natural gas-storage facility in deep, underlying Columbia River basalt in south-central Washington state. As part of this project, the 100 Circles #1 well was drilled and characterized in addition to surface studies. This report provides data and interpretations of the geology and hydrology collected specific to the Canoe Ridge site as part of the U.S. DOE funding to the Pacific Northwest National Laboratory in support of this project.

Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

2005-09-24T23:59:59.000Z

142

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network [OSTI]

Lai, S. and J.C. Smith. 2004. Xcel Energy and the MinnesotaSouth- MN MN west (GRE) (Xcel) PSE Pacifi- PSCo PGE* AvistaPenetration (% capacity) MN, Xcel * (Brooks et al. 2003) MN,

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

143

Utility Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Sponsored E-Source Membership Utility Potential...

144

Utility Cost Analysis  

E-Print Network [OSTI]

utility bills. The r~~ulte of the modeling program and actual 1983 natural gas and electric consumption are graphed in Figures 2 and 3. The results indicate a good understanding of the heating requiremente of the facility as demonetrated by the close... fit of the two curves defining actual and modeled natural gas usage. Examination of the graph showing modeled electric coneumption verens actual 1983 data, illustrates an underetanding of electrical energy requiremente during all but peak cooling...

Horn, S.

1984-01-01T23:59:59.000Z

145

Washington/Incentives | Open Energy Information  

Open Energy Info (EERE)

Washington/Incentives Washington/Incentives < Washington Jump to: navigation, search Contents 1 Financial Incentive Programs for Washington 2 Rules, Regulations and Policies for Washington Download All Financial Incentives and Policies for Washington CSV (rows 1 - 184) Financial Incentive Programs for Washington Download Financial Incentives for Washington CSV (rows 1 - 163) Incentive Incentive Type Active Avista Utilities (Electric) - Commercial Lighting Energy Efficiency Program (Washington) Utility Rebate Program No Avista Utilities (Electric) - Commercial Energy Efficiency Incentives Program (Washington) Utility Rebate Program Yes Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Washington) Utility Rebate Program Yes Avista Utilities (Electric) - Commercial Food Equipment Rebates (Washington) Utility Rebate Program No

146

Hutchinson Utilities Commission - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Hutchinson Utilities Commission - Residential Energy Efficiency Hutchinson Utilities Commission - Residential Energy Efficiency Program Hutchinson Utilities Commission - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate 500 Program Info Expiration Date program offered until expiration of funding State Minnesota Program Type Utility Rebate Program Rebate Amount Natural Gas Furnaces: $150-$250, depending on efficiency Natural Gas Furnace Tune-up: $25 ECM Motor: $75 Natural Gas Boilers: $200 Central Air Conditioners: $250 Central Air Conditioner Tune-up: $25 Tankless Gas Water Heaters: $150 Storage Gas Water Heaters: $50 Air Source Heat Pumps: $75/ton

147

Energy Crossroads: Utility Energy Efficiency Programs | Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Programs Energy Efficiency Programs Suggest a Listing Efficiency United The energy efficiency program for 18 Michigan Utilities including Alpena Power Company, Baraga Electric Utility, Bayfield Electric Cooperative, City of Crystal Falls Electric Department, City of Gladstone Department of Power & Light, City of South Haven Public Works, Daggett Electric Company, Hillsdale Board of Public Utilities, Indiana Michigan Power Company, L'Anse Electric Utility, Michigan Gas Utilities, Negaunee Electric Department, The City of Norway Department of Power & Light, SEMCO ENERGY Gas Company, Upper Peninsula Power Company, We Energies, Wisconsin Public Service and Xcel Energy. Energy Company Links A directory of approximately 700 oil and gas companies, utilities and oil

148

Primer on gas integrated resource planning  

SciTech Connect (OSTI)

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

149

Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...  

Office of Environmental Management (EM)

Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in...

150

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Company Smart Grid Project Atlantic City Electric Company Smart Grid Project Atlantic City Electric Company Smart Grid Project Mays Landing New Jersey Maryland District of Columbia Avista Utilities Smart Grid Project Avista Utilities Smart Grid Project Spokane Washington Idaho Baltimore Gas and Electric Company Smart Grid Project Baltimore Gas and Electric Company Smart Grid Project Baltimore Maryland Black Hills Power Inc Smart Grid Project Black Hills Power Inc Smart Grid Project Rapid City South Dakota North Dakota Minnesota Black Hills Colorado Electric Utility Co Smart Grid Project Black Hills Colorado Electric Utility Co Smart Grid Project Pueblo Colorado Burbank Water and Power Smart Grid Project Burbank Water and Power Smart Grid Project Burbank California CenterPoint Energy Smart Grid Project CenterPoint Energy Smart Grid

151

Utility Formation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

amounts See detailed discussion of these standards. For more information regarding tribal utility formation, contact the Power Service Line Account Executives: Eastern Power...

152

Field evaluation of cofiring gas with coal for quantifying operational benefits and emissions trim in a utility boiler. Volume 2. Topical report, 1989-1990  

SciTech Connect (OSTI)

The volume consists of 14 appendixes to accompany volume 1 of the report, and covers the following test data: analysis of coal, fylash, and bottom ash samples; cleanliness factors; slagging observation record sheets; stack opacity measurements; stack sulphur dioxide and nitrogen oxides measurements; total coal flow; fuel gas flow; furnace exit gas temperature; percent oxygen at economizer outlet; percent excess air; bulk steam temperatures at secondary superheater and reheater outlets; secondary superheater and reheater tube outlet leg temperatures; unit heat rate; and models used for data interpretation.

Clark, K.J.; Torbov, T.S.; Impey, R.J.; Hara, K.G.; Burnett, T.D.

1993-02-01T23:59:59.000Z

153

Cyber - Protection for utilities ... | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cyber - Protection for utilities ... Hackers hoping to disrupt the power grid, water or natural gas service may be foiled by an intrusion detection system developed by researchers...

154

For Utilities  

Broader source: Energy.gov [DOE]

Utilities and energy efficiency program administrators can incorporate Superior Energy Performance (SEP) into new or existing programs to help their industrial customers meet efficiency targets. The utility can provide incentives or other support to manufacturers who decide to implement SEP or pursue capital investments in energy efficiency. Accredited verification bodies have verified the substantial energy savings that are possible with SEP.

155

UTILITY INVESTMENT IN ON-SITE SOLAR: RISK AND RETURN ANALYSIS FOR CAPITALIZATION AND FINANCING  

E-Print Network [OSTI]

for Standard and Poor's Utility Index San Diego Gas Pacificof Averaging Interval: Utilities Index. Beta Scatter as aRecord Application to Utility Equity Returns Project

Kahn, E.

2011-01-01T23:59:59.000Z

156

Optimal Design and Synthesis of Algal Biorefinery Processes for Biological Carbon Sequestration and Utilization with Zero Direct Greenhouse Gas Emissions: MINLP Model and Global Optimization Algorithm  

Science Journals Connector (OSTI)

Correspondingly, the superstructure is shown in Figure 7, and the border of continuous and discontinuous sections is redefined to cover the feed gas. ... The optimality tolerance for the branch-and-refine algorithm is set to 106, and optimality margins of the solving original problem (P1) and the linear relaxation problem (P2) are both zero. ... Sets ...

Jian Gong; Fengqi You

2014-01-03T23:59:59.000Z

157

Efficient Utilization of Greenhouse Gases in a Gas-to-Liquids Process Combined with CO2/Steam-Mixed Reforming and Fe-Based FischerTropsch Synthesis  

Science Journals Connector (OSTI)

In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. ... In the burner-type reformer, NG is used as a heating fuel, in order to reduce the consumption of NG, the vent gas can be applied to the burner to replace some part of NG as fuel. ...

Chundong Zhang; Ki-Won Jun; Kyoung-Su Ha; Yun-Jo Lee; Seok Chang Kang

2014-06-16T23:59:59.000Z

158

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network [OSTI]

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

159

Rooftop Solar Challenge | Department of Energy  

Office of Environmental Management (EM)

SEED, Oregon Department of Energy, Snohomish Public Utility District, Seattle City Light, Puget Sound Energy, Portland General Electric, Avista, Pacific Power, Solar...

160

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents [OSTI]

A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

1994-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents [OSTI]

A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

Maerefat, Nicida L. (Sugar Land, TX); Parmeswar, Ravi (Marlton, NJ); Brinkmeyer, Alan D. (Tulsa, OK); Honarpour, Mehdi (Bartlesville, OK)

1994-01-01T23:59:59.000Z

162

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Electric Company Smart Grid Project Atlantic City Electric Electric Company Smart Grid Project Atlantic City Electric Company Smart Grid Project Mays Landing New Jersey Maryland District of Columbia Avista Utilities Smart Grid Project Avista Utilities Smart Grid Project Spokane Washington Idaho Consolidated Edison Company of New York Inc Smart Grid Project Consolidated Edison Company of New York Inc Smart Grid Project New York New York New Jersey El Paso Electric Smart Grid Project El Paso Electric Smart Grid Project El Paso Texas New Mexico Hawaii Electric Co Inc Smart Grid Project Hawaii Electric Co Inc Smart Grid Project Oahu Hawaii Memphis Light Gas and Water Division Smart Grid Project Memphis Light Gas and Water Division Smart Grid Project Memphis Tennessee Municipal Electric Authority of Georgia Smart Grid Project Municipal

163

Property:CoverageMap | Open Energy Information  

Open Energy Info (EERE)

CoverageMap CoverageMap Jump to: navigation, search This is a property of type String. Pages using the property "CoverageMap" Showing 25 pages using this property. (previous 25) (next 25) A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + SmartGridMap-ALLETEMNPower.JPG + American Transmission Company LLC II Smart Grid Project + SmartGridMap-AmericanTransmissionII.JPG + American Transmission Company LLC Smart Grid Project + SmartGridMap-AmericanTransmission.JPG + Atlantic City Electric Company Smart Grid Project + SmartGridMap-AtlanticCityElectric.JPG + Avista Utilities Smart Grid Project + SmartGridMap-AvistaUtilities.JPG + B Baltimore Gas and Electric Company Smart Grid Project + SmartGridMap-BaltimoreGasElectric.JPG + Black Hills Power, Inc. Smart Grid Project + SmartGridMap-BlackHills.JPG +

164

Public Utility Regulation (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utility Regulation (Iowa) Utility Regulation (Iowa) Public Utility Regulation (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any person, partnership, business association, or corporation that owns or operates any facilities for furnishing gas by piped distribution system, electricity, communications services, or water to the public for compensation. Regulations pertaining to these facilities can be found in this section. Some exemptions apply

165

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

166

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

167

EM Utility Contracts  

Broader source: Energy.gov (indexed) [DOE]

12 12 EM UTILITY CONTRACT Site State Supplier Executed Contract Type DOE Contract # East Tennessee Technology Park TN Tennessee Valley Authority 4/27/2007 Energy supply contract (retail) DE-AC05-07OR23242 Hanford WA Bonneville Power Administration 10/1/2001 Transmission Service Agreement Hanford WA Bonneville Power Administration 10/1/2011 Power Sales Agreement (retail) Moab UT Paducah KY Electric Energy, Inc. (EEI as agent for DOE) Original Power Contract Portsmouth OH Pike Natural Gas 2/28/2007 Negotiated contract Portsmouth OH Ohio Valley Electric Corporation (OVEC) 9/10/2008 Letter Agreement DE-AC05-03OR22988 Savannah River Site SC South Carolina Electric & Gas

168

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

169

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Maximum Rebate $1,000 Program Info Start Date 01/01/2013 Expiration Date 04/30/2013 State Illinois Program Type Utility Rebate Program Rebate Amount ComEd Rebates Central Air Conditioner Unit 14 SEER or above: $350 Central Air Conditioner Unit Energy Star rated: $500 Nicor Gas, Peoples Gas and North Shore Gas Furnace: $200 - $500 (varies based on gas company and unit installed) Provider ComEd Energy ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is

170

Minimum Gas Service Standards (Ohio)  

Broader source: Energy.gov [DOE]

Natural gas companies in Ohio are required to follow the Minimum Gas Service Standards, which are set and enforced by the Public Utilities Commission of Ohio. These rules are found in chapter 4901...

171

Evaluation of the 3D-furnace simulation code AIOLOS by comparing CFD predictions of gas compositions with in-furnace measurements in a 210MW coal-fired utility boiler  

Science Journals Connector (OSTI)

The furnace of a pulverised coal-fired utility boiler with a thermal output of 210MW, with dimensions of 8m x 8m x 29m and 12 burners located on three levels, is considered. Coal combustion is described by a five-step-reaction scheme. The model covers two heterogeneous reactions for pyrolysis and char combustion and three gas phase reactions for the oxidation of volatile matter. A standard k, ?-model is used for the description of turbulence. The interaction of turbulence and chemistry is modelled using the Eddy Dissipation Concept (EDC). The transport equations for mass, momentum, enthalpy and species are formulated in general curvilinear co-ordinates enabling an accurate treatment of boundaries and a very good control over the distribution of the grid lines. The discretisation is based on a non-staggered finite-volume approach and the coupling of velocities and pressure is achieved by the SIMPLEC method. Numerical diffusion is minimised by the use of the higher-order discretisation scheme MLU. The accuracy of the predictions is demonstrated by comparing the computational results with in-furnace measurements of carbon monoxide, carbon dioxide and oxygen concentrations and of temperatures.

Hermann Knaus; Uwe Schnell; Klaus R.G. Hein

2001-01-01T23:59:59.000Z

172

Competitive Natural Gas Providers (Iowa)  

Broader source: Energy.gov [DOE]

Competitive providers and aggregators of natural gas must be certified by the Utilities Board. Applicants must demonstrate the managerial, technical, and financial capability to perform the...

173

Alabama Gas Corporation - Residential Natural Gas Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Furnace (Replacement): $200 Dryer (Replacement): $100 Natural Gas Range/Cooktop (Replacement): $100 Water Heaters (Replacement): $200 Tankless Water Heaters (Replacement): $200 Provider Alabama Gas Corporation Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment. All equipment

174

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Digg Find More places to share Alternative Fuels Data Center: Compressed

175

Federal Utility Partnership Working Group Utility Partners  

Broader source: Energy.gov [DOE]

Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

176

features Utility Generator  

E-Print Network [OSTI]

#12;#12;#12;#12;features function utility Training Pool Utility Generator Per-frame function content utility classes utility classes utility Tree Decision Generator Module Utility Clustering Adaptive Content Classification Loop features content VO selection & Utility Selector content features Real

Chang, Shih-Fu

177

ELECTRICITY AND NATURAL GAS DATA COLLECTION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION HISTORICAL ELECTRICITY AND NATURAL GAS DATA COLLECTION Formsand of Power Plants Semi-Annual Report ..................................... 44 CEC-1306D UDC Natural Gas Tolling Agreement Quarterly Report.......................... 46 i #12;Natural Gas Utilities and Retailers

178

Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) |  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage of Natural Gas and Liquefied Petroleum Gas Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation

179

Colorado Public Utility Commission's Xcel Wind Decision  

SciTech Connect (OSTI)

In early 2001 the Colorado Public Utility Commission ordered Xcel Energy to undertake good faith negotiations for a wind plant as part of the utility's integrated resource plan. This paper summarizes the key points of the PUC decision, which addressed the wind plant's projected impact on generation cost and ancillary services. The PUC concluded that the wind plant would cost less than new gas-fired generation under reasonable gas cost projections.

Lehr, R. L. (NRUC/NWCC); Nielsen, J. (Land and Water Fund of the Rockies); Andrews, S.; Milligan, M. (National Renewable Energy Laboratory)

2001-09-20T23:59:59.000Z

180

Enhanced carbon monoxide utilization in methanation process  

DOE Patents [OSTI]

Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

Elek, Louis F. (Peekskill, NY); Frost, Albert C. (Congers, NY)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Utility Sounding Board  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports, Publications, and Research Utility Toolkit Sponsored E-Source Membership Utility Potential Calculator EE Maximization Tool Conduit Utility Sounding Board Residential...

182

Utility Energy Savings Contract Project  

Broader source: Energy.gov (indexed) [DOE]

Utility Energy Savings Utility Energy Savings Contract Project Redstone Arsenal, Alabama Presented by Doug Dixon, Pacific Northwest National Laboratory For Mark D. Smith, PE, CEM, CEA Energy Manager, Redstone Arsenal Federal Utility Partnership Working Group - Fall 2010 UNCLASSIFIED UNCLASSIFIED 0 50 100 150 200 250 Klbs FY09 Total Hourly Steam FY09 Total Threshold $22.76 / MMBTU (Minimum take-or-pay base rate) (Consumer Price Index) Average FY09 Natural Gas Price $5.52 / MMBTU $16.91 / MMBTU (High capacity rate) (Petroleum Price Index) Hours UNCLASSIFIED Resolution * Manage the steam load to the minimum take-or- pay thresholds under the existing contract.  Prune the distribution system by eliminating long runs with low density and high thermal losses.  Ensure summer steam loads are utilized.

183

Community Renewable Energy Deployment: Sacramento Municipal Utility  

Open Energy Info (EERE)

Deployment: Sacramento Municipal Utility Deployment: Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects Agency/Company /Organization US Department of Energy Focus Area Agriculture, Economic Development, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Solar, - Solar Pv, Biomass - Waste To Energy Phase Bring the Right People Together, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality Sacramento Municipal Utility District, CA References Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects[1]

184

OPENING STATEMENT FOR JOE HOLMES, COLORADO SPRINGS UTILITIES  

Energy Savers [EERE]

UTILITITES (CSU). CSU IS A MUNICIPALLY-OWNED, FOUR-SERVICE UTILITY PROVIDING ELECTRICITY, NATURAL GAS, WATER AND WASTEWATER SERVICES TO BUSINESS AND RESIDENTIAL CUSTOMERS IN THE...

185

Figure 3-11 South Table Mountain Utilities Map  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FTLB AMMO LEGEND Gas Existing Buildings Electrical Figure 3-11 South Table Mountain Utilities Map Sewer Communication Water Surface Drainage Storm Water WATER TANK FACILITIES...

186

Utilization Analysis Page 1 UTILIZATION ANALYSIS  

E-Print Network [OSTI]

Utilization Analysis Page 1 UTILIZATION ANALYSIS Section 46a-68-40 and HIRING/PROMOTION GOALS utilized in the Health Center's workforce, the numbers of protected classes in the workforce must conducted for each occupational category and position classification. The Utilization Analysis was performed

Oliver, Douglas L.

187

utility functions scaling profiles utility-fair  

E-Print Network [OSTI]

bandwidth utility functions scaling profiles utility-fair I. INTRODUCTION The emerging MPEG-4 video. This can result in a significant increase in the utilization of network capacity [1]. These techniques. Bandwidth utility functions [9] can be used to characterize an application's capability to adapt over

Chang, Shih-Fu

188

University of Alaska Fairbanks Utility Development Plan  

E-Print Network [OSTI]

.1 Strategy 2 - Natural Gas Sub-Option - New Equipment STEAM SYSTEM Equipment MachineorGrouUniversity of Alaska Fairbanks Utility Development Plan October 25,2006TechnicalAppendices B UTILITY DEVELOPMENT PLAN APPENDIX B: TECHNICAL APPENDIX #12;10/25/06 SECTION 1 ­ TECHNICAL PRODUCTION

Hartman, Chris

189

Gas Pipeline Securities (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes that entities engaged in the transmission of gas by pipelines are not required to obtain the consent of the Utility Regulatory Commission for issuance of stocks,...

190

Utility Contract Competition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Competition Competition Utility Contract Competition October 7, 2013 - 2:26pm Addthis Opening utility energy service contracts to competing franchised utility companies ensures Federal agencies get the best value for their projects. Federal agencies are not legally required to compete for utility incentive services provided by the "established source" utility in the utility's franchised service territory. If services are available, the Energy Policy Act of 1992 states that there should be no restriction on Federal facilities directly benefiting from the services the same as any other customer. The exception is if there is more than one serving utility offering utility energy services (e.g., a gas company and an electric company). In this case, the Federal Acquisition Regulations and good fiscal management

191

Cogeneration - A Utility Perspective  

E-Print Network [OSTI]

are discussed from a utility perspective as how they influence utility participation in future projects. The avoided cost methodology is examined, and these payments for sale of energy to the utility are compared with utility industrial rates. In addition...

Williams, M.

1983-01-01T23:59:59.000Z

192

Utility Monitor September 2010  

E-Print Network [OSTI]

Utility Monitor September 2010 Why monitor utility syntax? Enforce and Maintain Company-Wide DB2 Utility Standards. Jennifer Nelson Product Specialist, Rocket Software © 2010 IBM Corporation © 2010............................................................................................................... iv 1 Why Monitor DB2 Utility Syntax

193

NET PRED UTILITY  

Energy Science and Technology Software Center (OSTI)

002602IBMPC00 Normalized Elution Time Prediction Utility http://omics.pnl.gov/software/NETPredictionUtility.php

194

Utility Metering - AGL Resources  

Broader source: Energy.gov (indexed) [DOE]

AGL Resources AGL Resources Mike Ellis Director, AGL Energy Services Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company  Multiple LDCs with legacy metering equipment  Several use Itron 100G technology ◦ Mobile, once-a-month data collection ◦ Meter can store interval data for >30 days ◦ Meter technology could be leverage on fixed-base network, however there are no current plans for upgrade  Technology for capturing interval data is installed on case by case basis ◦ Customers on Interruptible Rate ◦ Large users  Electronic corrector installed on the meter ◦ Pressure and Temperature compensation  Typically data is retrieved once a day ◦ Transmission frequency impacts battery life

195

Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) |  

Broader source: Energy.gov (indexed) [DOE]

Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate $450 Program Info Start Date 01/01/2013 Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Varies Provider Natural Gas Savings Program The Peoples Gas and North Shore Gas Natural Gas Savings Programs are offering the following bonus rebates (in addition to the joint utilities bonus rebate). For both offers below, installation must occur from February 1 through May 31, 2013. All paperwork must be received on or before May 31,

196

Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Utilities Electric Utility Rates The Utilities Gateway houses OpenEI's free, community-editable utility rate repository. OpenEI users may browse, edit and add new electric utility rates to OpenEI's repository. EIA provides the authoritative list of utility companies in the United States, and thus OpenEI limits utility rates to companies listed by EIA. 43,031 rates have been contributed for 3,832 EIA-recognized utility companies. Browse rates by zip code Browse rates by utility name Create or edit a rate Number of Utility Companies by State Click on a state to view summaries for that state. See a list of all U.S. utility companies and aliases Utility Rate Database Description The Utility Rate Database (URDB) is a free storehouse of rate structure

197

Deregulation in Japanese gas industries : significance and problems of gas rate deregulation for large industrial customers  

E-Print Network [OSTI]

In recent years, the circumstances surrounding Japanese City gas industries have been changing drastically. On one hand, as energy suppliers, natural gas which has become major fuel resource for city gas, as public utilities, ...

Inoue, Masayuki

1994-01-01T23:59:59.000Z

198

Administrative Code Title 83, Public Utilities (Illinois) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Administrative Code Title 83, Public Utilities (Illinois) Administrative Code Title 83, Public Utilities (Illinois) Administrative Code Title 83, Public Utilities (Illinois) < Back Eligibility Commercial Municipal/Public Utility Rural Electric Cooperative Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Illinois Program Type Environmental Regulations Generating Facility Rate-Making Renewables Portfolio Standards and Goals Safety and Operational Guidelines Training/Technical Assistance Provider Illinois Commerce Commission In addition to general rules for utilities, this article states regulations for the protection of underground utilities, promotional practices of electric and gas public utilities construction of electric power and

199

Question 2: Gas procurement strategy  

SciTech Connect (OSTI)

This article is a collection of responses from natural gas distribution company representatives to questions on how the start-up of the natural gas futures market has changed gas procurement strategies, identification of procurement problems related to pipeline capacity, deliverability, or pregranted abandonment of firm transportation, the competition of separate utility subsidiaries with brokers, marketers, and other gas suppliers who sell gas to large-volume industrial or other 'noncore' customers.

Carrigg, J.A.; Crespo, J.R.; Davis, E.B. Jr.; Farman, R.D.; Green, R.C. Jr.; Hale, R.W.; Howard, J.J.; McCormick, W.T. Jr.; Page, T.A.; Ryan, W.F.; Schrader, T.F.; Schuchart, J.A.; Smith, J.F.; Stys, R.D.; Thorpe, J.A.

1990-10-25T23:59:59.000Z

200

Third Avenue and Edgehill Road Improvements The City of Columbus and private utility companies have completed plans for improving West Third  

E-Print Network [OSTI]

Underground utility work will be performed by American Electric Power, Columbia Gas and a communication

Howat, Ian M.

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NREL: Energy Analysis - Natural Gas-Fired Generation Results...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assessments have shown wide-ranging results. To better understand the greenhouse gas (GHG) emissions from utility-scale, natural gas-fired electricity generation systems (based...

202

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a...

203

Utility Theory Social Intelligence  

E-Print Network [OSTI]

Utility Theory Social Intelligence Daniel Polani Utility Theory ­ p.1/15 Utilities: Motivation Consider: game scenario For Instance: 2-or-more players Necessary: development of concept for utilities decisions sequential decisions (time) games Utility The Prototypical Scenario Consider: agent that can take

Polani, Daniel

204

Natural Gas Rules (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Rules (Alabama) Natural Gas Rules (Alabama) Natural Gas Rules (Alabama) < Back Eligibility Utility Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines These rules apply to all gas utilities operating in the state of Alabama under the jurisdiction of the Alabama Public Service Commission. The rules state standards for the measurement of gas at higher than standard service pressure. Every utility shall provide and install at its own expense, and shall continue to own, maintain and operate all equipment necessary for the regulation and measurement of gas. Each utility furnishing metered gas service shall own and maintain the equipment and facilities necessary for accurately testing the various types and sizes of meters used for the measurement of gas. Each utility shall

205

Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

(Gas) - Residential Energy (Gas) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heating Program Info State Maryland Program Type Utility Rebate Program Rebate Amount Gas Furnace: $300 or $400 Duct Sealing: $200 Tune-ups: $100 Installation Rebates: Contact BGE The Baltimore Gas and Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available for furnaces, HVAC system tune-ups, and insulation measures. All equipment and installation

206

Montana-Dakota Utilities - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

- Residential Energy Efficiency Rebate - Residential Energy Efficiency Rebate Program Montana-Dakota Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Appliances & Electronics Maximum Rebate Programmable Thermostat: 1 per address Program Info State Montana Program Type Utility Rebate Program Rebate Amount '''Gas''' Furnace: 150 Energy Star Programmable Thermostat: 20 '''Electric''' Air Conditioner Replacement: 175/ton Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient equipment for natural gas and electric customers. Natural gas customers are eligible for rebates on furnaces and programmable thermostats

207

Business Owners: Prepare for Utility Disruptions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

for Utility Disruptions for Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other hazard knocks out your business's electricity or natural gas service. Identify energy utilities-The utilities that are absolutely necessary to running your business. How might a disaster impact the availability of those utilities? Determine backup options-Contact your utility companies to discuss potential backup options, such as portable generators to provide power. Learn how and when to turn off utilities-For example, if you turn off your natural gas, a professional technician must turn it back on. Learn more Consider using backup generators-Generators can power the most important aspects of your business in an emergency. This will involve:

208

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Exterior Wall Insulation: $350 (single family), $150 (multifamily) Windows: $2.50/sq. ft. Gas Furnace: $200 - $400 Gas Storage Water Heater: $50-$100 Gas Condensing Water Heater: $350 Gas Boiler: $400 -$600 Tankless Gas Water Heater: $350 Single Family Homes (New Construction): $50 - $500 Multifamily Homes (New Construction): $50 - $300/unit

209

Reduction of Utility Usage in a Glyphosate Intermediate (GI) Unit  

E-Print Network [OSTI]

Reduction of Utility Usage in a Glyphosate Intermediate (GI) Unit Michael L. Sander Manufacturing Technologist Monsanto Company Luling, Louisiana Plant ABSTRACT The Monsanto Company Luling Plant produces glyphosate intermediate (GI... the Utilities area brainstormed ideas and then implemented them across the units. While all utilities were addressed, the groups primary focus areas were natural gas, nitrogen, and compressed air. Natural gas usage was reduced 28% by optimizing...

Sander, M. L.

2006-01-01T23:59:59.000Z

210

Utility FGD survey: January--December 1989  

SciTech Connect (OSTI)

This is Volume 1 of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

Hance, S.L.; McKibben, R.S.; Jones, F.M.

1992-03-01T23:59:59.000Z

211

A Case Study of Danville Utilities: Utilizing Industrial Assessment...  

Broader source: Energy.gov (indexed) [DOE]

A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing...

212

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas" "Net Summer Capacity (megawatts)",15404,29 "..Electric Utilities",12691,21 "..IPP & CHP",2713,33 "Net Generation (megawatthours)",54584295,28 "..Electric Utilities",41844010,2...

213

Charlottesville Gas - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Charlottesville Gas - Residential Energy Efficiency Rebate Program Charlottesville Gas - Residential Energy Efficiency Rebate Program Charlottesville Gas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Appliances & Electronics Water Heating Program Info State Virginia Program Type Utility Rebate Program Rebate Amount Programmable Thermostat: up to $100 Natural Gas Water Heater Conversion: $100 Provider City of Charlottesville Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for installing new, energy efficient natural gas water heaters and programmable thermostats. Only customers which previously did not have natural gas water heating are

214

NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates |  

Broader source: Energy.gov (indexed) [DOE]

NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates NIPSCO (Gas and Electric) - Residential Natural Gas Efficiency Rebates < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Varies Provider Energy Efficiency Programs Group Northern Indiana Public Service Corporation (NIPSCO) offers rebates to residential customers that install energy efficient gas and electric measures in homes through the NIPSCO Energy Efficiency Rebate Program. The program is available to all residential NIPSCO natural gas and electric customers. Flat rebates are offered for natural gas boilers, natural gas

215

Mandatory Utility Green Power Option | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State District of Columbia Program Type Mandatory Utility Green Power Option Provider Washington State Department of Commerce In May 2001, Washington enacted legislation (EHB 2247) that requires all electric utilities serving more than 25,000 customers to offer customers the option of purchasing renewable energy. Eligible renewables include wind, solar, geothermal, landfill gas, wave or tidal action, wastewater treatment gas, certain biomass resources, and "qualified hydropower" that is fish-friendly. Beginning January 1, 2002, each electric utility must inform its customers

216

Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) |  

Broader source: Energy.gov (indexed) [DOE]

Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) Questar Gas - Home Builder Gas Appliance Rebate Program (Idaho) < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount New Construction Home Options Builder Option Package 1: $50 (single family), $50 (multifamily) Builder Option Package 2: $100 (single family), $100 (multifamily) Energy Star 3.0: $300 (single family), $200 (multifamily) High Performance Home: $500 (single family), $300 (multifamily)

217

Mercury sorbent delivery system for flue gas  

DOE Patents [OSTI]

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

218

Underground Storage of Natural Gas (Kansas)  

Broader source: Energy.gov [DOE]

Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

219

Utilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utilities Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine whether municipalization would be a beneficial option for many California cities. Source: Bay Area Economic Forum. Establishing a Tribal Utility Authority Handbook Provides an introduction to electric utility operation and general guidance for the steps required to form a tribal utility authority. Funded by an economic development grant awarded by the U.S. Department of the Interior's Office of Indian Energy and Economic Development to the Ak-Chin Indian Community and its tribal utility authority, Ak-Chin Energy Services. Source: Leonard S. Gold, Utility Strategies Consulting Group,

220

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",25548,15 "..Electric Utilities",16661,18 "..IPP & CHP",8887,13 "Net Generation (megawatthours)",103407706,15...

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",15404,29 "..Electric Utilities",12691,21 "..IPP & CHP",2713,33 "Net Generation (megawatthours)",54584295,28...

222

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",10,51 "Electric Utilities",, "IPP & CHP",10,51 "Net Generation (megawatthours)",71787,51 "Electric...

223

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",4491,43 "..Electric Utilities",19,49 "..IPP & CHP",4472,22 "Net Generation (megawatthours)",14428596,44...

224

Utility Marketing- Numbers Games, Technology Wars or Relational Marketing?  

E-Print Network [OSTI]

marketing is de-emphasized While shifting Natural gas and electric utilities seem to be feverishly interested in expanding their business base, improving consumption load factors while attempting to preserve their customers' profitability. They have... circus? Does current utility marketing thinking strengthen or weaken the customer-utility relationship? The purpose of this paper is to illustrate how utilities can market more effectively. With examples drawn from our experience serving 58 electric...

Gilbert, J. S.

225

FEMP Utility Services  

Broader source: Energy.gov (indexed) [DOE]

Utility Services Utility Services Karen Thomas & Deb Beattie  SPONSORED BY THE FEDERAL ENERGY MANAGEMENT PROGRAM  Overview  UESC Project Support  Agency / Utility Partnerships  Renewable Project Support  Design Assistance  Agency Energy Implementation Plans * * * * * * UESC Project Support Education UESC Workshops Agency Briefings Utility Briefings On-site team training Communications Web site Enabling documents * Case studies UESC Project Support Direct Project Assistance Project facilitation Advise & Consult In depth Contract development Technical Proposal review Performance Verification Agency / Utility Partnerships Federal Utility Partnership Working Group Strategic Partnering Meeting Renewable Projects  Resource Screening: - PV - Solar Hot Water

226

Property:Awardee | Open Energy Information  

Open Energy Info (EERE)

Awardee Awardee Jump to: navigation, search This is a property of type Page. Pages using the property "Awardee" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 44 Tech Inc. + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + Amber Kinetics, Inc. Smart Grid Demonstration Project + Amber Kinetics, Inc. + American Transmission Company LLC II Smart Grid Project + American Transmission Company LLC + American Transmission Company LLC Smart Grid Project + American Transmission Company LLC + Atlantic City Electric Company Smart Grid Project + Atlantic City Electric Co + Avista Utilities Smart Grid Project + B Baltimore Gas and Electric Company Smart Grid Project + Baltimore Gas & Electric Co +

227

American Instrument Companies and the Early Development of Gas Chromatography  

Science Journals Connector (OSTI)

......continued to be active in gas chromatography and in the...by also building low-cost gas chromatographs. Hamilton...the standard tools of a gas chromatographic laboratory...ultimate in high-precision production: it utilizes the bore......

L.S. Ettre

1977-03-01T23:59:59.000Z

228

NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector  

E-Print Network [OSTI]

NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

229

Pennsylvania Farmland and Forest Land Assessment Act of 1974 - Utilization  

Broader source: Energy.gov (indexed) [DOE]

Pennsylvania Farmland and Forest Land Assessment Act of 1974 - Pennsylvania Farmland and Forest Land Assessment Act of 1974 - Utilization of Land or Conveyance of Rights for Exploration or Extraction of Gas, Oil or Coal Bed Methane Pennsylvania Farmland and Forest Land Assessment Act of 1974 - Utilization of Land or Conveyance of Rights for Exploration or Extraction of Gas, Oil or Coal Bed Methane < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info Start Date 2011 State Pennsylvania Program Type Siting and Permitting Provider Pennsylvania Department of Environmental Protection This act prescribes the procedure utilization of land or conveyance of rights for exploration or extraction of gas, oil or coal bed methane in

230

Norwich Public Utilities - Commercial Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Norwich Public Utilities - Commercial Energy Efficiency Rebate Norwich Public Utilities - Commercial Energy Efficiency Rebate Program Norwich Public Utilities - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Variable Frequency Drives: Contact NPU Lighting: Contact NPU HVAC: Contact NPU Natural Gas Conversions: Contact NPU Provider Norwich Public Utilities Norwich Public Utilities (NPU) provides rebates to its commercial, industrial, institutional, and agricultural customers for high-efficiency

231

Research results and utility experience workshop: Proceedings  

SciTech Connect (OSTI)

This workshop was sponsored by the Distributed Utility Valuation (DUV) Project-a joint effort of the National Renewable Energy Laboratory (NREL) Department of Energy (DOE), Electric Power Research Institute (EPRI), Pacific Northwest Laboratory (PNL) Department of Energy (DOE), and Pacific Gas & Electric Company (PG&E). The purpose of the workshop is to provide a forum for utilities, other research organizations, and regulatory agencies to share results and data on Distributed Utility (DU)-related research and applications. Up-to-date information provided insight into the various technologies available to utilities, the methods used to select the technologies, and case study results. The workshop was divided into three sessions: Planning Tools; Utility Experience; and Policy and Technology Implications. Brief summaries of the individual presentations from each session are attached as appendices.

Not Available

1994-08-01T23:59:59.000Z

232

Development of Gas Turbine Combustors for Low BTU Gas  

Science Journals Connector (OSTI)

Large-capacity combined cycles with high-temperature gas turbines burning petroleum fuel or LNG have already ... the other hand, as the power generation technology utilizing coal burning the coal gasification com...

I. Fukue; S. Mandai; M. Inada

1992-01-01T23:59:59.000Z

233

GSA- Utility Interconnection Agreements  

Broader source: Energy.gov [DOE]

Presentation given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

234

Transmission Utilization Group (TUG)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Intertie Initiatives Intertie Open Season Transmission Utilization...

235

Safety of Gas Transmission and Distribution Systems (Maine) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission These regulations describe requirements for the participation of natural gas utilities in the Underground Utility Damage Prevention Program,

236

By-Products Utilization  

E-Print Network [OSTI]

Fellow at the UWM-CBU. His research interests include the use of coal fly ash, coal bottom ash, and usedCenter for By-Products Utilization USE OF UNDER-UTILIZED COAL- COMBUSTION PRODUCTS IN PERMEABLE-Utilized Coal-Combustion Products in Permeable Roadway Base Construction 1 (MS #LV-R67) Use of Under

Wisconsin-Milwaukee, University of

237

gas rates | OpenEI Community  

Open Energy Info (EERE)

gas rates gas rates Home > Groups > Utility Rate Are there Gas Utility Rates available in OpenEI? Submitted by Nlong on 11 July, 2012 - 11:41 1 answer Points: 1 Hi, OpenEI doesn't have NG utility rates as far as I'm aware. That may be a dataset that is added in the future. You can access natural gas prices by utility and sector by downloading the EIA-176 form from the Energy Information Administration. I've included some links to help you find your way. http://205.254.135.7/survey/form/eia_176/efs176.cfm http://www.eia.gov/oil_gas/natural_gas/applications/eia176query_historical.html -Sfomail Sfomail on 12 July, 2012 - 12:04 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge?

238

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info Start Date 7/1/2009 State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Star Home Certification: $500 Storage Water Heater: $50 Tankless Water Heater: $300 Furnace: $300 Boiler: $400 Provider Questar Gas Questar Gas provides incentives for home builders to construct energy efficient homes. Rebates are provided for both energy efficient gas equipment and whole home Energy Star certification. All equipment and

239

Intermountain Gas Company (IGC) - Gas Heating Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Furnace: $200/unit Provider Customer Service The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system using another energy source. New furnaces must meet a minimum AFUE efficiency rating of 90%, and the home must have been built at least three years prior to the furnace conversion to qualify for the rebate. Visit IGC's program web site for more

240

City Utilities of Springfield - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

City Utilities of Springfield - Residential Energy Efficiency City Utilities of Springfield - Residential Energy Efficiency Rebate Program City Utilities of Springfield - Residential Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Heating Heat Pumps Appliances & Electronics Maximum Rebate Varies by equipment and type of residence Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Home Performance with Energy Star: $250 - $800 Energy Star Home Rating: 50% of certification cost, up to $400 Programmable Thermostat: $15 Insulation Upgrade: 20% of cost up $300 Natural Gas Furnace: $400 Natural Gas Furnace Tune-Up: $30

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Gainesville Regional Utilities - Business Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Gainesville Regional Utilities - Business Energy Efficiency Rebate Gainesville Regional Utilities - Business Energy Efficiency Rebate Program Gainesville Regional Utilities - Business Energy Efficiency Rebate Program < Back Eligibility Nonprofit Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Sealing Your Home Ventilation Heating Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Duct Leak Repair: up to $375 Energy Star Home Performance: $775 - $1,400 Custom: $100,000 or 50% of project cost Program Info State Florida Program Type Utility Rebate Program Rebate Amount Central Air Conditioner: $550 Natural Gas Central Heat (Rental Properties): $300 Natural Gas Water Heater (Rental Properties): $250 - $350

242

PILOTING UTILITY MODELING APPLICATIONS (PUMA) UTILITY BRIEFING PAPERS  

E-Print Network [OSTI]

1 PILOTING UTILITY MODELING APPLICATIONS (PUMA) UTILITY BRIEFING PAPERS Utility Page Seattle Public Utilities 2 Tampa Bay Water 6 San Francisco Public Utilities Commission 11 New York City Department of Environmental Protection 15 Portland Water Bureau 20 #12;2 SEATTLE PUBLIC UTILITIES Utility Briefing Paper

243

Utility stack opacity troubleshooting guidelines  

SciTech Connect (OSTI)

Stack plume visibility, otherwise defined as plume opacity, has become a concern to the utility industry. This concern stems from the fact that some coal-fired stations with operating FGD systems have been cited for opacity in excess of the New Source Performance Standards (NSPS) even though the particulate mass emissions are within regulated limits. Postulated causes for the unacceptable opacities include scrubber-generated particulate matter, condensible particulate matter such as sulfuric acid mist, fine particles penetrating the particulate control device, and/or colored gases such as nitrogen dioxide in the flue gas. It is important that the underlying cause of the plume opacity be identified to determine if it is possible to reduce plume opacity. This report presents a troubleshooting methodology developed during field tests at four utilities experiencing high stack opacities. Results from these field tests are presented as case studies to demonstrate how this methodology can be applied by a utility to determine the cause of their plume opacity. 10 refs., 18 figs., 5 tabs.

Keeth, R.J. (United Engineers and Constructors, Inc., Denver, CO (USA). Stearns-Roger Div.); Balfour, D.A.; Meserole, F.M.; Defries, T. (Radian Corp., Austin, TX (USA))

1991-03-01T23:59:59.000Z

244

OpenEI Community - Utility+Utility Access Map  

Open Energy Info (EERE)

Finding Utility Finding Utility Companies Under a Given Utility ID http://en.openei.org/community/blog/finding-utility-companies-under-given-utility-id  Here's a quick way to find all the utility company pages under a given utility id.  From the Special Ask page, in the query box enter the following: [[Category:Utility Companies]][[EiaUtilityId::15248]] substituting your utility id of interest for 15248, and click "Find results". http://en.openei.org/community/blog/finding-utility-companies-under-given-utility-id#comments

245

"List of Covered Electric Utilities" under the Public Utility...  

Broader source: Energy.gov (indexed) [DOE]

6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

246

Utilities Sell Lighting, Cooling and Heating to Large Customers  

E-Print Network [OSTI]

The electric utility industry is entering an era of unprecedented competition. Competition from traditional sources such as natural gas companies, customer cogeneration, and independent power producers are being joined by new sources of competition...

Horne, M. L.; Zien, H. B.

247

Supersonic gas compressor  

DOE Patents [OSTI]

A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2007-11-13T23:59:59.000Z

248

Transmission access: The new factor in electric utility mergers  

SciTech Connect (OSTI)

This article deals with the effect of consideration of transmission access in whether a merger of electric utility is in the public interest. Cases examined are Southern California Edison and San Diego Gas and Electric, Utah Power and Light and Pacific Power and Light, Public Service Company of New Hampshire and Northeast Utilities Service Company, Kansas Gas and Electric and Kansas Power and Light, plus some holding company mergers.

Boiler, D.S.

1991-04-01T23:59:59.000Z

249

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11 - 23420 of 28,905 results. 11 - 23420 of 28,905 results. Rebate Lake Worth Utilities- Residential Solar Water Heating Rebate Program The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A... http://energy.gov/savings/lake-worth-utilities-residential-solar-water-heating-rebate-program Rebate Atmos Energy- Natural Gas and Weatherization Efficiency Program Atmos Energy provides rebates to residential and commercial for natural gas heating equipment through the Kentucky High Efficiency Rebate Program. When Atmos Receives the Kentucky High-Efficiency... http://energy.gov/savings/atmos-energy-natural-gas-and-weatherization-efficiency-program Rebate Avista Utilities (Gas)- Residential Energy Efficiency Rebate

250

Applications for Certificates for Electric, Gas, or Natural Gas  

Broader source: Energy.gov (indexed) [DOE]

Electric, Gas, or Natural Gas Electric, Gas, or Natural Gas Transmission Facilities (Ohio) Applications for Certificates for Electric, Gas, or Natural Gas Transmission Facilities (Ohio) < Back Eligibility Commercial Developer Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State Ohio Program Type Siting and Permitting Provider The Ohio Power Siting Board An applicant for a certificate to site a major electric power, gas, or natural gas transmission facility shall provide a project summary and overview of the proposed project. In general, the summary should be suitable as a reference for state and local governments and for the public. The applicant shall provide a statement explaining the need for the

251

Utility Service Renovations  

Broader source: Energy.gov [DOE]

Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

252

Utility Data Collection Service  

Broader source: Energy.gov [DOE]

Presentation covers the utility data collection service and is given at the FUPWG 2006 Spring meeting, held on May 3-4, 2006 in Atlanta, Georgia.

253

Ammonia synthesis gas purification  

SciTech Connect (OSTI)

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

254

Generalized utility metrics for supercomputers  

E-Print Network [OSTI]

2007:112 Generalized utility metrics for supercomputers 12.ISSUE PAPER Generalized utility metrics for supercomputersproblem of ranking the utility of supercom- puter systems

Strohmaier, Erich

2009-01-01T23:59:59.000Z

255

California Public Utilities Commission | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Commission Public Utilities Commission Address 505 Van Ness Avenue Place San Francisco, California Zip 94102 Phone number 415-703-2782 Website http://www.cpuc.ca.gov/puc/ References CPUC Website[1] This article is a stub. You can help OpenEI by expanding it. California Public Utilities Commission is an organization based in San Francisco, California. The CPUC regulates privately owned electric, natural gas, telecommunications, water, railroad, rail transit, and passenger transportation companies, in addition to authorizing video franchises. Our five Governor-appointed Commissioners, as well as our staff, are dedicated to ensuring that consumers have safe, reliable utility service at reasonable rates, protecting against fraud, and promoting the health of California's economy.

256

Utility FGD survey, Janurary--December 1988  

SciTech Connect (OSTI)

The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW. 2 figs., 9 tabs.

Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States)) [IT Corp., Cincinnati, OH (United States)

1991-09-01T23:59:59.000Z

257

Utility FGD survey, January--December 1988  

SciTech Connect (OSTI)

The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States)) [IT Corp., Cincinnati, OH (United States)

1991-09-01T23:59:59.000Z

258

gas | OpenEI  

Open Energy Info (EERE)

gas gas Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

259

Gas hydrate cool storage system  

DOE Patents [OSTI]

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

260

Power Sales to Electric Utilities  

SciTech Connect (OSTI)

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

None

1989-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review  

E-Print Network [OSTI]

of Interchangeability of Vaporized LNG and Natural Gas. Deswith Domestic Natural Gas. LNG and the Changing U.S. NaturalInterchangeability, and LNG Utilization in the United

Lekov, Alex

2010-01-01T23:59:59.000Z

262

AN EVALUATION OF SOLAR VALUATION METHODS USED IN UTILITY PLANNING AND PROCUREMENT PROCESSES  

E-Print Network [OSTI]

Storage Enhances the Economic Viability of Concentrating SolarSolar Photovoltaics (PV) in Electric Power Systems Utilizing Energy Storagestorage and/or natural gas augmentation to concentrating solar

Mills, Andrew D.

2014-01-01T23:59:59.000Z

263

Helping Utilities Make Smart Solar Decisions Utility Barriers  

E-Print Network [OSTI]

Solar DecisionsSource: SEPA 2010 1,717 MW of utility scale solar or 63 % · Nevada & New Mexico 659 MW for utilities so utilities have cost recovery and return #12;Utility Solar Business Models Ownership Energy Purchases 14Helping Utilities Make Smart Solar Decisions Energy Purchases Financing #12;Utility Financing

Homes, Christopher C.

264

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization CLEAN COAL BY-PRODUCTS UTILIZATION IN ROADWAY, EMBANKMENTS-fueled plants, particularly use of eastern coals, has lead to the use of clean coal and using advanced sulfur dioxide control technologies. Figure 1 shows clean coal technology benefits(2) . In 1977, the concept

Wisconsin-Milwaukee, University of

265

By-Products Utilization  

E-Print Network [OSTI]

-Milwaukee, P.O. Box 784, Milwaukee, WI 53201 d Project Manager, Illinois Clean Coal Institute * Director UWM products containing clean coal ash compared to conventional coal ash. Utilization of clean coal ash is much products that utilize clean coal ash. With increasing federal regulations on power plant emissions, finding

Wisconsin-Milwaukee, University of

266

Regulations For Gas Companies (Tennessee) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regulations For Gas Companies (Tennessee) Regulations For Gas Companies (Tennessee) Regulations For Gas Companies (Tennessee) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Tennessee Program Type Environmental Regulations Safety and Operational Guidelines Provider Tennessee Regulatory Authority The Regulations for Gas Companies, implemented by the Tennessee Regulatory Authority (Authority) outline the standards for metering, distribution and electricity generation for utilities using gas. They follow the same equipment, metering reporting and customer relations standards as the Regulations for Electric Companies. In addition to these requirements these regulations outline purity requirements, pressure limits, piping

267

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

268

OpenEI Community - natural gas+ condensing flue gas heat recovery+ water  

Open Energy Info (EERE)

Increase Natural Gas Increase Natural Gas Energy Efficiency http://en.openei.org/community/group/increase-natural-gas-energy-efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas.How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature?gas-energy-efficiency" target="_blank">read more natural gas+ condensing flue gas heat

269

Warm Gas Cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Warm Gas Cleanup Warm Gas Cleanup NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 5 Project Description The Environmental Protection Agency (EPA) has established strict regulations for the trace contaminant emissions from integrated gasification combined cycle (IGCC) systems. The Department of Energy (DOE) performance goals for trace contaminant removal were selected to meet or exceed EPA's standard limits for contaminants, as well as to avoid poisoning of: the catalysts utilized in making liquids from fuel gas the electrodes in fuel cells selective catalytic reduction (SCR) catalysts The objective of the NETL's ORD Warm Gas Cleanup project is to assist in achieving both DOE and EPA targets for trace contaminant capture from coal gasification, while preserving the high thermal efficiency of the IGCC system. To achieve this, both lab and pilot-scale research is underway to develop sorbents capable of removing the following contaminants from high temperature syngas (up to 550°F):

270

Electric, Gas, and Electric/Gas Energy Options for Cold-Air HVAC Systems  

E-Print Network [OSTI]

An important aspect of the design of cost-effective HVAC systems today is (a) sensitivity to the cost impact of the interplay of utility demand charges, time-of-day rates, gas rates, and gas/electric utility incentive programs vis--vis HVAC system...

Meckler, G.

1989-01-01T23:59:59.000Z

271

Dekker PMIS Extraction Utility  

Broader source: Energy.gov (indexed) [DOE]

0907. The Extraction Utility is used for retrieving project 0907. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates focused to improve existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation validate any software update prior to its release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

272

Electric Utility Industry Update  

Broader source: Energy.gov (indexed) [DOE]

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

273

Dekker PMIS Extraction Utility  

Broader source: Energy.gov (indexed) [DOE]

1217. The Extraction Utility is used for retrieving project 1217. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into the Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates primarily focused to improve the existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation site validate all software updates prior to release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

274

By-Products Utilization  

E-Print Network [OSTI]

-Products Utilization E-mail: ymchun@uwm.edu and F. D. Botha Project Manager, Illinois Clean Coal Institute 5776 Coal, University of Wisconsin-Milwaukee, Milwaukee, WI, USA. 4 Project Manager, Illinois Clean Coal Institute

Wisconsin-Milwaukee, University of

275

Supervisory Public Utilities Specialist  

Broader source: Energy.gov [DOE]

The incumbent of this position serves as a Supervisory Public Utilities Specialist in the Long Term Power Planning Group that is part of Power Servicess Generation Asset Management, Power &...

276

Utility and Industrial Partnerships  

E-Print Network [OSTI]

In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

Sashihara, T. F.

277

utilities.scm  

E-Print Network [OSTI]

;;; Some utility functions (define (negative-abs m) ;; m can be big, so we'll try to be nice here (if (abs_m m) ;; returns smallest p...

278

Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Commercial Energy Commercial Energy Efficiency Program Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency Program < Back Eligibility Commercial Installer/Contractor Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Construction Appliances & Electronics Water Heating Maximum Rebate See Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $500 Furnace with ECM Fan: $700 - $900 Water Boiler: $800 - $1,200 Steam Boiler: $800 Boiler Reset Control: $100 Indirect Water Heater: $300 Programmable Thermostats: $25 Provider Central Hudson Gas and Electric The Business Energy SavingsCentral program is for non-residential gas customers of Central Hudson. This includes businesses, local governments,

279

CO2 Utilization | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CO2 CO2 Utilization CO2 Utilization Carbon dioxide (CO2) use and reuse efforts focus on the conversion of CO2 to useable products and fuels that will reduce CO2 emissions in areas where geologic storage may not be an optimal solution. These include: Enhanced Oil/Gas Recovery - Injecting CO2 into depleting oil or gas bearing fields to maximize the amount of CO2 that could be stored as well as maximize hydrocarbon production. CO2 as Feedstock - Use CO2 as a feedstock to produce chemicals (including fuels and polymers) and find applications for the end products. Non-Geologic Storage of CO2 - Use CO2 from an effluent stream to immobilize the CO2 permanently by producing stable solid material that are either useful products with economic value or a low cost produced material.

280

Iraq and the utilities  

SciTech Connect (OSTI)

This article discusses the possible impact on the public utilities of the invasion of Kuwait by Iraq. The author feels the industry is in better shape to weather this than the energy crisis of 1973 and 1974. However regulatory policies that prohibit some utilities from recovering fuel costs through rate adjustments may cause distress for some. The author feels that a revision of regulatory policies is needed.

Studness, C.M.

1990-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network [OSTI]

Technology. Stoffel, F.C. (Xcel Energy). 2001. In the Matternatural gas utilities, Xcel Energy noted that the cost of

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

282

Utility theory front to back inferring utility from agents' choices  

E-Print Network [OSTI]

Utility theory front to back ­ inferring utility from agents' choices A. M. G. Cox Dept to utility theory and consumption & investment problems. Instead of specifying an agent's utility function) and ask if it is possible to derive a utility function for which the observed behaviour is optimal. We

283

Asymptotic utility-based pricing and hedging for exponential utility  

E-Print Network [OSTI]

Asymptotic utility-based pricing and hedging for exponential utility Jan Kallsen Christian deals with pricing and hedging based on utility indifference for exponential utility. We consider order approximation the utility indifference price and the corresponding hedge can be determined from

Kallsen, Jan

284

By-Products Utilization  

E-Print Network [OSTI]

the Dairyland Power Cooperative, La Crosse, WI; Madison Gas and Electric Company, Madison, WI; National Minerals contents or use thereof. This report does not constitute a standard, specification, or regulation

Wisconsin-Milwaukee, University of

285

Category:Green Button Utility Companies | Open Energy Information  

Open Energy Info (EERE)

Utility Companies Utility Companies Jump to: navigation, search Pages in category "Green Button Utility Companies" The following 67 pages are in this category, out of 67 total. A AEP Generating Company AEP Texas Central Company AEP Texas North Company Ameren Illinois Company (Illinois) Appalachian Power Co Atlantic City Electric Co Austin Energy B Baltimore Gas & Electric Co Bangor Hydro-Electric Co Barton Village, Inc (Utility Company) C CenterPoint Energy Central Maine Power Co Central Vermont Pub Serv Corp City of Chattanooga, Georgia (Utility Company) City of Chattanooga, Tennessee (Utility Company) City of Glendale, California (Utility Company) Commonwealth Edison Co Connecticut Light & Power Co Consolidated Edison Co-NY Inc D Delmarva Power E EPB G Green Mountain Power Corp

286

Steam reforming utilizing sulfur tolerant catalyst  

SciTech Connect (OSTI)

This patent describes a steam reforming process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of: adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalyst of platinum supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. It also describes a steam process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of steam to the hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalysts consisting essentially of iridium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. In addition a steam reforming process is described for converting hydrocarbon material to hydrogen gas in the presence of sulfur comprising adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity sulfur tolerant catalysts consisting essentially of palladium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina.

Setzer, H.J.; Karavolis, S.; Bett, J.A.S.

1987-09-15T23:59:59.000Z

287

City of Memphis, Tennessee (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Memphis, Tennessee (Utility Company) Memphis, Tennessee (Utility Company) (Redirected from Memphis Light, Gas and Water Division) Jump to: navigation, search Name Memphis City of Place Memphis, Tennessee Utility Id 12293 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Memphis Light, Gas and Water Division Smart Grid Project was awarded $5,063,469 Recovery Act Funding with a total project value of $13,112,363. Utility Rate Schedules Grid-background.png DRAINAGE PUMPING STATION RATE Commercial GENERAL POWER RATE - PART B Industrial

288

California utilities partner with Lawrence Livermore to improve state's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-12-04 2-12-04 For immediate release: 12/20/2012 | NR-12-12-04 California utilities partner with Lawrence Livermore to improve state's energy grid Lynda L Seaver, LLNL, (925) 423-3103, seaver1@llnl.gov Printer-friendly California utilities will use the advanced technologies and expertise of Lawrence Livermore National Laboratory to improve the efficiency, security and safety of the state's utility systems under an agreement approved today by the California Public Utilities Commission (CPUC). The CPUC approved funding of a five-year research and development agreement between Pacific Gas and Electric Company, Southern California Edison Company and San Diego Gas and Electric Company, and Lawrence Livermore (LLNL) that will provide the utilities with access to LLNL technological

289

"Table A49. Average Prices of Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Average Prices of Purchased Electricity, Steam, and Natural Gas" 9. Average Prices of Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam",," Natural Gas" ," (Million kWh)",," (Billion Btu)",," (1000 cu ft)" ,"-","-----------","-","-----------","-","-","-","RSE" " ","Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

290

Table A23. Quantity of Purchased Electricity, Steam, and Natural Gas by Type  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" 3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (Million kWh)",," (Billion Btu)",," (Billion cu ft)" ,," -------------------------",," -------------------------",," ---------------------------------------",,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

291

Table A27. Quantity of Purchased Electricity, Steam, and Natural Gas by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Electricity, Steam, and Natural Gas by Type" Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," Electricity",," Steam",," Natural Gas" ," (Million (kWh)",," (Billion Btu)",," (Billion cu ft)" ," -----------------------",," -----------------------",," ------------------------------------",,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

292

Gas Hydrate Storage of Natural Gas  

SciTech Connect (OSTI)

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

293

Federal Utility Partnership Working Group Meeting Report  

Broader source: Energy.gov (indexed) [DOE]

MAY 3-4, 2006 MAY 3-4, 2006 ATLANTA, GEORGIA INTRODUCTION The Federal Utility Partnership Working Group (FUPWG) held its Spring 2006 meeting in Atlanta, Georgia, on May 3-4. A total of 77 individuals attended the meeting. Participants included officials from Federal Energy Management Program (FEMP) representatives, other Federal agencies, national laboratories, the utility industry, and representatives from energy-related organizations. The working group is a joint effort between FEMP and the utility industry to stimulate the exchange of information among participants and foster energy efficiency projects in Federal facilities nationwide. The Spring 2006 FUPWG meeting was hosted by Atlanta Gas and Light. The agenda included the following presentations:

294

"List of Covered Electric Utilities" under the Public Utility...  

Broader source: Energy.gov (indexed) [DOE]

8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

295

"List of Covered Electric Utilities" under the Public Utility...  

Broader source: Energy.gov (indexed) [DOE]

9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

296

Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works  

Broader source: Energy.gov [DOE]

Presentationgiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingprovides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

297

Federal Utility Partnership Working Group (FUPWG) Fall 2011 Meeting Report  

Broader source: Energy.gov (indexed) [DOE]

1 Report Page 1 of 18 1 Report Page 1 of 18 Federal Utility Partnership Working Group Meeting October 25-26, 2011 Hosted by Philadelphia Gas Works Philadelphia, PA Meeting Record The Federal Utility Partnership Working Group (FUPWG) is a joint effort between the Federal Energy Management Program (FEMP) and the utility industry to stimulate the exchange of information among participants and foster energy efficiency projects in Federal facilities nationwide. The FUPWG meeting held in Philadelphia on October 25 and 26 was attended by 178 professionals from the following organizations: * 46 utility officials * 39 federal agency representatives * 11 national laboratory representatives * 82 representatives from energy-related organizations

298

RtS>-l-2437 Utilization of the Isotoplc Composition of  

E-Print Network [OSTI]

131+Xe132. This conversion is of importance in the calculation of the total Xe generation duringRtS«>-l»-2437 3*- if, -. Utilization of the Isotoplc Composition of Xe and Kr in Fission Gas 4* #12;RIS?-M-2437 UTILIZATION OF THE ISOTOPIC COMPOSITION OF Xe AND Kr IN FISSION GAS RELEASE

299

Gas Companies Program (Tennessee) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Companies Program (Tennessee) Gas Companies Program (Tennessee) Gas Companies Program (Tennessee) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Regulatory Authority The Gas Companies program is a set of rules that encourage the development of the natural gas industry in Tennessee. They empower gas companies to lay piped and extend conductors through the streets, lanes and alleys, of any town, city or village, as to produce the least possible inconvenience and to take up pavements and sidewalks provided that they shall repair the same

300

Liquefied Natural Gas (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Liquefied Natural Gas (Iowa) Liquefied Natural Gas (Iowa) Liquefied Natural Gas (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Public Safety This document adopts the standards promulgated by the National Fire Protection Association as rules for the transportation, storage, handling,

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Coal Utilization Science Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

302

utilities | OpenEI  

Open Energy Info (EERE)

utilities utilities Dataset Summary Description Datasets are for the US electricity grid system interconnect regions (ASCC, FRCC, HICC, MRO, NPCC, RFC, SERC, SPP, TRE, WECC) for 2008. The data is provided in life cycle inventory (LCI) forms (both xls and xml). A module report and a detailed spreadsheet are also included. Source US Life Cycle Inventory Database Date Released May 01st, 2011 (3 years ago) Date Updated Unknown Keywords ASCC FRCC HICC interconnect region LCI life cycle inventory MRO NPCC RFC SERC SPP TRE unit process US utilities WECC Data application/zip icon interconnect_lci_datasets_2008.zip (zip, 6.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

303

Natural Gas Conservation and Ratemaking Efficiency Act (Virginia)  

Broader source: Energy.gov [DOE]

This Act applies to any investor-owned public service company engaged in the business of furnishing natural gas service to the public. The Act provides financial incentives to natural gas utilities...

304

Bioenergy recovery from landfill gas: A case study in China  

Science Journals Connector (OSTI)

Landfill gas (LFG) utilization which means a synergy...3/h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of...

Wei Wang; Yuxiang Luo; Zhou Deng

2009-03-01T23:59:59.000Z

305

Philadelphia Gas Works: Whos on First?  

Broader source: Energy.gov [DOE]

Presentationgiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingabout the Philadelphia Gas Works (PGW) and its federal projects.

306

Robust Offshore Networks for Oil and Gas Facilities :.  

E-Print Network [OSTI]

??Offshore Communication Networks utilize multiple of communication technologies to eradicate any possibilities of failures, when the network is operational. Offshore Oil and Gas platforms and (more)

Maheshwari, D.

2010-01-01T23:59:59.000Z

307

Public Service Commission and Natural Gas Safety Standards (Missouri)  

Broader source: Energy.gov [DOE]

This legislation establishes the state Public Service Commission, which has regulatory authority over the electric, gas, water, and telecommunications utilities. Section 386.572 of this legislation...

308

Tapping Landfill Gas to Provide Significant Energy Savings and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Two Large Landfill Projects BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The...

309

Factsheet: An Initiative to Help Modernize Natural Gas Transmission...  

Broader source: Energy.gov (indexed) [DOE]

construction and utility workers to meet the growing demand for employees to replace and repair existing distribution pipeline systems. The Interstate Natural Gas Association of...

310

Utility View of Risk Assessment  

E-Print Network [OSTI]

This paper will address a utility perspective in regard to risk assessment, reliability, and impact on the utility system. Discussions will also include the critical issues for utilities when contracting for energy and capacity from cogenerators...

Bickham, J.

311

Innovative Utility Pricing for Industry  

E-Print Network [OSTI]

INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic... structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to in dustry. Electric utilities face increased compe tition, both from other utilities...

Ross, J. A.

312

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

31 - 23440 of 28,905 results. 31 - 23440 of 28,905 results. Rebate Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program Interstate Power and Light (Alliant Energy) offers a number of rebates for energy efficiency for Minnesota residential customers a variety of high efficiency heating and cooling measures, including... http://energy.gov/savings/alliant-energy-interstate-power-and-light-gas-residential-energy-efficiency-program Rebate Anaheim Public Utilities- PV Buydown Program '''''This Program is currently closed. Rebate reservation period will reopen in January 2014. The summary below describes the program as it existed for Fiscal Year 2012 - 2013. See the web site... http://energy.gov/savings/anaheim-public-utilities-pv-buydown-program Rebate Avista Utilities (Gas)- Oregon Residential Energy Efficiency Rebate

313

BBEE Public Utility Conference Call  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BBEE Public Utility Conference Call May 19, 2011 - Summary Summer Goodwin, BPA, welcomed public utility representative participants, asked them to introduce themselves, and...

314

Utility Power Plant Construction (Indiana)  

Broader source: Energy.gov [DOE]

This statute requires a certificate of necessity from the Indiana Utility Regulatory Commission for the construction, purchase, or lease of an electricity generation facility by a public utility.

315

Utility spot pricing, California  

E-Print Network [OSTI]

The objective of the present spot pricing study carried out for SCE and PG&E is to develop the concepts which wculd lead to an experimental design for spot pricing in the two utilities. The report suggests a set of experiments ...

Schweppe, Fred C.

1982-01-01T23:59:59.000Z

316

By-Products Utilization  

E-Print Network [OSTI]

was carried out to utilize wood ash in making self- compacting controlled low-strength materials (CLSM), air and Presentation at the Seventh CANMET/ACI International Conference on Recent Advances in Concrete Technology, Las-entrained and non-air- entrained concretes, and bricks/blocks/paving stones. Initial test results indicated

Wisconsin-Milwaukee, University of

317

By-Products Utilization  

E-Print Network [OSTI]

SELF-COMPACTING CONCRETE By Tarun R. Naik, Rudolph N. Kraus, and Yoon-moon Chun Report No. CBU-2004 of Limestone Quarry By-Products for Developing Economical Self-Compacting Concrete Principle Investigator Name. For this proposed project, self-compacting concrete mixtures will be developed for prototype production that utilize

Wisconsin-Milwaukee, University of

318

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization SELF-COMPACTING CONCRETE (SCC) OR SELF- LEVELING CONCRETE (SLC - MILWAUKEE #12;2 SELF-COMPACTING CONCRETE (SCC) OR SELF ­LEVELING CONCRETE (SLC) INTRODUCTION Self-compacting as the concrete which can be placed and compacted into every corner of a form work, purely by means of its self

Wisconsin-Milwaukee, University of

319

INTRODUCTION Ukiah Electric Utility  

E-Print Network [OSTI]

INTRODUCTION Ukiah Electric Utility Renewable Energy Resources Procurement Plan Per Senate Billlx 2 renewable energy resources, including renewable energy credits, as a specified percentage of Ukiah's total,2011 to December 31, 2013, Ukiah shall procure renewable energy resources equivalent to an average of at least

320

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization USE OF CLEAN COAL ASH AS SETTING TIME REGULATOR IN PORTLAND OF WISCONSIN ­ MILWAUKEE #12;2 Use of Clean Coal Ash as Setting Time Regulator in Portland Cement by Zichao Wu as setting time regulator for portland cement production. In this paper a source of clean coal ash (CCA

Wisconsin-Milwaukee, University of

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R #12;1 HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R. Naik, Shiw S. Singh, and Bruce for manufacture of cement-based products using ashes generated from combustion of high-sulfur coals. A clean coal

Wisconsin-Milwaukee, University of

322

By-Products Utilization  

E-Print Network [OSTI]

shrinkage; durability; freezing and thawing; recycling; sludge; wastewater treatment; wood cellulose fibersCenter for By-Products Utilization RECYCLING OF PULP AND PAPER MILL RESIDUALS TO INCREASE FREEZING College of Engineering and Applied Science THE UNIVERSITY OF WISCONSIN ­ MILWAUKEE #12;Recycling of Pulp

Wisconsin-Milwaukee, University of

323

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization GREENER CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH By Tarun R CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH By Tarun R. Naik, Rudolph N. Kraus, Shiw S. Singh, Lori-Lynn C mixtures were developed using blends of wood FA and Class C coal FA. Two levels of blended ash

Wisconsin-Milwaukee, University of

324

By-Products Utilization  

E-Print Network [OSTI]

) coal-ash and by replacing up to 9% of aggregates with wet-collected, low-lime, coarse coal-ash. Cast of coal fly ash, coal bottom ash, and used foundry sand in concrete and cast-concrete productsCenter for By-Products Utilization PROPERTIES OF CAST-CONCRETE PRODUCTS MADE WITH FBC ASH

Wisconsin-Milwaukee, University of

325

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST Report No.CBU-1996-07 July 1996 Presented and Published at the American Coal Ash Association's Twelfth International Coal Ash Use Symposium, Orlando, FL, January 26-30, 1997. Department of Civil Engineering

Wisconsin-Milwaukee, University of

326

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization GREENER CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH By Tarun R OF WISCONSIN­MILWAUKEE #12;1 GREENER CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH Synopsis: This investigation coal FA. Two levels of blended ash of approximately 25% and 35% were used. The effect of source of wood

Wisconsin-Milwaukee, University of

327

Utilities Drive Solar Projects  

Science Journals Connector (OSTI)

The second quarter was the largest ever for utility photovoltaic installations in the U.S. Demand for solar electricity from power companies drove a 45% increase in solar installations compared with the first quarter and a 116% increase from last years ...

MELODY BOMGARDNER

2012-09-16T23:59:59.000Z

328

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization PROPERTIES OF CONCRETE CONTAINING SCRAP TIRE RUBBER in a variety of rubber and plastic products, thermal incineration of waste tires for production of electricity rubber in asphalt mixes, (ii) thermal incineration of worn-out tires for the production of electricity

Wisconsin-Milwaukee, University of

329

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization APPLICATION OF SCRAP TIRE RUBBER IN ASPHALTIC MATERIALS: STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. PRODUCING CRUMB RUBBER MODIFIER (CRM) FROM USED TIRES . . . . . 3 2.1 PRODUCTION OF CRM THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;APPLICATION OF SCRAP TIRE RUBBER IN ASPHALTIC MATERIALS: STATE

Wisconsin-Milwaukee, University of

330

By-Products Utilization  

E-Print Network [OSTI]

currently being produced by Manitowoc Public Utilities. Flowable Materials have up to 1200 psi compressive of water, and consist mostly of ash or similar materials. It is believed that concrete Bricks, Blocks in manufacturing Blended Cements. Soil stabilization or site remediation is another significant potential use

Wisconsin-Milwaukee, University of

331

By-Products Utilization  

E-Print Network [OSTI]

consume all of the ashes currently being produced by Manitowoc Public Utilities. Flowable Materials have little portland cement and a lot of water, and consist mostlyof ash or similar materials. It is believed fly ash in manufacturing Blended Cements. Soil stabilization or site remediation is another

Wisconsin-Milwaukee, University of

332

Utility Grid EV charging  

E-Print Network [OSTI]

Main Utility Grid EV charging PCC Batteries DC Load EV charging Flywheel Interlinking converter PV or large distance interconnected grids, to energy efficient applications in distribution system, energy storage systems and local loads as a local grid, is gaining more interests due to its potential

Chaudhary, Sanjay

333

Natural Gas Transmission Pipeline Siting Act (Florida) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas transmission pipelines. The Act intends to achieve a reasonable balance between the need for the natural

334

Natural Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Sources » Fossil » Natural Gas Energy Sources » Fossil » Natural Gas Natural Gas November 20, 2013 Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. Projects Will Determine Whether methane Hydrates Are an Economically and Environmentally Viable Option for America's Energy Future November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas The Department of Energy announced the conditional authorization for Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC to export liquefied natural gas to countries that do not have a Free Trade Agreement with the U.S. This is the fifth conditional authorization the Department has announced. October 31, 2013 Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project

335

Natural gas monthly, October 1991  

SciTech Connect (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

Not Available

1991-11-05T23:59:59.000Z

336

UTILITY MAXIMISATION AND UTILITY INDIFFERENCE PRICE FOR EXPONENTIAL  

E-Print Network [OSTI]

UTILITY MAXIMISATION AND UTILITY INDIFFERENCE PRICE FOR EXPONENTIAL SEMI-MARTINGALE MODELS WITH RANDOM FACTOR A. Ellanskaya1 and L. Vostrikova2 Abstract. We consider utility maximization problem to the conditional one, given = u, which we solve using dual approach. For HARA utilities we con- sider information

Boyer, Edmond

337

utility | OpenEI Community  

Open Energy Info (EERE)

utility utility Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(2002) Super contributor 11 January, 2013 - 14:21 Swinerton Renewable Energy Awarded Contract to Construct and Operate 250 MWac K Road Moapa Solar Plant Marketwire OpenEI Renewable Energy Solar Swinerton utility Syndicate content 429 Throttled (bot load)

338

By-Products Utilization  

E-Print Network [OSTI]

of coal in conventional and/ or advanced clean coal technology combustors. These include fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) by-products from advanced clean coal technology clean coal technology combustors. Over 60% of the CCBs are generated as fly ash. An estimate

Wisconsin-Milwaukee, University of

339

By-Products Utilization  

E-Print Network [OSTI]

in a combination with a number of fuels including coal, petroleum coke, natural gas, etc. In the mid 1990s, the unit was firing a combination of coal and petroleum coke to generate energy. It has been established;1 PROJECT 1 - COAL COMBUSTION BY-PRODUCTS: CHARACTERIZATION AND USE OPTIONS Introduction An AFBC system

Wisconsin-Milwaukee, University of

340

Gas turbine noise control  

Science Journals Connector (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future and direct combustion of pulverized coal is also a possibility. The primary problem of generally unacceptable noise levels from gas turbine powered equipment affects both community noise and hearing conservation alike. The noise criteria of such plant remain a significant design factor. The paper looks at the technical and historical aspects associated with the noise generation process and examines past present and possible future approaches to the problem of silencing gas turbine units; adequately specifying the acoustical criteria and ratings; evaluates the techniques by which these criteria should be measured; and correlates these with the typical results achieved in the field.

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

UCSC EMPLOYEE HOUSING APARTMENTS APPLICATION Rental rates include: rent, refuse collection, common area utilities, groundskeeping services, and repairs and  

E-Print Network [OSTI]

area utilities, groundskeeping services, and repairs and maintenance of the Laureate Court complex. Tenants pay for their own utilities (i.e., electricity, gas, water, telephone and cable services). A $750

California at Santa Cruz, University of

342

Cedar Falls Utilities - Residential New Construction Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Cedar Falls Utilities - Residential New Construction Program Cedar Falls Utilities - Residential New Construction Program Cedar Falls Utilities - Residential New Construction Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Iowa Program Type Utility Rebate Program Rebate Amount 25% electric rate discount for 4 years (if home is heated with natural gas) 25% electric rate discount for 2 years (if home is heated with electricity) Provider Cedar Falls Utilities Cedar Falls Utilities offers incentives to residential customers who construct new energy efficient homes. A rate discount of 25% is available to customers who meet the 5 Star Home Program criteria for new home

343

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

344

Georgia Underground Gas Storage Act of 1972 (Georgia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and provide for more economical distribution of gas to the domestic, commercial, and industrial consumers of the State. Any gas utility desiring to utilize or operate an

345

Colorado Springs Utilities - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Colorado Springs Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Windows, Doors, & Skylights Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Maximum Rebate Visit website for details Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Duct Sealing: 40% of job up to $100 Dishwasher: $50 Gas Boiler: $250 Gas Furnace: $250 Gas Water Heater: $50 Insulation and Air Sealing: 40% of job up to $200 Irrigation: varies Refrigerator: $50 + $50 recycle bonus Toilets: up to $75 (max 2) Windows: $4.67/sq ft, up to $200 Provider Residential Efficiency Incentives Colorado Springs Utilities offers a variety of energy and water efficiency

346

Financing of Substitute Natural Gas Costs (Indiana)  

Broader source: Energy.gov [DOE]

This statute encourages the development of local coal gasification facilities to produce substitute natural gas, calls on state energy utilities to enter into long-term contracts for the purchase...

347

The Compelling Case for Natural Gas Vehicles  

Broader source: Energy.gov [DOE]

Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers the natural gas vehicle (NGV) market, the benefits of NGVs, the growing selection of NGVs, and more.

348

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",2119,48 "Electric Utilities",1946,39 "IPP & CHP",172,50 "Net Generation (megawatthours)",6946419,49 "Electric...

349

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",23485,17 "Electric Utilities",17148,17 "IPP & CHP",6337,17 "Net Generation (megawatthours)",77896588,19 "Electric...

350

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",14321,31 "Electric Utilities",991,42 "IPP & CHP",13330,7 "Net Generation (megawatthours)",36198121,36 "Electric...

351

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",38488,7 "Electric Utilities",29293,3 "IPP & CHP",9195,10 "Net Generation (megawatthours)",122306364,9 "Electric...

352

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",1781,49 "Electric Utilities",8,50 "IPP & CHP",1773,38 "Net Generation (megawatthours)",8309036,48 "Electric...

353

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",32547,9 "Electric Utilities",23615,7 "IPP & CHP",8933,11 "Net Generation (megawatthours)",152878688,6 "Electric...

354

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",39520,6 "Electric Utilities",10739,26 "IPP & CHP",28781,5 "Net Generation (megawatthours)",135768251,7 "Electric...

355

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",10476,34 "Electric Utilities",7807,30 "IPP & CHP",2669,34 "Net Generation (megawatthours)",35173263,39 "Electric...

356

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",59139,3 "Electric Utilities",51373,1 "IPP & CHP",7766,15 "Net Generation (megawatthours)",221096136,3 "Electric...

357

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",71329,2 "Electric Utilities",30294,2 "IPP & CHP",41035,3 "Net Generation (megawatthours)",199518567,4 "Electric...

358

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",3357,46 "Electric Utilities",98,47 "IPP & CHP",3259,29 "Net Generation (megawatthours)",8633694,47 "Electric...

359

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",109568,1 "Electric Utilities",28463,4 "IPP & CHP",81106,1 "Net Generation (megawatthours)",429812510,1 "Electric...

360

STEP Utility Data Release Form  

Broader source: Energy.gov [DOE]

STEP Utility Data Release Form, from the Tool Kit Framework: Small Town University Energy Program (STEP).

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

pine (mail utility info)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pine (mail utility info) pine (mail utility info) Basics, FAQ, etc, On our UNIX machines, module load pine The line module load pine should ALSO be in the file ~/.rc/user_modules (The pine module also includes pico) pine usage with IMAP4 (UNIX) Moving pine email files into IMAP4 LBNL UNIX info on pine links to Pine Information Center Pine 4.2.1/Solaris: Forwarding as attachment; the following procedure has proved successful for at least some users: Check the option "enable-full-header-cmd". To get to this option, 1. M (Main Menu) 2. S (Setup) "Choose a setup task from the menu below :" 3. C (Configure) 4. Scroll down to "Advanced Command Preferences", and press "X" to set "enable-full-header-cmd". It looks like this: ================================================================

362

PDSF Utilization Graphs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphs Graphs Utilization Graphs This page contains a series of graphs that use data from the PDSF batch scheduler (SGE) to show the utilization of the cluster over the past 24 hours. The graphs were generated with RRDTool and are updated approximately every 15 minutes. This graph shows the aggregate cluster CPU availablity and usage according to sgeload: 24 hour rolling usage graph (click to see long term averages) This graph shows the number of jobs being run by each group: Rolling 24 Running Jobs by Group (click to see long term averages) This is the same graph as above weighted by the clockspeed (GHz) of the node used for the job: Rolling 24 Running Jobs by Group (click to see long term averages) This graph show the number of pending jobs by group: Rolling 24 Pending Jobs

363

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization USE OF FBC ASH AND PONDED COAL-ASH IN READY-MIXED CONCRETE #12;Naik, Kraus, Chun, & Botha Use of FBC ash and Ponded Coal-Ash in Ready-Mixed Concrete 1 MS# M8-60. FINAL. October 2005. Use of FBC Ash and Ponded Coal-Ash in Ready-Mixed Concrete by Tarun R. Naik

Wisconsin-Milwaukee, University of

364

Physical Plant Utility Department  

E-Print Network [OSTI]

electrical distribution systems a 13.8 kV grounded wye Primary Selective system and a 2.4 kV ungrounded delta open loop system. The campus takes service at 13.8 kV from the utility via two paralleled feeds on the Westside of campus and at this time generates 10MWs at 13.8 kV with future additional generation planned

Massachusetts at Amherst, University of

365

Utility Sector Leaders Make Firm Commitment to Energy Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency July 31, 2006 - 9:30am Addthis (San Francisco, Calif. - July 31, 2006) More than 80 energy, environmental and other organizations announced commitments and public statements in support of the National Action Plan for Energy Efficiency (NAPEE), released today, which provides energy consumers and providers information on policies and techniques to save money as well as protect the environment. By adopting the plan's recommendations on low-cost, under-used energy efficiency, Americans could save hundreds of billions of dollars on their gas and electric utility bills, cut greenhouse gas emissions, and lower the costs for energy and pollution controls.

366

Utility Partnerships Program Overview (Brochure), Federal Energy Management Program (FEMP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

agencies in meeting energy efficiency, agencies in meeting energy efficiency, renewable energy, and water conser- vation goals. Laws and Regulations The following legislative and execu- tive authorities support contracting for utility services: * Energy Policy Act (EPAct) of 1992 (42 U.S.C. Section 8256): Agencies are authorized and encouraged to participate in programs to increase energy efficiency and water con- servation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities. Agencies may accept any financial incentive, good, or service generally available from any utility. * 10 U.S.C. Section 2913: Outlines energy savings contracts and related activities, shared energy savings contracts, participation in gas or

367

Federal Utility Partnership Working Group November 2007 Meeting Report  

Broader source: Energy.gov (indexed) [DOE]

FEDERAL UTILITY PARTNERSHIP WORKING GROUP MEETING NOVEMBER 28-29, 2007 SAN DIEGO, CALIFORNIA HOSTED BY: SAN DIEGO GAS AND ELECTRIC INTRODUCTION The Federal Utility Partnership Working Group (FUPWG) held its Fall 2007 meeting in San Diego, California on November 28-29. The meeting was hosted by San Diego Gas and Electric (SDG&E) and was held at the Holiday Inn on the Bay. A total of 123 individuals attended the meeting, including at least 11 new members. Organizations represented included 48 utility officials, 6 Federal Energy Management Program (FEMP) representatives, 40 federal agency representatives, 8 national laboratory representatives, and 21 representatives from energy-related organizations. The working group is a joint effort between FEMP and the utility industry to stimulate the exchange of information among

368

Utility Partnerships Program Overview (Brochure), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

agencies in meeting energy efficiency, agencies in meeting energy efficiency, renewable energy, and water conser- vation goals. Laws and Regulations The following legislative and execu- tive authorities support contracting for utility services: * Energy Policy Act (EPAct) of 1992 (42 U.S.C. Section 8256): Agencies are authorized and encouraged to participate in programs to increase energy efficiency and water con- servation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities. Agencies may accept any financial incentive, good, or service generally available from any utility. * 10 U.S.C. Section 2913: Outlines energy savings contracts and related activities, shared energy savings contracts, participation in gas or

369

Natural Gas Regulations (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Regulations (Kentucky) Natural Gas Regulations (Kentucky) Natural Gas Regulations (Kentucky) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Department For Natural Resources Kentucky Administrative Regulation title 805 promulgates the rules and regulations pertaining to natural gas production in Kentucky. In addition to KAR title 405, chapter 30, which pertains to any oil shale operation, these regulations govern natural gas operations throughout the state. The following information is found in KAR title 404 chapter 30: Oil shale operations or related activity require a valid permit covering

370

Energy Incentive Programs, Idaho | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Idaho Idaho Energy Incentive Programs, Idaho October 29, 2013 - 11:29am Addthis Updated December 2012 What public-purpose-funded energy efficiency programs are available in my state? Idaho's Conservation Program Funding Charge of 1.5% of customer electricity bills is collected and administered by Idaho's electric utilities (see below), following a 2002 ruling by the Idaho Public Utilities Commission. Idaho budgeted over $50million in 2011 to promote energy efficiency and load management in the state through programs administered by Idaho utilities and the Northwest Energy Efficiency Alliance (NEEA). What utility energy efficiency programs are available to me? Avista Utilities offers Energy Efficiency Incentives for a broad array of electric and gas efficiency measures and equipment, in addition to

371

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

372

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

373

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

374

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

375

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

376

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

377

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

378

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

379

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

380

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

382

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

383

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

384

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

385

Quantifying the value that energy efficiency and renewable energy provide as a hedge against volatile natural gas prices  

E-Print Network [OSTI]

Technology. Stoffel, F.C. (Xcel Energy). 2001. In the Matternatural gas utilities, Xcel Energy noted that the cost of

Bolinger, Mark; Wiser, Ryan; Bachrach, Devra; Golove, William

2002-01-01T23:59:59.000Z

386

Optimal operation of an ethylene plant utility system  

Science Journals Connector (OSTI)

The algorithm developed allows the selection of the pressure and temperature conditions of the high, medium and low pressure vapor headers and the deaerator pressure of an ethylene plant utility system. The utility system optimization can be done simultaneously with the ethylene plant optimization including four decision variables: Conversion and dilution ratio of the pyrolysis reactor, cracked-gas compressor inlet pressure and demethanizer column pressure. Their values are calculated, solving a Nonlinear Programming subproblem where the modeling equations of the utility system and the ethylene plant are considered. A rigorous simulation of the utility system is carried out using a water property prediction package. There is a strong integration between the ethylene plant and the utility system due to the generation of high steam pressure in the pyrolysis reactor or the use of residual gas as fuel gas in the boilers. The sensitivity of the profit function with respect to the ethylene and utility plant optimization variables is shown for different ethylene prices optimal solutions.

N. Petracci; A.M. Eliceche; A. Bandoni; E.A. Brignole

1993-01-01T23:59:59.000Z

387

OpenEI - US utilities  

Open Energy Info (EERE)

Electric Utility Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (Utilities" title="http://en.openei.org/wiki/Gateway:Utilities">http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

388

Time functions as utilities  

E-Print Network [OSTI]

Every time function on spacetime gives a (continuous) total preordering of the spacetime events which respects the notion of causal precedence. The problem of the existence of a (semi-)time function on spacetime and the problem of recovering the causal structure starting from the set of time functions are studied. It is pointed out that these problems have an analog in the field of microeconomics known as utility theory. In a chronological spacetime the semi-time functions correspond to the utilities for the chronological relation, while in a K-causal (stably causal) spacetime the time functions correspond to the utilities for the K^+ relation (Seifert's relation). By exploiting this analogy, we are able to import some mathematical results, most notably Peleg's and Levin's theorems, to the spacetime framework. As a consequence, we prove that a K-causal (i.e. stably causal) spacetime admits a time function and that the time or temporal functions can be used to recover the K^+ (or Seifert) relation which indeed turns out to be the intersection of the time or temporal orderings. This result tells us in which circumstances it is possible to recover the chronological or causal relation starting from the set of time or temporal functions allowed by the spacetime. Moreover, it is proved that a chronological spacetime in which the closure of the causal relation is transitive (for instance a reflective spacetime) admits a semi-time function. Along the way a new proof avoiding smoothing techniques is given that the existence of a time function implies stable causality, and a new short proof of the equivalence between K-causality and stable causality is given which takes advantage of Levin's theorem and smoothing techniques.

E. Minguzzi

2009-09-04T23:59:59.000Z

389

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

390

TRW advanced slagging coal combustor utility demonstration  

SciTech Connect (OSTI)

The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. The TRW-Utility Demonstration Unit (UDU) is responsible for the implementation of program policies and overall direction of the project. The following projects will be carried out: process and design development of clean coal technology CCT-1 the development and operation of the entrained coal combustor will enable the boiler to burn low and medium sulfur coal while meeting all the Federal/State emission requirements; demonstrate sulfur dioxide emissions control by pulverized limestone injection into the entrained coal combustor system.

Not Available

1990-01-01T23:59:59.000Z

391

Certification of flow monitors for utility boilers  

SciTech Connect (OSTI)

The use of CEMS for measuring opacity, SO{sub 2}, NO{sub x}, CO{sub 2}, and O{sub 2} concentration was well proven prior to implementing the Part 75 CEMS program. However, the use of continuous flue gas flow monitoring devices is a relatively new instrumental technique. Limited operating data for flow monitors were available and little or no certification relative accuracy data were available prior to the Summer of 1993. However, because of the Part 75 requirements, utility companies contracted with CEMS vendors to install, start-up and certify flow monitors on Phase 1 and Phase 2 units. This paper presents the certification history of three different types of flow monitors (ultrasonic, pressure differential ({Delta}p) and thermal) installed at various utilities in the US. The data and experience was obtained from approximately 100 Phase 1 CEMS units and 200 Phase 1 CEMS units.

Bensink, J.; Beachler, D.; Joseph, J.

1995-12-31T23:59:59.000Z

392

Michigan utilities begin implementation of cogeneration programs  

SciTech Connect (OSTI)

Michigan's two major utilities, Consumers Power Corporation and Detroit Edison, are beginning to implement cogeneration and small power programs, although their approaches differ. Consumers Power is entering agreements to purchase cogenerated power at reasonable buyback rates to meet near-future capacity needs, while Detroit Edison is offering rate breaks to keep customers on the grid with an on-site cogeneration alternative rider because of excess capacity. Once its excess capacity is absorbed, Detroit Edison will encourage pursue the approach of Consumers Power. The latter recently filed to convert a Midland cancelled nuclear plant into a gas-fired cogeneration facility. The author reviews complications in this and other contracts and utility commission decisions. 2 tables.

Not Available

1987-02-01T23:59:59.000Z

393

Carrots for Utilities: Providing Financial Returns for Utility Investments  

Open Energy Info (EERE)

Carrots for Utilities: Providing Financial Returns for Utility Investments Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Focus Area: Energy Efficiency Topics: Socio-Economic Website: www.aceee.org/research-report/u111 Equivalent URI: cleanenergysolutions.org/content/carrots-utilities-providing-financial Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Cost Recovery/Allocation This report examines state experiences with shareholder financial incentives that encourage investor-owned utilities to provide energy

394

Federal Utility Partnership Working Group- Utility Interconnection Panel  

Broader source: Energy.gov [DOE]

Presentationgiven at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

395

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network [OSTI]

Pressure on the Steam Gasification of Biomass," Departmentof Energy, Catalytic Steam Gasification of Biomass, 11 AprilII. DISCUSSION III. GASIFICATION/LIQUEFACTION DESIGN BASIS

Figueroa, C.

2012-01-01T23:59:59.000Z

396

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network [OSTI]

Biomass from feed hopper Feed distributor cone with ultrasonic level indication P~~~ ~at Pyrolysis

Figueroa, C.

2012-01-01T23:59:59.000Z

397

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network [OSTI]

the Symposium on Energy from Biomass and Wastes, August 14,Gasification of Biomass," Department of Energy Contract No.of Biomass Gasification," Department of Energy Contract No.

Figueroa, C.

2012-01-01T23:59:59.000Z

398

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network [OSTI]

Bed Solids Waste Gasifier," Forest Products Journal, Vol.BASIS IV. SUMMARY APPENDIX A - Gasifier Liquefaction Design1 - Modified Lurgi Gasifier with Liquefaction Reactor 2 -

Figueroa, C.

2012-01-01T23:59:59.000Z

399

Utility Partnership Webinar Series: State Mandates for Utility Energy Efficiency  

Broader source: Energy.gov [DOE]

This webinar highlights state mandates from throughout the country, and how theyve influenced utility industrial energy efficiency programs.

400

STAFF REPORT 2012 NATURAL GAS RESEARCH,  

E-Print Network [OSTI]

STAFF REPORT 2012 NATURAL GAS RESEARCH, DEVELOPMENT, AND DEMONSTRATION REPORT CALIFORNIA Public Utilities Commission to impose a surcharge on all natural gas consumed in California to fund Technologies and Advanced Generation · EnergyRelated Transportation For more information about the Energy

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Passive gas separator and accumulator device  

DOE Patents [OSTI]

A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

Choe, H.; Fallas, T.T.

1994-08-02T23:59:59.000Z

402

Extraction Utility Design Specification  

Broader source: Energy.gov (indexed) [DOE]

Extraction Utility Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All Eric Morgan, Dekker, Ltd. Initial Draft Document January 19, 2010 1.1 All Igor Pedan, Dekker, Ltd. Document update with EM team review notes January 20, 2010 1.2 2.1.1 EM Project Team Document Review January 27, 2010 1.3 All Bruce Bartells Final Draft Review May 10, 2010 1.4.1 2.8 Igor Pedan, Dekker, Ltd. Section Update May 14, 2010 1.4.2 2.3.1 Igor Pedan, Dekker, Ltd. System Tables Added May 17, 2010 1.4.3 2.3 Igor Pedan, Dekker, Ltd. Enhancements Update June 29, 2010 1.5 All Igor Pedan, Dekker, Ltd. Revised for Version 8.0.20100628 July 14, 2010 1.5.1 2.8 Igor Pedan,

403

" Federal Utility Energy Service Contracts"  

Broader source: Energy.gov (indexed) [DOE]

Federal Utility Energy Service Contracts" Federal Utility Energy Service Contracts" "*KEY ON SHEET 2*" "Agency","Facility","Utility","Contract Type","Contract Term","Task Order/Delivery Order","Award Date","Completion Date","Energy Conservation Measures Implemented In Project (Enter as many as applicable - See Key)","Project's Capital Cost ($)","Percent of Total Cost 3rd Party Financed","Rebate Amount ($)","Estimated Annual Cost Savings ($)","Estimated Annual kWh Saved","Estimated Annual KW Saved","Estimated Annual Natural Gas savings (please specify cubic feet, therms or MMBtu)","Estimated Annual Oil savings (gallons)","Estimated Annual water savings (gallons)"

404

Enhancing landfill gas recovery  

Science Journals Connector (OSTI)

The landfilling of municipal solid waste (MSW) may cause potential environmental impacts like global warming (GW), soil contaminations, and groundwater pollution. The degradation of MSW in anaerobic circumstances generates methane emissions, and can hence contribute the GW. As the GW is nowadays considered as one of the most serious environmental threats, the mitigation of methane emissions should obviously be aimed at on every landfill site where methane generation occurs. In this study, the treatment and utilization options for the generated LFG at case landfills which are located next to each other are examined. The yearly GHG emission balances are estimated for three different gas management scenarios. The first scenario is the combined heat and power (CHP) production with a gas engine. The second scenario is the combination of heat generation for the asphalt production process in the summer and district heat production by a water boiler in the winter. The third scenario is the LFG upgrading to biomethane. The estimation results illustrate that the LFG collection efficiency affects strongly on the magnitudes of GHG emissions. According to the results, the CHP production gives the highest GHG emission savings and is hence recommended as a gas utilization option for case landfills. Furthermore, aspects related to the case landfills' extraction are discussed.

Antti Niskanen; Hanna Vrri; Jouni Havukainen; Ville Uusitalo; Mika Horttanainen

2013-01-01T23:59:59.000Z

405

How regulators should use natural gas price forecasts  

SciTech Connect (OSTI)

Natural gas prices are critical to a range of regulatory decisions covering both electric and gas utilities. Natural gas prices are often a crucial variable in electric generation capacity planning and in the benefit-cost relationship for energy-efficiency programs. High natural gas prices can make coal generation the most economical new source, while low prices can make natural gas generation the most economical. (author)

Costello, Ken

2010-08-15T23:59:59.000Z

406

Oil and Gas Conservation (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conservation (Nebraska) Conservation (Nebraska) Oil and Gas Conservation (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This section establishes the state's interest in encouraging the development, production, and utilization of natural gas and oil resources in a manner which will prevent waste and lead to the greatest ultimate

407

Village of Wilcox, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wilcox, Nebraska (Utility Company) Wilcox, Nebraska (Utility Company) Jump to: navigation, search Name Village of Wilcox Place Nebraska Utility Id 20641 Utility Location Yes Ownership M NERC Location MRO Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Large Commercial Commercial Commercial- Small Electric Users Commercial Demand Metered Commercial Residential- Electric Only Residential Residential-Gas Heat Residential Average Rates Residential: $0.0716/kWh Commercial: $0.0988/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

408

City of Memphis, Tennessee (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Memphis, Tennessee (Utility Company) Memphis, Tennessee (Utility Company) Jump to: navigation, search Name Memphis City of Place Memphis, Tennessee Utility Id 12293 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Memphis Light, Gas and Water Division Smart Grid Project was awarded $5,063,469 Recovery Act Funding with a total project value of $13,112,363. Utility Rate Schedules Grid-background.png DRAINAGE PUMPING STATION RATE Commercial GENERAL POWER RATE - PART B Industrial GENERAL POWER RATE - PART C Industrial

409

City of Monroe, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Monroe, Georgia (Utility Company) Monroe, Georgia (Utility Company) (Redirected from Monroe Water, Light & Gas Comm) Jump to: navigation, search Name City of Monroe Place Georgia Utility Id 12800 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL DEMAND RATE Commercial COMMERCIAL NON DEMAND RATE Commercial Church Service Commercial City Electric Service Commercial Industrial Service Industrial RESIDENTIAL RATE Residential SECURITY LIGHT - 1000 Watt MH Lighting SECURITY LIGHT - 400 Watt HPS Lighting

410

Optimizing Consumer Utility Systems to Drive Engagement and Action  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimizing Consumer Utility Systems to Drive Engagement and Action Optimizing Consumer Utility Systems to Drive Engagement and Action Speaker(s): Stephen Malloy V. Rory Jones Date: November 15, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Christopher Payne This presentation reviews a new software tool that recommends specific actions for homeowners and others to undertake to optimize their utility system configuration and operation. The tool, the "Utility System Optimizer" (USO), may be configured to optimize across all utilities (electricity, gas, water - and other fuels as propane, oil and wood) to meet objectives that are defined by the owner/operator (homeowner, retailer, etc.). Such objectives may be to maximize net wealth over time, to minimize carbon footprint for the best economics, to maximize health

411

Utility spot pricing study : Wisconsin  

E-Print Network [OSTI]

Spot pricing covers a range of electric utility pricing structures which relate the marginal costs of electric generation to the prices seen by utility customers. At the shortest time frames prices change every five ...

Caramanis, Michael C.

1982-01-01T23:59:59.000Z

412

Cogeneration Assessment Methodology for Utilities  

E-Print Network [OSTI]

A methodology is presented that enables electric utilities to assess the cogeneration potential among industrial, commercial, and institutional customers within the utility's service area. The methodology includes a survey design, analytic...

Sedlik, B.

1983-01-01T23:59:59.000Z

413

Underground Gas Storage Reservoirs (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Storage Reservoirs (West Virginia) Gas Storage Reservoirs (West Virginia) Underground Gas Storage Reservoirs (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider West Virginia Department of Commerce Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas

414

Transportation of Natural Gas and Petroleum (Nebraska) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Transportation of Natural Gas and Petroleum (Nebraska) Transportation of Natural Gas and Petroleum (Nebraska) Transportation of Natural Gas and Petroleum (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Oil and Gas Conservation Commission This statute enables and regulates the exercise of eminent domain by persons, companies, corporations, or associations transporting crude oil,

415

Philadelphia Gas Works Looking for a challenge and ready to power up your career?  

E-Print Network [OSTI]

Philadelphia Gas Works Looking for a challenge and ready to power up your career? The Philadelphia Gas Works (PGW) is the largest municipally-owned gas utility in the nation, supplying gas service into the large, modern facility that exists today. As one of the nation's leading natural gas providers, PGW

Plotkin, Joshua B.

416

Utilization FLY ASH INFORMATION FROM  

E-Print Network [OSTI]

, quarries, and pits (34%), 6% for temporary stockpile, and 7% landfilled. Fly Ash In Europe, the utilization

Wisconsin-Milwaukee, University of

417

Greenhouse Gas Emissions (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(Minnesota) (Minnesota) Greenhouse Gas Emissions (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Climate Policies This statute sets goals for the reduction of statewide greenhouse gas emissions by at least 15 percent by 2015, 30 percent by 2025, and 80

418

Extraction Utility Design Specification  

Broader source: Energy.gov (indexed) [DOE]

Extraction Extraction Utility Design Specification May 13, 2013 Document Version 1.10 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All Eric Morgan, Dekker, Ltd. Initial Draft Document January 19, 2010 1.1 All Igor Pedan, Dekker, Ltd. Document update with EM team review notes January 20, 2010 1.2 2.1.1 EM Project Team Document Review January 27, 2010 1.3 All Bruce Bartells Final Draft Review May 10, 2010 1.4.1 2.8 Igor Pedan, Dekker, Ltd. Section Update May 14, 2010 1.4.2 2.3.1 Igor Pedan, Dekker, Ltd. System Tables Added May 17, 2010 1.4.3 2.3 Igor Pedan, Dekker, Ltd. Enhancements Update June 29, 2010 1.5 All Igor Pedan, Dekker, Ltd. Revised for Version

419

Utility Data Collection Service  

Broader source: Energy.gov (indexed) [DOE]

Data Collection Service Data Collection Service Federal-Utility Partnership Working Group 4 May 2006 Paul Kelley, Chief of Operations, 78 th CES, Robins AFB David Dykes, Industrial Segment Mgr, Federal, GPC Topics  Background  Commodities Metered  Data Collection  Cost  Results Background  Robins AFB (RAFB) needed to:  Control electricity usage and considered Demand Control  Track and bill base tenants for energy usage  Metering Project Originated in 1993  $$ requirements limited interest  Developed criteria for available $$  Energy Policy Act 2005:  All facilities sub-metered by 2012  $$ no longer restricts metering project Metering Criteria prior to EPACT 2005  All New Construction - (per Air Force Instructions)

420

CONSORTIUM FOR CLEAN COAL UTILIZATION  

E-Print Network [OSTI]

CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

Subramanian, Venkat

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Public Utilities Commission Consumer Programs  

E-Print Network [OSTI]

California Public Utilities Commission Consumer Programs Water Programs The CPUC regulates company's service territory and have varying income limits. Check with your water utility to find out plans that can help you man- age your bills. Contact the utility directly, using the customer service

422

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (million kWh) (million kWh) (million kWh) (billion cu ft) (billion cu ft)

423

Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: U.S. Dollars per Physical Units. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (kWh) (kWh) (kWh) (1000 cu ft) (1000 cu ft) (1000 cu ft) (million Btu)

424

Passive gas separator and accumulator device  

DOE Patents [OSTI]

A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

Choe, Hwang (Saratoga, CA); Fallas, Thomas T. (Berkeley, CA)

1994-01-01T23:59:59.000Z

425

National Utility Rate Database: Preprint  

SciTech Connect (OSTI)

When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

Ong, S.; McKeel, R.

2012-08-01T23:59:59.000Z

426

Gas and Oil (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Oil (Maryland) and Oil (Maryland) Gas and Oil (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the Department is required prior to the drilling of a well for exploration, production, or underground storage of oil or gas. An environmental assessment must be submitted along with the permit application, and the Department may deny permits that propose drilling which may pose a substantial threat to public safety or

427

Pelican Utility | Open Energy Information  

Open Energy Info (EERE)

Pelican Utility Pelican Utility Jump to: navigation, search Name Pelican Utility Place Alaska Utility Id 29297 Utility Location Yes Ownership I NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.4450/kWh Commercial: $0.4450/kWh Industrial: $0.3890/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Pelican_Utility&oldid=411348

428

Flora Utilities | Open Energy Information  

Open Energy Info (EERE)

Flora Utilities Flora Utilities Jump to: navigation, search Name Flora Utilities Place Indiana Utility Id 6425 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Municipal Rate Commercial Power Acct. Rate Commercial Residential Rate Residential Average Rates Residential: $0.0958/kWh Commercial: $0.0893/kWh Industrial: $0.0805/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Flora_Utilities&oldid=410706

429

US utilities | OpenEI  

Open Energy Info (EERE)

6489 6489 Varnish cache server US utilities Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

430

Utility Connection | Open Energy Information  

Open Energy Info (EERE)

Utility Connection Utility Connection Jump to: navigation, search Return to Connections to Energy Use Data and Information Page Please tell us how connected you are to your customers Thank you for taking the time to complete this questionnaire! As you know, utility data is very important and, if used correctly, can educate consumers and change their behavior to save money and energy. First select your utility company, then provide us a little information about yourself. Only one person from each utility can answer these questions and the results from your input will be shown on the Utility Data Accessibility Map. If the questionnaire has already been completed for your utility and you think the answers need to be changed, or if you are having trouble accessing your questionnaire, please contact the .

431

City of Palo Alto Utilities - New Construction Commercial Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Commercial Rebate Commercial Rebate Program City of Palo Alto Utilities - New Construction Commercial Rebate Program < Back Eligibility Commercial Construction Industrial Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Commercial Buildings: $150,000 City/School Buildings: $200,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Electric Rebates 20% - 30% More Efficient Than Title 24: $0.20 - $0.30/kWh saved Greater than 30% More Efficient Than Title 24: $0.30/kWh saved Gas Rebates Greater than 20% more Efficient Than Title 24: $1/therm saved Systems Approach Electric: $0.10/kWh saved Gas: $1/therm saved Provider Utility Marketing Services

432

Survey of Western U.S. electric utility resource plans  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Survey Survey of Western U.S. electric utility resource plans Jordan Wilkerson a,n , Peter Larsen a,b , Galen Barbose b a Management Science and Engineering Department, School of Engineering, Stanford University, Stanford, CA 94305, United States b Energy Analysis and Environmental Impacts Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90-4000, Berkeley, CA 94720, United States H I G H L I G H T S  Anticipated power plant retirements are split between coal and natural gas.  By 2030, natural gas-fired generation represents 60% of new capacity followed by wind (15%), solar (7%) and hydropower (7%).  Utilities anticipate most new solar capacity to come online before 2020 with significant growth in wind capacity after 2020.  Utilities focus their uncertainty analyses on future demand, fuel prices,

433

Natural gas pipeline technology overview.  

SciTech Connect (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

434

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) |  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Reduction Projects Grant Program (Delaware) Greenhouse Gas Reduction Projects Grant Program (Delaware) Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source Greenhouse Gas Reduction Projects Fund State Delaware Program Type Grant Program Provider Delaware Department of Natural Resources and Environmental Control The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a Regional Greenhouse Gas

435

Interstate Oil and Gas Conservation Compact (Multiple States) | Department  

Broader source: Energy.gov (indexed) [DOE]

Interstate Oil and Gas Conservation Compact (Multiple States) Interstate Oil and Gas Conservation Compact (Multiple States) Interstate Oil and Gas Conservation Compact (Multiple States) < Back Eligibility Commercial Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Alabama Program Type Environmental Regulations Provider Interstate Oil and Gas Compact Commission The Interstate Oil and Gas Compact Commission assists member states efficiently maximize oil and natural gas resources through sound regulatory practices while protecting the nation's health, safety and the environment. The Commission serves as the collective voice of member governors on oil and gas issues and advocates states' rights to govern petroleum resources within their borders. The Commission formed the Geological CO2 Sequestration Task Force, which

436

Natural Gas Regulation - Delaware Public Service Commission (Delaware) |  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Regulation - Delaware Public Service Commission Natural Gas Regulation - Delaware Public Service Commission (Delaware) Natural Gas Regulation - Delaware Public Service Commission (Delaware) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Fuel Distributor Program Info State Delaware Program Type Generating Facility Rate-Making Provider Delaware Public Service Commission The Delaware Public Service Commission regulates only the distribution of natural gas to Delaware consumers. The delivery and administrative costs associated with natural gas distribution are determined in base rate proceedings before the Commission. The recovery of costs associated with the natural gas used by customers is determined annually as part of fuel adjustment proceedings. As a result of this process, rates for natural gas

437

Interstate Oil and Gas Conservation Compact (Maryland) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Interstate Oil and Gas Conservation Compact (Maryland) Interstate Oil and Gas Conservation Compact (Maryland) Interstate Oil and Gas Conservation Compact (Maryland) < Back Eligibility Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Maryland Program Type Siting and Permitting Provider Interstate Oil and Gas Compact Commission This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states, as well as eight associate states and 10 international affiliates (including seven Canadian provinces). Members participate in the Interstate Oil and Gas Compact

438

Virginia Gas and Oil Act (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Program Info State Virginia Program Type Safety and Operational Guidelines Siting and Permitting Provider Virginia Department of Mines, Minerals, and Energy The Gas and Oil Act addresses the exploration, development, and production of oil and gas resources in the Commonwealth of Virginia. It contains provisions pertaining to wells and well spacing, permits and fees, ownership of coalbed methane gas, and land leases. No county, city, town or other political subdivision of the Commonwealth may impose any condition, or require any other local license, permit, fee or bond to perform any gas,

439

EIS-0467: Hanford Site Natural Gas Pipeline, Richland, WA  

Broader source: Energy.gov [DOE]

DOE announces its intent to prepare an EIS for the Acquisition of a Natural Gas Pipeline and Natural Gas Utility Service at the Hanford Site, Richland, Washington (Natural Gas Pipeline or NGP EIS), and initiate a 30-day public scoping period.

440

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Columbia Gas of Virginia - Home Savings Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Columbia Gas of Virginia - Home Savings Rebate Program Columbia Gas of Virginia - Home Savings Rebate Program Columbia Gas of Virginia - Home Savings Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Virginia Program Type Utility Rebate Program Rebate Amount Energy Star Gas Storage Water Heater: $50 Energy Star Gas Tankless Water Heater: $300 High Efficiency Gas Furnace: $300 High Efficiency Windows (Replacement): $1/sq. ft. Attic and Floor Insulation (Replacement): $0.30/sq. ft. Duct Insulation (Replacement): $200 - $250/site Provider Columbia Gas of Virginia

442

Utility Partnership Webinar Series: State Mandates for Utility...  

Broader source: Energy.gov (indexed) [DOE]

State Mandates for Utility Energy Efficiency March 1, 2011 Industrial Technologies Program eere.energy.gov Speakers and Topics: * National Association of State Energy Officials...

443

NETL: Carbon Storage - CO2 Utilization Focus Area  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Utilization CO2 Utilization Carbon Storage CO2 Utilization Focus Area Carbon dioxide (CO2) utilization efforts focus on pathways and novel approaches for reducing CO2 emissions by developing beneficial uses for the CO2 that will mitigate CO2 emissions in areas where geologic storage may not be an optimal solution. CO2 can be used in applications that could generate significant benefits. It is possible to develop alternatives that can use captured CO2 or convert it to useful products such chemicals, cements, or plastics. Revenue generated from the utilized CO2 could also offset a portion of the CO2 capture cost. Processes or concepts must take into account the life cycle of the process to ensure that additional CO2 is not produced beyond what is already being removed from or going into the atmosphere. Furthermore, while the utilization of CO2 has some potential to reduce greenhouse gas emissions to the atmosphere, CO2 has certain disadvantages as a chemical reactant. Carbon dioxide is rather inert and non-reactive. This inertness is the reason why CO2 has broad industrial and technical applications. Each potential use of CO2 has an energy requirement that needs to be determined; and the CO2 produced to create the energy for the specific utilization process must not exceed the CO2 utilized.

444

Backscatter absorption gas imaging system  

DOE Patents [OSTI]

A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

McRae, Jr., Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

445

The simulation of gas production from oceanic gas hydrate reservoir by the combination of ocean surface warm water flooding with depressurization  

Science Journals Connector (OSTI)

A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of therma...

Hao Yang; Yu-Hu Bai; Qing-Ping Li

2012-10-01T23:59:59.000Z

446

Climate change adaptation in the U.S. electric utility sector  

E-Print Network [OSTI]

The electric utility sector has been a focus of policy efforts to reduce greenhouse gas emissions, but even if these efforts are successful, the sector will need to adapt to the impacts of climate change. These are likely ...

Higbee, Melissa (Melissa Aura)

2013-01-01T23:59:59.000Z

447

Mercury Emission and Removal of a 135MW CFB Utility Boiler  

Science Journals Connector (OSTI)

To evaluate characteristic of the mercury emission and removal from a circulating fluidized bed (CFB) boiler, a representative 135 MW CFB utility boiler was selected to take the ... is of majority in flue gas of ...

Y. F. Duan; Y. Q. Zhuo; Y. J. Wang; L. Zhang

2010-01-01T23:59:59.000Z

448

Developing a strategic roadmap for supply chain process improvement in a regulated utility  

E-Print Network [OSTI]

This thesis covers work done at Tracks Energy, a regulated utility, to develop a strategic roadmap for supply chain process improvement. The focus of Tracks Energy has always been on keeping the lights on and the gas flowing ...

Yoder, Brent E. (Brent Edward)

2013-01-01T23:59:59.000Z

449

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

450

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

451

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

452

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

453

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

454

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

455

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

456

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

457

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

458

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

459

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

460

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

462

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

463

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

464

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

465

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

51 - 21160 of 28,905 results. 51 - 21160 of 28,905 results. Rebate Methane Gas Conversion Property Tax Exemption '''''Note: This exemption is only available to facilities operated in connection or conjunction with a publicly-owned sanitary landfill. The exemption was available to other entities only for... http://energy.gov/savings/methane-gas-conversion-property-tax-exemption Rebate Requirements for Wind Development In 2010, Oklahoma passed HB 2973, known as The Oklahoma Wind Energy Development Act. The bill becomes effective January 1, 2011. The Act provides sets rules for owners of wind energy facilities... http://energy.gov/savings/requirements-wind-development Rebate Rocky Mountain Power- Net Metering Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and

466

Slinger Utilities | Open Energy Information  

Open Energy Info (EERE)

Slinger Utilities Slinger Utilities Jump to: navigation, search Name Slinger Utilities Place Wisconsin Utility Id 17324 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Single-Phase- Time-of-Day Commercial General Service- Three-Phase Commercial General Service- Three-Phase- Time-of-Day Commercial Industrial Power- Time-of-Day Industrial Large Power- Time-of-Day Commercial Ornamental Street Lighting- 150W HPS Lighting Overhead Street Lighting- 150W HPS Lighting

467

Decatur Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Decatur Utilities Place Alabama Utility Id 4958 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial - BILL CODE 50 Commercial Commercial - Bill Code 40 Commercial Residential - Bill Code 22 Residential Security Light 100 W HPS (No Pole) Lighting Security Light 100 W HPS (With Pole) Lighting Security Light 250 W HPS (No Pole) Lighting Security Light 250 W HPS (With Pole) Lighting

468

Dalton Utilities | Open Energy Information  

Open Energy Info (EERE)

Dalton Utilities Dalton Utilities Jump to: navigation, search Name Dalton Utilities Place Georgia Utility Id 4744 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 - Watt Sodium Vapor Lighting 1000 - Watt Metal Halide Directional Type Lighting 150 Watt Mercury Vapor Underground Service Lighting 150 Watt Sodium Vapor Underground Service Lighting 175 - Watt Mercury Vapor Lighting 175 - Watt Sodium Vapor Lighting

469

Waupun Utilities | Open Energy Information  

Open Energy Info (EERE)

Waupun Utilities Waupun Utilities Jump to: navigation, search Name Waupun Utilities Place Wisconsin Utility Id 20213 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Single Phase Commercial Commercial Three Phase Commercial Renewable Energy Residential Residential Small Power Industrial Average Rates Residential: $0.1060/kWh Commercial: $0.0968/kWh Industrial: $0.0770/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

470

Maryville Utilities | Open Energy Information  

Open Energy Info (EERE)

Maryville Utilities Maryville Utilities Jump to: navigation, search Name Maryville Utilities Place Tennessee Utility Id 11789 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Schedule GSA-1 Commercial Commercial- Schedule GSA-2 Commercial Commercial- Schedule GSA-3 Commercial Outdoor Light- 100W HP Sodium Security Light Lighting Outdoor Light- 175W Mercury Vapor Lighting Outdoor Light- 250W HP Sodium Flood Light Lighting Outdoor Light- 250W HP Sodium Security Light Lighting Outdoor Light- 400W Mercury Vapor Lighting

471

Oconomowoc Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Oconomowoc Utilities Place Wisconsin Utility Id 13963 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

472

Sheffield Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Sheffield Utilities Place Alabama Utility Id 17033 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Light 100 W HPS Openbottom Lighting Security Light 150 W HPS Cobrahead Lighting Security Light 150 W HPS Decorative Light Lighting Security Light 1500 W MH Floodlight Lighting Security Light 175 W MV Openbottom Lighting Security Light 250 W HPS Cobrahead Lighting Security Light 250 W HPS Decorative Light Lighting Security Light 250 W HPS Floodlight Lighting

473

Cannelton Utilities | Open Energy Information  

Open Energy Info (EERE)

Cannelton Utilities Cannelton Utilities Jump to: navigation, search Name Cannelton Utilities Place Indiana Utility Id 2964 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting: Murcury Vapor Light, 175 Watt Lighting Rate 1: Residential Residential Rate 2: Multi-Phase Commercial Rate 2: Single Phase Commercial Rate 3: Industrial Phase II Residential Rate 3: Industrial phase I Industrial Street Lighting: Decorative Metal Halide, 175 Watt Lighting Street Lighting: High Pressure Sodium, 100 Watt Lighting

474

Piedmont Natural Gas - Residential Equipment Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate 2 rebates per household Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount High-Efficiency Furnace: $175 Tankless Water Heater: $150 Tank Water Heater: $50 Provider Gas Technology and Energy Services Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these rebates. Rebates are only provided for qualifying natural gas equipment that is installed to

475

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

476

Gas Model of Gravitons with Light Speed  

E-Print Network [OSTI]

We first review some aspects of gravitational wave and the thermodynamic expression of Einstein field equations, these achieved conclusions allow people to think of Einstein's gravitational wave as a kind of sound wave in ordinary gas which propagates as an adiabatic compression wave. In the following, using the properties of photon gas in "white wall box", we find an analogous relationship between ordinary gas and photon gas through sound velocity formula. At last, by taking the ordinary gas as an intermediary, we find that gravitational wave is analogous to photon gas, or equally, gravitons are analogous to photons although they are different in some ways such as spins and coupling strengths, and these different properties don't affect their propagation speeds. Utilizing this analogous relationship, we achieve the gas model of gravitons and this model naturally gives out the light speed of gravitons

Ming Chen; Yong-Chang Huang

2014-06-17T23:59:59.000Z

477

The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants  

E-Print Network [OSTI]

1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power, Pennsylvania Presentation to the Natural Gas CCS Forum Washington, DC November 4, 2011 E.S. Rubin, Carnegie Mellon MotivationMotivation · Electric utilities again looking to natural gas combined cycle (NGCC

478

Utilities must do more communicating  

SciTech Connect (OSTI)

The dramatic changes within the electric-utility industry over the past decade require them to do a greater and more effective job of communicating with their customers. When the revenues and advertising burgets for investor-owned electric utilities over a six-year period are compared with the revenues and ad dollars of other large industries and selected companies, the discrepancy is apparent. The ad costs for just one brand of cigarette are three-fourths of all utility ad spending. The utilities need to use advertising to explain new service programs and rate strategies to the public. 3 figures.

Uhler, R.G.

1981-01-01T23:59:59.000Z

479

PHEV development test platform Utilization  

Broader source: Energy.gov (indexed) [DOE]

PHEV development test platform Utilization vssp07lohsebusch DOE Merit Review May 19, 2009 Henning Lohse-Busch, Neeraj Shidore, Richard Carlson, Thomas Wallner Mike Duoba,...

480

Rural Utilities Service Electric Program  

Broader source: Energy.gov [DOE]

The Rural Utilities Service Electric Programs loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements...

Note: This page contains sample records for the topic "avista utilities gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

TEST UTILITY COMPANY | Open Energy Information  

Open Energy Info (EERE)

TEST UTILITY COMPANY Jump to: navigation, search Name: Test Utility Company Place: West Virginia References: Energy Information Administration.1 EIA Form 861 Data Utility Id...

482

Partnering with Utilities for Energy Efficiency & Security |...  

Broader source: Energy.gov (indexed) [DOE]

Partnering with Utilities for Energy Efficiency & Security Partnering with Utilities for Energy Efficiency & Security Presentation covers partnering with utilities for energy...

483

BPA_Utilities_and_Cities.mxd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cTribalandIOUCustomerServiceAreas.mxd State Boundary Indian Reservations Public Utilities Tribal Utilities Tribal Investor Owned Utilities Idaho Power Company Northwestern...

484

Meetings of the Federal Utility Partnership Working Group | Department of  

Broader source: Energy.gov (indexed) [DOE]

Meetings of the Federal Utility Partnership Working Group Meetings of the Federal Utility Partnership Working Group Meetings of the Federal Utility Partnership Working Group October 7, 2013 - 2:33pm Addthis The Federal Utility Partnership Working Group (FUPWG) meets twice per year to share success stories, information on Federal Energy Management Program activities and other business. Upcoming Meetings FUPWG Winter 2014 January 14-15, 2014 (postponed from November 6-7, 2013) Golden, Colorado Co-hosted by Xcel Energy and NREL Recent Meetings FUPWG Spring 2013 May 22-23, 2013 San Francisco, California Hosted by Pacific Gas and Electric Meeting Agenda and Presentations Meeting Report FUPWG Fall 2012 October 16-17, 2012 Mobile, Alabama Hosted by Alabama Power Meeting Agenda and Presentations Meeting Report Past Meetings Notes FUPWG Spring 2012: Jekyll Island, Georgia

485

Public Utilities Tax Rebate (Delaware) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utilities Tax Rebate (Delaware) Utilities Tax Rebate (Delaware) Public Utilities Tax Rebate (Delaware) < Back Eligibility Commercial Agricultural Industrial Retail Supplier Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Corporate Tax Incentive Provider Department of Finance This rebate is part of the Blue Collar Jobs Act, which establishes tax breaks for businesses that have sustainable jobs and make significant investments in the state. Firms meeting the criteria for targeted industry tax credits are eligible for a rebate of 50 percent of the public utilities tax imposed on new or increased consumption of natural gas and electricity for four years. The

486

Sustainable Energy Utility (SEU) - Green for Green Home Rebate | Department  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Energy Utility (SEU) - Green for Green Home Rebate Sustainable Energy Utility (SEU) - Green for Green Home Rebate Sustainable Energy Utility (SEU) - Green for Green Home Rebate < Back Eligibility Construction Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Maximum Rebate $2,5000 Program Info Funding Source Regional Greenhouse Gas Initiative (RGGI) Start Date 02/01/2013 State Delaware Program Type State Rebate Program Rebate Amount varies The Delaware Sustainable Energy Utility, in partnership with the Delaware Department of Natural Resources and Environmental Control (DNREC) and the Home Builders Association of Delaware, is offering rebates ranging from

487

Utility Energy Service Contracts Laws and Regulations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Contracts Laws and Regulations Contracts Laws and Regulations Utility Energy Service Contracts Laws and Regulations October 7, 2013 - 2:19pm Addthis The Energy Policy Act (EPAct) of 1992 authorizes and encourages Federal agencies to participate in utility energy efficiency programs. Legislation authorizing utility energy service contracts (UESCs) is outlined below, along with legal opinions outlining the use of UESCs by Federal agencies. Laws and Regulations 42 USC Section 8256 (Energy Policy Act of 1992): Incentives for Federal agencies, legislation addressing contracts, the Federal Energy Efficiency Fund, utility incentive programs, and the Financial Incentive Program for Facility Energy Managers. 10 USC Section 2913: Outlines energy savings contracts and related activities, shared energy savings contracts, participation in gas or

488

Atlantic County Util Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Util Biomass Facility Util Biomass Facility Jump to: navigation, search Name Atlantic County Util Biomass Facility Facility Atlantic County Util Sector Biomass Facility Type Landfill Gas Location Atlantic County, New Jersey Coordinates 39.5333379°, -74.6868815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5333379,"lon":-74.6868815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

489

Barrow Utils & Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

& Elec Coop, Inc & Elec Coop, Inc Jump to: navigation, search Name Barrow Utils & Elec Coop, Inc Place Alaska Utility Id 1276 Utility Location Yes Ownership C NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Primary Metering ASNA/PHS Commercial Primary Metering USAF/DEW Site Commercial Primary Metering NSB Gas Fields Commercial Primary Metering NSBSD, C/O Annex Commercial Primary Metering UIC/NARL Commercial

490

Category:Smart Grid Projects - Electric Distributions Systems | Open Energy  

Open Energy Info (EERE)

Distributions Systems category. Distributions Systems category. Pages in category "Smart Grid Projects - Electric Distributions Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C Consolidated Edison Company of New York, Inc. Smart Grid Project E El Paso Electric Smart Grid Project H Hawaii Electric Co. Inc. Smart Grid Project M Memphis Light, Gas and Water Division Smart Grid Project Municipal Electric Authority of Georgia Smart Grid Project N Northern Virginia Electric Cooperative Smart Grid Project NSTAR Electric Company Smart Grid Project P Powder River Energy Corporation Smart Grid Project P cont. PPL Electric Utilities Corp. Smart Grid Project S Snohomish County Public Utilities District Smart Grid Project

491

Category:Smart Grid Investment Grant Projects | Open Energy Information  

Open Energy Info (EERE)

Investment Grant Projects Investment Grant Projects Pages in category "Smart Grid Investment Grant Projects" The following 98 pages are in this category, out of 98 total. A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project American Transmission Company LLC II Smart Grid Project American Transmission Company LLC Smart Grid Project Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project B Baltimore Gas and Electric Company Smart Grid Project Black Hills Power, Inc. Smart Grid Project Black Hills/Colorado Electric Utility Co. Smart Grid Project Burbank Water and Power Smart Grid Project C CenterPoint Energy Smart Grid Project Central Lincoln People's Utility District Smart Grid Project Central Maine Power Company Smart Grid Project Cheyenne Light, Fuel and Power Company Smart Grid Project

492

State Natural Gas Regulation Act (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

State Natural Gas Regulation Act (Nebraska) State Natural Gas Regulation Act (Nebraska) State Natural Gas Regulation Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Public Service Commisssion This act gives the Nebraska Public Service Commission authority to regulate natural gas utilities and pipelines within the state, except as provided for in the Nebraska Natural Gas Pipeline Safety Act of 1969. Some

493

Gas Code of Conduct (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Code of Conduct (Connecticut) Gas Code of Conduct (Connecticut) Gas Code of Conduct (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Safety and Operational Guidelines Provider Public Utilities Regulatory Authority The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote competitive

494

1 - An Overview of Gas Turbines  

Science Journals Connector (OSTI)

Publisher Summary The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. The gas turbine has found increasing service in the past 60 years in the power industry among both utilities and merchant plants as well as the petrochemical industry throughout the world. The utilization of gas turbine exhaust gases, for steam generation or the heating of other heat transfer mediums, or the use of cooling or heating buildings or parts of cities is not a new concept and is currently being exploited to its full potential. The aerospace engines have been leaders in most of the technology in the gas turbine. The design criteria for these engines were high reliability, high performance, with many starts and flexible operation throughout the flight envelope. The industrial gas turbine has always emphasized long life and this conservative approach has resulted in the industrial gas turbine in many aspects giving up high performance for rugged operation. The gas turbine produces various pollutants in the combustion of the gases in the combustor. These include smoke, unburnt hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. It has found increasing service in the past 60 years in the power industry among both utilities and merchant plants, as well as in the petrochemical industry. Its compactness, low weight and multiple fuel application make it a natural power plant for offshore platforms. Today there are gas turbines that run on natural gas, diesel fuel, naphtha, methane, crude, low-BTU gases, vaporized fuel oils and biomass gases. The last 20 years have seen a large growth in gas turbine technology, spearheaded by the growth in materials technology, new coatings, new cooling schemes and combined cycle power plants. This chapter presents an overview of the development of modern gas turbines and gas turbine design considerations. The six categories of simple-cycle gas turbines (frame type heavy-duty; aircraft-derivative; industrial-type; small; vehicular; and micro) are described. The major gas turbine components (compressors; regenerators/recuperators; fuel type; and combustors) are outlined. A gas turbine produces various pollutants in the combustion of the gases in the combustor and the potential environmental impact of gas turbines is considered. The two different types of combustor (diffusion; dry low NOx, (DLN) or dry low emission (DLE)), the different methods to arrange combustors on a gas turbine, and axial-flow and radial-inflow turbines are described. Developments in materials and coatings are outlined.

Meherwan P. Boyce

2012-01-01T23:59:59.000Z

495

Purchased Gas Adjustment Rules (Tennessee) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Purchased Gas Adjustment Rules (Tennessee) Purchased Gas Adjustment Rules (Tennessee) Purchased Gas Adjustment Rules (Tennessee) < Back Eligibility Commercial Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Rural Electric Cooperative Utility Program Info State Tennessee Program Type Generating Facility Rate-Making Industry Recruitment/Support Provider Tennessee Regulatory Authority The Purchased Gas Adjustment Rules are implemented by the Tennessee Regulatory Authority (Authority). Purchased Gas Adjustment (PGA) Rules are intended to permit the company/LDC (local gas distribution company regulated by the Authority) to recover, in timely fashion, the total cost of gas purchased for delivery to its customers and to assure that the Company does not over-collect or under-collect Gas Costs from its

496

Chapter 9 - Natural Gas Dehydration  

Science Journals Connector (OSTI)

Natural, associated, or tail gas usually contains water, in liquid and/or vapor form, at source and/or as a result of sweetening with an aqueous solution. Operating experience and thorough engineering have proved that it is necessary to reduce and control the water content of gas to ensure safe processing and transmission. Pipeline drips installed near wellheads and at strategic locations along gathering and trunk lines will eliminate most of the free water lifted from the wells in the gas stream. Multistage separators can also be deployed to ensure the reduction of free water that may be present. However, the removal of the water vapor that exists in solution in natural gas requires a more complex treatment. This treatment consists of dehydrating the natural gas, which is accomplished by lowering the dew point temperature of the gas at which water vapor will condense from the gas. There are several methods of dehydrating natural gas. The most common of these are liquid desiccant (glycol) dehydration, solid desiccant dehydration, and cooling the gas. Any of these methods may be used to dry gas to a specific water content. Usually, the combination of the water content specification, initial water content, process character, operational nature, and economic factors determine the dehydration method to be utilized. However, the choice of dehydration method is usually between glycol and solid desiccants. These are presented in depth in subsequent portions of this chapter. Keywords: absorber, adsorption isotherm, bed loading, chemisorption, dehydration, desiccant, desiccant regeneration, equilibrium zone, flash tank, flow distribution, glycol circulation pump, glycol dehydration, inlet feed contamination, liquid carryover, mass transfer zone, molecular sieve, overcirculation, reboiler, solubility, still, surge tank, undercirculation.

Saeid Mokhatab; William A. Poe

2012-01-01T23:59:59.000Z

497

Solar Valuation in Utility Planning Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Valuation in Utility Planning Studies Solar Valuation in Utility Planning Studies Title Solar Valuation in Utility Planning Studies Publication Type Presentation Year of Publication 2013 Authors Mills, Andrew D., and Ryan H. Wiser Keywords electricity markets and policy group, energy analysis and environmental impacts department, renewable energy: policy Abstract This webinar was presented by the Clean Energy States Alliance and featured Andrew Mills of Lawrence Berkeley National Lab (LBNL) discussing new research on solar valuation that he and his colleague, Ryan Wiser, have recently published. As renewable technologies mature, recognizing and evaluating their economic value will become increasingly important for justifying their expanded use. In their report, Mills and Wiser used a unique investment and dispatch model to evaluate the changes in the long-run value of variable renewables with increasing penetration levels, based on a case study of California. They found that the value of solar is high at low penetration levels owing to the capacity and energy value of solar, even accounting for an increased need for ancillary services and imperfect forecastability. At higher penetration levels, the marginal value of additional PV and concentrating solar power (CSP) without thermal storage declines, largely due to a decrease in capacity value. The value of CSP with thermal storage remains higher for similar penetration levels owing to the ability to continue to produce energy for hours after the sun goes down. By way of comparison, in California the value of wind at low penetrations is less than the value of solar at low penetrations, but its value is less sensitive to penetration levels. In addition to discussing these findings, Mills reviewed a recent sample of utility planning studies and procurement processes to identify how current practices reflect these drivers of solar's economic value. The LBNL report found that many of the utilities have a framework to capture and evaluate solar's value, but approaches vary widely: only a few studies appear to complement the framework with detailed analysis of key factors such as capacity credits, integration costs, and tradeoffs between distributed and utility-scale photovoltaics. In particular Mills and Wiser found that studies account for the capacity value of solar, though capacity credit estimates with increasing penetration can be improved. Similarly, few planning studies currently reflect the full range of potential benefits from adding thermal storage and/or natural gas augmentation to concentrating solar power plants.

498

Chapter 10 - Coal and Coalbed Gas: Outlook  

Science Journals Connector (OSTI)

Abstract The future of coal and coalbed gas future is intertwined as source and reservoir rocks. Coal generates coalbed gas during coalification (e.g. thermogenic gas) and methanogenesis (biogenic gas). These gas types occur as singular and mixed accumulations. Accumulation of biogenic coalbed gas has received worldwide research and development interests on sustaining production. The new coal-to-biogenic coalbed gas technology centers on stimulating indigenous microbes in coal and associated groundwater with bioengineered nutrients and amendments to farm gas from abandoned wells and non-gas-producing coals. Coal mainly as a basic fuel for electric power generation since the Industrial Revolution continues to be utilized despite environmental concerns. The outlook of coal is dimmed in the United States where natural gas has replaced power generation. However, in Asia and Europe continued economic growth is going to be fueled by coal and coalbed gas as liquefied natural gas will rely on combustion from more efficient, high-temperature power plants in the future.

Romeo M. Flores

2014-01-01T23:59:59.000Z

499

METHANE de-NOX FOR UTILITY PC BOILERS  

SciTech Connect (OSTI)

The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NOx emissions to 0.15 lb/million Btu or less without post-combustion flue gas cleaning. Work during previous reporting periods completed the design, installation, shakedown and initial PRB coal testing of a 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Based on these results, modifications to the gas-fired preheat combustor and PC burner were defined, along with a modified testing plan and schedule. During the current reporting period, BBP's subcontract was modified to reflect changes in the pilot testing program, and the modifications to the gas-fired preheat combustor were completed. The Computational Fluid Dynamics (CFD) modeling approach was defined for the combined PC burner and 3-million Btu/h pilot system. Modeling of the modified gas-fired preheat combustor was also started.

Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

2002-04-29T23:59:59.000Z

500

Proposing a novel combined cycle for optimal exergy recovery of liquefied natural gas  

Science Journals Connector (OSTI)

The effective utilization of the cryogenic exergy associated with liquefied natural gas (LNG) vaporization is important. In this paper, a novel combined power cycle is proposed which utilizes LNG in different ......

M. R. Salimpour; M. A. Zahedi

2012-08-01T23:59:59.000Z