National Library of Energy BETA

Sample records for average sulfur percent

  1. Variable Average Absolute Percent Differences

    Gasoline and Diesel Fuel Update (EIA)

    Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 0.9 45.8 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 37.7 17.3 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 36.6 18.7 Total Petroleum Consumption (Table 4) 7.9 70.7 Crude Oil Production (Table 5) 8.1 51.1 Petroleum Net Imports (Table 6) 24.7 73.8 Natural Gas

  2. "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Energy Outlook Retrospective Review, 2014" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated" "Gross Domestic Product" "Real Gross Domestic Product (Average Cumulative Growth)* (Table 2)",0.9204312786,45.77777778 "Petroleum" "Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a)",37.71300779,17.33333333 "Imported Refiner Acquisition Cost of Crude Oil

  3. Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities

    U.S. Energy Information Administration (EIA) Indexed Site

    (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 1.39 1.36 1.36 1.37 1.44 1.44 1985-2015 PADD 1 0.85 0.97 0.62 0.83 0.75 0.75 1985-2015 East Coast 0.78 0.91 0.51 0.76 0.68 0.67 1985-2015 Appalachian No. 1 1.57 1.62 1.71 1.59 1.61 1.65 1985-2015 PADD 2 1.44 1.46 1.40 1.33 1.54 1.55

  4. ,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities",16,"Monthly","12/2015","1/15/1985" ,"Release Date:","2/29/2016" ,"Next Release

  5. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOE Patents [OSTI]

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  6. Biogenic sulfur source strengths

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.; Robinson, E.; Pack, M.R.; Bamesberger, W.L.

    1981-12-01

    Conclusions are presented from a 4-yr field measurement study of biogenic sulfur gas emissions from soils, and some water and vegetated surfaces, at 35 locales in the eastern and southeastern United States. More than one soil order was examined whenever possible to increase the data base obtained from the 11 major soil orders comprising the study area. Data analysis and emission model development were based upon an (80 x 80)-km/sup 2/ grid system. The measured sulfur fluxes, adjusted for the annual mean temperature for each sampling locale, weigted by the percentage of each soil order within each grid, and averaged for each of the east-west grid tiers from 47/sup 0/N to 25/sup 0/N latitude, showed an exponential north-to-south increase in total sulfur gas flux. Our model predits an additional increase of nearly 25-fold in sulfur flux between 25/sup 0/N and the equator.

  7. spaceheat_percent2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Heating Tables (Percent of U.S. Households; 24 pages, 133 kb) Contents Pages HC3-1b. Space Heating by Climate Zone, Percent of U.S. Households, 2001 2 HC3-2b. Space Heating by Year of Construction, Percent of U.S. Households, 2001 2 HC3-3b. Space Heating by Household Income, Percent of U.S. Households, 2001 2 HC3-4b. Space Heating by Type of Housing Unit, Percent of U.S. Households, 2001 2 HC3-5b. Space Heating by Type of Owner-Occupied Housing Unit, Percent of U.S. Households, 2001 2

  8. Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani

    2004-06-01

    A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2013 Coal Petroleum Natural Gas Period Average Btu per Pound Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Gallon Average Sulfur Percent by...

  10. Uses of lunar sulfur

    SciTech Connect (OSTI)

    Vaniman, D.T.; Pettit, D.R.; Heiken, G.

    1988-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical and biochemical properties. Although low in abundance on the Moon (/approximately/0.1% in mare soils), sulfur is surface-correlated and relatively extractable. Co-production of sulfur during oxygen extraction from ilmenite-rich soils could yield sulfur in masses up to 10% of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource. 29 refs., 3 figs.

  11. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H. (LaJolla, CA)

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by...

  13. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur...

    Office of Scientific and Technical Information (OSTI)

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be ...

  14. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery

    Office of Scientific and Technical Information (OSTI)

    electrodes (Patent) | SciTech Connect sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes Citation Details In-Document Search Title: Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the

  15. Norwich Public Utilities- Zero Percent Financing Program

    Broader source: Energy.gov [DOE]

    In partnership with several local banks, Norwich Public Utilities (NPU) is offering a zero percent loan to commercial and industrial customers for eligible energy efficiency improvement projects....

  16. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  17. Neutron resonance averaging

    SciTech Connect (OSTI)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  18. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  19. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Connecticut - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Indiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 620 914 819 R 921 895 Production (million cubic feet) Gross Withdrawals From Gas Wells 6,802 9,075

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Maryland - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7 8 9 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells 43 34 44 32 20 From Oil

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Nebraska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 276 322 270 R 357 310 Production (million cubic feet) Gross Withdrawals From Gas Wells 2,092 1,854

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 North Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 South Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    80 Wisconsin - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  14. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  15. District of Columbia Natural Gas Percent Sold to The Commercial...

    U.S. Energy Information Administration (EIA) Indexed Site

    by Local Distribution Companies (Percent) District of Columbia Natural Gas Percent Sold to The Commercial Sectors by Local Distribution Companies (Percent) Decade Year-0 ...

  16. Bacterial Sulfur Storage Globules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by I. J. Pickering and G. N. George Sulfur is essential for all life, but it plays a particularly central role in the metabolism of many anaerobic microorganisms. Prominent among these are the sulfide-oxidizing bacteria that oxidize sulfide (S2-) to sulfate (SO42-). Many of these organisms can store elemental sulfur (S0) in "globules" for use when food is in short supply (Fig. 1). The chemical nature of the sulfur in these globules has been an enigma since they were first described as

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Arkansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,397 8,388 8,538 R 9,843 10,150 Production (million cubic feet) Gross Withdrawals From Gas Wells

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 California - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,580 1,308 1,423 R 1,335 1,118 Production (million cubic feet) Gross Withdrawals From Gas

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Georgia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Illinois - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 50 40 40 R 34 36 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,697 2,114

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Iowa - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Kentucky - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 17,670 14,632 17,936 R 19,494 19,256 Production (million cubic feet) Gross Withdrawals From Gas

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Maine - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Michigan - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 10,100 11,100 10,900 R 10,550 10,500 Production (million cubic feet) Gross Withdrawals From Gas

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Mississippi - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,979 5,732 1,669 R 1,967 1,645 Production (million cubic feet) Gross Withdrawals From Gas

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Missouri - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 53 100 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 R 8 8 From

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Montana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,059 6,477 6,240 5,754 5,754 Production (million cubic feet) Gross Withdrawals From Gas Wells

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Nevada - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 R 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 3 From Oil Wells

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 New Jersey - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 New York - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,736 6,157 7,176 R 6,902 7,119 Production (million cubic feet) Gross Withdrawals From Gas Wells

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Ohio - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 34,931 46,717 35,104 R 32,664 32,967 Production (million cubic feet) Gross Withdrawals From Gas Wells

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Oklahoma - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,000 41,238 40,000 39,776 40,070 Production (million cubic feet) Gross Withdrawals From Gas

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Pennsylvania - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,500 54,347 55,136 R 53,762 70,400 Production (million cubic feet) Gross Withdrawals

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Rhode Island - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Tennessee - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 230 210 212 R 1,089 1,024 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,144

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Texas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 95,014 100,966 96,617 97,618 98,279 Production (million cubic feet) Gross Withdrawals From Gas Wells

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Vermont - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,470 7,903 7,843 R 7,956 7,961 Production (million cubic feet) Gross Withdrawals From Gas Wells

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 West Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 52,498 56,813 50,700 R 54,920 60,000 Production (million cubic feet) Gross Withdrawals

  8. Sulfur tolerant molten carbonate fuel cell anode and process

    DOE Patents [OSTI]

    Remick, Robert J. (Naperville, IL)

    1990-01-01

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  9. Separation of sulfur isotopes

    DOE Patents [OSTI]

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  10. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOE Patents [OSTI]

    Mamantov, Gleb (Knoxville, TN)

    1985-04-02

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  11. Concentration Averaging | Department of Energy

    Office of Environmental Management (EM)

    Concentration Averaging Concentration Averaging Summary Notes from 3 October 2007 Generic Technical Issue Discussion on Concentration Averaging PDF icon Summary Notes from 3...

  12. Sodium sulfur battery seal

    DOE Patents [OSTI]

    Mikkor, Mati (Ann Arbor, MI)

    1981-01-01

    This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

  13. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  14. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

    1996-01-01

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  15. Carbonyl sulfide: potential agent of atmospheric sulfur corrosion

    SciTech Connect (OSTI)

    Graedel, T.E.; Kammlott, G.W.; Franey, J.P.

    1981-05-08

    Laboratory exposure experiments demonstrate that carbonyl sulfide in wet air corrodes copper at 22/sup 0/C at a rate that is approximately linear with total exposure (the product of exposure time and carbonyl sulfide concentration). The corrosion rate is similar to that of hydrogen sulfide, a widely recognized corrodant. The much greater average atmospheric abundance of carbonyl sulfide compared with that of hydrogen sulfide or sulfur dioxide suggests that carbonyl sulfide may be a major agent of atmospheric sulfur corrosion.

  16. Percent of Commercial Natural Gas Deliveries in North Carolina...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Represented by the Price (Percent) Percent of Commercial Natural Gas Deliveries in North Carolina Represented by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  17. Federal Government Increases Renewable Energy Use Over 1000 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal ...

  18. Federal Government Increases Renewable Energy Use Over 1000 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal...

  19. Sodium sulfur battery seal

    DOE Patents [OSTI]

    Topouzian, Armenag (Birmingham, MI)

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  20. Process for forming sulfuric acid

    DOE Patents [OSTI]

    Lu, Wen-Tong P. (Upper St. Clair, PA)

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  1. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect (OSTI)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  2. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  3. Evaluation of Sulfur in Syngas

    SciTech Connect (OSTI)

    None

    2006-04-01

    This project will define the options and costs at different scales of technology that can be used to remove sulfur from syngas.

  4. Texas Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Texas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  5. Connecticut Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  6. New York Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) New York Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  7. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOE Patents [OSTI]

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  8. Process for removing sulfur from sulfur-containing gases

    DOE Patents [OSTI]

    Rochelle, Gary T. (Austin, TX); Jozewicz, Wojciech (Chapel Hill, NC)

    1989-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accorda The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531.

  9. "2014 Average Monthly Bill- Commercial"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (kWh)","Average Price (centskWh)","Average Monthly Bill (Dollar and cents)" "New England",862269,5132.4894,14.699138,754.43169 "Connecticut",155372,6915.4089,15.547557...

  10. Maryland Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.20 2006-2010 Marketers 13.51 2006-2010 Percent Sold by Local Distribution Companies 81.7 2006-2010 Commercial Average Price 9.87 10.29 10.00 10.06 ...

  11. Florida Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 17.85 2006-2010 Marketers 19.44 2006-2010 Percent Sold by Local Distribution Companies 97.9 2006-2010 Commercial Average Price 10.60 11.14 10.41 10.87 ...

  12. New Jersey Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.77 2006-2010 Marketers 14.87 2006-2010 Percent Sold by Local Distribution Companies 96.6 2006-2010 Commercial Average Price 10.11 9.51 8.50 9.55 ...

  13. Michigan Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Average Price 8.95 9.14 8.35 7.82 8.28 7.49 1967-2015 Local Distribution Companies 10.00 2006-2010 Marketers 7.61 2006-2010 Percent Sold by Local Distribution Companies ...

  14. Virginia Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.64 2006-2010 Marketers 13.64 2006-2010 Percent Sold by Local Distribution Companies 90.9 2006-2010 Commercial Average Price 9.55 9.69 8.77 8.83 9.17 ...

  15. Pennsylvania Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.82 2006-2010 Marketers 13.78 2006-2010 Percent Sold by Local Distribution Companies 91.2 2006-2010 Commercial Average Price 10.47 10.42 10.24 10.11 ...

  16. District of Columbia Average Price of Natural Gas Delivered to...

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price 12.26 12.24 11.19 11.64 12.18 11.55 1980-2015 Local Distribution Companies 12.99 2006-2010 Marketers 12.12 2006-2010 Percent Sold by Local Distribution Companies 16.4 ...

  17. An Evolutionary Arms Race for Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    globally distributed sulfur-oxidizing bacteria in the deep sea carry bacterial genes for the oxidation of elemental sulfur. Although such observations are common in...

  18. Spacetime averaged null energy condition

    SciTech Connect (OSTI)

    Urban, Douglas; Olum, Ken D.

    2010-06-15

    The averaged null energy condition has known violations for quantum fields in curved space, even when one considers only achronal geodesics. Many such examples involve rapid variation in the stress-energy tensor in the vicinity of the geodesic under consideration, giving rise to the possibility that averaging in additional dimensions would yield a principle universally obeyed by quantum fields. However, after discussing various procedures for additional averaging, including integrating over all dimensions of the manifold, we give here a class of examples that violate any such averaged condition.

  19. Federal Government Increases Renewable Energy Use Over 1000 Percent since

    Energy Savers [EERE]

    1999; Exceeds Goal | Department of Energy Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal November 3, 2005 - 12:35pm Addthis WASHINGTON, DC - The Department of Energy (DOE) announced today that the federal government has exceeded its goal of obtaining 2.5 percent of its electricity needs from renewable energy sources by September 30, 2005. The largest energy

  20. 2014 Average Monthly Bill- Residential

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (kWh) Average Price (centskWh) Average Monthly Bill (Dollar and cents) New England 6,243,013 630 17.82 112.31 Connecticut 1,459,239 730 19.75 144.10 Maine...

  1. 2014 Average Monthly Bill- Commercial

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (kWh) Average Price (centskWh) Average Monthly Bill (Dollar and cents) New England 862,269 5,132 14.70 754.43 Connecticut 155,372 6,915 15.55 1,075.18 Maine...

  2. Natural sulfur flux from the Gulf of Mexico: dimethyl sulfide, carbonyl sulfide, and sulfur dioxide. Technical report

    SciTech Connect (OSTI)

    Van Valin, C.C.; Luria, M.; Wellman, D.L.; Gunter, R.L.; Pueschel, R.F.

    1987-06-01

    Atmospheric measurements of natural sulfur compounds were performed over the northern Gulf of Mexico during the late summer months of 1984. Air samples were collected with an instrumented aircraft at elevations of 30-3500 m, during both day and night. Most air samples were representative of the clean maritime atmosphere, although some were from continental contaminated air during periods of offshore flow at the coastline. In all samples, carbonyl sulfide concentrations were within the range of 400-500 pptv. Conversely, the dimethyl sulfide concentrations showed significant variability: during clean atmospheric conditions the average of all measurements was 27 pptv, whereas under polluted conditions the average was 7 pptv. Measureable quantities of dimethyl sulfide (>5 pptv) were not observed above the boundary layer. The average sulfur dioxide concentration measured in the marine (clean) atmosphere was 215 pptv, which is consistent with the oxidation of dimethyl sulfide being its major source.

  3. High average power pockels cell

    DOE Patents [OSTI]

    Daly, Thomas P. (Pleasanton, CA)

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  4. Sulfur gas emissions from stored flue-gas-desulfurization sludges

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1980-01-01

    In field studies conducted for the Electric Power Research Institute by the University of Washington (1978) and the University of Idaho (1979), 13 gas samples from sludge storage sites at coal-burning power plants were analyzed by wall-coated open-tube cryogenic capillary-column gas chromatography with a sulfur-selective flame-photometric detector. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide were identified in varying concentrations and ratios in the emissions from both operating sludge ponds and landfills and from FGD sludge surfaces that had been stored in the open for 3-32 mo or longer. Other sulfur compounds, probably propanethiols, were found in emissions from some sludges. Chemical ''stabilization/fixation'' sulfate-sulfite ratio, sludge water content, and temperature were the most significant variables controlling sulfur gas production. The average sulfur emissions from each of the 13 FGD storage sites ranged from 0.01 to 0.26 g/sq m/yr sulfur.

  5. 2014 Average Monthly Bill- Industrial

    Gasoline and Diesel Fuel Update (EIA)

    Industrial (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Number of Customers Average Monthly Consumption (kWh) Average Price (cents/kWh) Average Monthly Bill (Dollar and cents) New England 28,017 56,833 11.84 6,730.30 Connecticut 4,648 63,016 12.92 8,138.94 Maine 3,023 92,554 8.95 8,281.27 Massachusetts 14,896 44,536 12.74 5,674.13 New Hampshire 3,342 49,099 11.93 5,857.27 Rhode Island 1,884 39,241 12.86 5,047.36 Vermont 224 527,528 10.23 53,984.67 Middle Atlantic 44,397

  6. Martinez Sulfuric Acid Regeneration Plt Biomass Facility | Open...

    Open Energy Info (EERE)

    Martinez Sulfuric Acid Regeneration Plt Biomass Facility Jump to: navigation, search Name Martinez Sulfuric Acid Regeneration Plt Biomass Facility Facility Martinez Sulfuric Acid...

  7. Method of preparing graphene-sulfur nanocomposites for rechargeable...

    Office of Scientific and Technical Information (OSTI)

    and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur...

  8. Table 2. Percent of Households with Vehicles, Selected Survey...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08...

  9. Arizona - Natural Gas 2014 Million Cu. Feet Percent of

    Gasoline and Diesel Fuel Update (EIA)

    4 Arizona - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 5 5 5 5 5 Production (million cubic feet) Gross Withdrawals From Gas Wells 183 168 117 72 106 From

  10. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.; Piepel, Gregory F.; Kruger, Albert A.

    2014-10-01

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ? TiO2 < CaO < P2O5 ? ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ? ZrO2 > Al2O3.

  11. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Commercial Sector by State, 2014 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 0 -- -- 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0

  12. Glass surface deactivants for sulfur-containing gases

    SciTech Connect (OSTI)

    Farwell, S.O.; Gluck, S.J.

    1980-10-01

    In gas chromatographic technique for measuring reduced sulfur-containing gases in biogenic air fluxes, the major problem seemed to be the irreversible adsorption of the polar sulfur compounds on the glass surfaces of the cryogenic sampling traps. This article discusses the comparative degrees of Pyrex glass surface passivation for over 25 chemical deactivants and their related pretreatment procedures. Since H/sub 2/S was discovered to be the sulfur compound with a consistently lower recovery efficiency than COS, CH/sub 3/SH, CH/sub 3/SCH, CS/sub 2/ or CH/sub 3/SSCH/sub 3/, the percent recovery for H/sub 2/S was employed as the indicator of effectiveness for the various deactivation treatments. Tables are presented summarizing the mean H/sub 2/S recoveries for chlorosilane deactivants and for the mean H/sub 2/S recoveries for different pyrex surface pretreatments with an octadecyltrialkoxysilane deactivation. The general conclusion of this investigation is that the relative degree of passivation for glass surfaces by present deactivation techniques is dependent on the types of analyzed compounds and the nature of the glass surface.

  13. Seal for sodium sulfur battery

    DOE Patents [OSTI]

    Topouzian, Armenag (Birmingham, MI); Minck, Robert W. (Lathrup Village, MI); Williams, William J. (Northville, MI)

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which the sealing is accomplished by a radial compression seal made on a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  14. Two stage sorption of sulfur compounds

    DOE Patents [OSTI]

    Moore, William E.

    1992-01-01

    A two stage method for reducing the sulfur content of exhaust gases is disclosed. Alkali- or alkaline-earth-based sorbent is totally or partially vaporized and introduced into a sulfur-containing gas stream. The activated sorbent can be introduced in the reaction zone or the exhaust gases of a combustor or a gasifier. High efficiencies of sulfur removal can be achieved.

  15. U.S. Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Deliveries (Percent) U.S. Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Share of Total U.S. Natural Gas

  16. BOSS Measures the Universe to One-Percent Accuracy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BOSS Measures the Universe to One-Percent Accuracy BOSS Measures the Universe to One-Percent Accuracy The Baryon Oscillation Spectroscopic Survey makes the most precise calibration yet of the universe's "standard ruler" January 8, 2014 Contact: Paul Preuss, Paul_Preuss@lbl.gov , +1 415-272-3253 BOSS-BAOv1.jpg Baryon acoustic oscillations (gray spheres), which descend from waves of increased density in the very early universe, are where galaxies have a tendency to cluster or align -- an

  17. Los Alamos reduces water use by 26 percent in 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos reduces water use Los Alamos reduces water use by 26 percent in 2014 The Lab decreased its water usage by 26 percent, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. March 16, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  18. Percent of Industrial Natural Gas Deliveries in District of Columbia

    U.S. Energy Information Administration (EIA) Indexed Site

    Represented by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2000's 0 0 0 -- -- 0 0 0 0 0 2010's

  19. Facile synthesis, spectral properties and formation mechanism of sulfur nanorods in PEG-200

    SciTech Connect (OSTI)

    Xie, Xin-yuan; Li, Li-yun; Zheng, Pu-sheng; Zheng, Wen-jie; Bai, Yan; Cheng, Tian-feng; Liu, Jie

    2012-11-15

    Graphical abstract: Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of about 68 was obtained. The sulfur nanoparticles could self-assemble from spherical particles to nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift which was due to the production of nanorods. Highlights: ? A novel, facile and greener method to synthesize sulfur nanorods by the solubilizing and templating effect of PEG-200 was reported. ? S{sup 0} nanoparticles could self assemble in PEG-200 and finally form monodisperse and homogeneous rod-like structure with an average diameter of about 80 nm, the length ca. 600 nm. ? The absorption band showed a red shift and the RRS intensity enhanced continuously during the self-assembling process. ? PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. -- Abstract: The synthesis of nano-sulfur sol by dissolving sublimed sulfur in a green solvent-PEG-200 was studied. Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of 68 was obtained. The structure, morphology, size, and stability of the products were investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) measurements. The spectral properties of the products were investigated by ultraviolet-visible (UVvis) absorption and resonance Rayleigh scattering spectroscopy (RRS). The results showed that the spherical sulfur nanoparticles could self-assemble into nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift and the RRS intensity enhanced continuously. There was physical cross-linking between PEG and sulfur nanoparticles. PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. This research provides a greener and more environment-friendly synthetic method for the production of sulfur nanorods.

  20. Biogenic sulfur emissions in the SURE region

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.; Robinson, E.; Pack, M.R.

    1980-09-01

    The objective of this study was to estimate the magnitude of biogenic sulfur emissions from the northeastern United States - defined as the EPRI Sulfate Regional Experiment (SURE) study area. Initial laboratory efforts developed and validated a portable sulfur sampling system and a sensitive, gas chromatographic analytical detection system. Twenty-one separate sites were visited in 1977 to obtain a representative sulfur emission sampling of soil orders, suborders, and wetlands. The procedure determined the quantity of sulfur added to sulfur-free sweep air by the soil flux as the clean air was blown through the dynamic enclosure set over the selected sampling area. This study represents the first systematic sampling for biogenic sulfur over such a wide range of soils and such a large land area. The major impacts upon the measured sulfur flux were found to include soil orders, temperature, sunlight intensity, tidal effects along coastal areas. A mathematical model was developed for biogenic sulfur emissions which related these field variables to the mean seasonal and annual ambient temperatures regimes for each SURE grid and the percentage of each soil order within each grid. This model showed that at least 53,500 metric tons (MT) of biogenic sulfur are emitted from the SURE land surfaces and approximately 10,000 MT are emitted from the oceanic fraction of the SURE grids. This equates to a land sulfur flux of nearly 0.02 gram of sulfur per square meter per yr, or about 0.6% of the reported anthropogenic emissions withn the SURE study area. Based upon these data and the summertime Bermuda high clockwise circulation of maritime air across Florida and the Gulf Coast states northward through the SURE area, the total land biogenic sulfur emission contribution to the SURE area atmospheric sulfur burden might approach 1 to 2.5% of the anthropogenic.

  1. Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Yang, Xuran; Zhang, Xiaoqing; Wang, Jiankun; Qu, Deyu; Qu, Deyang

    2015-10-30

    In this study, the polysulfide ions formed during the first reduction wave of sulfur in Li–S battery were determined through both in-situ and ex-situ derivatization of polysulfides. By comparing the cyclic voltammetric results with and without the derivatization reagent (methyl triflate) as well as the in-situ and ex-situ derivatization results under potentiostatic condition, in-situ derivatization was found to be more appropriate than its ex-situ counterpart, since subsequent fast chemical reactions between the polysulfides and sulfur may occur during the timeframe of ex-situ procedures. It was found that the major polysulfide ions formed at the first reduction wave of elemental sulfurmore » were the S42– and S52– species, while the widely accepted reduction products of S82– and S62– for the first reduction wave were in low abundance.« less

  2. Method of preparing graphene-sulfur nanocomposites for rechargeable

    Office of Scientific and Technical Information (OSTI)

    lithium-sulfur battery electrodes (Patent) | SciTech Connect Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes Citation Details In-Document Search Title: Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing

  3. Minnesota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.49 2.52 2.65 2.72 2.59 2.44 2.52 2000's 2.60 2.62 2.77 2.72 2.73 2.66 2.68 2.73 2.85 2.79 2010's 2.57 2.66 2.63 2.86 2.88 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  4. Mississippi Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Mississippi Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.57 0.56 0.56 0.58 0.55 0.55 0.52 2000's 0.54 0.59 0.54 0.52 0.50 0.51 0.49 0.47 0.49 0.49 2010's 0.57 0.52 0.47 0.51 0.56 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  5. Missouri Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Missouri Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.71 2.53 2.58 2.62 2.56 2.45 2.37 2000's 2.31 2.44 2.34 2.26 2.25 2.21 2.18 2.15 2.33 2.22 2010's 2.25 2.18 2.00 2.17 2.27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  6. Montana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Montana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.41 0.39 0.41 0.42 0.42 0.42 0.42 2000's 0.40 0.42 0.44 0.40 0.41 0.41 0.45 0.42 0.44 0.46 2010's 0.44 0.46 0.46 0.42 0.42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  7. Nebraska Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Nebraska Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.97 0.92 0.93 0.94 0.95 0.90 0.86 2000's 0.85 0.98 0.90 0.83 0.79 0.79 0.82 0.82 0.87 0.84 2010's 0.84 0.84 0.75 0.84 0.83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  8. Nevada Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Nevada Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.42 0.44 0.43 0.43 0.51 0.66 0.61 2000's 0.60 0.68 0.65 0.65 0.75 0.75 0.87 0.81 0.79 0.81 2010's 0.82 0.86 0.89 0.85 0.69 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  9. New Hampshire Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) New Hampshire Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.13 0.14 0.13 0.13 0.14 0.14 0.14 2000's 0.15 0.14 0.14 0.16 0.15 0.16 0.15 0.16 0.14 0.15 2010's 0.14 0.15 0.15 0.15 0.15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  10. New Jersey Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) New Jersey Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.95 4.47 4.01 4.25 4.35 4.35 4.43 2000's 4.40 4.51 4.29 4.80 4.77 4.79 4.51 4.83 4.51 4.73 2010's 4.58 4.53 4.61 4.62 4.87 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  11. New Mexico Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.64 0.64 0.59 0.64 0.74 0.79 0.75 2000's 0.72 0.73 0.69 0.62 0.71 0.69 0.70 0.71 0.69 0.68 2010's 0.74 0.73 0.78 0.74 0.64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  12. Ohio Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Ohio Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7.14 7.08 7.38 7.15 7.11 6.56 6.73 2000's 6.88 6.47 6.57 6.75 6.59 6.69 6.23 6.34 6.27 6.12 2010's 5.93 6.07 6.05 6.07 6.30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  13. Oklahoma Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Oklahoma Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.58 1.43 1.42 1.46 1.44 1.47 1.30 2000's 1.34 1.35 1.37 1.29 1.22 1.23 1.21 1.27 1.35 1.30 2010's 1.37 1.30 1.18 1.35 1.36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  14. Oregon Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Oregon Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.60 0.60 0.58 0.63 0.65 0.76 0.82 2000's 0.78 0.80 0.79 0.73 0.79 0.82 0.94 0.91 0.92 0.94 2010's 0.85 0.99 1.04 0.94 0.81 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  15. Pennsylvania Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Pennsylvania Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5.43 5.54 5.40 5.32 5.27 4.82 5.11 2000's 5.26 5.01 4.89 5.22 5.09 5.08 4.71 4.90 4.69 4.76 2010's 4.68 4.66 4.76 4.73 5.01 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  16. Colorado Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Colorado Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.14 2.05 2.15 2.12 2.32 2.45 2.37 2000's 2.33 2.59 2.64 2.45 2.48 2.57 2.73 2.77 2.74 2.70 2010's 2.74 2.76 2.79 2.76 2.60 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  17. Delaware Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Delaware Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.18 0.18 0.19 0.18 0.17 0.19 2000's 0.19 0.19 0.20 0.21 0.21 0.21 0.21 0.21 0.20 0.21 2010's 0.21 0.21 0.21 0.21 0.22 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  18. Florida Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Florida Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.28 0.29 0.30 0.31 0.26 0.31 0.29 2000's 0.30 0.33 0.31 0.31 0.33 0.33 0.36 0.32 0.32 0.32 2010's 0.39 0.35 0.35 0.31 0.33 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  19. Georgia Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Georgia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.33 2.18 2.36 2.42 2.30 2.38 2.09 2000's 2.82 2.51 2.59 2.56 2.60 2.58 2.52 2.37 2.44 2.48 2010's 2.90 2.40 2.35 2.48 2.64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  20. Hawaii Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Hawaii Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2000's 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2010's 0.01 0.01 0.01 0.01 0.01 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  1. Idaho Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Idaho Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.25 0.25 0.27 0.29 0.31 0.35 0.38 2000's 0.38 0.40 0.42 0.37 0.42 0.45 0.51 0.50 0.56 0.53 2010's 0.50 0.57 0.58 0.56 0.48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  2. Illinois Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Illinois Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9.99 9.77 10.33 10.28 9.98 9.07 9.42 2000's 9.35 8.95 9.40 9.32 9.11 9.07 9.12 9.17 9.52 9.21 2010's 8.71 8.87 8.70 9.24 9.42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  3. Indiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Indiana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.31 3.25 3.32 3.43 3.39 3.10 3.21 2000's 3.23 3.09 3.21 3.10 3.05 3.08 2.92 3.02 3.12 2.92 2010's 2.89 2.80 2.78 2.95 3.08 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  4. Iowa Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Iowa Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.68 1.61 1.70 1.68 1.64 1.52 1.51 2000's 1.48 1.49 1.46 1.46 1.40 1.39 1.42 1.43 1.54 1.47 2010's 1.43 1.42 1.35 1.48 1.51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  5. Kansas Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.71 1.53 1.56 1.63 1.39 1.55 1.44 2000's 1.41 1.47 1.45 1.39 1.34 1.35 1.31 1.34 1.44 1.49 2010's 1.40 1.39 1.22 1.39 1.40 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  6. Kentucky Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kentucky Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.35 1.29 1.36 1.34 1.33 1.23 1.25 2000's 1.29 1.19 1.21 1.22 1.16 1.16 1.08 1.09 1.12 1.08 2010's 1.14 1.08 1.04 1.11 1.13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  7. Louisiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Louisiana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.14 1.09 1.09 1.08 1.06 1.05 0.95 2000's 1.00 1.03 1.01 0.93 0.88 0.85 0.77 0.79 0.76 0.76 2010's 0.95 0.84 0.77 0.79 0.87 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  8. Maine Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maine Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.02 0.02 0.02 0.02 0.02 0.02 0.02 2000's 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 2010's 0.03 0.03 0.04 0.04 0.05 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  9. Maryland Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maryland Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.55 1.58 1.58 1.63 1.56 1.51 1.58 2000's 1.68 1.48 1.64 1.79 1.77 1.78 1.63 1.77 1.66 1.73 2010's 1.75 1.65 1.70 1.70 1.78 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  10. Massachusetts Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Massachusetts Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.45 2.47 2.18 2.18 2.25 2.26 2.24 2000's 2.28 2.24 2.24 2.48 2.32 2.46 2.38 2.44 2.71 2.78 2010's 2.63 2.74 2.78 2.39 2.49 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  11. Michigan Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Michigan Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7.46 7.52 7.84 7.62 7.62 7.07 7.42 2000's 7.36 7.20 7.52 7.59 7.44 7.43 7.23 6.95 6.99 6.84 2010's 6.36 6.75 6.67 6.82 6.97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  12. Alaska Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Alaska Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.28 0.31 0.31 0.31 0.30 0.35 0.37 2000's 0.32 0.35 0.33 0.33 0.37 0.37 0.47 0.42 0.44 0.42 2010's 0.39 0.43 0.52 0.39 0.35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  13. Arizona Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.57 0.61 0.55 0.53 0.62 0.80 0.70 2000's 0.70 0.76 0.72 0.71 0.78 0.74 0.83 0.81 0.79 0.73 2010's 0.79 0.82 0.84 0.81 0.64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  14. Arkansas Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Arkansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.92 0.86 0.85 0.88 0.85 0.85 0.77 2000's 0.85 0.78 0.80 0.75 0.71 0.70 0.72 0.69 0.73 0.70 2010's 0.76 0.72 0.63 0.71 0.75 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  15. California Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10.11 10.75 9.85 9.03 9.61 12.17 12.03 2000's 10.34 10.75 10.45 9.80 10.52 10.02 11.26 10.43 10.00 10.06 2010's 10.35 10.87 11.52 9.84 7.81 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  16. Rhode Island Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Rhode Island Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.40 0.36 0.36 0.36 0.36 0.36 0.35 2000's 0.37 0.38 0.36 0.40 0.40 0.40 0.39 0.37 0.36 0.37 2010's 0.35 0.36 0.38 0.37 0.39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  17. South Carolina Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) South Carolina Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.49 0.48 0.52 0.56 0.52 0.56 0.54 2000's 0.58 0.58 0.56 0.57 0.60 0.59 0.57 0.53 0.55 0.57 2010's 0.68 0.57 0.55 0.58 0.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  18. South Dakota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) South Dakota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.25 0.25 0.26 0.27 0.27 0.26 0.25 2000's 0.25 0.26 0.26 0.26 0.25 0.25 0.26 0.26 0.28 0.28 2010's 0.27 0.27 0.26 0.28 0.28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  19. Tennessee Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Tennessee Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.19 1.18 1.24 1.34 1.29 1.31 1.28 2000's 1.37 1.43 1.42 1.37 1.34 1.37 1.40 1.29 1.41 1.38 2010's 1.55 1.43 1.30 1.45 1.54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  20. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  1. Alabama Natural Gas % of Total Residential Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.04 1.03 1.02 1.08 0.97 1.03 0.90 2000's 0.95 1.03 0.95 0.92 0.90 0.87 0.87 0.75 0.77 0.75 2010's 0.88 0.78 0.66 0.72 0.77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  2. Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Deliveries (Percent) Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.44 0.20 0.15 0.08 0.71 0.57 0.57 2000's 0.57 0.52 0.52 0.52 0.52 0.67 0.47 0.36 0.32 0.29 2010's 0.37 0.64 0.64 0.63 0.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  3. Alabama Natural Gas Percentage Total Commercial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Deliveries (Percent) Alabama Natural Gas Percentage Total Commercial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.90 0.88 0.87 0.92 1.01 0.86 0.91 2000's 0.80 0.87 0.80 0.80 0.85 0.84 0.86 0.78 0.80 0.78 2010's 0.87 0.80 0.74 0.77 0.79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  4. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.28 2.23 2.38 2.27 2.36 2.39 2.53 2000's 2.46 2.11 2.13 2.22 2.25 2.29 2.30 2.26 2.13 2.13 2010's 2.12 2.19 2.38 2.42 2.46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  5. Utah Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Utah Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.05 1.01 1.01 1.04 1.17 1.26 1.17 2000's 1.11 1.15 1.21 1.08 1.24 1.20 1.37 1.28 1.35 1.36 2010's 1.38 1.49 1.44 1.44 1.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  6. Vermont Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Vermont Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.05 0.05 0.05 0.05 0.05 0.05 0.05 2000's 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.06 0.07 2010's 0.06 0.07 0.07 0.07 0.08 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  7. Virginia Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.32 1.34 1.42 1.45 1.48 1.40 1.46 2000's 1.60 1.47 1.54 1.68 1.70 1.77 1.64 1.71 1.63 1.77 2010's 1.84 1.68 1.70 1.75 1.82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  8. Washington Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Washington Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.08 1.10 1.09 1.20 1.24 1.37 1.52 2000's 1.44 1.77 1.50 1.40 1.46 1.53 1.73 1.70 1.73 1.76 2010's 1.58 1.81 1.93 1.70 1.55 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  9. Wisconsin Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Wisconsin Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.63 2.64 2.80 2.82 2.73 2.57 2.70 2000's 2.70 2.63 2.81 2.80 2.78 2.72 2.76 2.78 2.87 2.79 2010's 2.58 2.75 2.71 2.92 2.96 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  10. Wyoming Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Wyoming Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.26 0.24 0.25 0.26 0.26 0.28 0.26 2000's 0.24 0.23 0.27 0.24 0.25 0.24 0.27 0.26 0.27 0.26 2010's 0.27 0.28 0.28 0.28 0.26 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  11. Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide

    SciTech Connect (OSTI)

    Zheng, Dong; Yang, Xuran; Zhang, Xiaoqing; Wang, Jiankun; Qu, Deyu; Qu, Deyang

    2015-10-30

    In this study, the polysulfide ions formed during the first reduction wave of sulfur in LiS battery were determined through both in-situ and ex-situ derivatization of polysulfides. By comparing the cyclic voltammetric results with and without the derivatization reagent (methyl triflate) as well as the in-situ and ex-situ derivatization results under potentiostatic condition, in-situ derivatization was found to be more appropriate than its ex-situ counterpart, since subsequent fast chemical reactions between the polysulfides and sulfur may occur during the timeframe of ex-situ procedures. It was found that the major polysulfide ions formed at the first reduction wave of elemental sulfur were the S42 and S52 species, while the widely accepted reduction products of S82 and S62 for the first reduction wave were in low abundance.

  12. An Evolutionary Arms Race for Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Evolutionary Arms Race for Sulfur An Evolutionary Arms Race for Sulfur Print Friday, 07 November 2014 10:49 On the Earth's surface, plants use photosynthesis to convert sunlight into food. In the deep oceans, however, where no light penetrates, microbes (e.g., bacteria) use chemosynthesis-chemical reactions involving inorganic materials like sulfur-to power the production of the organic compounds necessary for life. Such microbes drive key biogeochemical cycles that impact all life on earth.

  13. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect (OSTI)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  14. Percent of Industrial Natural Gas Deliveries in California Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9.0 10.4 12.9 2000's 8.7 9.1 7.7 4.9 5.2 5.5 5.7 5.3 5.1 4.7 2010's 4.6 4.5 4.2 4.0 3.7 3.8

  15. Percent of Industrial Natural Gas Deliveries in Connecticut Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 66.4 55.8 55.8 2000's 47.3 54.0 48.9 45.3 44.0 46.4 48.5 50.0 47.3 37.5 2010's 31.1 31.0 32.3 33.4 39.4 47.2

  16. Percent of Industrial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10.1 9.2 8.5 2000's 10.8 8.3 13.4 13.4 21.6 27.9 28.4 25.9 21.4 18.3 2010's 16.7 13.7 14.7 14.2 11.9 11.6

  17. Percent of Industrial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 33.8 26.2 36.9 2000's 27.3 26.3 20.0 45.4 38.2 36.5 34.4 29.9 20.6 21.1 2010's 19.4 20.6 17.7 18.3 22.3 26.3

  18. Percent of Industrial Natural Gas Deliveries in Minnesota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 40.4 39.7 39.8 2000's 40.4 41.9 41.2 45.1 41.0 41.1 34.4 34.2 27.7 28.4 2010's 22.4 19.3 17.8 19.5 17.9

  19. Percent of Industrial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 39.6 37.6 26.3 2000's 26.9 28.8 25.9 33.7 34.4 25.2 20.0 15.0 12.2 10.1 2010's 9.6 9.7 9.6 10.6 9.9 9.0

  20. Percent of Industrial Natural Gas Deliveries in New Hampshire Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 48.8 30.7 24.3 2000's 18.1 13.0 12.3 12.0 10.7 10.6 14.6 15.3 17.7 20.6 2010's 12.8 10.7 9.0 7.5 9.2

  1. Percent of Industrial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 14.3 13.1 11.8 2000's 11.8 9.9 7.3 6.6 6.4 7.0 5.5 5.4 5.7 4.5 2010's 3.8 2.0 1.3 1.3 1.2 NA

  2. Percent of Industrial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 86.9 86.7 86.1 2000's 86.5 82.1 87.7 78.5 77.8 77.4 71.4 47.3 47.3 47.6 2010's 46.3 45.4 45.1 45.6 43.6

  3. Percent of Industrial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 38.3 33.1 34.7 2000's 38.5 36.2 36.0 39.9 40.5 42.4 38.9 38.2 39.9 38.2 2010's 35.7 29.7 29.4 29.7 30.0 29

  4. Percent of Industrial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 23.5 20.1 24.0 2000's 34.5 38.2 27.4 20.1 17.3 15.8 20.2 17.4 12.9 8.7 2010's 8.3 7.5 7.3 6.7 6.5

  5. Percent of Industrial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12.2 6.3 10.8 2000's 13.8 16.6 12.7 14.0 13.4 17.0 17.0 16.2 19.0 17.4 2010's 14.7 15.6 16.3 18.0 15.6

  6. Percent of Industrial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27.1 22.0 20.2 2000's 22.1 19.5 21.4 20.2 18.8 18.1 18.3 18.5 18.3 18.1 2010's 17.4 17.8 17.6 18.8 19.6 NA

  7. Percent of Commercial Natural Gas Deliveries in California Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 86.6 77.8 74.5 76.9 48.8 52.1 54.9 50.4 48.7 57.1 2000's 57.1 62.6 68.6 70.3 71.2 68.7 64.7 60.7 56.7 54.9 2010's 54.1 54.3 50.0 49.9 48.4 50.0

  8. Percent of Commercial Natural Gas Deliveries in District of Columbia

    U.S. Energy Information Administration (EIA) Indexed Site

    Represented by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 97.3 99.0 98.0 90.9 76.8 70.5 54.9 52.3 45.9 2000's 35.6 22.4 23.5 30.5 23.3 100.0 100.0 100.0 100.0 100.0 2010's 100.0 16.9 17.9 19.1 19.9 21.4

  9. Percent of Commercial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 99.1 87.5 98.1 97.9 98.1 98.3 95.9 94.6 93.8 2000's 96.3 96.5 99.0 98.8 98.6 98.6 98.4 98.0 98.4 92.0 2010's 85.9 83.6 78.0 77.7 78.9 79.1

  10. Percent of Commercial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 99.9 99.8 99.8 97.5 76.2 84.9 74.7 62.6 57.9 59.8 2000's 63.0 62.1 57.4 68.7 71.3 70.5 70.6 65.3 57.9 56.9 2010's 52.1 50.0 48.6 39.4 42.3 NA

  11. Percent of Commercial Natural Gas Deliveries in Minnesota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.9 95.2 96.2 97.0 96.0 93.7 96.2 98.8 97.6 97.2 2000's 97.4 98.3 90.7 92.8 94.2 93.6 93.7 94.9 95.7 93.7 2010's 93.1 89.8 91.1 90.1 90.2 84.3

  12. Percent of Commercial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.6 95.9 96.4 96.6 96.6 97.0 97.4 94.8 94.8 96.0 2000's 95.6 95.7 96.7 95.9 95.7 95.7 94.9 88.8 90.4 91.0 2010's 90.6 89.8 89.0 89.1 87.5 NA

  13. Percent of Commercial Natural Gas Deliveries in New Hampshire Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 100.0 99.2 96.9 92.4 94.1 93.2 2000's 86.4 86.6 80.6 79.2 74.9 75.7 75.4 71.2 58.9 53.9 2010's 57.3 55.6 51.8 50.2 57.0 58

  14. Percent of Commercial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 78.4 77.3 75.8 77.4 74.4 68.4 70.4 63.6 56.8 56.9 2000's 60.5 63.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's 100.0 48.5 42.1 40.2 41.4 NA

  15. Percent of Commercial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.8 98.2 98.6 99.2 98.5 96.4 99.0 98.8 97.9 97.1 2000's 98.7 97.5 98.5 96.6 96.4 96.2 95.0 94.9 94.9 93.5 2010's 92.7 91.1 90.6 91.7 92.8

  16. Percent of Commercial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.5 95.7 96.4 95.8 94.1 93.8 94.3 92.2 87.3 88.8 2000's 92.5 93.6 90.9 90.5 92.2 92.2 92.0 91.9 91.7 90.2 2010's 90.8 89.9 88.8 90.0 90.7 88.6

  17. Percent of Commercial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 93.6 92.2 87.3 93.9 95.4 91.8 85.9 84.1 86.8 89.3 2000's 92.7 94.0 89.8 88.0 88.5 88.8 88.9 89.2 89.0 88.7 2010's 87.8 88.4 87.4 86.8 86.0 85

  18. Percent of Commercial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 58.1 54.9 56.9 54.3 55.2 51.6 56.3 54.5 49.5 51.8 2000's 56.6 63.9 57.4 60.2 57.1 58.2 56.0 58.6 53.5 53.6 2010's 51.0 49.2 48.9 52.9 56.7 53.3

  19. Percent of Commercial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 90.7 91.0 91.3 94.4 93.5 92.0 91.6 82.1 74.0 79.0 2000's 78.1 77.2 75.9 79.1 79.7 79.0 76.0 75.5 76.8 76.8 2010's 76.2 76.4 74.4 77.7 77.0 NA

  20. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    DOE Patents [OSTI]

    Liang, Chengdu; Dudney, Nancy J; Howe, Jane Y

    2015-05-05

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  1. Identification of Martian Regolith Sulfur Components In Shergottites...

    Office of Scientific and Technical Information (OSTI)

    Using Sulfur K XANES and FeS Ratios. Citation Details In-Document Search Title: Identification of Martian Regolith Sulfur Components In Shergottites Using Sulfur K XANES and FeS ...

  2. Stabilized sulfur binding using activated fillers

    DOE Patents [OSTI]

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  3. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA)

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  4. Method of removal of sulfur from coal and petroleum products

    DOE Patents [OSTI]

    Verkade, John G. (Ames, IA); Mohan, Thyagarajan (Ames, IA); Angelici, Robert J. (Ames, IA)

    1995-01-01

    A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

  5. Additives and Cathode Materials for High-Energy Lithium Sulfur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

  6. STEO January 2013 - average gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    drivers to see lower average gasoline prices in 2013 and 2014 U.S. retail gasoline prices are expected to decline over the next two years. The average pump price for regular...

  7. ARM - Evaluation Product - Areal Average Albedo (AREALAVEALB)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAreal Average Albedo (AREALAVEALB) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Areal Average Albedo (AREALAVEALB) [ ARM research - evaluation data product ] The Areal Averaged Albedo VAP yields areal averaged surface spectral albedo estimates from MFRSR measurements collected under fully

  8. Toward understanding the effect of low-activity waste glass composition on sulfur solubility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; Piepel, Greg F.; Kruger, Albert A.; Jantzen, C.

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which inmore » turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ≈ P2O5 > Na2O ≈ B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ≈ SnO2 > Others ≈ SiO2. As a result, the order of component effects is similar to previous literature data, in most cases.« less

  9. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.; Piepel, Greg F.; Kruger, Albert A.

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.

  10. Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process

    SciTech Connect (OSTI)

    Klint, V.W.; Dale, P.R.; Stephenson, C.

    1997-10-01

    Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) process for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.

  11. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  12. Percent of Commercial Natural Gas Deliveries in California Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.6 95.1 93.0 88.3 94.8 92.8 89.4 87.8 91.0 88.5 90.1 92.2 1990 95.8 81.1 94.4 90.4 90.2 85.6 78.0 82.6 79.1 82.3 85.6 88.3 1991 90.5 88.4 90.2 71.0 82.2 71.0 68.0 85.8 68.0 64.7 69.8 80.3 1992 86.6 65.6 75.7 79.0 63.5 74.5 60.9 64.6 79.7 79.0 76.7 81.4 1993 79.9 82.3 77.6 80.7 76.8 71.4 76.4 70.3 70.6 73.8 75.7 78.8 1994 51.3 47.2 50.6 40.5 47.4 32.2 36.4 46.5 46.0 52.2 57.8 68.2 1995 61.3 58.6 64.7 56.8 50.3

  13. Percent of Commercial Natural Gas Deliveries in Connecticut Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 98.4 90.0 81.6 76.5 74.5 80.4 74.8 85.5 90.8 99.5 1990 100.0 100.0 98.7 95.9 92.3 89.9 87.5 86.9 87.2 91.3 98.3 99.1 1991 99.4 99.4 97.5 92.5 85.9 79.2 76.2 77.1 77.9 85.9 93.0 96.6 1992 97.7 97.2 95.6 94.4 93.6 87.2 95.8 98.8 98.7 97.8 98.2 98.4 1993 97.2 97.7 97.2 98.1 99.4 99.3 88.3 98.4 99.6 100.0 100.0 100.0 1994 89.2 90.7 88.4 88.8 74.2 67.8 62.4 61.1 57.4 68.8 77.9 83.4 1995 86.7 88.1 85.7 81.6

  14. Percent of Commercial Natural Gas Deliveries in District of Columbia

    Gasoline and Diesel Fuel Update (EIA)

    Represented by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 92.4 86.7 89.4 90.6 91.1 95.7 99.5 1992 99.6 100.0 100.0 97.4 97.6 100.0 91.4 99.5 99.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 99.8 96.8 88.4 90.1 92.6 95.9 97.1 1994 99.8 99.8 100.0 98.8 95.7 94.4 76.6

  15. Percent of Commercial Natural Gas Deliveries in Louisiana Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 98.5 98.6 98.4 98.5 98.4 97.4 97.6 1992 82.3 87.7 88.7 90.6 90.5 90.1 90.6 90.2 91.1 90.6 81.4 86.4 1993 97.4 97.9 98.1 98.6 98.9 98.9 98.8 98.8 98.8 98.2 97.1 97.5 1994 97.7 98.1 98.1 98.0 98.0 97.9 98.4 97.6 98.1 97.9 97.9 97.5 1995 97.8 98.2

  16. Percent of Commercial Natural Gas Deliveries in Massachusetts Represented

    Gasoline and Diesel Fuel Update (EIA)

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.8 99.7 99.7 1991 99.8 99.8 99.9 99.9 99.9 99.8 99.7 99.6 99.6 99.8 99.9 99.9 1992 99.9 99.9 99.8 99.8 99.7 99.8 99.7 99.6 99.6 99.6 99.7 99.8 1993 98.9 98.7 98.5 97.7 96.5 97.7 96.8 89.2 97.5 96.7 96.9 97.8 1994 75.2 78.4 72.5 69.8 69.8 61.2 67.0 86.0 79.7 90.6 81.2 87.1 1995 87.9 89.4 92.0

  17. Percent of Commercial Natural Gas Deliveries in Minnesota Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 97.3 97.4 97.0 95.8 95.0 92.4 89.4 89.9 92.7 91.9 94.9 97.0 1990 97.7 96.4 95.9 94.9 94.9 91.4 86.2 89.9 90.1 92.8 97.9 98.7 1991 96.8 96.3 97.6 95.9 89.2 80.9 79.3 81.5 90.5 97.8 97.0 99.0 1992 99.6 95.3 96.0 95.5 92.2 88.3 93.1 89.8 93.0 99.4 96.5 97.6 1993 98.7 96.9 96.3 99.2 99.2 93.4 88.2 87.1 96.2 95.3 96.5 99.1 1994 97.2 97.6 97.3 96.8 98.5 91.4 97.0 91.8 89.8 91.9 95.6 95.2 1995 93.3 93.6 95.0 96.2 95.5

  18. Percent of Commercial Natural Gas Deliveries in Mississippi Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 97.6 96.0 95.7 95.6 94.5 94.3 93.7 93.5 93.9 94.4 95.2 95.8 1991 96.6 97.0 96.3 95.9 94.5 94.9 94.3 94.6 95.1 94.9 95.5 96.4 1992 96.9 97.3 96.4 96.6 95.2 95.4 95.5 94.8 95.6 95.6 95.9 97.4 1993 97.3 97.3 97.2 97.1 96.1 96.0 96.0 95.7 95.5 95.4 96.1 96.5 1994 97.2 97.6 97.1 96.9 96.1 96.9 97.1 95.1 94.9 94.3 96.2 96.6 1995 96.4 97.4 98.2

  19. Percent of Commercial Natural Gas Deliveries in New Hampshire Represented

    Gasoline and Diesel Fuel Update (EIA)

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0

  20. Percent of Commercial Natural Gas Deliveries in Pennsylvania Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 89.4 88.9 88.7 87.4 81.7 76.8 79.6 77.2 76.4 80.3 82.9 85.3 1990 85.9 83.6 80.9 80.0 74.0 70.2 68.5 68.3 67.2 69.6 74.9 79.2 1991 82.2 79.4 78.8 77.7 72.1 72.9 70.6 71.6 72.2 72.9 76.4 76.7 1992 77.1 79.6 76.6 75.1 71.8 73.1 68.1 67.2 69.4 74.0 74.1 79.4 1993 80.5 79.7 79.5 78.2 72.1 72.9 72.9 69.7 70.3 76.5 75.9 77.0 1994 79.0 80.2 77.5 73.9 71.6 70.8 67.1 71.4 67.9 62.7 68.7 72.1 1995 75.1 74.4 74.9 71.4 68.7

  1. Percent of Commercial Natural Gas Deliveries in South Carolina Represented

    Gasoline and Diesel Fuel Update (EIA)

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.5 98.5 98.6 98.3 98.1 98.2 98.1 97.7 97.7 97.8 98.0 97.3 1990 98.6 98.4 98.3 98.1 92.2 97.6 97.6 97.5 97.9 97.3 98.0 98.6 1991 98.7 98.9 98.7 96.9 97.4 97.5 97.3 97.7 97.7 97.4 98.9 98.9 1992 99.1 99.1 98.9 98.6 98.5 95.8 95.5 95.8 97.0 99.7 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 95.1 94.6 100.0 95.3 100.0 100.0 1994 100.0 100.0 100.0 99.7 97.8 98.3 97.0 95.7 95.2 95.6 96.2 99.9 1995 97.8 97.5

  2. Percent of Commercial Natural Gas Deliveries in Tennessee Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.1 98.9 98.9 97.5 96.8 95.9 96.7 95.8 96.9 97.1 97.4 99.1 1990 98.9 98.5 98.7 97.9 95.4 95.4 95.1 95.9 95.1 95.5 96.5 97.5 1991 97.9 94.6 93.6 96.0 94.8 94.3 93.8 93.8 94.0 95.3 97.1 97.8 1992 96.6 97.1 96.8 97.2 93.7 95.8 97.3 90.4 91.6 97.3 97.5 97.4 1993 96.6 96.9 96.6 96.5 97.7 91.3 91.6 91.1 91.4 92.3 94.7 98.9 1994 96.7 98.5 97.9 93.0 90.0 89.4 87.2 87.1 89.3 88.4 91.7 94.4 1995 95.5 95.8 93.4 90.8 89.6

  3. Percent of Commercial Natural Gas Deliveries in Washington Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 95.5 94.8 96.9 93.2 93.0 89.7 87.0 92.6 87.3 93.0 93.6 96.5 1990 96.2 95.9 93.2 92.1 90.9 88.9 88.3 88.4 90.1 91.7 95.7 96.5 1991 97.8 94.9 94.3 93.2 91.2 90.5 88.3 87.2 85.6 85.2 88.7 92.1 1992 92.1 89.0 88.7 85.5 83.5 80.7 78.5 80.3 81.6 83.4 86.8 92.3 1993 93.8 93.2 93.9 93.6 90.8 89.8 90.5 90.4 90.6 94.8 97.4 98.0 1994 97.6 97.6 97.6 97.4 92.1 92.1 92.4 91.7 94.4 93.8 94.1 94.7 1995 94.3 94.0 94.2 92.6 91.8

  4. Percent of Commercial Natural Gas Deliveries in Wisconsin Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.1 94.2 94.5 94.0 92.6 87.7 86.1 84.2 84.2 84.3 91.1 95.0 1990 91.6 91.5 91.9 91.9 90.3 86.5 83.1 82.4 82.6 87.5 90.1 93.3 1991 93.8 92.3 92.9 91.2 88.8 83.8 80.7 84.7 83.6 86.7 91.5 92.1 1992 92.7 92.1 91.6 90.0 85.8 82.3 83.3 84.1 85.2 90.7 93.4 95.1 1993 95.2 96.0 95.3 93.5 92.1 90.8 89.2 88.5 90.0 92.6 95.2 96.0 1994 97.1 97.6 97.4 96.6 91.8 89.9 83.5 87.1 87.8 90.8 94.4 84.4 1995 93.5 94.0 93.2 92.4 90.0

  5. Percent of Industrial Natural Gas Deliveries in Connecticut Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 66.1 48.5 50.9 50.2 58.7 44.3 34.1 58.5 55.7 73.8 58.9 51.8 2002 45.0 47.4 53.0 41.3 52.5 50.1 38.1 49.3 53.9 52.2 49.1 54.2 2003 45.5 42.0 48.4 45.5 43.4 42.2 40.0 38.9 41.2 44.0 55.4 54.2 2004 41.0 40.9 39.5 45.6 43.7 45.0 47.5 44.3 43.7 47.4 46.5 46.2 2005 51.3 45.1 46.1 48.5 45.8 42.9 43.2 42.6 48.1 48.4 49.1 44.9 2006 49.2 48.5 45.1 47.1 50.0 49.0 51.8 49.9 50.5 52.2 42.5 47.8 2007 50.6 50.0 47.4 49.5 51.1

  6. Percent of Industrial Natural Gas Deliveries in District of Columbia

    U.S. Energy Information Administration (EIA) Indexed Site

    Represented by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 0 0 0 0 -- -- 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014

  7. Percent of Industrial Natural Gas Deliveries in Minnesota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 29.4 54.7 49.7 43.1 36.9 40.4 40.4 46.1 38.1 52.1 30.3 41.2 2002 41.9 35.7 38.7 37.1 48.7 29.2 29.8 34.2 39.3 57.4 44.8 49.4 2003 47.8 46.5 42.8 40.0 43.5 43.5 38.9 42.4 51.4 46.0 48.1 46.9 2004 44.8 41.0 38.4 44.5 44.7 31.4 32.8 40.2 32.6 48.1 42.6 47.4 2005 35.7 40.4 47.3 38.7 35.0 27.3 44.0 43.9 44.4 48.2 38.9 46.3 2006 42.3 38.3 35.7 39.6 31.1 33.6 29.7 42.1 25.5 23.8 34.1 34.5 2007 40.0 41.3 37.8 37.0 25.8

  8. Percent of Industrial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28.2 32.5 24.3 32.8 25.6 33.3 27.5 30.2 28.5 21.2 31.3 31.1 2002 27.5 29.8 27.4 27.0 23.9 26.2 24.1 25.8 24.2 23.9 26.3 25.2 2003 32.3 39.3 37.3 34.5 31.8 37.2 34.6 32.3 32.7 28.6 27.0 35.7 2004 39.9 36.9 33.0 32.8 29.8 33.8 32.8 33.7 36.7 31.0 33.7 38.8 2005 26.7 24.2 23.6 24.4 23.7 22.1 23.2 22.8 42.3 24.8 28.8 23.7 2006 24.7 28.1 24.8 23.5 19.5 19.2 18.1 17.2 16.6 17.5 15.6 18.0 2007 18.4 19.6 17.4 15.6 13.4

  9. Percent of Industrial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 48.0 40.7 40.0 33.7 32.1 29.6 33.1 33.6 35.5 29.3 37.7 38.4 2002 36.3 39.0 44.3 34.8 36.6 33.0 32.5 31.8 33.8 35.5 33.9 38.2 2003 36.7 41.2 40.2 37.2 35.5 33.9 38.7 40.5 42.6 44.0 42.1 46.8 2004 44.2 43.4 42.1 40.5 41.0 36.5 36.4 34.6 37.0 38.3 41.5 47.1 2005 39.9 40.5 44.7 47.3 42.5 39.5 39.5 43.3 42.8 41.5 39.7 46.7 2006 40.9 44.6 40.1 37.3 37.4 39.1 35.5 35.5 34.9 38.2 41.6 39.2 2007 38.8 44.2 40.4 35.4 37.8

  10. Percent of Industrial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 40.1 37.3 39.3 33.9 31.2 31.0 27.1 35.1 34.9 46.1 46.5 46.1 2002 25.9 28.6 29.4 32.8 30.0 24.4 27.5 20.7 24.7 25.4 31.6 26.9 2003 26.3 26.9 25.5 19.5 18.5 15.1 13.6 15.3 17.5 18.9 18.7 22.2 2004 20.9 21.0 21.4 19.1 15.8 16.0 13.2 17.1 15.0 16.2 14.5 15.6 2005 15.1 14.4 15.2 12.9 11.7 11.7 11.0 15.0 15.5 18.8 20.6 25.3 2006 22.9 22.8 22.6 19.7 19.5 17.8 17.2 16.8 17.1 19.2 21.8 22.3 2007 23.5 22.4 23.2 18.7 16.9

  11. Percent of Industrial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 25.3 26.6 26.1 18.3 12.5 11.2 12.3 12.4 10.9 15.9 19.9 23.0 2002 25.3 23.6 25.8 21.2 18.5 14.3 11.1 13.3 14.7 20.9 24.7 28.9 2003 27.0 27.3 25.9 18.8 15.3 11.7 10.7 11.7 12.2 17.7 21.3 26.2 2004 26.4 24.1 23.9 19.3 13.5 14.1 12.9 10.4 12.4 17.6 19.6 18.6 2005 21.7 20.9 20.8 15.9 13.4 11.2 12.3 13.2 13.9 16.4 21.9 25.1 2006 21.6 21.7 23.0 13.3 14.1 13.5 11.1 12.3 13.3 18.2 22.8 24.2 2007 22.3 23.7 24.1 17.8 13.6

  12. Average and effective Q-values for fission product average (n...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections Citation Details In-Document Search Title: Average and...

  13. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium Sulfur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es105_liang_2011_o.pdf More Documents & Publications Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Protection of Li Anodes Using Dual Phase Electrolytes

  14. Definition of Non-Conventional Sulfur Utilization in Western Kazakhstan for Sulfur Concrete (Phase 1)

    SciTech Connect (OSTI)

    Kalb, Paul

    2007-05-31

    Battelle received a contract from Agip-KCO, on behalf a consortium of international oil and gas companies with exploration rights in the North Caspian Sea, Kazakhstan. The objective of the work was to identify and help develop new techniques for sulfur concrete products from waste, by-product sulfur that will be generated in large quantitites as drilling operations begin in the near future. BNL has significant expertise in the development and use of sulfur concrete products and has direct experience collaborating with the Russian and Kazakh partners that participated. Feasibility testing was successfully conducted for a new process to produce cost-effective sulfur polymer cement that has broad commerical applications.

  15. Method for reducing the sulfur content of a sulfur-containing hydrocarbon stream

    DOE Patents [OSTI]

    Mahajan, Devinder

    2004-12-28

    The sulfur content of a liquid hydrocarbon stream is reduced under mild conditions by contracting a sulfur-containing liquid hydrocarbon stream with transition metal particles containing the transition metal in a zero oxidation state under conditions sufficient to provide a hydrocarbon product having a reduced sulfur content and metal sulfide particles. The transition metal particles can be produced in situ by adding a transition metal precursor, e.g., a transition metal carbonyl compound, to the sulfur-containing liquid feed stream and sonicating the feed steam/transition metal precursor combination under conditions sufficient to produce the transition metal particles.

  16. Table 17. Average Price of U.S. Coke Exports

    Gasoline and Diesel Fuel Update (EIA)

    7. Average Price of U.S. Coke Exports (dollars per short ton) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 234.67 253.60 264.43 252.47 261.48 -3.4 Canada* 209.80 247.54 287.72 243.43 285.74 -14.8 Mexico 460.37 307.48 200.84 305.69 217.48 40.6 Other** 643.59 666.50 577.54 640.63 545.34 17.5 South America Total 135.27 - 465.18 252.87 154.98 63.2 Other** 135.27 - 465.18 252.87 154.98 63.2

  17. Table 19. Average Price of U.S. Coal Imports

    Gasoline and Diesel Fuel Update (EIA)

    9. Average Price of U.S. Coal Imports (dollars per short ton) Year to Date Continent and Country of Origin July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 121.76 122.71 133.33 119.13 130.81 -8.9 Canada 121.76 122.71 133.33 119.13 130.81 -8.9 Mexico - - 209.82 113.43 209.82 -45.9 South America Total 65.22 66.89 76.03 67.64 78.56 -13.9 Colombia 65.34 66.89 75.63 67.59 78.37 -13.8 Peru - 92.99 81.65 86.24 81.65 5.6 Venezuela 57.60 - 90.59

  18. Table 22. Average Price of U.S. Coke Imports

    Gasoline and Diesel Fuel Update (EIA)

    2. Average Price of U.S. Coke Imports (dollars per short ton) Year to Date Continent and Country of Origin July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 120.37 192.95 189.61 131.75 96.81 36.1 Canada 120.37 192.95 189.61 131.75 96.81 36.1 South America Total 201.39 274.73 223.17 202.76 223.17 -9.1 Colombia 201.39 274.73 223.17 202.76 223.17 -9.1 Europe Total 120.34 302.86 363.18 153.02 397.65 -61.5 Czech Republic - 288.36 - 288.36 - -

  19. Table 8. Average Price of U.S. Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    8. Average Price of U.S. Coal Exports (dollars per short ton) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 82.44 83.85 79.86 81.55 76.14 7.1 Canada* 89.71 89.92 84.62 88.24 75.55 16.8 Dominican Republic 77.11 78.67 56.46 84.15 53.14 58.4 Guatemala 34.59 103.41 - 45.24 81.92 -44.8 Honduras 45.36 45.36 54.43 47.54 54.43 -12.7 Jamaica 80.74 90.72 55.34 73.19 54.88 33.4 Mexico 74.06 75.06

  20. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, T.; Squires, T.G.; Venier, C.G.

    1983-08-11

    A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  1. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, Tetsuo (Ames, IA); Squires, Thomas G. (Gilbert, IA); Venier, Clifford G. (Ames, IA)

    1985-02-05

    A process for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  2. Spray drying for high-sulfur coal

    SciTech Connect (OSTI)

    Rhudy, R.

    1988-09-01

    Recent pilot plant tests indicate that spray drying, now used to control SO/sub 2/ emissions from low-sulfur coal, can also be effective for high-sulfur coal. Spray drying coupled with baghouse particulate removal is the most effective configuration tested to date, removing over 90% of SO/sub 2/ while easily meeting New Source Performance Standards for particulate emissions. 2 figures, 1 table.

  3. Percent of Commercial Natural Gas Deliveries in West Virginia Represented

    Gasoline and Diesel Fuel Update (EIA)

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 68.6 69.0 65.3 63.9 55.0 45.3 39.8 39.5 40.5 49.5 58.6 71.5 1990 72.4 67.8 64.6 60.4 53.8 41.6 34.0 37.7 34.7 38.3 56.1 61.2 1991 64.6 65.8 65.4 54.5 42.1 34.1 31.0 33.9 36.5 45.2 55.6 58.0 1992 65.0 65.9 59.9 63.0 54.5 39.3 35.8 33.6 33.4 48.1 56.8 58.9 1993 60.7 61.3 61.7 60.2 47.5 33.6 30.3 30.6 33.0 46.8 54.9 60.1 1994 67.4 65.2 61.9 58.3 47.8 39.6 29.5 34.3 34.2 41.3 47.5 55.7 1995 55.5 59.5 56.1 50.6 42.2

  4. Percent of Industrial Natural Gas Deliveries in California Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 14.3 12.9 13.0 10.4 9.0 7.7 6.6 6.7 6.4 8.0 8.2 8.0 2002 8.0 9.4 8.8 7.4 9.5 7.0 6.6 6.9 6.7 7.7 7.2 8.1 2003 3.3 7.1 4.9 5.8 5.1 4.6 4.0 4.8 4.3 4.1 5.3 6.2 2004 5.2 8.3 5.8 5.2 5.3 3.8 4.6 4.4 4.3 5.0 5.3 5.9 2005 5.6 6.6 4.8 5.3 5.2 5.1 4.5 4.8 5.2 5.8 5.9 6.7 2006 6.2 7.2 5.7 5.9 6.0 5.4 4.6 4.7 4.9 5.3 6.1 6.2 2007 6.0 7.2 6.5 5.3 5.6 4.9 4.5 4.3 4.3 5.1 4.8 5.3 2008 5.7 6.6 5.9 5.6 5.6 4.5 4.4 4.3 4.4 4.7 4.7

  5. Percent of Industrial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.2 7.6 6.3 8.0 7.2 5.9 9.1 9.6 9.0 8.6 10.0 9.1 2002 13.4 13.3 13.0 13.6 14.3 13.5 12.2 13.1 12.9 12.7 13.4 14.8 2003 12.0 13.2 12.0 13.5 13.7 13.7 11.8 12.8 13.4 14.1 16.3 14.3 2004 14.5 15.7 16.4 22.9 22.7 23.7 23.3 22.9 22.8 23.3 25.2 26.0 2005 26.3 25.9 27.3 27.8 28.6 28.2 27.2 28.9 29.0 28.8 28.8 29.0 2006 29.4 28.6 29.2 26.8 28.8 28.3 28.0 29.5 26.3 25.7 28.6 31.5 2007 29.7 31.7 27.3 28.8 29.9 33.6 23.9 23.8

  6. Percent of Industrial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 36.9 37.4 48.4 27.7 23.2 18.9 14.1 10.3 18.5 18.6 29.5 21.8 2002 27.5 26.6 23.0 21.7 16.9 14.0 16.5 11.1 9.4 14.8 21.7 28.6 2003 40.7 44.0 44.6 41.6 37.9 36.3 38.9 42.3 35.8 78.7 23.9 36.9 2004 47.9 47.2 45.8 39.9 36.5 34.4 31.3 27.0 23.1 29.2 23.2 40.5 2005 40.9 43.4 42.6 37.2 32.0 29.0 26.8 22.1 22.3 26.9 33.6 40.9 2006 42.4 41.0 40.2 36.9 31.5 28.6 25.2 26.5 26.5 23.7 32.2 31.2 2007 34.8 36.0 37.0 30.2 29.7

  7. Percent of Industrial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17.0 16.4 11.3 10.2 7.7 5.1 7.3 7.5 8.2 8.8 7.3 8.4 2002 8.8 8.3 7.0 5.9 5.7 5.5 4.8 5.0 7.2 7.5 8.1 11.4 2003 8.5 8.5 8.8 7.3 5.7 5.4 5.2 5.0 5.2 5.5 5.9 6.5 2004 7.7 8.1 7.3 6.8 5.3 4.8 4.8 5.1 5.2 4.7 6.5 8.3 2005 8.8 8.4 8.2 7.0 6.1 5.5 5.9 7.1 5.2 5.2 6.7 8.2 2006 8.2 7.3 7.1 5.3 4.8 4.2 4.1 4.1 6.2 4.2 4.6 5.4 2007 6.7 8.5 8.3 5.9 5.6 3.7 3.3 3.2 4.1 3.1 4.5 6.6 2008 7.7 7.3 7.3 6.9 5.7 4.8 4.4 4.3 3.8 3.9

  8. Percent of Industrial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 91.8 86.4 82.7 82.0 77.6 80.8 80.2 80.2 80.3 79.8 82.4 84.4 2002 89.9 87.6 85.4 88.3 90.4 87.4 90.5 84.4 90.3 90.3 84.3 82.9 2003 79.4 79.6 75.8 79.3 81.8 81.7 78.9 77.3 78.4 77.0 76.5 75.9 2004 76.9 75.6 77.0 79.2 79.0 78.2 78.5 79.0 78.6 78.3 77.2 76.4 2005 78.2 78.8 78.0 77.4 78.1 78.2 78.8 78.7 73.2 76.4 67.9 81.3 2006 80.1 78.6 74.0 80.2 71.2 75.3 75.9 77.2 70.6 74.8 48.6 44.6 2007 48.9 48.4 47.5 46.1 47.5

  9. Percent of Industrial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11.2 6.1 6.1 8.6 8.2 7.3 7.7 8.9 5.9 60.8 7.0 62.1 2002 12.1 12.6 11.7 15.0 12.6 12.1 14.7 13.0 16.1 10.7 13.1 10.4 2003 14.3 12.6 20.3 13.9 14.0 14.7 13.6 13.5 14.6 12.9 14.1 10.9 2004 10.7 10.5 11.4 11.5 19.8 15.0 15.7 15.3 14.3 14.8 14.7 12.8 2005 11.4 12.8 12.5 13.7 17.4 21.1 23.5 20.4 22.1 23.0 20.7 18.5 2006 16.3 14.8 17.3 18.6 16.9 20.3 15.7 16.4 19.0 16.7 16.4 16.7 2007 15.2 13.4 15.9 16.3 17.8 18.5 18.5

  10. Dynamic Multiscale Averaging (DMA) of Turbulent Flow

    SciTech Connect (OSTI)

    Richard W. Johnson

    2012-09-01

    A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical engineering applications.

  11. EECBG 11-002 Clarification of Ten Percent Limitation on Use of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11-002 Clarification of Ten Percent Limitation on Use of Funds for Administrative Expenses EECBG 11-002 Clarification of Ten Percent Limitation on Use of Funds for Administrative...

  12. Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent

    Energy Savers [EERE]

    Remediated | Department of Energy Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 688

  13. Direct Observation of Sulfur Radicals as Reaction Media in lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Wang, Qiang; Zheng, Jianming; Walter, Eric D.; Pan, Huilin; Lu, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Zhiqun; Liaw, Bor Yann; Yu, Xiqian; Yang, Xiaoning; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2014-12-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge process follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials, it is revealed that the chemical and electrochemical reactions in Li-S cell are driven each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new insights to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  14. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Wang, Qiang; Zheng, Jianming; Walter, Eric; Pan, Huilin; Lv, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Z. D.; Liaw, Bor Y.; Yu, Xiqian; Yang, Xiao-Qing; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2015-01-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-S cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  15. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang; Zheng, Jianming; Walter, Eric; Pan, Huilin; Lv, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Z. D.; Liaw, Bor Y.; Yu, Xiqian; et al

    2015-01-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-Smore » cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.« less

  16. High Energy Lithium-Sulfur Cathodes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Start: August 1, 2013 * End: July 31, 2016 * Percent complete: 60% Barriers of batteries - High cost (A) - Low energy density (C) - Short battery life (E) Targets:...

  17. Spacetime Average Density (SAD) cosmological measures

    SciTech Connect (OSTI)

    Page, Don N.

    2014-11-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.

  18. U.S. net oil and petroleum product imports expected to fall to just 29 percent of demand in 2014

    Gasoline and Diesel Fuel Update (EIA)

    net oil and petroleum product imports expected to fall to just 29 percent of demand in 2014 With rising domestic crude oil production, the United States will rely less on imports of crude oil and petroleum products to meet domestic demand next year. In its new monthly forecast, the U.S. Energy Information Administration expects total net imports to average 5.4 million barrels per day in 2014. That's down 2 million barrels per day from last year. As a result, the share of U.S. consumption met by

  19. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur ...

  20. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur ...

  1. Near Zero Emissions at 50 Percent Thermal Efficiency

    SciTech Connect (OSTI)

    2012-12-31

    Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called ??Near-Zero Emission at 50 Percent Thermal Efficiency,? and was completed in 2007. The second phase was initiated in 2006, and this phase was named ??Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines.? This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: ? Quantify thermal efficiency degradation associated with reduction of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. ? Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. ? Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. ? Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. ? Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: ? Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. ? Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. ? Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. ? Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: ? Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. ? The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvements in engine emissions have been obtained, but fuel economy improvements have been tougher to realize. ? Development of a neural network control system progressed to the point that the system was fully functional and showing significant fuel economy gains in transient engine testing. ? Development of the QuantLogic injector with the capability of both a hollow cone spray during early injection and conventional diesel injection at later injection timings was undertaken and proved to be problematic. This injector was designed to be a key component in a PCCI combustion system, but this innovative fuel injector required significantly more development effort than this program??s resources or timing would allow.

  2. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, P. E.

    1981-09-22

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.

  3. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, Perry E.

    1981-01-01

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another.

  4. Polarized electron beams at milliampere average current

    SciTech Connect (OSTI)

    Poelker, Matthew

    2013-11-01

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  5. EPA Diesel Rule and the Sulfur Effects (DECSE) Project

    SciTech Connect (OSTI)

    2009-05-08

    The VT program collaborated with industry stakeholders and the EPA (in an effort initiated in 1998 called Diesel Emission Control Sulfur Effects study, otherwise known as DECSE) to quantify the effects of fuel sulfur on emission control technologies.

  6. Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2 Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation...

  7. Microsoft Word - Updated Air Dispersion Modeling Table _sulfur_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIVINE STRAKE AIR DISPERSION MODELING RESULTS for SULFUR DIOXIDE The attached table is updated to include estimated sulfur dioxide concentrations resulting from the Divine Strake Experiment. Output from the POLU4WN model was used to estimate quantities of all emissions from the proposed explosive experiment. All emissions of oxides of sulfur were combined to provide input into Open Burn/Open Detonation Model (OBODM) to model the dispersion; thus overestimating the concentration of sulfur dioxide

  8. Sulfuric acid thermoelectrochemical system and method

    DOE Patents [OSTI]

    Ludwig, Frank A. (Rancho Palos Verdes, CA)

    1989-01-01

    A thermoelectrochemical system in which an electrical current is generated between a cathode immersed in a concentrated sulfuric acid solution and an anode immersed in an aqueous buffer solution of sodium bisulfate and sodium sulfate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system.

  9. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    DOE Patents [OSTI]

    Rochelle, Gary T. (Austin, TX); Chang, John C. S. (Cary, NC)

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  10. Sulfur-Graphene Oxide Nanocomposite Cathodes for Lithium/Sulfur Cells -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Sulfur-Graphene Oxide Nanocomposite Cathodes for Lithium/Sulfur Cells Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication LBNL Commercial Analysis Report (1,062 KB) Technology Marketing Summary A Berkeley Lab team headed by Yuegang Zhang and Elton Cairns has developed

  11. Sulfur@Carbon Cathodes for Lithium Sulfur Batteries > Research Highlights >

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research > The Energy Materials Center at Cornell Research Highlights In This Section The Structural Evolution and Diffusion During the Chemical Transformation from Cobalt to Cobalt Phosphide Nanoparticles Joint Density-Functional Theory of Electrochemistry Double-band Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High

  12. EECBG 11-002 Clarification of Ten Percent Limitation on Use of Funds for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administrative Expenses | Department of Energy 11-002 Clarification of Ten Percent Limitation on Use of Funds for Administrative Expenses EECBG 11-002 Clarification of Ten Percent Limitation on Use of Funds for Administrative Expenses U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency and Conservation Block Grant Program (EECBG), ten percent limitation, administrative expenses, the Energy Independence and Security Act of 2007. PDF icon

  13. Fact #720: March 26, 2012 Eleven Percent of New Light Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks Sold have Gasoline Direct Injection Fact 720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection Gasoline direct fuel injection (GDI) ...

  14. Average and effective Q-values for fission product average (n,2n) and

    Office of Scientific and Technical Information (OSTI)

    (n,3n) reaction cross sections (Technical Report) | SciTech Connect Technical Report: Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections Citation Details In-Document Search Title: Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections Authors: Kawano, Toshihiko [1] + Show Author Affiliations Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) Publication Date: 2015-10-01 OSTI

  15. Tailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for Confi ning Sulfur in LithiumSulfur Batteries

    SciTech Connect (OSTI)

    Zhou, Weidong; Wang, Chong M.; Zhang, Quiglin; Abruna, Hector D.; He, Yang; Wang, Jiangwei; Mao, Scott X.; Xiao, Xingcheng

    2015-08-19

    Three types of nitrogen-doped hollow carbon spheres with different pore sized porous shells are prepared to investigate the performance of sulfur confinement. The reason that why no sulfur is observed in previous research is determined and it is successfully demonstrated that the sulfur/polysulfide will overflow the porous carbon during the lithiation process.

  16. Identification of Martian Regolith Sulfur Components In Shergottites Using

    Office of Scientific and Technical Information (OSTI)

    Sulfur K XANES and Fe/S Ratios. (Conference) | SciTech Connect Identification of Martian Regolith Sulfur Components In Shergottites Using Sulfur K XANES and Fe/S Ratios. Citation Details In-Document Search Title: Identification of Martian Regolith Sulfur Components In Shergottites Using Sulfur K XANES and Fe/S Ratios. Authors: Sutton, S.R. ; Ross, D.K. ; Rao, M.N. ; Nyquist, L.E. [1] ; ESCG Jacobs) [2] ; UC) [2] + Show Author Affiliations (NASA-JSC) [NASA-JSC ( Publication Date: 2014-02-26

  17. Method to prevent sulfur accumulation in membrane electrode assembly

    DOE Patents [OSTI]

    Steimke, John L; Steeper, Timothy J; Herman, David T

    2014-04-29

    A method of operating a hybrid sulfur electrolyzer to generate hydrogen is provided that includes the steps of providing an anolyte with a concentration of sulfur dioxide, and applying a current. During steady state generation of hydrogen a plot of applied current density versus concentration of sulfur dioxide is below a boundary line. The boundary line may be linear and extend through the origin of the graph with a slope of 0.001 in which the current density is measured in mA/cm2 and the concentration of sulfur dioxide is measured in moles of sulfur dioxide per liter of anolyte.

  18. CATALYST EVALUATION FOR A SULFUR DIOXIDE-DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D; Hector Colon-Mercado, H

    2007-01-31

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. Testing examined the activity and stability of platinum and palladium as the electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by the concentration of the sulfuric acid electrolyte.

  19. Table 1. Real Average Transportation and Delivered Costs of Coal...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Transportation and Delivered Costs of Coal, By Year and Primary Transport Mode" "Year","Average Transportation Cost of Coal (Dollars per Ton)","Average Delivered Cost...

  20. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The average...

  1. Longitudinal study of children exposed to sulfur oxides

    SciTech Connect (OSTI)

    Dodge, R.; Solomon, P.; Moyers, J.; Hayes, C.

    1985-05-01

    This study is a longitudinal comparison of the health of children exposed to markedly different concentrations of sulfur dioxide and moderately different concentrations of particulate sulfate. The four groups of subjects lived in two areas of one smelter town and in two other towns, one of which was also a smelter town. In the area of highest pollution, children were intermittently exposed to high SO/sub 2/ levels (peak three-hour average concentration exceeded 2,500 micrograms/m3) and moderate particulate SO/sub 4/= levels (average concentration was 10.1 micrograms/m3). When the children were grouped by the four gradients of pollution observed, the prevalence of cough (measured by questionnaire) correlated significantly with pollution levels (trend chi-square = 5.6, p = 0.02). No significant differences in the incidence of cough or other symptoms occurred among the groups of subjects over three years, and pulmonary function and lung function growth over the study were roughly equal among all the groups. These results suggest that intermittent elevations in SO/sub 2/ concentration, in the presence of moderate particulate SO/sub 4/= concentration, produced evidence of bronchial irritation in the subjects, but no chronic effect on lung function or lung function growth was detected.

  2. Fuel-rich sulfur capture in a combustion environment

    SciTech Connect (OSTI)

    Lindgren, E.R.; Pershing, D.W.; Kirchgessner, D.A.; Drehmel, D.C.

    1992-01-01

    The paper discusses the use of a refactory-lined, natural gas furnace to study the fuel-rich sulfur capture reactions of calcium sorbents under typical combustion conditions. The fuel-rich sulfur species hydrogen sulfide and carbonyl sulfide were monitored in a nearly continuous fashion using a gas chromatograph equiped with a flame photometric detector and an automatic system that sampled every 30 seconds. Below the fuel-rich zone, 25% excess air was added, and the ultimate fuel-lean capture was simultaneously measured using a continuous sulfur dioxide monitor. Under fuel-rich conditions, high levels of sulfur capture were obtained, and calcium utilization increased with sulfur concentration. The ultimate lean capture was found to be weakly dependent on sulfur concentration and independent of the sulfur capture level obtained in the fuel-rich zone.

  3. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Liu, Wei (Cambridge, MA)

    1995-01-01

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  4. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    1. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Total (All Sectors) by State, 2014 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 1,836 1.20 10.1 741 0.09 2.0 0 -- -- Connecticut 0

  5. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    . Receipts and Quality of Coal Delivered for the Electric Power Industry, 2004 through 2014 Bituminous Subbituminous Lignite Period Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight 2004 470,619 1.52 10.4 445,603 0.36 6.0 78,268 1.05 14.2 2005 480,179 1.56 10.5 456,856 0.36 6.2 77,677

  6. Additive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds

    SciTech Connect (OSTI)

    Horodysky, A.G.; Law, D.A.

    1987-04-28

    A process is described for making an additive for lubricant compositions comprising co-reacting: a monoolefin selected from the group consisting of butenes, propenes, pentenes, and mixtures of two or more thereof; sulfur; hydrogen sulfide; polymeric nitrogen-containing compound selected from the group consisting of succinimides, amides, imides, polyoxyazoline polymers and alkyl imidazoline compounds; and a catalytic amount of an amine selected from the group consisting of polyethylene amines and hydroxyl-containing amines; at a temperature between about 130/sup 0/C and about 200/sup 0/C and a pressure of about 0 psig to about 900 psig, the reactants being reacted in a molar ratio of olefin, polymeric nitrogen-containing compound, and hydrogen sulfide to sulfur of 2 to 0.5, 0.001 to 0.4, and 0.5 to 0.7, respectively, and the concentration of amine being between 0.5 and 10 percent of the total weight of reactants.

  7. Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Vehicles | Department of Energy 7: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles Household vehicle ownership has changed over the last six decades. In 1960, over twenty percent of households did not own a vehicle, but by 2010, that number fell to less than 10%. The number of households with three or more vehicles grew from 2% in 1960 to nearly 20% in 2010. Before 1990,

  8. U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Utility-Scale Solar 60 Percent Towards Cost-Competition Goal U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal February 12, 2014 - 11:05am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department announced today that the U.S. solar industry is more than 60 percent of the way to achieving cost-competitive utility-scale solar photovoltaic (PV) electricity - only three years into the Department's decade-long SunShot Initiative. To help

  9. Process for production of synthesis gas with reduced sulfur content

    DOE Patents [OSTI]

    Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

    1989-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  10. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 ...

  11. If I generate 20 percent of my national electricity from wind...

    Open Energy Info (EERE)

    If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

  12. Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs

    Broader source: Energy.gov [DOE]

    This document, from the U.S. Environmental Protection Agency's ENERGY STAR Residential Program, is part of the Case Study Series, highlighting how "Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs."

  13. EECBG 11-002 Clarification of Ten Percent Limitation on Use of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EECBG PROGRAM NOTICE 11-002 EFFECTIVE DATE: July 28, 2011 SUBJECT: CLARIFICATION OF TEN PERCENT LIMATION ON USE OF FUNDS FOR ADMINISTRATIVE EXPENSES PURPOSE To provide guidance to...

  14. Removal of sulfur compounds from combustion product exhaust

    DOE Patents [OSTI]

    Cheng, Dah Y. (Palo Alto, CA)

    1982-01-01

    A method and device are disclosed for removing sulfur containing contaminents from a combustion product exhaust. The removal process is carried out in two stages wherein the combustion product exhaust is dissolved in water, the water being then heated to drive off the sulfur containing contaminents. The sulfur containing gases are then resolublized in a cold water trap to form a concentrated solution which can then be used as a commercial product.

  15. Project Profile: Baseload CSP Generation Integrated with Sulfur-Based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Heat Storage | Department of Energy Concentrating Solar Power » Project Profile: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage Project Profile: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage General Atomics logo General Atomics, under the Baseload CSP FOA, is demonstrating the engineering feasibility of using a sulfur-based thermochemical cycle to store heat from a CSP plant and support baseload power

  16. Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Photovoltaic Solar Photovoltaic Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00232_ID2519.pdf (729 KB) Technology Marketing SummaryA sulfur/carbon composite material was prepared by heat treatment of doped mesoporous carbon and elemental sulfur

  17. Sulfide catalysts for reducing SO2 to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

    2001-01-01

    A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.

  18. New Water Booster Pump System Reduces Energy Consumption by 80 Percent and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increases Reliability | Department of Energy New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability This case study outlines how General Motors (GM) developed a highly efficient pumping system for their Pontiac Operations Complex in Pontiac, Michigan. In short, GM was able to replace five original 60- to 100-hp pumps with three 15-hp pumps whose speed

  19. NREL Study Shows 20 Percent Wind is Possible by 2024 - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Study Shows 20 Percent Wind is Possible by 2024 Analysis Shows Transmission Upgrades, Offshore Wind, and Operational Changes Needed to Incorporate 20 to 30 Percent Wind January 20, 2010 Today, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) released the Eastern Wind Integration and Transmission Study (EWITS). This unprecedented two-and-a-half year technical study of future high-penetration wind scenarios was designed to analyze the economic, operational,

  20. NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy September 28, 2012 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently completed a performance evaluation report that showed significant fuel economy benefits of hybrid electric delivery vans compared to similar conventional vans. "During the on-road portion of our study, the hybrid vans demonstrated a 13 to 20 percent higher fuel economy than the

  1. Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches

    Office of Environmental Management (EM)

    Significant Milestone | Department of Energy Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone June 3, 2011 - 12:00pm Addthis Media Contacts Donald Metzler Moab Federal Project Director (970) 257-2115 Wendee Ryan S&K Aerospace Public Affairs Manager (970) 257-2145 Grand Junction, CO - One quarter of the uranium mill tailings pile located in Moab, Utah, has been relocated to

  2. Extraction of Sulfur Mustard Metabolites from Urine Samples and...

    Office of Scientific and Technical Information (OSTI)

    Extraction of Sulfur Mustard Metabolites from Urine Samples and Analysis by Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) Citation Details In-Document Search...

  3. Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction Materials Sulfur Effect and Performance Recovery of a DOC...

  4. Extraction of Sulfur Mustard Metabolites from Urine Samples and...

    Office of Scientific and Technical Information (OSTI)

    Title: Extraction of Sulfur Mustard Metabolites from Urine Samples and Analysis by Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) Authors: Mayer, B P ; Williams, ...

  5. Sulfur removal and comminution of carbonaceous material

    SciTech Connect (OSTI)

    Narain, Nand K.; Ruether, John A.; Smith, Dennis N.

    1988-01-01

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product.

  6. Sulfur removal and comminution of carbonaceous material

    SciTech Connect (OSTI)

    Narain, N.K.; Ruether, J.A.; Smith, D.N.

    1987-10-07

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product. 2 figs.

  7. Nonflame, source-induced sulfur fluorescence detector for sulfur-containing compounds

    SciTech Connect (OSTI)

    Gage, D.R.; Farwell, S.O.

    1980-12-01

    Results of some preliminary investigations of the fluorescence spectra of S/sub 2/ and the non-flame production of S/sub 2/ from sulfur-containing molecules are reported. Passage of the gas to be analyzed through a catalyst-oven containing a plug of NiO/sub 2//Al/sub 2/O/sub 3/ catalyst containing 10 wt% NiO/sub 2/ and heated to 400/sup 0/C resulted in conversion of H/sub 2/S to S/sub 2/ and elemental sulfur. The S/sub 2/ was detected by measurement of its fluorescence bands at 260 and 310nm, and elemental sulfur condensed on the cool parts of the apparatus. However, determination of sulfur-content of gas mixtures with the apparatus described herein were not as repeatable as desired, and the work is being continued on various facets of the non-flame system with work being directed toward the evaluation of different catalysts, catalyst temperature, design of a smaller detector geometry utilizing a pulsed-light excitation source, a windowless cell, and optical filters instead of monochromators to select the S/sub 2/ excitation and emission wavelengths. (BLM)

  8. Annual average efficiency of a solar thermochemical reactor....

    Office of Scientific and Technical Information (OSTI)

    Annual average efficiency of a solar thermochemical reactor. Citation Details In-Document Search Title: Annual average efficiency of a solar thermochemical reactor. Abstract not ...

  9. High Average Brightness Photocathode Development for FEL Applications...

    Office of Scientific and Technical Information (OSTI)

    Conference: High Average Brightness Photocathode Development for FEL Applications Citation Details In-Document Search Title: High Average Brightness Photocathode Development for...

  10. Sodium sulfur container with chromium/chromium oxide coating

    DOE Patents [OSTI]

    Ludwig, Frank A. (Irvine, CA); Higley, Lin R. (Santa Ana, CA)

    1981-01-01

    A coating of chromium/chromium oxide is disclosed for coating the surfaces of electrically conducting components of a sodium sulfur battery. This chromium/chromium oxide coating is placed on the surfaces of the electrically conducting components of the battery which are in contact with molten polysulfide and sulfur reactants during battery operation.

  11. Process for removing pyritic sulfur from bituminous coals

    DOE Patents [OSTI]

    Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

    1990-01-01

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  12. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOE Patents [OSTI]

    Moore, Robert; Pickard, Paul S.; Parma, Jr., Edward J.; Vernon, Milton E.; Gelbard, Fred; Lenard, Roger X.

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  13. Metal-sulfur type cell having improved positive electrode

    DOE Patents [OSTI]

    DeJonghe, L.C.; Visco, S.J.; Mailhe, C.C.; Armand, M.B.

    1988-03-31

    A novel metal-sulfur type cell operable at a temperature of 200/degree/C or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S)/sub y/)n wherein y = 1 to 6; n = 2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprises one or more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon. 4 figs.

  14. Metal-sulfur type cell having improved positive electrode

    DOE Patents [OSTI]

    Dejonghe, Lutgard C.; Visco, Steven J.; Mailhe, Catherine C.; Armand, Michel B.

    1989-01-01

    An novel metal-sulfur type cell operable at a temperature of 200.degree. C. or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S).sub.y).sub.n wherein y=1 to 6; n=2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprisises one of more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associtated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

  15. MFT homogeneity study at TNX: Final report on the low weight percent solids concentration

    SciTech Connect (OSTI)

    Jenkins, W.J.

    1993-09-21

    A statistical design and analysis of both elemental analyses and weight percent solids analyses data was utilized to evaluate the MFT homogeneity at low heel levels and low agitator speed at both high and low solids feed concentrations. The homogeneity was also evaluated at both low and high agitator speed at the 6000+ gallons static level. The dynamic level portion of the test simulated feeding the Melter from the MFT to evaluate the uniformity of the solids slurry composition (Frit-PHA-Sludge) entering the melter from the MFT. This final report provides the results and conclusions from the second half of the study, the low weight percent solids concentration portion, as well as a comparison with the results from the first half of the study, the high weight percent solids portion.

  16. Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of

  17. NREL Solar Cell Sets World Efficiency Record at 40.8 Percent - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Solar Cell Sets World Efficiency Record at 40.8 Percent August 13, 2008 Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have set a world record in solar cell efficiency with a photovoltaic device that converts 40.8 percent of the light that hits it into electricity. This is the highest confirmed efficiency of any photovoltaic device to date. The inverted metamorphic triple-junction solar cell was designed, fabricated and

  18. Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires Are

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recycled | Department of Energy 3: January 21, 2013 Eighty-four Percent of Scrapped Tires Are Recycled Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires Are Recycled There were 263 million tires scrapped in 2009 (latest available data) which amounts to more than 4.7 million tons of waste. Fortunately, 84% of that waste was recycled. Most of the recycled tires were used to make fuel for industries such as pulp and paper mills, cement kilns, and electric utilities. Ground

  19. Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |

    Energy Savers [EERE]

    Department of Energy Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a

  20. WPN 93-14: 40 Percent Waiver Provisions for Multifamily and Mobile Home Units

    Broader source: Energy.gov [DOE]

    This program notice provides guidance on multifamily and mobile home units weatherized by states, which adopt the approved 4.0 version of NEAT or other similar approved energy audits and receive a waiver of the 40 percent requirement from DOE.

  1. WPN 94-8: 40 Percent Waiver Provisions for Mobile Home Units

    Broader source: Energy.gov [DOE]

    This program notice provides clarifying guidance previously issued under Weatherization Program Notice 93-14 on mobile home units weatherized by states which adopt the approved 4.0 version of NEAT or other similar approved energy audits and receive a waiver of the 40 percent requirement from DOE.

  2. Percent of Industrial Natural Gas Deliveries in Hawaii Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's

  3. Percent of Commercial Natural Gas Deliveries in Hawaii Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's

  4. Percent of Commercial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100 100 NA

  5. Figure 5. Production Schedules at Two Development Rates for the 5 Percent

    U.S. Energy Information Administration (EIA) Indexed Site

    Probability of Recovering 16.0 Billion Barrels 5. Production Schedules at Two Development Rates for the 5 Percent Probability of Recovering 16.0 Billion Barrels of Technically Recoverable Oil from the ANWR Coastal Plain of Alaska fig5.jpg (3770

  6. Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    via Surface Modification of SiO2 with TiO2 and ZrO2 | Department of Energy Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2 Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2 This study demonstrates the feasibility of developing highly stable, sulfur-tolerant oxidation catalysts that use less Pt via surface modification of silica supports

  7. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, Richard (Shirley, NY); Steinberg, Meyer (Huntington Station, NY)

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  8. Fact #889: September 7, 2015 Average Diesel Price Lower than...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First...

  9. Fact #889: September 7, 2015 Average Diesel Price Lower than...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Excel file and dataset for Average Diesel Price Lower than Gasoline ...

  10. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Excel file with dataset for Fact 835: Average Annual Gasoline Pump Price, 1929-2013 File ...

  11. Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Excel file and dataset for Average Historical Annual Gasoline Pump Price, 1929-2015 File ...

  12. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  13. METHOD TO PREVENT SULFUR ACCUMULATION INSIDE MEMBRANE ELECTRODE ASSEMBLY

    SciTech Connect (OSTI)

    Steimke, J.; Steeper, T.; Herman, D.; Colon-Mercado, H.; Elvington, M.

    2009-06-22

    HyS is conceptually the simplest of the thermochemical cycles and involves only sulfur chemistry. In the HyS Cycle hydrogen gas (H{sub 2}) is produced at the cathode of the electrochemical cell (or electrolyzer). Sulfur dioxide (SO{sub 2}) is oxidized at the anode to form sulfuric acid (H{sub 2}SO{sub 4}) and protons (H{sup +}) as illustrated below. A separate high temperature reaction decomposes the sulfuric acid to water and sulfur dioxide which are recycled to the electrolyzers, and oxygen which is separated out as a secondary product. The electrolyzer includes a membrane that will allow hydrogen ions to pass through but block the flow of hydrogen gas. The membrane is also intended to prevent other chemical species from migrating between electrodes and undergoing undesired reactions that could poison the cathode or reduce overall process efficiency. In conventional water electrolysis, water is oxidized at the anode to produce protons and oxygen. The standard cell potential for conventional water electrolysis is 1.23 volts at 25 C. However, commercial electrolyzers typically require higher voltages ranging from 1.8 V to 2.6 V [Kirk-Othmer, 1991]. The oxidation of sulfur dioxide instead of water in the HyS electrolyzer occurs at a much lower potential. For example, the standard cell potential for sulfur dioxide oxidation at 25 C in 50 wt % sulfuric acid is 0.29 V [Westinghouse, 1980]. Since power consumption by the electrolyzers is equal to voltage times current, and current is proportional to hydrogen production, a large reduction in voltage results in a large reduction in electrical power cost per unit of hydrogen generated.

  14. Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT) Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Sulfur Poisoning of NOx Adsorber (LNT) Materials Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT) Materials 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_24_peden.pdf More Documents & Publications Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials

  15. Percent of Industrial Natural Gas Deliveries in Alaska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.8 99.4 99.1 2000's 99.8 96.2 90.2 72.2 66.9 68.6 63.1 70.0 78.2 72.5 2010's 70.5 60.8 100.0 9

  16. Percent of Industrial Natural Gas Deliveries in Florida Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10.5 7.3 5.0 2000's 5.2 3.8 3.8 3.9 3.7 3.4 3.1 3.1 3.0 3.2 2010's 3.0 3.0 2.7 3.2

  17. Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Program U.S. Environmental Protection Agency 
 
 November 2009 Case Study Series-Demonstrating Value of Program Evaluation 
 Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs A program within the U.S. Environmental Protection Agency (EPA) is saving $90,000 per year on its online energy audit tool after an evaluation prompted managers to scale back its features. The Home Energy Advisor collects information from homeowners and makes

  18. NNSA Achieves 50 Percent Production for W76-1 Units | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Achieves 50 Percent Production for W76-1 Units | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  19. NNSA hits 21 percent of CFC goal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    hits 21 percent of CFC goal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs

  20. Georgia Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.18 11.98 12.47 11.86 12.38 2006-2014 Marketers 15.67 16.38 16.82 15.04 14.79 2006-2014 Percent Sold by Local Distribution Companies 14.3 15.1 13.5 ...

  1. New York Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 13.87 13.52 12.72 12.24 12.15 2006-2014 Marketers 14.55 14.22 13.59 13.07 13.46 2006-2014 Percent Sold by Local Distribution Companies 74.6 72.4 71.2 ...

  2. Ohio Average Price of Natural Gas Delivered to Residential and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 10.28 10.32 8.75 9.20 10.15 2006-2014 Marketers 11.80 11.09 10.42 9.52 10.16 2006-2014 Percent Sold by Local Distribution Companies 43.7 40.8 30.9 19.8 ...

  3. In situ Observation of Sulfur in Living Mammalian Cells: Uptake of Taurine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into MDCK Cells In situ Observation of Sulfur in Living Mammalian Cells: Uptake of Taurine into MDCK Cells Sulfur is essential for life. It plays important roles in the amino acids methionine and cysteine, and has a structural function in disulfide bonds. As a component of iron-sulfur clusters it takes part in electron and sulfur transfer reactions.1 Glutathione, a sulfur-containing tripeptide, is an important part of biological antioxidant systems.2 Another example for the biological

  4. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key partsa positive and negative electrode and an electrolytethat exchange ions to store and release electricity. Using different materials for these components changes a batterys chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  5. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    . Receipts, Average Cost, and Quality of Fossil Fuels for the Electric Power Industry, 2004 through 2014 Coal Petroleum Natural Gas All Fossil Fuels Average Cost Average Cost Average Cost Average Cost Period Receipts (Thousand Tons) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Ton) Receipts (Thousand Barrels) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Barrel) Receipts (Thousand Mcf) (Dollars per MMBtu) (Dollars per MMBtu) 2004 1,002,032 0.97 1.36 27.42

  6. U.S. Oxygenated, Average Refiner Gasoline Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - - - - - - 1994-2014 Through Retail Outlets 1994-2006 Sales for Resale, Average - - - - - - 1994-2014 DTW 1994-2006 Rack 1994-2006 Bulk 1994-2006

  7. "Table 2. Real Average Annual Coal Transportation Costs, By Primary...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Annual Coal Transportation Costs, By Primary Transport Mode and Supply Region" "(2013 dollars per ton)" "Coal Supply Region",2008,2009,2010,2011,2012,2013 "Railroad"...

  8. Turning Bayesian model averaging into Bayesian model combination...

    Office of Scientific and Technical Information (OSTI)

    Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James 1 ; Monteith, Kristine 2 ; Seppi, Kevin 2 ; Martinez, Tony 2 + Show Author...

  9. High Average Brightness Photocathode Development for FEL Applications...

    Office of Scientific and Technical Information (OSTI)

    High Average Brightness Photocathode Development for FEL Applications Citation Details ... OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 46

  10. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1978-2014 | Department of Energy 70: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 The Corporate Average Fuel Economy (CAFE) is the sales-weighted harmonic mean fuel economy of a manufacturer's fleet of new cars or light trucks in a certain model year (MY). First enacted by Congress in 1975, the standards for cars began in MY 1978 and for light trucks in MY 1979. In general, the average of all

  11. Electric Sales, Revenue, and Average Price 2011 - Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alphabetical Frequency Tag Cloud See All Electricity Reports Electric Sales, Revenue, and Average Price With Data for 2014 | Release Date: October 21, 2015 | Next Release Date: ...

  12. Table 10. Average Price of U.S. Steam Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    0. Average Price of U.S. Steam Coal Exports (dollars per short ton) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 66.77 71.02 69.75 69.74 65.78 6.0 Canada* 58.57 69.55 74.38 67.41 55.21 22.1 Dominican Republic 77.11 78.67 56.46 84.15 55.63 51.3 Guatemala 34.59 103.41 - 45.24 81.92 -44.8 Honduras - - 54.43 54.43 54.43 s Jamaica 80.74 90.72 55.34 73.19 54.88 33.4 Mexico 70.80 70.39 69.53

  13. Table 12. Average Price of U.S. Metallurgical Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    2. Average Price of U.S. Metallurgical Coal Exports (dollars per short ton) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 96.66 97.73 85.77 96.57 86.97 11.0 Canada* 99.34 98.87 87.96 97.75 89.46 9.3 Dominican Republic - - - - 50.86 - Honduras 45.36 45.36 - 45.36 - - Mexico 97.65 103.74 80.50 103.16 86.56 19.2 Other** 112.84 89.81 - 89.84 - - South America Total 81.91 93.21 98.38 90.63

  14. Use of zinc and copper (I) salts to reduce sulfur and nitrogen impurities during the pyrolysis of plastic and rubber waste to hydrocarbons

    DOE Patents [OSTI]

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1984-01-01

    An improvement in a process for the pyrolytic conversion of rubber and plastic waste to hydrocarbon products which results in reduced levels of nitrogen and sulfur impurities in these products. The improvement comprises pyrolyzing the waste in the presence of at least about 1 weight percent of salts, based on the weight of the waste, preferably chloride or carbonate salts, of zinc or copper (I). This invention was made under contract with or subcontract thereunder of the Department of Energy Contract #DE-AC02-78-ER10049.

  15. Fundamental Studies of Lithium-Sulfur Cell Chemistry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oct 1 2013 * Project end: Sept 30 2017 * Percent complete: 30% * Barriers addressed - Energy density - Cycle life * Total project funding - DOE share ( 2,000,000) - Contractor...

  16. Fundamental Studies of Lithium-Sulfur Cell Chemistry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oct 1 2013 * Project end: Sept 30 2017 * Percent complete: 60% * Barriers addressed - Energy density - Cycle life * Total project funding - DOE share ( 2,000,000) - Contractor...

  17. Method to produce alumina aerogels having porosities greater than 80 percent

    DOE Patents [OSTI]

    Poco, John F.; Hrubesh, Lawrence W.

    2003-09-16

    A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensation, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.

  18. Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 18.1 16.1 18.8 2000's 19.8 20.8 22.7 22.1 23.6 24.0 23.4 22.2 20.4 18.8 2010's 18.0 16.3 16.2 16.6 15.9 15.9

  19. Percent of Industrial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24.6 23.3 21.8 2000's 22.4 22.2 21.6 21.2 20.8 23.6 23.5 24.0 27.2 27.9 2010's 23.7 23.5 22.1 23.6 23.3 23.3

  20. Percent of Industrial Natural Gas Deliveries in Arizona Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 25.1 33.4 36.2 2000's 26.8 46.4 41.2 40.0 55.1 43.6 37.9 31.3 29.6 29.1 2010's 25.5 24.2 21.4 16.6 12.8 NA

  1. Percent of Industrial Natural Gas Deliveries in Arkansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10.7 9.5 10.1 2000's 8.3 6.0 5.0 5.4 5.9 5.2 4.8 4.2 3.9 3.7 2010's 2.8 2.1 1.8 1.7 1.8

  2. Percent of Industrial Natural Gas Deliveries in Colorado Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7.3 7.6 7.1 2000's 1.8 0.7 1.2 0.9 0.8 0.6 0.6 0.5 0.6 0.5 2010's 5.2 7.5 6.8 7.2 7.7 NA

  3. Percent of Industrial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 31.0 22.4 16.6 2000's 10.6 16.1 13.4 15.6 11.7 12.2 9.0 9.8 5.8 2.1 2010's 5.3 1.6 0.3 0.3 0.3 NA

  4. Percent of Industrial Natural Gas Deliveries in Georgia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 26.7 25.3 23.9 2000's 20.2 19.9 19.2 15.9 16.4 17.1 17.0 17.2 16.1 17.6 2010's 18.2 18.2 20.0 18.9 20.0 NA

  5. Percent of Industrial Natural Gas Deliveries in Idaho Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.0 2.5 2.7 2000's 2.7 2.2 2.0 2.1 2.4 2.3 2.1 2.0 1.9 1.7 2010's 1.8 2.0 1.9 2.5 2.8 NA

  6. Percent of Industrial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11.5 9.3 9.1 2000's 9.0 9.9 9.3 9.9 9.0 9.5 8.7 9.5 9.4 7.7 2010's 7.4 6.3 6.0 6.8 6.4 5.7

  7. Percent of Industrial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 16.0 9.3 5.8 2000's 10.3 7.7 8.6 9.0 8.3 7.9 7.2 7.4 6.7 7.0 2010's 5.6 3.5 1.9 2.0 2.1 NA

  8. Percent of Industrial Natural Gas Deliveries in Iowa Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8.7 6.8 7.4 2000's 7.0 7.5 7.6 7.9 8.4 9.8 8.5 6.5 6.6 6.4 2010's 5.8 5.5 5.2 5.6 4.8 NA

  9. Percent of Industrial Natural Gas Deliveries in Kansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9.2 9.9 10.1 2000's 10.4 9.3 10.8 7.9 6.9 6.3 7.3 5.9 7.8 6.7 2010's 7.0 9.5 9.7 9.3 8.3 NA

  10. Percent of Industrial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19.2 17.8 17.5 2000's 19.0 18.7 17.7 18.8 16.9 16.9 15.8 16.6 17.5 18.1 2010's 17.9 17.6 17.8 18.3 17.2 16.0

  11. Percent of Industrial Natural Gas Deliveries in Maine Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 91.4 87.4 78.2 2000's 13.1 8.1 10.7 10.5 1.7 3.1 0.9 0.8 0.8 1.2 2010's 0.6 0.5 0.4 0.9 1.9

  12. Percent of Industrial Natural Gas Deliveries in Maryland Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7.4 7.0 6.5 2000's 6.1 8.5 8.0 10.0 8.2 8.2 6.7 7.8 6.3 5.3 2010's 5.3 5.5 5.1 6.8 7.3 NA

  13. Percent of Industrial Natural Gas Deliveries in Michigan Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12.5 10.8 11.1 2000's 10.2 11.3 10.2 10.9 10.7 10.1 10.2 12.6 12.5 11.8 2010's 8.8 9.3 7.4 7.4 7.6 NA

  14. Percent of Industrial Natural Gas Deliveries in Missouri Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 21.5 18.2 18.5 2000's 16.8 16.5 16.0 14.8 13.8 14.2 13.2 12.8 13.9 13.2 2010's 13.1 13.4 12.5 13.9 14.0 12.3

  15. Percent of Industrial Natural Gas Deliveries in Montana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.1 1.5 1.7 2000's 1.9 2.2 2.1 1.8 1.6 1.8 0.7 0.8 1.0 1.1 2010's 1.5 1.3 1.0 1.2 1.4 NA

  16. Percent of Industrial Natural Gas Deliveries in Nebraska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27.0 12.7 14.2 2000's 15.4 18.0 15.7 16.5 16.5 16.3 11.6 9.7 10.2 8.9 2010's 8.2 7.6 6.8 7.8 7.4 7.1

  17. Percent of Industrial Natural Gas Deliveries in Nevada Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6.3 15.5 22.5 2000's 18.1 33.3 34.3 19.1 16.5 17.2 16.8 17.1 17.8 17.3 2010's 18.4 17.8 15.5 15.7 15.5 NA

  18. Percent of Industrial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49.3 49.5 47.9 2000's 23.5 21.6 20.8 19.5 16.4 19.9 19.5 20.6 11.0 9.0 2010's 8.4 8.2 6.5 6.1 6.6 NA

  19. Percent of Industrial Natural Gas Deliveries in New Mexico Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9.5 9.8 16.4 2000's 16.5 10.1 15.6 12.3 11.2 8.4 11.6 10.6 10.0 11.9 2010's 12.4 10.2 7.9 8.0 7.5 NA

  20. Percent of Industrial Natural Gas Deliveries in North Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 18.5 14.6 14.9 2000's 13.9 9.8 9.2 45.9 51.1 27.5 42.3 48.1 46.2 34.8 2010's 29.7 37.4 34.7 37.9 34.7 39.6

  1. Percent of Industrial Natural Gas Deliveries in Ohio Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5.7 4.3 4.1 2000's 5.3 6.5 4.0 3.9 3.5 3.6 3.0 2.7 2.7 2.8 2010's 2.1 2.0 1.6 2.2 2.0 NA

  2. Percent of Industrial Natural Gas Deliveries in Oklahoma Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.7 3.6 3.9 2000's 4.2 4.2 3.3 2.4 1.6 1.6 1.1 0.9 0.6 0.5 2010's 0.5 0.6 0.5 0.7 0.8 NA

  3. Percent of Industrial Natural Gas Deliveries in Oregon Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 16.3 14.3 13.6 2000's 17.7 21.5 14.4 17.5 24.9 33.2 26.6 21.8 20.1 18.9 2010's 17.1 17.1 16.7 16.9 17.2

  4. Percent of Industrial Natural Gas Deliveries in Rhode Island Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 17.4 7.4 6.5 2000's 34.0 27.3 27.3 18.9 15.7 15.3 13.6 11.6 11.7 9.2 2010's 6.5 6.0 6.3 9.0 8.1 5.3

  5. Percent of Industrial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24.1 35.6 37.0 2000's 41.9 42.1 19.4 25.5 28.2 30.2 33.6 17.8 16.9 14.4 2010's 10.4 4.7 4.3 5.2 4.6 4.1

  6. Percent of Industrial Natural Gas Deliveries in Texas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 17.2 14.1 23.7 2000's 29.6 35.0 43.0 43.9 48.8 54.6 55.4 54.7 50.4 47.2 2010's 48.6 39.0 39.4 41.7 40.3 40.7

  7. Percent of Industrial Natural Gas Deliveries in Utah Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8.9 8.6 9.5 2000's 10.0 10.4 13.6 13.6 19.8 19.5 20.1 14.1 12.7 12.2 2010's 12.1 12.7 11.0 11.1 10.5 8.6

  8. Percent of Industrial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 76.6 2000's 83.8 75.4 74.7 78.8 78.3 81.7 78.4 78.0 79.6 77.9 2010's 77.1 80.9 100.0 100.0 100.0 NA

  9. Percent of Industrial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13.0 12.8 12.1 2000's 17.6 17.3 15.3 17.3 16.0 17.1 13.9 14.1 17.3 15.8 2010's 15.3 13.6 10.9 10.3 11.1 NA

  10. Percent of Industrial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.5 2.0 2.9 2000's 2.6 2.5 2.9 1.8 2.1 3.7 3.5 3.0 3.2 3.1 2010's 1.1 1.0 0.9 1.2 1.3

  11. Percent of Commercial Natural Gas Deliveries in Alabama Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 79.6 82.7 80.7 80.8 80.3 80.1 81.1 64.7 80.5 70.5 2000's 81.4 82.5 80.5 81.8 82.1 80.5 80.2 79.8 80.2 78.8 2010's 79.3 78.9 76.2 76.6 78.4 77.6

  12. Percent of Commercial Natural Gas Deliveries in Alaska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 100.0 79.9 63.4 54.5 49.6 55.4 2000's 59.3 60.5 60.0 59.1 55.5 51.2 56.3 76.0 74.9 85.3 2010's 87.7 88.6 94.9 94.5 94.5 98.2

  13. Percent of Commercial Natural Gas Deliveries in Arizona Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.7 93.2 92.6 91.5 90.7 88.4 85.2 84.5 85.0 82.5 2000's 83.7 92.6 92.8 90.7 93.5 93.3 93.1 93.4 93.1 88.0 2010's 88.7 87.8 86.6 85.5 84.4 83.8

  14. Percent of Commercial Natural Gas Deliveries in Arkansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 92.3 91.5 90.7 91.8 95.1 96.0 95.0 94.2 90.8 89.3 2000's 89.9 87.0 80.8 81.9 80.3 74.1 71.7 70.4 64.5 59.4 2010's 55.6 51.5 40.2 43.7 45.5 42.5

  15. Percent of Commercial Natural Gas Deliveries in Colorado Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.3 96.0 95.5 95.5 94.8 94.2 93.2 92.8 94.3 97.5 2000's 97.4 95.6 95.3 95.3 94.7 95.2 95.4 95.7 95.2 94.8 2010's 94.6 93.8 92.2 94.7 94.5 NA

  16. Percent of Commercial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.8 2000's 98.0 98.3 82.8 82.8 81.6 83.3 77.5 74.8 70.6 53.5 2010's 49.8 53.4 43.7 45.0 46.2 45.7

  17. Percent of Commercial Natural Gas Deliveries in Florida Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.6 97.4 97.7 97.8 97.9 97.6 97.1 97.5 96.6 94.5 2000's 67.4 56.6 42.3 42.3 41.2 100.0 100.0 100.0 100.0 100.0 2010's 100.0 38.5 37.0 33.3 32.3 NA

  18. Percent of Commercial Natural Gas Deliveries in Georgia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 88.4 87.5 88.1 90.5 92.0 93.5 94.1 89.1 83.6 61.0 2000's 17.1 20.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's

  19. Percent of Commercial Natural Gas Deliveries in Idaho Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 87.9 87.6 85.7 86.8 85.9 86.0 86.6 86.1 86.4 85.9 2000's 86.3 86.3 85.9 85.2 85.7 85.6 85.8 84.8 86.0 83.7 2010's 82.0 80.8 77.0 77.4 76.6 74.6

  20. Percent of Commercial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 57.6 59.0 57.7 55.3 52.8 50.4 53.9 54.3 47.4 42.8 2000's 41.9 41.1 40.9 43.1 41.2 41.5 39.7 42.2 43.3 41.3 2010's 42.3 38.1 36.8 38.4 38.5 NA

  1. Percent of Commercial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.7 94.2 96.8 95.2 92.3 87.8 96.3 89.9 79.2 78.3 2000's 78.0 77.1 78.4 79.8 78.2 82.1 79.4 78.1 77.9 73.9 2010's 72.5 70.2 67.4 68.2 67.6 NA

  2. Percent of Commercial Natural Gas Deliveries in Iowa Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.6 97.7 95.7 94.7 90.4 89.3 87.7 88.2 85.8 83.4 2000's 81.1 82.0 81.4 78.0 78.3 78.3 77.3 77.7 75.8 72.5 2010's 72.0 72.1 72.2 72.5 74.4 NA

  3. Percent of Commercial Natural Gas Deliveries in Kansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 91.6 89.2 84.4 82.6 78.4 73.6 71.7 70.3 69.5 66.7 2000's 57.3 63.1 58.9 59.1 57.3 68.5 65.4 64.8 64.9 65.7 2010's 66.0 62.6 59.8 61.4 59.3 NA

  4. Percent of Commercial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.0 94.0 93.1 92.6 91.4 89.2 90.8 90.0 87.4 87.9 2000's 85.6 81.8 78.9 79.2 78.7 79.7 81.3 81.7 82.0 80.1 2010's 80.5 79.2 77.4 78.8 80.5 79.2

  5. Percent of Commercial Natural Gas Deliveries in Maine Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2000's 100.0 100.0 61.6 70.2 64.6 59.9 48.7 46.2 45.0 51.0 2010's 45.0 45.8 42.1 42.6 49.1 51.5

  6. Percent of Commercial Natural Gas Deliveries in Maryland Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.6 96.6 96.0 96.6 97.1 96.9 91.9 67.1 36.6 33.4 2000's 39.1 32.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's 100.0 27.3 24.7 26.2 27.3 27.4

  7. Percent of Commercial Natural Gas Deliveries in Michigan Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 69.9 68.3 68.8 68.6 65.7 66.4 66.9 63.7 59.7 56.6 2000's 58.8 63.5 62.9 64.2 65.6 100.0 100.0 100.0 100.0 100.0 2010's 100.0 54.1 51.0 53.2 55.2 55.4

  8. Percent of Commercial Natural Gas Deliveries in Missouri Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 86.0 85.9 85.5 84.6 83.3 83.3 82.2 79.9 78.3 78.6 2000's 80.0 80.8 80.0 80.5 77.4 77.1 76.4 76.9 77.5 76.7 2010's 76.5 73.1 69.2 72.3 70.5 71.1

  9. Percent of Commercial Natural Gas Deliveries in Montana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.9 97.5 95.4 93.2 91.8 91.6 91.5 91.5 77.2 79.8 2000's 73.5 76.1 75.1 68.8 76.0 77.4 76.9 78.5 79.6 49.2 2010's 54.6 53.3 52.8 53.3 53.5 NA

  10. Percent of Commercial Natural Gas Deliveries in Nebraska Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 93.9 91.8 88.2 91.0 80.2 77.1 70.0 74.2 72.5 66.6 2000's 61.1 63.7 63.7 65.4 63.5 64.5 65.1 63.9 57.5 61.3 2010's 60.6 60.6 55.8 57.3 56.4 56.1

  11. Percent of Commercial Natural Gas Deliveries in Nevada Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.7 90.8 88.3 92.7 82.5 76.5 74.2 71.3 70.2 60.9 2000's 54.6 73.9 78.5 67.2 67.9 68.1 68.2 67.0 67.0 65.1 2010's 65.4 64.3 61.4 60.1 58.4 57.9

  12. Percent of Commercial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 94.8 93.9 92.4 91.6 91.6 86.3 73.3 56.2 60.5 56.0 2000's 56.9 57.5 49.1 50.7 48.1 51.6 46.9 44.2 42.1 38.3 2010's 36.1 32.6 30.8 35.2 32.0 NA

  13. Percent of Commercial Natural Gas Deliveries in New Mexico Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 83.1 77.7 70.0 62.5 62.4 60.3 64.7 71.0 67.0 63.0 2000's 62.2 67.3 72.5 70.3 69.0 69.0 65.0 64.2 62.6 58.2 2010's 60.7 59.8 57.0 57.0 54.4 NA

  14. Percent of Commercial Natural Gas Deliveries in North Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 74.8 70.0 68.9 72.7 79.6 80.9 88.0 88.9 83.8 88.2 2000's 89.5 90.1 91.6 94.4 92.6 92.9 93.0 93.3 93.4 92.9 2010's 92.6 92.8 91.9 92.6 93.1 NA

  15. Percent of Commercial Natural Gas Deliveries in Ohio Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 87.3 86.7 85.6 84.6 81.5 76.3 71.8 65.5 55.0 46.4 2000's 45.2 41.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's

  16. Percent of Commercial Natural Gas Deliveries in Oklahoma Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 92.1 91.3 88.5 90.0 88.5 85.2 84.5 81.8 73.2 71.6 2000's 72.4 74.0 71.0 71.3 61.6 53.1 49.9 48.1 51.3 46.4 2010's 47.5 46.3 41.1 44.6 45.3 43.7

  17. Percent of Commercial Natural Gas Deliveries in Oregon Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 97.7 97.9 97.8 97.9 98.1 98.1 98.3 98.5 99.0 98.8 2000's 98.8 99.3 98.7 98.4 98.6 98.6 98.5 98.5 98.5 98.4 2010's 97.4 97.4 96.9 96.6 96.0 NA

  18. Percent of Commercial Natural Gas Deliveries in Rhode Island Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.9 100.0 100.0 100.0 100.0 100.0 91.8 80.5 59.2 53.2 2000's 53.2 58.0 65.9 72.1 73.3 74.3 73.1 66.5 66.2 68.0 2010's 61.2 56.9 55.4 54.5 52.2 53.9

  19. Percent of Commercial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 86.4 81.8 82.4 83.9 89.1 86.9 82.7 83.3 84.2 81.2 2000's 83.1 84.2 83.1 82.3 82.3 83.5 82.1 81.2 83.0 82.2 2010's 80.9 81.7 81.6 81.6 81.6 81

  20. Percent of Commercial Natural Gas Deliveries in Texas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 89.8 89.3 79.7 83.8 82.4 68.6 83.5 61.4 81.0 77.3 2000's 79.0 88.4 71.8 73.7 74.6 79.5 82.0 81.9 82.5 78.3 2010's 76.4 73.4 72.4 72.8 72.6 NA

  1. Percent of Commercial Natural Gas Deliveries in Utah Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 83.3 81.8 81.9 83.2 82.5 82.9 2000's 83.9 84.4 83.7 84.4 84.4 86.8 86.8 86.9 86.4 85.6 2010's 86.2 86.7 83.9 81.8 78.3 77.0

  2. Percent of Commercial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 93.2 93.6 90.7 88.8 86.7 84.1 85.3 77.9 72.1 67.4 2000's 66.4 65.8 61.4 65.7 63.6 100.0 100.0 100.0 100.0 100.0 2010's 100.0 54.1 52.1 54.6 55.8 54

  3. Percent of Commercial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 99.8 99.0 98.0 98.0 96.1 93.6 85.9 84.1 90.5 89.1 2000's 90.0 86.5 48.7 51.7 51.4 49.3 47.8 49.3 65.6 65.5 2010's 65.3 64.0 62.6 62.9 60.8 NA

  4. New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability

    Office of Energy Efficiency and Renewable Energy (EERE)

    This case study outlines how General Motors (GM) developed a highly efficient pumping system for their Pontiac Operations Complex in Pontiac, Michigan. In short, GM was able to replace five original 60- to 100-hp pumps with three 15-hp pumps whose speed could be adjusted to meet plant requirements. As a result, the company reduced pumping system energy consumption by 80 percent (225,100 kWh per year), saving an annual $11,255 in pumping costs. With a capital investment of $44,966 in the energy efficiency portion of their new system, GM projected a simple payback of 4 years.

  5. Insight into Sulfur Reactions in LiS Batteries

    SciTech Connect (OSTI)

    Xu, Rui; Belharouak, Ilias; Zhang, Xiaofeng; chamoun, rita; Yu, Cun; Ren, Yang; Nie, Anmin; Reza, Shahbazian-Yassar; Lu, Jun; Li, James C.M.; Amine, Khalil

    2014-12-09

    Understanding and controlling the sulfur reduction species (Li2Sx, 1 ? x ? 8) under realistic battery conditions are essential for the development of advanced practical LiS cells that can reach their full theoretical capacity. However, it has been a great challenge to probe the sulfur reduction intermediates and products because of the lack of methods. This work employed various ex situ and in situ methods to study the mechanism of the LiS redox reactions and the properties of Li2Sx and Li2S. Synchrotron high-energy X-ray diffraction analysis used to characterize dry powder deposits from lithium polysulfide solution suggests that the new crystallite phase may be lithium polysulfides. The formation of Li2S crystallites with a polyhedral structure was observed in cells with both the conventional (LiTFSI) electrolyte and polysulfide-based electrolyte. In addition, an in situ transmission electron microscopy experiment observed that the lithium diffusion to sulfur during discharge preferentially occurred at the sulfur surface and formed a solid Li2S crust. This may be the reason for the capacity fade in LiS cells (as also suggested by EIS experiment in Supporting Information). The results can be a guide for future studies and control of the sulfur species and meanwhile a baseline for approaching the theoretical capacity of the LiS battery.

  6. Process for removal of sulfur compounds from fuel gases

    DOE Patents [OSTI]

    Moore, Raymond H. (Richland, WA); Stegen, Gary E. (Richland, WA)

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  7. ADDITIVE TESTING FOR IMPROVED SULFUR RETENTION: PRELIMINARY REPORT

    SciTech Connect (OSTI)

    Amoroso, J.; Fox, K.

    2011-09-07

    The Savannah River National Laboratory is collaborating with Alfred University to evaluate the potential for additives in borosilicate glass to improve sulfur retention. This preliminary report provides further background on the incorporation of sulfur in glass and outlines the experiments that are being performed by the collaborators. A simulated waste glass composition has been selected for the experimental studies. The first phase of experimental work will evaluate the impacts of BaO, PbO, and V{sub 2}O{sub 5} at concentrations of 1.0, 2.0, and 5.0 wt % on sulfate retention in simulated high level waste borosilicate glass. The second phase of experimental work will evaluate the effects of time at the melt temperature on sulfur retention. The resulting samples will be characterized to determine the amount of sulfur remaining as well as to identify the formation of any crystalline phases. The results will be used to guide the future selection of frits and glass forming chemicals in vitrifying Department of Energy wastes containing high sulfur concentrations.

  8. Process and system for removing sulfur from sulfur-containing gaseous streams

    DOE Patents [OSTI]

    Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  9. Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results

    SciTech Connect (OSTI)

    Smith, Steven J.; Andres, Robert; Conception , Elvira; Lurz, Joshua

    2004-01-25

    A global, self-consistent estimate of sulfur dioxide emissions over the last one and a half century were estimated by using a combination of bottom-up and best available inventory methods including all anthropogenic sources. We find that global sulfur dioxide emissions peaked about 1980 and have generally declined since this time. Emissions were extrapolated to a 1{sup o} x 1{sup o} grid for the time period 1850-2000 at annual resolution with two emission height levels and by season. Emissions are somewhat higher in the recent past in this new work as compared with some comprehensive estimates. This difference is largely due to our use of emissions factors that vary with time to account for sulfur removals from fossil fuels and industrial smelting processes.

  10. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, John B. L. (Naperville, IL); Gorski, Anthony J. (Woodridge, IL); Daniels, Edward J. (Oak Lawn, IL)

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  11. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  12. Method for removing sulfur oxides from a hot gas

    SciTech Connect (OSTI)

    Morris, W.P.; Hurst, T.B.

    1984-06-05

    An improved method for removing sulfur oxides from a hot gas by introducing the gas into a first compartment of a spray drying reactor chamber for settleable particulate removal, by then directing the gas to a second compartment of the reactor chamber wherein the gas is contacted with an atomized alkali slurry for sulfur oxide removal by formation of a dry mixture of sulfite and sulfate compounds, by removing a portion of the dry mixture from the gas in the second compartment and by passing the gas from the second compartment to a dry particle collection zone for removal of substantially all of the remaining gas entrained dry mixture.

  13. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage - FY13 Q1 | Department of Energy Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage - FY13 Q1 Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage - FY13 Q1 This document summarizes the progress of this General Atomics project, funded by SunShot, for the first quarter of fiscal year 2013. PDF icon progress_report_baseload_generalatomics_fy13_q1.pdf More Documents & Publications Baseload CSP Generation Integrated with

  14. "2014 Average Monthly Bill- Industrial"

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Number of Customers","Average Monthly Consumption (kWh)","Average Price (cents/kWh)","Average Monthly Bill (Dollar and cents)" "New England",28017,56832.854,11.842263,6730.2959 "Connecticut",4648,63016.315,12.915601,8138.9361 "Maine",3023,92553.92,8.9475131,8281.2741

  15. "2014 Average Monthly Bill- Residential"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Number of Customers","Average Monthly Consumption (kWh)","Average Price (cents/kWh)","Average Monthly Bill (Dollar and cents)" "New England",6243013,630.1915,17.822291,112.31456 "Connecticut",1459239,729.69421,19.748254,144.10186 "Maine",706952,549.37782,15.272983,83.90638

  16. U.S. Refiner Sales to End Users (Average) Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Type: Sales to End Users, Average Through Retail Outlets Sales for Resale, Average DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Formulation/ Grade Sales Type Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Conventional, Average 2.161 2.057 1.785 1.759 1.601 1.472 1994-2015 Conventional Regular 2.124 2.018 1.743 1.721 1.562 1.431 1994-2015 Conventional Midgrade 2.325 2.229 1.985 1.923

  17. Percent of Commercial Natural Gas Deliveries in Hawaii Represented by the

    Gasoline and Diesel Fuel Update (EIA)

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100 100 100 100 100 100 100 100 100 100 100 100 1990 100 100 100 100 100 100 100 100 100 100 100 100 1991 100 100 100 100 100 100 100 100 100 100 100 100 1992 100 100 100 100 100 100 100 100 100 100 100 100 1993 100 100 100 100 100 100 100 100 100 100 100 100 1994 100 100 100 100 100 100 100 100 100 100 100 100 1995 100 100 100 100 100 100 100 100 100 100 100 100 1996 100 100 100 100 100 100 100 100 100 100 100 100

  18. Percent of Commercial Natural Gas Deliveries in Vermont Represented by the

    Gasoline and Diesel Fuel Update (EIA)

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100 100 100 100 100 100 100 100 100 100 100 100 1990 100 100 100 100 100 100 100 100 100 100 100 100 1991 100 100 100 100 100 100 100 100 100 100 100 100 1992 100 100 100 100 100 100 100 100 100 100 100 100 1993 100 100 100 100 100 100 100 100 100 100 100 100 1994 100 100 100 100 100 100 100 100 100 100 100 100 1995 100 100 100 100 100 100 100 100 100 100 100 100 1996 100 100 100 100 100 100 100 100 100 100 100 100

  19. Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93.1 90.8 89.1 1990's 86.6 85.1 83.2 83.9 79.3 76.7 77.6 70.8 67.0 66.1 2000's 63.9 66.0 77.4 78.2 78.0 82.1 80.8 80.4 79.7 77.8 2010's 77.5 67.3 65.2 65.8 65.8 65.3

  20. Percent of Industrial Natural Gas Deliveries in Hawaii Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 100 100 100 100 100 100 100 100 100 100 100 100 2002 100 100 100 100 100 100 100 100 100 100 100 100 2003 100 100 100 100 100 100 100 100 100 100 100 100 2004 100 100 100 100 100 100 100 100 100 100 100 100 2005 100 100 100 100 100 100 100 100 100 100 100 100 2006 100 100 100 100 100 100 100 100 100 100 100 100 2007 100 100 100 100 100 100 100 100 100 100 100 100 2008 100 100 100 100 100 100 100 100 100 100 100 100

  1. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards, Model Years 2012-2016 The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model...

  2. Does anyone have access to 2012 average residential rates by...

    Open Energy Info (EERE)

    Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility...

  3. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

  4. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002...

  5. Pennsylvania Average Price of Natural Gas Delivered to Residential...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    67 15.82 17.83 18.62 18.32 NA 1989-2015 Commercial Average Price 10.73 11.25 12.09 11.21 11.10 NA...

  6. Averaged null energy condition violation in a conformally flat spacetime

    SciTech Connect (OSTI)

    Urban, Douglas; Olum, Ken D.

    2010-01-15

    We show that the averaged null energy condition can be violated by a conformally coupled scalar field in a conformally flat spacetime in 3+1 dimensions. The violation is dependent on the quantum state and can be made as large as desired. It does not arise from the presence of anomalies, although anomalous violations are also possible. Since all geodesics in conformally flat spacetimes are achronal, the achronal averaged null energy condition is likewise violated.

  7. High Average Brightness Photocathode Development for FEL Applications

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect High Average Brightness Photocathode Development for FEL Applications Citation Details In-Document Search Title: High Average Brightness Photocathode Development for FEL Applications Authors: Rao T. ; Ben-Zvi I. ; Skarita, J. ; Wang, E. Publication Date: 2013-08-26 OSTI Identifier: 1095687 Report Number(s): BNL--101607-2013-CP KA-04 DOE Contract Number: DE-AC02-98CH10886 Resource Type: Conference Resource Relation: Conference: 35th International Free Electron

  8. Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.

  9. Strongly Coupled Data Assimilation Using Leading Averaged Coupled

    Office of Scientific and Technical Information (OSTI)

    Covariance (LACC). Part II: CGCM experiments (Journal Article) | SciTech Connect Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part II: CGCM experiments Citation Details In-Document Search Title: Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part II: CGCM experiments Authors: Liu, Feiyu ; Liu, Zhengyu ; Zhang, S. ; Liu, Y. ; Jacob, Robert L. Publication Date: 2015-11-01 OSTI Identifier: 1237902 DOE Contract Number:

  10. Solvent Tuning of Properties of Iron-Sulfur Clusters in Proteins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Proteins Figure 1. Schematic repre-sentation of the common active-site iron-sulfur cluster structural motif. Proteins containing Fe4S4 iron-sulfur clusters are ubiquitous in...

  11. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G.

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  12. Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts in Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application | Department of Energy Sulfur Deactivation on Cu/Zeolite SCR Catalysts in Diesel Application Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts in Diesel Application Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts in Diesel Application PDF icon deer09_cheng.pdf More Documents & Publications Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite

  13. Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4: June 9, 2014 EPA Sulfur Standards for Gasoline Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline Sulfur naturally occurs in gasoline and diesel fuel, contributing to pollution when the fuel is burned. Beginning in 2004, standards were set on the amount of sulfur in gasoline (Tier 2 standards). Separate standards were set for different entities, such as large refiners, small refiners, importers, downstream wholesalers, etc. In March 2014, Tier 3 standards were finalized by

  14. Development of High Energy Density Lithium-Sulfur Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Density Lithium-Sulfur Cells Development of High Energy Density Lithium-Sulfur Cells 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es125_wang_2012_p.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: High Energy Lithium-Sulfur Cathodes Vehicle Technologies Office Merit Review 2014: Development of High Energy Density Lithium-Sulfur Cells

  15. Workshop on sulfur chemistry in flue gas desulfurization

    SciTech Connect (OSTI)

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  16. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents

    DOE Patents [OSTI]

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2004-11-02

    The disclosure is directed to sorbent compositions for removing reduced sulfur species (e.g., H.sub.2 S, COS and CS.sub.2) a feed stream. The sorbent is formed from a multi-phase composition including a zinc titanate phase and a zinc oxide-aluminate phase. The sorbent composition is substantially free of unreacted alumina.

  17. Catalyst added to Claus furnace reduces sulfur losses

    SciTech Connect (OSTI)

    Luinstra, E.A.; d'Haene, P.E. (Shell Canada Ltd., Toronto, ON (Canada). Oakville Research Centre)

    1989-07-01

    Several substances effectively catalyze the reduction of carbon disulfide in Claus gas streams at Claus reaction furnace conditions (about 1,000{sup 0}C). Some conversion of carbonyl sulfide also occurs. Carbon disulfide and carbonyl sulfide as well-known problem compounds that reduce sulfur recovery efficiency in many sulfur recovery plants. Installation of a suitable catalytic material in the reaction furnace promises significant improvement of Claus plant efficiency, and prolonged life of the catalytic converters. Almost every Claus sulfur recovery plant makes some carbon disulfide (CS/sub 2/) and carbonyl sulfide (COS) in the reaction furnace, and in many of these plants, these compounds constitute a significant problem. CS/sub 2/ and COS often comprise more than 50% of sulfur losses in the tail gas. This article reexamines the issue of CS/sub 2/ and COS in the Claus plant. The relative importance of these two troublesome components is explored with data accumulated from Shell Canada Claus plants. The authors discuss which factors tend to produce these components. Then a method for reducing CS/sub 2/ and COS virtually at the source will be introduced.

  18. Emission of reduced malodorous sulfur gases from wastewater treatment plants

    SciTech Connect (OSTI)

    Devai, I.; DeLaune, R.D.

    1999-03-01

    The emission of malodorous gaseous compounds from wastewater collection and treatment facilities is a growing maintenance and environmental problem. Numerous gaseous compounds with low odor detection thresholds are emitted from these facilities. Sulfur-bearing gases represent compounds with the lowest odor detection threshold. Using solid adsorbent preconcentration and gas chromatographic methods, the quantity and composition of reduced malodorous sulfur gases emitted from various steps of the treatment process were determined in wastewater treatment plants in Baton Rouge, Louisiana. Hydrogen sulfide, which is a malodorous, corrosive, and potentially toxic gas, was the most dominant volatile reduced sulfur (S) compound measured. Concentrations were not only more than the odor detection threshold of hydrogen sulfide, but above levels that may affect health during long-term exposure. The concentrations of methanethiol, dimethyl sulfide, carbon disulfide, and carbonyl sulfide were significantly less than hydrogen sulfide. However, even though emissions of reduced sulfur gases other than hydrogen sulfide were low, previous studies suggested that long-term exposure to such levels may cause respiratory problems and other symptoms.

  19. Doped carbon-sulfur species nanocomposite cathode for Li--S batteries

    DOE Patents [OSTI]

    Wang, Donghai; Xu, Tianren; Song, Jiangxuan

    2015-12-29

    We report a heteroatom-doped carbon framework that acts both as conductive network and polysulfide immobilizer for lithium-sulfur cathodes. The doped carbon forms chemical bonding with elemental sulfur and/or sulfur compound. This can significantly inhibit the diffusion of lithium polysulfides in the electrolyte, leading to high capacity retention and high coulombic efficiency.

  20. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    DOE Patents [OSTI]

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  1. Possibility of using cylindrical ionization chambers for percent depth-dose measurements in clinical electron beams

    SciTech Connect (OSTI)

    Ono, Takeshi; Araki, Fujio; Yoshiyama, Fumiaki

    2011-08-15

    Purpose: This study investigated the possibility of using cylindrical ionization chambers for percent depth-dose (PDD) measurements in high-energy clinical electron beams. Methods: The cavity correction factor, P{sub cav}, for cylindrical chambers with various diameters was calculated as a function of depth from the surface to R{sub 50}, in the energy range of 6-18 MeV electrons with the EGSnrc C ++ -based user-code CAVITY. The results were compared with those for IBA NACP-02 and PTW Roos parallel-plate ionization chambers. The effective point of measurement (EPOM) for the cylindrical chamber and the parallel-plate chamber was positioned according to the IAEA TRS-398 code of practice. The overall correction factor, P{sub Q}, and the percent depth-ionization (PDI) curve for a PTW30013 Farmer-type chamber were also compared with those of NACP-02 and Roos chambers. Results: The P{sub cav} values at depths between the surface and R{sub 50} for cylindrical chambers were all lower than those with parallel-plate chambers. However, the variation in depth for cylindrical chambers equal to or less than 4 mm in diameter was equivalent to or smaller than that for parallel-plate chambers. The P{sub Q} values for the PTW30013 chamber mainly depended on P{sub cav}, and for parallel-plate chambers depended on the wall correction factor, P{sub wall}, rather than P{sub cav}. P{sub Q} at depths from the surface to R{sub 50} for the PTW30013 chamber was consequently a lower value than that with parallel-plate chambers. However, the variation in depth was equivalent to that of parallel-plate chambers at electron energies equal to or greater than 9 MeV. The shift to match calculated PDI curves for the PTW30013 chamber and water (perturbation free) varied from 0.65 to 0 mm between 6 and 18 MeV beams. Similarly, the shifts for NACP-02 and Roos chambers were 0.5-0.6 mm and 0.2-0.3 mm, respectively, and were nearly independent of electron energy. Conclusions: Calculated PDI curves for PTW30013, NACP-02, and Roos chambers agreed well with that of water by using the optimal EPOM. Therefore, the possibility of using cylindrical ionization chambers can be expected for PDD measurements in clinical electron beams.

  2. Percent of Commercial Natural Gas Deliveries in Alaska Represented by the

    Gasoline and Diesel Fuel Update (EIA)

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0

  3. Percent of Commercial Natural Gas Deliveries in Delaware Represented by the

    Gasoline and Diesel Fuel Update (EIA)

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0

  4. Percent of Commercial Natural Gas Deliveries in Florida Represented by the

    Gasoline and Diesel Fuel Update (EIA)

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 96.2 96.1 96.3 96.1 96.4 96.0 96.7 94.9 1991 96.5 97.0 97.5 98.1 97.8 97.8 97.9 97.8 98.2 97.8 96.8 96.8 1992 96.8 97.2 97.4 98.2 98.3 98.2 98.1 98.1 98.3 98.2 97.4 97.0 1993 97.2 97.2 97.2 98.3 98.4 98.4 98.3 98.3 98.3 98.2 97.3 97.0 1994 97.3 97.6 97.8 98.3 97.6 98.3 98.2 98.4 98.5 97.9 97.8 97.0 1995 96.7 97.3 97.5

  5. Percent of Commercial Natural Gas Deliveries in Maine Represented by the

    Gasoline and Diesel Fuel Update (EIA)

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0

  6. Percent of Commercial Natural Gas Deliveries in New Jersey Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.0 98.9 98.7 98.3 96.2 94.7 94.2 93.4 93.5 94.7 99.0 99.7 1990 99.6 99.3 96.6 94.4 94.3 93.2 89.3 86.4 87.1 86.2 91.7 96.5 1991 98.1 96.5 95.8 91.8 92.3 89.1 89.5 80.6 89.2 90.0 93.2 97.0 1992 96.9 95.7 92.1 87.7 94.1 91.3 88.6 80.7 80.7 86.4 94.8 96.9 1993 93.6 94.0 93.7 91.2 88.5 86.4 87.1 79.8 84.6 90.0 92.4 93.8 1994 94.9 96.2 96.3 89.8 87.4 85.1 81.4 82.2 83.6 88.0 89.6 92.1 1995 93.7 92.4 91.3 87.4 84.5

  7. Percent of Commercial Natural Gas Deliveries in New Mexico Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 93.0 89.2 91.4 86.5 86.6 83.4 80.2 81.9 80.2 86.9 85.6 87.6 1990 87.1 85.1 86.7 84.2 80.3 78.9 78.6 75.5 76.5 78.5 79.0 83.2 1991 82.4 82.5 82.0 83.6 82.2 61.4 67.4 71.0 73.8 71.7 75.5 72.9 1992 84.7 84.9 75.3 73.0 64.0 66.5 62.4 64.4 60.8 57.9 57.0 61.1 1993 68.1 66.2 68.0 60.1 57.8 49.4 58.2 55.4 41.6 68.1 65.0 65.9 1994 66.9 68.5 64.6 61.7 54.5 54.5 60.3 44.5 54.8 60.3 64.2 68.5 1995 59.9 75.1 60.3 57.6 47.7

  8. Percent of Commercial Natural Gas Deliveries in North Dakota Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 81.7 84.8 84.0 83.9 80.6 74.8 69.2 64.9 71.4 70.9 74.8 81.6 1990 83.9 82.5 78.4 76.0 75.4 69.7 54.3 53.3 57.4 58.4 69.8 75.8 1991 79.4 79.9 74.9 71.7 70.6 59.0 49.6 47.6 49.6 48.7 67.6 70.1 1992 71.7 73.7 72.0 71.6 73.6 63.8 61.6 58.8 57.2 56.8 67.3 68.9 1993 77.1 73.8 77.4 76.8 73.3 62.6 58.1 54.0 53.5 56.0 74.2 78.9 1994 82.6 86.8 83.1 82.1 78.4 69.7 66.2 63.2 61.8 64.0 82.2 76.9 1995 84.3 85.9 84.3 83.2 80.0

  9. Percent of Commercial Natural Gas Deliveries in Rhode Island Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 87.1 83.9 47.7 48.9 40.4 44.6 82.7 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 75.5 80.2 97.3 91.1 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 100.0 100.0 100.0 100.0 100.0 100.0 100.0

  10. Percent of Commercial Natural Gas Deliveries in South Dakota Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 92.8 93.1 92.8 92.1 92.5 91.6 90.2 89.4 90.0 89.6 91.1 92.0 1990 90.7 90.1 90.2 88.0 78.4 83.0 81.9 82.4 82.0 77.7 82.0 86.3 1991 84.8 83.0 80.5 83.4 79.5 74.9 74.3 74.3 74.5 76.7 83.4 85.2 1992 87.0 83.3 85.6 83.1 80.7 73.5 72.3 74.6 78.0 76.5 81.8 84.7 1993 86.5 83.9 84.4 81.2 76.4 73.3 74.9 72.9 75.8 78.7 90.0 91.2 1994 92.9 92.3 92.6 88.4 84.7 74.7 72.7 82.0 79.0 83.4 88.4 92.1 1995 92.1 90.8 89.7 87.2 82.8

  11. Percent of Commercial Natural Gas Deliveries in Utah Represented by the

    Gasoline and Diesel Fuel Update (EIA)

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1991 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1992 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1994 83.8 85.2 82.9 82.4 77.7 77.9 76.4

  12. Percent of Commercial Natural Gas Deliveries in Wyoming Represented by the

    Gasoline and Diesel Fuel Update (EIA)

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.6 99.7 99.7 1990 99.7 99.7 99.7 99.8 99.7 99.7 99.6 99.6 99.5 99.5 99.7 99.7 1991 99.9 99.9 99.4 98.9 99.0 98.2 97.4 98.3 97.2 98.4 98.6 98.5 1992 98.6 98.1 97.8 98.4 97.9 97.2 96.5 97.1 97.4 97.2 98.2 98.3 1993 98.8 98.2 98.4 98.1 98.2 96.9 97.1 96.5 95.0 97.1 97.2 99.0 1994 98.1 96.0 96.9 97.3 95.2 91.7 93.4 92.1 93.5 95.6 96.1 96.8 1995 88.4 98.2 93.6 92.4 89.2

  13. Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by

    Gasoline and Diesel Fuel Update (EIA)

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1983 NA NA NA NA NA NA NA NA NA NA NA NA 1984 NA NA NA NA NA NA NA NA NA NA NA NA 1985 NA NA NA NA NA NA NA NA NA NA NA NA 1986 NA NA NA NA NA NA NA NA NA NA NA NA 1987 NA NA NA NA NA NA NA NA NA NA NA NA 1988 93.8 93.3 92.5 91.7 89.4 87.5 86.3 87.2 87.6 87.4 88.7 89.7 1989 91.0 91.2 90.8 89.2 88.2 86.1 85.1 85.1 84.6 85.2 87.7 90.7 1990 90.8 88.8 88.3 86.9 85.5 83.8 81.8 81.7 80.3 81.2 84.7 87.9 1991 89.4 88.5 87.8

  14. High average power scaleable thin-disk laser

    DOE Patents [OSTI]

    Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Bibeau, Camille (Dublin, CA); Payne, Stephen A. (Castro Valley, CA); Powell, Howard (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  15. Turning Bayesian model averaging into Bayesian model combination

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Turning Bayesian model averaging into Bayesian model combination Citation Details In-Document Search Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James [1] ; Monteith, Kristine [2] ; Seppi, Kevin [2] ; Martinez, Tony [2] + Show Author Affiliations Los Alamos National Laboratory BYU Publication Date: 2011-07-28 OSTI Identifier: 1084524 Report Number(s): LA-UR-11-04419; LA-UR-11-4419 DOE Contract Number: AC52-06NA25396

  16. U.S. average gasoline price up slightly

    Gasoline and Diesel Fuel Update (EIA)

    U.S. average gasoline price up slightly The U.S. average retail price for regular gasoline rose slightly to $3.65 a gallon on Monday. That's up a tenth of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.89 a gallon, down 4.4 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.34 a gallon, down 2.6 cents. Jonathan Cogan for EIA,

  17. Turning Bayesian model averaging into Bayesian model combination

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Turning Bayesian model averaging into Bayesian model combination Citation Details In-Document Search Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James [1] ; Monteith, Kristine [2] ; Seppi, Kevin [2] ; Martinez, Tony [2] + Show Author Affiliations Los Alamos National Laboratory BYU Publication Date: 2011-07-28 OSTI Identifier: 1084524 Report Number(s): LA-UR-11-04419; LA-UR-11-4419 DOE Contract Number: AC52-06NA25396

  18. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail Sales (megawatthours)",,,,,,,,,,,,,,,,,,,,,,,,," "," "," "

  19. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  20. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  1. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  2. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  3. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  4. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  5. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  6. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  7. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  8. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  9. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  10. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  11. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  12. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  13. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  14. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  15. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  16. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  17. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  18. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  19. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"

  20. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Retail sales (megawatthours)"