National Library of Energy BETA

Sample records for aviation reciprocating engines

  1. Advanced Reciprocating Engine Systems

    Broader source: Energy.gov [DOE]

    The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

  2. Advanced Reciprocating Engine Systems (ARES)

    Broader source: Energy.gov [DOE]

    Advanced Natural Gas Reciprocating Engines Increase Efficiency and Reduce Emissions for Distributed Power Generation Applications

  3. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Reciprocating Engine System (ARES) Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Integration of Diesel Engine Technology ...

  4. Gas-Fired Reciprocating Engines

    Broader source: Energy.gov [DOE]

    The reciprocating, or piston-driven, engine is a widespread and well-known technology. Also called internal combustion engines, reciprocating engines require fuel, air, compression, and a combustion source to function. Depending on the ignition source, they generally fall into two categories: (1) spark-ignited engines, typically fueled by gasoline or natural gas, and (2) compression-ignited engines, typically fueled by diesel oil fuel.

  5. Advanced Reciprocating Engine System (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Reciprocating Engine Systems (ARES) C L E A N C I T I E S ADVANCED MANUFACTURING OFFICE Raising the Bar on Engine Technology with Increased Efficiency and Reduced ...

  6. Rotary-reciprocal combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-06

    This patent describes an internal combustion engine of the rotary-reciprocal type. It comprises a housing formed with a peripheral wall; a rotor; and a shaft for the rotor.

  7. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dresser Waukesha, June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Presentation on Advanced Natural Gas Reciprocating ...

  8. Rotary reciprocating internal combustion engine

    SciTech Connect (OSTI)

    Ogren, W.

    1992-06-23

    This patent describes a rotary reciprocating internal combustion engine. It comprises a housing which comprises a cylindrical head with two end and frame plates mounted on both ends of the head enclose the head, the head including a pair of fuel into ports and a pair of exhaust ports, a pair of ring gears; a rotor axially aligned in the cylindrical head and comprising a set of four radially extending cylinders and pistons reciprocable in the cylinders; a power take off shaft fixed to the crank support plates and axially aligned with the rotor; oiling means for oiling the rotary engine; and a set of eight crank gears.

  9. Advanced Reciprocating Engine System (ARES) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Reciprocating Engine System (ARES) Advanced Reciprocating Engine System (ARES) The ARES program is designed to promote separate, but parallel engine development among the major stationary, gaseous fueled engine manufacturers in the United States. PDF icon Advanced Reciprocating Engine Systems (ARES) Brochure More Documents & Publications Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) -

  10. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Reciprocating Engines (ARES) Contract: DE-FC26-01CH11080 GE Energy, Dresser ... Washington, D.C. June 1-2, 2011 2 GE gas engines Zurlo: 6282011 Project Overview ...

  11. Advanced Reciprocating Engine Systems (ARES) R&D - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National Laboratory, June 2011 Advanced Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National ...

  12. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nations energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nations future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillars DIGN program under the ARES program. This work has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new opportunity fuel deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a local dealer to deploy an ARES class engine using syngas from a biomass gasifier as

  13. A reciprocating rotating-block engine

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-06-01

    This article describes the Newbold power plant, a lightweight, clean burning, and efficient engine that is designed to be used in a variety of small-engine applications, from ultralight planes to wheelchairs. A new turbo rotary-power engine brings together different design concepts from engine technology, including the rotary motion of a block, which is applied in a rotary engine, and the reciprocating motion of pistons. The new power plant also uses an air delivery system that operates similar to a turbojet engine. The turbo rotary-power engine, developed by Vernon Newbold, founder of Newbold and Associates, in Lyons, CO, produces power from the heat generated by combustion of most liquid or gaseous fuels. Production engines, expected to be built in August, will be optimized to operate using diesel fuel.

  14. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  15. Integrated CHP/Advanced Reciprocating Internal Combustion Engine...

    Office of Environmental Management (EM)

    to meet local air quality authority emissions restrictions. Integrated Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to...

  16. Ultra Clean and Efficient Natural Gas Reciprocating Engine for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for CHP - Presentation by Dresser Waukesha, June 2011 Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 ...

  17. E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

  18. Reciprocating Engines in Support of Grid Modernization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 General Electric Company - All rights reserved 2 Natural Gas Reciprocating ... 2015 General Electric Company - All rights reserved 3 NG Recip - Rich Burn - ...

  19. Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Dresser Waukesha, June 2011 | Department of Energy Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Presentation on an Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered Combined Heat and Power (CHP) System, given by Jim Zurlo of Dresser Waukesha, at the U.S. DOE Industrial Distributed

  20. Aviation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-25

    To establish framework for an effective aviation program. Cancels DOE 5480.13A. Canceled by DOE O 440.2A.

  1. Aviation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-08

    To establish the framework for an effective aviation program, and reduce or eliminate accidental losses and injuries in Departmental and contractor aviation operations. It includes Change 1, Change 2, and Change3. (Cancels DOE 5480.13A) Canceled DOE O 440.2A.

  2. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Oak Ridge National Laboratory, June 2011 Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program) High Fuel Economy Heavy-Duty Truck Engine

  3. Organic rankine cycle system for use with a reciprocating engine

    DOE Patents [OSTI]

    Radcliff, Thomas D.; McCormick, Duane; Brasz, Joost J.

    2006-01-17

    In a waste heat recovery system wherein an organic rankine cycle system uses waste heat from the fluids of a reciprocating engine, provision is made to continue operation of the engine even during periods when the organic rankine cycle system is inoperative, by providing an auxiliary pump and a bypass for the refrigerant flow around the turbine. Provision is also made to divert the engine exhaust gases from the evaporator during such periods of operation. In one embodiment, the auxiliary pump is made to operate simultaneously with the primary pump during normal operations, thereby allowing the primary pump to operate at lower speeds with less likelihood of cavitation.

  4. Combustion characterization of methylal in reciprocating engines

    SciTech Connect (OSTI)

    Dodge, L.; Naegeli, D.

    1994-06-01

    Methylal, CH{sub 3}OCH{sub 2}OCH{sub 3}, also known as dimethoxy-methane, is unique among oxygenates in that it has a low autoignition temperature, no carbon-carbon bonds, and is soluble in middle distillate fuels. Because of these properties, methylal has been shown to be a favorable fuel additive for reducing smoke in diesel engines. Recent measurements of ignition delay times indicate that methylal has a cetane number in the range of 45-50, which is compatible with diesel fuels. Engine tests have shown that adding methylal to diesel fuel significantly reduces smoke emissions. Gaseous emissions and combustion efficiencies obtained with methylal/diesel fuel blends remain essentially the same as those measured using neat diesel fuel. Lubricity measurements of methylal/diesel fuel blends with a ball on cylinder lubrication evaluator (BOCLE) show that methylal improves the lubricity of diesel fuel. Even though additions of methylal lower the fuel viscosity, the results of the BOCLE tests indicate that the methylal/diesel fuel blends cause less pump wear than neat diesel fuel. The one drawback is that methylal has a low boiling point (42{degrees}C) and a relatively high vapor pressure. As a result, it lowers the flash point of diesel fuel and causes a potential fuel tank flammability hazard. One solution to this increased volatility is to make polyoxymethylenes with the general formula of CH{sub 3}O(CH{sub 2}O){sub x}CH{sub 3} where x > 2. The molecules are similar to methylal, but have higher molecular weights and thus higher viscosities and substantially lower vapor pressures. Therefore, their flash points will be compatible with regular diesel fuel. The polyoxymethylenes are expected to have combustion properties similar to methylal. It is theorized that by analogy with hydrocarbons, the ignition quality (i.e., cetane number) of the polyoxymethylenes will be better than that of methylal.

  5. Caterpillar`s advanced reciprocating engine for distributed generation markets

    SciTech Connect (OSTI)

    Gerber, G.; Brandes, D.; Reinhart, M.; Nagel, G.; Wong, E.

    1999-11-01

    Competition in energy markets and federal and state policy advocating clean, advanced technologies as means to achieve environmental and global climate change goals are clear drivers to original equipment manufacturers of prime movers. Underpinning competition are the principle of consumer choice to facilitate retail competition, and the desire to improve system and grid reliability. Caterpillar`s Gas Engine Division is responding to the market`s demand for a more efficient, lower lifecycle cost engine with reduced emissions. Cat`s first generation TARGET engine will be positioned to effectively serve distributed generation and combined heat and power (CHP) applications. TARGET (The Advanced Reciprocating Gas Engine Technology) will embody Cat`s product attributes: durability, reliability, and competitively priced life cycle cost products. Further, Caterpillar`s nationwide, fully established dealer sales and service ensure continued product support subsequent to the sale and installation of the product.

  6. Advanced Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory, June 2011 | Department of Energy Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National Laboratory, June 2011 Advanced Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National Laboratory, June 2011 Presentation on Technologies for Gaseous Fueled Advanced Reciprocating Engine Systems (ARES) R&D, given by Sreenath Gupta of Argonne National Laboratory, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in

  7. Advanced Natural Gas Reciprocating Engines (ARES)- Presentation by Caterpillar, Inc., June 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation on Advanced Natural Gas Reciprocating Engines (ARES), given by Martin Willi at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  8. Advanced Natural Gas Reciprocating Engines (ARES)- Presentation by Dresser Waukesha, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Advanced Natural Gas Reciprocating Engines (ARES), given by Jim Zurlo at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  9. Advanced Natural Gas Reciprocating Engines (ARES)- Presentation by Cummins, Inc., June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Advanced Natural Gas Reciprocating Engines (ARES), given by Edward Lyford-Pike at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  10. Advanced Reciprocating Engine Systems (ARES): Raising the Bar on Engine Technology with Increased Efficiency and Reduced Emissions, at Attractive Costs

    SciTech Connect (OSTI)

    2009-02-01

    This is a fact sheet on the U.S. Department of Energy's (DOE) Advanced Reciprocating Engine Systems program (ARES), which is designed to promote separate, but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the United States.

  11. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect (OSTI)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is possible as current investigations continue.

  12. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect (OSTI)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

  13. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is quite possible.

  14. Injector spray characterization of methanol in reciprocating engines

    SciTech Connect (OSTI)

    Dodge, L.; Naegeli, D.

    1994-06-01

    This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

  15. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  16. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  17. Fuel-efficient cruise performance model for general aviation piston engine airplanes

    SciTech Connect (OSTI)

    Parkinson, R.C.H.

    1982-01-01

    The uses and limitations of typical Pilot Operating Handbook cruise performance data, for constructing cruise performance models suitable for maximizing specific range, are first examined. These data are found to be inadequate for constructing such models. A new model of General Aviation piston-prop airplane cruise performance is then developed. This model consists of two subsystem models: the airframe-propeller-atmosphere subsystem model; and the engine-atmosphere subsystem model. The new model facilitates maximizing specific range; and by virtue of its simplicity and low volume data storage requirements, appears suitable for airborne microprocessor implementation.

  18. Modeling of reciprocating internal combustion engines for power generation and heat recovery

    SciTech Connect (OSTI)

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2013-02-01

    This paper presents a power generation and heat recovery model for reciprocating internal combustion engines (ICEs). The purpose of the proposed model is to provide realistic estimates of performance/efficiency maps for both electrical power output and useful thermal output for various capacities of engines for use in a preliminary CHP design/simulation process. The proposed model will serve as an alternative to constant engine efficiencies or empirical efficiency curves commonly used in the current literature for simulations of CHP systems. The engine performance/efficiency calculation algorithm has been coded to a publicly distributed FORTRAN Dynamic Link Library (DLL), and a user friendly tool has been developed using Visual Basic programming. Simulation results using the proposed model are validated against manufacturer’s technical data.

  19. Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report

    SciTech Connect (OSTI)

    Gupta, Sreenath; Biruduganti, Muni; Bihari, Bipin; Sekar, Raj

    2014-08-01

    The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.

  20. Advanced Natural Gas Reciprocating Engine: Parasitic Loss Control through Surface Modification

    SciTech Connect (OSTI)

    Farshid Sadeghi; Chin-Pei Wang

    2008-12-31

    This report presents results of our investigation on parasitic loss control through surface modification in reciprocating engine. In order to achieve the objectives several experimental and corresponding analytical models were designed and developed to corroborate our results. Four different test rigs were designed and developed to simulate the contact between the piston ring and cylinder liner (PRCL) contact. The Reciprocating Piston Test Rig (RPTR) is a novel suspended liner test apparatus which can be used to accurately measure the friction force and side load at the piston-cylinder interface. A mixed lubrication model for the complete ring-pack and piston skirt was developed to correlate with the experimental measurements. Comparisons between the experimental and analytical results showed good agreement. The results revealed that in the reciprocating engines higher friction occur near TDC and BDC of the stroke due to the extremely low piston speed resulting in boundary lubrication. A Small Engine Dynamometer Test Rig was also designed and developed to enable testing of cylinder liner under motored and fired conditions. Results of this study provide a baseline from which to measure the effect of surface modifications. The Pin on Disk Test Rig (POD) was used in a flat-on-flat configuration to study the friction effect of CNC machining circular pockets and laser micro-dimples. The results show that large and shallow circular pockets resulted in significant friction reduction. Deep circular pockets did not provide much load support. The Reciprocating Liner Test Rig (RLTR) was designed to simplifying the contact at the PRCL interface. Accurate measurement of friction was obtained using 3-axis piezoelectric force transducer. Two fiber optic sensors were used to measure the film thickness precisely. The results show that the friction force is reduced through the use of modified surfaces. The Shear Driven Test Rig (SDTR) was designed to simulate the mechanism of the piston ring pass through the liner. Micro PIV system was provided to observing the flow of lubricant in the cavity (pocket). The Vorticity-Stream Function Code was developed to simulate the incompressible fluid flow in the rectangular cavity.

  1. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman; Sarah R. Nuss-Warren

    2007-02-01

    The objective of this project is to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by exploration and production (E&P) operators to significantly lower the cost of environmental compliance and expedite project permitting. The project team takes considerable advantage of the emissions control research and development efforts and practices that have been underway in the gas pipeline industry for the last 12 years. These efforts and practices are expected to closely interface with the E&P industry to develop cost-effective options that apply to widely-used field and gathering engines, and which can be readily commercialized. The project is separated into two phases. Phase 1 work establishes an E&P industry liaison group, develops a frequency distribution of installed E&P field engines, and identifies and assesses commercially available and emerging engine emissions control and monitoring technologies. Current and expected E&P engine emissions and monitoring requirements are reviewed, and priority technologies are identified for further development. The identified promising technologies are tested on a laboratory engine to confirm their generic viability. In addition, a full-scale field test of prototype emissions controls will be conducted on at least ten representative field engine models with challenging emissions profiles. Emissions monitoring systems that are integrated with existing controls packages will be developed. Technology transfer/commercialization is expected to be implemented through compressor fleet leasing operators, engine component suppliers, the industry liaison group, and the Petroleum Technology Transfer Council. This topical report discusses work completed during Phase 1 of the project Cost Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines. In this report information, data, and results are compiled and summarized from quarterly reports 1 through 15. Results for each of the tasks in Phase 1 are presented.

  2. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E & P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman; Sarah R. Nuss-Warren

    2006-09-30

    Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NO{sub X} emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work tests non-production, prototype, mid-pressure fuel valves and begins analysis of these tests. This analysis reveals questions which must be answered before coming to any firm conclusions about the use of the180 psig fuel valve. The research team plans to continue with the remaining pre-combustion chamber tests in the coming quarter. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and a change in strategy is suggested. Although field engines are available to test, it is suggested that the final field testing be put on hold due to information from outside publications during this last quarter. Instead, KSU would focus on related field-testing and characterization in an outside project that will close an apparent technology gap. The results of this characterization will give a more solid footing to the field testing that will complete this project.

  3. Engine performance comparison associated with carburetor icing during aviation grade fuel and automotive grade fuel operation. Final report Jan-Jul 82

    SciTech Connect (OSTI)

    Cavage, W.; Newcomb, J.; Biehl, K.

    1983-05-01

    A comprehensive sea-level-static test cell data collection and evaluation effort to review operational characteristics of 'off-the-shelf' carburetor ice detection/warning devices for general aviation piston engine aircraft during operation on aviation grade fuel and automotive grade fuel. Presented herein are results, observations and conclusions drawn from over 250 hours of test cell engine operation on 100LL aviation grade fuel, unleaded premium and unleaded regular grade automotive fuel. Sea-level-static test cell engine operations were conducted utilizing a Teledyne Continental Motors 0-200A engine and a Cessna 150 fuel system to review engine operational characteristics of 100LL aviation grade fuel and various blends of automotive grade fuel as well as carburetor ice detectors/warning devices sensitivity/effectiveness during actual carburetor icing. The primary purpose of test cell engine operation was to observe real-time carburetor icing characteristics associated with possible automotive grade fuel utilization by piston-powered light general aviation aircraft. In fulfillment of this task, baseline engine operations were established with 100LL aviation grade fuel followed by various blend of automotive grade fuel prior to imposing carburetor icing conditions and assessing operational characteristics.

  4. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect (OSTI)

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  5. On use of CO{sub 2} chemiluminescence for combustion metrics in natural gas fired reciprocating engines.

    SciTech Connect (OSTI)

    Gupta, S. B.; Bihari, B.; Biruduganti, M.; Sekar, R.; Zigan, J.

    2011-01-01

    Flame chemiluminescence is widely acknowledged to be an indicator of heat release rate in premixed turbulent flames that are representative of gas turbine combustion. Though heat release rate is an important metric for evaluating combustion strategies in reciprocating engine systems, its correlation with flame chemiluminescence is not well studied. To address this gap an experimental study was carried out in a single-cylinder natural gas fired reciprocating engine that could simulate turbocharged conditions with exhaust gas recirculation. Crank angle resolved spectra (266-795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions and by holding the speed at 1800 rpm and Brake Mean effective Pressure (BMEP) at 12 bar. The effect of dilution on CO*{sub 2}chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6-1.0) and by varying the exhaust gas recirculation rate. It was attempted to relate the measured chemiluminescence intensities to thermodynamic metrics of importance to engine research -- in-cylinder bulk gas temperature and heat release rate (HRR) calculated from measured cylinder pressure signals. The peak of the measured CO*{sub 2} chemiluminescence intensities coincided with peak pressures within {+-}2 CAD for all test conditions. For each combustion cycle, the peaks of heat release rate, spectral intensity and temperature occurred in that sequence, well separated temporally. The peak heat release rates preceded the peak chemiluminescent emissions by 3.8-9.5 CAD, whereas the peak temperatures trailed by 5.8-15.6 CAD. Such a temporal separation precludes correlations on a crank-angle resolved basis. However, the peak cycle heat release rates and to a lesser extent the peak cycle temperatures correlated well with the chemiluminescent emission from CO*{sub 2}. Such observations point towards the potential use of flame chemiluminescence to monitor peak bulk gas temperatures as well as peak heat release rates in natural gas fired reciprocating engines.

  6. Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Holcombe, Norman T.

    2006-02-07

    A system of a fuel cell bottoming an internal combustion engine. The engine exhaust gas may be combined in varying degrees with air and fed as input to a fuel cell. Reformer and oxidizers may be combined with heat exchangers to accommodate rich and lean burn conditions in the engine in peaking and base load conditions without producing high concentrations of harmful emissions.

  7. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Greg Beshouri; Kirby S. Chapman; Jim McCarthy; Sarah R. Nuss-Warren; Mike Whelan

    2006-03-01

    This quarterly report re-evaluates current market objectives in the exploration and production industry, discusses continuing progress in testing that evaluates emission control technologies applied to a two-stroke cycle natural gas-fueled engine, and presents a scheme for enacting remote monitoring and control of engines during upcoming field tests. The examination of current market objectives takes into account technological developments and changing expectations for environmental permitting which may have occurred over the last year. This demonstrates that the continuing work in controlled testing and toward field testing is on track Market pressures currently affecting the gas exploration and production industry are shown to include a push for increased production, as well as an increasing cost for environmental compliance. This cost includes the direct cost of adding control technologies to field engines as well as the indirect cost of difficulty obtaining permits. Environmental regulations continue to require lower emissions targets, and some groups of engines which had not previously been regulated will be required to obtain permits in the future. While the focus remains on NOx and CO, some permits require reporting of additional emissions chemicals. Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOx emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing pre-combustion chambers with different characteristics and using mid-to-high-pressure fuel valves. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and a sketch of the first planned field test is presented. While early field tests will be completed using 4-stroke cycle rich-burn engines, later tests will be conducted on 2- and 4-stroke cycle lean-burn engines. The advantages of beginning with the rich-burn engine are summarized.

  8. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect (OSTI)

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

  9. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    SciTech Connect (OSTI)

    Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

    2013-08-31

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  10. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman; Allen J. Adriani

    2004-01-01

    For the period of the 8th reporting period high-impact control technologies were identified during the meeting at Cooper in Oklahoma City. The technologies that were identified will be tested on the Ajax DP-115 engine and are capable of being widely utilized by the E&P industry. Two major areas where engine controls and ignition systems, but still included were other alternatives to reduce emissions. The most exhilarating item for this quarter was when Ajax engine was delivered to the test bed at the NGML.

  11. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman

    2004-01-01

    During the fourth reporting period, the project team investigated the Non-Selective Catalytic Reduction technologies that are in use on rich-burn four-stroke cycle engines. Several engines were instrumented and data collected to obtain a rich set of engine emissions and performance data. During the data collection, the performance of the catalyst under a variety of operating conditions was measured. This information will be necessary to specify a set of sensors that can then be used to reliably implement NSCRs as plausible technologies to reduce NOx emissions for four-stroke cycle engines used in the E&P industry. A complete summary all the technologies investigated to data is included in the report. For each technology, the summary includes a description of the process, the emission reduction that is to be expected, information on the cost of the technology, development status, practical considerations, compatibility with other air pollutant control technologies, and any references used to obtain the information.

  12. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman; Sarah R. Nuss-Warren

    2006-07-01

    Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOX emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing pre-combustion chambers with different characteristics and using mid-to-high-pressure fuel valves and initial runs of these tests. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and changes to the first planned field test are presented. Although changes have been made to the previous plan, it is expected that several new sites will be selected soon. Field tests will begin in the next quarter.

  13. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman; Sarah R. Nuss-Warren

    2006-12-31

    This report highlights work done on a project intended to lower the cost of environmental compliance and expedite project permitting for Exploration and Production (E&P) operators by identifying, developing, testing, and commercializing emissions control and monitoring technologies. Promising technologies have already been identified and developed. Current work focuses on testing these promising technologies. Specifically, several technologies are being tested in the laboratory for application to lean-burn engines or fully characterized on-site for use with rich-burn engines. Upon completion of these tests, the most cost-effective and robust technologies will be tested in the field and commercialization will ensue. During this quarter, progress in laboratory testing for lean-burn engines was limited by maintenance issues on the KSU Ajax DP-115. The difficulties that required maintenance to be performed will likely require that the 180 psig prototype valve be tested in the future, if possible. The maintenance was performed, and it is expected that the Ajax will be available for testing in the coming quarter. Although laboratory testing was slowed as a result of maintenance issues, progress in experimental characterization of technologies has been significant. NSCR systems will be characterized as applied to rich-burn engines on-site. This characterization will ensure high-quality data in final field testing on rich-burn engines and is considered to be essential, despite that the work requires the delay of official field testing until 2008. Many preliminary and administrative tasks have been completed, including initial site selection, official proposal submittal, and beginning a process to approve necessary changes to installed field engines.

  14. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect (OSTI)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  15. INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - DEWALT RECIPROCATING SAW OENHP{number_sign}: 2001-01, VERSION A

    SciTech Connect (OSTI)

    Unknown

    2002-01-31

    Florida International University's (FIU) Hemispheric Center for Environmental Technology (HCET) evaluated five saws for their effectiveness in cutting specially prepared fiberglass-reinforced plywood crates. These crates were built as surrogates for crates that presently hold radioactively contaminated glove boxes at the Department of Energy's (DOE) Los Alamos facility. The DeWalt reciprocating saw was assessed on August 13, 2001. During the FIU test of efficacy, a team from the Operating Engineers National Hazmat Program (OENHP) evaluated the occupational safety and health issues associated with this technology. The DeWalt reciprocating saw is a hand-held industrial tool used for cutting numerous materials, including wood and various types of metals depending upon the chosen blade. Its design allows for cutting close to floors, corners, and other difficult areas. An adjustable shoe sets the cut at three separate depths. During the demonstration for the dismantling of the fiberglass-reinforced plywood crate, the saw was used for extended continuous cutting, over a period of approximately two hours. The dismantling operation involved vertical and horizontal cuts, saw blade changes, and material handling. During this process, operators experienced vibration to the hand and arm in addition to a temperature rise on the handgrip. The blade of the saw is partially exposed during handling and fully exposed during blade changes. Administrative controls, such as duty time of the operators and the machine, operator training, and personal protective equipment (PPE), such as gloves, should be considered when using the saw in this application. Personal noise sampling indicated that both workers were exposed to noise levels exceeding the Occupational Safety and Health Administration's (OSHA) Action Level of 85 decibels (dBA) with time-weighted averages (TWA's) of 88.3 and 90.6 dBA. Normally, a worker would be placed in a hearing conservation program if his TWA was greater than the Action Level. In this case, however, monitoring was conducted during a simulation, not during the actual work conducted at the worksite. Additional sampling should be conducted at the worksite to determine the actual noise levels for the workers. Until it is determined that the actual TWA's are less than the Action Level, the workers should use PPE. A training program on the proper use and wearing of the selected PPE should be provided to each worker. Nuisance dust monitoring yielded a concentration of 10.69 milligrams per cubic meter (mg/m{sup 3}). Although this is less than the OSHA Permissible Exposure Limit (PEL) of 15 mg/m{sup 3}, it is above the American Conference of Governmental Industrial Hygienists' (ACGIH) Threshold Limit Value (TLV) of 10 mg/m{sup 3}. Fiberglass dust monitoring yielded a fiber count of 1.7 fibers per cubic centimeter (f/cc). This is above the PEL and the TLV of 1.0 f/cc. Therefore, controls should be implemented (engineering or PPE) to reduce the workers' exposure to the dust. Respirators should be used if engineering controls do not sufficiently control the dust or fiberglass generated. Respirators should be equipped with an organic vapor and acid gas cartridge with a High Efficiency Particulate Air (HEPA) filter, since during the demonstration, the workers complained of an odd smell, which may have been from the breakdown of the fiberglass.

  16. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Keith Hohn; Sarah R. Nuss-Warren

    2011-08-31

    This final report describes a project intended to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by E&P operators to significantly lower their cost of environmental compliance and expedite project permitting. Technologies were installed and tested in controlled laboratory situations and then installed and tested on field engines based on the recommendations of an industry-based steering committee, analysis of installed horsepower, analysis of available emissions control and monitoring technologies, and review of technology and market gaps. The industry-recognized solution for lean-burn engines, a low-emissions-retrofit including increased airflow and pre-combustion chambers, was found to successfully control engine emissions of oxides of nitrogen (NO{sub X}) and carbon monoxide (CO). However, the standard non-selective catalytic reduction (NSCR) system recognized by the industry was found to be unable to consistently control both NO{sub X} and CO emissions. The standard NSCR system was observed to produce emissions levels that changed dramatically on a day-to-day or even hour-to-hour basis. Because difficulties with this system seemed to be the result of exhaust gas oxygen (EGO) sensors that produced identical output for very different exhaust gas conditions, models were developed to describe the behavior of the EGO sensor and an alternative, the universal exhaust gas oxygen (UEGO) sensor. Meanwhile, an integrated NSCR system using an advanced, signal-conditioned UEGO sensor was tested and found to control both NO{sub X} and CO emissions. In conjunction with this project, advanced monitoring technologies, such as Ion Sense, and improved sensors for emissions control, such as the AFM1000+ have been developed and commercialized.

  17. Training Reciprocity Achieves Greater Consistency, Saves Time...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The reciprocity program allowed the engineers to bypass a three-day Radiological Worker Program at SNL nearly identical to training they recently completed at ICP. In addition, ...

  18. Electromagnetic Reciprocity.

    SciTech Connect (OSTI)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a geophysical consultant ) and Dr. Chester J. Weiss (recently rejoined with Sandia National Laboratories) for many stimulating (and reciprocal!) discussions regar ding the topic at hand.

  19. Reciprocity Checklist

    Energy Savers [EERE]

    CHECKLIST OF PERMITTED EXCElTIONS TO RECIPROCITY (to be used whenever you make an eligibility determination for access to classified information for an individual who has a current access eligibility based upon the requisite investigation (i.e. ANACI, NACLC, SSBI, or SSBI-PR) For the purpose of determining eligibility for access to classified information, to include highly sensitive programs (i.e. SCI, SAPS and Q), as the gaining activityJprogram for an individual who has current access

  20. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-11-27

    This directive establishes the framework for an efficient, effective, secure, and safe aviation program in the DOE and its contractor operations. Cancels DOE O 440.2A, Aviation, dated 3-8-02.

  1. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-11-27

    To establish the framework for an efficient, effective, secure, and safe aviation program in the Department of Energy (DOE) and its contractor aviation operations. Cancels DOE O 440.2A. Canceled by DOE O 440.2C.

  2. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-03-02

    To establish the framework for an efficient, effective, secure, and safe aviation program in the Department of Energy (DOE) and its contractor aviation operations. Cancels DOE O 440.2. Canceled by DOE O 440.2B.

  3. Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines

    SciTech Connect (OSTI)

    Bradley, D.; Kalghatgi, G.T.

    2009-12-15

    The functional relationship of autoignition delay time with temperature and pressure is employed to derive the propagation velocities of autoignitive reaction fronts for particular reactivity gradients, once autoignition has been initiated. In the present study of a variety of premixtures, with different functional relationships, such gradients comprise fixed initial temperature gradients. The smaller is the ratio of the acoustic speed through the mixture to the localised velocity of the autoignitive front, the greater are the amplitude and frequency of the induced pressure wave. This might lead to damaging engine knock. At higher values of the ratio, the autoignition can be benign with only small over-pressures. This approach to the effects of autoignition is confirmed by its application to a variety of experimental studies involving: (i)Imposed temperature gradients in a rapid compression and expansion machine. (ii)Onset of knock in an engine with advancing spark timing. (iii)Development of autoignition at a single hot spot in an engine. (iv)Autoignition fronts initiated by several hot spots. There is much diversity in the effects that can be produced by different fuels in different ranges of temperature and pressure. Higher values of autoignitive propagation speeds lead to increasingly severe engine knock. Such effects cannot always be predicted from the Research and Motor octane numbers. (author)

  4. Demonstration of alcohol as an aviation fuel

    SciTech Connect (OSTI)

    1996-07-01

    A recently funded Southeastern Regional Biomass Energy Program (SERBEP) project with Baylor University will demonstrate the effectiveness of ethanols as an aviation fuel while providing several environmental and economic benefits. Part of this concern is caused by the petroleum industry. The basis for the petroleum industry to find an alternative aviation fuel will be dictated mainly by economic considerations. Three other facts compound the problem. First is the disposal of oil used in engines burning leaded fuel. This oil will contain too much lead to be burned in incinerators and will have to be treated as a toxic waste with relatively high disposal fees. Second, as a result of a greater demand for alkalites to be used in the automotive reformulated fuel, the costs of these components are likely to increase. Third, the Montreal Protocol will ban in 1998 the use of Ethyl-Di-Bromide, a lead scavenger used in leaded aviation fuel. Without a lead scavenger, leaded fuels cannot be used. The search for alternatives to leaded aviation fuels has been underway by different organizations for some time. As part of the search for alternatives, the Renewable Aviation Fuels Development Center (RAFDC) at Baylor University in Waco, Texas, has received a grant from the Federal Aviation Administration (FAA) to improve the efficiencies of ethanol powered aircraft engines and to test other non-petroleum alternatives to aviation fuel.

  5. Integrated Combined Heat and Power/Advanced Reciprocating Internal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

  6. A case for biofuels in aviation

    SciTech Connect (OSTI)

    1996-12-31

    In the last 15 years, the technical and the economic feasibility of biomass based fuels for general aviation piston engines has been proven. Exhaustive ground and flight tests performed at the Renewable Aviation Fuels Development Center (RAFDC) using ethanol, ethanol/methanol blends, and ETBE have proven these fuels to be superior to aviation gasoline (avgas) in all aspects of performance except range. Two series of Lycoming engines have been certified. Record flights, including a transatlantic flight on pure ethanol, were made to demonstrate the reliability of the fuel. Aerobatic demonstrations with aircraft powered by ethanol, ethanol/methanol, and ETBE were flown at major airshows around the world. the use of bio-based fuels for aviation will benefit energy security, improve the balance of trade, domestic economy, and environmental quality. The United States has the resources to supply the aviation community`s needs with a domestically produced fuel using current available technology. The adoption of a renewable fuel in place of conventional petroleum-based fuels for aviation piston and turbine engines is long overdue.

  7. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Supersedes DOE O 440.2B.

  8. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.

  9. Federal Aviation Administration | Open Energy Information

    Open Energy Info (EERE)

    Aviation Administration Jump to: navigation, search Logo: Federal Aviation Administration Name: Federal Aviation Administration Address: 800 Independence Ave., SW Place:...

  10. aviation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home aviation NNSA walks away with 3 Aviation Awards The DOE Headquarters Office of Aviation Management (OAM) awarded the following aviation management awards for performance in 2014. The NNSA, Office of Secure Transportation, Aviation Operations Division, Albuquerque, NM, has, for the second consecutive year, won the U.S. Department of...

  11. Reciprocating pellet press

    DOE Patents [OSTI]

    Jones, Charles W.

    1981-04-07

    A machine for pressing loose powder into pellets using a series of reciprocating motions has an interchangeable punch and die as its only accurately machines parts. The machine reciprocates horizontally between powder receiving and pressing positions. It reciprocates vertically to press, strip and release a pellet.

  12. Wankel rotary engine development status and research needs

    SciTech Connect (OSTI)

    Martin, M.K.

    1982-11-01

    This report summarizes the status of Wankel rotary engine technology, particularly as applicable to highway vehicles. The Wankel engine was invented over 25 years ago, and has undergone continual evolutionary design refinement. The engine's perceived advantages of less weight, volume, and complexity than reciprocating engines sparked keen interest, and Wankel-powered automobiles have now been in production for almost 20 years. However, in the early 1970s interest in the Wankel engine greatly subsided because of two problems with the engine at that time: poor fuel economy and high hydrocarbon emissions. The bulk of current Wankel engine development work applicable to highway vehicles is being conducted by Toyo Kogyo (TK) and Curtiss-Wright (C-W). TK has manufactured over 1.2 million rotary engines to date, and markets them in the Mazda Luce and Cosmo in Japan and the Mazda RX-7 worldwide. State-of-the-art production rotary-powered vehicles from TK now exhibit fuel economy which appears to be competitive with many equal-performance, reciprocating-engine vehicles. C-W is focusing its efforts on direct-injection, stratified-charge designs for military and aircraft applications. The company is developing a 750-hp dual-rotor engine for the US Marine Corps, and has completed a design study for a 320-hp general aviation engine. Based on typical reciprocating engines of 1975 to 1977 vintage, and with final drive ratios adjusted to give roughly equal vehicle performance, calculated Environmental Protection Agency (EPA) city fuel economy with the C-W rotary averages 25% higher than with the reciprocating engine. The highway gain is 13%. Use of diesel fuel or a middle distillate instead of gasoline allows an additional 11% gain to be projected on a per-gallon basis. In addition, further gains of 14 to 38% are projected to result from use of a smaller turbocharged version of the engine.

  13. Aviation Management Professional Award Nomination for: | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aviation Management Professional Award Nomination for: Aviation Management Professional Award Nomination for: PDF icon Aviation Management Professional Award Nomination for: More ...

  14. Ferrin Moore, Senior Aviation Policy Officer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aviation Academy's Aviation Safety Inspectors Course (Oklahoma City) * Graduate of Federal Aviation Administration Center for Management and Executive Leadership (Palm Coast, FL

  15. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  16. Aviation Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management » Aviation Management Aviation Management The Department of Energy, Aviation Program is the management function for all fleet aircraft and contracted aviation services for the Department. The program and its management personnel operate world-wide. To take advantage of the best communications and information services available, we have chosen the Net as one of our mainstays. The services provided from this page are designed to support our operating personnel. Except for our licensed

  17. Aviation Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Aviation Fuels Aviation Fuels A Navy plane in flight. The Bioenergy Technologies Office (BETO) sees the potential for biofuels produced for the aviation industry to help enable the growth of an advanced bioeconomy. Drop-in jet fuel replacements remain the only true alternative for the commercial aviation industry and the military, both facing ambitious near-term greenhouse gas reduction targets. BETO has been working with national labs, industry stakeholders, and

  18. Memorandum, Health and Safety Training Reciprocity Program -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health and Safety Training Reciprocity Program - July 12, 2013 Memorandum, Health and Safety Training Reciprocity Program - July 12, 2013 July 12, 2013 The HSS reciprocity program ...

  19. Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug

    SciTech Connect (OSTI)

    McIntyre, D.L.; Woodruff, S.D.; McMillian, M.H.; Richardson, S.W.; Gautam, Mridul

    2008-04-01

    To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.

  20. Multicylinder compound engine

    SciTech Connect (OSTI)

    Paul, M.A.; Paul, A.

    1990-10-23

    This patent describes a compound, rotary-reciprocal engine. It comprises: a two-cycle reciprocator having cylinders, each cylinder having at least one piston arranged for reciprocation in the cylinder in a cycled operation with a timed air input to the cylinder and a timed exhaust from the cylinder; a compressed air intake and combustion gas exit in each cylinder of the reciprocator; fuel injection means for injecting fuel into the cylinders at appropriate times in the cycled operation; and, a rotocharger.

  1. Baylor University - Renewable Aviation Fuels Development Center...

    Open Energy Info (EERE)

    University - Renewable Aviation Fuels Development Center Jump to: navigation, search Name: Baylor University - Renewable Aviation Fuels Development Center Address: One Bear Place...

  2. Patricia Hagerty, Aviation Program Analyst - Bio | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Patricia Hagerty, Aviation Program Analyst - Bio Patricia Hagerty, Aviation Program Analyst - Bio PDF icon HagertyPatPersonalProfile.pdf More Documents & Publications Ferrin ...

  3. Certification of alternative aviation fuels and blend components

    SciTech Connect (OSTI)

    Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

  4. E-Alerts: Energy (engine studies (energy related)). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    Operation and design of engines when related to energy conservation and energy use. Covers turbine, rotary, and reciprocating engines.

  5. Patricia Hagerty, Aviation Program Analyst

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States. Pat has two bachelor's degrees from the University of Montana; she is a certified general aviation private pilot and a Vietnam Era Veteran of the U.S. Coast Guard.

  6. Aviation Manager | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Aviation Manager Joseph Ginanni Joseph Ginanni July 2009 U.S. General Services Administration (GSA) Federal Aviation Professional Award Aviation Manager Joseph Ginanni has received the U.S. General Services Administration (GSA) Federal Aviation Professional Award. Ginanni oversees the Aviation Services Department of the NNSA/NSO Remote Sensing Laboratory at Nellis and Andrews Air Force Bases. The program provides aerial support to the NNSA Office of Emergency Response, which protects people from

  7. DOE Training Reciprocity Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reciprocity program goals Collaboration S&H program support PDF icon DOE Training Reciprocity Program More Documents & Publications Focus Group Training Work Group Meeting Focus ...

  8. DOE Federal Aviation Professional Awards | Department of Energy

    Energy Savers [EERE]

    DOE Federal Aviation Professional Awards DOE Federal Aviation Professional Awards PDF icon DOE Federal Aviation Professional Awards More Documents & Publications DOE Federal...

  9. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, ... Metha ne Number , Varyi ng DiluentsComposition 2 Technical Approach: Architecture ...

  10. Integrating Gasifiers and Reciprocating Engine Generators to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste biomass while reducing diesel fuel consumption and greenhouse gas (GHG) emissions. Introduction Internal combustion ... a multistage, multipoint heat recycling system was ...

  11. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    detailed combustion feedback for control Difficulty - durability at acceptable cost Laser Ignition Problem - provide energetic, robust, long-life ignition ...

  12. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Stoichiometric combustion, Exhaust Gas Recirculation, Advanced Three Way Catalyst ... (operate with non- std gases: landfill gas and other renewables) Non-std gases ...

  13. Oregon Department of Aviation | Open Energy Information

    Open Energy Info (EERE)

    Aviation Jump to: navigation, search Name: Oregon Department of Aviation Abbreviation: ODA Address: 3040 25th St. SE Place: Salem, Oregon Zip: 97302 Phone Number: 503-378-4880...

  14. Low Carbon Aviation Committee Meeting

    Broader source: Energy.gov [DOE]

    The first committee meeting of the Propulsion and Energy Systems to Reduce Commercial Aviation Carbon Emissions Project will be held on June 2–3, 2015 at the National Academy of Sciences. BETO Director Jonathan Male will be speaking on a Department of Energy panel at the meeting, and Lead Analyst Zia Haq will be in attendance.

  15. Implementation of alternative bio-based fuels in aviation: The Clean Airports Program

    SciTech Connect (OSTI)

    Shauck, M.E.; Zanin, M.G.

    1997-12-31

    The Renewable Aviation Fuels Development Center at Baylor University in Waco, Texas, was designated, in March 1996, by the US Department of Energy (US DOE) as the national coordinator of the Clean Airports Program. This program, a spin-off of the Clean Cities Program, was initiated to increase the use of alternative fuels in aviation. There are two major fuels used in aviation today, the current piston engine aviation gasoline, and the current turbine engine fuel. The environmental impact of each of these fuels is significant. Aviation Gasoline (100LL), currently used in the General Aviation piston engine fleet, contributes 100% of the emissions containing lead in the USA today. In the case of the turbine engine fuel (Jet fuel), there are two major environmental impacts to be considered: the local, in the vicinity of the airports, and the global impact on climate change. The Clean Airports Program was established to promote the use of clean burning fuels in order to achieve and maintain clean air at and in the vicinities of airports through the use of alternative fuel-powered air and ground transportation vehicles.

  16. Aviation Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read More Ceramic Matrix Composites Improve Engine Efficiency Ceramic matrix composites (CMCs) are a breakthrough materials technology for jet engines that started at our Global ...

  17. Hydraulic analysis of reciprocating pumps

    SciTech Connect (OSTI)

    Miller, J.D.; Miller, .E. [White Rock Engineering, Inc., Dallas, TX (United States)

    1994-12-31

    A general discussion is given of the factors affecting reciprocating pump hydraulics and methods of reducing the magnitude of the hydraulic pressure disturbances on the pump and the system. Pump type, speed, design, pump valves, suction conditions, and fluid being pumped affect volumetric efficiency and magnitude of hydraulic pressure disturbances. Total Cylinder Pressure (TCP) as a method of specifying minimum suction operating pressure versus Net Positive Suction Head required (NPSHR) is discussed. Diagnostic method of analyzing reciprocating pump performance is presented along with methods of controlling the hydraulic pressure disturbances with pulsation control devices. A review of types of pump pulsation dampeners is presented.

  18. Health and Safety Training Reciprocity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-04-14

    Establishes a policy for reciprocity of employee health and safety training among DOE entities responsible for employee health and safety at DOE sites and facilities to increase efficiency and effectiveness of Departmental operations while meeting established health and safety requirements. Does not cancel other directives.

  19. Harmonic engine

    DOE Patents [OSTI]

    Bennett, Charles L.

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  20. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cellulosic materials (Patent) | DOEPatents Engineered microbes and methods for microbial oil overproduction from cellulosic materials Title: Engineered microbes and methods for microbial oil overproduction from cellulosic materials The invention relates to engineering microbial cells for utilization of cellulosic materials as a carbon source, including xylose. Inventors: Stephanopoulos, Gregory ; Tai, Mitchell Issue Date: 2015-08-04 OSTI Identifier: 1207280 Assignee: Massachusetts Institute

  1. Aviation Safety Officer, Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-01-20

    The Aviation Safety Officer FAQS establishes common functional area competency requirements for all DOE aviation safety personnel who provide assistance, or direction, guidance, oversight, or evaluation of contractor technical activities that could impact the safe operation of DOE’s facilities.

  2. Aviation Manager Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-12-09

    The Aviation Manager FAQS establishes common functional area competency requirements for all DOE Aviation Manager personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical activities that could impact the safe operation of DOE’s defense nuclear facilities.

  3. BLM Fire and Aviation Office | Open Energy Information

    Open Energy Info (EERE)

    Fire and Aviation Office Jump to: navigation, search Logo: BLM Fire and Aviation Office Name: BLM Fire and Aviation Office Address: 1849 C Street NW, Rm. 5665 Place: Washington, DC...

  4. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assetsimagesicon-science.jpg Engineering National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of...

  5. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Engineering Standards Manual, Master Specifications Index, Drafting Manual, Design Guides, and more. IHS Standards Expert login information Collections include ANSI,...

  6. FAQS Reference Guide - Aviation Manager | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FAQS Reference Guide - Aviation Manager FAQS Reference Guide - Aviation Manager This reference guide addresses the competency statements in the January 2010 edition of...

  7. Aviation Enterprises Ltd see Marine Current Turbines Ltd | Open...

    Open Energy Info (EERE)

    Aviation Enterprises Ltd see Marine Current Turbines Ltd Jump to: navigation, search Name: Aviation Enterprises Ltd see Marine Current Turbines Ltd Region: United Kingdom Sector:...

  8. Ferrin Moore, Senior Aviation Policy Officer - Bio | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ferrin Moore, Senior Aviation Policy Officer - Bio Ferrin Moore, Senior Aviation Policy Officer - Bio PDF icon FerrinMoorePersonalProfile.pdf More Documents & Publications ...

  9. Airlines & Aviation Alternative Fuels: Our Drive to Be Early...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Plenary III: Early Market ...

  10. Reciprocal Recognition of Existing Personnel Security Clearances

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-07-20

    Provides direction for implementing actions required by the Office of Management and Budget memorandum, Reciprocal Recognition of Existing Personnel Security Clearances.

  11. engineering

    National Nuclear Security Administration (NNSA)

    an award last month for his 3D printing innovation. It could revolutionize additive manufacturing.

    Lawrence Livermore Lab engineer Bryan Moran wasn't necessarily...

  12. FAQS Reference Guide - Aviation Manager | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manager FAQS Reference Guide - Aviation Manager This reference guide addresses the competency statements in the January 2010 edition of DOE-STD-1164-2003 Chg 1, Aviation Safety Officer Functional Area Qualification Standard. PDF icon Aviation Manager Qualification Standard Reference Guide, March 2010 More Documents & Publications FAQS Reference Guide - Aviation Safety Officer Inspection Report: IG-0654 DOE-STD-1165

  13. Heater head for a Stirling engine

    SciTech Connect (OSTI)

    Darooka, D.K.

    1988-09-06

    A heater head is described for a compound Stirling engine modules, each including a displacer cylinder coaxially aligned with the displacer cylinder of the other of the engine modules, a displacer piston mounted for reciprocation in the displacer cylinder.

  14. [Research and workshop on alternative fuels for aviation. Final report

    SciTech Connect (OSTI)

    1999-09-01

    The Renewable Aviation Fuels Development Center (RAFDC) at Baylor University was granted U. S. Department of Energy (US DOE) and Federal Aviation Administration (FAA) funds for research and development to improve the efficiency in ethanol powered aircraft, measure performance and compare emissions of ethanol, Ethyl Tertiary Butyl Ether (ETBE) and 100 LL aviation gasoline. The premise of the initial proposal was to use a test stand owned by Engine Components Inc. (ECI) based in San Antonio, Texas. After the grant was awarded, ECI decided to close down its test stand facility. Since there were no other test stands available at that time, RAFDC was forced to find additional support to build its own test stand. Baylor University provided initial funds for the test stand building. Other obstacles had to be overcome in order to initiate the program. The price of the emission testing equipment had increased substantially beyond the initial quote. Rosemount Analytical Inc. gave RAFDC an estimate of $120,000.00 for a basic emission testing package. RAFDC had to find additional funding to purchase this equipment. The electronic ignition unit also presented a series of time consuming problems. Since at that time there were no off-the-shelf units of this type available, one had to be specially ordered and developed. FAA funds were used to purchase a Super Flow dynamometer. Due to the many unforeseen obstacles, much more time and effort than originally anticipated had to be dedicated to the project, with much of the work done on a volunteer basis. Many people contributed their time to the program. One person, mainly responsible for the initial design of the test stand, was a retired engineer from Allison with extensive aircraft engine test stand experience. Also, many Baylor students volunteered to assemble the. test stand and continue to be involved in the current test program. Although the program presented many challenges, which resulted in delays, the RAFDC's test stand is an asset which provides an ongoing research capability dedicated to the testing of alternative fuels for aircraft engines. The test stand is now entirely functional with the exception of the electronic ignition unit which still needs adjustments.

  15. ENGINEERING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw America's energy blueprint is now. The challenges we face today are the most critical in decades-from the impact of energy use on global ecosystems to the difficulties of efficiently harnessing our natural resources. Because energy is fundamental to human welfare, we must develop sustainable systems that make clean,

  16. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect (OSTI)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.

  17. Internal combustion engine with compound air compression

    SciTech Connect (OSTI)

    Paul, M.A.; Paul, A.

    1991-10-15

    This patent describes an internal combustion engine in combination with a compound air compression system. It comprises: a reciprocator with at least one cylinder, at least one piston reciprocal in the cylinder and a combustion chamber formed in substantial part by portions of the piston and cylinder, the reciprocator having a drive shaft; a rotary compressor having a drive shaft mechanically coupled to the drive shaft of the reciprocator, the rotary compressor having a Wankel-type, three-lobe, epitrochiodal configuration sides having a conduit conjected to the reciprocator for supplying compressed air to the reciprocator; a turbocharged with a gas turbine and a turbocompressor, the turbocompressor having an air conduit connected to the expander side of the rotary compressor; and a bypass conduit with a valve means connecting the turbocharger to the reciprocator for supplying compressed air directly to the reciprocator wherein the drive shaft of the reciprocator and the drive shaft of the compressor have connecting means for transmitting mechanical energy to the reciprocator at mid to high operating speeds of the engine when the turbocharge supplies compressed air to the rotary compressor and, at least in part, drives the rotary compressor.

  18. NNSA walks away with 3 Aviation Awards | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA ... the following aviation management awards for performance in ... the U.S. Department of Energy Jeff Snow Aviation Program ...

  19. FAQS Reference Guide - Aviation Safety Officer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Officer FAQS Reference Guide - Aviation Safety Officer This reference guide addresses the competency statements in the January 2010 edition of DOE-STD-1164-2003 Chg 1, Aviation Safety Officer Functional Area Qualification Standard. PDF icon Aviation Safety Officer Qualification Standard Reference Guide, March 2010 More Documents & Publications FAQS Reference Guide - Aviation Manager DOE-STD-1165-2003 DOE-STD-1164

  20. Stirling engine with pressurized crankcase

    DOE Patents [OSTI]

    Corey, John A.

    1988-01-01

    A two piston Stirling engine wherein the pistons are coupled to a common crankshaft via bearing means, the pistons include pad means to minimize friction between the pistons and the cylinders during reciprocation of the pistons, means for pressurizing the engine crankcase, and means for cooling the crankshaft and the bearing means eliminating the need for oil in the crankcase.

  1. Rotary valve internal combustion engine

    SciTech Connect (OSTI)

    Bunk, P.H.

    1989-03-28

    A rotary valve internal combustion engine is described, comprising: an engine block; at least one cylinder in the engine block; at least one cylinder having a top end; cylinder head means located adjacent the top end of at least one cylinder, the cylinder head means having a cylindrically shaped cavity therein, the cylindrically shaped cavity being oriented in perpendicular relation to at least one cylinder; a piston sealingly mounted in at least one cylinder for reciprocable movement therein, the reciprocable movement including an intake stroke and an exhaust stroke; engine shaft means rotatably mounted to the engine block; means within the engine block for converting the reciprocable movement of the piston into rotary motion of the engine shaft means; a cylinder port located at the top end of at least one cylinder; a rotary valve rotatably mounted in the cylindrically shaped cavity; means connected with the engine shaft means for rotating the rotary valve in a predetermined synchronization with the reciprocable movement of the piston; aspiration means in the rotary valve for selectively aspirating at least one cylinder during the intake an exhaust strokes; and a spark plug removably mounted within the rotary valve and rotatable therewith.

  2. Greenhouse Gas Emissions from Aviation and Marine Transportation...

    Open Energy Info (EERE)

    and Policies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies...

  3. DOE - Office of Legacy Management -- Bendix Aviation Corp Pioneer...

    Office of Legacy Management (LM)

    Corp Pioneer Div - IA 05 FUSRAP Considered Sites Site: BENDIX AVIATION CORP., PIONEER DIV. (IA.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated...

  4. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

  5. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  6. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  7. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  8. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...

  9. DOE - Office of Legacy Management -- Bendix Aviation Corporation...

    Office of Legacy Management (LM)

    Corporation Kansas City Plant - MO 06 FUSRAP Considered Sites Site: Bendix Aviation Corporation Kansas City Plant (MO.06) Designated Name: Alternate Name: Location: Evaluation...

  10. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and ...

  11. Microelectromechanical reciprocating-tooth indexing apparatus

    DOE Patents [OSTI]

    Allen, James J. (Albuquerque, NM)

    1999-01-01

    An indexing apparatus is disclosed that can be used to rotate a gear or move a rack in a precise, controllable manner. The indexing apparatus, based on a reciprocating shuttle driven by one or more actuators, can be formed either as a micromachine, or as a millimachine. The reciprocating shuttle of the indexing apparatus can be driven by a thermal, electrostatic or electromagnetic actuator, with one or more wedge-shaped drive teeth of the shuttle being moveable to engage and slide against indexing teeth on the gear or rack, thereby moving the gear or rack. The indexing apparatus can be formed by either surface micromachining processes or LIGA processes, depending on the size of the apparatus that is to be formed.

  12. Thermochemical Conversion Proceeses to Aviation Fuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Proceeses to Aviation Fuels Thermochemical Conversion Proceeses to Aviation Fuels This is a presentation from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop given by John Holladay, PNNL PDF icon holladay_caafi_workshop.pdf More Documents & Publications Technology Pathway Selection Effort Pathways for Algal Biofuels U.S., Canada, and Finland Pyrolysis Collaborations

  13. Biofuels in Defense, Aviation, and Marine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biorefineries o Cost-competitive biofuel with conventional petroleum (wo ... F2F2 13 | Bioenergy Technologies Office * Engine re-light at altitude, polar climate, in ...

  14. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound

    Broader source: Energy.gov (indexed) [DOE]

    Technology | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy PDF icon 2004_deer_hopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011

  15. Rotary reciprical combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-20

    This patent describes a rotary-reciprocal combustion engine having a cycle which includes the four strokes of intake, compression, expansion and exhaustion, the engine. It comprises: a housing formed with a peripheral wall with side walls, a rotor in the housing, the inner surface of the peripheral inner wall being cylindrical; a shaft; mounted in the center of the housing, passing through the rotor's hub and extending through the side walls of the housing, the hub having means to allow the rotor to reciprocate on the shaft while the shaft is rotating with the rotor; a reciprocal and rotary guide having means to guide the rotary and reciprocal motions of the rotor while keeping the rotor's piston in continuous sealing contact with the cylinder chamber walls and varying the volume of the cylinder chambers enabling a compression of a gaseous mixture to take place after aspirating a gaseous mixture; an ignition system having means for igniting compressed gaseous mixture and expansion of the cylinder chambers due to pressure of the combustion products.

  16. Memorandum, Health and Safety Training Reciprocity Program- July 12, 2013

    Broader source: Energy.gov [DOE]

    The centerpiece of TRAC is HSS' voluntary training reciprocity program that has tremendous potential to bring consistency and standardization to health and safety training across DOE.

  17. Harmonic engine

    SciTech Connect (OSTI)

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  18. U.S. Aviation Gasoline Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Aviation Gasoline Kerosene-Type Jet Fuel Propane (Consumer Grade) Kerosene No. 1 ... Product Sales Type Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Sales to ...

  19. DOE O 440.2C Aviation Management and Safety

    Broader source: Energy.gov [DOE]

    On June 15, 2011, the Department issued a Contractor Requirements Document (CRD) to the above listed Directive. This Directive establishes a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operation.

  20. Stirling cycle engine

    DOE Patents [OSTI]

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  1. Reciprocity and gyrotropism in magnetic resonance transduction

    SciTech Connect (OSTI)

    Tropp, James

    2006-12-15

    We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are swapped between the two antenna ports--giving in one instance a signal intensity pattern whose form resembles an umbrella (i.e., with a central column of moderate intensity surmounted by a bright canopy), and in the other, a distorted oval with slight concavities at its horizontal extremes, whose outline suggests that of a cat's eye. The relation between image patterns and drive scheme can be shown to reverse if the static polarizing field is reversed. Electromagnetic and circuit calculations, together with the modified reciprocity principle, allow us to reproduce these pattern changes in numerical simulations, closely and convincingly. Although the imaging experiments are performed at a static field of 3.0 T, and consequently a Larmor frequency of 128 MHz, the nonreciprocal effects are not related to the shortness of the wavelength in aqueous medium, but appear equally in simulations based in either the quasistatic or full electromagnetic regimes. Finally, we show that although antenna patterns for transmission and reception are swapped with reversal of the polarizing field, meaning that the receive pattern equals the transmit pattern with the field reversed, this in no way invalidates the familiar rotating wave model of spin dynamics in magnetic resonance.

  2. Engineering Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

  3. Drift stabilizer for reciprocating free-piston devices

    DOE Patents [OSTI]

    Ward, William C.; Corey, John A.; Swift, Gregory W.

    2003-05-20

    A free-piston device has a stabilized piston drift. A piston having a frequency of reciprocation over a stroke length and with first and second sides facing first and second variable volumes, respectively, for containing a working fluid defining an acoustic wavelength at the frequency of reciprocation. A bypass tube waveguide connects the first and second variable volumes at all times during reciprocation of the piston. The waveguide has a relatively low impedance for steady flow and a relatively high impedance for oscillating flow at the frequency of reciprocation of the piston, so that steady flow returns fluid leakage from about the piston between the first and second volumes while oscillating flow is not diverted through the waveguide. Thus, net leakage about the piston is returned during each stroke of the piston while oscillating leakage is not allowed and pressure buildup on either the first or second side of the piston is avoided to provide a stable piston location.

  4. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.; Mosca, J.O.

    1992-02-25

    This patent describes a rotary internal combustion engine. It includes a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing, the engine block being relatively rotatable within the housing about a central axis; means connectable to an external drive member for translating the relative rotation of the engine block with respect to the housing into useful work; at least one radially arranged cylinder assembly on the block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; the piston, cylinder and cylinder end wall together.

  5. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines

    SciTech Connect (OSTI)

    2009-06-01

    This factsheet describes a research project whose goal is to test and substantiate erosion-resistant (ER) nanocoatings for application on compressor airfoils for gas turbine engines in both industrial gas turbines and commercial aviation.

  6. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    SciTech Connect (OSTI)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  7. Implementation Guide - Aviation Program Performance Indicators (Metrics) for use with DOE O 440.2B, Aviation Management And Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-10

    The Guide provides information regarding Departmental expectations on provisions of DOE 440.2B, identifies acceptable methods of implementing Aviation Program Performance Indicators (Metrics) requirements in the Order, and identifies relevant principles and practices by referencing Government and non-Government standards. Canceled by DOE G 440.2B-1A.

  8. Double-reed exhaust valve engine

    DOE Patents [OSTI]

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  9. Performance of a New Lightweight Reciprocating Pump

    SciTech Connect (OSTI)

    Whitehead, J C

    2005-06-09

    A new four-chamber piston pump design has been fabricated and tested. The small-scale propellant pump is intended to be powered by gas at elevated temperatures, e.g. in a gas-generator cycle rocket propulsion system. Two key features are combined for the first time: leak-tight liquid-cooled seals, and a high throughput per unit hardware mass. Measured performance curves quantify flows, pressures, leakage, volumetric efficiency, and tank pressure requirements. A pair of 300-gram pumps operating with significant margin could deliver fuel and oxidizer at 5 MPa to a compact lightweight 1000-N engine, while tank pressure remains at 0.35 MPa. Pump weight is well below one percent of thrust, as is typical for launch vehicle engines. Applications include small upper stages, aggressive maneuvers in space, and miniature launch vehicles for Mars ascent.

  10. Pressurized-fluid-operated engine

    SciTech Connect (OSTI)

    Holleyman, J.E.

    1990-01-30

    This patent describes a pressurized-fluid-operated reciprocating engine for providing output power by use of a pressurized gas that expands within the engine without combustion. It comprises: an engine block having a plurality of cylinders within which respective pistons are reciprocatable to provide a rotary power output; gas inlet means connected with the engine block for introducing a pressurized gas into the respective cylinders in a predetermined, timed relationship to provide a smooth power output from the engine; gas outlet means connected with the engine block for conveying exhaust gas from the respective cylinders after the gas expanded to move the pistons within the cylinders; and recirculation means extending between the inlet means and the outlet means for recirculation a predetermined quantity of exhaust gas. The recirculation means including ejector means for drawing exhaust gas into the recirculation means.

  11. Harmonic uniflow engine

    DOE Patents [OSTI]

    Bennett, Charles L.

    2016-03-22

    A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.

  12. Means and method of balancing multi-cylinder reciprocating machines

    DOE Patents [OSTI]

    Corey, John A.; Walsh, Michael M.

    1985-01-01

    A virtual balancing axis arrangement is described for multi-cylinder reciprocating piston machines for effectively balancing out imbalanced forces and minimizing residual imbalance moments acting on the crankshaft of such machines without requiring the use of additional parallel-arrayed balancing shafts or complex and expensive gear arrangements. The novel virtual balancing axis arrangement is capable of being designed into multi-cylinder reciprocating piston and crankshaft machines for substantially reducing vibrations induced during operation of such machines with only minimal number of additional component parts. Some of the required component parts may be available from parts already required for operation of auxiliary equipment, such as oil and water pumps used in certain types of reciprocating piston and crankshaft machine so that by appropriate location and dimensioning in accordance with the teachings of the invention, the virtual balancing axis arrangement can be built into the machine at little or no additional cost.

  13. Stratified cross combustion engine

    SciTech Connect (OSTI)

    Rhoads, J.L.

    1981-06-23

    A piston engine is provided in which adjacent cylinder pairs share a common combustion chamber and the pistons are mounted to reciprocate substantially in phase, one of the pistons in each piston pair receiving a rich mixture which is ignited by a sparkplug in that cylinder, with the other cylinder in the cylinder pair being passive in its preferred form, and receiving through a separate intake valve either pure air or a leaner mixture into which the combusted richer mixture pours, insuring that the greatest combustion possible resulting in the greatest percentage of carbon dioxide formation as opposed to carbon monoxide is created.

  14. Glen F. Wattman Director, Office of Aviation Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glen F. Wattman Director, Office of Aviation Management A native of New York, Glen Wattman has served as a civilian Airline Pilot for more than thirteen years flying Boeing 757, 767 and 727 transport category aircraft. He has extensive experience operating flights domestically and throughout Central and South America and Europe. Mr. Wattman is currently a Major in the United States Air Force Reserve and serves as a subject matter expert as a liaison to the Florida Wing of the Civil Air Patrol.

  15. Process for Converting Algal Oil to Alternative Aviation Fuel - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Process for Converting Algal Oil to Alternative Aviation Fuel Los Alamos National Laboratory Contact LANL About This Technology The conversion process uses a Kolbe-based method of converting the fatty acids from the algal lipid triglycerides to fuel. The conversion process uses a Kolbe-based method of converting the fatty acids from the algal lipid triglycerides to fuel. Technology Marketing Summary Conversion of triglyceride oils extracted from algae-derived lipids into

  16. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  17. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  18. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  19. Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adopters | Department of Energy Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Plenary III: Early Market Adopters Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Nancy N. Young, Vice President, Environmental Affairs, Airlines for America PDF icon young_bioenergy_2015.pdf More Documents & Publications QER - Comment of Airlines for America

  20. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

  1. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

  2. Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of 43 Page i DOD-DOE Workshop Summary and Action Plan: Fuel Cells in Aviation Table of Contents Executive Summary ......

  3. Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System

    SciTech Connect (OSTI)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E; Brumback, Daryl L

    2010-01-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  4. Implementation Guide - Aviation Management, Operations, Maintenance, Security, and Safety for Use with DOE O 440.2B, Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-07-18

    This Guide provides detailed information to help all personnel, responsible for a part of the aviation program, understand and comply with the rules and regulations applicable to their assignments. Canceled by DOE G 440.2B-2A.

  5. Engineers Named to National Academy | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 GE Engineers Elected to National Academy of Engineering Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) 3 GE Engineers Elected to National Academy of Engineering GE (NYSE: GE) announced today that three distinguished engineers, one from the company's Global Research Center, and two from its Aviation business, have

  6. Aviation fuel additives. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning research and development of aviation fuel additives and their effectiveness. Articles include studies on antioxidant, antimist, antistatic, lubricity, corrosion inhibition, and icing inhibition additives. Other applications are covered in investigations of additives for vulnerability reduction, thermal stability, and storage stability of aviation fuels. (Contains a minimum of 168 citations and includes a subject term index and title list.)

  7. Extracting Information from Narratives: An Application to Aviation Safety Reports

    SciTech Connect (OSTI)

    Posse, Christian; Matzke, Brett D.; Anderson, Catherine M.; Brothers, Alan J.; Matzke, Melissa M.; Ferryman, Thomas A.

    2005-05-12

    Aviation safety reports are the best available source of information about why a flight incident happened. However, stream of consciousness permeates the narratives making difficult the automation of the information extraction task. We propose an approach and infrastructure based on a common pattern specification language to capture relevant information via normalized template expression matching in context. Template expression matching handles variants of multi-word expressions. Normalization improves the likelihood of correct hits by standardizing and cleaning the vocabulary used in narratives. Checking for the presence of negative modifiers in the proximity of a potential hit reduces the chance of false hits. We present the above approach in the context of a specific application, which is the extraction of human performance factors from NASA ASRS reports. While knowledge infusion from experts plays a critical role during the learning phase, early results show that in a production mode, the automated process provides information that is consistent with analyses by human subjects.

  8. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

  9. A new spin on the rotary engine

    SciTech Connect (OSTI)

    Ashley, S.

    1995-04-01

    This article reports on a Canadian company that is trying to develop high-power, low-weight motors based on a novel axial-vane rotary engine concept. A promising new attempt at a practical rotary engine is the Rand Cam engine now being developed by Reg Technologies Inc. The Rand Cam engine is a four-stroke, positive-displacement power plant based on an axial-vane compression/expansion mechanism with only nine moving parts (eight vanes and a rotor). The new engine design uses passive ports rather than mechanically operated valves, and it features lighter-weight reciprocating parts than customary pistons. The Rand Cam operates at lower speeds than a typical Wankel engine (less than 2,000 rpm) and at higher compression ratios. Chamber sealing is accomplished using sliding axial vanes rather than the motion of an eccentric rotor.

  10. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  11. Lightweight piston-rod assembly for a reciprocating machine

    DOE Patents [OSTI]

    Corey, John A.; Walsh, Michael M.

    1986-01-01

    In a reciprocating machine, there is provided a hollow piston including a dome portion on one end and a base portion on the opposite end. The base portion includes a central bore into which a rod is hermetically fixed in radial and angular alignment. The extending end of the rod has a reduced diameter portion adapted to fit into the central bore of a second member such as a cross-head assembly, and to be secured thereto in radial and axial alignment with the piston.

  12. National Training Center (NTC) Launches a New DOE-Wide Voluntary Training Reciprocity and Collaboration Initiative

    Broader source: Energy.gov [DOE]

    The Office of Health, Safety and Security's National Training Center (NTC) recently launched an exciting new DOE-wide voluntary Training Reciprocity and Collaboration initiative. Under the...

  13. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.

    1993-07-20

    A multi bank power plant is described comprising at least a first and a second rotary internal combustion engine connectable together in series, each of the engines comprising: a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing and rotatable about a central axis; an output shaft extending axially from each the engine block, each output shaft being coaxial with the other; means for coupling the output shafts together so that the output shafts rotate together in the same direction at the same speed; at least one radially arranged cylinder assembly on each block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; a combustion chamber, means permitting periodic introduction of air and fuel into the combustion chamber, means for causing combustion of a compressed mixture of air and fuel within the combustion chamber, means permitting periodic exhaust of products of combustion of air and fuel from the combustion chamber, and means for imparting forces and motions of the piston within the cylinder to and from the cam track, the means comprising a cam follower operatively connected to the piston; wherein the cam track includes at least a first segment and at least a second segment thereof, the first segment having a generally positive slope wherein the segment has a generally increasing radial distance from the rotational axis of the engine block whereby as a piston moves outwardly in a cylinder on a power stroke while the cam follower is in radial register with the cam track segment, the reactive force of the respective cam follower against the cam track segment acts in a direction tending to impart rotation to the engine block.

  14. Variable compression ratio device for internal combustion engine

    DOE Patents [OSTI]

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  15. DOE-STD-1165-2003; Aviation Manager Functional Area Qualification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... AND LEVELS OF KNOWLEDGE ...... 19 DOE-STD-1165-2003 vi INTENTIONALLY BLANK DOE-STD-1165-2003 vii ACKNOWLEDGMENT The Office of Aviation Management (ME-2.4) and the ...

  16. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    - W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

  17. Advanced stratified charge rotary aircraft engine design study

    SciTech Connect (OSTI)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise and installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  18. DOE - Office of Legacy Management -- North American Aviation Inc - CA 07

    Office of Legacy Management (LM)

    American Aviation Inc - CA 07 FUSRAP Considered Sites Site: NORTH AMERICAN AVIATION, INC. (CA.07) Eliminated from consideration under FUSRAP Designated Name: None Designated Alternate Name: None Location: Downey , California CA.07-1 Evaluation Year: 1987 CA.07-1 Site Operations: Research and development on a bench scale using a small reactor; work done during the early 1950s. CA.07-1 Site Disposition: Eliminated - Potential for contamination remote based on limited scope of operations CA.07-2

  19. Advanced Reciprocating Engine Systems (ARES) R&D - Cross-Cutting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation does not contain any proprietary, confidential, or otherwise restricted information.

  20. Advanced Reciprocating Engine Systems (ARES) R&D - Cross-Cutting Technologies Enable Efficient manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation does not contain any proprietary, confidential, or otherwise restricted information.

  1. Stirling engine with pressurized crankcase

    SciTech Connect (OSTI)

    Corey, J.A.

    1988-08-23

    This patent describes a Stirling cycle engine comprising an engine housing which includes compression and expansion cylinders and a crankcase area; a compression piston and an expansion piston positioned in respective cylinders in the housing and coupled to a common crankshaft via bearing means. The crankshaft being positioned in the crankcase area which is defined by the pistons and the housing. The pistons includes pad means between the pistons and their respective cylinders to minimize the friction therebetween during reciprocal movement thereof; the crankcase being pressurized to inhibit the passing of working gas past the pistons; and means for cooling the crankshaft and the bearing means eliminating the need for oil in the crankcase.

  2. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  3. Implementation Guide - Aviation Management, Operations, Maintenance, Security, and Safety for Use with DOE O 440.2B Chg 1, Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-10-17

    This Guide provides detailed information to help all personnel, responsible for a part of the aviation program, understand and comply with the rules and regulations applicable to their assignments. Cancels DOE G 440.2B-2. Canceled by DOE N 251.110.

  4. Chemical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical Engineering HomeTag:Chemical ...

  5. General Engineers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    areas: statics, dynamics, strength of circuits, chemical engineering, refinery engineering, nature and property of materials, optics, heat transfer, soil mechanics, or electronics. ...

  6. Reliability Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is often fragmented, ...

  7. High Temperature Superconducting Reciprocating Magnetic Separator Final Report

    SciTech Connect (OSTI)

    James F. Maguire

    2008-06-05

    In 2001, under DOE's Superconductivity Partnership Initiative (SPI), E. I. du Pont de Nemours & Co. (Dupont) was awarded a cost-share contract to build a fully functional full-scale model high temperature superconducting reciprocating magnet unit specifically designed for the koalin clay industry. After competitive bidding, American Superconductor (AMSC) was selected to provide the coil for the magnet. Dupont performed the statement of work until September 2004, when it stopped work, with the concurrence of DOE, due to lack of federal funds. DOE had paid all invoices to that point, and Dupont had provided all cost share. At this same time, Dupont determined that this program did not fit with its corporate strategies and notified DOE that it was not interesting in resuming the program when funding became available. AMSC expressed interest in assuming performance of the Agreement to Dupont and DOE, and in March 2005, this project was transferred to AMSC by DOE amendment to the original contract and Novation Agreement between AMSC and Dupont. Design drawings and some hardware components and subassemblies were transferred to AMSC. However, no funding was obligated by DOE and AMSC never performed work on the project. This report contains a summary of the work performed by Dupont up to the September 04 timeframe.

  8. Linear hydraulic drive system for a Stirling engine

    SciTech Connect (OSTI)

    Walsh, M.M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible. 2 figs.

  9. Linear hydraulic drive system for a Stirling engine

    DOE Patents [OSTI]

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  10. Design and development of a reciprocating low-temperature freon expander

    SciTech Connect (OSTI)

    Hynek, S.J.; Demler, R.L.; Harvey, A.C.; Walker, D.H.; Fuller, H.H.

    1981-01-01

    The design and development of a 20-ton refrigeration system to be powered by 140/sup 0/F waste hot water is described. The system consists of a Rankine cycle driving a reverse-Rankine cycle, integrated in that they share a common working fluid (R-22), a common condenser, and a common crankcase housing the expander and compressor. A reciprocating single-acting counterflow expander provides a combination of high efficiency in the desired capacity range, modularity, and adaptability to existing compressors. Because the temperatures and pressures of the Rankine cycle fell within the design envelope of a standard refrigeration compressor, the compressor and expander could be housed within the same crankcase by converting some of the compressor cylinders to expander cylinders by replacing the cylinder heads. The expander heads incorporate rotary valves which offer high flow coefficients; they permit higher flow areas and more straightforward flow paths than poppet valves. Rotary valve design presents little risk considering the use of compatible oil, the low operating temperatures, and close clearances that are consistent with minimal differential thermal expansion. Valve timing was optimized by a computerized finite difference technique that performed mass and energy balances and calculated flow through the valves as the crankshaft progressed incrementally. This calculation predicted that breathing losses would amount to only 13%.Thermal losses are expected to be minimal, for temperature differences are low and thermal transport properties poor. Mechanical losses are expected to be less than those of an internal combustion engine; m.e.p. is comparable, and the expander cylinder environment is less hostile to the lubricating oil.

  11. ,"U.S. Aviation Gasoline Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    Aviation Gasoline Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Aviation Gasoline Refiner Sales Volumes",2,"Monthly","2/2016","1/15/1983" ,"Release Date:","5/2/2016" ,"Next Release Date:","6/1/2016" ,"Excel File

  12. ,"Aviation Gasoline Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    Aviation Gasoline Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Aviation Gasoline Sales to End Users Refiner Sales Volumes",60,"Monthly","2/2016","1/15/1983" ,"Release Date:","5/2/2016" ,"Next Release

  13. Stirling engines

    SciTech Connect (OSTI)

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  14. Bench wear testing of engine power cylinder components

    SciTech Connect (OSTI)

    Patterson, D.J.; Hill, S.H.; Tung, S.C.

    1993-02-01

    A need exists for an accurate and repeatable friction and wear bench test for engine power cylinder components that more closely relates to engine test results. Current research and development includes investigation of new engine designs, materials, coatings and surface treatments for reduced weight, longer life, higher operating temperature, and reduced friction. Alternative fuels being examined include alcohols and gaseous fuels, as well as reformulated gasolines and distillate fuels. Concurrently, new lubricants are being formulated for the new engine and fuel combinations. Because of the enormous cost and time of developing commercial engine, fuel and lubricant combinations by means of engine testing alone, much interest is being focused on more representative and repeatable bench tests. This paper examines some known bench testers employing either rotary or reciprocating motion for evaluating the friction, wear, and durability of material couples. Information is presented on experience and practice with one rotary (Falex type) and two reciprocating testers (Cameron-Plint and a new design, the EMA-L59). Some correlation with engine data is given.

  15. Two phase exhaust for internal combustion engine

    DOE Patents [OSTI]

    Vuk, Carl T.

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  16. Adaptive Control to Improve Low Temperature Diesel Engine Combustion |

    Broader source: Energy.gov (indexed) [DOE]

    Sheet, April 2014 | Department of Energy The University of Minnesota, Morris, in collaboration with the University of Minnesota Center for Diesel Research, Cummins Power Generation Inc., ALL Power Labs, and Hammel, Green & Abrahamson (HGA), integrated a biomass gasifier and a reciprocating engine generator set into a combined platform, enabling electricity generation from waste biomass while reducing diesel fuel consumption and greenhouse gas (GHG) emissions. PDF icon

  17. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Other Products Definitions Key Terms Definition Aviation Gasoline A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Gas Plant Operator Any firm, including a gas plant owner, which

  18. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Product Prices by Sales Type Definitions Key Terms Definition Aviation Gasoline (Finished) A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Gas Plant Operator Any firm,

  19. Value Engineering

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-30

    To establish Department of Energy (DOE) value engineering policy that establishs and maintains cost-effective value procedures and processes.

  20. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect (OSTI)

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation, reformer, and lean NOx trap catalysts. The initial work on NOx reduction efficiency demonstrated that NOx emissions <0.1 g/bhp-hr (the ARES goal) can be achieved with the lean NOx trap catalyst technology. Subsequent work focused on cost and size optimization and durability issues which addressed two specific ARES areas of interest to industry ('Cost of Power' and 'Availability, Reliability, and Maintainability', respectively). Thus, the research addressed the approach of the lean NOx trap catalyst technology toward the ARES goals as shown in Table 1-1.

  1. Shockwave Engine: Wave Disk Engine

    SciTech Connect (OSTI)

    2010-01-14

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  2. An object-oriented approach to risk and reliability analysis : methodology and aviation safety applications.

    SciTech Connect (OSTI)

    Dandini, Vincent John; Duran, Felicia Angelica; Wyss, Gregory Dane

    2003-09-01

    This article describes how features of event tree analysis and Monte Carlo-based discrete event simulation can be combined with concepts from object-oriented analysis to develop a new risk assessment methodology, with some of the best features of each. The resultant object-based event scenario tree (OBEST) methodology enables an analyst to rapidly construct realistic models for scenarios for which an a priori discovery of event ordering is either cumbersome or impossible. Each scenario produced by OBEST is automatically associated with a likelihood estimate because probabilistic branching is integral to the object model definition. The OBEST methodology is then applied to an aviation safety problem that considers mechanisms by which an aircraft might become involved in a runway incursion incident. The resulting OBEST model demonstrates how a close link between human reliability analysis and probabilistic risk assessment methods can provide important insights into aviation safety phenomenology.

  3. MODELING AND PERFORMANCE EVALUATION FOR AVIATION SECURITY CARGO INSPECTION QUEUING SYSTEM

    SciTech Connect (OSTI)

    Allgood, Glenn O; Olama, Mohammed M; Rose, Terri A; Brumback, Daryl L

    2009-01-01

    Beginning in 2010, the U.S. will require that all cargo loaded in passenger aircraft be inspected. This will require more efficient processing of cargo and will have a significant impact on the inspection protocols and business practices of government agencies and the airlines. In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, and throughput. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures will reduce the overall cost and shipping delays associated with the new inspection requirements.

  4. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Engineering Institute Multidisciplinary engineering research that integrates advanced modeling and simulations, novel sensing systems and new developments in information technology. May 14, 2013 Los Alamos Research Park Los Alamos Research Park, the home of Engineering Institute Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505)

  5. The Future of Biofuels: U.S. (and Global) Airlines & Aviation Alternative Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    Biofuels: U.S. (and Global) Airlines & Aviation Alternative Fuels 2014 EIA Conference Nancy N. Young, VP-Environment July 15, 2014 Why Airlines Want Alternative Fuels airlines.org 2 » New Supply Chain * Energy Security/Supply Reliability * Competitor to Petroleum-Based Fuels » Environmental Benefit/Imperative * Greenhouse Gas (Carbon) Emissions Benefits * Reduce Emissions Affecting Local Air Quality * Do Not Induce Other Environmental Problems U.S. Airlines' Fuel Costs Are High, Volatile

  6. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-12-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-02-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains a minimum of 231 citations and includes a subject term index and title list.)

  8. Mechanical Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Engineering Services (PEJD) organization of Program Implementation Energy Efficiency, Power Services, Bonneville Power Administration (BPA). As part of the Power...

  9. Environmental Engineer

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will be an environmental technical expert and advisor to integrate science and engineering principles to improve the natural environment and direct and...

  10. Electrical Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Contract Management Office (CMO) (TED), Engineering and Technical Services (TE), Transmission Services (T). The function of the Contract Management Office (CMO) is...

  11. Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... with the U.S. automotive and heavy-duty diesel engine industries, energy companies, and other ... The strategies include: ultra-low-emission, low-temperature combustion; ...

  12. Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operation Operations Engineering, (J4200) 5555...

  13. Rotary engine

    SciTech Connect (OSTI)

    Leas, A. M.; Leas, L. E.

    1985-02-12

    Disclosed are an engine system suitable for use with methyl alcohol and hydrogen and a rotary engine particularly suited for use in the engine system. The rotary engine comprises a stator housing having a plurality of radially directed chamber dividers, a principal rotor, a plurality of subordinate rotors each having an involute gear in its periphery mounted on the principal rotor, and means for rotating the subordinate rotors so that their involute gears accept the radially directed dividers as the subordinate rotors move past them.

  14. New Technology Demonstration of the Whole-Building Diagnostician at the Federal Aviation Administration-Denver Airport

    SciTech Connect (OSTI)

    Pratt, Robert G.; Bauman, Nathan N.; Katipamula, Srinivas

    2003-01-17

    This report describes results from an evaluation of the Whole Building Diagnostician's (WBD) ability to automatically and continually diagnose operational problems in building air handlers at the Federal Aviation Administration's Denver airport.

  15. Demonstration and implementation of ethanol as an aviation fuel. Final report

    SciTech Connect (OSTI)

    1998-01-01

    The objectives of the program were to demonstrate the viability of ethanol as an aviation fuel at appropriate locations and audiences in the participating Biomass Energy Program Regions, and to promote implementation projects in the area. Seven demonstrations were to be performed during the Summer 1995 through December 1996 period. To maximize the cost effectiveness of the program, additional corporate co-sponsorships were sought at each demonstration site and the travel schedule was arranged to take advantage of appropriate events taking place in the vicinity of the schedule events or enroute. This way, the original funded amount was stretched to cover another year of activities increasing the number of demonstrations from seven to thirty-nine. While the Renewable Aviation Fuels Development Center (RAFDC) contract focused on ethanol as an aviation fuel, RAFDC also promoted the broader use of ethanol as a transportation fuel. The paper summarizes locations and occasions, and gives a brief description of each demonstration/exhibit/presentation held during the term of the project. Most of the demonstrations took place at regularly scheduled air shows, such as the Oshkosh, Wisconsin Air Show. The paper also reviews current and future activities in the areas of certification, emission testing, the international Clean Airports Program, air pollution monitoring with instrumented aircraft powered by renewable fuels, training operation and pilot project on ethanol, turbine fuel research, and educational programs.

  16. Reciprocal space mapping of epitaxial materials using position-sensitive x-ray detection

    SciTech Connect (OSTI)

    Lee, S.R.; Doyle, B.L.; Drummond, T.J.; Medernach, J.W.; Schneider, R.P. Jr.

    1994-10-01

    Reciprocal space mapping can be efficiently carried out using a position-sensitive x-ray detector (PSD) coupled to a traditional double-axis diffractometer. The PSD offers parallel measurement of the total scattering angle of all diffracted x-rays during a single rocking-curve scan. As a result, a two-dimensional reciprocal space map can be made in a very short time similar to that of a one-dimensional rocking-curve scan. Fast, efficient reciprocal space mapping offers numerous routine advantages to the x-ray diffraction analyst. Some of these advantages are the explicit differentiation of lattice strain from crystal orientation effects in strain-relaxed heteroepitaxial layers; the nondestructive characterization of the size, shape and orientation of nanocrystalline domains in ordered-alloy epilayers; and the ability to measure the average size and shape of voids in porous epilayers. Here, the PSD-based diffractometer is described, and specific examples clearly illustrating the advantages of complete reciprocal space analysis are presented.

  17. Training Reciprocity Achieves Greater Consistency, Saves Time and Money for Idaho, Other DOE Sites

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – Contracting companies supporting EM’s cleanup program at the Idaho site volunteered to be among the first to use a new DOE training reciprocity program designed to bring more consistency to health and safety training across the complex, reduce redundancy and realize savings and other efficiencies.

  18. Thermoacoustic engines

    SciTech Connect (OSTI)

    Swift, G.W.

    1988-10-01

    Thermoacoustic engines, or acoustic heat engines, are energy-conversion devices that achieve simplicity and concomitant reliability by use of acoustic technology. Their efficiency can be a substantial fraction of Carnot's efficiency. In thermoacoustic prime movers, heat flow from a high-temperature source to a low-temperature sink generates acoustic power (which may be converted to electric power using a transducer). In thermoacoustic heat pumps and refrigerators, acoustic power is used to pump heat from a low-temperature source to a high-temperature sink. This review teaches the fundamentals of thermoacoustic engines, by analysis, intuition, and example.

  19. General Engineer

    Broader source: Energy.gov [DOE]

    This position is located in Office of Standard Contract Management, within the Office of the General Counsel (GC). The purpose of the position is to conduct technical and engineering reviews of the...

  20. Electrical Engineer

    Broader source: Energy.gov [DOE]

    THIS IS A FIELD ENGINEER POSITION REQUIRING 100% TRAVEL TO WORK SITES LOCATED IN A FOUR STATE REGION (IDAHO, MONTANA, OREGON AND WASHINGTON); LOCATION AND DURATION OF ASSIGNMENTS CHANGE FREQUENTLY....

  1. Civil Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  2. Combustion Engine

    Broader source: Energy.gov [DOE]

    Pictured here is an animation showing the basic mechanics of how an internal combustion engine works. With support from the Energy Department, General Motors researchers developed a new technology ...

  3. Civil Engineer

    Broader source: Energy.gov [DOE]

    This announcement is open to Recent Graduates who have graduated within the last two years with a bachelor's degree in Civil Engineering and meet the requirements listed under the Qualifications...

  4. Engineering Technician

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  5. microbial engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microbial engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  6. Reliability Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LA-UR 15-27450 This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is often fragmented, does not cover the full system lifecycle * Reliability needs to be addressed in design, development, and operational life * Reliability analysis should integrate information from components and systems Integrate proven reliability methods with world-class statistical science * Use methods and tools

  7. structured engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  8. Aviation security cargo inspection queuing simulation model for material flow and accountability

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Rose, Terri A; Brumback, Daryl L

    2009-01-01

    Beginning in 2010, the U.S. will require that all cargo loaded in passenger aircraft be inspected. This will require more efficient processing of cargo and will have a significant impact on the inspection protocols and business practices of government agencies and the airlines. In this paper, we develop an aviation security cargo inspection queuing simulation model for material flow and accountability that will allow cargo managers to conduct impact studies of current and proposed business practices as they relate to inspection procedures, material flow, and accountability.

  9. Panel Discussion: New Directions in Human Reliability Analysis for Oil & Gas, Cybersecurity, Nuclear, and Aviation

    SciTech Connect (OSTI)

    Harold S. Blackman; Ronald Boring; Julie L. Marble; Ali Mosleh; Najmedin Meshkati

    2014-10-01

    This panel will discuss what new directions are necessary to maximize the usefulness of HRA techniques across different areas of application. HRA has long been a part of Probabilistic Risk Assessment in the nuclear industry as it offers a superior standard for risk-based decision-making. These techniques are continuing to be adopted by other industries including oil & gas, cybersecurity, nuclear, and aviation. Each participant will present his or her ideas concerning industry needs followed by a discussion about what research is needed and the necessity to achieve cross industry collaboration.

  10. Fisher information, the Hellmann-Feynman theorem, and the Jaynes reciprocity relations

    SciTech Connect (OSTI)

    Flego, S.P.; Plastino, A.; Plastino, A.R.

    2011-10-15

    We explore intriguing links connecting Hellmann-Feynman's theorem to a thermodynamics information-optimizing principle based on Fisher's information measure. - Highlights: > We link a purely quantum mechanical result, the Hellmann-Feynman theorem, with Jaynes' information theoretical reciprocity relations. > These relations involve the coefficients of a series expansion of the potential function. > We suggest the existence of a Legendre transform structure behind Schroedinger's equation, akin to the one characterizing thermodynamics.

  11. Reciprocal space analysis of the microstructure of luminescent and nonluminescent porous silicon films

    SciTech Connect (OSTI)

    Lee, S.R.; Barbour, J.C.; Medernach, J.W.; Stevenson, J.O.; Custer, J.S.

    1994-12-31

    The microstructure of anodically prepared porous silicon films was determined using a novel X-ray diffraction technique. This technique uses double-crystal diffractometry combined with position-sensitive X- ray detection to efficiently and quantitatively image the reciprocal space structure of crystalline materials. Reciprocal space analysis of newly prepared, as well as aged, p{sup {minus}} porous silicon films showed that these films exhibit a very broad range of crystallinity. This material appears to range in structure from a strained, single-crystal, sponge-like material exhibiting long-range coherency to isolated, dilated nanocrystals embedded in an amorphous matrix. Reciprocal space analysis of n{sup +} and p{sup +} porous silicon showed these materials are strained single-crystals with a spatially-correlated array of vertical pores. The vertical pores in these crystals may be surrounded by nanoporous or nanocrystalline domains as small as a few nm in size which produce diffuse diffraction indicating their presence. The photoluminescence of these films was examined using 488 nm Ar laser excitation in order to search for possible correlations between photoluminescent intensity and crystalline microstructure.

  12. Rotary engine

    SciTech Connect (OSTI)

    Meyman, U.

    1987-02-03

    A rotary engine is described comprising: two covers spaced from one another; rotors located between the covers and rotating and planetating in different phases; the rotors interengaging to form working chambers therebetween; means to supply fluid to the working chambers and means to exhaust fluid from the working chambers during the operating cycle of the engine; gearing for synchronizing rotation and planetation of the rotors and each including first and second gears arranged so that one of the gears is connected with the rotors while the other of the gears is connected with an immovable part of the engine and the gears engage with one another; carriers interconnecting the rotors and planetating in the same phase with the planetation of the rotors for synchronizing the rotation and planetation of the rotors; shafts arranged to support the carriers during their planetations; and elements for connecting the covers with one another.

  13. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

  14. The effect of thermal barrier coated piston crown on engine characteristics

    SciTech Connect (OSTI)

    Chan, S.H.; Khor, K.A.

    2000-02-01

    While there have been numerous research papers in recent years describing the theoretical benefits obtained from the use of ceramic components in reciprocating engines, the amount of literature that describes practical results is very limited. Although successes have been reported and ceramic components are now in service in production engines, mainly for reduced in-cylinder heat rejection, many researchers have experienced failures or a drop in engine performance. This article presents the work completed on a low heat rejection engine. Extensive experiments were conducted on a three-cylinder SI Daihatsu engine with piston crowns coated with a layer of ceramic, which consisted of yttria-stabilized zirconia (YSZ). Measurement and comparison of engine performance, in particular fuel consumption, were made before and after the application of YSZ coatings deposited onto the piston crowns. The details of the cylinder pressures during the combustion process were also investigated.

  15. Value Engineering

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-01-07

    To establish Department of Energy (DOE) value engineering policy that meets the requirements of Public Law 104-106, Section 4306 as codified by 41 United States Code 432. Canceled by DOE N 251.94. Does not cancel other directives.

  16. Stirling engine control mechanism and method

    DOE Patents [OSTI]

    Dineen, John J.

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  17. Rotary engine

    SciTech Connect (OSTI)

    Fawcett, S.L.

    1987-03-03

    In an internal combustion engine, external heat engine, heat pump, gaseous expander, pump or gas compressor, the combustion is described including means forming a cylindrical working chamber having intake and exhaust port means for gases, and two pistons having an arcuate length within the range of 90/sup 0/ to 120/sup 0/ of the cylindrical portion of the working chamber to move toward and away from each other for compression and expansion of gases by rotation on separate concentrically-arranged shafts. A seal means is carried by the walls of the cylindrical working chamber at each of spaced apart locations to continuously form a gas sealing relation with both of the pistons while the pistons rotate toward and away from each other in the cylindrical working chamber.

  18. Rotary engine

    SciTech Connect (OSTI)

    Larson, T. G.

    1985-10-22

    The rotary engine has a circumferential main chamber and at least one smaller combustion chamber spaced from the main chamber. The rotor includes a plurality of radially-projecting sealing members in spaced relationship thereabout for maintaining a fluid-sealed condition along a single fixed transverse strip area on the interior surface of the main chamber. A single radially-oriented axially-parallel piston vane is also carried by the rotor and moves through the fixed strip area of the main chamber at each revolution of the rotor. Plural passages for intake, compression, expansion, and exhaust are ported into the main chamber at locations proximate to the fixed strip area. Valve means in the passages selectively open and close the same for a cycle of engine operation involving intake, compression, burning, and exhaust.

  19. Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  20. Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  1. Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. Rotary engine

    SciTech Connect (OSTI)

    Fawcett, S.L.

    1988-02-09

    In an internal combustion engine, external heat engine, heat pump, gaseous expander, pump or gas compressor, the combination is described including means forming a cylindrical working chamber communicating with intake and exhaust port means for gases, two pistons having an arcuate length within the range of 90/sup 0/ to 120/sup 0/ of the cylindrical surface of the working chamber. The pistons are movable toward and away from each other for compression and expansion of gases in the working chamber while separately rotating concentrically-arranged shafts, a drive shaft, three sets of gearing for connecting the pistons to the drive shaft, a first set of the gearing drivingly coupled to a first of the separate concentric shafts, a second set of the gearing drivingly coupled to a second of the concentric shaft, and a third set of the gearing comprising non-circular gears. The drive shaft is secured to one gear of each of the first, second and third gear sets of gearing for rotating the drive shaft with a substantially constant velocity and torque output throughout the several phases of the working cycle of the engine, compressor or pump.

  3. Efficiency evaluation of the DISC (direct-injection stratified charge), DHC (dilute homogeneous charge), and DI Diesel engines (direct-injection diesel)

    SciTech Connect (OSTI)

    Hane, G.J.

    1983-09-01

    The thermodynamic laws governing the Otto and diesel cycle engines and the possible approaches that might be taken to increase the delivered efficiency of the reciprocating piston engine are discussed. The generic aspects of current research are discussed and typical links between research and the technical barriers to the engines' development are shown. The advanced engines are discussed individually. After a brief description of each engine and its advantages, the major technical barriers to their development are discussed. Also included for each engine is a discussion of examples of the linkages between these barriers and current combustion and thermodynamic research. For each engine a list of questions is presented that have yet to be resolved and could not be resolved within the scope of this study. These questions partially indicate the limit to the state of knowledge regarding efficiency characteristics of the advanced engine concepts. The major technical barriers to each of the engines and their ranges of efficiency improvement are summarized.

  4. HCCI in a Variable Compression Ratio Engine: Effects of Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Variable Compression Ratio Engine: Effects of Engine Variables HCCI in a Variable Compression Ratio Engine: Effects of Engine Variables 2004 Diesel Engine Emissions Reduction ...

  5. Project Engineer (Nuclear/Mechanical Engineer) | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Engineer (NuclearMechanical Engineer) Department: Engineering Supervisor(s): ... Its Mechanical Engineering Division (MED) is seeking to hire a NuclearMechanical Engineer ...

  6. Stirling engine

    SciTech Connect (OSTI)

    Bolger, S.R.

    1992-03-17

    This patent describes an engine. It comprises at least two variable volume compartments joined by a porous medium regenerator; heat exchangers in heat exchange relationships with the variable volume compartments; a fixed quantity of gas in the compartments; a piston in each of the compartments; means to control the pistons to vary the volumes of the gas transferring between the compartments in the form of overlapping quadrilateral waveforms to compress the gas in both compartments through the same cycle pressure ratio during a cycle compression step, to shift the gas between compartments and to expand the gas in both compartments through the same cycle pressure ratio during a cycle expansion step.

  7. Engineers Constructors

    Office of Legacy Management (LM)

    Engineers - Constructors ~ /:~ ( ' r,.... I!~\ l.,_",z;(J;' Bechtel National, Inc. Oak Ridge Office Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge. Tennessee Mail Address: P. O. B01l 350. Oak Ridge. TN 37830 bce-. R. Barber C. t1iller E. Wal ker C. Knoke G. Phillips G. Scott L. Blevins K. Harer DOE File No. 030-04G Professional Land Surveying 1404 Second Street Santa Fe, New Mexico 87501 Attn: Mr. Robert Benavides Reference: Purchase Contract l4501-01j04-PC-19 Bayo Canyon Survey Dear

  8. Pressure non-uniformity and mixing characteristics in stratified-charge rotary engine combustion

    SciTech Connect (OSTI)

    Abraham, J.; Wey, M.J.; Bracco, F.V.

    1988-01-01

    Stratified-charge combustion in rotary engines was studied using a three-dimensional model to compute intake, compression, liquid fuel injection, combustion, expansion, and exhaust. The model was applied to two engines of different displacement and at seven operating conditions. Good agreement is found between the measured pressure and the results of previous studies. The main feature of the combustion flowfield in the two engines, the slow and nonuniform mixing of fuel and air which leads to long and incomplete combustion, is attributed at least in part to low turbulent diffusivity within the rotor pocket. The TDC diffusivity in this type of rotary engine is shown to be lower than in corresponding reciprocating engines primarily because of the longer time between intake and TDC. The model also explains pressure nonuniformities that have been experimentally observed within the combustion chamber around TDC. The nonuniformity is due to the large fluid acceleration caused by the motion of the rotor. 34 references.

  9. A reciprocal space approach for locating symmetry elements in Patterson superposition maps

    SciTech Connect (OSTI)

    Hendrixson, T.

    1990-09-21

    A method for determining the location and possible existence of symmetry elements in Patterson superposition maps has been developed. A comparison of the original superposition map and a superposition map operated on by the symmetry element gives possible translations to the location of the symmetry element. A reciprocal space approach using structure factor-like quantities obtained from the Fourier transform of the superposition function is then used to determine the best'' location of the symmetry element. Constraints based upon the space group requirements are also used as a check on the locations. The locations of the symmetry elements are used to modify the Fourier transform coefficients of the superposition function to give an approximation of the structure factors, which are then refined using the EG relation. The analysis of several compounds using this method is presented. Reciprocal space techniques for locating multiple images in the superposition function are also presented, along with methods to remove the effect of multiple images in the Fourier transform coefficients of the superposition map. In addition, crystallographic studies of the extended chain structure of (NHC{sub 5}H{sub 5})SbI{sub 4} and of the twinning method of the orthorhombic form of the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} are presented. 54 refs.

  10. Reciprocal regulation of LXRα activity by ASXL1 and ASXL2 in lipogenesis

    SciTech Connect (OSTI)

    Park, Ui-Hyun; Seong, Mi-ran; Kim, Eun-Joo; Hur, Wonhee; Kim, Sung Woo; Yoon, Seung Kew; Um, Soo-Jong

    2014-01-10

    Highlights: •ASXL1 and ASXL2 directly interact with ligand-bound LXRα. •Ligand-induced LXRα activity is repressed by ASXL1 and activated by ASXL2. •ASXL1 and ASXL2 bind to the LXRE of the LXRα target promoter. •ASXL1 and ASXL2 reciprocally regulate lipogenesis in liver cells. -- Abstract: Liver X receptor alpha (LXRα), a member of the nuclear receptor superfamily, plays a pivotal role in hepatic cholesterol and lipid metabolism, regulating the expression of genes associated with hepatic lipogenesis. The additional sex comb-like (ASXL) family was postulated to regulate chromatin function. Here, we investigate the roles of ASXL1 and ASXL2 in regulating LXRα activity. We found that ASXL1 suppressed ligand-induced LXRα transcriptional activity, whereas ASXL2 increased LXRα activity through direct interaction in the presence of the ligand. Chromatin immunoprecipitation (ChIP) assays showed ligand-dependent recruitment of ASXLs to ABCA1 promoters, like LXRα. Knockdown studies indicated that ASXL1 inhibits, while ASXL2 increases, lipid accumulation in H4IIE cells, similar to their roles in transcriptional regulation. We also found that ASXL1 expression increases under fasting conditions, and decreases in insulin-treated H4IIE cells and the livers of high-fat diet-fed mice. Overall, these results support the reciprocal role of the ASXL family in lipid homeostasis through the opposite regulation of LXRα.

  11. Rotary engine

    SciTech Connect (OSTI)

    Brownfield, L.A.

    1980-12-02

    The major components of this rotary engine are two equal sized rotary units, the housing containing them along with associated ignition and cooling systems. Each of the rotary units consists of a shaft, gear, two outer compressor wheels, and one center power wheel which has twice the axial thickness as the compressor wheel. All the wheels are cylindrical in shape with a lobe section comprising a 180/sup 0/ arc on the periphery of each wheel which forms an expanding and contracting volumetric chamber by means of leading and trailing lips. The lobes of the first rotary unit are situated 180/sup 0/ opposite the lobes of the second adjacent mating rotary unit, thus lobes can intermesh with its corresponding wheel.

  12. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    SciTech Connect (OSTI)

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  13. Ducted combustion chamber for direct injection engines and method

    SciTech Connect (OSTI)

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  14. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    SciTech Connect (OSTI)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  15. ARRA FEMP Technical Assistance -- Federal Aviation Administration Project 209 -- Control Tower and Support Building, Palm Springs, CA

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-03-31

    This report represents findings of a design review team that evaluated construction documents (at the 100% level) and operating specifications for a new control tower and support building that will be built in Palm Springs, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.

  16. Metabolic Engineering X Conference

    SciTech Connect (OSTI)

    Flach, Evan

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  17. Rotary engine

    SciTech Connect (OSTI)

    Smith, T.A.

    1992-01-28

    This patent describes an improved rotary engine. It comprises an annular master cylinder composed of a cylindrical housing, a continuous hollow outer concentric shaft, an outward end housing and an inward end housing; means to form a dynamically balanced disc piston assembly extending from the the outward end housing to the the inward end housing thereby dividing the the annular master cylinder into at least three separate gas tight cylinders formed by rotating discs, each cylinder having at least two pistons independently rotatable therein; means to isolate the unexpanded gases from any exit path into the housing of the piston controlling means; and wherein one of the pistons in each cylinder is connected directly to the the continuous outer concentric shaft to form a first piston assembly, the other of the pistons in each cylinder is connected to the discs which are connected to the end of an inner concentric shaft to form a second piston assembly, means for controlling the piston action by a common eccentric shaft such that as the pistons rotate they expand and reduce the distance between them thereby changing the volume between the pistons within each of the cylinders.

  18. Reciprocal-Space Analysis of Compositional Modulation in Short-Period Superlattices Using Position-Sensitive X-Ray Detection

    SciTech Connect (OSTI)

    Ahrenkiel, S.P.; Follstaedt, D.M.; Lee, S.R.; Millunchick, J.M.; Norman, A.G.; Reno, J.L.; Twesten, R.D.

    1998-11-10

    Epitaxial growth of AlAs-InAs short-period superlattices on (001) InP can lead to heterostructures exhibiting strong, quasi-periodic, lateral modulation of the alloy composition; transverse satellites arise in reciprocal space as a signature of the compositional modulation. Using an x-ray diffractometer equipped with a position-sensitive x-ray detector, we demonstrate reciprocal-space mapping of these satellites as an efficient, nondestructive means for detecting and characterizing the occurrence of compositional modulation. Systematic variations in the compositional modulation due to the structural design and the growth conditions of the short-period superlattice are characterized by routine mapping of the lateral satellites. Spontaneous compositional modulation occurs along the growth front during molecular-beam epitaxy of (AlAs) (InAs)n short-period superlattices. The modulation is quasi-periodic and forms a lateral superlattice superimposed on the intended SPS structure. Corresponding transverse satellites arise about each reciprocal lattice point, and x-ray diffraction can be routinely used to map their local reciprocal-space structure. The integrated intensity, spacing, orientation, and shape of these satellites provide a reliable means for nondestructively detecting and characterizing the compositional modulation in short-period superlattices. The analytical efficiency afforded by the use of a PSD has enabled detailed study of systematic vacations in compositional modulation as a function of the average composition, the period, and the growth rate of the short- period superlattice

  19. Study of Engine Operating Parameter Effects on GDI Engine Particle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Results show ...

  20. Increased Engine Efficiency via Advancements in Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Efficiency via Advancements in Engine Combustion Systems Increased Engine Efficiency via Advancements in Engine Combustion Systems Presentation given at the 16th Directions...

  1. Sandia Energy - HCCI/SCCI Engine Fundamentals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive HCCISCCI Engine Fundamentals HCCISCCI Engine...

  2. Sandia Energy - HCCI/SCCI Engine Fundamentals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty HCCISCCI Engine Fundamentals HCCISCCI Engine...

  3. Taking an engine`s temperature

    SciTech Connect (OSTI)

    Allison, S.W.; Beshears, D.L.; Cates, M.R.; Noel, B.W.; Turley, W.D.

    1997-01-01

    Ceramic and ceramic-coated components will be of increasing importance in the advanced engines now under development. Ceramics enable engines to run at much higher temperatures than the superalloys in more conventional engines can. The two options for noncontact high-temperature measurements of ceramic components are pyrometry and phosphor thermometry. This article describes how when properly applied as a thin coating, thermally sensitive phosphors can monitor the temperature of ceramic surfaces inside an engine.

  4. Chemical Diagnostics and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CDE Chemical Diagnostics and Engineering We support stockpile manufacturing, surveillance, ... for nuclear safeguard monitoring The Chemical Diagnostics and Engineering (C-CDE) ...

  5. Chemical & Engineering News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical & Engineering News Home...

  6. Tumor Engineering: The Other Face of Tissue Engineering

    SciTech Connect (OSTI)

    Ghajar, Cyrus M; Bissell, Mina J

    2010-03-09

    Advances in tissue engineering have been accomplished for years by employing biomimetic strategies to provide cells with aspects of their original microenvironment necessary to reconstitute a unit of both form and function for a given tissue.We believe that the most critical hallmark of cancer is loss of integration of architecture and function; thus, it stands to reason that similar strategies could be employed to understand tumor biology. In this commentary, we discuss work contributed by Fischbach-Teschl and colleagues to this special issue of Tissue Engineering in the context of 'tumor engineering', that is, the construction of complex cell culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. We provide examples of fundamental questions that could be answered by developing such models, and encourage the continued collaboration between physical scientists and life scientists not only for regenerative purposes, but also to unravel the complexity that is the tumor microenvironment. In 1993, Vacanti and Langer cast a spotlight on the growing gap between patients in need of organ transplants and the amount of available donor organs; they reaffirmed that tissue engineering could eventually address this problem by 'applying principles of engineering and the life sciences toward the development of biological substitutes. Mortality figures and direct health care costs for cancer patients rival those of patients who experience organ failure. Cancer is the second leading cause of death in the United States (Source: American Cancer Society) and it is estimated that direct medical costs for cancer patients approach $100B yearly in the United States alone (Source: National Cancer Institute). In addition, any promising therapy that emerges from the laboratory costs roughly $1.7B to take from bench to bedside. Whereas we have indeed waged war on cancer, the training grounds have largely consisted of small rodents, despite marked differences between human and mouse physiology, or plastic dishes, even though just like our tissues and organs most tumors exist within three-dimensional proteinacious milieus. One could argue that this is comparable to training for a desert war in the arctic. In this special issue of tissue engineering, Fischbach-Teschl and colleagues build a strong case for engineering complex cultures analogous to normal organs to tractably model aspects of the human tumor microenvironment that simply cannot be reproduced with traditional two-dimensional cell culture techniques and that cannot be studied in a controlled fashion in vivo. This idea has gained considerable traction of late as concepts presented and convincingly shown years ago have only now begun to be appreciated. Perhaps, then, it is time to organize those who wish to build complex tumor models to study cancer biology under a common umbrella. Accordingly, we propose that tumor engineering be defined as the construction of complex culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. Inherent in this definition is the collaboration that must occur between physical and life scientists to guide the design of patterning techniques, materials, and imaging modalities for the study of cancer from the subcellular to tissue level in physiologically relevant contexts. To date, the most successful tissue engineering approaches have employed methods that recapitulate the composition, architecture, and/or chemical presentation of native tissue. For instance, induction of blood vessel growth for therapeutic purposes has been achieved with sequential release of vascular endothelial growth factor (VEGF) and platelet derived growth factor to induce and stabilize blood vessels. This approach imitates that which occurs during physiological angiogenesis as a result of heterotypic interactions between endothelium and stroma. Employing such biomimetic strategies has already led to success in cancer research. Studying tumors in 3D has proven far more accurate in reproducing in vivo growth characteristics and chemotherapeutic resistance than 2D approaches. A number of animal studies and co-culture experiments have identified also the importance of interactions with other nonmalignant cell types - such as endothelial cells, fibroblasts, adipocytes, leukocytes, and circulating progenitors - to support and sustain tumor growth, invasion, and metastasis. Reproducing not only the 'dynamic reciprocity' but also the 'dynamic cooperativity' between these constituents in a spatially, temporally, and functionally accurate fashion presents quite a challenge for engineering tumors. So, why do it? The reason is to ask important fundamental questions that cannot easily be answered in vivo or on tissue culture plastic for the reasons mentioned.

  7. Career Map: Mechanical Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Mechanical Engineer positions.

  8. Career Map: Aerospace Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Aerospace Engineer positions.

  9. Career Map: Electrical Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Electrical Engineer positions.

  10. Career Map: Industrial Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Industrial Engineer positions.

  11. Jefferson Lab Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Privacy and Security Notice Skip over navigation search JLab Engineering Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Engineering Division Engineering Pressure Systems Seminars/Training print version Mechanical Systems Mechanical Engineering - Document Control Survey Alignment Machine Shop Installation/Vacuum Cryogenics Cryogenics - Cryogenics Department

  12. Reciprocal space analysis of the initial stages of strain relaxation in SiGe epilayers

    SciTech Connect (OSTI)

    Lee, S.R.; Floro, J.A.

    1996-01-01

    Metastable SiGe films were grown by MBE on Si (001) substrates and annealed to promote varying degrees of partial relaxation. X-ray diffraction reciprocal-space analysis was then used to monitor the structural evolution of the displacement fields of the dislocation array with increasing misfit density. The diffuse-x-ray-scattering patterns of the dislocated heterolayers were compared with lineal- misfit densities determined by defect etching, leading to the develop a geometric model which provides a framework for understanding the early-stage evolution of the displacement fields of the dislocation array, and which also explicitly links diffuse x-ray intensity to misfit density. At low misfit density, the diffuse intensity arises from two-dimensional displacement fields associated with single-nonoverlapping dislocations. As misfit density increases, the displacement fields of individual dislocations increasingly overlap producing three-dimensional displacements. The evolving diffuse intensity reflects the transition from 2-D to 3-D displacement fields. Finally, it is demonstrated that the diffuse x-ray intensity of the strained epilayer can be used to accurately measure lineal misfit- dislocation densities from 400 to 20,000 lines/cm.

  13. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices

    SciTech Connect (OSTI)

    Xu, Ren; Boudreau, Aaron; Bissell, Mina J

    2008-12-23

    Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra - to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.

  14. The Phillips Stirling engine

    SciTech Connect (OSTI)

    Hargreaves, C.M.

    1991-01-01

    This book is about the Stirling engine and its development from the heavy cast-iron machine of the 19th century to that of today. It is a history of a research effort spanning nearly 50 years, together with an outline of principles, and some technical details and descriptions of the more important engines. Contents include: the hot-air engine; the 20th-century revival; the Stirling cycle; rhombic-drive engines; heating and cooling; pistons and seals; electric generators and heat pumps; exotic heat sources; the engine and the environment; swashplate engines; and the past and the future.

  15. Internal combustion engine system having a power turbine with a broad efficiency range

    DOE Patents [OSTI]

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  16. Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines

    DOE Patents [OSTI]

    Corey, John A.

    1984-05-29

    A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

  17. ARM - Engineering Change Request & Engineering Change Order Guidelines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resources, as soon as possible, when operational, science, or engineering needs require a quick engineering response where no design or redesign is required. Engineering Consultant...

  18. Stirling engine power control and motion conversion mechanism

    DOE Patents [OSTI]

    Marks, David T.

    1983-01-01

    A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

  19. Internal combustion engine with rotary combustion chamber

    SciTech Connect (OSTI)

    Hansen, C.N.; Cross, P.C.

    1986-09-23

    This patent describes an internal combustion engine comprising: a block having at least one cylindrical wall surrounding a piston chamber, piston means located in the piston chamber means operable to reciprocate the piston means in the chamber, head means mounted on the block covering the chamber. The head means has an air and fuel intake passage, and exhaust gas passage, a rotary valve assembly operatively associated with the head means for controlling the flow of air and fuel into the rotary valve assembly and piston chamber and the flow of exhaust gas from rotary valve assembly and the piston chamber. The means has a housing with a bore open to the piston chamber accommodating the rotary valve assembly, the valve assembly comprising a cylindrical sleeve located in the bore, the sleeve having an inner surface, an ignition hole, and intake and exhaust ports aligned with the intake passage and exhaust gas passage, spark generating means mounted on the housing operable to generate a spark. The rotatable valving means is located within the sleeve for controlling the flow of air and fuel into the rotary valve assembly and piston chamber and the flow of exhaust gases out of the rotary valve assembly and piston chamber.

  20. NREL: Photovoltaics Research - Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Engineering Photovoltaic (PV) Engineering at NREL supports commercial and emerging PV technology development. Our support covers the following three areas: Engineering Testing and Evaluation. We provide engineering testing and evaluation of PV products developed by companies during work sponsored by the U.S. Department of Energy (DOE). We determine if products meet performance criteria established by DOE for a company's contractual obligations. Standards Development. We support the

  1. Tomorrow's Women Engineers

    Broader source: Energy.gov [DOE]

    Middle school girls in Argonne, Illinois, will meet with women engineers to work together on hands-on projects.

  2. NTRCI Legacy Engine Research and Development Project Final Technical Report

    SciTech Connect (OSTI)

    Connie Smith-Holbert; Joseph Petrolino; Bart Watkins; David Irick

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine??s commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector was designed, manufactured and demonstrated in the GEN2.5B prototype.

  3. RESEARCH PERSONNEL AND ENGINEERING STAFF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Scientist (20%) Engineering Staff Walter Chapman, Mech. Engineer - To 93002 Greg Derrig, Senior Mechanical Engineer Lee Norris, Instr. Shop Supervisor - From 10102 ...

  4. SC e-journals, Engineering

    Office of Scientific and Technical Information (OSTI)

    ... of Electronic Testing Journal of Engineering Physics and Thermophysics Journal of Food Engineering Journal of Geophysics and Engineering Journal of Hazardous Materials Journal of ...

  5. Symbiotic Engineering | Open Energy Information

    Open Energy Info (EERE)

    Symbiotic Engineering Jump to: navigation, search Name: Symbiotic Engineering Place: Boulder, CO Website: www.symbioticengineering.com References: Symbiotic Engineering1...

  6. ETA Engineering | Open Energy Information

    Open Energy Info (EERE)

    ETA Engineering Jump to: navigation, search Logo: ETA Engineering Name: ETA Engineering Address: 4049 E. Presidio St., Suite 117 Place: Mesa, Arizona Zip: 85215 Product: renewable...

  7. Black Pine Engineering

    Broader source: Energy.gov [DOE]

    Black Pine Engineering is commercializing a disruptive technology in the turbomachinery industry. Using a patented woven composite construction, Black Pine Engineering can make turbomachines (turbines, compressors) that are cheaper and lighter than competing technologies. Using this technology, Black Pine Engineering will sell turbo-compressors which solve the problem of wasted steam in geothermal power plants.

  8. Engine gaseous, aerosol precursor and particulate at simulated flight altitude conditions. Technical memo

    SciTech Connect (OSTI)

    Wey, C.C.

    1998-10-01

    The overall objective of the NASA Atmospheric Effects of Aviation Project (AEAP) is to develop scientific bases for assessing atmospheric impacts of the exhaust emissions by both current and future fleets of subsonic and supersonic aircraft. Among the six primary elements of the AEAP is Emissions Characterization. The objective of the Emission Characterization effort is to determine the exhaust emission constituents and concentrations at the engine exit plane. The specific objective of this engine test is to obtain a database of gaseous and particulate emissions as a function of fuel sulfur and engine operating conditions. The database of the particulate emission properties is to be used as a comparative baseline with subsequent flight measurement. The engine used in this test was a Pratt and Whitney F100-200E turbofan engine. Aviation fuel (Jet A) with a range of fuel sulfur was used. Low and high sulfur values are limited by commercially available fuels and by fuel specification limits of 0.3% by weight. Test matrix was set by parametrically varying the combustor inlet temperature (T3) between idle and maximum power setting at simulated SLS and up to five other altitudes for each fuel. Four diagnostic systems, extractive and non-intrusive, were assembled for the gaseous and particulate emissions characterization measurements study. NASA extractive system includes smoke meter and analyzers for measurement of CO, CO{sub 2}, NO, NOx, O{sub 2}, total unburnt hydrocarbons (THC), and SO{sub 2}. Particulate emissions were characterized by University of Missouri-Rolla Mobile Aerosol Sampling System.

  9. Solar powered Stirling engine

    SciTech Connect (OSTI)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  10. Engine intake system

    SciTech Connect (OSTI)

    Kanesaka, H.

    1989-02-07

    An intake system is described for an internal combustion engine, the system comprising: an intake passage having an intake port and an inertial supercharging intake pipe leading to the intake port; an intake valve mounted in the intake port and operatively connected to the engine for alternately opening and closing the intake port; a rotary valve operatively connected to the engine and disposed in the intake passage intermediate the inertial supercharging intake pipe and the intake port. The rotary valve is rotatable for opening and closing the intake passage, and timing adjusting means operatively connected to the engine and to the rotary valve for retarding the opening of the rotary valve relative to the opening of the intake valve at low engine speeds, and for advancing the opening of the rotary valve at high engine speeds, whereby the retarding and advancing of the opening of the rotary valve enables inertial supercharging in the intake pipe at both low and high engine speeds.

  11. Swinging reciprocating Mach probes for the high field side scrape-off layer in DIII-D

    SciTech Connect (OSTI)

    Tsui, C. K.; Stangeby, P. C.; Taussig, D. A.; Watkins, M. G.; Boivin, R. L.

    2012-10-15

    A new pair of in situ reciprocating Mach probes termed swing probes has been deployed on the DIII-D centerpost for the 2012 experimental campaign. When not deployed, the entire assembly is housed in a <5 cm space underneath the centerpost tiles. This design is unique in that the probe swings vertically through the edge plasma, taking measurements along a 180 Degree-Sign arc with a 20 cm radius. The motion is powered by actuator coils that interact with the tokamak's magnetic field. Two electrodes maintain a Mach-pair orientation throughout the swing and provide measurements of saturation current, electron temperature, and parallel flow speeds up to the separatrix.

  12. Mechanical Engineering Department technical review

    SciTech Connect (OSTI)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  13. EA-2000: Proposed Land Transfer to Develop a General Aviation Airport at the East Tennessee Technology Park Heritage Center, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    DOE is preparing an EA to assess potential environmental impacts of the proposed land transfer to the Metropolitan Knoxville Airport Authority for the development of a general aviation airport at the East Tennessee Technology Park Heritage Center, in Oak Ridge, Tennessee.

  14. Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel

    SciTech Connect (OSTI)

    Corporan, E.; DeWitt, M.; Klingshirn, Christopher D; Striebich, Richard; Cheng, Mengdawn

    2010-01-01

    The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

  15. Stirling cycle rotary engine

    SciTech Connect (OSTI)

    Chandler, J.A.

    1988-06-28

    A Stirling cycle rotary engine for producing mechanical energy from heat generated by a heat source external to the engine, the engine including: an engine housing having an interior toroidal cavity with a central housing axis for receiving a working gas, the engine housing further having a cool as inlet port, a compressed gas outlet port, a heated compressed gas inlet port, and a hot exhaust gas outlet port at least three rotors each fixedly mounted to a respective rotor shaft and independently rotatable within the toroidal cavity about the central axis; each of the rotors including a pair of rotor blocks spaced radially on diametrically opposing sides of the respective rotor shaft, each rotor block having a radially fixed curva-linear outer surface for sealed rotational engagement with the engine housing.

  16. Science & Engineering Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities /science-innovation/_assets/images/icon-science.jpg Science & Engineering Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy solutions to supercomputing. Accelerators, Electrodynamics» Energy» Materials Science» Bioscience: Bioenergy, Biosecurity, and Health» Engineering» National Security, Weapons Science»

  17. Integrated and Engineered Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated and Engineered Systems Integrated and Engineered Systems National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Executive Miranda Intrator Business Development Executive Richard P. Feynmnan Center for Innovation (505) 665-8315 Email Engineers at Los Alamos create, design, and build the

  18. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  19. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  20. Engine and method for operating an engine

    DOE Patents [OSTI]

    Lauper, Jr., John Christian; Willi, Martin Leo; Thirunavukarasu, Balamurugesh; Gong, Weidong

    2008-12-23

    A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.

  1. Materials Sciences and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  2. Stirling engine heating system

    SciTech Connect (OSTI)

    Johansson, L.N.; Houtman, W.H.; Percival, W.H.

    1988-06-28

    A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

  3. ARM - Engineering Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes Workflow Graphic Engineering Workflow Document Tools for Workflow ECR ECO BCR Ingests Value-Added Products Reprocessing Instruments Data System Elements Field...

  4. Supervisory Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance, (J5640) Engineering and Construciton 5555 E....

  5. Recent Graduate- Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Operations Engineering (J4200) 5555...

  6. XML Engineering Environment

    Energy Science and Technology Software Center (OSTI)

    2006-07-27

    The XML Engineering Environment is a reconfigurable software system that allows users to translate, enhance and route data from sources to sinks.

  7. Science, Technology & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search, Alan Bishop has been selected to be the Laboratory's next Principal Associate Director for - 2 - Science, Technology, and Engineering (PADSTE). Bishop has been acting...

  8. Polymer Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... * DEA is suitable for online- measurements of phase transitions in composite manufacturing Conclusions Summary Polymer Engineering Center University of Wisconsin-Madison Prof. ...

  9. Career Map: Research Engineer

    Broader source: Energy.gov [DOE]

    Research engineers work with government, academic institutions, manufacturers and others to plan, manage and conduct projects to develop and assess new wind turbine technologies and processes that...

  10. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    SciTech Connect (OSTI)

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  11. Expanding Lorentz and spectrum corrections to large volumes of reciprocal space, for single crystal TOF neutron diffraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Michels-Clark, Tara M; Savici, Andrei T; Lynch, Vickie E; Hoffmann, Christina; Wang, Xiaoping

    2016-01-01

    Evidence is mounting that potentially exploitable properties of technologically and chemically interesting crystalline materials are often attributed to local structure effects, which can be observed as modulated diffuse scattering (mDS) next to Bragg diffraction (BD). BD forms a regular, sparse grid of discrete points in diffraction space; traditionally, the information in each Bragg peak is extracted first by integration, followed by the application of the required corrections. In contrast, mDS covers expansive volumes of reciprocal space close to, or between, Bragg reflections. For a full measurement of the diffuse scattering, multiple instrument configurations might be required, and the same pointmore » might be measured multiple times. The common integration method is not sufficient and a new, inclusive correction-plus-intensity-extraction method is in demand. In this contribution we introduce a comprehensive data analysis approach to correct and scale the full volume of scattering data in one step. Hence, we explore data treatment and data correction that includes the complete, collected reciprocal space simultaneously, using neutron time of flight (TOF) or wavelength-resolved data, collected at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory.« less

  12. Perturbing engine performance measurements to determine optimal engine control settings

    DOE Patents [OSTI]

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  13. Engineered Natural Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineered Natural Systems Onsite researchers at NETL develop processes, techniques, instrumentation, and relationships to collect, interpret, and disseminate data in an effort to characterize and understand the behavior of engineered natural systems. Research includes investigating theoretical and observed phenomena to support program needs and developing new concepts in the areas of analytical biogeochemistry, geology, and monitoring. Specific expertise includes: Analytical- Bio- and Geo-

  14. Engineering Division Superconducting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Engineering Division Superconducting Magnet Technology for Fusion and Large Scale Applications Joseph V. Minervini Massachusetts Institute of Technology Plasma Science and Fusion Center Princeton Plasma Physics Laboratory Colloquium Princeton, NJ October 15, 2014 Technology & Engineering Division Contents * Fusion Magnets - Present and Future - Vision - State-of-the-art - New developments in superconductors * Advanced fusion magnet technology * Other large scale applications of

  15. Free piston stirling engines

    SciTech Connect (OSTI)

    Walker, C.

    1985-01-01

    This book presents a basic introduction to free piston Stirling engine technology through a review of specialized background material. It also includes information based on actual construction and operation experience with these machines, as well as theoretical and analytical insights into free piston Stirling engine technology.

  16. Stirling engine piston ring

    DOE Patents [OSTI]

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  17. Computational Science and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science and Engineering NETL's Computational Science and Engineering competency consists of conducting applied scientific research and developing physics-based simulation models, methods, and tools to support the development and deployment of novel process and equipment designs. Research includes advanced computations to generate information beyond the reach of experiments alone by integrating experimental and computational sciences across different length and time scales. Specific

  18. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  19. Metabolic Engineering VII Conference

    SciTech Connect (OSTI)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  20. Two-Stroke Engines: New Frontier in Engine Efficiency

    Broader source: Energy.gov [DOE]

    Companies are revisiting two-stroke engines in the hopes of finding a new frontier in engine efficiency without the additional cost. But, not all two-stroke engines are the same.

  1. Project Engineer (Nuclear/Mechanical Engineer) | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Project Engineer (Nuclear/Mechanical Engineer) Department: Engineering Supervisor(s): Douglas Loesser Staff: ENG 5--7 Requisition Number: 1600242 Position Summary: The Princeton University Plasma Physics Laboratory, is a world-renowned fusion energy research center under contract with the U. S. Department of Energy. Its Mechanical Engineering Division (MED) is seeking to hire a Nuclear/Mechanical Engineer in the Engineering Analysis Branch of the MED. It is expected an early assignment

  2. Advanced Sensors and Instrumentation Annual Project Review 2013 |

    Energy Savers [EERE]

    Advanced Reciprocating Engine System (ARES) Advanced Reciprocating Engine System (ARES) The ARES program is designed to promote separate, but parallel engine development among the major stationary, gaseous fueled engine manufacturers in the United States. PDF icon Advanced Reciprocating Engine Systems (ARES) Brochure More Documents & Publications Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) -

  3. Internal combustion engine for natural gas compressor operation

    DOE Patents [OSTI]

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  4. E85 Optimized Engine

    SciTech Connect (OSTI)

    Bower, Stanley

    2011-12-31

    A 5.0L V8 twin-turbocharged direct injection engine was designed, built, and tested for the purpose of assessing the fuel economy and performance in the F-Series pickup of the Dual Fuel engine concept and of an E85 optimized FFV engine. Additionally, production 3.5L gasoline turbocharged direct injection (GTDI) EcoBoost engines were converted to Dual Fuel capability and used to evaluate the cold start emissions and fuel system robustness of the Dual Fuel engine concept. Project objectives were: to develop a roadmap to demonstrate a minimized fuel economy penalty for an F-Series FFV truck with a highly boosted, high compression ratio spark ignition engine optimized to run with ethanol fuel blends up to E85; to reduce FTP 75 energy consumption by 15% - 20% compared to an equally powered vehicle with a current production gasoline engine; and to meet ULEV emissions, with a stretch target of ULEV II / Tier II Bin 4. All project objectives were met or exceeded.

  5. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

  6. VALUE ENGINEERING.PDF

    Energy Savers [EERE]

    6 I N S P E C T I O N R E P O R T U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF INSPECTIONS FOLLOW-ON INSPECTION OF THE DEPARTMENT OF ENERGY'S VALUE ENGINEERING PROGRAM DECEMBER 2001 U.S. DEPARTMENT OF ENERGY Washington, DC 20585 December 20, 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman /s/ Inspector General SUBJECT: INFORMATION: Report on "Follow-on Inspection of the Department of Energy's Value Engineering Program" BACKGROUND Value Engineering is a

  7. Ionic Liquids as Novel Lubricants and Additives for Diesel Engine Applications

    SciTech Connect (OSTI)

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M

    2009-01-01

    The lubricating properties of two ionic liquids with the same anion but different cations, one ammonium IL [C8H17]3NH.Tf2N and one imidazolium IL C10mim.Tf2N, were evaluated both in neat form and as oil additives. Experiments were conducted using a standardized reciprocating sliding test using a segment of a Cr-plated diesel engine piston ring against a grey cast iron flat specimen with simulated honing marks as on the engine cylinder liner. The selected ionic liquids were benchmarked against conventional hydrocarbon oils. Substantial friction and wear reductions, up to 55% and 34%, respectively, were achieved for the neat ionic liquids compared to a fully-formulated 15W40 engine oil. Adding 5 vol% ILs into mineral oil has demonstrated significant improvement in the lubricity. One blend even outperformed the 15W40 engine oil with 9% lower friction and 34% less wear. Lubrication regime modeling, worn surface morphology examination, and surface chemical analysis were conducted to help understand the lubricating mechanisms for ionic liquids. Results suggest great potential for using ionic liquids as base lubricants or lubricant additives for diesel engine applications.

  8. Diesel engine experiments with oxygen enrichment, water addition and lower-grade fuel

    SciTech Connect (OSTI)

    Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J. ); Schaus, J.E. )

    1990-01-01

    The concept of oxygen enriched air applied to reciprocating engines is getting renewed attention in the context of the progress made in the enrichment methods and the tougher emissions regulations imposed on diesel and gasoline engines. An experimental project was completed in which a direct injection diesel engine was tested with intake oxygen levels of 21% -- 35%. Since an earlier study indicated that it is necessary to use a cheaper fuel to make the concept economically attractive, a less refined fuel was included in the test series. Since a major objection to the use of oxygen enriched combustion air had been the increase in NO{sub x} emissions, a method must be found to reduce NO{sub x}. Introduction of water into the engine combustion process was included in the tests for this purpose. Fuel emulsification with water was the means used here even though other methods could also be used. The teat data indicated a large increase in engine power density, slight improvement in thermal efficiency, significant reductions in smoke and particulate emissions and NO{sub x} emissions controllable with the addition of water. 15 refs., 10 figs., 2 tabs.

  9. Principles of models based engineering

    SciTech Connect (OSTI)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  10. Reciprocal space XRD mapping with varied incident angle as a probe of structure variation within surface depth

    SciTech Connect (OSTI)

    Yang, Qiguang; Williams, Frances; Zhao, Xin; Reece, Charles E.; Krishnan, Mahadevan

    2013-09-01

    In this study, we used a differential-depth X-Ray diffraction Reciprocal Spacing Mapping (XRD RSM) technique to investigate the crystal quality of a variety of SRF-relevant Nb film and bulk materials. By choosing different X-ray probing depths, the RSM study successfully revealed evolution the of materials? microstructure after different materials processes, such as energetic condensation or surface polishing. The RSM data clearly measured the materials? crystal quality at different thickness. Through a novel differential-depth RSM technique, this study found: I. for a heteroepitaxy Nb film Nb(100)/MgO(100), the film thickening process, via a cathodic arc-discharge Nb ion deposition, created a near-perfect single crystal Nb on the surface?s top-layer; II. for a mechanically polished single-crystal bulk Nb material, the microstructure on the top surface layer is more disordered than that in-grain.

  11. Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel

    SciTech Connect (OSTI)

    Beverly L. Smith; Thomas J. Bruno

    2007-09-15

    We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

  12. Regulatory fire test requirements for plutonium air transport packages : JP-4 or JP-5 vs. JP-8 aviation fuel.

    SciTech Connect (OSTI)

    Figueroa, Victor G.; Lopez, Carlos; Nicolette, Vernon F.

    2010-10-01

    For certification, packages used for the transportation of plutonium by air must survive the hypothetical thermal environment specified in 10CFR71.74(a)(5). This regulation specifies that 'the package must be exposed to luminous flames from a pool fire of JP-4 or JP-5 aviation fuel for a period of at least 60 minutes.' This regulation was developed when jet propellant (JP) 4 and 5 were the standard jet fuels. However, JP-4 and JP-5 currently are of limited availability in the United States of America. JP-4 is very hard to obtain as it is not used much anymore. JP-5 may be easier to get than JP-4, but only through a military supplier. The purpose of this paper is to illustrate that readily-available JP-8 fuel is a possible substitute for the aforementioned certification test. Comparisons between the properties of the three fuels are given. Results from computer simulations that compared large JP-4 to JP-8 pool fires using Sandia's VULCAN fire model are shown and discussed. Additionally, the Container Analysis Fire (CAFE) code was used to compare the thermal response of a large calorimeter exposed to engulfing fires fueled by these three jet propellants. The paper then recommends JP-8 as an alternate fuel that complies with the thermal environment implied in 10CFR71.74.

  13. Expanding Lorentz and spectrum corrections to large volumes of reciprocal space for single-crystal time-of-flight neutron diffraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Michels-Clark, Tara M.; Savici, Andrei T.; Lynch, Vickie E.; Wang, Xiaoping; Hoffmann, Christina M.

    2016-03-01

    Evidence is mounting that potentially exploitable properties of technologically and chemically interesting crystalline materials are often attributable to local structure effects, which can be observed as modulated diffuse scattering (mDS) next to Bragg diffraction (BD). BD forms a regular sparse grid of intense discrete points in reciprocal space. Traditionally, the intensity of each Bragg peak is extracted by integration of each individual reflection first, followed by application of the required corrections. In contrast, mDS is weak and covers expansive volumes of reciprocal space close to, or between, Bragg reflections. For a representative measurement of the diffuse scattering, multiple sample orientationsmore » are generally required, where many points in reciprocal space are measured multiple times and the resulting data are combined. The common post-integration data reduction method is not optimal with regard to counting statistics. A general and inclusive data processing method is needed. In this contribution, a comprehensive data analysis approach is introduced to correct and merge the full volume of scattering data in a single step, while correctly accounting for the statistical weight of the individual measurements. Lastly, development of this new approach required the exploration of a data treatment and correction protocol that includes the entire collected reciprocal space volume, using neutron time-of-flight or wavelength-resolved data collected at TOPAZ at the Spallation Neutron Source at Oak Ridge National Laboratory.« less

  14. Windward Engineering | Open Energy Information

    Open Energy Info (EERE)

    Windward Engineering Jump to: navigation, search Name: Windward Engineering Place: Spanish Fork, Utah Zip: 84660 Sector: Wind energy Product: Provides simulations, testing and...

  15. BEW Engineering | Open Energy Information

    Open Energy Info (EERE)

    Services Product: BEW Engineering provides engineering consulting services, and performs research and development in electrical power systems for bulk power and distributed energy...

  16. Taitem Engineering | Open Energy Information

    Open Energy Info (EERE)

    Taitem Engineering Jump to: navigation, search Name: Taitem Engineering Place: Ithaca, NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type "CRADA"...

  17. Pract Engineering | Open Energy Information

    Open Energy Info (EERE)

    Pract Engineering Jump to: navigation, search Name: Pract Engineering Address: 1150 55th Street, Suite C Place: Emeryville, California Zip: 94608 Region: Bay Area Sector: Renewable...

  18. ION Engineering | Open Energy Information

    Open Energy Info (EERE)

    ION Engineering Jump to: navigation, search Name: ION Engineering Place: Boulder, Colorado Zip: 80301 Sector: Carbon Product: ION is the first clean-tech company to successfully...

  19. Engineering | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Engineering The Sandia Field Office's Engineering office performs oversight and contract administration activities for the facilities, projects and environmental programs at Sandia National Laboratories

  20. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration Project 209 Control Tower and Support Building Oakland, CA

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-03-01

    This report represents findings of a design review team that evaluated construction documents (at the 70% level) and operating specifications for a new control tower and support building that will be build at Oakland, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specification that would result in additional energy savings for the FAA that would not have otherwise occurred.

  1. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration Project 209 - Control Tower and Support Building, Las Vegas, NV

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-03-31

    This report represents findings of a design review team that evaluated construction documents (at the 70% level) and operating specifications for a new control tower and support building that will be built in Las Vegas, Nevada by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specification that would result in additional energy savings for the FAA that would not have otherwise occurred.

  2. Information Systems Engineering

    Broader source: Energy.gov [DOE]

    The OCIO is dedicated to supporting the development and maintenance of DOE Department wide and site-specific software and IT systems engineering initiatives.  This webpage contains resources,...

  3. Displacer for Stirling engine

    SciTech Connect (OSTI)

    Brown, A. T.

    1985-12-24

    In a Stirling engine and the like, a displacer piston having a plurality of internal baffles and insulation so as to prevent undesired heat transfer across the displacer piston.

  4. Energy Technology Engineering Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  5. INL '@work' Nuclear Engineer

    ScienceCinema (OSTI)

    McLean, Heather

    2013-05-28

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  6. INL '@work' Nuclear Engineer

    SciTech Connect (OSTI)

    McLean, Heather

    2008-01-01

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  7. Rotary vee engine

    SciTech Connect (OSTI)

    Sullivan, R.W.; Holder, T.J.; Buchanan, M.F.

    1991-05-14

    This patent describes a rotary vee engine. It comprises: a housing; two cylinder blocks; angled support shaft means; an air/fuel system; angled pistons; and sealing means for sealing the combustion chamber.

  8. General Engineer (Project Manager)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  9. Student Trainee (General Engineer)

    Broader source: Energy.gov [DOE]

    This position is located in Power Services (P) of the Bonneville Power Administration (BPA). The position involves periods of pertinent formal education and periods of employment in an engineering...

  10. Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power & Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  11. Predictive Simulation of Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  12. SCADA Engineering Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Solutions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  13. NGNP Engineering Status

    SciTech Connect (OSTI)

    John Collins

    2010-08-01

    The objectives of Phase 1 Engineering and Design scope are to: 1) complete the initial design activities for a prototype nuclear reactor and plant that is capable of co-generating electricity, hydrogen, and process heat; 2) identify technological aspects of the NGNP that need further advancement by research and development activities; and 3) provide engineering support to the early licensing process, including technical input to white papers and developing the basis for future safety analyses.

  14. stochastic unit commitment engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unit commitment engine - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  15. Publication in Ocean Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication in Ocean Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  16. Liquid metal thermoacoustic engine

    SciTech Connect (OSTI)

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  17. Stirling engine power control

    DOE Patents [OSTI]

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  18. UNM School of Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School of Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  19. Simulation-Based Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation-Based Engineering Simulation-Based Engineering is focused on predicting the behavior of complex multiphase flow reactors used in fossil-energy technologies. This effort combines theory, computational modeling, experiments, and industrial input. Physics- and science-based computational models and tools are needed to support the development and deployment of advanced fossil-fuel energy devices such as gasifiers and carbon capture reactors. It is critical to develop a practical framework

  20. Engine systems and methods of operating an engine

    DOE Patents [OSTI]

    Scotto, Mark Vincent

    2015-08-25

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  1. The Joys of Nuclear Engineering

    ScienceCinema (OSTI)

    Jon Carmack

    2010-01-08

    Nuclear fuels researcher Jon Carmack talks about the satisfactions of a career in nuclear engineering.

  2. Liquid-sodium thermoacoustic engine

    SciTech Connect (OSTI)

    Migliori, A.; Swift, G.W.

    1988-08-01

    We have constructed a thermoacoustic engine that uses liquid sodium as its working substance. The engine generates acoustic power using heat flowing from a high-temperature source to a low-temperature sink. The measured performance of this engine disagrees significantly with numerical calculations based on our theory of thermoacoustic engines. The efficiency of the engine is a substantial fraction of Carnot's efficiency, and its power density is comparable to that of the conventional heat engines in widespread use. Thus we expect this type of engine to be of practical, economic importance.

  3. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  4. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  5. Visual Engineering | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visual Engineering Visual Engineering At the Ames Laboratory we are working with Iowa State Image University to create an interactive visual engineering environment to design new products, better power plants, or any other engineering products. In addition, Mark Bryden and Doug McCorkle, along with collaborators at NETL and Reaction Engineering International have developed open-source software to look at the physics behind power plant operation within this visual environment. Image Their VE-PSI

  6. engineering | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    engineering NNSA labs and sites get girls excited about engineering NNSA workers across the nuclear security enterprise took advantage of "Introduce a girl to engineering day" to instill hundreds of young women with excitement for science, technology, engineering, and math (STEM) careers. This year's theme, "#ilooklikeanengineer," celebrated expanding diversity in... Working With PNNL Mentors, Engineering Students Deliver Prototype Safeguards Fixtures Earlier this month,

  7. Ceramic Automotive Stirling Engine Program

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  8. Free-piston engine

    DOE Patents [OSTI]

    Van Blarigan, Peter

    2001-01-01

    A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.

  9. Needle Federated Search Engine

    Energy Science and Technology Software Center (OSTI)

    2009-12-01

    The Idaho National Laboratory (INL) has combined a number of technologies, tools, and resources to accomplish a new means of federating search results. The resulting product is a search engine called Needle, an open-source-based tool that the INL uses internally for researching across a wide variety of information repositories. Needle has a flexible search interface that allows end users to point at any available data source. A user can select multiple sources such as commercialmore » databases (Web of Science, Engineering Index), external resources (WorldCat, Google Scholar), and internal corporate resources (email, document management system, library collections) in a single interface with one search query. In the future, INL hopes to offer this open-source engine to the public. This session will outline the development processes for making Needle™s search interface and simplifying the federation of internal and external data sources.« less

  10. Externally heated valve engine -- An alternative to the Stirling engine

    SciTech Connect (OSTI)

    Kazimierski, Z.; Brzeski, L.

    1996-12-31

    A new concept of the Externally Heated Valve (EHV) engine is presented. The principle of the engine operation is described in the introduction to the paper. Heat delivered to the working medium (air) in the heater, or several heaters working commutatively, can come from a combustion chamber or other heat generator such as nuclear reactors or solar collectors. The engine construction is original entirely different from the well-known Stirling engine. New results of the EHV engine computer modeling are presented. This is connected with a new kind of the annular heater applied to the EHV engine. A whirl motion inside the heater is caused to ensure the proper condition of the heat exchanger during the whole engine cycle. Three heaters working commutatively have been considered in this model. Comparisons between the power and efficiency of the Stirling engine and EHV engine have been performed for the same engine capacity, rotational frequency, maximum and minimum temperatures of the working gas and for the same mean pressures of both the engine cycles. The power of the EHV engine is in this case over three times higher than the Stirling engine power, while the efficiency of both the engines is almost the same.

  11. Rotary engine research

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    A development history is presented for NASA's 1983-1991 Rotary Engine Enablement Program, emphasizing the CFD approaches to various problems that were instituted from 1987 to the end of the program. In phase I, a test rig was built to intensively clarify and characterize the stratified-charge rotary engine concept. In phase II, a high pressure, electronically controlled fuel injection system was tested. In phase III, the testing of improved fuel injectors led to the achievement of the stipulated 5 hp/cu inch specific power goal. CFD-aided design of advanced rotor-pocket shapes led to additional performance improvements.

  12. Career Map: Design Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Engineer Career Map: Design Engineer A product designer watches as several engineers work on a wind turbine component. Design Engineer Position Title Design Engineer Alternate Title(s) Materials Engineer, Composite Engineer, Product Designer, Structural Engineer Education & Training Level Bachelor's degree required, graduate degree preferred Education & Training Level Description Design engineers typically hold a bachelor's degree or higher in electrical or mechanical engineering

  13. Background review on compressors for gas engine-driven heat pumps. Technical report, September 1985-March 1986

    SciTech Connect (OSTI)

    Hall, R.L.; Swain, J.C.

    1986-04-01

    The investigation focused on the efficiency and durability of various types of open-shaft compressors for potential application to residential and light commercial gas-engine-driven heat-pump applications. Variable speed efficiency data for hermetic, semihermetic, and open shaft compressors were obtained from the public literature and from compressor manufacturers in the US, Japan, and in Europe. Efficiency comparisons based upon refrigerants R12 and R22 at a fixed compressor pressure ratio indicate that reciprocating compressors have the highest coefficients of performance (COP's) for compressor speeds ranging from 1000 to 2500 rpm. Scroll and Wankel compressors appear to offer the highest COP's above 2500 rpm. An important finding of the work is that open shaft compressors with proven life and reliability for residential gas engine heat-pump applications do not appear to be available as production units.

  14. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Le, L.K.

    1990-11-20

    This patent describes an internal combustion engine comprising; a rotary compressor mechanism; a rotary expander mechanism; and combustion chamber means disposed between the compressor mechanism and the expander mechanism, whereby compressed air is delivered to the combustion chamber through the compressor discharge port, and pressurized gas is delivered from the combustion chamber into the expander mechanism through the pressurized gas intake port.

  15. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.W.

    1995-07-01

    We ordinarily think of a sound wave in a gas as consisting of coupled pressure and displacement oscillations. However, temperature oscillations always accompany the pressure changes. The combination of all these oscillations, and their interaction with solid boundaries, produces a rich variety of `thermoacoustic` effects. Although these effects as they occur in every-day life are too small to be noticed, one can harness extremely loud sound waves in acoustically sealed chambers to produce powerful heat engines, heat pumps and refrigerators. Whereas typical engines and refrigerators have crankshaft-coupled pistons or rotating turbines, thermoacoustic engines and refrigerators have at most a single flexing moving part (as in a loudspeaker) with no sliding seals. Thermoacoustic devices may be of practical use where simplicity, reliability or low cost is more important than the highest efficiency (although one cannot say much more about their cost-competitiveness at this early stage). This paper discusses the fundamentals of thermoacoustic engines and refrigerators, research in this field, and their commercial development. 16 refs., 5 figs.

  16. Starting of turbine engines

    SciTech Connect (OSTI)

    Shekleton, J.R.

    1990-05-01

    This patent describes a relatively small turbine engine. It comprises: a rotary turbine wheel; a rotary compressor coupled to the turbine wheel; an annular combustor for receiving air from the compressor and fuel from a fuel source combusting the same and providing gases of combustion to the turbine wheel to drive the same; substantially identical main fuel injectors including fuel injecting nozzles angularly spaced about the compressor; fuel and air from the compressor being introduced into the combustor generally in the tangential direction; a fuel pump; a control schedule valve; and first and second main fuel solenoid valves. The first valve being operable to connect a minority of the injectors to the control schedule valve and the fuel pump for starting the engine, there being an even number of the injectors and the minority of injectors consisting of two diametrically opposite injectors; the first and second valves being operable to connect all of the injectors to the control schedule valve and the pump for causing normal operation of the engine; the engine further being characterized by the absence of start fuel injectors for the combustor.

  17. Rotary engine cooling system

    SciTech Connect (OSTI)

    Jones, C.

    1988-07-26

    A rotary internal combustion engine is described comprising: a rotor housing forming a trochoidal cavity therein; an insert of refractory material received in the recess, an element of a fuel injection and ignition system extending through the housing and insert bores, and the housing having cooling passages extending therethrough. The cooling passages are comprised of drilled holes.

  18. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  19. Supervisory Interdisciplinary Civil Engineer/Electrical Engineer (0810/0850)

    Broader source: Energy.gov [DOE]

    THIS IS AN INTERDISCIPLINARY POSITION AND MAY BE FILLED WITH ANY OF THE FOLLOWING OCCUPATIONS: Supervisory Civil Engineer, GS-0810-15 Supervisory Electrical Engineer, GS-0850-15 This position is...

  20. Clinton Engineer Works map | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clinton Engineer Works map Clinton Engineer Works map

  1. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration Project 209 Control Tower and Support Building, Reno, Nevada

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-06-30

    Pacific Northwest National Laboratory (PNNL) and Redhorse Corporation (Redhorse) conducted an energy audit on the Federal Aviation Administration (FAA) control tower and base building in Reno, Nevada. This report presents the findings of the energy audit team that evaluated construction documents and operating specifications (at the 100% level) and completed a site visit. The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.

  2. American Recovery and Reinvestment Act (ARRA) - FEMP Technical Assistance - Federal Aviation Administration - Project 209 - Control Tower and Support Building, Boise, Idaho

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-06-28

    This report documents an energy audit performed by Pacific Northwest National Laboratory (PNNL) and Redhorse Corporation (Redhorse) conducted on the Federal Aviation Administration (FAA) control tower and base building in Boise, Idaho. This report presents findings of the energy audit team that evaluated construction documents and operating specifications (at the 100% level) followed by a site visit of the facility under construction. The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for FAA that would not have otherwise occurred.

  3. Analysis of an industrial cogeneration unit driven by a gas engine. Part 1: Experimental testing under full and part-load operating conditions

    SciTech Connect (OSTI)

    De Lucia, M.; Lanfranchi, C.

    1994-12-31

    This paper describes and analyzes an industrial cogeneration plant driven by a gas fueled reciprocating engine installed in a textile factory. It presents the results of experimental testing conducted under full and part-load operating conditions, as well as first-law energy considerations. The experimental tests conducted on the cogeneration unit proved the validity of the plant design and also enabled evaluation of part-load performance, which is the most common operating mode in cogeneration plants in the small-size industries which typical of central Italy.

  4. Internal combustion engine utilizing stratified charge combustion process

    SciTech Connect (OSTI)

    Artman, N.G.

    1991-07-16

    This patent describes an internal combustion engine in which a piston is reciprocal alternately toward and from the upper end of a cylinder within a variable volume space adjacent to such end, a cylinder head having a face in closing relation with such cylinder end and containing a precombustion chamber with a sidewall having an inner periphery constructed about an axis extending upwardly from the cylinder and the periphery having an open lower end in two-way communication through the face with the variable volume space, the lower open end being smaller in diameter than the diameter of the cylinder, the upper end of the chamber having an air inlet passage closable by a valve, the chamber being operable when the valve is open and attendant to movement of the piston downwardly from the upper cylinder end to receive from the inlet passage a main inlet air stream and conduct the same downwardly therein and discharge the same through the open end downwardly therein and discharge the same through the open end downwardly into the variable volume space.

  5. Understanding Stirling engines. Technical paper

    SciTech Connect (OSTI)

    Beale, W.

    1984-01-01

    The paper describes the basic Stirling engine, as well as some of the most promising modern varieties. The intent is to familiarize people in developing countries with the engine's operation and range of applications.

  6. Free-piston Stirling engine

    SciTech Connect (OSTI)

    Berggren, R.W.; Moynihan, T.M.

    1982-09-01

    A free-piston Stirling engine/linear alternator system (FPSE-010-3), developed under previous Department of Energy (DOE) funding, has been used as a test bed for evaluating selected Stirling engine loss mechanisms. The engine is particularly suited to test-bed operation because engine performance can be evaluated over a wide range of operating conditions; system instrumentation is capable of measuring the effects of system component changes; and modular engine design facilitates the evaluation of alternate component configurations. Extensive testing was performed to establish the operating characteristics of a base-line engine configuration and to characterize specific losses within a Stirling engine. Significant variations in engine performance were observed as the displacer seal clearance was varied. This paper presents selected results from the base-line and displacer seal clearance tests.

  7. Argonne National Laboratory's Omnivorous Engine

    SciTech Connect (OSTI)

    Thomas Wallner

    2009-10-16

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanoland calibrate itself to burn that fuel most efficiently.

  8. Argonne National Laboratory's Omnivorous Engine

    ScienceCinema (OSTI)

    Thomas Wallner

    2010-01-08

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanol?and calibrate itself to burn that fuel most efficiently.

  9. Engineering | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering NNSA uses modern tools and capabilities in the engineering sciences field which are needed to ensure the safety, security, reliability and performance of the current and future U.S. nuclear weapons stockpile. It also provides the solid and sustained engineering basis for stockpile certification and assessments that are needed throughout the entire lifecycle of each weapon. NNSA develops capabilities to assess and improve the engineering components of both the non-nuclear and nuclear

  10. Engineering | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Engineering NNSA uses modern tools and capabilities in the engineering sciences field which are needed to ensure the safety, security, reliability and performance of the current and future U.S. nuclear weapons stockpile. It also provides the solid and sustained engineering basis for stockpile certification and assessments that are needed throughout the entire lifecycle of each weapon. NNSA develops capabilities to assess and improve the engineering components of both the non-nuclear and nuclear

  11. Internal combustion engine

    DOE Patents [OSTI]

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  12. Electrochemical heat engine

    DOE Patents [OSTI]

    Elliott, Guy R. B.; Holley, Charles E.; Houseman, Barton L.; Sibbitt, Jr., Wilmer L.

    1978-01-01

    Electrochemical heat engines produce electrochemical work, and mechanical motion is limited to valve and switching actions as the heat-to-work cycles are performed. The electrochemical cells of said heat engines use molten or solid electrolytes at high temperatures. One or more reactions in the cycle will generate a gas at high temperature which can be condensed at a lower temperature with later return of the condensate to electrochemical cells. Sodium, potassium, and cesium are used as the working gases for high temperature cells (above 600 K) with halogen gases or volatile halides being used at lower temperature. Carbonates and halides are used as molten electrolytes and the solid electrolyte in these melts can also be used as a cell separator.

  13. Advanced engineering analysis

    SciTech Connect (OSTI)

    Freeman, W.R.

    1992-11-01

    The Advanced Engineering Analysis project is being used to improve the breadth of engineering analysis types, the particular phenomena which may be simulated, and also increase the accuracy and usability of the results of both new and current types of simulations and analyses. This is an interim report covering several topics under this project. Information on two new implementations of failure criteria for metal forming, the implementation of coupled fluid flow/heat transfer analysis capabilities, the integration of experimental shock and vibration test data with analyses, a correction to a contact solution problem with a 3-D parabolic brick finite element, and the development and implementation of a file translator to link IDEAS to DYNA3D is provided in this report.

  14. BGA Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: BGA Engineering LLC Place: Glen Rock, New Jersey Zip: 7452 Sector: Solar Product: Engineering firm specialising in substation engineering and design, power plant...

  15. CMI Course Inventory: Chemistry Engineering | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to rare earths and critical materials. Other courses are available in these areas: Geology EngineeringGeochemistry Mining Engineering Metallurgical EngineeringMaterials...

  16. Tasco Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Tasco Engineering Inc Jump to: navigation, search Name: Tasco Engineering Inc Place: Lehi, Utah Zip: 84043 Sector: Hydro, Solar, Wind energy Product: Power engineering firm with...

  17. Calypso Engineering Srl | Open Energy Information

    Open Energy Info (EERE)

    Calypso Engineering Srl Jump to: navigation, search Name: Calypso Engineering Srl Place: Albino, Italy Sector: Services, Wind energy Product: Develops and provides engineering...

  18. Atlanta Chemical Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    Atlanta Chemical Engineering LLC Jump to: navigation, search Logo: Atlanta Chemical Engineering LLC Name: Atlanta Chemical Engineering LLC Place: Marietta, Georgia Country: United...

  19. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  20. Mechanical Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineer Department: Engineering Supervisor(s): Bill Blanchard Staff: EM 3 Requisition Number: 1500 The Mechanical Design Engineer will develop, design, manufacture, and test ...

  1. Instrumentation & Controls Electrical Engineer | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation & Controls Electrical Engineer Department: Engineering Supervisor(s): Tim ... Perform role of COG engineer in PMO system to perform project management jobs. Generates ...

  2. Career Map: Quality Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality engineers need a bachelor's degree in an engineering field, plus experience. ... Ethics. Quality engineers must be able to operate under pressure and still ensure that ...

  3. Hydrogen Engine Center HEC | Open Energy Information

    Open Energy Info (EERE)

    Engine Center HEC Jump to: navigation, search Name: Hydrogen Engine Center (HEC) Place: Algona, Iowa Zip: IA 50511 Sector: Hydro, Hydrogen Product: The Hydrogen Engine Center (HEC)...

  4. Photonically Engineered Incandescent Emitter

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  5. Modular Aneutronic Fusion Engine

    SciTech Connect (OSTI)

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  6. Photonically engineered incandescent emitter

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  7. MARS Flight Engineering Status

    SciTech Connect (OSTI)

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  8. Ram jet engine

    SciTech Connect (OSTI)

    Crispin, B.; Pohl, W.D.; Thomaier, D.; Voss, N.

    1983-11-29

    In a ram jet engine, a tubular combustion chamber is divided into a flame chamber followed by a mixing chamber. The ram air is supplied through intake diffusers located on the exterior of the combustion chamber. The intake diffusers supply combustion air directly into the flame chamber and secondary air is conveyed along the exterior of the combustion chambers and then supplied directly into the mixing chamber.

  9. Science, Technology, and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE Science, Technology, and Engineering Delivering mission success and innovative solutions to national security problems through the agile, rapid application of our transformational scientific capabilities Bird's eye view of a hot cell where the isotopes are separated and purified The quest for an imaging radioisotope READ MORE Molecular clocks in human cells Molecular clocks control mutation rate in human cells READ MORE Glen Wurden in the stellarator's vacuum vessel during camera

  10. Cleaner, More Efficient Diesel Engines

    SciTech Connect (OSTI)

    Musculus, Mark

    2013-08-13

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  11. Cleaner, More Efficient Diesel Engines

    ScienceCinema (OSTI)

    Musculus, Mark

    2014-02-26

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  12. Environmental, safety, and health engineering

    SciTech Connect (OSTI)

    Woodside, G.; Kocurek, D.

    1997-12-31

    A complete guide to environmental, safety, and health engineering, including an overview of EPA and OSHA regulations; principles of environmental engineering, including pollution prevention, waste and wastewater treatment and disposal, environmental statistics, air emissions and abatement engineering, and hazardous waste storage and containment; principles of safety engineering, including safety management, equipment safety, fire and life safety, process and system safety, confined space safety, and construction safety; and principles of industrial hygiene/occupational health engineering including chemical hazard assessment, personal protective equipment, industrial ventilation, ionizing and nonionizing radiation, noise, and ergonomics.

  13. Gaseous-fuel engine technology

    SciTech Connect (OSTI)

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  14. Honda motor company's CVCC engine

    SciTech Connect (OSTI)

    Abernathy, W.J.; Ronan, L.

    1980-07-01

    Honda Motor Company of Japan in a four-year period from 1968 to 1872 designed, tested, and mass-produced a stratified charge engine, the CVCC, which in comparison to conventional engines of similar output at the time was lower in CO, HC and NO/sub x/ emissions and higher in fuel economy. Honda developed the CVCC engine without government assistance or outside help. Honda's success came at a time when steadily increasing fuel costs and the various provisions of the Clean Air Act had forced US automakers to consider possible alternatives to the conventional gasoline engine. While most major engine manufacturers had investigated some form of stratified charge engine, Honda's CVCC was the only one to find successful market application. This case study examines the circumstances surrounding the development of the CVCC engine and its introduction into the Japanese and American markets.

  15. Career Map: Engineering Manager | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering Manager Career Map: Engineering Manager Two engineering managers wearing hard hats inspect a wind component. Engineering Manager Position Title Engineering Manager Alternate Title(s) n/a Education & Training Level Bachelor's degree in relevant engineering discipline required Education & Training Level Description Engineering managers typically have at least a bachelor's degree and significant work experience. Brief job description The engineering manager plans, coordinates,

  16. Thermoacoustic refrigerators and engines comprising cascading...

    Office of Scientific and Technical Information (OSTI)

    Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units Title: Thermoacoustic refrigerators and engines comprising cascading stirling ...

  17. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  18. Analysis Activities at Idaho National Engineering & Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's analysis ...

  19. SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration Management Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration Management ...

  20. China National Machinery Industry Complete Engineering Corporation...

    Open Energy Info (EERE)

    Industry Complete Engineering Corporation CMCEC Jump to: navigation, search Name: China National Machinery Industry Complete Engineering Corporation (CMCEC) Place: Beijing,...

  1. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine ...

  2. Sandia Energy - Sandia Cyber Engineering Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber Engineering Research Laboratory (CERL) Formally Opens Home Infrastructure Security Cyber Infrastructure Assurance Facilities News News & Events Analysis Cyber Engineering...

  3. Interdisciplinary General Engineer/Physical Scientist (Facility...

    Office of Environmental Management (EM)

    Interdisciplinary General EngineerPhysical Scientist (Facility Representative) Interdisciplinary General EngineerPhysical Scientist (Facility Representative) Submitted by admin ...

  4. Categorical Exclusion Determinations: Energy Technology Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Engineering Center Categorical Exclusion Determinations: Energy Technology Engineering Center Categorical Exclusion Determinations issued by Energy Technology ...

  5. Integrated Computational Materials Engineering (ICME) for Mg...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Computational Materials Engineering (ICME) for Mg: International Pilot Project Integrated Computational Materials Engineering (ICME) for ...

  6. Academic-Industry Collaboration (AIC) - Synchrophasor Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering Education Program: Information Exchange Webinar (March 6, 2014) Academic-Industry Collaboration (AIC) - Synchrophasor Engineering Education Program: Information ...

  7. RESEARCH AND ENGINEERING COMPANY

    Office of Legacy Management (LM)

    ?' $ 5 . . 7 pi -ON RESEARCH AND ENGINEERING COMPANY CLINTON TOWNSHIP, ROUTE 22 EAST, ANNANDALE, NEW iERSEY 08801 July 18, 1988 Mr. Ken Wills Weston/OTS 20030 Century Blvd Suite 301 Germantown, MD 20874 Dear Ken, Per our conversation on July 11, 1988, enclosed is a current plot plan of the Linden Technology Center (old Standard Oil Development Company site). I hope this satisfies your in- formation needs regarding the study you are doing concerning AEC contractor sites. We believe we have

  8. A loaded thermoacoustic engine

    SciTech Connect (OSTI)

    Olson, J.R.; Swift, G.W.

    1995-11-01

    Measurements and analysis of the performance of a thermoacoustic engine driving a dissipative load are presented. The effect of the load can be explained qualitatively using a simple low-amplitude approximation and quantitatively by invoking a more accurate low-amplitude numerical solution. The heater power {ital @};DQ and hot-end temperature {ital T}{sub {ital H}} are found to be simple functions of the load impedance and the unloaded values of {ital @};DQ and {ital T}{sub {ital H}}. {copyright} {ital 1995} {ital Acoustical} {ital Society} {ital of} {ital America}.

  9. HANFORD ENGINEER WORKS

    Office of Legacy Management (LM)

    HANFORD ENGINEER WORKS IJd *P-t - - ~~~ssiticatiC+n cwcetted rat G.E. NUCLEONICS PROJECT xi I ~@L.%&~--G-ENERAI,@ ELECTRIC z ,m ._.__.-. _ I--..-. By Authority of. COMPANY ._ Atmic Energy Commission Office of Hanford Dire&xl Operations Riohland, Washington Attention; Mr. Carleton Shugg, Manager ./ ALPKA-ROLLED EL'GIL%I jw -879 ' . *_ a. f' Richland, Washington February 6, 1948 , Thla Dclc.Jv-<en! :-; . ' - -*...-- f_ ~~~.s No .__. ._. .s / ~. - J-LccIp%. Fr:*? fi This will con&rm

  10. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  11. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  12. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.

    2013-02-12

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  13. Knock-free engine control system for turbocharged automotive engine

    SciTech Connect (OSTI)

    Hirabayashi, Y.

    1985-04-09

    In a turbocharged internal combustion engine, in order to optimize engine torque output spark timing control and boost pressure control are coordinated in such a manner that spark advance angle is adjusted only when the measured boost pressure equals a predetermined value and is allowed to vary only within a specified range advanced from a reference value derived from an empirical memory table on the basis of engine speed and boost pressure. When engine operating conditions are such that spark advance angle would fall outside of the specified range, spark advance angle is then held at the empirical value and boost pressure is adjusted in order to optimize engine torque. The coordinated control system can also be designed to respond to exhaust gas temperature on a first-priority basis, i.e., when exhaust temperature is sensed to be dangerously high, boost pressure is reduced regardless of other engine conditions.

  14. Rotary engine and method

    SciTech Connect (OSTI)

    Overman, K.

    1991-12-17

    This paper describes a rotary engine. It comprises: an engine block, the block defining an internal rotor cavity, a rotor, the rotor eccentrically positioned within the cavity, the block defining a combustion chamber, the combustion chamber positioned exteriorly of the rotor cavity and in fluid communication therewith, a pair of pistons, the pistons affixed to each other and slidably mounted within the rotor, an air inlet valve, the inlet valve positioned at one side of the combustion chamber, a dual acting outlet valve, the outlet valve comprising a top and a bottom rest, the outlet valve positioned at the other side of the combustion chamber, the combustion chamber defining both an outlet valve ceiling port and an outlet valve floor port, means to ignite fuel, the fuel ignition means located within the combustion chamber between the inlet and outlet valves, the block defining an exhaust port, the exhaust port spaced circumferentially from the combustion chamber and in fluid communication with the rotor cavity, the block defining an inlet port, and the inlet port circumfrentially spaced from the outlet port and in fluid communication with the rotor cavity.

  15. Rotary vee engine

    SciTech Connect (OSTI)

    Sullivan, R.W.; Holder, T.J.; Buchanan, M.F.

    1991-07-09

    This patent describes a rotary vee engine. It comprises a housing having outer ends; two cylinder blocks each having inner and outer ends and mounted in the housing for rotation of one cylinder block about a first rotational axis and rotation of the other cylinder block about a second rotational axis, the axes being angled to intersect adjacent the inner ends of the blocks at an included angle less than one hundred and eighty degrees; each cylinder bloc having cylinders positioned at a selected radial distance from the respective rotational axis and extending parallel to the axis to intersect the inner end of the cylinder block; angled pistons each having a portion disposed in a cylinder of one block and a portion disposed in a cylinder in the other block for orbital motion of the pistons coordinately with the rotation of the cylinder blocks; angled support shaft means for rotatably and axially supporting each of the cylinder blocks in the housing; an improved air/fuel system for directing pressurized charges of air/fuel mixture radially inwardly into each of the cylinders during the operation of the engine comprising; a central cavity formed by the housing between the inner ends of the cylinder blocks for receiving air/fuel mixture.

  16. Increased Engine Efficiency via Advancements in Engine Combustion Systems

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  17. Supervisory Electrical Engineer- Supervisory Power System Real Time Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Operations Engineering, (J4200) 5555...

  18. Intrinsically irreversible thermoacoustic heat engine

    SciTech Connect (OSTI)

    Wheatley, J.; Hofler, T.; Swift, G.W.; Migliori, A.

    1983-07-01

    Certain thermoacoustic effects are described which form the basis for a heat engine that is intrinsically irreversible in the sense that it requires thermal lags for its operation. After discussing several acoustical heating and cooling effects, including the behavior of a new structure called a ''thermoacoustic couple,'' we discuss structures that can be placed in acoustically resonant tubes to produce both substantial heat pumping effects and, for restricted heat inputs, large temperature differences. The results are analyzed quantitatively using a second-order thermoacoustic theory based on the work of Rott. The qualities of the acoustic engine are generalized to describe a class of intrinsically irreversible heat engines of which the present acoustic engine is a special case. Finally the results of analysis of several idealized intrinsically irreversible engines are presented. These suggest that the efficiency of such engines may be determined primarily by geometry or configuration rather than by temperature.

  19. BPA files reciprocity tariff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Pacific Northwest," said Cathy Ehli, BPA vice president, Transmission Marketing and Sales. "We began with many areas of disagreement but have been able to substantially...

  20. Fluid driven reciprocating apparatus

    DOE Patents [OSTI]

    Whitehead, J.C.

    1997-04-01

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  1. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  2. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  3. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  4. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  5. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  6. Nuclear Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Engineering Advancing the safe and secure use of nuclear energy Argonne's Nuclear Engineering (NE) division works to advance nuclear energy as a proven, abundant and non-emitting energy source through research, technology development, design, analysis and application of our nuclear energy-related expertise to current and emerging programs of national and international significance. Argonne nuclear engineers have been instrumental in developing civilian nuclear power systems for over 65

  7. Facility Engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Engineering Facility Engineering Facility Engineering (FE) programmatic element efforts within EM encompasses real property asset management across the EM complex as well as the transfers of real property to Community Reuse Organizations and other entities for asset revitalization and/or economic development. In addition, FE coordinates, analyzes, and concurs on EM site submission for infrastructure reporting, such as, in the Integrated Facilities and Infrastructure crosscut and the

  8. Mechanical Engineering Department Technical Review

    SciTech Connect (OSTI)

    Carr, R.B.; Denney, R.M.

    1981-07-01

    The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication.

  9. Systems Engineer | Department of Energy

    Energy Savers [EERE]

    disruptions in oil supplies. Organizational Structure: This position is located in the Office of the Assistant Project Manager for Systems & Projects, Systems Engineering and...

  10. Aztech Engineers | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Zip: 6120 Product: Connecticut-based consulting engineers specializing in HVAC, Plumbing, Fire-Protection, Electrical, and Geo-Thermal Well Systems. Coordinates:...

  11. RESEARCH PERSONNEL AND ENGINEERING STAFF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Engineer Postdoctoral Research Associates Bijay Agrawal - To 122304 Narayana P. Appathurai - To 93004 Lie-Wen Chen - To 9104 Vicenzo Greco Marian Jandel Seweryn...

  12. Discover E for budding engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with National Engineers Week and is free with no registration required. Boy and Girl Scouts can even use the activities to help earn merit badges. Last year's event...

  13. Engineering | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA uses modern tools and capabilities in the engineering sciences field which are needed to ensure the safety, security, reliability and performance of the current and future ...

  14. Mission | APS Engineering Support Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mission, the APS Engineering Support Division provides: Highly reliable, state-of-the-art computer infrastructure to meet the needs of the APS. Leading-edge information...

  15. LES Modeling for IC Engines

    Broader source: Energy.gov [DOE]

    Large eddy simulation offers better accuracy and sensitivity to study cyclic variability, mode transition and mixing effects in engine design and operation

  16. Data System Sciences & Engineering Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Architectures for National Security Risk Analysis Streaming Realtime Sensor Networks Visual Analytics Opportunities Contact Us Data System Sciences & Engineering Group DSSE goes...

  17. engineer | OpenEI Community

    Open Energy Info (EERE)

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  18. Resonator coiling in thermoacoustic engines

    SciTech Connect (OSTI)

    Olson, J.R.; Swift, G.W.

    1995-11-01

    Coiling the resonator of a thermoacoustic engine is one way to try to minimize the engine`s size. However, flow in bent pipes is known to alter the fluid flow pattern because of centrifugal forces. Theory and measurements will be presented on the energy dissipation caused by oscillating flow in curved pipes. Measurements have been taken using free oscillations of liquids in U-tubes, and using a thermoacoustic engine with straight and bent resonators. [Work supported by the TTI program of the US Department of Energy, and by the Tektronix Corporation.

  19. Sandia Energy - Automotive HCCI Engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    because of its potential to rival the high efficiency of diesel engines while keeping NOx and particulate emissions extremely low. However, researchers must overcome several...

  20. Electronics Engineer- OPEN CONTINUOUS ANNOUNCEMENT

    Broader source: Energy.gov [DOE]

    This recruitment is an OPEN CONTINUOUS ANNOUNCEMENT (OCA) being utilized to fill current and future Electrical Engineer vacancies within BPA's Transmission Field Services organization. Positions...

  1. Electrical Engineer- OPEN CONTINUOUS ANNOUNCEMENT

    Broader source: Energy.gov [DOE]

    This recruitment is an OPEN CONTINUOUS ANNOUNCEMENT (OCA) being utilized to fill current and future Electrical Engineer vacancies within BPA's Transmission Field Services organization. Positions...

  2. Quality engineering as a profession.

    SciTech Connect (OSTI)

    Kolb, Rachel R.; Hoover, Marcey L.

    2012-12-01

    Over the course of time, the profession of quality engineering has witnessed significant change, from its original emphasis on quality control and inspection to a more contemporary focus on upholding quality processes throughout the organization and its product realization activities. This paper describes the profession of quality engineering, exploring how today's quality engineers and quality professionals are certified individuals committed to upholding quality processes and principles while working with different dimensions of product development. It also discusses the future of the quality engineering profession and the future of the quality movement as a whole.

  3. Gas turbine engine

    DOE Patents [OSTI]

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  4. Engine Cylinder Temperature Control

    DOE Patents [OSTI]

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  5. Internal combustion rotary engine

    SciTech Connect (OSTI)

    Chen, S.P.

    1993-08-24

    An internal combustion rotary engine is described comprising: an internal combustion chamber wherein a combustible fuel-air mixture is ignited for producing a driving gas flow; a central rotor having an outer surface in which at least one group of curved channels circumferentially-and-axially extending without radially extending through the central rotor; and at least one annular rotor each enclosing the central rotor having an inner surface in which a corresponding number of curved channels circumferentially-and-axially extending without radially extending through the annular rotor; when the curved channels in the central rotor communicate with the curved channels in the annular rotor, the driving gas flow circumferentially-and-axially passing between the outer surface of the central rotor and the inner surface of the annular rotor for rotating the central rotor and the annular rotor in opposite directions.

  6. Quick release engine cylinder

    DOE Patents [OSTI]

    Sunnarborg, Duane A.

    2000-01-01

    A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.

  7. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.

  8. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus the baseline and finding the ratio between the injected NO amounts. It was observed that the air/fuel ratio, injected NO quantity and engine operating points affected the NOx decomposition rates of the natural gas engine. A highest NOx decomposition rate of 27% was measured from this engine. A separate exploratory tests conducted with a gasoline engine with a low air/fuel ratio yielded results that suggested, that high NOx decomposition rates may be possible if a normally lean burn engine were operated at conditions closer to stoichiometric, with high exhaust gas recirculation (EGR) for a brief period of time during the NOx decomposition phase and with a wider range of air/fuel ratios. Chemical kinetic model predictions using CHEMKIN were performed to relate the experimental data with the established rate and equilibrium models. NOx decomposition rates from 35% to 42% were estimated using the CHEMKIN software. This provided insight on how to maximize NOx decomposition rates for a large bore engine. In the future, the modeling will be used to examine the effect of higher NO{sub 2}/NO ratios that are associated with lower speed and larger bore lean burn operation.

  9. Engineering approaches to ecosystem restoration

    SciTech Connect (OSTI)

    Hayes, D.F.

    1998-07-01

    This proceedings CD ROM contains 127 papers on developing and evaluating engineering approaches to wetlands and river restoration. The latest engineering developments are discussed, providing valuable insights to successful approaches for river restoration, wetlands restoration, watershed management, and constructed wetlands for stormwater and wastewater treatment. Potential solutions to a wide variety of ecosystem concerns in urban, suburban, and coastal environments are presented.

  10. Stirling Engines and Irrigation Pumping

    SciTech Connect (OSTI)

    West, C.D.

    1987-01-01

    This report was prepared in support of the Renewable Energy Applications and Training Project that is sponsored by the U.S. Agency for International Development for which ORNL provides technical assistance. It briefly outlines the performance that might be achievable from various kinds of Stirling-engine-driven irrigation pumps. Some emphasis is placed on the very simple liquid-piston engines that have been the subject of research in recent years and are suitable for manufacture in less well-developed countries. In addition to the results quoted here (possible limits on M4 and pumping head for different-size engines and various operating conditions), the method of calculation is described in sufficient detail for engineers to apply the techniques to other Stirling engine designs for comparison.

  11. HCCI Engine Optimization and Control

    SciTech Connect (OSTI)

    Rolf D. Reitz

    2005-09-30

    The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.

  12. Engine combustion and flow diagnostics

    SciTech Connect (OSTI)

    1995-12-31

    This informative publication discusses the application of diagnostic techniques to internal combustion engines. The papers included fall into three broad categories: flow diagnostics, combustion diagnostics, and fuel spray diagnostics. Contents include: controlling combustion in a spark ignition engine by quantitative fuel distribution; a model for converting SI engine flame arrival signals into flame contours; in-cylinder diesel flame imaging compared with numerical computations; ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics; investigation of diesel sprays using diffraction-based droplet sizing; fuel distribution effects on the combustion of a direct-injection stratified-charge engine; and 2-D measurements of the liquid phase temperature in fuel sprays.

  13. DE-FC26-01NT41322 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Included in this effort are the enhancement andor development of computer modules for reciprocating engines, gas turbine engines, centrifugal and reciprocating compressors, ...

  14. Sandia National Laboratories: Careers: Electrical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Engineering Electrical Engineering photo Electrical engineers at Sandia design and develop advanced instrumentation systems for in-flight weapons system evaluations and other applications. Sandia creates innovative, science-based, systems-engineering solutions to our nation's most challenging national security problems. Sandia electrical engineers are an integral part of multidisciplinary teams tasked with defining requirements, creating system designs, implementing design

  15. Subterranean stress engineering experiments

    SciTech Connect (OSTI)

    Campbell, J.R.; Colgate, S.A.; Wheat, B.M.

    1980-01-01

    The state of stress in a subterranean rock mass has classically been assumed to be constant at best. In soil with a high clay content, preconsolidation and drainage methods can lead to more stable foundation material, but methods for engineering the stresses in large masses of rock are not well known. This paper shows the results from an experiment designed to alter the in situ rock stress field in an oil shale mine. This was done by hydrofracturing the rock by use of a packed-well injection system and then propping the crack open with a thixotropic gel, which slowly hardened to the consistency of cement. Successive hydrofracture and high-pressure grouting resulted in an overstressed region. Well-head injection pressures, surface tilts, injection rates, and subterranean strains were measured and recorded on floppy disk by a Z-80 microprocessor. The results were then transmitted to the large computer system at the Los Alamos Scientific Laboratory (LASL). To put the data in a more useful form, computer-generated movies of the tilts and strains were made by use of computer graphics developed at LASL. The purpose of this paper is to present results from the Single Large Instrumented Test conducted in the Colony Oil Shale Mine near Rifle, Colorado. 13 figures.

  16. Axial flow rotary engine

    SciTech Connect (OSTI)

    Loran, W.; Robinson, M.A.

    1989-07-18

    This paper describes an internal combustion engine. It comprises: a housing having an intake port at one end thereof and an exhaust port at the other end thereof; a compression chamber in the housing near the one end; compressor means in the compression chamber; a compressor transfer port opening through the downstream outlet wall; an expansion chamber in the housing near the other end thereof to receive combusted gases; work means in the expansion chamber driven by expanding, combusted gases; means rotating the compressor outlet wall at the same rotational drive speed as the expander inlet wall; an expansion chamber inlet port opening extending through the upstream inlet wall; a cylindrical combustion chamber block rotatable in the housing intermediate the compression chamber and the expansion chamber; at least two combustion chambers in the block; means rotating the block at a reduced speed relative to the speed of rotation of the compressor outlet wall and the expander inlet wall; means for igniting the charge of compressed gas during the intermediate portion of each revolution of the combustion chamber block. The combustion chambers being substantially hemispherical; the speed of rotation of the compressor outlet wall is in the same ratio to the speed of rotation of the combustion chamber block as the number of combustion chambers in the block is to the number of combustion chambers less one.

  17. Engineering Cellulases for Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2010-06-27

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  18. Acoustic cooling engine

    DOE Patents [OSTI]

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  19. Solid state engine with alternating motion

    DOE Patents [OSTI]

    Golestaneh, A.A.

    1980-01-21

    Heat energy is converted to mechanical motion utilizing apparatus including a cylinder, a piston having openings therein reciprocable in the cylinder, inlet and outlet ports for warm water at one end of the cylinder, inlet and outlet ports for cool water at the other end of the cylinder, gates movable with the piston and slidably engaging the cylinder wall to alternately open and close the warm and cool water ports, a spring bearing against the warm water side of the piston and a double helix of a thermal shape memory material attached to the cool end of the cylinder and to the piston. The piston is caused to reciprocate by alternately admitting cool water and warm water to the cylinder.

  20. Solid state engine with alternating motion

    DOE Patents [OSTI]

    Golestaneh, Ahmad A. (Bolingbrook, IL)

    1982-01-01

    Heat energy is converted to mechanical motion utilizing apparatus including a cylinder, a piston having openings therein reciprocable in the cylinder, inlet and outlet ports for warm water at one end of the cylinder, inlet and outlet ports for cool water at the other end of the cylinder, gates movable with the piston and slidably engaging the cylinder wall to alternately open and close the warm and cool water ports, a spring bearing against the warm water side of the piston and a double helix of a thermal shape memory material attached to the cool end of the cylinder and to the piston. The piston is caused to reciprocate by alternately admitting cool water and warm water to the cylinder.

  1. Regenerative rotary displacer Stirling engine

    SciTech Connect (OSTI)

    Isshiki, Naotsugu; Watanabe, Hiroichi; Raggi, L.; Isshiki, Seita; Hirata, Koichi

    1996-12-31

    A few rotary displacer Stirling engines in which the displacer has one gas pocket space at one side and rotates in a main enclosed cylinder, which is heated from one side and cooled from opposite side without any regenerator, have been studied for some time by the authors. The authors tried to improve this engine by equipping it with a regenerator, because without a regenerator, pressure oscillation and efficiency are too small. Here, several types of regenerative rotary displacer piston Stirling engines are proposed. One is the contra-rotating tandem two disc type displacer engine using axial heat conduction through side walls or by heat pipes and another is a single disc type with circulating fluid regenerator or heat pipes. Stirling engines of this new rotary displacer type are thought to attain high speed. Here, experimental results of the original rotary displacer Stirling engine without a regenerator, and one contra-rotating tandem displacer engine with side wall regenerator by axial heat conduction are reported accompanied with a discussion of the results.

  2. Wankel engine for hybrid powertrain

    SciTech Connect (OSTI)

    Butti, A.; Site, V.D.

    1995-12-31

    The Wankel engine is suited to be used to drive hybrid propulsion systems. The main disadvantage of hybrid propulsion systems is the complexity that causes a high weight and large dimensions. For these reason hybrid systems are more suitable for large size vehicle (buses, vans) rather than for small passenger cars. A considerable reduction of hybrid systems weight and dimensions can be obtained using a Wankel rotary engine instead of a conventional engine. The Wankel engine is light, compact, simple, and produces low noise and low vibrations. Therefore a Wankel engine powered hybrid system is suited to be used on small cars. In this paper a 1,000 kg parallel hybrid car with continuously variable transmission and a 6,000 kg series hybrid minibus both equipped with Wankel engines are considered. The Wankel engine works at steady state to minimize fuel consumption and exhaust emissions. The simulation of the behavior of these two vehicles during a ECE + EUDC test cycle is presented in order to evaluate the performances of the systems.

  3. Enabling High Efficiency Ethanol Engines

    SciTech Connect (OSTI)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  4. The Rhythm Engineers | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Rhythm Engineers The Rhythm Engineers The Rhythm Engineers entertain in front of a drawing of Jackson Square

  5. Interdisciplinary Engineer (Electrical/Electronics/Nuclear/Computer)

    Broader source: Energy.gov [DOE]

    THIS IS AN INTERDISCIPLINARY POSITION AND MAY BE FILLED WITH ANY OF THE FOLLOWING OCCUPATIONS: Electrical Engineer, GS-0850-12 Electronics Engineer, GS-0855-12 Nuclear Engineer, GS-0840-12 Computer...

  6. Self-pressurizing Stirling engine (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Self-pressurizing Stirling engine Title: Self-pressurizing Stirling engine A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling ...

  7. Chapter 48 - Value Engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 - Value Engineering Chapter 48 - Value Engineering PDF icon 48ValueEngineering0.pdf More Documents & Publications Audit Report: OAS-L-07-08 Emerging Lighting Technology...

  8. Rotating head and piston engine

    SciTech Connect (OSTI)

    Gomm, T.J.; Messick, N.C.

    1992-07-21

    This patent describes a rotary piston combustion engine. It comprises a housing means, an engine block housing a single toroidal bore, a piston carrier ring spaced outwardly along the entire perimeter of the toroidal bore with at least one finger extending inwardly for piston attachment, a power transfer cylinder, a power output shaft, an auxiliary shaft with driven gearing means meshing with the driving gearing means, a rotating head with windows for piston passage, a trapezoidal porting means in the engine block and in the rotating head, an exhaust port means.

  9. Sandia National Laboratories: Careers: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Engineering Systems engineering robot Systems engineers contribute to every aspect that impacts how a product is conceived, developed, and deployed into the field. Systems engineers at Sandia have the opportunity to contribute technically and programmatically in the development of our many breakthrough products. Systems engineers have responsibilities across the entire product life cycle, giving them a unique, hands-on work experience. Systems engineers work with business development

  10. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Research Facility Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The facility's engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The facility is used to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne researchers use the facility's engines to

  11. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials Engineering Research Facility's state-of-the-art labs and equipment, Argonne researchers can safely scale up materials from the research bench for commercial testing. Photo courtesy Argonne National Laboratory. Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials

  12. LANL computer model boosts engine efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL computer model boosts engine efficiency LANL computer model boosts engine efficiency The KIVA model has been instrumental in helping researchers and manufacturers understand combustion processes, accelerate engine development and improve engine design and efficiency. September 25, 2012 KIVA simulation of an experimental engine with DOHC quasi-symmetric pent-roof combustion chamber and 4 valves. KIVA simulation of an experimental engine with DOHC quasi-symmetric pent-roof combustion chamber

  13. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Engineer, Sandia National Laboratories Clifford Ho Clifford Ho February 2010 Asian American Engineer of the Year Clifford Ho, a Sandia engineer, has been selected by the Chinese Institute of Engineers - USA to receive the Asian American Engineer of the Year Award. The honor is presented each year to the nation's most outstanding Asian American engineers and scientists who make significant, lasting and global contributions to the nation. Ho was recognized for his achievements

  14. Fermilab | Directorate | Engineering Advisory Council (EAC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Advisory Council (EAC) The Engineering Advisory Council is a group of engineering staff at Fermilab whose goal is to address and improve the lives of engineers at the laboratory and encourage a community of open communication and free exchange of ideas. The council will ultimately strive to promote engineering success across the laboratory. Approximately fifteen members of the group are chosen to represent multiple divisions and departments, a range of engineering grade levels, and

  15. A STUDY OF EXTRACTIVE AND REMOTE-SENSING SAMPLING AND MEASUREMENT OF EMISSIONS FROM MILITARY AIRCRAFT ENGINES

    SciTech Connect (OSTI)

    Cheng, Mengdawn; Corporan, E.

    2010-01-01

    Aircraft emissions contribute to the increased atmospheric burden of particulate matter (e.g., black carbon and secondary organic compounds) that plays a role in air quality, contrail formation and climate change. Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for to engine and fuel certification remains a daunting task, no agency-certified method is available for the task. In this paper we summarize the results of a recent study that was devoted to investigate both extractive and optical remote-sensing (ORS) technologies in sampling and measurement of gaseous and particulate matter (PM) emitted by a number of military aircraft engines operated with JP-8 and a Fischer-Tropsch (FT) fuel at various engine conditions. These engines include cargo, bomber, and helicopter types of military aircraft that consumes 70-80% of the military aviation fuel each year. The emission indices of selected pollutants are discussed as these data may be of interest for atmospheric modeling and for design of air quality control strategies around the airports and military bases. It was found that non-volatile particles in the engine emissions were all in the ultrafine range. The mean diameter of particles increased as the engine power increased; the mode diameters were in the 20nm range for the low power condition of a new helicopter engine to 80nm for the high power condition of a newly maintained bomber engine. Elemental analysis indicated little metals were present on particles in the exhaust, while most of the materials on the exhaust particles were based on carbon and sulfate. Carbon monoxide, carbon dioxide, nitrogen oxide, sulfur dioxide, formaldehyde, ethylene, acetylene, propylene, and alkanes were detected using both technologies. The last five species (in the air toxics category) were most noticeable only under the low engine power. The emission indices calculated based on the ORS data were however observed to differ significantly (up to 90%) from (typically lower than) those based on the extractive techniques. However, the ORS techniques were useful in providing non-intrusive real-time measurements of gaseous species in the exhaust plume, which warrants further development. The results obtained in this program validate sampling methodology and measurement techniques used for non-volatile PM aircraft emissions as described in the SAE AIR-6037.

  16. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  17. Fuel Additive Strategies for Enhancing the Performance of Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Strategies for Enhancing the Performance of Engines and Engine Oils Fuel Additive Strategies for Enhancing the Performance of Engines and Engine Oils 2003 DEER Conference ...

  18. Sandia Energy - Large Eddy Simulation (LES) of Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Eddy Simulation (LES) of Engines Home Transportation Energy Predictive Simulation of Engines Engine Combustion Modeling Large Eddy Simulation (LES) of Engines Large Eddy...

  19. Los Alamos engineer selected to participate in NAE's 2012 "Frontiers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moody to participate in "Frontiers of Engineering" Los Alamos engineer selected to participate in NAE's 2012 "Frontiers of Engineering" symposium Engineers between 30 to 45 who are ...

  20. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    SciTech Connect (OSTI)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and experimental results suggest that the LTC-TCR combination may offer a high efficiency solution to engine operation. A single zone model using a detailed chemical kinetic mechanism was implemented in CHEMKIN and to study the effects of base fuel and steam-fuel reforming products on the ignition timing and heat release characteristics. The study was performed considering the reformed fuel species composition for total n-heptane conversion (ideal case) and also at the composition corresponding to a specific set of operational reforming temperatures (real case). The computational model confirmed that the reformed products have a strong influence on the low temperature heat release (LTHR) region, affecting the onset of the high temperature heat release (HTHR). The ignition timing was proportionally delayed with respect to the baseline fuel case when higher concentrations of reformed gas were used. For stoichiometric concentration of RG, it was found that by increasing the proportion of reformed fuel to total fuel (RG), from 0% to 30%, the amount of energy released during the LTHR regime, or HR{sub L}, was reduced by 48% and the ignition timing was delayed 10.4 CA degrees with respect to the baseline fuel case. For RG composition corresponding to certain operational reforming temperatures, it was found that the most significant effects on the HCCI combustion, regarding HR{sub L} reduction and CA50 delay, was obtained by RG produced at a reforming temperature range of 675 K-725 K.