Powered by Deep Web Technologies
Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

national average for heating oil  

U.S. Energy Information Administration (EIA)

Propane Missouri North Dakota X South Dakota TOTAL List of States included on Winter Heating Fuels Survey (SHOPP) Release date: January 2012 22.00 24.00. Author: MRO

2

Heat Transfer Operators Associated with Quantum Operations  

E-Print Network (OSTI)

Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.

Ç. Aksak; S. Turgut

2010-02-03T23:59:59.000Z

3

annual average heating degree days | OpenEI  

Open Energy Info (EERE)

average heating degree days average heating degree days Dataset Summary Description (Abstract): Heating Degree Days below 18° C (degree days)The monthly accumulation of degrees when the daily mean temperature is below 18° C.NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly Average & Annual Sum (July 1983 - June 2005)Parameter: Heating Degree Days Below 18 degrees C (degree days)Internet: http://eosweb.larc.nasa.gov/sse/ Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated April 01st, 2009 (5 years ago) Keywords annual average heating degree days climate GIS NASA SWERA UNEP Data application/zip icon Download Shapefile (zip, 2.7 MiB)

4

Orbit-averaged guiding-center Fokker-Planck operator  

Science Conference Proceedings (OSTI)

A general orbit-averaged guiding-center Fokker-Planck operator suitable for the numerical analysis of transport processes in axisymmetric magnetized plasmas is presented. The orbit-averaged guiding-center operator describes transport processes in a three-dimensional guiding-center invariant space: the orbit-averaged magnetic-flux invariant {psi}, the minimum-B pitch-angle coordinate {xi}{sub 0}, and the momentum magnitude p.

Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States); Decker, J.; Peysson, Y.; Duthoit, F.-X. [CEA, IRFM, Saint-Paul-lez-Durance F-13108 (France)

2009-10-15T23:59:59.000Z

5

What is the average heat content of U.S. coal? - FAQ - U.S ...  

U.S. Energy Information Administration (EIA)

What is the average heat content of U.S. coal? In 2012, the average heat content of coal produced in the United States was about 20.14 million ...

6

Cylindrical model of transient heat conduction in automotive fuse using conservative averaging method  

Science Conference Proceedings (OSTI)

Cylindrical mathematical model of automotive fuse is considered in this paper. Initially, partial differential equations of the transient heat conduction are given to describe heat-up process in the fuse. Conservative averaging method is used to obtain ... Keywords: analytical approximation, automotive fuse, conservative averaging, heat transfer, quasi-linear, transient process

Raimonds Vilums; Hans-Dieter Liess; Andris Buikis; Andis Rudevics

2008-12-01T23:59:59.000Z

7

High average power CW FELs (Free Electron Laser) for application to plasma heating: Designs and experiments  

SciTech Connect

A short period wiggler (period {approximately} 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam ( body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation.

Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X. (Maryland Univ., College Park, MD (USA). Lab. for Plasma Research); Freund, H.P. (Science Applications International Corp., McLean, VA (USA))

1989-01-01T23:59:59.000Z

8

Table WH6. Average Consumption for Water Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Major Fuels Used 5 (physical units of consumption per household using the fuel as a water heating source) Electricity (kWh) Table WH6. Average Consumption for Water ...

9

Modeling uncertain variables of the weighted average operation by fuzzy vectors  

Science Conference Proceedings (OSTI)

The paper deals with the fuzzy extension of the weighted average operation. First, we study the convenient ways how uncertain weights and weighted values can be modeled by fuzzy vectors. We show that, in comparison to a tuple of fuzzy numbers that have ... Keywords: Fuzzy probabilities, Fuzzy vector, Fuzzy weighted average, Multiple criteria decision making, Normalized fuzzy weights, Separability of fuzzy vectors

Ond?Ej Pavla?Ka

2011-11-01T23:59:59.000Z

10

Spatially averaged heat flux and convergence measurements at the ARM regional flux experiment  

SciTech Connect

Cloud formation and its relation to climate change is the greatest weakness in current numerical climate models. Surface heat flux in some cases causes clouds to form and in other to dissipate and the differences between these cases are subtle enough to make parameterization difficult in a numerical model. One of the goals of the DOE Atmospheric Radiation Measurement program is to make long term measurements at representative sites to improve radiation and cloud formation parameterization. This paper compares spatially averaged optical measurements of heat flux and convergence with a goal of determining how point measurements of heat fluxes scale up to the larger scale used for climate modeling. It was found that the various optical techniques used in this paper compared well with each other and with independent measurements. These results add confidence that spatially averaging optical techniques can be applied to transform point measurements to the larger scales needed for mesoscale and climate modeling. 10 refs., 6 figs. (MHB)

Porch, W.; Barnes, F.; Buchwald, M.; Clements, W.; Cooper, D.; Hoard, D. (Los Alamos National Lab., NM (United States)); Doran, C.; Hubbe, J.; Shaw, W. (Pacific Northwest Lab., Richland, WA (United States)); Coulter, R.; Martin, T. (Argonne National Lab., IL (United States)); Kunkel, K. (Illinois State Water Survey, Champaign, IL (United States))

1991-01-01T23:59:59.000Z

11

Renewable Combined Heat and Power Dairy Operations  

E-Print Network (OSTI)

horsepower Guascor model SFGLD-560 biogas-fired lean burn internal combustion (IC) engine and generator set and modify the existing biogas toelectricity combined heat and power (CHP) system operated at Fiscalini bacteria to remove hydrogen sulfide presented in the biogas. Source: Fiscalini Farms Term: March 2011

12

Orbit-averaged guiding-center Fokker-Planck operator for numerical applications  

Science Conference Proceedings (OSTI)

A guiding-center Fokker-Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dimensional Fokker-Planck evolution equation for the orbit-averaged distribution function in a space of invariants is obtained. This transformation is applied to a collision operator with nonuniform isotropic field particles. Explicit neoclassical collisional transport diffusion and convection coefficients are derived, and analytical expressions are obtained in the thin orbit approximation. To illustrate this formalism and validate our results, the bootstrap current is analytically calculated in the Lorentz limit.

Decker, J.; Peysson, Y.; Duthoit, F.-X. [IRFM, CEA, F-13108 Saint-Paul-lez-Durance (France); Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States)

2010-11-15T23:59:59.000Z

13

Development of a high average current polarized electron source with long cathode operational lifetime  

SciTech Connect

Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

2007-02-01T23:59:59.000Z

14

Climate: monthly and annual average heating degree days below 18° C GIS  

Open Energy Info (EERE)

heating degree days below 18° C GIS heating degree days below 18° C GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Heating Degree Days below 18° C (degree days)The monthly accumulation of degrees when the daily mean temperature is below 18° C.NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly Average & Annual Sum (July 1983 - June 2005)Parameter: Heating Degree Days Below 18 degrees C (degree days)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180,

15

Operating and Maintaining Your Heat Pump | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operating and Maintaining Your Heat Pump Operating and Maintaining Your Heat Pump Operating and Maintaining Your Heat Pump June 24, 2012 - 3:22pm Addthis Changing filters regularly is an important part of maintaining a heat pump system. | Photo courtesy of ©iStockphoto/BanksPhotos Changing filters regularly is an important part of maintaining a heat pump system. | Photo courtesy of ©iStockphoto/BanksPhotos What does this mean for me? Learn to operate and maintain your heat pump system properly to maximize energy and money savings. You can do many operational and maintenance tasks yourself. Proper operation of your heat pump will save energy. Do not set back the heat pump's thermostat if it causes the backup heating to come on -- backup heating systems are usually more expensive to operate. Continuous indoor

16

Table SH7. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil (gallons) Main Space Heating Fuel Used (physical units of consumption per household using the fuel as a main heating source) Table SH7.

17

Table SH8. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Main Space Heating Fuel Used (million Btu of consumption per household using the fuel as a main heating source) Any Major Fuel 4 Table SH8.

18

Table SH9. Average Expenditures for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

A household is assigned to a climate zone according to the 30-year average annual degree-days for an appropriate nearby weather station.

19

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

Solid state laser technology is a very well developed field and numerous embodiments and modes of operation have been demonstrated. A more recent development has been the pumping of a solid state laser active medium with an array of diode lasers (diode pumping, for short). These diode pump packages have previously been developed to pump solid state lasers with good efficiency, but low average power. This invention is a method and the resulting apparatus for operating a solid state laser in the heat capacity mode. Instead of cooling the laser, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself.

Albrecht, G.; George, E.V.; Krupke, W. [and others

1994-12-31T23:59:59.000Z

20

Estimating Monthly Averaged Air-Sea Transfers of Heat and Momentum Using the Bulk Aerodynamic Method  

Science Conference Proceedings (OSTI)

Air-sea transfers of sensible heat, latent heat and momentum are computed from 25 years of middle-latitude and subtropical ocean weather ship data in the North Atlantic and North Pacific using the bulk aerodynamic method. The results show that ...

Steven K. Esbensen; Richard W. Reynolds

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Estimation of heat load in waste tanks using average vapor space temperatures  

SciTech Connect

This report describes a method for estimating the total heat load in a high-level waste tank with passive ventilation. This method relates the total heat load in the tank to the vapor space temperature and the depth of waste in the tank. Q{sub total} = C{sub f} (T{sub vapor space {minus}} T{sub air}) where: C{sub f} = Conversion factor = (R{sub o}k{sub soil}{sup *}area)/(z{sub tank} {minus} z{sub surface}); R{sub o} = Ratio of total heat load to heat out the top of the tank (function of waste height); Area = cross sectional area of the tank; k{sub soil} = thermal conductivity of soil; (z{sub tank} {minus} z{sub surface}) = effective depth of soil covering the top of tank; and (T{sub vapor space} {minus} T{sub air}) = mean temperature difference between vapor space and the ambient air at the surface. Three terms -- depth, area and ratio -- can be developed from geometrical considerations. The temperature difference is measured for each individual tank. The remaining term, the thermal conductivity, is estimated from the time-dependent component of the temperature signals coming from the periodic oscillations in the vapor space temperatures. Finally, using this equation, the total heat load for each of the ferrocyanide Watch List tanks is estimated. This provides a consistent way to rank ferrocyanide tanks according to heat load.

Crowe, R.D.; Kummerer, M.; Postma, A.K.

1993-12-01T23:59:59.000Z

22

Using remotely sensed planetary boundary layer variables as estimates of areally averaged heat flux  

SciTech Connect

Homogeneity across the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is an issue of importance to all facets of the Atmospheric Radiation Measurements (ARM) program. The degree to which measurements at the central facility can be used to verify, improve, or develop relationships in radiative flux models that are subsequently used in Global Circulation Models (GCMs), for example, is tied directly to the representativeness of the local measurements at the central facility for the site as a whole. The relative variation of surface energy budget terms over a 350- km X 400km domain such as the SGP CART site can be extremely large. The Planetary Boundary Layer (PBL) develops as a result of energy inputs from widely varying surfaces. The lower atmosphere effectively integrates the local inputs; measurements of PBL structure can potentially be used for estimates of surface heat flux over scales on the order of tens of kilometers. This project is focusing on two PBL quantities that are intimately tied to the surface heat flux: (1) the height of the mixed layer, z, that grows during daytime due to sensible heat flux input from the surface; and (2) the convective velocity scale, normally a scaling parameter defined by the product of the sensible heat flux and z, but in this case defined by coherent structures that connect the surface layer and the capping inversion that defines z.

Coulter, R.L.; Martin, T.J.; Holdridge, D.J.

1995-06-01T23:59:59.000Z

23

Research of Heat Storage Tank Operation Modes in Cogeneration Plant.  

E-Print Network (OSTI)

??The dissertation investigates typical operation modes of the heat storage tank in the small-scale cogeneration (CHP) plant, analyses formation of thermal stratifi-cation in such storage… (more)

Streckien?, Giedr?

2011-01-01T23:59:59.000Z

24

Description and operation of Haakon School geothermal-heating system  

SciTech Connect

To encourage the development of hydrothermal energy, twenty-three demonstration projects were funded. The Haakon School project is one of twelve such projects. The geothermal direct-use heating system at the Haakon School complex in Philip, South Dakota is described and information gained during approximately three heating seasons of operation is presented.

Childs, F.W.; Kirol, L.D.; Sanders, R.D.; McLatchy, M.J.

1983-10-01T23:59:59.000Z

25

Areally averaged estimates of surface heat flux from ARM field studies  

SciTech Connect

The determination of areally averaged surface fluxes is a problem of fundamental interest to the Atmospheric Radiation Measurement (ARM) program. The Cloud And Radiation Testbed (CART) sites central to the ARM program will provide high-quality data for input to and verification of General Circulation Models (GCMs). The extension of several point measurements of surface fluxes within the heterogeneous CART sites to an accurate representation of the areally averaged surface fluxes is not straightforward. Two field studies designed to investigate these problems, implemented by ARM science team members, took place near Boardman, Oregon, during June of 1991 and 1992. The site was chosen to provide strong contrasts in surface moisture while minimizing the differences in topography. The region consists of a substantial dry steppe (desert) upwind of an extensive area of heavily irrigated farm land, 15 km in width and divided into 800-m-diameter circular fields in a close packed array, in which wheat, alfalfa, corn, or potatoes were grown. This region provides marked contrasts, not only on the scale of farm-desert (10--20 km) but also within the farm (0.1--1 km), because different crops transpire at different rates, and the pivoting irrigation arms provide an ever-changing pattern of heavy surface moisture throughout the farm area. This paper primarily discusses results from the 1992 field study.

Coulter, R.L.; Martin, T.J.; Cook, D.R.

1993-08-01T23:59:59.000Z

26

Comparison of bounce-averaged quasilinear theory with charge exchange measurements during minority fundamental and majority second harmonic ICRF heating in PLT  

DOE Green Energy (OSTI)

Previous studies in PLT using charge-exchange, edge probe, and fusion product diagnostics all indicate that ICRF tends to produce energetic trapped particles whose banana tips are near the resonance layer. A bounce-averaged quasilinear operator which predicts this ''resonance localization'' has been implemented in a Fokker-Planck code in order to make detailed comparisons with measurements. Good agreement is found with data from the horizontally-scanning, mass-resolving, charge-exchange analyzer, although the RF power profile seems to be broader than expected. We have recently observed a deuterium tail during hydrogen minority heating. The shape of this tail and its scaling with RF power agree well with the quasilinear theory. These measurements indicate that as much as 30% of the central RF power goes into direct second harmonic deuterium heating.

Hammett, G.W.; Colestock, P.L.; Gammel, G.; Goldston, R.J.; Hosea, J.C.; Hwang, D.Q.; Kaita, R.; Ono, M.; Roquemore, L.; Wilson, J.R.

1985-07-01T23:59:59.000Z

27

Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade  

SciTech Connect

The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

Josh A. Salmond

2009-08-07T23:59:59.000Z

28

Design and operation of solar thermal heat transfer systems  

Science Conference Proceedings (OSTI)

The importance of heat transfer systems in the collection and use of solar energy is discussed. The success or failure of many solar energy systems has been determined by the design of the heat transfer system. This report includes a short summary of some of the DOE sponsored solar industrial process heat sites. From the design, construction, and operation of these systems many lessons were learned which will be important to designers and potential users of solar thermal systems. Also included is a discussion of solar collector foundation over-design that has increased the collector system costs.

Rush, E.E.

1985-01-01T23:59:59.000Z

29

Entirely passive heat pipe apparatus capable of operating against gravity  

DOE Patents (OSTI)

The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 meters and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

Koenig, Daniel R. (Santa Fe, NM)

1982-01-01T23:59:59.000Z

30

Operation and design of selected industrial process heat field tests  

DOE Green Energy (OSTI)

The DOE program of solar industrial process heat field tests has shown solar energy to be compatible with numerous industrial needs. Both the operational projects and the detailed designs of systems that are not yet operational have resulted in valuable insights into design and hardware practice. Typical of these insights are the experiences discussed for the four projects reviewed. Future solar IPH systems should benefit greatly not only from the availability of present information, but also from the wealth of operating experience from projects due to start up in 1981.

Kearney, D. W.

1981-02-01T23:59:59.000Z

31

Energy savings from operation and maintenance training for apartment boiler heating systems  

SciTech Connect

The Portland Energy Office provided operation and maintenance (O M) training to the operators of boiler heating systems for ten low-income apartment complexes in the Fall of 1990. This study tracked energy usage before and after O M training to see if savings occurred. Training was provided on both weatherized and non-weatherized apartments to find out if weatherization impacted the amount of O M savings to be obtained. Also, energy savings from the O M training and building shell weatherization are compared. The O M training averaged about four hours per building. Content was adjusted at each site to match needs of the boiler and operator. The Energy Office also provided a boiler tune-up by a service technician. The training stressed low-cost and no-cost measures which operators could either do themselves or hire service help to implement. It also emphasized boiler safety. Nine of the ten apartment complexes in the study used less energy per heating degree-day after the O M help. Average savings were 10%. Four apartments chosen randomly as controls had negative savings; they used slightly more energy during the same post-O M time frame. Weatherized and unweatherized apartments showed similar savings after the O M help, 10% and 11% percent respectively. Savings from weatherization of six of the apartments in the winter of 1988--1989 were also measured. A low average of only 4% was observed, reflecting negative savings in two buildings.

1992-02-01T23:59:59.000Z

32

Continuous Time Series of Catchment-Averaged Sensible Heat Flux from a Large Aperture Scintillometer: Efficient Estimation of Stability Conditions and Importance of Fluxes under Stable Conditions  

Science Conference Proceedings (OSTI)

A large aperture scintillometer (LAS) observes the intensity of the atmospheric turbulence across large distances, which is related to the path-averaged sensible heat flux H. In this paper, two problems in the derivation of continuous series of H ...

Bruno Samain; Willem Defloor; Valentijn R. N. Pauwels

2012-04-01T23:59:59.000Z

33

Heat exchanger efficiently operable alternatively as evaporator or condenser  

DOE Patents (OSTI)

A heat exchanger adapted for efficient operation alternatively as evaporator or condenser and characterized by flexible outer tube having a plurality of inner conduits and check valves sealingly disposed within the outer tube and connected with respective inlet and outlet master flow conduits and configured so as to define a parallel flow path for a first fluid such as a refrigerant when flowed in one direction and to define a serpentine and series flow path for the first fluid when flowed in the opposite direction. The flexible outer tube has a heat exchange fluid, such as water, flowed therethrough by way of suitable inlet and outlet connections. The inner conduits and check valves form a package that is twistable so as to define a spiral annular flow path within the flexible outer tube for the heat exchange fluid. The inner conduits have thin walls of highly efficient heat transfer material for transferring heat between the first and second fluids. Also disclosed are specific materials and configurations.

Ecker, Amir L. (Dallas, TX)

1981-01-01T23:59:59.000Z

34

AFBC - operation of small scale demonstration for greenhouse heating  

SciTech Connect

A 2.2 million Btu/hr unit prototype AFBC system was installed in 1995 at Cedar Lane Farms, a commercial nursery in Ohio. The AFBC is in operation and is heating hot water for greenhouse temperature control. A team consisting of the Energy and Environmental Research Corporation, the Ohio Agricultural Research and Development Center of Ohio State University and the Will-Burt Company developed this technology with funding support from the Ohio Coal Development Office and the U.S. Department of Energy. The system is fully automated with little operator attention being required. Operating experience at Cedar Lane Farms has shown that only 2 hours per day of operation attention is required for the system. The system includes flyash/sorbent reinjection and underbed coal/limestone feed. These features provide for good limestone utilization; a Ca/S (in coal) ratio of 2.5 will maintain an SO{sub 2} emissions level of 1.2 lb/10{sup 6} Btu when burning high sulfur (3.2%) Ohio coal. A baghouse is used to control particulate emissions. Based on the success of the prototype unit, a design has been recently completed for a commercial size 10 x 10{sup 6} Btu/hr capacity range. Multiple AFBC units can be used to provide larger heat outputs. Potential coal-fired AFBC users include institutions (schools, hospitals, prisons, government), light industry (agricultural, food processing), commercial users (shopping centers), and large residential users (apartment complexes). 6 figs., 1 tab.

Ashworth, R.A.; Plessinger, D.A.; Webner, R.L.; Machamer, T.

1996-12-31T23:59:59.000Z

35

TRANSIENT HEAT TRANSFER ANALYSIS FOR SRS RADIOACTIVE TANK OPERATION  

SciTech Connect

The primary objective of the present work is to perform a heat balance study for type-I waste tank to assess the impact of using submersible mixer pumps during waste removal. The temperature results calculated by the model will be used to evaluate the temperatures of the slurry waste under various tank operating conditions. A parametric approach was taken to develop a transient model for the heat balance study for type-I waste tanks such as Tank 11, during waste removal by SMP. The tank domain used in the present model consists of two SMP?s for sludge mixing, one STP for the waste removal, cooling coil system with 36 coils, and purge gas system. The sludge waste contained in Tank 11 also has a decay heat load of about 43 W/m{sup 3} mainly due to the emission of radioactive gamma rays. All governing equations were established by an overall energy balance for the tank domain, and they were numerically solved. A transient heat balance model used single waste temperature model, which represents one temperature for the entire waste liquid domain contained in the tank at each transient time.

Lee, S.

2013-06-27T23:59:59.000Z

36

A Simple Strategy for Optimal Operation of Heat Exchanger V. LERSBAMRUNGSUK1  

E-Print Network (OSTI)

A Simple Strategy for Optimal Operation of Heat Exchanger Networks V. LERSBAMRUNGSUK1 , S for optimal operation of heat exchanger networks. Optimal operation in this context requires that 1) all of heat exchanger networks are analyzed and used to identify if the operation is structurally feasible

Skogestad, Sigurd

37

Consumer benefits of electricity-price-driven heat pump operation in future smart grids  

Science Conference Proceedings (OSTI)

This paper describes the financial benefits of consumers while applying different operating modes to their heat pump. In order to evaluate the different operating modes a single family house with heating system has been modeled and simulated with different ...

Christoph Molitor; Ferdinanda Ponci; Antonello Monti; Davide Cali; Dirk Muller

2011-11-01T23:59:59.000Z

38

SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

High Operating Temperature Liquid High Operating Temperature Liquid Metal Heat Transfer Fluids to someone by E-mail Share SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Facebook Tweet about SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Twitter Bookmark SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Google Bookmark SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Delicious Rank SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Digg Find More places to share SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards

39

Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser  

DOE Green Energy (OSTI)

Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to <5kW. Even at the maximum demonstrated average powers, the output is most often delivered as continuous wave (CW) or as small energy pulses at high pulse repetition frequency (PRF) and the beam divergence is typically >10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode of operation is ideally suited for applications that require 1-30s engagements at very high average power. If necessary, multiple laser apertures can provide continuous operation. Land Combat mission analysis of a stressing air defense scenario including a dense attack of rockets, mortars, and artillery has indicated that multiple HEL weapon systems, based on the solid state, heat capacity laser concept, can provide significantly improved protection of high value battlefield assets. We will present EADSIM results for two government-supplied scenarios, one with temporally high threat density over a fairly large defended area, and one with fewer threats concentrating on a single defended asset. Implications for weapon system requirements will be presented. In order to demonstrate the operation of a high average power heat-capacity laser system, we have developed a flashlamp-pumped Nd:glass laser with output energies in the range of 500-1000J/pulse in a 10 x 10cm{sup 2} beam. With a repetition frequency of 20Hz, an average power of 13kW has been demonstrated for operational periods of up to 10s using a stable optical resonator (see enclosed figure). Using an M=1.4 unstable resonator, a beam divergence of 5X diffraction-limited has been measured with no active wavefront correction. An adaptively corrected unstable resonator that incorporates an intracavity deformable mirror controlled by feedback from an external wavefront sensor will provide <2X diffraction-limited output integrated over an entire 10s run at an average power of 10kW. A very similar laser architecture in which the Nd:glass is replaced by Nd:GGG and the flashlamps are replaced by large diode-laser arrays will enable the scaling of the output average power from the demonstrated 10kW to 100kW (500J/pulse at 200Hz). Risk reduction experiments for diode-pumped Nd:GGG, the fabrication of large Nd:GGG amplifier slabs, as well as the progress toward a sub-scale amplifier testbed pumped by diode arrays with total of 1MW peak power will also be presented.

Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

2001-05-18T23:59:59.000Z

40

Study of Operating Control Strategies for Hybrid Ground Source Heat Pump System with Supplemental Cooling Tower  

Science Conference Proceedings (OSTI)

Ground source heat pump for cooling-dominated commercial buildings may utilize supplemental cooling towers to reduce system first cost and to improve system performance. The use of hybrid ground source heat pump (HGSP) can reduce the size of the ground-loop ... Keywords: hybrid ground source heat pump, supplement heat rejection, control strategies, operating performance

Wang Jinggang; Gao Xiaoxia; Yin Zhenjiang; Li Fang

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Investigation of several critical issues in screen mesh heat pipe manufacturing and operation.  

E-Print Network (OSTI)

??The PhD thesis with the title “Investigation of several critical issues in screen mesh heat pipe manufacturing and operation” presented hereafter describes work carried out… (more)

Engelhardt, Andreas

2010-01-01T23:59:59.000Z

42

Control Structure Selection for Optimal Operation of a Heat Exchanger Network  

E-Print Network (OSTI)

Control Structure Selection for Optimal Operation of a Heat Exchanger Network Johannes J--We consider the control structure design for a heat exchanger network (HEN), where a stream is split of temperature measurements. Index Terms--Control structure selection, Self-optimizing con- trol, Heat exchanger

Skogestad, Sigurd

43

High Operating Temperature Heat Transfer Fluids for Solar Thermal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Transfer Fluids for Solar Thermal Power Generation UCLA, UCB, Yale Award Number: DE-EE0005941 | January 9, 2013 | Sungtaek Ju 1.1 Thermochemistry modeling Identified promising...

44

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

1996-01-01T23:59:59.000Z

45

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

1996-06-11T23:59:59.000Z

46

Geothermal Heat Pump Systems in Schools: Construction, Maintenance and Operating Costs  

Science Conference Proceedings (OSTI)

Geothermal heat pumping and cooling systems are still not widely used to heat and cool buildings. They are an unknown to most architects and engineers. The electric utility industry has recognized them as being a very energy-efficient way to heat and cool buildings using electricity. The Tennessee Valley Authority (TVA) has assisted in design and installation of many geothermal systems, particularly in school buildings. With a number of geothermal heat pump systems in schools in operation in the TVA regi...

2000-12-13T23:59:59.000Z

47

Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids  

Science Conference Proceedings (OSTI)

An experimental study was performed to investigate the operation characteristics of a cylindrical miniature grooved heat pipe using aqueous CuO nanofluid as the working fluid at some steady cooling conditions. The experiments were carried out under both the steady operation process and the unsteady startup process. The experiment results show that substituting the nanofluid for water as the working fluid can apparently improve the thermal performance of the heat pipe for steady operation. The total heat resistance and the maximum heat removal capacity of the heat pipe using nanofluids can maximally reduce by 50% and increase by 40% compared with that of the heat pipe using water, respectively. For unsteady startup process, substituting the nanofluid for water as the working fluid, cannot only improve the thermal performance, but also reduce significantly the startup time. (author)

Wang, Guo-Shan; Song, Bin; Liu, Zhen-Hua [School of Mechanical Engineering, Shanghai Jiaotong University, 200240 Shanghai (China)

2010-11-15T23:59:59.000Z

48

High Operating Temperature Liquid Metal Heat Transfer Fluids  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Metal Liquid Metal Heat Transfer Fluids UCLA, UCB, Yale DE-EE0005941 | April 15, 2013 | Ju 1.1 Thermochemistry modeling * Continue CALPHAD based calculations to search for optimal ternary alloy compositions. * Initiate development of liquid density models. 1.2 Combinatorial synthesis and characterization * Pipe-Liquid interaction of compositional library * More alloys, alloy additions and effect on liquidus temperatures * Iteratively optimize the compositions. 1.3 Corrosion characterization and mitigation * Tune static corrosion testing systems for testing over an extended period of time. * Perform analysis of the micro mechanical testing on the oxide layers. 1.4 Heat transfer characterization and modeling * Complete the construction of the flow loop and perform experiments to measure

49

High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)  

DOE Green Energy (OSTI)

The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-12-01T23:59:59.000Z

50

Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition  

DOE Green Energy (OSTI)

This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

None

1980-09-01T23:59:59.000Z

51

Development and extended operation of a high power radiation loaded heat pipe  

SciTech Connect

A high temperature, high power molybdenum-lithium heat pipe has been fabricated and tested at 1500 K for 1700 hours with radiant heat rejection. Power throughput during the test was approximately 14 kW, corresponding to an axial flux density of 11 kW/cm/sup 2/ for the 1.59 cm diameter heat pipe. Radial flux density was 70 W/cm/sup 2/ over an evaporator length of 40.0 cm. Condenser length was approximately 150 cm with radiant heat rejection from the condenser to a coaxial water cooled radiation calorimeter. A plasma sprayed, high emissivity coating was used on the condenser surface to increase the radiant heat rejection during the tests. The heat pipe was operated for 514 hours at steady state conditions before being damaged during a planned shutdown for test equipment maintenance. The damage was repaired and the initial 1000 hour test period completed without further incident. After physical examination of the heat pipe at 1000 hours the test was resumed and the heat pipe operated at the same conditions for an additional 700 hours before conclusion of this test phase.

Merrigan, M.A.; Keddy, E.S.; Runyan, J.R.; Martinez, H.E.

1984-06-01T23:59:59.000Z

52

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network (OSTI)

Today energy sources are decreasing and saving energy conservation becomes more important. Therefore, it becomes an important investigative direction how to use reproducible energy sources in the HVAC field. The feasibility and necessity of using solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter.

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

53

Optimal Operation of a Waste Incineration Plant for District Heating Johannes Jaschke, Helge Smedsrud, Sigurd Skogestad*, Henrik Manum  

E-Print Network (OSTI)

Optimal Operation of a Waste Incineration Plant for District Heating Johannes J¨aschke, Helge@chemeng.ntnu.no off-line. This systematic approach is here applied to a waste incineration plant for district heating. In district heating networks, operators usually wish to ob- tain the lowest possible return temperature

Skogestad, Sigurd

54

Evaluation of Next Generation Nuclear Power Plant (NGNP) Intermediate Heat Exchanger (IHX) Operating Conditions  

DOE Green Energy (OSTI)

This report summarizes results of a preliminary evaluation to determine the operating conditions for the Next Generation Nuclear Plant (NGNP) Intermediate Heat Exchanger (IHX) that will transfer heat from the reactor primary system to the demonstration hydrogen production plant(s). The Department of Energy is currently investigating two primary options for the production of hydrogen using a high temperature reactor as the power source. These options are the High Temperature Electrolysis (HTE) and Sulfur-Iodine (SI) thermochemical hydrogen production processes. However, since the SI process relies entirely on process heat from the reactor, while the HTE process relies primarily on electrical energy with only a small amount of process heat required, the design of the IHX is dictated by the SI process heat requirements. Therefore, the IHX operating conditions were defined assuming 50 MWt is available for the production of hydrogen using the SI process. Three configurations for the intermediate loop were evaluated, including configurations for both direct and indirect power conversion systems. The HYSYS process analysis software was used to perform sensitivity studies to determine the influence of reactor outlet temperatures, intermediate loop working fluids (helium and molten salt), intermediate loop pressures, and intermediate loop piping lengths on NGNP performance and IHX operating conditions. The evaluation of NGNP performance included assessments of overall electric power conversion efficiency and estimated hydrogen production efficiency. Based on these evaluations, recommended IHX operating conditions are defined.

E. A. Harvego

2006-04-01T23:59:59.000Z

55

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network (OSTI)

In this paper, life cycle cost analysis (LCCA) of waste heat operated vapour absorption air conditioning system (VARS) incorporated in a building cogeneration system is presented and discussed. The life cycle cost analysis (LCCA) based on present worth cost (PWC) method, which covers the initial costs, operating costs, maintenance costs, replacement costs and salvage values is the useful tool to merit various cooling and power generation systems for building applications. A life cycle of 23 years was used to calculate the PWC of the system for annual operating hours of 8760 and the same is compared with the electric based vapour compression chiller (VCRS) of same capacity. The life cycle cost (LCC) of waste heat operated absorption chiller is estimated to be US $ 1.5 million which is about 71.5 % low compared to electric powered conventional vapour compression chiller. From the analysis it was found that the initial cost of VARS system was 125 % higher than that of VCRS, while the PWC of operating cost of VARS was 78.2 % lower compared to VCRS. The result shows that the waste heat operated VARS would be preferable from the view point of operating cost and green house gas emission reduction.

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

56

NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.  

Science Conference Proceedings (OSTI)

Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This compares with a value of 43.9 for the reference plant. This latter plant has a reactor outlet temperature of 850 C and the two high temperature heat exchangers. The reduction in reactor outlet temperature from 850 C to 700 C reduces the tritium permeability rate in the IHX metal by a factor of three and thermal creep by five orders of magnitude. The design option for reducing PHX temperature from 800 C to 200 C reduces the permeability there by three orders of magnitude. In that design option this heat exchanger is the single 'choke-point' for tritium migration from the nuclear to the chemical plant.

VIlim, R.; Nuclear Engineering Division

2009-03-12T23:59:59.000Z

57

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

58

Entirely passive heat-pipe apparatus capable of operating against gravity  

DOE Patents (OSTI)

The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

Koenig, D.R.

1981-02-11T23:59:59.000Z

59

Establishing low-power operating limits for liquid metal heat pipes  

SciTech Connect

Liquid metal heat pipes operated at power throughputs well below their design point for long durations may fail as a result of the working fluid migrating to a cold region within the pipe, freezing there, and hot returning to the evaporator section. Eventually sufficient working fluid inventory may be lost to the cold region to cause a local dry-out condition in the evaporator. A joint experimental and analytical effort between the Air Force Phillips Laboratory and Los Alamos National Laboratory is underway to investigate the phenomena. Experiments include both high temperature liquid metal and low temperature organic heat pipes. To date, a low temperature working fluid has been selected and its performance in a heat pipe validated. Additionally, a low-temperature heat pipe has been fabricated and is presently being tested.

Secary, J. (Phillips Lab., Kirtland AFB, NM (United States)); Merrigan, M.A.; Keddy, M.D. (Los Alamos National Lab., NM (United States))

1992-01-01T23:59:59.000Z

60

Establishing low-power operating limits for liquid metal heat pipes  

SciTech Connect

Liquid metal heat pipes operated at power throughputs well below their design point for long durations may fail as a result of the working fluid migrating to a cold region within the pipe, freezing there, and hot returning to the evaporator section. Eventually sufficient working fluid inventory may be lost to the cold region to cause a local dry-out condition in the evaporator. A joint experimental and analytical effort between the Air Force Phillips Laboratory and Los Alamos National Laboratory is underway to investigate the phenomena. Experiments include both high temperature liquid metal and low temperature organic heat pipes. To date, a low temperature working fluid has been selected and its performance in a heat pipe validated. Additionally, a low-temperature heat pipe has been fabricated and is presently being tested.

Secary, J. [Phillips Lab., Kirtland AFB, NM (United States); Merrigan, M.A.; Keddy, M.D. [Los Alamos National Lab., NM (United States)

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Elimination of Heat-Shielding for Geothermal Tools Operating Up To 300 Degress Celsius  

DOE Green Energy (OSTI)

This report focuses Sandia National Laboratories' effort to create high-temperature logging tools for geothermal applications not requiring heat-shielding. Tool electronics can operate up to 300 C with a few limiting components operating to 250 C. Second generation electronics are needed to increase measurement accuracy and extend the operating range to 300 and then 350 C are identified. Custom development of high-temperature batteries and assembling techniques are touched on. Outcomes of this work are discussed and new directions for developing high-temperature industry are suggested.

HENFLING,JOSEPH A.; NORMANN,RANDY A.

1999-10-07T23:59:59.000Z

62

SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

High Operating Temperature Liquid Metal Heat Transfer Fluids High Operating Temperature Liquid Metal Heat Transfer Fluids UCLA logo University of California Berkeley logo Yale logo Four graphics in a grid that represent the sputtering technique being used in this project. Combinatorial screening and high throughput characterization of materials will be used to identify, develop, and demonstrate metal alloys that meet the MURI HOT Fluids targets suitable for CSP applications. The University of California, Los Angeles, the University of California, Berkeley, and Yale University The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and Yale University, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800°C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall cost of electricity production.

63

average | OpenEI  

Open Energy Info (EERE)

average average Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (7 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

64

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

Science Conference Proceedings (OSTI)

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

65

A Comparative Analysis of Upper-Ocean Heat Content Variability from an Ensemble of Operational Ocean Reanalyses  

Science Conference Proceedings (OSTI)

Ocean heat content (HC) is one of the key indicators of climate variability and also provides ocean memory critical for seasonal and decadal predictions. The availability of multiple operational ocean analyses (ORAs) now routinely produced around ...

Yan Xue; Magdalena A. Balmaseda; Tim Boyer; Nicolas Ferry; Simon Good; Ichiro Ishikawa; Arun Kumar; Michele Rienecker; Anthony J. Rosati; Yonghong Yin

2012-10-01T23:59:59.000Z

66

Energy savings from operation and maintenance training for apartment boiler heating systems. An energy study on ten low-income apartments  

SciTech Connect

The Portland Energy Office provided operation and maintenance (O&M) training to the operators of boiler heating systems for ten low-income apartment complexes in the Fall of 1990. This study tracked energy usage before and after O&M training to see if savings occurred. Training was provided on both weatherized and non-weatherized apartments to find out if weatherization impacted the amount of O&M savings to be obtained. Also, energy savings from the O&M training and building shell weatherization are compared. The O&M training averaged about four hours per building. Content was adjusted at each site to match needs of the boiler and operator. The Energy Office also provided a boiler tune-up by a service technician. The training stressed low-cost and no-cost measures which operators could either do themselves or hire service help to implement. It also emphasized boiler safety. Nine of the ten apartment complexes in the study used less energy per heating degree-day after the O&M help. Average savings were 10%. Four apartments chosen randomly as controls had negative savings; they used slightly more energy during the same post-O&M time frame. Weatherized and unweatherized apartments showed similar savings after the O&M help, 10% and 11% percent respectively. Savings from weatherization of six of the apartments in the winter of 1988--1989 were also measured. A low average of only 4% was observed, reflecting negative savings in two buildings.

1992-02-01T23:59:59.000Z

67

Evaluation of the heating operation and transmission district: Feasibility of cogeneration. Final report  

Science Conference Proceedings (OSTI)

The General Services Administration, through its National Capital Region, operates a district heating system - called the Heating Operation and Transmission District - that provides steam to approximately 100 government buildings in Washington, D.C. HOTD is examining a host of options that will improve its ability to provide reliable, environmentally sound, and cost-effective service to its customers. This report evaluates one of those options - cogeneration, a technology that would enable HOTD to produce steam and electricity simultaneously. The study concluded that, under current regulations, cogeneration is not attractive economically because the payback period (15 years) exceeds Federal return-on-investment guidelines. However, if the regulatory environment changes to allow wheeling (transmission of power by a non-utility power producer to another user), cogeneration would be attractive; HOTD would save anywhere from $38 million to $118 million and the investment would pay back in 7 to 10 years. Although incorporating cogeneration into the HOTD system has no strong benefit at this time, the report recommends that GSA reevaluate cogeneration in one or two years because Federal regulations regarding wheeling are under review. It also recommends that GSA work with the District of Columbia government to develop standards for cogeneration.

Cable, J.H.; Gilday, L.T.; Moss, M.E.

1995-11-01T23:59:59.000Z

68

Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm  

Science Conference Proceedings (OSTI)

Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

2011-06-01T23:59:59.000Z

69

Optimizing the operation of an urban district heating system by means of variable speed drives  

Science Conference Proceedings (OSTI)

In this work is presenting an urban district heating system which is subjected to a modernization process. The urban district heating system is composed by the pumping station of the primary heat carrier and the district heating stations. The modernization ... Keywords: district heating system, energetic efficiency, pumping station, static frequency converter, testing

Sorin Ioan Deaconu; Gabriel Nicolae Popa; Iosif Popa

2008-07-01T23:59:59.000Z

70

Proof of Operation in a Planar Loop Heat Pipe (LHP) Based on CPS Wick.  

E-Print Network (OSTI)

??As electronic design allows higher throughput in small packages, dissipating the heat load becomes a critical design factor. Available cooling approaches, such as extruded heat… (more)

Suh, Junwoo

2005-01-01T23:59:59.000Z

71

Preliminary operational results of the low-temperature solar industrial process heat field tests  

DOE Green Energy (OSTI)

Six solar industrial process heat field tests have been in operation for a year or more - three are hot water systems and three are hot air systems. All are low-temperature projects (process heat at temperatures below 212/sup 0/F). Performance results gathered by each contractor's data acquisition system are presented and project costs and problems encountered are summarized. Flat-plate, evacuated-tube, and line-focus collectors are all represented in the program, with collector array areas ranging from 2500 to 21,000 ft/sup 2/. Collector array efficiencies ranged from 12% to 36% with net system efficiencies from 8% to 33%. Low efficiencies are attributable in some cases to high thermal losses and, for the two projects using air collectors, are due in part to high parasitic power consumption. Problems have included industrial effluents on collectors, glazing and absorber surface failures, excessive thermal losses, freezing and overheating, control problems, and data acquisition system failure. With design and data acquisition costs excluded costs of the projects ranged from $25/ft/sup 2/ to $87/ft/sup 2/ and $499/(MBtu/yr) to $1537/(MBtu/yr).

Kutscher, C.F.; Davenport, R.L.

1980-06-01T23:59:59.000Z

72

Modeling and Experimental Research on Ground-Source Heat Pump in Operation by Neural Network  

Science Conference Proceedings (OSTI)

Ground source Heat Pump(GSHP) is becoming the more and more focus of the world¡¯s attention as a HVAC technique of energy saving and environment protection. This paper first introduced the experiment for Ground-Source water/water Heat Pump. The heat ... Keywords: Ground-Source Heat Pump(GSHP), Neural Network(NN) Predication modeling

Jianping Chen; Zhiwei Lian; Lizheng Tan; Weifeng Zhu; Weiqiang Zhang

2011-02-01T23:59:59.000Z

73

Method for starting and operating an advanced regenerative parallel compound dual fluid heat engine-advanced Cheng cycle(ACC)  

SciTech Connect

In a Cheng cycle, dual fluid heat engine of the type is described having: (i) a gas turbine engine including a compressor for compressing a first working fluid, having a compressor outlet, a combustion chamber in fluid communication with the compressor outlet, a turbine unit having an inlet in fluid communication with the combustion chamber for performing work by expansion of working fluid, and a turbine exhaust; (ii) a heat recovery steam generator coupled to the turbine exhaust for heating a second working fluid having a superheater with an outlet and an inlet, an evaporator having an outlet coupled to the superheater inlet and an evaporator inlet, a heat recovery boiler between the evaporator inlet and outlet having a drum; (iii) an injector for introducing heated second working fluid from the heat recovery steam generator into the gas turbine; (iv) a coolant inlet port for introducing coolant to at least one of turbine nozzles and blades in the gas turbine; and (v) control valve means for selectively throttling flow rate of second working fluid into the gas turbine connected upstream of the injector; (vi) a compressed gas source and pressure regulator selectively in communication with the drum; (vii) a sensor system coupled to gas turbine engine and the heat recovery steam generator for temperature and pressure detection; and (viii) a control system for operating fuel flow to the gas turbine; a method of operation of the heat engine comprising: (a) initializing start conditions in the gas turbine engine and the heat recovery steam generator with the control system; (b) setting the control valve means for idle flow condition of the heat engine; (c) pressurizing the drum with the compressed gas source, (d) starting the gas turbine engine from idle to full load; (e) throttling second working fluid flow rate with the control valve means and shutting off the compressed gas source.

Cheng, D.Y.

1993-08-10T23:59:59.000Z

74

Influence of Transfer Efficiency of the Outdoor Pipe Network and Boiler Operating Efficiency on the Building Heat Consumption Index  

E-Print Network (OSTI)

This paper analyzes the influence of transfer efficiency of the outdoor pipe network and operating efficiency of the boiler on the building heat consumption index, on the premise of saving up to 65 percent energy in different climates. The results show that transfer efficiency is not influenced by the climate, and the influence is in accordance with that in other climates. The article also presents data on the energy consumption caused by the improvement of the transfer efficiency of the outdoor pipe network and the operating efficiency of the boiler, and the calculated formula for the building heat consumption index on the condition of saving 65 percent energy.

Fang, X.; Wang, Z.; Liu, H.

2006-01-01T23:59:59.000Z

75

Average Commercial Price  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Price Average Commercial Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

76

AVERAGE SHIFTED HISTOGRAM  

Science Conference Proceedings (OSTI)

... LET YPPF = XCDF LET XPPF = YCDF. Default: None Synonyms: ASH is a synonym for the AVERAGE SHIFTED HISTOGRAM command. ...

2010-12-06T23:59:59.000Z

77

Induction Heating Stress Improvement Effectiveness on Crack Growth in Operating Plants (BWRVIP-61)  

Science Conference Proceedings (OSTI)

New reports of intergranular stress corrosion cracking prompted this review of factors that could influence the performance of the pipe cracking remedy known as induction heating stress improvement.

1999-01-27T23:59:59.000Z

78

Operational and maintenance instruction manual for the Ingham County Geriatric Medical Care Facility solar water-heating system  

DOE Green Energy (OSTI)

The Ingham County solar system consists of approximately 10,000 square feet of solar collectors connected in a closed configuration loop. The primary loop solution is a 1:12 mixture of water and propylene glycol which flows through the tube side of a heat exchanger connected to the primary storage tank. The heat energy which is supplied to the primary storage tank is subsequently used to preheat the temperature of the laundry water, kitchen water, and domestic potable water. Included in this report are: detailed drawings and flow chart; operational methodology; preventive maintenance instructions; general instructions and safety precautions; and a corrective maintenance and tabulation of failure modes. Appendices include: manufacturers technical manual and component specifications; IBM data sensors and responsibilities; digital county monitor operations manual; and on site monitor operations manual. Reference CAPE-2834. (LS)

Not Available

1983-07-29T23:59:59.000Z

79

Rod Bundle Heat Transfer for Pressurized Water Reactors at Operating Conditions  

Science Conference Proceedings (OSTI)

Currently available heat transfer correlations for subcooled forced convection and subcooled boiling have not been validated with rod-array data at typical PWR fluid conditions. At the present time, rod bundle heat transfer processes cannot be analyzed with sufficient accuracy to make sound decisions regarding changes that might avoid an Axial Offset Anomaly (AOA).

2000-07-14T23:59:59.000Z

80

Comparison between a spray column and a sieve tray column operating as liquid-liquid heat exchangers  

DOE Green Energy (OSTI)

The performance of a spray column and a sieve tray column was compared as a liquid-liquid heat exchanger. In carrying out these studies a 15.2 cm (6.0 in.) diameter column, 183 cm (6.0 ft) tall was utilized. The performance of the spray column as a heat exchanger was shown to correlate with the model of Letan-Kehat which has as a basis that the heat transfer is dominated by the wakeshedding characteristics of the drops over much of the column length. This model defines several hydrodynamic zones along the column of which the wake formation zone at the bottom appears to have the most efficient heat transfer. The column was also operated with four perforated plates spaced two column diameters apart in order to take advantage of the wake formation zone heat transfer. The plates induce coalescence of the dispersed phase and reformation of the drops, and thus cause a repetition of the wake formation zone. It is shown that the overall volumetric heat transfer coefficient in a perforated plate column is increased by a minimum of eleven percent over that in a spray column. A hydrodynamic model that predicts the performance of a perforated plate column is suggested.

Keller, A.; Jacobs, H.R.; Boehm, R.F.

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

Science Conference Proceedings (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

82

Heat Recovery Steam Generators for Combined Cycle Applications: HRSG Procurement, Design, Construction, and Operation Update  

Science Conference Proceedings (OSTI)

Design alternatives and procurement approaches for heat recovery steam generators, supplemental firing duct burners, and ancillary steam systems are addressed in this report. Power engineers and project developers will find an up-to-date, comprehensive resource for planning, specification and preliminary design in support of combined cycle plant development.

2005-03-29T23:59:59.000Z

83

Operator splitting approach applied to oscillatory flow and heat transfer in a tube  

Science Conference Proceedings (OSTI)

The method of operator splitting is applied to an advection-diffusion model as it occurs in a pulse tube. Firstly, the governing equations of the simplified model are studied and the mathematical description is derived. Then the splitting approach is ... Keywords: 35L65, 65M06, 80A20, Domain decomposition, Operator splitting, Pulse tube, Recuperator, Taylor dispersion

R. Widura; M. Lehn; K. Muralidhar; R. Scherer

2008-02-01T23:59:59.000Z

84

Evaluation and Analysis of an Integrated PEM Fuel Cell with Absorption Cooling and Water Heating System for Sustainable Building Operation  

E-Print Network (OSTI)

In this paper, a parametric study of a PEM fuel cell integrated with a double effect absorption system is carried out in order to study the effect of different operating conditions on the efficiency of the PEM fuel cell, utilization factor of the over all system, COPs of the double effect cooling and heating system, and power and heat output of the PEM fuel cell. It is found that the efficiency of the cell decreases, ranging from 46.2% to 24.4% with increase in membrane thickness and current density, and at the same time the COP increases ranging from 0.65 to 1.52. The heat and power output of the fuel cell decreases from 10.54 kW to 5.12 kW, and 9.12 kW to 6.99 kW, respectively for the increase in membrane thickness. However, when the temperature of the cell is increased the heat and power output increases from 5.12 kW to 10.54 kW, and 6.9 kW to 7.02 kW, respectively. The COP is found to be decreasing ranging from 1.53 to 0.33 with the increase in temperature of the cell and heat input to the HTG. As for the utilization factor, it increases ranging from 17% to 87% with increase in the temperature of the cell and heat input to the HTG. This study reveals that an integrated PEM fuel cell with a double effect absorption cooling systems has a very high potential to be an economical and environmental solution as compared with conventional systems of high electricity and natural gas prices which emit lots of harmful gasses and are not that efficient.

Gadalla, M.; Ratlamwala, T.; Dincer, I.

2010-01-01T23:59:59.000Z

85

Method and apparatus for operating a self-starting air heating system  

DOE Patents (OSTI)

A self-starting, fuel fired, air heating system including a fuel burner fired vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser and heating the air. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with a method and apparatus which on start-up prevents the vapor generator's vapor output from being conducted to the turbine until a predetermined pressure differential has been achieved. However, after the vapor flow is once permitted, it cannot again be prevented until after the fuel burner has been shut off and restarted.

Heinrich, Charles E. (Mentor, OH)

1983-12-06T23:59:59.000Z

86

Documentation of the operation of an arc-heated hydrogen atom source  

DOE Green Energy (OSTI)

A detailed description of the operation is given including establishment of an argon arc, changeover to hydrogen, and parameters of the hydrogen arc. A table of arc parameters for an 18 hour period is included. (GHT)

Way, K.R.; Yang, S.C.; Stwalley, W.C.

1976-02-11T23:59:59.000Z

87

The Role of Latent Heat Release in Explosive Cyclogenesis: Three Examples Based on ECMWF Operational Forecasts  

Science Conference Proceedings (OSTI)

Operational forecasts from the European Centre for Medium Range Weather Forecasts of three cases of explosive cyclogenesis of large magnitude that occurred in the North Atlantic during a 1-week period in January 1986 are presented, and results of ...

Richard J. Reed; Mark D. Albright; Adrian J. Sammons; Per Undén

1988-09-01T23:59:59.000Z

88

Thermionic converter with differentially heated cesium-oxygen source and method of operation  

DOE Green Energy (OSTI)

A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided, wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

Rasor, N.S.; Riley, D.R.; Murray, C.S.; Geller, C.B.

1998-12-01T23:59:59.000Z

89

Solar water-heating system for the Ingham County geriatric medical care facility, Okemos, Michigan. Operational and maintenance instruction manual  

DOE Green Energy (OSTI)

The objectives of the Ingham County Solar Project include: the demonstration of a major operational supplement to fossil fuels, thereby reducing the demand for non-renewable energy sources, demonstration of the economic and technical feasibility of solar systems as an important energy supplement over the expected life of the building, and to encourage Michigan industry to produce and incorporate solar systems in their own facility. The Ingham County solar system consists of approximately 10,000 square feet of solar collectors connected in a closed configuration loop. The primary loop solution is a mixture of water and propylene glycol which flows through the tube side of a heat exchanger connected to the primary storage tank. The heat energy which is supplied to the primary storage tank is subsequently utilized to increase the temperature of the laundry water, kitchen water, and domestic potable water.

Not Available

1983-07-29T23:59:59.000Z

90

Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report  

DOE Green Energy (OSTI)

A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

1980-05-01T23:59:59.000Z

91

Experimental Study on Operating Characteristic of the System of Ground Source Heat Pump Combined with Floor Radiant Heating of Capillary Tube  

Science Conference Proceedings (OSTI)

At first, the article presented particularly the working theory of the system of ground source heat pump combined with floor radiant heating of capillary tube, the characteristic of soil layers and the arrangement form of capillary tube mat and the floor ... Keywords: Ground source heat pump, Capillary tube, Radiant heating, Characteristic, Experiment

Yunzhun Fu; Cai Yingling; Jing Li; Yeyu Wang

2009-10-01T23:59:59.000Z

92

Operating efficiencies of a Lysholm, helical expander for Brayton-Cycle heat engines  

Science Conference Proceedings (OSTI)

Operating tests on a Lysholm helical expander have been done to develop a data base for comparing the performance of helical expanders with turbine expanders by using simple scaling arguments. The eventual goal of such work would be to develop a rugged and reliable ceramic helical expander for operating at temperatures up to 1300/sup 0/C (2400/sup 0/F). The authors used a 127.5 mm (5.020 in.) metal expander on which they measured seven performance variables against applied pressure ratio at six shaft speeds and an inlet gas temperture of 100/sup 0/C (212/sup 0/F). The data system included: a torque and angular-speed cell to measure power; flow, pressure, and temperature instrumentation; and a data reduction program. Test results are presented in seven data plots; equations for computing the performance variables are tabulated. Adiabatic efficiency was found to be at least 85% in the pressure ratio range of 2.75 to 5.00. Performance is strongly influenced by gas leakage. Large machines with clearance ratios the same as smaller machines would benefit by size scaling effects. The authors expect that ceramic helical expanders for 1300/sup 0/C service would be able to operate at adiabatic efficiencies higher than 85%.

Myers, B.; Deis, G.; Shell, T.

1986-01-01T23:59:59.000Z

93

Operating efficiencies of a Lysholm helical expander for Brayton-cycle heat engines  

Science Conference Proceedings (OSTI)

Operating tests on a Lysholm helical expander have been done to develop a data base for comparing the performance of helical expanders with turbine expanders by using simple scaling arguments. The eventual goal of such work would be to develop a rugged and reliable ceramic helical expander for operating at temperatures up to 1300/sup 0/C (2400/sup 0/F). We used a 127.5 mm (5.020 in.) metal expander on which we measured seven performance variables against applied pressure ratio at six shaft speeds and an inlet gas temperature of 100/sup 0/C (212/sup 0/F). Our data system included: a torque and angular-speed cell to measure power; flow, pressure, and temperature instrumentation; and a data reduction program. Test results are presented in seven data plots; equations for computing the performance variables are tabulated. Adiabatic efficiency was found to be at least 85% in the pressure ratio range of 2.75 to 5.00. Performance is strongly influenced by gas leakage. Large machines with clearance ratios the same as smaller machines would benefit by size scaling effects. We expect that ceramic helical expanders for 1300/sup 0/C service would be able to operate at adiabatic efficiencies higher than 85%. 9 refs., 12 figs., 1 tab.

Myers, B.; Deis, G.; Shell, T.

1986-01-01T23:59:59.000Z

94

DOE Average Results  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE DOE Average Results FY 12 DOE Target FY 12 Customer Perspective: Customer Satisfaction: -Timeliness 92 88 -Quality 94 92 Effective Service Partnership: -Extent of Customer Satisfaction with the responsiveness, etc. 90 92 Internal Business Perspective: Acquisition Excellence: -Extent to which internal quality control systems are effective 90 88 Most Effective Use of Contracting Approaches to Maximize Efficiency and Cost Effectiveness: Use of Competition: -% of total $'s obligated on competitive acquisitions >$3000 (Agency Level Only) 94 85 -% of acquisition actions competed for actions > $3000 (Agency Level Only) 65 68 Performance Based Acquisition: - % PBA actions relative to total eligible new acquisition actions (applicable to new actions > $25K) 82

95

Census Division Number of Average Monthly Average Retail Price...  

Gasoline and Diesel Fuel Update (EIA)

Average Monthly Average Retail Price Average Monthly Bill State Consumers Consumption (kWh) (Cents per Kilowatthour) (Dollar and cents) New England 34,271 67,907 12.55 8,520.25...

96

Yearly average performance of the principal solar collector types  

DOE Green Energy (OSTI)

The results of hour-by-hour simulations for 26 meteorological stations are used to derive universal correlations for the yearly total energy that can be delivered by the principal solar collector types: flat plate, evacuated tubes, CPC, single- and dual-axis tracking collectors, and central receiver. The correlations are first- and second-order polynomials in yearly average insolation, latitude, and threshold (= heat loss/optical efficiency). With these correlations, the yearly collectible energy can be found by multiplying the coordinates of a single graph by the collector parameters, which reproduces the results of hour-by-hour simulations with an accuracy (rms error) of 2% for flat plates and 2% to 4% for concentrators. This method can be applied to collectors that operate year-around in such a way that no collected energy is discarded, including photovoltaic systems, solar-augmented industrial process heat systems, and solar thermal power systems. The method is also recommended for rating collectors of different type or manufacturer by yearly average performance, evaluating the effects of collector degradation, the benefits of collector cleaning, and the gains from collector improvements (due to enhanced optical efficiency or decreased heat loss per absorber surface). For most of these applications, the method is accurate enough to replace a system simulation.

Rabl, A.

1981-01-01T23:59:59.000Z

97

Dynamic Multiscale Averaging (DMA) of Turbulent Flow  

SciTech Connect

A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical engineering applications.

Richard W. Johnson

2012-09-01T23:59:59.000Z

98

Furnace Design and Operation  

Science Conference Proceedings (OSTI)

...S. Lampman, Energy-Efficient Heat-Treating Furnace Design and Operation, Heat Treating, Vol 4, ASM Handbook, ASM International,

99

High average power diode pumped solid state lasers for CALIOPE  

Science Conference Proceedings (OSTI)

Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory`s water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW`s 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL`s first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers.

Comaskey, B.; Halpin, J.; Moran, B.

1994-07-01T23:59:59.000Z

100

Heat pipe heat amplifier  

SciTech Connect

In a heat pipe combination consisting of a common condenser section with evaporator sections at either end, two working fluids of different vapor pressures are employed to effectively form two heat pipe sections within the same cavity to support an amplifier mode of operation.

Arcella, F.G.

1978-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Measured Impact on Space Conditioning Energy Use in a Residence Due to Operating a Heat Pump Water Heater inside the Conditioned Space  

Science Conference Proceedings (OSTI)

The impact on space conditioning energy use due to operating a heat pump water heater (HPWH) inside the conditioned space is analyzed based on 2010-2011 data from a research house with simulated occupancy and hot water use controls. The 2700 ft2 (345 m2) house is located in Oak Ridge, TN (mixed-humid climate) and is equipped with a 50 gallon (189 l) HPWH that provided approximately 55 gallons/d (208 l/d) of hot water at 120 F (46 C) to the house during the test period. The HPWH has been operated every other week from December 2010 through November 2011 in two modes; a heat pump only mode, and a standard mode that utilizes 15355 Btu/hr (4500 W) resistance heating elements. The energy consumption of the air-source heat pump (ASHP) that provides space conditioning for the house is compared for the two HPWH operating modes with weather effects taken into account. Impacts during the heating and cooling seasons are compared.

Munk, Jeffrey D [ORNL; Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL

2012-01-01T23:59:59.000Z

102

Optimizing the heat pipe for operation in a magnetic field when liquid-metal working fluids are used  

SciTech Connect

A novel method for reducing the magnetohydrodynamic (MHD) pressure drops in the liquid metal flow in a heat pipe wick is described. By flattening the heat pipe, the eddy current return path in the metallic heat pipe wall is inreased significantly, thereby increasing the effective wall resistance. This, in turn, reduces the magnitude of the MHD pressure drop. The same principle can also be applied to flows of liquid metal coolants in a magnetic field.

Werner, R.W.; Hoffman, M.A.

1981-05-18T23:59:59.000Z

103

Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems  

E-Print Network (OSTI)

panel system are given by its energy (the consumption of gas for heating, electricity for pumps for residential buildings are increasingly used. According to some studies, this figure exceeds 50% (Kilkis et al of new calculation methods. However, in terms of heat transfer modelling, there are several analytical

Paris-Sud XI, Université de

104

A Modified Analytical Method for Simulating Cyclic Operation of Vertical U-Tube Ground-Coupled Heat Pumps  

E-Print Network (OSTI)

A modified analytical model is presented which discretizes the ground-coupled heat exchanger of a ground-coupled heat pump and utilized a separate cylindrical source solution for each element. First law expressions are utilized for each element to derive a set of fully implicit finite difference equations for the pipe wall temperature and the fluid temperature profile inside the ground-coupled heat exchanger. This method entails less computational overhead than methods which utilize numerical solutions inside the soil, and comes closer than previous analytical methods to satisfying the constant heat flux assumption of the original analytical solution. The thermal capacitance effects of the fluid inside the ground-coupled heat exchanger are included to allow proper prediction of the entering water temperature (EWT) profile at start-up. Comparisons with experimental data on EWT, capacity, energy input and cycling are provided.

Dobson, M. K.; O'Neal, D. L.; Aldred, W.

1994-01-01T23:59:59.000Z

105

Heat transfer and heat exchangers reference handbook  

Science Conference Proceedings (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

106

EIA Average Energy Consumption 2005  

U.S. Energy Information Administration (EIA)

Table US8. Average Consumption by Fuels Used, 2005 Physical Units per Household Fuels Used (physical units of consumption per household using the fuel)

107

Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions  

SciTech Connect

This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

108

ARM - Evaluation Product - Average of Cloud Condensation Nuclei...  

NLE Websites -- All DOE Office Websites (Extended Search)

are averaged together. The %ss in the CCN data stream is calculated using a heat transfer and fluid dynamics model flow model (Lance et al., 2006). The model uses the...

109

Performance Testing Residential Heat Pump Water Heaters under South- and Central-Florida Climate Conditions: Hot, Humid Climate and Warm Ground Water Pose Unusual Operating Environment for Heat Pump Water Heaters  

Science Conference Proceedings (OSTI)

Heat pump water heaters (HPWHs) are known to provide considerable energy savings compared with electric resistance devices in many applications. However, as their performance is climate-dependent, it is important to understand their operation in extreme climates. Southern and Central Florida presents an extreme climate for HPWHs, as the air temperature, humidity, and entering water temperatures are all high nearly year-round. This report examines HPWH performance in the Florida Power & Light ...

2013-09-30T23:59:59.000Z

110

Grid-Averaged Surface Fluxes  

Science Conference Proceedings (OSTI)

This study examines the inadequacies of formulations for surface fluxes for use in numerical models of atmospheric flow. The difficulty is that numerical models imply spatial averaging over each grid area. Existing formulations am based on the ...

L. Mahrt

1987-08-01T23:59:59.000Z

111

High average power pockels cell  

DOE Patents (OSTI)

A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

Daly, Thomas P. (Pleasanton, CA)

1991-01-01T23:59:59.000Z

112

ABSORPTION HEAT PUMP IN THE DISTRICT HEATING  

E-Print Network (OSTI)

#12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation #12;JSC RGAS SILTUMS · the biggest District Heating company in Latvia and in the Baltic states

Oak Ridge National Laboratory

113

Core Measure Average KTR Results  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measure Measure Average KTR Results FY 12 Target FY 12 DOE M&O CONTRACTOR (KTR) BSC RESULTS FY 2012 Customer Perspective and level of communication provided by the procurement office 95 92 Internal Business Perspective: Assessment (%) of the degree to which the purchasing system is in compliance with stakeholder requirements 97 Local Goals % Delivery on-time (includes JIT, excludes Purchase Cards) 88 84 % of total dollars obligated, on actions > $150K , that were awarded using effective competition 73 Local Goals Rapid Purchasing Techniques: -% of transactions placed by users 77 Local Goals -% of transactions placed through electronic commerce 62 Local Goals Average Cycle Time: -Average cycle time for <= $150K 8 6 to 9 days

114

West Texas Intermediate Spot Average ............................  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil (dollars per barrel) Crude Oil (dollars per barrel) West Texas Intermediate Spot Average ............................ 102.88 93.42 92.24 87.96 94.34 94.10 105.84 96.30 95.67 95.33 95.67 93.33 94.12 97.64 95.00 Brent Spot Average ........................................................... 118.49 108.42 109.61 110.09 112.49 102.58 110.27 108.29 106.33 105.00 103.00 102.00 111.65 108.41 104.08 Imported Average .............................................................. 108.14 101.18 97.18 97.64 98.71 97.39 103.07 100.03 99.64 99.33 99.69 97.35 101.09 99.85 99.04 Refiner Average Acquisition Cost ...................................... 107.61 101.44 97.38 97.27 101.14 99.45 105.24 100.44 100.15 99.82 100.18 97.83 100.83 101.61 99.50 Liquid Fuels (cents per gallon) Refiner Prices for Resale Gasoline .........................................................................

115

Averaging-Related Biases in Monthly Latent Heat Fluxes  

Science Conference Proceedings (OSTI)

Seasonal-to-multidecadal applications that require ocean surface energy fluxes often require accuracies of surface turbulent fluxes to be 5 W m?2 or better. While there is little doubt that uncertainties in the flux algorithms and input data can ...

Paul J. Hughes; Mark A. Bourassa; Jeremy J. Rolph; Shawn R. Smith

2012-07-01T23:59:59.000Z

116

The NCEP GODAS Ocean Analysis of the Tropical Pacific Mixed Layer Heat Budget on Seasonal to Interannual Time Scales  

Science Conference Proceedings (OSTI)

The mixed layer heat budget in the tropical Pacific is diagnosed using pentad (5 day) averaged outputs from the Global Ocean Data Assimilation System (GODAS), which is operational at the National Centers for Environmental Prediction (NCEP). The ...

Boyin Huang; Yan Xue; Dongxiao Zhang; Arun Kumar; Michael J. McPhaden

2010-09-01T23:59:59.000Z

117

Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates  

E-Print Network (OSTI)

Loop Heat Pipes . . . . . . . . . . . . . . . . . . . .Heat Pipes . . . . . . . . . . . . . . . . . . . . . . . .of operation of a heat pipe [13]. . . . . . . . . . . . . .

Dhillon, Navdeep Singh

2012-01-01T23:59:59.000Z

118

Natural Gas Prices: Well Above Recent Averages  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The recent surge in spot prices at the Henry Hub are well above a typical range for 1998-1999 (in this context, defined as the average, +/- 2 standard deviations). Past price surges have been of short duration. The possibility of a downward price adjustment before the end of next winter is a source of considerable risk for storage operators who acquire gas at recent elevated prices. Storage levels in the Lower 48 States were 7.5 percent below the 5-year average (1995-1999) by mid-August (August 11), although the differential is only 6.4 percent in the East, which depends most heavily on storage to meet peak demand. Low storage levels are attributable, at least in part, to poor price incentives: high current prices combined with only small price

119

HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.  

SciTech Connect

Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

2005-08-21T23:59:59.000Z

120

Dual source heat pump  

DOE Patents (OSTI)

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Uncertain generalized aggregation operators  

Science Conference Proceedings (OSTI)

The aim of this paper is to extend the generalized ordered weighted averaging operator and provide a new class of operators called the uncertain generalized ordered weighted averaging (UGOWA) operator. It provides a very general formulation that includes ... Keywords: Aggregation, Decision making, Generalized mean, OWA operator, Operator weights

Li-Gang Zhou; Hua-You Chen; José M. Merigó; Anna M. Gil-Lafuente

2012-01-01T23:59:59.000Z

122

Average utilization of the nation's natural gas combined-cycle ...  

U.S. Energy Information Administration (EIA)

... (purple line) and 2010 (red line) average capacity factors for natural gas plant operations between 10 p.m. and 6 a.m. rose from 26% to 32%.

123

Variable Average Absolute Percent Differences  

U.S. Energy Information Administration (EIA) Indexed Site

Variable Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 1.0 42.6 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 35.2 18.6 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 34.7 19.7 Total Petroleum Consumption (Table 4) 6.2 66.5 Crude Oil Production (Table 5) 6.0 59.6 Petroleum Net Imports (Table 6) 13.3 67.0 Natural Gas Natural Gas Wellhead Prices (Constant $) (Table 7a) 30.7 26.1 Natural Gas Wellhead Prices (Nominal $) (Table 7b) 30.0 27.1 Total Natural Gas Consumption (Table 8) 7.8 70.2 Natural Gas Production (Table 9) 7.1 66.0 Natural Gas Net Imports (Table 10) 29.3 69.7 Coal Coal Prices to Electric Generating Plants (Constant $)** (Table 11a)

124

Achronal averaged null energy condition  

Science Conference Proceedings (OSTI)

The averaged null energy condition (ANEC) requires that the integral over a complete null geodesic of the stress-energy tensor projected onto the geodesic tangent vector is never negative. This condition is sufficient to prove many important theorems in general relativity, but it is violated by quantum fields in curved spacetime. However there is a weaker condition, which is free of known violations, requiring only that there is no self-consistent spacetime in semiclassical gravity in which ANEC is violated on a complete, achronal null geodesic. We indicate why such a condition might be expected to hold and show that it is sufficient to rule out closed timelike curves and wormholes connecting different asymptotically flat regions.

Graham, Noah; Olum, Ken D. [Department of Physics, Middlebury College, Middlebury, Vermont 05753 (United States) and Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States)

2007-09-15T23:59:59.000Z

125

Achronal averaged null energy condition  

E-Print Network (OSTI)

The averaged null energy condition (ANEC) requires that the integral over a complete null geodesic of the stress-energy tensor projected onto the geodesic tangent vector is never negative. This condition is sufficient to prove many important theorems in general relativity, but it is violated by quantum fields in curved spacetime. However there is a weaker condition, which is free of known violations, requiring only that there is no self-consistent space-time in semiclassical gravity in which ANEC is violated on a complete, {\\em achronal} null geodesic. We indicate why such a condition might be expected to hold and show that it is sufficient to rule out wormholes and closed timelike curves.

Noah Graham; Ken D. Olum

2007-05-22T23:59:59.000Z

126

Multiple source heat pump  

DOE Patents (OSTI)

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

127

High-Average Power Facilities  

SciTech Connect

There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

Dowell, David H.; /SLAC; Power, John G.; /Argonne

2012-09-05T23:59:59.000Z

128

Table WF01. Average Consumer Prices and Expenditures for ...  

U.S. Energy Information Administration (EIA)

Heating Oil U.S. Average Consumption (gallons) 522.7 531.7 572.5 538.2 574.1 465.3 539.9 546.9 1.3 ... Wood 2,094 2,179 2,353 2,424 2,454 2,520 2,582 ...

129

Spectral and Parametric Averaging for Integrable Systems  

E-Print Network (OSTI)

We analyze two theoretical approaches to ensemble averaging for integrable systems in quantum chaos - spectral averaging and parametric averaging. For spectral averaging, we introduce a new procedure - rescaled spectral averaging. Unlike traditional spectral averaging, it can describe the correlation function of spectral staircase and produce persistent oscillations of the interval level number variance. Parametric averaging, while not as accurate as rescaled spectral averaging for the correlation function of spectral staircase and interval level number variance, can also produce persistent oscillations of the global level number variance and better describes saturation level rigidity as a function of the running energy. Overall, it is the most reliable method for a wide range of statistics.

Tao Ma; R. A. Serota

2013-06-03T23:59:59.000Z

130

Heat Transfer Fluids for Solar Water Heating Systems | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

exchanger. | Photo from iStockphoto.com Heat Exchangers for Solar Water Heating Systems Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

131

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Average Square Footage of Midwest Homes, by Housing Characteristics, 2009" 1 Average Square Footage of Midwest Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Midwest",25.9,2272,1898,1372,912,762,551 "Midwest Divisions and States" "East North Central",17.9,2251,1869,1281,892,741,508 "Illinois",4.8,2186,1911,1451,860,752,571 "Michigan",3.8,1954,1559,962,729,582,359 "Wisconsin",2.3,2605,2091,1258,1105,887,534

132

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Square Footage of West Homes, by Housing Characteristics, 2009" 3 Average Square Footage of West Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total West",24.8,1708,1374,800,628,506,294 "West Divisions and States" "Mountain",7.9,1928,1695,1105,723,635,415 "Mountain North",3.9,2107,1858,912,776,684,336 "Colorado",1.9,2082,1832,722,896,788,311 "Idaho, Montana, Utah, Wyoming",2,2130,1883,1093,691,610,354

133

Comparative performance of two types of evacuated tubular solar collectors in a residential heating and cooling system. Final report, October 1 1977-September 30 1978 (including 1974-1977 operating results comparisons)  

DOE Green Energy (OSTI)

Two types of evacuated tubular solar collectors have been operated in space heating, cooling, and domestic hot water heating systems in Colorado State University Solar House I. An experimental collector from Corning Glass works supplied heat to the system from January 1977 through February 1978, and an experimental collector from the Phillips Research Laboratory, Aachen, which is currently in use, has been operating since August 1978. A flat absorber plate inside a single-walled glass tube is used in the Corning design, whereas heat is conducted through a single glass wall to an external heat exchanger plate in the Philips collector. The respective aperture areas are 50.0 m/sup 2/ and 44.7 m/sup 2/. Since system designs and conditions of operation were not identical, efficiencies and energy deliveries of the two evacuated tubular collectors should not be compared without recognition of these factors. But in comparison with conventional flat plate collectors, both types show substantially reduced heat losses and improved efficiency.

Loef, G.O.G.; Duff, W.S.

1979-09-01T23:59:59.000Z

134

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

135

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

136

Geothermal heating for Caliente, Nevada  

DOE Green Energy (OSTI)

Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

Wallis, F.; Schaper, J.

1981-02-01T23:59:59.000Z

137

Maryvale Terrace: geothermal residential district space heating and cooling  

DOE Green Energy (OSTI)

A preliminary study of the technical and economic feasibility of installing a geothermal district heating and cooling system is analyzed for the Maryvale Terrace residential subdevelopment in Phoenix, Arizona, consisting of 557 residential houses. The design heating load was estimated to be 16.77 million Btu/h and the design cooling load was estimated to be 14.65 million Btu/h. Average annual energy use for the development was estimated to be 5870 million Btu/y and 14,650 million Btu/y for heating and cooling, respectively. Competing fuels are natural gas for heating and electricity for cooling. A geothermal resource is assumed to exist beneath the site at a depth of 6000 feet. Five production wells producing 1000 gpm each of 220/sup 0/F geothermal fluid are required. Total estimated cost for installing the system is $5,079,300. First year system operations cost (including debt service) is $974,361. The average annual geothermal heating and cooling cost per home is estimated to be $1750 as compared to a conventional system annual cost of $1145. Further, the cost of geothermal heating and cooling is estimated to be $47.50 per million Btu when debt service is included and $6.14 per million Btu when only operating costs are included. Operating (or fuel) costs for conventional heating and cooling are estimated to be $15.55 per million Btu.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

138

High heating oil prices discourage heating oil supply contracts ...  

U.S. Energy Information Administration (EIA)

EIA's Short-Term Energy and Winter Fuels Outlook expects the U.S. home heating oil price will average $3.71 per gallon for the season, ...

139

Application Study of a Single House Horizontal Heating System  

E-Print Network (OSTI)

It is imperative to get new heating systems into the market and implement rate structures with heat meters for the purpose of energy conservation and environmental protection. Based on analysis of current heating technology, this paper analyzes the different forms of heating systems suited for single household metering. We introduce especially the single house horizontal spanning system and show how to select the heat flow rate of the radiator. We also study the distribution rule of the heat intermedium of horizontal heating system. To simplify the workload of engineering process and make the design more accurate, a new method for calculating the average temperature of the intermedium and the heat flow rate of this heating system is put forward. Comparison is also made between the system in question and the heating system in series. A few important questions are raised and discussed, such as the computation of combining different forms of radiators, the verification of the pipe radiation, the end of the radiator without spanning pipe, and the selection of the pipe diameter. At the same time, we study the influence of the horizontal heating system on the whole heating network, describe the characteristics of a single household horizontal heating system and the importance of its hydraulic computation, and analyze the influence of the gravitational head to this heating system. We also study the hydraulic condition of the single house horizontal system and the relationship of each party under the adjustment. In addition, the operation of single household horizontal heating system is verified in a real project, and its reliability is testified. This paper provides a method for further research on related issues of a single household metering heating system and is valuable for design, operation and management.

Hang, Y.; Ying, D.

2006-01-01T23:59:59.000Z

140

Steady-state heat transfer in an inverted U-tube steam generator  

SciTech Connect

Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations.

Boucher, T.J.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Steady-state heat transfer in an inverted U-tube steam generator  

Science Conference Proceedings (OSTI)

Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during stead-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K steam generator inlet plenum fluid temperatures, 6.2 MPa secondary pressure). The Semiscale (MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations.

Boucher, T.J.

1987-01-01T23:59:59.000Z

142

OpenEI - Water Heating  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm560 en Residential Energy Expenditures for Water Heating (2005) http:en.openei.orgdatasetsnode59

Provides total and average...

143

"Table HC1.2.3 Living Space Characteristics by Average Floorspace--"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Living Space Characteristics by Average Floorspace--" 3 Living Space Characteristics by Average Floorspace--" " Single-Family Housing Units and Mobile Homes, 2005" ,,"Single- Family and Mobile Homes (millions)","Average Square Feet per Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Detached",,,"Single-Family Attached",,,"Mobile Homes" "Housing Unit Characteristics",,,"Total1","Heated","Cooled","Total1","Heated","Cooled","Total1","Heated","Cooled" "Total",111.1,86.6,2522,1970,1310,1812,1475,821,1055,944,554 "Total Floorspace (Square Feet)" "Fewer than 500",3.2,0.9,261,336,162,"Q","Q","Q",334,260,"Q"

144

HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB  

Science Conference Proceedings (OSTI)

Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher

2012-07-01T23:59:59.000Z

145

Optimization Online - String-Averaging Projected Subgradient ...  

E-Print Network (OSTI)

Aug 29, 2013 ... Optimization Online. String-Averaging Projected Subgradient Methods for Constrained Minimization. Yair Censor(yair ***at*** math.haifa.ac.il)

146

Average Stock Levels: Crude Market & Propane  

U.S. Energy Information Administration (EIA)

This graph shows that propane was not alone in experiencing excess supply in 1998 and extraordinary stock builds. Note that the graph shows average stock levels ...

147

Natural Gas Prices: Well Above Recent Averages  

U.S. Energy Information Administration (EIA)

The recent surge in spot prices at the Henry Hub are well above a typical range for 1998 ... gas prices gradually declining after the winter heating . ...

148

"Table HC1.1.3 Housing Unit Characteristics by Average Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days. A household is assigned to a climate zone according to the 30-year...

149

Table HC1.1.2 Housing Unit Characteristics by Average Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days. A household is assigned to a climate zone according to the 30-year...

150

A Surface Flux Parameterization Based on the Vertically Averaged Turbulence Kinetic Energy  

Science Conference Proceedings (OSTI)

A new bulk transfer formulation for the surface turbulent fluxes of momentum, heat, and moisture has been developed by using the square root of the vertically averaged turbulent kinetic energy (TKE) in the atmospheric boundary layer as a velocity ...

Changan Zhang; David A. Randall; Chin-Hoh Moeng; Mark Branson; Kerry A. Moyer; Qing Wang

1996-11-01T23:59:59.000Z

151

Idealized Annually Averaged Macroturbulent Hadley Circulation in a Shallow-Water Model  

Science Conference Proceedings (OSTI)

The interaction of midlatitude eddies and the thermally driven Hadley circulation is studied using an idealized shallow-water model on the rotating sphere. The contributions of the annually averaged differential heating, vertical advection of ...

Ori Adam; Nili Harnik

2013-01-01T23:59:59.000Z

152

RELAP5/MOD3 simulation of the loss of residual heat removal during midloop operation experiment conducted at the ROSA-IV/ Large Scale Test Facility  

E-Print Network (OSTI)

The modeling of the complex thermal hydraulics Of reactor systems involves the use Of experimental test systems as well as numerical codes. A simulation of the loss of residual heat removal (RHR) during midloop operations was performed using the RELAP5/MOD3 thermal hydraulic code. The experiment was conducted at the Rig of Safety Assessment (ROSA)-IV/ Large Scale Test Facility (LSTF). The experiment involved a 5% cold leg break along with the loss of the RHR system-The transient was simulated for 3040 seconds. The ROSA-1-V/]LsTF is one of the largest test facilities in the world and is located in Japan. It is a volumetrically scaled (1/48) full height, two loop model of a Westinghouse four loop pressurized water reactor (PWR). The facility consists of pressure vessel, two symmetric loops, a pressurizer and a full emergency core cooling system (ECCS) system. The transient was run on the CRAY-YMP supercomputer at Texas A&M university. Core boiling and primary pressurization followed the initiation of the transient. The time to core boiling was overpredicted. Almost all Primary parameters were predicted well until the occurrence of the loop seal clearing (LSC) at 2400 seconds. The secondary side temperatures were in good agreement with the experimental data until the LSC. Following the LSC, the steam condensation in the tubes was not calculated. This resulted in the overprediction of primary pressures after the LSC. Also, the temperatures in the hot and the cold legs were overpredicted. Because there was no significant condensation in the U-tubes, the core remained uncovered. Moreover, the LSC did not recover. Consequently, secondary side temperatures were underpredicted after the LSC. This indicated the deficiency of the condensation model. The core temperature excursion at the time of the LSC was not predicted, though there was good agreement between the experimental and calculated data for the rest of the transient. Severe oscillations were calculated throughout the course of the transient. Overall, there was reasonable qualitative agreement between the measured and the calculated data.

Banerjee, Sibashis Sanatkumar

1994-01-01T23:59:59.000Z

153

AMPERE AVERAGE CURRENT PHOTOINJECTOR AND ENERGY RECOVERY LINAC.  

SciTech Connect

High-power Free-Electron Lasers were made possible by advances in superconducting linac operated in an energy-recovery mode. In order to get to much higher power levels, say a fraction of a megawatt average power, many technological barriers are yet to be broken. We describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun employing a new secondary-emission multiplying cathode, an accelerator cavity, both capable of producing of the order of one ampere average current and plans for an ERL based on these units.

BEN-ZVI,I.; BURRILL,A.; CALAGA,R.; ET AL.

2004-08-17T23:59:59.000Z

154

Bayesian curve estimation by model averaging  

Science Conference Proceedings (OSTI)

A Bayesian approach is used to estimate a nonparametric regression model. The main features of the procedure are, first, the functional form of the curve is approximated by a mixture of local polynomials by Bayesian model averaging (BMA), second, the ... Keywords: BIC criterion, Bayesian model averaging, Local polynomial regression, Nonparametric curve fitting, Robustness

Daniel Peña; Dolores Redondas

2006-02-01T23:59:59.000Z

155

Property:SalinityAverage | Open Energy Information  

Open Energy Info (EERE)

SalinityAverage SalinityAverage Jump to: navigation, search Property Name SalinityAverage Property Type Number Description Mean average of the low and high end measurements of the salinity [ppm] of the fluid. This is a property of type Page. Subproperties This property has the following 1 subproperty: C Coso Geothermal Area Pages using the property "SalinityAverage" Showing 19 pages using this property. A Amedee Geothermal Area + 975 + B Beowawe Hot Springs Geothermal Area + 700 + Blue Mountain Geothermal Area + 4300 + Brady Hot Springs Geothermal Area + 3500 + C Chena Geothermal Area + 325 + D Desert Peak Geothermal Area + 6700 + Dixie Valley Geothermal Area + 2295 + E East Mesa Geothermal Area + 3750 + G Geysers Geothermal Area + 217 + K Kilauea East Rift Geothermal Area + 18750 +

156

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network (OSTI)

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering an estimated energy equivalent of nearly 1.1 million barrels of oil annually. Energy recovered by these units has been used to either preheat process supply air or to heat plant comfort make-up air. Heat pipe heat exchangers have been applied to an ever-expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat pipes. This device has a number of advantageous features. Field operational experience of several units in service has been excellent.

Ruch, M. A.

1981-01-01T23:59:59.000Z

157

Heat pipe array heat exchanger  

DOE Patents (OSTI)

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

158

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

159

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

160

Heat flow of Oregon  

DOE Green Energy (OSTI)

An extensive new heat flow and geothermal gradient data set for the State of Oregon is presented on a contour map of heat flow at a scale of 1:1,000,000 and is summarized in several figures and tables. The 1:1,000,000 scale heat flow map is contoured at 20 mW/m/sup 2/ (0.5 HFU) intervals. Also presented are maps of heat flow and temperature at a depth of 1 km averaged for 1/sup 0/ x 1/sup 0/ intervals. Histograms and averages of geothermal gradient and heat flow for the State of Oregon and for the various physiographic provinces within Oregon are also included. The unweighted mean flow for Oregon is 81.3 +- 2.7 mW/m/sup 2/ (1.94 +- 0.06 HFU). The average unweighted geothermal gradient is 65.3 +- 2.5/sup 0/C/km. The average heat flow value weighted on the basis of geographic area is 68 +- 5 mW/m/sup 2/ (1.63 +- 0.12 HFU) and the average weighted geothermal gradient is 55.0 +- 5/sup 0/C/km.

Blackwell, D.D.; Hull, D.A.; Bowen, R.G.; Steele, J.L.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Lagged Average Predictions in a Predictability Experiment  

Science Conference Proceedings (OSTI)

Lagged average predictions are examined here within the context of an idealized predictability experiment. Lagged predictions contribute to making better forecasts than the forecasts obtained from using only the latest initial state. Analytic ...

John O. Roads

1988-01-01T23:59:59.000Z

162

Probabilistic Visibility Forecasting Using Bayesian Model Averaging  

Science Conference Proceedings (OSTI)

Bayesian model averaging (BMA) is a statistical postprocessing technique that has been used in probabilistic weather forecasting to calibrate forecast ensembles and generate predictive probability density functions (PDFs) for weather quantities. ...

Richard M. Chmielecki; Adrian E. Raftery

2011-05-01T23:59:59.000Z

163

average air temperature | OpenEI  

Open Energy Info (EERE)

average air temperature average air temperature Dataset Summary Description (Abstract): Air Temperature at 10 m Above The Surface Of The Earth (deg C)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Air Temperature at 10 m Above The Surface Of The Earth (deg C)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated April 01st, 2009 (5 years ago) Keywords average air temperature

164

The Shape of Averaged Drop Size Distributions  

Science Conference Proceedings (OSTI)

The shape of averaged drop size distributions (DSD) is studied from a large sample of data (892 h) collected at several sites of various latitudes. The results show that neither the hypothesis of an exponential distribution to represent rainfall ...

Henri Sauvageot; Jean-Pierre Lacaux

1995-04-01T23:59:59.000Z

165

Average Data for Each Choke Setting (before 24-May 2010 06:00), 6-hour average (  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Average Data for Each Choke Setting (before 24-May 2010 06:00), 6-hour average (after 24-May 2010 06:00):" Average Data for Each Choke Setting (before 24-May 2010 06:00), 6-hour average (after 24-May 2010 06:00):" ,,"Choke","Average","Average","Fluid","Methanol","Water","Oil","Gas","Hyd. Eq.","Gas" ,"Choke","Setting","Upstream","Upstream","Recovery","Recovery","Recovery","Recovery","Recovery","Recovery","Recovery" "Date and Time","Setting","Duration","Pressure","Temp.","Rate","Rate","Rate","Rate","Rate","Rate","Portion" "dd-mmm-yy","(64ths)","(hours)","(psia)","(degF)","(bfpd)","(bfpd)","(bwpd)","(bopd)","(mmcfpd)","(boepd)","(%)"

166

A high average power pockels cell  

DOE Patents (OSTI)

A high average power pockels cell is disclosed which reduced the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

Daly, T.P.

1986-02-10T23:59:59.000Z

167

Average transmission probability of a random stack  

E-Print Network (OSTI)

The transmission through a stack of identical slabs that are separated by gaps with random widths is usually treated by calculating the average of the logarithm of the transmission probability. We show how to calculate the average of the transmission probability itself with the aid of a recurrence relation and derive analytical upper and lower bounds. The upper bound, when used as an approximation for the transmission probability, is unreasonably good and we conjecture that it is asymptotically exact.

Yin Lu; Christian Miniatura; Berthold-Georg Englert

2009-07-31T23:59:59.000Z

168

Heat pipe technology quarterly literature review. Volume 1, Number 3  

SciTech Connect

A bibliography containing 110 citations is presented. The citations are arranged in five sections on general information on heat pipes, heat pipe applications, heat pipe theory, heat pipe design, development, and fabrication, and heat pipe testing and operation.

Srinivasan, R.; Gonzales, R.W. (eds.)

1983-01-01T23:59:59.000Z

169

Total U.S. Main Space Heating Fuel Used U.S. Using Any Households ...  

U.S. Energy Information Administration (EIA)

Average Heating Degree Days by Main Space Heating Fuel Used, ... 2005 Residential Energy Consumption Survey: ... Any Fuel Natural Gas Fuel Oil Age of Main Heating ...

170

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" 6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Mobile Homes",6.9,1087,985,746,413,375,283 "Census Region" "Northeast",0.5,1030,968,711,524,492,362 "Midwest",1.1,1090,1069,595,400,392,218 "South",3.9,1128,1008,894,423,378,335 "West",1.4,995,867,466,369,322,173 "Urban and Rural3" "Urban",3.5,1002,919,684,396,364,271

171

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Square Footage of South Homes, by Housing Characteristics, 2009" 2 Average Square Footage of South Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total South",42.1,1867,1637,1549,732,642,607 "South Divisions and States" "South Atlantic",22.2,1944,1687,1596,771,668,633 "Virginia",3,2227,1977,1802,855,759,692 "Georgia",3.5,2304,1983,1906,855,736,707 "Florida",7,1668,1432,1509,690,593,625 "DC, DE, MD, WV",3.4,2218,1831,1440,864,713,561

172

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Average Square Footage of Single-Family Homes, by Housing Characteristics, 2009" 4 Average Square Footage of Single-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Single-Family",78.6,2422,2002,1522,880,727,553 "Census Region" "Northeast",12.7,2843,2150,1237,1009,763,439 "Midwest",19.2,2721,2249,1664,1019,842,624 "South",29.7,2232,1945,1843,828,722,684 "West",16.9,2100,1712,1009,725,591,348 "Urban and Rural3"

173

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" 0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Northeast",20.8,2121,1663,921,836,656,363 "Northeast Divisions and States" "New England",5.5,2232,1680,625,903,680,253 "Massachusetts",2.5,2076,1556,676,850,637,277 "CT, ME, NH, RI, VT",3,2360,1781,583,946,714,234 "Mid-Atlantic",15.3,2080,1657,1028,813,647,402

174

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" 5 Average Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Multi-Family",28.1,930,807,535,453,393,261 "Census Region" "Northeast",7.6,991,897,408,471,426,194 "Midwest",5.6,957,857,518,521,466,282 "South",8.4,924,846,819,462,423,410 "West",6.5,843,606,329,374,269,146 "Urban and Rural3" "Urban",26.9,927,803,531,450,390,258

175

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Average Square Footage of U.S. Homes, by Housing Characteristics, 2009" 9 Average Square Footage of U.S. Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total",113.6,1971,1644,1230,766,639,478 "Census Region" "Northeast",20.8,2121,1663,921,836,656,363 "Midwest",25.9,2272,1898,1372,912,762,551 "South",42.1,1867,1637,1549,732,642,607 "West",24.8,1708,1374,800,628,506,294 "Urban and Rural3" "Urban",88.1,1857,1546,1148,728,607,450

176

Estimating Averaging Times for Point and Path-Averaged Measurements of Turbulence Spectra  

Science Conference Proceedings (OSTI)

Uncertainty over how long to average turbulence variables to achieve some desired level of statistical stability is a common concern in boundary-layer meteorology. Several models exist that predict averaging times for measurements of variances ...

Edgar L. Andreas

1988-03-01T23:59:59.000Z

177

Energy recovery from waste incineration: Assessing the importance of district heating networks  

SciTech Connect

Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

Fruergaard, T.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, T., E-mail: tha@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

178

Residential Energy Consumption for Water Heating (2005) Provides...  

Open Energy Info (EERE)

Residential Energy Consumption for Water Heating (2005) Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in...

179

Operation strategy for solid oxide fuel cell systems for small-scale stationary applications  

E-Print Network (OSTI)

variation during the operation. The analysis will consider an average profile for heat and power demand gross electricity generation in 2010 by doubling the generation capacity and increasing the plant load and degrades the fuel cells. To counteract the degradation, the system has not to be stressed with rapid load

Liso, Vincenzo

180

Pressure recovery in a cylindrical heat pipe at high radial Reynolds numbers and at high Mach numbers  

SciTech Connect

The pressure recovery in a cylindrical heat pipe has been investigated. The experiments cover average radial Reynolds numbers between 5 and 150 and average Mach numbers up to the velocity of sound. During preliminary experiments in a cylindrical, gravity-assisted heat pipe at high Mach numbers large condensate flow instabilities were observed. As a consequence the heat pipe power varied strongly. Based on these observations an improved heat pipe design was made that resulted in steady operating conditions throughout the entire parameter range. This heat pipe is described. The pressure recovery was measured and compared with results from a two-dimensional analytical model for describing compressible vapor flow in heat pipes. Good agreement with the experimental data was found.

Haug, F.; Busse, C.A.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Heat pump having improved defrost system  

DOE Patents (OSTI)

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

Chen, F.C.; Mei, V.C.; Murphy, R.W.

1998-12-08T23:59:59.000Z

182

Heat pump having improved defrost system  

DOE Patents (OSTI)

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

1998-01-01T23:59:59.000Z

183

World average top-quark mass  

SciTech Connect

This paper summarizes a talk given at the Top2008 Workshop at La Biodola, Isola d Elba, Italy. The status of the world average top-quark mass is discussed. Some comments about the challanges facing the experiments in order to further improve the precision are offered.

Glenzinski, D.; /Fermilab

2008-01-01T23:59:59.000Z

184

STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 report, Staff Forecast: Retail Electricity Prices, 2005 to 2018, was prepared with contributions from the technical assistance provided by Greg Broeking of R.W. Beck, Inc. in preparing retail price forecasts

185

Exact bounds for average pairwise network reliability  

Science Conference Proceedings (OSTI)

Several methods for finding exact bounds of average pairwise network connectivity (APNC) are proposed. These methods allows faster decision making about if a network is reliable for its purpose. Previous results on cumulitive updating of all-terminal ... Keywords: algorithm, network reliability, pairwise connectivity

Alexey Rodionov; Olga Rodionova

2013-01-01T23:59:59.000Z

186

Design and technology of heat pipes for cooling and heat exchange  

SciTech Connect

This new book presents a comprehensive account of heat pipe design, technology, and operation. It is based on insights and techniques developed by the author during more than twenty years of investigating high-performance heat pipe systems. The book provides information on a unique device with the capability to transport heat isothermally at high rates with no external power input. Emphasis is on high-performance liquid metal heat pipes, although nonliquid metal heat pipes are treated, as well. The first three chapters deal with the nonmathematical background for understanding heat pipe operation and heat transport capability. Remaining chapters detail heat pipe characteristics and design methods. Of special interest are simplified equations for obtaining heat pipe heat transport limits, heat pipe heat exchangers, heat pipe transient behavior, and inverted (nonwetting) heat pipes. Operational boundaries on heat pipe temperature and heat transport rate are described, and step-by-step procedures are given for involved calculations.

Silverstein, C.C.

1992-01-01T23:59:59.000Z

187

Absorption heat pump system  

DOE Patents (OSTI)

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

1984-01-01T23:59:59.000Z

188

FEMP--Geothermal Heat Pumps  

NLE Websites -- All DOE Office Websites (Extended Search)

conditioner or refrigera- tor-moves heat from one place to another. In the summer, a geothermal heat pump (GHP) operating in a cooling mode lowers indoor temperatures by...

189

Analysis of Cyclic Variability of Heat Release for High-EGR GDI Engine Operation with Observations on Implications for Effective Control  

Science Conference Proceedings (OSTI)

Operation of spark-ignition (SI) engines with high levels of charge dilution through exhaust gas recirculation (EGR) achieves significant engine efficiency gains while maintaining stoichiometric operation for compatibility with three-way catalysts. Dilution levels, however, are limited by cyclic variability-including significant numbers of misfires-that becomes more pronounced with increasing dilution. This variability has been shown to have both stochastic and deterministic components. Stochastic effects include turbulence, mixing variations, and the like, while the deterministic effect is primarily due to the nonlinear dependence of flame propagation rates and ignition characteristics on the charge composition, which is influenced by the composition of residual gases from prior cycles. The presence of determinism implies that an increased understanding the dynamics of such systems could lead to effective control approaches that allow operation near the edge of stability, effectively extending the dilution limit. This nonlinear dependence has been characterized previously for homogeneous charge, port fuel-injected (PFI) SI engines operating fuel-lean as well as with inert diluents such as bottled N2 gas. In this paper, cyclic dispersion in a modern boosted gasoline direct injection (GDI) engine using a cooled external EGR loop is examined, and the potential for improvement with effective control is evaluated through the use of symbol sequence statistics and other techniques from chaos theory. Observations related to the potential implications of these results for control approaches that could effectively enable engine operation at the edge of combustion stability are noted.

Kaul, Brian C [ORNL; Wagner, Robert M [ORNL; Green Jr, Johney Boyd [ORNL

2013-01-01T23:59:59.000Z

190

Passive space heating with a self-pumping vapor system  

DOE Green Energy (OSTI)

In this system, which should be useful for space or water heating, a refrigerant is evaporated in a solar collector and condensed within thermal storage located in the building below the collector. The vapor pressure generated in the collector periodically forces the condensed liquid upward to the location of the collector. This paper reports results of an operational test, in which this system provided passive space heating for an outdoor test cell during a winter season. The daily average energy yield and the elevation of collector temperature caused by self-pumping are reported, as well as observations on failure modes, system reliability, and suggestions for a practical configuration.

Hedstrom, J.C.; Neeper, D.A.

1986-01-01T23:59:59.000Z

191

Designing, selecting and installing a residential ground-source heat pump system  

Science Conference Proceedings (OSTI)

It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A recent assessment indicates that if 20% of US homes replaced their existing space-conditioning and water-heating systems with properly designed, installed and operated state-of-the-art GSHP systems, it would yield significant benefits each year. These include 0.8 quad British thermal units (Btu) of primary energy savings, 54.3 million metric tons of CO{sub 2} emission reductions, $10.4 billion in energy cost savings and 43.2 gigawatts of reduction in summer peak electrical demand.

Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL; Munk, Jeffrey D [ORNL

2010-01-01T23:59:59.000Z

192

Sources Of Average Individual Radiation Exposure  

NLE Websites -- All DOE Office Websites (Extended Search)

Of Average Individual Radiation Exposure Of Average Individual Radiation Exposure Natural background Medical Consumer products Industrial, security, educational and research Occupational 0.311 rem 0.300 rem 0.013 rem 0.0003 rem 0.0005 rem Savannah River Nuclear Solutions, LLC, provides radiological protection services and oversight at the Savannah River Site (SRS). These services include radiation dose measurements for persons who enter areas where they may be exposed to radiation or radioactive material. The results are periodically reported to monitored individuals. The results listed are based on a radiation dose system developed by the International Commission on Radiation Protection. The system uses the terms "effective dose," "equivalent dose" and units of rem. You may be more familiar with the term "millirem" (mrem), which is 1/1000 of a rem.

193

Fat turnover in obese slower than average  

NLE Websites -- All DOE Office Websites (Extended Search)

9-04 9-04 For immediate release: 09/23/2011 | NR-11-09-04 Fat turnover in obese slower than average Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly This scanning electron micrograph image shows part of a lobule of adipose tissue (body fat). Adipose tissue is specialized connective tissue that functions as the major storage site for fat. Photo courtesy of David Gregory & Debbie Marshall/Wellcome Images LIVERMORE, Calif. -- It may be more difficult for obese people to lose fat because the "turnover" rate is much slower for those overweight than average weight individuals. New research in the Sept. 25 online edition of the journal Nature shows that the turnover (storage and loss rate) of fat in the human body is about 1 1/2 years compared to fat cells, which turnover about every 10 years,

194

Heat pump apparatus  

DOE Patents (OSTI)

A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

1983-01-01T23:59:59.000Z

195

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

l U CONTROL SYSTEM FOR SOLAR HEATING AND COOLING* M.Wahlig,be capable of operating solar heating and cooling systemsand now transferred to ERDA, on solar heating and cooling of

Dols, C.

2010-01-01T23:59:59.000Z

196

Radiant Heating  

Energy.gov (U.S. Department of Energy (DOE))

Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat...

197

Heat pump with freeze-up prevention  

DOE Patents (OSTI)

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

Ecker, Amir L. (Dallas, TX)

1981-01-01T23:59:59.000Z

198

Enhancement of heat transfer for ground source heat pump systems.  

E-Print Network (OSTI)

??Uptake of geothermal heat pump (GSHP) systems has been slow in some parts of the world due to the unpredictable operational performance, large installation space… (more)

Mori, Hiromi

2010-01-01T23:59:59.000Z

199

Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function  

E-Print Network (OSTI)

Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function Ken relaxation length, v sat ø h''i (¸ 0:05¯m), the energy distribution function is not well described calculation of impact ionization coefficient requires the use of a high energy distribution function because

Dunham, Scott

200

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Long-term average performance benefits of parabolic trough improvements  

DOE Green Energy (OSTI)

Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. This analysis quantifies the relative merit of various technological advancements in improving the long-term average performance of parabolic trough concentrating collectors and presents them graphically as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. Substantial annual energy gains (exceeding 50% at 350/sup 0/C) are shown to be attainable with improved parabolic troughs.

Gee, R.; Gaul, H.; Kearney, D.; Rabl, A.

1979-10-01T23:59:59.000Z

202

Tips: Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Tips: Heat Pumps June 24, 2013 - 5:48pm Addthis Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps are the most efficient form of electric heating in moderate climates. Because they move heat rather than generate heat, heat pumps can provide equivalent space conditioning at as little as one quarter of the cost of operating conventional heating or cooling appliances. A heat pump does double duty as a central air conditioner by collecting the heat inside your house and pumping it outside. There are three types of heat pumps: air-to-air, water source, and geothermal. They collect heat from the air, water, or ground outside your

203

Heat pipe technology issues  

SciTech Connect

Critical high temperature, high power applications in space nuclear power designs are near the current state of the art of heat pipe technology in terms of power density, operating temperature, and lifetime. Recent heat pipe development work at Los Alamos National Laboratory has involved performance testing of typical space reactor heat pipe designs to power levels in excess of 19 kW/cm/sup 2/ axially and 300 W/cm/sup 2/ radially at temperatures in the 1400 to 1500 K range. Operation at conditions in the 10 kW/cm/sup 2/ range has been sustained for periods of up to 1000 hours without evidence of performance degradation. The effective length for heat transport in these heat pipes was from 1.0 to 1.5 M. Materials used were molybdenum alloys with lithium employed as the heat pipe operating fluid. Shorter, somewhat lower power, molybdenum heat pipes have been life tested at Los Alamos for periods of greater than 25,000 hours at 1700 K with lithium and 20,000 hours at 1500/sup 0/K with sodium. These life test demonstrations and the attendant performance limit investigations provide an experimental basis for heat pipe application in space reactor design and represent the current state-of-the-art of high temperature heat pipe technology.

Merrigan, M.A.

1984-04-01T23:59:59.000Z

204

Switchable heat pipe assembly  

SciTech Connect

The heat pipe assembly is formed into an H-shape or a Y-shape. The H-shaped configuration comprises two heat pipes, each having condenser and evaporator sections with wicking therein coupled by a tube with wick at their evaporator sections. The Y-shaped configuration utilizes a common evaporator section in place of the two evaporator sections of the H-shaped configuration. In both configurations, the connection between the vapor spaces of the two heat pipes equalizes vapor pressure within the heat pipes. Although both heat pipes have wicks, they have sufficient fluid only to saturate a single pipe. If heat is applied to the condenser section of one of the pipes, this heat pipe becomes inoperative since all the fluid is transferred to the second pipe which can operate with a lower thermal load.

Sun, T.H.; Basiulis, A.

1977-02-15T23:59:59.000Z

205

Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor  

Science Conference Proceedings (OSTI)

This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

Donna P. Guillen

2012-07-01T23:59:59.000Z

206

Field Performance of Heat Recovery Chillers and Heat Recovery Heat Pumps  

Science Conference Proceedings (OSTI)

Heat recovery chillers and heat recovery heat pumps operate at high efficiency and excellent economy by simultaneously providing both heating and cooling. Although this technology has been in use for more than thirty years and all major chiller manufacturers offer heat recovery models, applications are not yet widespread. One of the barriers to using this technology is the lack of measured performance information on the devices. This project was undertaken to identify and summarize existing sources of pe...

1994-05-18T23:59:59.000Z

207

Average Price of Natural Gas Production  

Gasoline and Diesel Fuel Update (EIA)

. . Quantity and Average Price of Natural Gas Production in the United States, 1930-1996 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ....................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ....................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ....................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ....................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ....................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ....................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06 1936 ....................... 2,691,512 73,507 NA 392,528 2,225,477

208

Average values and dispersion (in parentheses)  

NLE Websites -- All DOE Office Websites (Extended Search)

Average values and dispersion (in parentheses) Average values and dispersion (in parentheses) Base-pair Parameters --------------------------------------------------------------------------------------- Shear Stretch Stagger Buckle Propeller Opening 3DNA A 0.01(0.23) -0.18(0.10) 0.02(0.25) -0.13(7.77) -11.79(4.14) 0.57(2.80) B 0.00(0.21) -0.15(0.12) 0.09(0.19) 0.53(6.74) -11.35(5.26) 0.63(3.05) CEHS A 0.01(0.23) -0.18(0.10) 0.02(0.25) -0.13(7.75) -11.82(4.14) 0.56(2.78) B 0.00(0.21) -0.14(0.12) 0.09(0.19) 0.53(6.73) -11.37(5.27) 0.62(3.03) CompDNA A 0.01(0.23) -0.18(0.10) 0.02(0.25) -0.12(7.70) -11.81(4.14) 0.56(2.79) B 0.00(0.21) -0.15(0.12) 0.09(0.19) 0.53(6.70) -11.37(5.26) 0.62(3.03) Curves A 0.01(0.23) -0.18(0.10) 0.02(0.25) -0.13(7.85) -11.76(4.12) 0.57(2.80)

209

Consumer Natural Gas Heating Costs  

Gasoline and Diesel Fuel Update (EIA)

5 Notes: Mild weather has minimized residential gas consumption over most of the past 3 winters. Unlike heating oil, average increases in natural gas prices last winter were small....

210

FEMP--Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heat pump-like an air conditioner or refrigera- heat pump-like an air conditioner or refrigera- tor-moves heat from one place to another. In the summer, a geothermal heat pump (GHP) operating in a cooling mode lowers indoor temperatures by transferring heat from inside a building to the ground outside or below it. Unlike an air condition- er, though, a heat pump's process can be reversed. In the winter, a GHP extracts heat from the ground and transfers it inside. Also, the GHP can use waste heat from summer air-conditioning to provide virtually free hot-water heating. The energy value of the heat moved is typically more than three times the electricity used in the transfer process. GHPs are efficient and require no backup heat because the earth stays at a relatively moderate temperature throughout the year.

211

Locally Calibrated Probabilistic Temperature Forecasting Using Geostatistical Model Averaging and Local Bayesian Model Averaging  

Science Conference Proceedings (OSTI)

The authors introduce two ways to produce locally calibrated grid-based probabilistic forecasts of temperature. Both start from the Global Bayesian model averaging (Global BMA) statistical postprocessing method, which has constant predictive bias ...

William Kleiber; Adrian E. Raftery; Jeffrey Baars; Tilmann Gneiting; Clifford F. Mass; Eric Grimit

2011-08-01T23:59:59.000Z

212

Geographic Gossip: Efficient Averaging for Sensor Networks  

E-Print Network (OSTI)

Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of $n$ and $\\sqrt{n}$ respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy $\\epsilon$ using $O(\\frac{n^{1.5}}{\\sqrt{\\log ...

Dimakis, Alexandros G; Wainwright, Martin J

2007-01-01T23:59:59.000Z

213

Heat and mass exchanger  

Science Conference Proceedings (OSTI)

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2011-06-28T23:59:59.000Z

214

Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage  

E-Print Network (OSTI)

Based on the status quo that conventional energy sources are more and more reduced and environmental pollution is increasingly serious, this paper presents a new model system of conserving energy and environmental protection, namely, a Solar Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar heat collector is solved by latent heat storage. In order to obtain such system running conditions and effects in different heating periods, an experiment has been carried out during the whole heating period in Harbin, China. The experimental results show that this system is much better for heating in initial and late periods than that in middle periods. The average heating coefficient is 6.13 for heating in initial and late periods and 2.94 for heating in middle periods. At the same time, this paper also predicts system running properties in other regions.

Han, Z.; Zheng, M.; Liu, W.; Wang, F.

2006-01-01T23:59:59.000Z

215

Environmental Impact Statement (EIS) for the Transfer of the Heat Source / Radioisotope Themoelectric Generator Assembly and Test Operations From the Mound Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

031 031 Federal Register / Vol. 63, No. 191 / Friday, October 2, 1998 / Notices SUPPLEMENTARY INFORMATION: The package listing contains the following information: (1) Title of the information collection package; (2) current OMB control number; (3) type of respondents; (4) estimated number of responses annually; (5) estimated total burden hours, annually, including recordkeeping hours required to provide the information; (6) purpose; and (7) number of collections. Package Title: Legal. Current OMB No.: 1910-0800. Type of Respondents: DOE management and operating contractors, and offsite contractors. Estimated Number of Responses: 2,719. Estimated Total Burden Hours: 21,052. Purpose: This information is required by the Department to ensure that legal resources and requirements are

216

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

DOE Green Energy (OSTI)

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

217

Heat pipe development status  

SciTech Connect

Test heat pipes have been operated in the 1400 K to 1700 K range for periods in excess of 20,000 hours with the objective of understanding and controlling corrosion and failure mechanisms. The results of a post test analysis of one of these heat pipes that was operated for 25,216 hours at 1700 K are reviewed and the implications for heat pipe lifetime discussed. An in-process report of an investigation of transient heat pipe behavior is presented. This investigation is being conducted as a result of restart problems encountered during life test of a 2 m. radiation cooled heat pipe. The results of a series of shut-down tests from power and temperature are given and probable causes of the restart problem discussed.

Merrigan, M.A.

1984-01-01T23:59:59.000Z

218

Geothermal heating for the Arizona Environmental Research Laboratory greenhouses  

DOE Green Energy (OSTI)

A preliminary study of the technical and economic feasibility of installing a retrofit geothermal heating system is analyzed for the Environmental Research Laboratory Farms greenhouse facility located in Tucson, Arizona. The facility consists of 10.6 acres of greenhouse area, of which 7.4 acres are currently operational. Natural gas or diesel fuel are presently used for heating. The maximum heating load is estimated to be 28,620,000 Btu/hr. Average annual heating energy consumption between 1974 and 1979 was 35,684 million But/year for 7.4 acres of greenhouse, costing an estimated $96,703 at 1981 natural gas prices. Two 2500 foot geothermal production wells are required, each capable of producing 1500 gpm of 130{sup 0}F water. The geothermal water is expected to contain 500 ppM total dissolved solids. Total estimated capital cost for installing the system is $902,946. The expected first year geothermal energy cost savigs are estimated to be $58,920. A simple payback of 9.1 years is calculated and the project has a net present value of $961,751. Geothermal heat could be supplied at a cost of $5.39 per million Btu in the first year of operation. The project as herein presented is marginally economic. However, it became clear after the study that an attractive economic case could be made for providing about 50 to 60 percent of the required heating load as a base load using geothermal energy.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

219

Heating Alloys  

Science Conference Proceedings (OSTI)

...are used in many varied applications--from small household appliances to large industrial process heating systems and furnaces. In appliances or industrial process heating, the heating elements are usually either open

220

Water Heating | OpenEI  

Open Energy Info (EERE)

Water Heating Water Heating Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB) application/vnd.ms-excel icon 2005_Avg.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 69.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2005 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Estimates of Area-Averaged Diapycnal Fluxes from Basin-Scale Budgets  

Science Conference Proceedings (OSTI)

Estimates of area-averaged diapycnal fluxes for the southern oceans are derived from basin-scale budgets of mass, heat, and salt using a box inverse model. The diapycnal fluxes are found to be significant terms in the isopycnal budgets of mass, ...

Bernadette M. Sloyan; Stephen R. Rintoul

2000-09-01T23:59:59.000Z

222

A Zonally Averaged Ocean Model for the Thermohaline Circulation. Part I: Model Development and Flow Dynamics  

Science Conference Proceedings (OSTI)

A two-dimensional latitude–depth ocean model is developed on the basis of the zonally averaged balance equations of mass, momentum, heat, and salt. Its purpose is to investigate the dynamics and variability of the buoyancy-forced thermohaline ...

Daniel G. Wright; Thomas F. Stocker

1991-12-01T23:59:59.000Z

223

Passive heat transfer means for nuclear reactors  

DOE Patents (OSTI)

An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

Burelbach, James P. (Glen Ellyn, IL)

1984-01-01T23:59:59.000Z

224

Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

A variety of heating technologies are available today. In addition to heat pumps, which are discussed separately, many homes and buildings use the following approaches:

225

Long-term average performance benefits of parabolic trough improvements  

DOE Green Energy (OSTI)

Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.

Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.

1980-03-01T23:59:59.000Z

226

Table HC1.2.2 Living Space Characteristics by Average Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

2 Living Space Characteristics by Average Floorspace, " 2 Living Space Characteristics by Average Floorspace, " " Per Housing Unit and Per Household Member, 2005" ,,"Average Square Feet" ," Housing Units (millions)" ,,"Per Housing Unit",,,"Per Household Member" "Living Space Characteristics",,"Total1","Heated","Cooled","Total1","Heated","Cooled" "Total",111.1,2033,1618,1031,791,630,401 "Total Floorspace (Square Feet)" "Fewer than 500",3.2,357,336,113,188,177,59 "500 to 999",23.8,733,667,308,343,312,144 "1,000 to 1,499",20.8,1157,1086,625,435,409,235 "1,500 to 1,999",15.4,1592,1441,906,595,539,339 "2,000 to 2,499",12.2,2052,1733,1072,765,646,400

227

Table HC1.2.4 Living Space Characteristics by Average Floorspace--Apartments, 2  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Living Space Characteristics by Average Floorspace--Apartments, 2005" 2.4 Living Space Characteristics by Average Floorspace--Apartments, 2005" ,,,"Average Square Feet per Apartment in a --" ," Housing Units (millions)" ,,,"2 to 4 Unit Building",,,"5 or More Unit Building" ,,"Apartments (millions)" "Living Space Characteristics",,,"Total","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,24.5,1090,902,341,872,780,441 "Total Floorspace (Square Feet)" "Fewer than 500",3.1,2.3,403,360,165,366,348,93 "500 to 999",22.2,14.4,763,660,277,730,646,303 "1,000 to 1,499",19.1,5.8,1223,1130,496,1187,1086,696 "1,500 to 1,999",14.4,1,1700,1422,412,1698,1544,1348

228

Table HC1.1.4 Housing Unit Characteristics by Average Floorspace--Apartments, 2  

U.S. Energy Information Administration (EIA) Indexed Site

4 Housing Unit Characteristics by Average Floorspace--Apartments, 2005" 4 Housing Unit Characteristics by Average Floorspace--Apartments, 2005" ,,,"Average Square Feet per Apartment in a --" ," Housing Units (millions)" ,,,"2 to 4 Unit Building",,,"5 or More Unit Building" ,,"Apartments (millions)" "Housing Unit Characteristics",,,"Total","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,24.5,1090,902,341,872,780,441 "Census Region and Division" "Northeast",20.6,6.7,1247,1032,"Q",811,788,147 "New England",5.5,1.9,1365,1127,"Q",814,748,107 "Middle Atlantic",15.1,4.8,1182,978,"Q",810,800,159 "Midwest",25.6,4.6,1349,1133,506,895,810,346

229

Design Evolution Study Thermal Operating Methodology  

Science Conference Proceedings (OSTI)

This study provides results supporting the conclusion that the repository can be operated over a varying range of thermal modes and therefore temperatures. In particular, this work focused on limiting the peak, postclosure waste package surface temperature to less than 85 degrees Celsius, a possible limit due to corrosion considerations. These operating modes were compared by varying the waste package in drift spacing (0.1-2.83 meters), drift pitch (drift spacing centerline to centerline of 40-120 meters), ventilation duration (75-300 years), and ventilation efficiency (50-80%). The resulting graphical representation shows where the constant temperature of the waste package (85 degrees Celsius) lies with respect to drift pitch and waste package spacing. The waste considered in this study is the strict youngest fuel first 5 years old fuel. Using only strict youngest fuel first 5 years old fuel in the waste stream results in an average heat load per waste package of 12.48kW/Pkg. With this high average heat load, it is not possible to achieve a maximum waste package surface temperature of 85 degrees Celsius or less. By aging 63% of the strict youngest fuel first 5 years old fuel for 27 years, it becomes possible to maintain the waste package surface temperature at 85 degrees Celsius or less. The 27 years of aging comes from the fact that the repository could be closed in as little as 50 years. It takes 23 years to emplace the waste and therefore the last fuel received for emplacement is 27 years prior to closures. The strict youngest fuel first 5 years old fuel waste stream with 63% aged for 27 years, results in an average power level of 8.4kW/Pkg. This lower heat load allows the controlled parameters of drift pitch, waste package spacing, aging, and ventilation duration to be varied to achieve the desired results. This study compares the hot strict youngest fuel first 5 years old fuel to the previous waste stream, which has an average of 26-year-old fuel. The 26-year-old fuel waste stream has an average power level of 7.2 kW/Pkg. This comparison illustrated how the parameters important to thermal performance differ for these two assumptions about the waste stream.

T.L. Mitchell

2002-04-29T23:59:59.000Z

230

Average waiting time profiles of uniform DQDB model  

SciTech Connect

The Distributed Queue Dual Bus (DQDB) system consists of a linear arrangement of N nodes that communicate with each other using two contra-flowing buses; the nodes use an extremely simple protocol to send messages on these buses. This simple, but elegant, system has been found to be very challenging to analyze. We consider a simple and uniform abstraction of this model to highlight the fairness issues in terms of average waiting time. We introduce a new approximation method to analyze the performance of DQDB system in terms of the average waiting time of a node expressed as a function of its position. Our approach abstracts the intimate relationship between the load of the system and its fairness characteristics, and explains all basic behavior profiles of DQDB observed in previous simulation. For the uniform DQDB with equal distance between adjacent nodes, we show that the system operates under three basic behavior profiles and a finite number of their combinations that depend on the load of the network. Consequently, the system is not fair at any load in terms of the average waiting times. In the vicinity of a critical load of 1 {minus} 4/N, the uniform network runs into a state akin to chaos, where its behavior fluctuates from one extreme to the other with a load variation of 2/N. Our analysis is supported by simulation results. We also show that the main theme of the analysis carries over to the general (non-uniform) DQDB; by suitably choosing the inter-node distances, the DQDB can be made fair around some loads, but such system will become unfair as the load changes.

Rao, N.S.V. [Oak Ridge National Lab., TN (United States); Maly, K.; Olariu, S.; Dharanikota, S.; Zhang, L.; Game, D. [Old Dominion Univ., Norfolk, VA (United States). Dept. of Computer Science

1993-09-07T23:59:59.000Z

231

Table 5B. Commercial Average Monthly Bill by Census Division ...  

U.S. Energy Information Administration (EIA)

Home > Electricity > Electric Sales, Revenue, and Price > Commercial Average Monthly Bill by Census Division, and State: Table 5B. Commercial Average Monthly Bill by ...

232

On the String Averaging Method for Sparse Common Fixed Points ...  

E-Print Network (OSTI)

Jul 10, 2008 ... gate a string-averaging algorithmic scheme that favorably handles the ... are special cases of the string-averaging and of the BIP algorithmic ...

233

Table 5A. Residential Average Monthly Bill by Census Division ...  

U.S. Energy Information Administration (EIA)

Table 5A. Residential Average Monthly Bill by Census Division, and State, 2009: Census Division State Number of Consumers Average Monthly Consumption ...

234

Average summer gasoline prices expected to be slightly lower ...  

U.S. Energy Information Administration (EIA)

The retail price for regular gasoline is expected to average $3.63 per gallon during this summer driving season, slightly below average prices over ...

235

Table 5B. Commercial average monthly bill by census division...  

U.S. Energy Information Administration (EIA) Indexed Site

" Census Division " " State ","Number of Consumers "," Average Monthly Consumption (kWh)","Price (Cents per Kilowatthour)","Average Monthly Bill (Dollar and cents)" "New...

236

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

heat and power; distributed generation; premium powerand operation of distributed generation, combined heat andcost combination of distributed generation technologies that

Norwood, Zack

2010-01-01T23:59:59.000Z

237

NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger  

DOE Green Energy (OSTI)

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

2008-09-01T23:59:59.000Z

238

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

... decline during summer and winter as power plants burn through stocks to meet peak electricity demand for heating and cooling, ... overall heating load in ...

239

Nitrogen heat pipe for cryocooler thermal shunt  

SciTech Connect

A nitrogen heat pipe was designed, built and tested for the purpose of providing a thermal shunt between the two stages of a Gifford-McMahan (GM) cryocooler during cooldown. The nitrogen heat pipe has an operating temperature range between 63 and 123 K. While the heat pipe is in the temperature range during the system cooldown, it acts as a thermal shunt between the first and second stage of the cryocooler. The heat pipe increases the heat transfer to the first stage of the cryocooler, thereby reducing the cooldown time of the system. When the heat pipe temperature drops below the triple point, the nitrogen working fluid freezes, effectively stopping the heat pipe operation. A small heat leak between cryocooler stages remains because of axial conduction along the heat pipe wall. As long as the heat pipe remains below 63 K, the heat pipe remains inactive. Heat pipe performance limits were measured and the optimum fluid charge was determined.

Prenger, F.C.; Hill, D.D.; Daney, D.E.; Daugherty, M.A. [Los Alamos National Lab., NM (United States); Green, G.F.; Roth, E.W. [Naval Surface Warfare Center, Annapolis, MD (United States)

1995-09-01T23:59:59.000Z

240

Sonoma State Hospital, Eldridge, California, geothermal-heating system: conceptual design and economic feasibility report  

DOE Green Energy (OSTI)

The Sonoma State Mental Hospital, located in Eldridge, California, is presently equipped with a central gas-fired steam system that meets the space heating, domestic hot water, and other heating needs of the hospital. This system is a major consumer of natural gas - estimated at 259,994,000 cubic feet per year under average conditions. At the 1981 unit gas rate of $0.4608 per therm, an average of $1,258,000 per year is required to operate the steam heating system. The hospital is located in an area with considerable geothermal resources as evidenced by a number of nearby hot springs resorts. A private developer is currently investigating the feasibility of utilizing geothermally heated steam to generate electricity for sale to the Pacific Gas and Electric Company. The developer has proposed to sell the byproduct condensed steam to the hospital, which would use the heat energy remaining in the condensate for its own heating needs and thereby reduce the fossil fuel energy demand of the existing steam heating system. The geothermal heating system developed is capable of displacing an estimated 70 percent of the existing natural gas consumption of the steam heating system. Construction of the geothermal fluid distribution and collection system and the retrofits required within the buildings are estimated to cost $1,777,000. Annual expenses (operation and maintenance, insurance, and geothermal fluid purchase) have been estimated to be $40,380 per year in 1981 dollars. The proposed geothermal heating system could then be completely paid for in 32 months by the savings in natural gas purchases that would result.

Not Available

1982-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report  

DOE Green Energy (OSTI)

An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

1977-05-01T23:59:59.000Z

242

Heat Rate Program Guidelines  

Science Conference Proceedings (OSTI)

Power plant facilities with performance or heat rate improvement programs perform better than those that do not have those programs. A heat rate improvement program typically provides sufficient information for decision making with respect to timely maintenance actions and/or operational adjustments. Monitoring the performance of any power plant component includes the trending of parameters that also describe the performance of other plant components, providing insight and information on improving ...

2012-12-31T23:59:59.000Z

243

Texas Gulf Coast Refinery District API Gravity (Weighted Average ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

244

Ceramic heat pipes for high temperature heat removal  

SciTech Connect

Difficulties in finding metal or protected metal components that exhibit both strength and corrosion resistance at high temperature have severely restricted the application of effective heat recovery techniques to process heat furnaces. A potential method of overcoming this restriction is to use heat pipes fabricated from ceramic materials to construct counterflow recuperators. A development program has been initiated to demonstrate the technical and eventually the economical feasibility of ceramic heat pipes and ceramic heat pipe recuperators. The prime candidate for heat pipe construction is SiC. Closed-end tubes of this material have been prepared by chemical vapor deposition (CVD). These tubes were lined internally with tungsten by a subsequent CVD operation, partially filled with sodium, and sealed by brazing a tungsten lined SiC plug into the open-end with a palladium--cobalt alloy. Heat pipes constructed in this manner have been successfully operated in vacuum at temperatures of 1225/sup 0/K and in air at a temperature of 1125/sup 0/K. The heat source used initially for the air testing was an induction heated metallic sleeve in thermal contact with the test unit. Subsequent testing has shown that a silicon carbide heat pipe can be successfully operated with natural gas burners providing the input heat. Methods of fabricating and testing these devices are described.

Keddy, E.S.; Ranken, W.A.

1978-01-01T23:59:59.000Z

245

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Using the Northeast as a regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming that weather is "normal." The previous three winters were warmer than average and generated below normal consumption rates. Last winter, consumers saw large increases over the very low heating oil prices seen during the winter of 1998-1999 but, outside of the cold period in late January/early February they saw relatively low consumption rates due to generally warm weather. Even without particularly sharp cold weather events this winter, we think consumers are likely to see higher average heating oil prices than were seen last winter. If weather is normal, our projections imply New England heating oil

246

Waste Heat Recovery from Industrial Smelting Exhaust Gas  

Science Conference Proceedings (OSTI)

For a cost efficient capture of more valuable heat (higher exergy), heat exchangers should operate on the exhaust gases upstream of the gas treatment plants.

247

Heat Tint Effects on General Corrosion Resistance of Stainless Steels  

Science Conference Proceedings (OSTI)

The heat tint is usually created during a welding operation. The heat tint creates an oxide ... Reformer Inlet Hair-pin-pipe Weld Cracking · Remedy of Deficiencies

248

JGI - Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations The Operations Department sees to it that JGI has the best possible facilities and support, ensuring that its operations are conducted in accordance with the...

249

Power Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Operations Outage Coordination Standards of Conduct Transmission Planning You are here: SN Home page > Power Operations Power Operations Western's Sierra Nevada Region...

250

Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs  

E-Print Network (OSTI)

An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation of the working substance. The coefficient of performance of the heat pump is optimized for a given heating load. The characteristic curves of the coefficient of performance versus power input are generated. The influence of intake temperatures of heat reservoirs, thermal capacity of heat reservoirs, efficiency of heat exchangers, heat leak and internal irreversibilities on the performance of the system is discussed. The optimal ratio of the times spent on two processes of heat transfer to and from the working substance is determined. Some new results which are conducive to the optimal design and operation of real heat pump systems are obtained.

Huang, Y.; Sun, D.

2006-01-01T23:59:59.000Z

251

Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime  

DOE Green Energy (OSTI)

Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases considered include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.

Carlin, P.W.

1996-12-01T23:59:59.000Z

252

Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL  

DOE Green Energy (OSTI)

An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

2008-06-01T23:59:59.000Z

253

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network (OSTI)

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat recovery system consists of a shell and tube heat exchanger (16"? x 14'0") installed in the compressor hot gas discharge line. Water is recirculated from a 23,000-gallon tempered water storage tank to the heat exchanger by a circulating pump at the rate of 100 gallons per minute. All make-up water to the plant hot water system is supplied from this tempered water storage tank, which is maintained at a constant filled level. Tests to determine the actual rate of heat recovery were conducted from October 3, 1979 to October 12, 1979, disclosing an average usage of 147,000 gallons of hot water daily. These tests illustrated a varied heat recovery of from 0.5 to 1.0 million BTU per hour. The deviations were the result of both changing refrigeration demands and compressor operating modes. An average of 16 million BTU per day was realized, resulting in reduced boiler fuel costs of $30,000 annually, based on the present $.80 per gallon #2 fuel oil price. At the total installed cost of $79,000, including test instrumentation, the project was found to be economically viable. The study has demonstrated the technical and economic feasibility of refrigeration waste heat recovery as a positive energy conservation strategy which has broad applications in industry and commerce.

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

254

Heat Conduction  

Science Conference Proceedings (OSTI)

Table 2   Differential equations for heat conduction in solids...conduction in solids General form with variable thermal properties General form with constant thermal properties General form, constant properties, without heat

255

Microchannel heat sink assembly  

DOE Patents (OSTI)

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

256

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

Daman, Ernest L. (Westfield, NJ); McCallister, Robert A. (Mountain Lakes, NJ)

1979-01-01T23:59:59.000Z

257

Solar heat pipe feedback turbogenerator  

SciTech Connect

The conversion of radiant heat to electricity by a heat pipe-turbogenerator combination is described. The heat pipe-tubogenerator assembly is suitably externally insulated, as by a vacuum shield, to prevent heat losses and heat is recovered from the condenser portion of the heat pipe and returned to the evaporator portions. An application of the generic invention is discussed which it is employed on wall or roof portions of a building and serves as at least a partial supporting structure for these. In another application the solar heat pipe feedback turbogenerator may be incorporated in or used with reflective means, such as reflective sheet material of large area positioned to direct solar radiation onto the evaporator section of the heat pipe. The reflective means may be changed in position to follow the sun to produce maximum power during operation.

Decker, B.J.

1978-10-24T23:59:59.000Z

258

Absorption-heat-pump system  

DOE Patents (OSTI)

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, G.; Perez-Blanco, H.

1983-06-16T23:59:59.000Z

259

Magnetic refrigeration apparatus with heat pipes  

DOE Patents (OSTI)

A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

Barclay, J.A.; Prenger, F.C. Jr.

1985-10-25T23:59:59.000Z

260

Magnetic refrigeration apparatus with heat pipes  

DOE Patents (OSTI)

A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

Barclay, John A. (Los Alamos, NM); Prenger, Jr., F. Coyne (Madison, WI)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Abstract Moving average algorithms for diamond, hexagon, and general polygonal shaped window operations  

E-Print Network (OSTI)

This paper presents fast moving window algorithms for calculating local statistics in a diamond, hexagon, and general polygonal shaped windows of an image which is important for real-time applications. The algorithms for a diamond shaped window requires only seven or eight additions and subtractions per pixel. A fast sparse algorithm only needs four additions and subtractions for a sparse diamond shaped window. A number of other shapes of diamond windows such as skewed or parallelogram shaped diamond, long diamond, and lozenged diamond shaped, are also investigated. Similar algorithms are also developed for hexagon shaped windows. The computation for a hexagon window only needs eight additions and subtractions for each pixel. Fast algorithms for general polygonal shaped windows are also developed. The computation cost of all these algorithms is independent of the window size. A variety of synthetic and real images have been tested.

Changming Sun

2005-01-01T23:59:59.000Z

262

Energy Basics: Heat Pump Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for optimum operation in either summer or winter. Homeowners primarily install geothermal heat pumps-which draw heat from the ground during the winter and from the indoor air...

263

Multifamily Heat Pump Water Heater Evaluation  

SciTech Connect

Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

Hoeschele, M.; Weitzel, E.

2013-11-01T23:59:59.000Z

264

Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average  

NLE Websites -- All DOE Office Websites (Extended Search)

8: July 12, 2004 8: July 12, 2004 Expected Average Annual Miles to someone by E-mail Share Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Facebook Tweet about Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Twitter Bookmark Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Google Bookmark Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Delicious Rank Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on Digg Find More places to share Vehicle Technologies Office: Fact #328: July 12, 2004 Expected Average Annual Miles on AddThis.com... Fact #328: July 12, 2004 Expected Average Annual Miles Twenty-five percent of the respondents to a nationwide survey said that

265

Vehicle Technologies Office: Fact #536: September 15, 2008 Average...  

NLE Websites -- All DOE Office Websites (Extended Search)

6: September 15, 2008 Average Used Car Prices Up and Used Light Truck Prices Down to someone by E-mail Share Vehicle Technologies Office: Fact 536: September 15, 2008 Average Used...

266

Vehicle Technologies Office: Fact #517: May 5, 2008 State Average...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: May 5, 2008 State Average Gasoline Prices, April 18, 2008 to someone by E-mail Share Vehicle Technologies Office: Fact 517: May 5, 2008 State Average Gasoline Prices, April 18,...

267

Vehicle Technologies Office: Fact #87: May 4, 1999 Average Annual...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: May 4, 1999 Average Annual Miles per Vehicle by Vehicle Type and Age to someone by E-mail Share Vehicle Technologies Office: Fact 87: May 4, 1999 Average Annual Miles per...

268

Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging  

Science Conference Proceedings (OSTI)

Bayesian model averaging (BMA) is a statistical way of postprocessing forecast ensembles to create predictive probability density functions (PDFs) for weather quantities. It represents the predictive PDF as a weighted average of PDFs centered on ...

J. Mc Lean Sloughter; Adrian E. Raftery; Tilmann Gneiting; Chris Fraley

2007-09-01T23:59:59.000Z

269

Vehicle Technologies Office: Fact #744: September 10, 2012 Average...  

NLE Websites -- All DOE Office Websites (Extended Search)

4: September 10, 2012 Average New Light Vehicle Price Grows Faster than Average Used Light Vehicle Price to someone by E-mail Share Vehicle Technologies Office: Fact 744:...

270

Improving Wind Profiler–Measured Winds Using Coplanar Spectral Averaging  

Science Conference Proceedings (OSTI)

A method is presented that increases the detectability of weak clear-air signals by averaging Doppler spectra from coplanar wind profiler beams. The method, called coplanar spectral averaging (CSA), is applied to both simulated wind profiler ...

Robert Schafer; Susan K. Avery; Kenneth S. Gage; Paul E. Johnston; D. A. Carter

2004-11-01T23:59:59.000Z

271

On Lateral Dispersion Coefficients as Functions of Averaging Time  

Science Conference Proceedings (OSTI)

Plume dispersion coefficients are discussed in terms of single-particle and relative diffusion, and are investigated as functions of averaging time. To demonstrate the effects of averaging time on the relative importance of various dispersion ...

C. M. Sheih

1980-05-01T23:59:59.000Z

272

Vorticity Dynamics and Zonally Averaged Ocean Circulation Models  

Science Conference Proceedings (OSTI)

Diagnostic equations relating the zonally averaged overturning circulation to north–south density variations are derived and used to determine a new closure scheme for use in zonally averaged ocean models. The presentation clarifies the dynamical ...

Daniel G. Wright; Cornelis B. Vreugdenhil; Tertia M. C. Hughes

1995-09-01T23:59:59.000Z

273

Scoping heat transfer analysis of a completely-blocked Type-Q septifoil  

Science Conference Proceedings (OSTI)

Heat removal mechanisms for a completely-blocked Type-Q (new design) septifoil situated in an otherwise normally operating K-reactor are investigated in this report. The best-estimate maximum septifoil heat generation rate for a 26.2{degrees}C cooling water inlet temperature is 119 to 141 kW depending on the counter-current flow limitation correlation chosen. The corresponding reactor powers are 648 and 768 MW or 27 and 32% of 2400 MW (historical annual averaged full power). These estimates are based on a steady-state scoping analysis and have a large uncertainty.

Flach, G.P.

1991-12-01T23:59:59.000Z

274

Table 5C. Industrial Average Monthly Bill by Census Division ...  

U.S. Energy Information Administration (EIA)

Home > Electricity > Electric Sales, Revenue, and Price > Industrial Average Monthly Bill by Census Division, and State: Table 5C. Industrial ...

275

Maryland Average Price of Natural Gas Delivered to Residential and ...  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States

276

Optimization Online - "Block-Iterative and String-Averaging ...  

E-Print Network (OSTI)

Jul 19, 2009 ... Optimization Online. "Block-Iterative and String-Averaging Projection Algorithms in Proton Computed Tomography Image Reconstruction".

277

Table 4. Average retail price for bundled and unbundled consumers ...  

U.S. Energy Information Administration (EIA)

Table 4. Average retail price for bundled and unbundled consumers by sector, Census Division, and State 2011

278

Intrinsically irreversible heat engine  

DOE Patents (OSTI)

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-12-25T23:59:59.000Z

279

Intrinsically irreversible heat engine  

DOE Patents (OSTI)

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-01-01T23:59:59.000Z

280

Intrinsically irreversible heat engine  

DOE Patents (OSTI)

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

282

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

283

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

284

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

285

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

286

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

287

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

288

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

289

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: The outlook for heating oil costs this winter, due to high crude oil costs and tight heating oil supplies, breaks down to an expected increase in heating expenditures for a typical oil-heated household of more than $200 this winter, the result of an 18% increase in the average price and an 11% increase in consumption. The consumption increase is due to the colder than normal temperatures experienced so far this winter and our expectations of normal winter weather for the rest of this heating season. Last winter, Northeast heating oil (and diesel fuel) markets experienced an extremely sharp spike in prices when a severe weather situation developed in late January. It is virtually impossible to gauge the probability of a similar (or worse) price shock recurring this winter,

290

Heat pump assisted geothermal heating system for Felix Spa, Romania  

Science Conference Proceedings (OSTI)

The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

Rosca, Marcel; Maghiar, Teodor

1996-01-24T23:59:59.000Z

291

Heat Pipes: An Industrial Application  

E-Print Network (OSTI)

This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat pipe exchangers, an industrial case history is presented. The case history involves a retrofit project which added heat pipes to five natural draft process heaters with a combined heat duty of 150 M Btu/hr. A heat recovery of 15 M Btu/hr has resulted from the flue gas/combustion air interchange. The paper will include design considerations, and operating and maintenance history since early 1980. A second application for heat pipes with a 12 M Btu/hr duty installed in 1983 will also be discussed.

Murray, F.

1984-01-01T23:59:59.000Z

292

Operational Demonstration Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operational Demonstration Program Operational Demonstration Program Operational Demonstration Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Buying & Making Electricity Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Water Heating Wind Maximum Rebate $500,000 Program Info Funding Source CEFIA Start Date 2005 State Connecticut Program Type Industry Recruitment/Support Rebate Amount $150,000 - $500,000 Provider Clean Energy Finance and Investment Authority This program is currently closed. Applications were due in February 2012.

293

German central solar heating plants with seasonal heat storage  

Science Conference Proceedings (OSTI)

Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (in Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)

Bauer, D.; Marx, R.; Nussbicker-Lux, J.; Ochs, F.; Heidemann, W. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Mueller-Steinhagen, H. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Institute of Technical Thermodynamics (ITT), German Aerospace Centre (DLR), Stuttgart (Germany)

2010-04-15T23:59:59.000Z

294

Frostless heat pump having thermal expansion valves  

DOE Patents (OSTI)

A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

Chen, Fang C [Knoxville, TN; Mei, Viung C [Oak Ridge, TN

2002-10-22T23:59:59.000Z

295

Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube  

SciTech Connect

In order to understand the heat transfer characteristics of molten salt and testify the validity of the well-known empirical convective heat transfer correlations, experimental study on transition convective heat transfer with molten salt in a circular tube was conducted. Molten salt circulations were realized and operated in a specially designed system over 1000 h. The average forced convective heat transfer coefficients of molten salt were determined by least-squares method based on the measured data of flow rates and temperatures. Finally, a heat transfer correlation of transition flow with molten salt in a circular tube was obtained and good agreement was observed between the experimental data of molten salt and the well-known correlations presented by Hausen and Gnielinski, respectively. (author)

Yu-ting, Wu; Bin, Liu; Chong-fang, Ma; Hang, Guo [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing municipality, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

2009-10-15T23:59:59.000Z

296

Passive Core Decay Heat Removal Performance Guideline  

Science Conference Proceedings (OSTI)

Passive decay heat removal systems operate without pumps when normal heat removal systems are not available. Safety is ensured by confirming that an adequate thermal margin is provided to accommodate various operating conditions, design uncertainties, and degradation. Guidelines to ensure adequate thermal performance are provided for three different system configurations.This report introduces utility systems engineers to the design and operation of passive decay heat removal systems and ...

2013-11-26T23:59:59.000Z

297

Heating Oil Outlook - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Heating Oil Outlook Conclusion. Distillate stocks are likely to be higher than last year, but still relatively low Prices likely to average a little lower than last ...

298

Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System  

E-Print Network (OSTI)

This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project calculation, it illuminates that the post-located auxiliary heat source cheaper and superior to the fore-located one.

Qian, J.; Sun, D.; Li, X.; Li, G.

2006-01-01T23:59:59.000Z

299

Quantum Operation Time Reversal  

E-Print Network (OSTI)

The dynamics of an open quantum system can be described by a quantum operation, a linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes towards equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.

Crooks, Gavin E

2007-01-01T23:59:59.000Z

300

Quantum Operation Time Reversal  

E-Print Network (OSTI)

The dynamics of an open quantum system can be described by a quantum operation, a linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes towards equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.

Gavin E. Crooks

2007-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Liquid metal heat pipe behavior under transient cooling and heating  

SciTech Connect

This paper describes the results of an experimental investigation of the transient behavior of a liquid metal heat pipe. A 0.457 m long, screen-wick, sodium heat pipe with 0.0127 m outer diameter was tested in sodium loop facility. The heat pipe reversed under a pulse heat load applied at the condenser. The time at which the heat pipe reversed was dependent of the heat pipe properties, the sodium loop flow rate and heating conditions at the condenser. The start-up and the operational shut-down by forced cooling of the condenser were also studied. During the start-up process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all working fluid in the heat pipe was molten. With forced cooling at the condenser, the heat pipe approached its heat transport limit before section of the condenser became frozen. The measured heat transport limit was in agreement with the theoretical value. 5 refs.

Nguyen, H.X.; Hahn, T.O.; Hahn, O.J.; Chow, L.C.; Tagavi, K.A.; Morgan, M.J. (Kentucky, University, Lexington (United States) USAF, Wright Laboratory, Wright-Patterson AFB, OH (United States))

1992-01-01T23:59:59.000Z

302

A thermoacoustic-Stirling heat engine: Detailed study  

SciTech Connect

A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood. (c) 2000 Acoustical Society of America.

Backhaus, S. [Condensed Matter and Thermal Physics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Swift, G. W. [Condensed Matter and Thermal Physics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2000-06-01T23:59:59.000Z

303

Operating Instructions  

Science Conference Proceedings (OSTI)

... ensure the maximum possible flow cross-section in ... thermostat ? external circuit ? flow-through cooler ... Heat transfer tubing and other hot parts ...

2012-02-14T23:59:59.000Z

304

Active Solar Heating Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Active Solar Heating Linear Concentrator System Basics for Concentrating Solar Power Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

305

Operations & Maintenance  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates Operations & Maintenance Operations OASIS: WACM (Note: this site is not hosted by Western and requires a digital certificate and login for full access.) wesTTrans Common...

306

Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures  

Science Conference Proceedings (OSTI)

Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

2012-09-01T23:59:59.000Z

307

Thermal evaluation of uranium silicide miniplates irradiated at high heat flux  

Science Conference Proceedings (OSTI)

The Gas Test Loop (GTL)-1 irradiation experiment was conducted in the Advanced Test Reactor (ATR) to assess corrosion performance of proposed booster fuel at heat flux levels ~30% above the design operating condition. Sixteen miniplates fabricated from 25% enriched, high-density (4.8 g U/cm3) U3Si2/Al dispersion fuel with 6061 aluminum cladding were subjected to peak beginning of cycle (BOC) heat fluxes ranging from 411 to 593 W/cm2. No adverse impacts to the miniplates were observed at these high heat flux levels. A detailed finite element model was constructed to calculate temperatures and heat flux for an as-run cycle average effective ATR south lobe power of 25.4 MW(t). Miniplate heat flux levels and fuel, cladding, hydroxide, and coolant–hydroxide interface temperatures were calculated using the average hydroxide thickness on each miniplate measured during post-irradiation examination. The purpose of this study was to obtain a best estimate of the as-run experiment temperatures to aid in establishing acceptable heat flux levels and designing fuel qualification experiments for this fuel type.

Donna P. Guillen

2012-09-01T23:59:59.000Z

308

A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies  

E-Print Network (OSTI)

Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

Guyer, Brittany (Brittany Leigh)

2009-01-01T23:59:59.000Z

309

Predicting Combined Operational and Residual Stress Fields and ...  

Science Conference Proceedings (OSTI)

Effects of Heat Treatments on Precipitates, Microstructures and Mechanical ... Electric Arc Furnace Operation with Electromagnetic Stirring and Hot Heel.

310

Handbook of heat and mass transfer. Volumes 1 and 2  

Science Conference Proceedings (OSTI)

This two-volume series presents advanced topics in industrial heat and mass transfer operations for reactor design technology.

Cheremisinoff, N.P.

1985-01-01T23:59:59.000Z

311

A kilowatt average power laser for sub-picosecond materials processing  

Science Conference Proceedings (OSTI)

The performance of laser pulses in the sub-picosecond range for materials processing is substantially enhanced over similar fluences delivered in longer pulses. Recent advances in the development of solid state lasers have progressed significantly toward the higher average powers potentially useful for many applications. Nonetheless, prospects remain distant for multi-kilowatt sub-picosecond solid state systems such as would be required for industrial scale surface processing of metals and polymers. The authors present operational results from the world's first kilowatt scale ultra-fast materials processing laser. A Free Electron Laser (FEL) called the IR Demo is operational as a User Facility at Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA. In its initial operation at high average power it is capable of wavelengths in the 2 to 6 micron range and can produce {approximately}0.7 ps pulses in a continuous train at {approximately}75 MHz. This pulse length has been shown to be nearly optimal for deposition of energy in materials at the surface. Upgrades in the near future will extend operation beyond 10 kW CW average power in the near IR and kilowatt levels of power at wavelengths from 0.3 to 60 microns. This paper will cover the design and performance of this groundbreaking laser and operational aspects of the User Facility.

Stephen V. Benson; George R. Neil; C. Bohn; , G. Biallas; D. Douglas; F. Dylla; J. Fugitt; K. Jordan; G. Krafft; , L. Merminga; , J. Preble; , Michelle D. Shinn; T. Siggins; R. Walker; B. Yunn

1999-11-01T23:59:59.000Z

312

Vehicle Technologies Office: Fact #310: March 8, 2004 Average Material  

NLE Websites -- All DOE Office Websites (Extended Search)

0: March 8, 2004 0: March 8, 2004 Average Material Consumption for a Domestic Automobile to someone by E-mail Share Vehicle Technologies Office: Fact #310: March 8, 2004 Average Material Consumption for a Domestic Automobile on Facebook Tweet about Vehicle Technologies Office: Fact #310: March 8, 2004 Average Material Consumption for a Domestic Automobile on Twitter Bookmark Vehicle Technologies Office: Fact #310: March 8, 2004 Average Material Consumption for a Domestic Automobile on Google Bookmark Vehicle Technologies Office: Fact #310: March 8, 2004 Average Material Consumption for a Domestic Automobile on Delicious Rank Vehicle Technologies Office: Fact #310: March 8, 2004 Average Material Consumption for a Domestic Automobile on Digg Find More places to share Vehicle Technologies Office: Fact #310:

313

Average Interest Rate for Treasury Securities | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Average Interest Rate for Treasury Securities Average Interest Rate for Treasury Securities Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data Average Interest Rate for Treasury Securities Dataset Summary Description This dataset shows the average interest rates for U.S Treasury securities for the most recent month compared with the same month of the previous year. The data is broken down by the various marketable and non-marketable securities. The summary page for the data provides links for monthly reports from 2001 through the current year. Average Interest Rates are calculated on the total unmatured interest-bearing debt. The average interest rates for total marketable, total non-marketable and total interest-bearing debt do not include the U.S. Treasury Inflation-Protected Securities.

314

DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM  

Science Conference Proceedings (OSTI)

Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

G. K. Housley; J.E. O'Brien; G.L. Hawkes

2008-11-01T23:59:59.000Z

315

Average Depth of Crude Oil and Natural Gas Wells  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Average depth may ...

316

Table AP7. Average Expenditures for Home Appliances and Lighting ...  

U.S. Energy Information Administration (EIA)

A household is assigned to a climate zone according to the 30-year average annual degree-days for an appropriate nearby weather station.

317

Electric Sales, Revenue, and Average Price 2011 - Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

All Electricity Reports Electric Sales, Revenue, and Average Price With Data for 2011 | Release Date: September 27, 2012 | Next Release Date: September, 2013 Previous editions...

318

Chapter 5. Retail Sales, Revenue, and Average Retail Price of ...  

U.S. Energy Information Administration (EIA)

106 U.S. Energy Information Administration/Electric Power Monthly June 2012 Chapter 5. Retail Sales, Revenue, and Average Retail Price of Electricity

319

Table 14a. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)"...

320

Average wholesale electric power prices rose in 2010 - Today in ...  

U.S. Energy Information Administration (EIA)

Average wholesale electric power prices rose in 2010, due to higher national natural gas prices and increased demand for electricity, particularly in the Eastern ...

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electric Sales, Revenue, and Average Price 2011 - Energy ...  

U.S. Energy Information Administration (EIA)

Class of Ownership, Number of Consumers, Sales, Revenue, and Average Retail Price for Power Marketers and Energy Service Providers by State: T12:

322

Today in Energy - Average wholesale natural gas prices mostly ...  

U.S. Energy Information Administration (EIA)

Average spot natural gas prices, which reflect the wholesale price of natural gas at major trading points, generally declined in most U.S. regional markets about 7% ...

323

Ohio Average Price of Natural Gas Delivered to Residential and ...  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States (Dollars per Thousand Cubic Feet ...

324

Average prices for spot sulfur dioxide emissions allowances at ...  

U.S. Energy Information Administration (EIA)

The weighted average spot price for sulfur dioxide (SO 2) emissions allowances awarded to winning bidders at Environmental Protection Agency's (EPA) annual auction on ...

325

Climate: monthly and annual average relative humidity GIS data...  

Open Energy Info (EERE)

Climate: monthly and annual average relative humidity GIS data at one-degree resolution of the World from NASASSE

(Abstract):  
Relative Humidity at 10 m...

326

Pennsylvania Average Price of Natural Gas Delivered to Residential ...  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States (Dollars per Thousand Cubic Feet ...

327

District of Columbia Average Price of Natural Gas Delivered to ...  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States (Dollars per Thousand Cubic Feet ...

328

Michigan Average Price of Natural Gas Delivered to Residential and ...  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States (Dollars per Thousand Cubic Feet ...

329

,"U.S. Natural Gas Average Annual Consumption per Commercial...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Average Annual Consumption per Commercial Consumer (Mcf)",1,"Annual",2011...

330

,"U.S. Natural Gas Average Annual Consumption per Industrial...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Average Annual Consumption per Industrial Consumer (Mcf)",1,"Annual",2011...

331

2012 Brief: Average wholesale electricity prices down compared ...  

U.S. Energy Information Administration (EIA)

2012 Brief: Average wholesale electricity prices down compared to last year. ... wholesale electric power prices often trend together with natural gas prices.

332

Average wholesale spot natural gas prices rose across the country ...  

U.S. Energy Information Administration (EIA)

Wholesale spot natural gas prices rose across the country in 2010. Average spot natural gas prices at the Henry Hub—a key benchmark location for pricing throughout ...

333

Figure 34. Ratio of average per megawatthour fuel costs ...  

U.S. Energy Information Administration (EIA)

Title: Figure 34. Ratio of average per megawatthour fuel costs for natural gas combined-cycle plants to coal-fired steam turbines in the RFC west ...

334

EIA Renewable Energy- Average Energy Conversion Efficiency of ...  

U.S. Energy Information Administration (EIA)

Renewables and Alternate Fuels > Solar Photovoltaic Cell/Module Annual Report > Annual Shipments of Photovoltaic Cells and Modules by Source: Average Energy ...

335

Solar: monthly and annual average global horizontal (GHI) GIS...  

Open Energy Info (EERE)

on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and...

336

Solar: monthly and annual average direct normal (DNI), global...  

Open Energy Info (EERE)

on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and...

337

Solar: monthly and annual average direct normal (DNI) GIS data...  

Open Energy Info (EERE)

on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and...

338

,"Selected National Average Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected National Average Natural Gas Prices" Selected National Average Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Average Natural Gas Prices",11,"Monthly","11/2013","1/15/1973" ,"Data 2","Annual Average Natural Gas Prices",11,"Annual",2012,"6/30/1922" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm03vmall.xls" ,"Available from Web Page:","http://www.eia.gov/oil_gas/natural_gas/data_publications/natural_gas_monthly/ngm.html"

339

New York Average Price of Natural Gas Delivered to Residential ...  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States (Dollars per ...

340

The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes  

E-Print Network (OSTI)

At slightly supercritical pressure and in the neighborhood of the pseudo-critical temperature (defined as the temperature corresponding to the peak in specific heat at the operating pressure), the heat transfer coefficient ...

Shiralkar, B. S.

1968-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Heat Stroke  

NLE Websites -- All DOE Office Websites (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms â–  High body temperature â–  Confusion â–  Loss of coordination â–  Hot, dry skin or profuse sweating â–  Throbbing headache â–  Seizures, coma First Aid â–  Request immediate medical assistance. â–  Move the worker to a cool, shaded area. â–  Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms â–  Rapid heart beat â–  Heavy sweating â–  Extreme weakness or fatigue â– 

342

Heat reclaimer  

Science Conference Proceedings (OSTI)

A device for reclaiming heat from stove pipes and the like. A semi-circular shaped hollow enclosed housing with a highly thermal-conductive concave surface is mounted contactingly to surround approximately one-half of the circumference of the stove pipe. The concave surface is formed to contact the pipe at a maximum number of points along that surface. The hollow interior of the housing contains thin multi-surfaced projections which are integral with the concave surface and conductively transfer heat from the stove pipe and concave surface to heat the air in the housing. A fan blower is attached via an air conduit to an entrance opening in the housing. When turned on, the blower pushes the heated interior air out a plurality of air exit openings in the ends of the housing and brings in lower temperature outside air for heating.

Parham, F.

1985-04-09T23:59:59.000Z

343

Heat transfer. [heat transfer roller employing a heat pipe  

SciTech Connect

A heat transfer roller embodying a heat pipe is disclosed. The heat pipe is mounted on a shaft, and the shaft is adapted for rotation on its axis.

Sarcia, D.S.

1978-05-23T23:59:59.000Z

344

Solar industrial process heat  

DOE Green Energy (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

345

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

Alternative Fuels. Includes ... decline during summer and winter as power plants burn through stocks to meet peak electricity demand for heating and cooling, ...

346

Average summer gasoline prices expected to be slightly lower than ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

347

Self-contained passive solar heating system  

SciTech Connect

A self-contained passive solar heating system includes first and second heat pipes, each having a refrigerant medium therein, a condenser portion and an evaporator portion, with the condenser portion of the first heat pipe being coupled to the evaporator portion of the second heat pipe for transferring heat thereto when the pressure within the first heat pipe is greater than the pressure within the second heat pipe. The evaporator portion of the first heat pipe is adapted to be exposed to a source of heat and the condenser portion of the second heat pipe contacts a medium to be heated. A temperature control mechanism may be installed as the coupling between the first and second heat pipes for uncoupling the same when the temperature within the first heat pipe falls below a predetermined temperature. Also, a third heat pipe may be provided having a thermostatic portion operatively connected to the condenser portion of the second heat pipe by a piston means so that changes in pressure within the thermostatic portion occasioned by changes in temperature of the medium to be heated will cause movement of the pistons to vary the size of the condensing portion of the second heat pipe to increase or decrease the rate of heat transfer to the medium.

Maldonado, E.A.; Woods, J.E.

1983-05-10T23:59:59.000Z

348

Two Stage Vapor Compression Heat Pump with Solution Circuits: Catering to Simultaneous Chilling and Water Heating Needs  

E-Print Network (OSTI)

The benefits of using a two stage vapor compression heat pump with ammonia water solution circuits (VCHSC) to simultaneously provide chilled water for air conditioning and hot water for various uses are reviewed. The performance results for a two stage VCHSC are summarized. Experimental results indicate that the two stage VCHSC can achieve cooling coefficient of performances as high as 1.04 while pumping heat through a lift of 194°F (108°C). Comparison is made with a system consisting of a vapor compressor chiller and a gas fired furnace. The basis for comparison being primary energy usage, energy cost and initial cost of the systems. Energy saving at various operating conditions is estimated. In some cases, energy saving could be as high as 31%. Based on the national average energy prices in 1991 and the projected prices for 1995, suitable applications for the two stage VCHSC have been identified.

Rane, M. V.; Radermacher, R.

1992-04-01T23:59:59.000Z

349

PARALLEL OPERATION OF WELDING GENERATORS  

SciTech Connect

Eight 900-amp, 36-kw direct current welding generators driven by eight 60-hp induction motors were operated in parallel to supply up to 7200 amp to resistance loads for heat transfer studies. A description and circuit designs of this installation, which provides safety interlocks and permits sectionalized operation for separate leads, are given. (auth)

Butler, B.H.

1960-06-01T23:59:59.000Z

350

Variation in Nimbus-7 Cloud Estimates. Part I: Zonal Averages  

Science Conference Proceedings (OSTI)

Zonal averages of low, middle and total cloud amount estimates derived from measurements from Nimbus-7 have been analyzed for the six-year period April 1979 through March 1985. The globally and zonally averaged values of six-year annual means and ...

Bryan C. Weare

1992-12-01T23:59:59.000Z

351

CRBRP decay heat removal systems  

SciTech Connect

The Decay Heat Removal Systems for the Clinch River Breeder Reactor Plant (CRBRP) are designed to adequately remove sensible and decay heat from the reactor following normal shutdown, operational occurrences, and postulated accidents on both a short term and a long term basis. The Decay Heat Removal Systems are composed of the Main Heat Transport System, the Main Condenser and Feedwater System, the Steam Generator Auxiliary Heat Removal System (SGAHRS), and the Direct Heat Removal Service (DHRS). The overall design of the CRBRP Decay Heat Removal Systems and the operation under normal and off-normal conditions is examined. The redundancies of the system design, such as the four decay heat removal paths, the emergency diesel power supplies, and the auxiliary feedwater pumps, and the diversities of the design such as forced circulation/natural circulation and AC Power/DC Power are presented. In addition to overall design and system capabilities, the detailed designs for the Protected Air Cooled Condensers (PACC) and the Air Blast Heat Exchangers (ABHX) are presented.

Hottel, R.E.; Louison, R.; Boardman, C.E.; Kiley, M.J.

1977-01-01T23:59:59.000Z

352

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

East Asia from NREL East Asia from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

353

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

Africa from NREL Africa from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

354

Energy Saver 101: Home Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Saver 101: Home Heating Energy Saver 101: Home Heating Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download individual sections of the infographic or a high resolution version now. homeHeating.pdf homeHeating_slide-01.png homeHeating_slide-02.png homeHeating_slide-03.png homeHeating_slide-04.png homeHeating_slide-05.png

355

Heat transport system, method and material  

DOE Patents (OSTI)

A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.

Musinski, Donald L. (Saline, MI)

1987-01-01T23:59:59.000Z

356

Development of a cryogenic heat pipe  

SciTech Connect

Heat pipe operating characteristics can be used to advantage in cryogenic systems. Diode operation of the heat pipe, the ability to conduct heat in one direction only, is useful in protecting the heat load if the heat sink temperature rises above the load temperature. Because of this, the heat pipe can be made to act as a thermal switch. A screened-wick, inverted-artery, cryogenic heat pipe was designed, fabricated, and tested. The tests were first conducted with hydrogen and then with oxygen as the working fluid. Heat pipe performance limits were measured as a function of operating temperature, and startup from both the supercritical and the frozen state was demonstrated. The heat pipe was designed to operate as a thermal diode, and transient tests were used to determine the turndown ratio. The heat pipe test results were correlated with the Los Alamos heat pipe computer code and good agreement was obtained between the predicted and measured performance. The heat pipe was developed for spacecraft sensor cooling applications. Test results show significant performance advantages over solid conductors.

Prenger, F.C.; Stewart, W.F.; Runyan, J.E.

1993-08-01T23:59:59.000Z

357

Testing of a sodium heat pipe  

SciTech Connect

The operation of a heat pipe with both thermal radiation and convection heat rejection has been experimentally examined. The thermal radiation heat rejection conditions are similar to those which would be experienced in a space environment. The experimental results show good agreement with the analytical model. 3 refs., 2 figs.

Holtz, R.E.

1991-01-01T23:59:59.000Z

358

Integrated Approach to Revamping Heat Exchangers Networks  

E-Print Network (OSTI)

A heat exchanger network constitutes the core of the plant energy systems interlinking the core process operation and the utility systems. This paper will illustrate an integrated approach for the revamp of a heat exchanger network by bringing together process simulation, pinch analysis and detailed heat exchanger design tools. The paper will illustrate the methodology using a refinery example.

Glass, K. E.; Dhole, V.; Wang, Y.

2002-04-01T23:59:59.000Z

359

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

360

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal peak. Relatively mild weather and a softening of crude oil prices have helped ease heating oil prices. Spot heating oil prices recently reached their lowest levels in over six months. Because of relatively balmy weather in the Northeast in January and February, heating oil stock levels have stabilized. Furthermore, heating oil production has been unusually robust, running several hundred thousand barrels per day over last year's pace. Currently, EIA expects winter prices to average around $1.41, which is quite high in historical terms. The national average price in December 2000 was 44 cents per gallon above the December 1999 price. For February

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Industrial Heat Recovery - 1982  

E-Print Network (OSTI)

Two years ago I summarized 20 years of experience on Industrial Heat Recovery for the Energy-source Technology Conference and Exhibition held in New Orleans, Louisiana. At the end of that paper I concluded with brief advice on 'How to specify heat recovery equipment.' The two years which have elapsed since then have convinced me that proper specification assures the most reliable equipment at the lowest price. The most economical specification describes the operating and site data but leaves the design details for the supplier. A true specialist will be able to provide you with the latest technology at the best possible price. This paper explores the impact of specifications on heat recovery equipment and its associated cost.

Csathy, D.

1982-01-01T23:59:59.000Z

362

Modular heat exchanger  

DOE Patents (OSTI)

A heat exchanger for use in nuclear reactors includes a heat exchange tube bundle formed from similar modules each having a hexagonal shroud containing a large number of thermally conductive tubes which are connected with inlet and outlet headers at opposite ends of each module, the respective headers being adapted for interconnection with suitable inlet and outlet manifold means. In order to adapt the heat exchanger for operation in a high temperature and high pressure environment and to provide access to all tube ports at opposite ends of the tube bundle, a spherical tube sheet is arranged in sealed relation across the chamber with an elongated duct extending outwardly therefrom to provide manifold means for interconnection with the opposite end of the tube bundle.

Culver, Donald W. (Poway, CA)

1978-01-01T23:59:59.000Z

363

Heat reclaimer  

SciTech Connect

An apparatus for reclaiming heat from the discharge gas from a combustion fuel heating unit, which has: inlet and outlet sections; an expansion section whose circumference gradually increases in the direction of flow, thereby providing an increased area for heat transfer; flow splitter plates which lie within and act in conjunction with the expansion section wall to form flow compartments, which flow splitter plates and expansion section wall have a slope, with respect to the centroidal axis of the flow compartment not exceeding 0.1228, which geometry prevents a separation of the flow from the enclosing walls, thereby increasing heat transfer and maintaining the drafting function; and a reduction section which converges the flow to the outlet section.

Horkey, E.J.

1982-06-29T23:59:59.000Z

364

Process Heating  

Science Conference Proceedings (OSTI)

This technical update uses real world examples to discuss applications of electrotechnology in industrial process heating and to highlight some of the emerging technologies in this field. These emerging technologies, when implemented in a plant, will provide significant energy savings as well as increase productivity. The report presents three case studies of successful implementation of two different electric process-heating technologies in three different industries. The case studies show that in some ...

2011-12-07T23:59:59.000Z

365

HEAT EXCHANGER  

DOE Patents (OSTI)

A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

1962-10-23T23:59:59.000Z

366

Corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

367

Installation package for a solar heating system  

DOE Green Energy (OSTI)

Installation information is presented for a solar heating system installed in Concho Indian School at El Reno, Oklahoma. This package includes a system Operation and Maintenance Manual, hardware brochures, schematics, system operating modes and drawings. The Solar Engineering and Equipment Company (SEECO) developed this prototype solar heating system consisting of the following subsystems: solar collectors, control and storage.

Not Available

1978-12-01T23:59:59.000Z

368

Guidance for an Effective Heat Exchanger Program  

Science Conference Proceedings (OSTI)

Heat exchangers are used extensively in the nuclear power generation industry. Their proper operation is essential for reliable and safe nuclear plant operation. Increased emphasis on heat exchanger reliability at nuclear power plants has resulted in the development of engineering programs or equivalent actions to maintain the required thermal performance and structural integrity.

2011-10-04T23:59:59.000Z

369

Philip, South Dakota geothermal district heating systems  

SciTech Connect

The geothermal heating project in Philip, South Dakota which uses the waste water from the Haakon School has now been in operation for 15 years. This project was one of the 23 cost shared by the U.S. DOE starting in 1978, of which 15 became operational. This article describes the geothermal heating system for eight buildings in downtown Philip.

Lund, J.W.

1997-12-01T23:59:59.000Z

370

Long-run marginal costs lower than average costs  

SciTech Connect

The thesis of this article is that the long-run marginal costs of electricity are not always greater than the present average costs, as is often assumed. As long as short-run costs decrease with new plant additions, the long-run marginal cost is less than long-run average cost. When average costs increase with new additions, long-run marginal costs are greater than long-run average costs. The long-run marginal costs of a particular utility may be less than, equal to, or greater than its long-run average costs - even with inflation present. The way to determine which condition holds for a given utility is to estimate costs under various combinations of assumptions: probable load growth, zero load growth, and load growth greater than expected; and changes in load factor with attendant costs. Utilities that can demonstrate long-run marginal costs lower than long-run average costs should be encouraged to build plant and increase load, for the resulting productivity gains and slowing of inflation. Utilities that face long-run marginal costs greater than long-run average costs should discourage growth in sales through any available means.

Hunter, S.R.

1980-01-03T23:59:59.000Z

371

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

372

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

373

Heat transfer characteristics of a three-phase volume boiling direct contact heat exchanger  

DOE Green Energy (OSTI)

The advantages of direct contact heat transfer over heat transfer utilizing conventional metallic heat exchangers are listed. The performance characteristics of a three-phase direct contact heat exchanger in near counterflow operation were evaluated using water as the continuous phase fluid and refrigerant 113 as the dispersed phase fluid. Conclusions are drawn from the results having to do with refrigerant injection technique, vessel operating height, mass flow rate of refrigerant, water inlet temperature, operation at pinch point temperature differences below 13 to 20/sup 0/C, and operation with a dispersed phase fluid less dense than water. (MHR)

Blair, C.K.; Boehm, R.F.; Jacobs, H.R.

1976-03-01T23:59:59.000Z

374

OPERATIONS (OPS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPS) OPS) OBJECTIVE OPS.1 The formality and discipline of operations is adequate to conduct work safely and programs are in place to maintain this formality and discipline. (CR 13) Scope: The Conduct of Operations Program was evaluated during the recent KE Basin FTS ORR and was found to be adequately implemented. Based on this result and the subsequent program enhancements, the scope of the review is to be limited to the SWS operating and maintenance evolutions. Criteria * Programmatic elements of conduct of operations are in place for SWS operations. (DOE Order 5480.19) * The SWS operations personnel adequately demonstrate the principles of conduct of operations requirements during the shift performance period. (DOE Order 5480.19)

375

Heat transport system  

DOE Patents (OSTI)

A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acting as a pneumatic spring for the system.

Pierce, Bill L. (Pittsburgh, PA)

1978-01-01T23:59:59.000Z

376

Field measurement of the interactions between heat pumps and attic duct systems in residential buildings  

SciTech Connect

Research efforts to improve residential heat-pump performance have tended to focus on laboratory and theoretical studies of the machine itself, with some limited field research having been focused on in-situ performance and installation issues. One issue that has received surprisingly little attention is the interaction between the heat pump and the duct system to which it is connected. This paper presents the results of a field study that addresses this interaction. Field performance measurements before and after sealing and insulating the duct systems were made on three heat pumps. From the pre-retrofit data it was found that reductions in heat-pump capacity due to low outdoor temperatures and/or coil frosting are accompanied by lower duct-system energy delivery efficiencies. The conduction loss reductions, and thus the delivery temperature improvements, due to adding duct insulation were found to vary widely depending on the length of the particular duct section, the thermal mass of that duct section, and the cycling characteristics of the heat-pump. In addition, it was found that the use of strip-heat back-up decreased after the retrofits, and that heat-pump cycling increased dramatically after the retrofits, which respectively increase and decrease savings due to the retrofits. Finally, normalized energy use for the three systems which were operated consistently pre- and post-retrofit showed an average reduction of 19% after retrofit, which corresponds to a chance in overall distribution-system efficiency of 24%.

Modera, M.P.; Jump, D.A. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-11-01T23:59:59.000Z

377

Efficiency of unitary heat pumps  

SciTech Connect

The efficiencies of approximately 500 unitary heat pumps, from 30 different manufacturers, certified by the Air Conditioning and Refrigeration Institute (ARI) were examined. The certified units account for about 90% of all unitary heat pumps manufactured in the U.S. with a rated cooling capacity below 135,000 Btu/hr, and thus represent a comprehensive data file of the efficiencies of unitary heat pumps offered for sale in the U.S. A computer was used to group the heat pumps according to type and capacity, and to calculate their coefficients of performance (COP) using the data contained in ARI current Directory (April 1 to July 31, 1973) of Certified Unitary Heat Pumps. The results show that the COP of the heat pumps varied from a low of 1.5 to a high of 3.15 or a factor of 2 between the lowest and the highest efficiency, and that the average COP was 2.1 in cooling and 2.4 in heating. The variations of COP with heat pump size, type, manufacturer and outdoor temperature are presented.

Nwude, J.K.; Roman, A.J.

1973-11-01T23:59:59.000Z

378

Figure 33. Ratio of average per megawatthour fuel costs for ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 33. Ratio of average per megawatthour fuel costs for natural gas combined-cycle plants to coal-fired steam turbines in the SERC southeast ...

379

Figure 27. Ratio of average per megawatthour fuel costs for ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 27. Ratio of average per megawatthour fuel costs for natural gas combined-cycle plants to coal-fired steam turbines in five cases, 2008-2040

380

Virginia Average Price of Natural Gas Delivered to Residential...  

U.S. Energy Information Administration (EIA) Indexed Site

10.34 9.79 11.62 14.97 NA 20.70 1989-2013 Commercial Average Price 8.35 8.21 9.11 9.52 9.96 10.36...

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

New York Average Price of Natural Gas Delivered to Residential...  

U.S. Energy Information Administration (EIA) Indexed Site

94 11.57 12.82 15.94 18.40 18.73 1989-2013 Commercial Average Price 8.38 8.32 8.27 8.38 7.91 6.66...

382

Maryland Average Price of Natural Gas Delivered to Residential...  

U.S. Energy Information Administration (EIA) Indexed Site

0.35 10.04 12.02 15.43 17.45 16.48 1989-2013 Commercial Average Price 9.03 9.30 10.67 11.84 12.79 NA...

383

Average Diurnal Variation of Summer Lightning over the Floirida Peninsula  

Science Conference Proceedings (OSTI)

Data derived from a large network of electric field mills have been used to determine the average diurnal variation of lightning in a Florida seacoast environment. These data were obtained at the NASA Kennedy Space Center (KSC) and the Cape ...

Launa M. Maier; E. Philip Krider; Michael W. Maier

1984-06-01T23:59:59.000Z

384

Table 14b. Average Electricity Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002...

385

2012 Brief: Average wholesale electricity prices down compared to ...  

U.S. Energy Information Administration (EIA)

Average, on-peak (weekdays from 7:00 a.m. to 11:00 p.m.) day-ahead electricity prices were lower across the entire United States in 2012 compared to 2011.

386

Table 14b. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

387

Does anyone have access to 2012 average residential rates by...  

Open Energy Info (EERE)

Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility...

388

Exact Averaging of Atmospheric State and Flow Variables  

Science Conference Proceedings (OSTI)

A new set of averaging rules is put forward that exactly determines the means of air temperature, mixing ratio, and velocity by incorporating weighting factors in accordance with physical conservation laws. For the temperature and velocity, ...

Andrew S. Kowalski

2012-05-01T23:59:59.000Z

389

Figure 88. Annual average Henry Hub spot prices for natural ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 88. Annual average Henry Hub spot prices for natural gas in five cases, 1990-2040 (2011 dollars per million Btu) Reference

390

Figure 86. Annual average Henry Hub spot natural gas prices ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 86. Annual average Henry Hub spot natural gas prices, 1990-2040 (2011 dollars per million Btu) Henry Hub Spot Price 1990.00

391

Using Bayesian Model Averaging to Calibrate Forecast Ensembles  

Science Conference Proceedings (OSTI)

Ensembles used for probabilistic weather forecasting often exhibit a spread-error correlation, but they tend to be underdispersive. This paper proposes a statistical method for postprocessing ensembles based on Bayesian model averaging (BMA), ...

Adrian E. Raftery; Tilmann Gneiting; Fadoua Balabdaoui; Michael Polakowski

2005-05-01T23:59:59.000Z

392

Pennsylvania Average Price of Natural Gas Delivered to Residential...  

Gasoline and Diesel Fuel Update (EIA)

7 10.55 11.24 13.80 16.87 19.85 1989-2013 Commercial Average Price 9.51 9.87 10.27 11.46 12.38 12.89...

393

Semi-supervised training for the averaged perceptron POS tagger  

Science Conference Proceedings (OSTI)

This paper describes POS tagging experiments with semi-supervised training as an extension to the (supervised) averaged perceptron algorithm, first introduced for this task by (Collins, 2002). Experiments with an iterative training on standard-sized ...

Drahomíra "johanka" Spoustová; Jan Haji?; Jan Raab; Miroslav Spousta

2009-03-01T23:59:59.000Z

394

A Statistical Averaging Method for Wind Profiler Doppler Spectra  

Science Conference Proceedings (OSTI)

A new method is presented for Doppler spectral averaging that more reliably identifies the profiler radar return from clear air in the presence of contamination—for example, from migrating bird echoes. These very sensitive radars profile the wind ...

David A. Merritt

1995-10-01T23:59:59.000Z

395

The averaged control system of fast oscillating control systems  

E-Print Network (OSTI)

For control systems that either have an explicit periodic dependence on time or have periodic solutions and small controls, we define an average control system that takes into account all possible variations of the control, and prove that its solutions approximate all solutions of the oscillating systems as oscillations go faster. The dimension of its velocity set is characterised geomtrically. When it is maximum the average system defines a Finsler metric, unfortunately not twice differntiable in general. Under particular assumptions, valid for the control two body system, this Finsler metric generates a Hamiltonian flow on the cotangent bundle. For minimum time control, this average system proves that averaging the Hamiltonian given by the maximum principle is a valid approximation.

Bombrun, Alex

2011-01-01T23:59:59.000Z

396

Implication of Spatial Averaging in Complex-Terrain Wind Studies  

Science Conference Proceedings (OSTI)

Studies of wind over complex terrain have been conducted at three times and two locations in Northern California. Instrumentation included conventional cup-vane anemometers and optical anemometers with spatial averaging over path lengths of 0.6-1 ...

W. M. Porch

1982-09-01T23:59:59.000Z

397

Vehicle Technologies Office: Fact #638: August 30, 2010 Average...  

NLE Websites -- All DOE Office Websites (Extended Search)

8: August 30, 2010 Average Expenditure for a New Car Declines in Relation to Family Earnings to someone by E-mail Share Vehicle Technologies Office: Fact 638: August 30, 2010...

398

Electric Sales, Revenue, and Average Price 2011 - Energy ...  

U.S. Energy Information Administration (EIA)

2001-2010 are Excel zipped files & 1994-2000 are PDF files ... and Average Retail Price for Power Marketers and ... U.S. Department of Energy USA.gov FedStats.

399

U.S. Natural Gas Average Consumption per Commercial Consumer...  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Consumer (Thousand Cubic Feet) U.S. Natural Gas Average Consumption per Commercial Consumer (Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

400

Solar: monthly and annual average global horizontal irradiance...  

Open Energy Info (EERE)

b>  
Global Horizontal Irradiance
NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)
22-year Monthly & Annual Average...

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar: monthly and annual average direct normal irradiance GIS...  

Open Energy Info (EERE)

>  
Direct Normal Irradiance (kWhm2day)
NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)
22-year Monthly & Annual Average...

402

Benthic Boundary-Layer Velocity Profiles: Dependence on Averaging Period  

Science Conference Proceedings (OSTI)

The relationship between benthic boundary-layer velocity profiles and current meter averaging time is investigated using detailed (0.61 Hz) current measurements recorded within 1 m of the bottom on the inner continental shelf. The percentage of ...

Barry M. Lesht

1980-06-01T23:59:59.000Z

403

STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL  

E-Print Network (OSTI)

there is more than one level of floor, wall, or ceiling insulation in a building, or more than one type of a building feature, material, or construction assembly occur in a building, a weighted average

404

Solar: monthly and annual average latitude tilt irradiance GIS...  

Open Energy Info (EERE)

& Annual Average (July 1983 - June 2005)
Parameter: Latitude Tilt Radiation (kWhm2day)
Internet: http:eosweb.larc.nasa.govsse
Note 1:...

405

Some Considerations Relevant to Computing Average Hemispheric Temperature Anomalies  

Science Conference Proceedings (OSTI)

Three data bases of gridded surface temperature anomalies were used to assess the sensitivity of the average estimated Northern Hemisphere (NH) temperature anomaly to: 1) extreme gridpoint values and 2) zonal band contributions. Over the last 100 ...

S. L. Grotch

1987-07-01T23:59:59.000Z

406

New Mexico Natural Gas Average Consumption per Industrial Consumer...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumer (Thousand Cubic Feet) New Mexico Natural Gas Average Consumption per Industrial Consumer (Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

407

New Mexico Natural Gas Average Consumption per Commercial Consumer...  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Consumer (Thousand Cubic Feet) New Mexico Natural Gas Average Consumption per Commercial Consumer (Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

408

Table A44. Average Prices of Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Prices of Purchased Electricity and Steam" 4. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam" ," (kWh)",," (million Btu)" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors"

409

Design, construction, operation, and evaluation of solar systems for industrial process-heat applications in the intermediate-temperature range (212/sup 0/F to 550/sup 0/F). Environmental assessment  

DOE Green Energy (OSTI)

The environmental impacts are assessed for a proposed 50,000 square foot field of single axis tracking, concentrating solar collectors along the Ohio River in southern Ohio. The facility is planned to produce process steam for use in the production of polystyrene. Absorbed solar energy would heat an aliphatic hydrocarbon synthetic heat transfer fluid to a maximum temperature of 500/sup 0/F. The existing environment is briefly described, particularly regarding air quality. The potential environmental impacts of the solar process heat system on the air, water, soil, endangered species and archaeological and historical resources are examined, including risks due to flood and glare and a comparison of alternatives. Also included are a Consent Judgment relating to two coal-fired boilers in violation of EPA regulations, property data of Gulf Synfluid 4CS (a candidate heat transfer fluid), piping and instrumentation diagrams and schematics, site grade and drainage plan, geological survey map, subsurface soil investigation, Ohio endangered species list, Ohio Archaeological Counsel certification list, and a study of heat transfer fluids and their properties. (LEW)

Not Available

410

Method and system for modulation of gain suppression in high average power laser systems  

Science Conference Proceedings (OSTI)

A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

Bayramian, Andrew James (Manteca, CA)

2012-07-31T23:59:59.000Z

411

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

South America from NREL South America from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to the model. The local cloud cover can vary significantly even within a single grid cell as a result of terrain effects and other microclimate influences. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

412

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

Central America and the Carribean from NREL Central America and the Carribean from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to the model. The local cloud cover can vary significantly even within a single grid cell as a result of terrain effects and other microclimate influences. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

413

U.S. Refiner Sales to End Users (Average) Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Type: Sales to End Users, Average Through Retail Outlets Sales for Resale, Average DTW Rack Bulk Sales Type: Sales to End Users, Average Through Retail Outlets Sales for Resale, Average DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Formulation/ Grade Sales Type Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Conventional, Average 3.030 3.137 3.122 3.063 3.042 2.972 1994-2013 Conventional Regular 3.005 3.116 3.102 3.040 3.017 2.948 1994-2013 Conventional Midgrade 3.167 3.256 3.239 3.200 3.193 3.121 1994-2013 Conventional Premium 3.269 3.354 3.327 3.291 3.274 3.203 1994-2013 Oxygenated, Average - - - - - - 1994-2013 Oxygenated Regular - - - - - - 1994-2013 Oxygenated Midgrade - - - - - - 1994-2013

414

Control system for solar heating and cooling  

DOE Green Energy (OSTI)

A control system is being developed that will be capable of operating solar heating and cooling systems covering a wide range of configurations, and using different operating strategies that may be optimal for different climatic regions. To insure widespread applicability of the control system, it is being designed to allow for modification for operating with essentially all practical heating and cooling system configurations and control algorithms simply by interchange of replaceable modules in the circuitry. An experimental heating and cooling system, the main purpose of which is to allow testing and exercise of the controller, was designed so that it could be operated in these various configurations.

Wahlig, M.; Binnall, E.; Dols, C.; Graven, R.; Selph, F.; Shaw, R.; Simmons, M.

1975-08-01T23:59:59.000Z

415

High temperature heat pipes for waste heat recovery  

SciTech Connect

Operation of heat pipes in air at temperatures above 1200/sup 0/K has been accomplished using SiC as a shell material and a chemical vapor deposit (CVD) tungsten inner liner for protection of the ceramic from the sodium working fluid. The CVD tungsten has been used as a distribution wick for the gravity assisted heat pipe through the development of a columnar tungsten surface structure, achieved by control of the metal vapor deposition rate. Wick performance has been demonstrated in tests at approximately 2 kW throughput with a 19-mm-i.d. SiC heat pipe. Operation of ceramic heat pipes in repeated start cycle tests has demonstrated their ability to withstand temperature rise rates of greater than 1.2 K/s.

Merrigan, M.A.; Keddy, E.S.

1980-01-01T23:59:59.000Z

416

The National Ignition Facility National Ignition Campaign Short Pulse Lasers High-Average-Power Laser  

E-Print Network (OSTI)

-Average-Power Laser NIF-1005-11471 07BEW/dj P9765 Agenda #12;P9516NIF-0805-11197 01EIM/dj Stockpile Stewardship #12;P9504NIF-0404-08345r2 27EIM/ld Basic Science and Cosmology #12;NIF-0702-05346rIFSA Fusion Energy Campaign and point design NIF-0305-10564 23MLS/cld P8719 The NIF Laser User Optics Physics Operations

417

Energy Saver 101: Home Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Energy Saver 101: Home Heating Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download individual sections of the infographic or a high resolution version now. homeHeating.pdf homeHeating_slide-01.png homeHeating_slide-02.png homeHeating_slide-03.png homeHeating_slide-04.png homeHeating_slide-05.png

418

Convective Heating of the LIFE Engine Target During Injection  

SciTech Connect

Target survival in the hostile, high temperature xenon environment of the proposed Laser Inertial Fusion Energy (LIFE) engine is critical. This work focuses on the flow properties and convective heat load imposed upon the surface of the indirect drive target while traveling through the xenon gas. While this rarefied flow is traditionally characterized as being within the continuum regime, it is approaching transition where conventional CFD codes reach their bounds of operation. Thus ANSYS, specifically the Navier-Stokes module CFX, will be used in parallel with direct simulation Monte Carlo code DS2V and analytically and empirically derived expressions for heat transfer to the hohlraum for validation. Comparison of the viscous and thermal boundary layers of ANSYS and DS2V were shown to be nearly identical, with the surface heat flux varying less than 8% on average. From the results herein, external baffles have been shown to reduce this heat transfer to the sensitive laser entrance hole (LEH) windows and optimize target survival independent of other reactor parameters.

Holdener, D S; Tillack, M S; Wang, X R

2011-10-24T23:59:59.000Z

419

Government Operation  

Science Conference Proceedings (OSTI)

Use Cases from NBD(NIST Big Data) Requirements WG V1.0. http://bigdatawg. nist.gov/home.php. Contents. Blank Template. Government Operation ...

2013-09-07T23:59:59.000Z

420

Operations Research  

E-Print Network (OSTI)

Mar 1, 2005 ... Operations Research. Report 2005-01. On a closedness theorem. Miklós Ujvári. Marc 2005. Eötvös Loránd University of Sciences. Department ...

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Operating Instructions  

Science Conference Proceedings (OSTI)

... The system operation is center around 3 areas of the equipment 1) Deposition chamber 2) Vaporizer 3) Chiller/cold finger ...

2013-01-18T23:59:59.000Z

422

Geothermal Energy: Residential Space Heating  

DOE Green Energy (OSTI)

The purpose of this study, which was carried out under the auspices of the DGRST, was to determine the best way to use geothermal hot water for residential space heating. It quickly became apparent that the type of heating apparatus used in the housing units was most important and that heat pumps could be a valuable asset, making it possible to extract even more geothermal heat and thus substantially improve the cost benefit of the systems. Many factors play a significant role in this problem. Therefore, after a first stage devoted to analyzing the problem through a manual method which proved quite useful, the systematic consideration of all important aspects led us to use a computer to optimize solutions and process a large number of cases. The software used for this general study can also be used to work out particular cases: it is now available to any interested party through DGRST. This program makes it possible to: (1) take climatic conditions into account in a very detailed manner, including temperatures as well as insolation. 864 cases corresponding to 36 typical days divided into 24 hours each were chosen to represent the heating season. They make it possible to define the heating needs of any type of housing unit. (2) simulate and analyze the behavior in practice of a geothermal heating system when heat is extracted from the well by a simple heat exchanger. This simulation makes it possible to evaluate the respective qualities of various types of heating apparatus which can be used in homes. It also makes it possible to define the best control systems for the central system and substations and to assess quite accurately the presence of terminal controls, such as radiators with thermostatically controlled valves. (3) determine to what extent the addition of a heat pump makes it possible to improve the cost benefit of geothermal heating. When its average characteristics and heating use conditions (price, coefficient of performance, length of utilization, electrical rates, etc.) are taken into account, the heat pump should not be scaled for maximum heating power. Consequently, the program considers several possible sizes, with different installation schemes, and selects for each case the value which corresponds to the lowest cost of heating.

None

1977-03-01T23:59:59.000Z

423

HEAT GENERATION  

DOE Patents (OSTI)

Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)

Imhoff, D.H.; Harker, W.H.

1963-12-01T23:59:59.000Z

424

Bayesian Model Averaging’s Problematic Treatment of Extreme Weather and a Paradigm Shift That Fixes It  

Science Conference Proceedings (OSTI)

Methods of ensemble postprocessing in which continuous probability density functions are constructed from ensemble forecasts by centering functions around each of the ensemble members have come to be called Bayesian model averaging (BMA) or “...

Craig H. Bishop; Kevin T. Shanley

2008-12-01T23:59:59.000Z

425

Average Soil Water Retention Curves Measured by Neutron Radiography  

SciTech Connect

Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

2011-01-01T23:59:59.000Z

426

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

427

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

428

Heat pipe theory and practice: a sourcebook  

SciTech Connect

An introduction to heat pipe operating principles, types, and applications followed by a comprehensive treatment of heat pipe theory, design, and manufacture are presented. The organization of heat pipe theory provides parallel treatment of the fundamental laws of thermodynamics, heat transfer, fluid mechanics, and materials science during heat pipe analysis. For the problem-solving convenience of practicing engineers, design procedures are developed summarizing theoretical information. Methods of summarizing voluminous research information are presented in detail. Current practices in the manufacture of heat pipes are described. Current and potential applications of the heat pipe to energy systems discussed are: heat exchangers, heat recovery for HVAC systems, residential buildings, industrial processes, gasification plants, and thermal storage subsystems.

Chi, S.W.

1976-01-01T23:59:59.000Z

429

Heat Sink Performance Analysis through Numerical Technique  

E-Print Network (OSTI)

The increase in dissipated power per unit area of electronic components sets higher demands on the performance of the heat sink. Also if we continue at our current rate of miniaturisation, laptops and other electronic devices can get heated up tremendously. Hence we require a better heat dissipating system to overcome the excess heat generating problem of using nanoelectronics, which is expected to power the next generation of computers. To handle the excessive and often unpredictable heating up of high performance electronic components like microprocessors, we need to predict the temperature profile of the heat sink used. This also helps us to select the best heat sink for the operating power range of any microprocessor. Understanding the temperature profile of a heat sink and a microprocessor helps us to handle its temperature efficiently for a range of loads. In this work, a method to estimate the normal response of a heat sink to various loads of a microprocessor is explained.

Aravindh, B Sri; Nair, T R Gopalakrishnan

2010-01-01T23:59:59.000Z

430

Geothermal Heat Pump Systems: Applications and Technology Development  

Science Conference Proceedings (OSTI)

This report discusses a hybrid geothermal heat pump system, an efficient, all-electric heating and cooling option for small and large commercial buildings. In this system, the ground loop heat exchanger is sized for winter heating and supplemented by auxiliary heat rejection devices (such as fluid coolers or cooling towers) for summer operation that prevent performance-impeding heat buildup in the earth surrounding the ground loop.

2003-11-03T23:59:59.000Z

431

Operations research  

Science Conference Proceedings (OSTI)

In Evita, Andrew Lloyd Webber and Tim Rice wrote: Politics, the Art of the Possible. To those of us in the operations research community, we postulate: Operations Research, the Science of Better - (i.e. better processes, better systems and better decisions). ...

William P. Pierskalla

2009-01-01T23:59:59.000Z

432

Operation crosscheck  

SciTech Connect

This report consists of three sections covering the three major areas of Lawrence Livermore Laboratory`s participation in Operation Crosscheck. These areas are: Diagnostic Aircraft; Radiochemical Sampling; and Device Assembly and Handling, Barbers Point. The information contained in these sections has been extracted from Crosscheck post-operation reports.

Gilbert, F. C.

1964-11-06T23:59:59.000Z

433

Transient analysis of a two-phase hydrogen heat switch  

DOE Green Energy (OSTI)

A transient, thermal analysis of a two-phase hydrogen heat switch is presented. The heat switch has application to a zero-g, no-moving-part magnetic refrigerator that operates between 7 K and 25 K and provides a one-way thermal path for heat rejection from the refrigerator to the 20 K heat sink. Incorporation of the heat switch is dependent on operating frequency. However, the thermal diode operating characteristic and the high axial thermal conductivity of the heat switch provide advantages over other methods. 3 refs., 13 figs., 2 tabs.

Prenger, C.; Stewart, W.

1990-01-01T23:59:59.000Z

434

Heat reclaimer  

Science Conference Proceedings (OSTI)

A heat reclaimer for the exhaust flue of a heating unit comprises a housing having an air input space, an air output space, and an exhaust space, with a plurality of tubes connected between and communicating the air input space with the air output space and extending through the exhaust space. The exhaust flue of the heating unit is connected into the exhaust space of the housing and an exhaust output is connected to the housing extending from the exhaust space for venting exhaust coming from the heater into the exhaust space to a chimney, for example. A float or level switch is connected to the housing near the bottom of the exhaust space for switching, for example, an alarm if water accumulates in the exhaust space from condensed water vapor in the exhaust. At least one hole is also provided in the housing above the level of the float switch to permit condensed water to leave the exhaust space. The hole is provided in case the float switch clogs with soot. A wiping device may also be provided in the exhaust space for wiping the exterior surfaces of the tubes and removing films of water and soot which might accumulate thereon and reduce their heat transfer capacity.

Bellaff, L.

1981-10-20T23:59:59.000Z

435

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

Wolowodiuk, Walter (New Providence, NJ)

1976-01-06T23:59:59.000Z

436

heat pump | OpenEI  

Open Energy Info (EERE)

heat pump heat pump Dataset Summary Description View 2010 energy efficiency data from AeroSys Inc, Coaire, Cold Point, First Operations, LG Electronics, Nordyne, and Quietside manufacturers. Data includes cooling capacity, cooling performance, heating capacity, and heating performance. Spreadsheet was created by combining the tables in pdf files that are included in the zip file. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords air conditioner central air conditioner efficiency efficient energy heat pump Data application/vnd.ms-excel icon 2010_CentralAC_All.xls (xls, 82.4 KiB) application/zip icon 2010CentralAirConditioner.zip (zip, 398.2 KiB) Quality Metrics Level of Review Some Review

437

Northeast Home Heating Oil Reserve  

Gasoline and Diesel Fuel Update (EIA)

Northeast Home Heating Oil Reserve Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy Information Administration publications, such as the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve Terminal Operator Location (Thousand Barrels) Hess Corp. Groton, CT 500*

438

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

439

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

440

"2012 Average Monthly Bill- Industrial"  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial" Industrial" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Number of Customers","Average Monthly Consumption (kWh)","Average Price (cents/kWh)","Average Monthly Bill (Dollar and cents)" "New England",34164,67854.037,11.83487,8030.4373 "Connecticut",4647,63947.063,12.672933,8103.9685 "Maine",2780,90741.457,7.9819499,7242.9376 "Massachusetts",21145,66710.826,12.566635,8383.3057 "New Hampshire",3444,47247.217,11.83228,5590.423 "Rhode Island",1927,39935.911,10.676724,4263.8471 "Vermont",221,536044.12,9.9796777,53495.475 "Middle Atlantic",45836,126368.14,7.4903534,9465.42 "New Jersey",12729,50817.89,10.516509,5344.2677

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

"2012 Average Monthly Bill- Residential"  

U.S. Energy Information Administration (EIA) Indexed Site

Residential" Residential" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Number of Customers","Average Monthly Consumption (kWh)","Average Price (cents/kWh)","Average Monthly Bill (Dollar and cents)" "New England",6203726,634.13095,15.713593,99.644755 "Connecticut",1454651,730.85302,17.343298,126.75402 "Maine",703770,530.56349,14.658797,77.774225 "Massachusetts",2699141,627.15845,14.912724,93.52641 "New Hampshire",601697,614.81776,16.070168,98.802249 "Rhode Island",435448,597.34783,14.404061,86.042344 "Vermont",309019,565.03618,17.006075,96.090478 "Middle Atlantic",15727423,700.63673,15.272654,107.00582

442

INVERSIONS FOR AVERAGE SUPERGRANULAR FLOWS USING FINITE-FREQUENCY KERNELS  

Science Conference Proceedings (OSTI)

I analyze the maps recording the travel-time shifts caused by averaged plasma anomalies under an 'average supergranule', constructed by means of statistical averaging over 5582 individual supergranules with large divergence signals detected in two months of Helioseismic and Magnetic Imager Dopplergrams. By utilizing a three-dimensional validated time-distance inversion code, I measure a peak vertical velocity of 117 {+-} 2 m s{sup -1} at depths around 1.2 Mm in the center of the supergranule and a root-mean-square vertical velocity of 21 m s{sup -1} over the area of the supergranule. A discrepancy between this measurement and the measured surface vertical velocity (a few m s{sup -1}) can be explained by the existence of the large-amplitude vertical flow under the surface of supergranules with large divergence signals, recently suggested by Duvall and Hanasoge.

Svanda, Michal, E-mail: michal@astronomie.cz [Astronomical Institute, Academy of Sciences of the Czech Republic (v.v.i.), Fricova 298, CZ-25165 Ondrejov (Czech Republic)

2012-11-10T23:59:59.000Z

443

Globally Averaged Atmospheric CFC-11 Concentrations: Monthly and Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorofluorocarbons » Chlorofluorocarbons » Atmospheric CFC-11 Concentrations Globally Averaged Atmospheric CFC-11 Concentrations: Monthly and Annual Data for the Period 1975-1992 DOI: 10.3334/CDIAC/atg.db1010 data Data (DB1010) Investigator M. A. K. Khalil and R. A. Rasmussen Description This data set presents globally averaged atmospheric concentrations of chlorofluorocarbon 11, known also as CFC-11 or F-11 (chemical name: trichlorofluoromethane; formula: CCl3F). The monthly global average data are derived from flask air samples collected at eight sites in six locations over the period August 1980-July 1992. The sites are Barrow (Alaska), Cape Meares (Oregon), Cape Kumukahi and Mauna Loa (Hawaii), Cape Matatula (American Samoa), Cape Grim (Tasmania), Palmer Station, and the

444

Comparison of Average Transport and Dispersion Among a Gaussian, a  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparison of Average Transport and Dispersion Among a Gaussian, a Comparison of Average Transport and Dispersion Among a Gaussian, a Two-Dimensional, and a Three-Dimensional Model Comparison of Average Transport and Dispersion Among a Gaussian, a Two-Dimensional, and a Three-Dimensional Model The Nuclear Regulatory Commission's (NRC's) code for predicting off-site consequences, MACCS2 (Chanin, et al. 1998) (MELCOR Accident Consequence Code System, Version 2), uses a simplified model for atmospheric transport and d ispersion (ATD), that is, a straight-line Gaussian model. The MACCS2 calculations are used by the NRC for planning purposes, for cost-benefit analyses, and in level-3 probabilistic risk analyses (PRAs). The MACCS2 ATD model has been criticized as being overly simplistic, even for its purposes. The justification for its use has been

445

Heat pipes for use in a magnetic field  

DOE Patents (OSTI)

A heat pipe configuration is described for use in a magnetic field environment of a fusion reactor. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2 to 3 times the heat as a cylindrical heat pipe of the same cross sectional area.

Werner, R.W.; Hoffman, M.A.

1981-04-29T23:59:59.000Z

446

Heat pipes for use in a magnetic field  

DOE Patents (OSTI)

A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

Werner, R.W.; Hoffman, M.A.

1983-07-19T23:59:59.000Z

447

Heat pipes for use in a magnetic field  

DOE Patents (OSTI)

A heat pipe configuration for use in a magnetic field environment of a fusion reactor. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area.

Werner, Richard W. (San Ramon, CA); Hoffman, Myron A. (Davis, CA)

1983-01-01T23:59:59.000Z

448

Experimental Study on Energy Efficiency of Heat-source Tower Heat Pump Units in Winter Condition  

Science Conference Proceedings (OSTI)

Building energy consumption in China has been increasing rapidly. And a small increase in the operation efficiency of the air-conditioning system can substantially decrease it. In this paper a new type heat pump is developed to improve the performance ... Keywords: Heat-source tower, Heat pump, Seasonal energy efficiency ratio(SEER), Hermal properties

Li Nianping; Zhang Wenjie; Wang Lijie; Liu Qiuke; Hu Jinhua

2011-01-01T23:59:59.000Z

449

Heat transfer and fluid flow characteristics of microchannels with internal longitudinal fins.  

E-Print Network (OSTI)

??Electronic components generate large amount of heat during their operation, which requires to be dissipated. Over the past decade, internal heat generation levels have exponentially… (more)

Foong, Andrew Jun Li

2009-01-01T23:59:59.000Z

450

Enhanced heat transfer for thermionic power modules  

DOE Green Energy (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

451

Heat exchanger with ceramic elements  

DOE Patents (OSTI)

An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

Corey, John A. (North Troy, NY)

1986-01-01T23:59:59.000Z

452

State heating oil and propane program, 1994--1995 heating season. Final technical report  

SciTech Connect

Propane prices and No. 2 fuel prices during the 1994-1995 heating season are tabulated for the state of Ohio. Nineteen companies were included in the telephone survey of propane prices, and twenty two companies for the fuel oil prices. A bar graph is also presented for average residential prices of No. 2 heating oil.

NONE

1995-05-09T23:59:59.000Z

453

Bounce-averaged Fokker-Planck code for stellarator transport  

Science Conference Proceedings (OSTI)

A computer code for solving the bounce-averaged Fokker-Planck equation appropriate to stellarator transport has been developed, and its first applications made. The code is much faster than the bounce-averaged Monte-Carlo codes, which up to now have provided the most efficient numerical means for studying stellarator transport. Moreover, because the connection to analytic kinetic theory of the Fokker-Planck approach is more direct than for the Monte-Carlo approach, a comparison of theory and numerical experiment is now possible at a considerably more detailed level than previously.

Mynick, H.E.; Hitchon, W.N.G.

1985-07-01T23:59:59.000Z

454

Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)  

DOE Data Explorer (OSTI)

The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.

Heavy Flavor Averaging Group (HFAG)

455

Electrochemical cell operation and system  

DOE Patents (OSTI)

Thermal control in fuel cell operation is affected through sensible heat of process gas by providing common input manifolding of the cell gas flow passage in communication with the cell electrolyte and an additional gas flow passage which is isolated from the cell electrolyte and in thermal communication with a heat-generating surface of the cell. Flow level in the cell gas flow passage is selected based on desired output electrical energy and flow level in the additional gas flow passage is selected in accordance with desired cell operating temperature.

Maru, Hansraj C. (Brookfield Center, CT)

1980-03-11T23:59:59.000Z

456

Operation Terminology  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conservation Magnets require a large amount of power to control a particle beam. In order to conserve energy and money when a beam line is down, Operations will install a...

457

Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions  

E-Print Network (OSTI)

Chemical heat pumps utilizing liquid-vapor reactions can be configured in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place restrictive working fluid requirements on others, but two thermodynamically feasible systems have significant potential advantage over conventional technology. An electric drive reactive heat pump can use smaller heat exchangers and compressor than a vapor-compression machine, and have more flexible operating characteristics. A waste heat driven heat pump (temperature amplifier) using liquid-vapor chemical reactions- can operate with higher coefficient of performance and smaller heat exchangers than an absorption temperature amplifying heat pump. Higher temperatures and larger temperature lifts should also be possible.

Kirol, L.

1987-09-01T23:59:59.000Z

458

Definition: Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Pumps Pumps Jump to: navigation, search Dictionary.png Ground Source Heat Pumps A Ground Source Heat Pump is a central building heating and/or cooling system that takes advantage of the relatively constant year-round ground temperature to pump heat to or from the ground.[1][2][3] View on Wikipedia Wikipedia Definition A geothermal heat pump or ground source heat pump (GSHP) is a central heating and/or cooling system that pumps heat to or from the ground. It uses the earth as a heat source (in the winter) or a heat sink (in the summer). This design takes advantage of the moderate temperatures in the ground to boost efficiency and reduce the operational costs of heating and cooling systems, and may be combined with solar heating to form a geosolar system with even greater efficiency. Ground source heat pumps

459

Residual Fuel Oil Prices, Average - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product/Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1983-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013

460

Pennsylvania Average Price of Natural Gas Delivered to Residential...  

U.S. Energy Information Administration (EIA) Indexed Site

Percent Sold by Local Distribution Companies 91.2 91.2 2006-2011 Commercial Average Price 12.77 14.29 11.83 10.47 10.42 10.21 1967-2012 Local Distribution Companies 11.29 NA...

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Michigan Average Price of Natural Gas Delivered to Residential...  

Annual Energy Outlook 2012 (EIA)

8.75 8.56 9.26 11.63 12.68 13.68 1989-2013 Commercial Average Price 7.67 7.51 7.84 8.78 9.69 10.30...

462

Using Bayesian Model Averaging to Calibrate Forecast Ensembles 1  

E-Print Network (OSTI)

Using Bayesian Model Averaging to Calibrate Forecast Ensembles 1 Adrian E. Raftery, Fadoua forecasting often exhibit a spread-skill relationship, but they tend to be underdispersive. This paper of PDFs centered around the individual (possibly bias-corrected) forecasts, where the weights are equal

Washington at Seattle, University of

463

Information Leakage via Electromagnetic Emanation and Effectiveness of Averaging Technique  

Science Conference Proceedings (OSTI)

It is well known that there is relationship between electromagnetic emanation and processing information in IT devices such as personal computers and smart cards. In this paper, we show how to estimate amount of information that is leaked as electromagnetic ... Keywords: Tempest, Channel capacity, electromagnetic emanation, averaging technique

Hidema Tanaka

2008-04-01T23:59:59.000Z

464

Spatial analysis based on variance of moving window averages  

E-Print Network (OSTI)

R02 R04 R06 R08 R16 I n Window size B R02 R06 R10 R14 R20R04 R08 R12 R16 R24 R36 I n Window size Wu et al. , Fig. 2Based on Variance of Moving Window Averages B. M. Wu, K. V.

Wu, B M; Subbarao, K V; Ferrandino, F J; Hao, J J

2006-01-01T23:59:59.000Z

465

A Vertically Averaged Circulation Model Using Boundary-Fitted Coordinates  

Science Conference Proceedings (OSTI)

A two-dimensional vertically averaged circulation model using boundary-fitted coordinates has been developed for predicting sea level and currants in estuarine and shelf waters. The basic idea of the approach is to use a set of coupled quasi-...

Malcolm L. Spaulding

1984-05-01T23:59:59.000Z

466

Heat Exchangers  

Science Conference Proceedings (OSTI)

Table 16   Ceramic heat exchanger systems...Soaking pit 870â??1230 1600â??2250 Fe, Si, alkalis Solar Turbines â?¦ 4â??8 OD Ã? 180 long (440 tubes) Aluminum melt furnaces 1010 1850 Alkali salts Plate fin GTE 0.6, 1.6 25â??46 Multiple 870â??1370 1600â??2250 Clean (good), alkalis (poor) Coors 0.25, 1.0 30 Ã? 30 Ã? 46 Multiple Clean (good), alkalis (poor) Radiant...

467

Electrically heated liquid tank employing heat pipe heat transfer means  

SciTech Connect

The heating apparatus for applying heat to the interior of a chamber includes a modular, removable, electrical, heat-producing unit and a heat pipe mountable in a wall of the chamber with one end of the pipe arranged to receive heat from the electrical heat producing unit exterior of the housing and with another end of the pipe constructed and arranged to apply heat to the medium within the chamber. The heat pipe has high conductivity with a low temperature differential between the ends thereof and the heat producing unit includes an electric coil positioned about and removably secured to the one end of the heat pipe. The electric coil is embedded in a high thermal conducitivity, low electrical conductivity filler material which is surrounded by a low thermal conductivity insulating jacket and which is received around a metal core member which is removably secured to the one end of the heat pipe.

Shutt, J.R.

1978-12-26T23:59:59.000Z

468

Behavioral determinants of energy consumption in a centrally-heated apartment building  

Science Conference Proceedings (OSTI)

This paper discusses tenant perceptions and behavior regarding heating and ventilation in multifamily buildings. Data were collected at a 60-unit subsidized housing complex for senior citizens. The building has central steam heating and the fuel is neither billed nor metered to individual apartments. Winter indoor temperatures average 26/sup 0/C (79/sup 0/F). In order to explain behavior more fully than the simple statement ''tenants don't pay for the heat,'' we show how the tenants and maintenance staff act as a self-regulating system that determines heating system operation through local optimization. Using data from ethnographic interviews and a questionnaire survey of all the residents, the authors give quantitative measures of reported comfort and strategies for controlling comfort. They also discuss thee factors which tenants consider important for thermal comfort and their choices among various heat control strategies. For examples, why do only 35% use radiator valves to control the heat while 84% use windows. Implications are discussed for new construction and retrofit, as well as for equity and management policies. The authors argue that a proper understanding of the behavioral context in multifamily buildings is essential, both to avoid ineffective and costly retrofits and to suggest low-cost measures which address the behavioral determinants of energy use.

De Cicco, J.M.; Kempton, W.

1987-01-01T23:59:59.000Z

469

Spray cooling heat-transfer with subcooled trichlorotrifluoroethane (Freon-113) for vertical constant heat flux surfaces  

SciTech Connect

Experiments were done using subcooled Freon-113 sprayed vertically downward. Local and average heat transfers were investigated fro Freon-113 sprays with 40 C subcooling, droplet sizes 200-1250{mu}m, and droplet breakup velocities 5-29 m/s. Full-cone type nozzles were used to generate the spray. Test assemblies consisted of 1 to 6 7.62 cm vertical constant heat flux surfaces parallel with each other and aligned horizontally. Distance between heated surfaces was varied from 6.35 to 76.2 mm. Steady state heat fluxes as high as 13 W/cm{sup 2} were achieved. Dependence on the surface distance from axial centerline of the spray was found. For surfaces sufficiently removed from centerline, local and average heat transfers were identical and correlated by a power relation of the form seen for normal-impact sprays which involves the Weber number, a nondimensionalized temperature difference, and a mass flux parameter. For surfaces closer to centerline, the local heat transfer depended on vertical location on the surface while the average heat transfer was described by a semi-log correlation involving the same parameters. The heat transfer was independent of the distance (gap) between the heated surfaces for the gaps investigated.

Kendall, C.M. [Lawrence Livermore National Lab., CA (United States); Holman, J.P. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Mechanical Engineering

1996-06-06T23:59:59.000Z

470

Solar heat collector  

SciTech Connect

A solar heat collector comprises an evacuated transparent pipe; a solar heat collection plate disposed in the transparent pipe; a heat pipe, disposed in the transparent pipe so as to contact with the solar heat collection plate, and containing an evaporable working liquid therein; a heat medium pipe containing a heat medium to be heated; a heat releasing member extending along the axis of the heat medium pipe and having thin fin portions extending from the axis to the inner surface of the heat medium pipe; and a cylindrical casing surrounding coaxially the heat medium pipe to provide an annular space which communicates with the heat pipe. The evaporable working liquid evaporates, receiving solar heat collected by the heat collection plate. The resultant vapor heats the heat medium through the heat medium pipe and the heat releasing member.

Yamamoto, T.; Imani, K.; Sumida, I.; Tsukamoto, M.; Watahiki, N.

1984-04-03T23:59:59.000Z

471

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

472

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

473

Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump  

E-Print Network (OSTI)

In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air. The most common method of air source heat pump frost removal is reverse-cycle defrost. During the defrosting operation, the heat pump runs in the cooling mode. The defrost process is accomplished by reversing the normal heating mode. In this paper, the effect of the heat storage tank to the air source heat pump defrosting is test. Owing to the existence of the heat storage tank, thermal inertia of the loop is relatively high. The frosting and defrosting course of the air source heat pump have little effect on the room temperature.

Wang, Z.; Gu, J.; Lu, Z.

2006-01-01T23:59:59.000Z

474

Geothermal district heating systems  

DOE Green Energy (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

475

Sensible and Latent Heat Flux Measurements over the Ocean  

Science Conference Proceedings (OSTI)

This papar presents an extensive act of sensible heat (Reynolds flux and dissipation methods) and latent heat (dissipation method) flux measurements from a stable deep water tower and from ships on the deep sea. Operational difficulties ...

W. G. Large; S. Pond

1982-05-01T23:59:59.000Z

476

Nuclear Maintenance Applications Center: Heat Exchanger Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides plant personnel with information on the operation, maintenance, and performance of heat exchangers. The contents of this guide will assist plant personnel in improving heat exchanger reliability, performance, and maintenance practices.

2009-06-14T23:59:59.000Z

477

Control system for electric water heater with heat pump external heat source  

Science Conference Proceedings (OSTI)

A control system for an electric water heater operatively associated with an external heat source, such as a heat pump. The water heater includes a water storage tank provided with an electric tank heating unit having a tank thermostat which closes in response to water temperature in the tank, allowing a flow of current through the tank heating unit so as to turn it on to heat the water, and which opens when the tank thermostat has been satisfied, interrupting the current flow so as to turn the tank heating unit off. The control system as responsive to the initial current surge through the tank heating unit when the tank thermostat closes to interrupt the current flow to the tank heating unit so as to maintain the heating unit off and to turn on the external heat source and maintain it on until the tank thermostat opens. The initial current surge cleans the contacts of the tank thermostat by burning off any insulating oxide residues which may have formed on them. The control system includes means responsive to abnormal conditions which would prevent the external heat source from heating water effectively for turning off the external heat source and turning on the tank heating unit and maintaining the external heat source off and the tank heating unit on until the tank thermostat is satisfied.

Shaffer Jr., J. E.; Picarello, J. F.

1985-09-10T23:59:59.000Z

478

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

479

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1979-01-01T23:59:59.000Z

480

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

very low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating...

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating in homes...

482

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

483

SSA Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Operations (SSA-Ops) Area Operations (SSA-Ops) "BOREAS Ops" was located at the Snodrifters Lodge, in Candle Lake, Saskatchewan. Radiosonde balloon launch at Ops The NASA Helicopter lands at Ops A meeting at the Snodrifter's Lodge Release of a radiosonde at the SSA operations center in Candle Lake. Back to the BOREAS Photo Page Index Other Sites: NSA Photos ||NSA-BP Photos | NSA-Fen Photos | NSA-OA Photos | NSA-OBS Photos | NSA-OJP Photos | NSA-UBS Photos | NSA-YJP Photos | NSA-Ops Photos SSA Photos || SSA-Airport Photos | SSA-Fen Photos | SSA-Mix Photos | SSA-OA Photos | SSA-OBS Photos | SSA-OJP Photos | SSA-YA Photos | SSA-YJP Photos | SSA-Ops Photos | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data Citation || Rate Us || Help | User Services - Tel: +1 (865) 241-3952 or E-mail: uso@daac.ornl.gov

484

BOREAS Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Study Area Operations/Thompson Airport (NSA-Ops) Study Area Operations/Thompson Airport (NSA-Ops) NSA Operations (NSA-Ops) The Keewatin Air Hanger: site of BOREAS Ops 1994 Dr. Piers Sellers working in Ops, 1994 BOREAS "Air Force" The NASA C-130 The University of Wyoming King Air The NASA Helicopter The NRC Twin Otter The NCAR Electra The Ontario Chieftain Back to the BOREAS Photo Page Index Other Sites: NSA Photos ||NSA-BP Photos | NSA-Fen Photos | NSA-OA Photos | NSA-OBS Photos | NSA-OJP Photos | NSA-UBS Photos | NSA-YJP Photos | NSA-Ops Photos SSA Photos || SSA-Airport Photos | SSA-Fen Photos | SSA-Mix Photos | SSA-OA Photos | SSA-OBS Photos | SSA-OJP Photos | SSA-YA Photos | SSA-YJP Photos | SSA-Ops Photos | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data Citation || Rate Us || Help |

485

Irregular spacing of heat sources for treating hydrocarbon containing formations  

SciTech Connect

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

486

Average monthly gasoline price to fall to $3.43 by September  

U.S. Energy Information Administration (EIA) Indexed Site

monthly gasoline price to fall to $3.43 by September monthly gasoline price to fall to $3.43 by September The U.S. average monthly retail price of gasoline is expected to decline by about 18 cents per gallon between May and September, according to the new forecast from the U.S. Energy Information Administration. The lower price reflects, in part, slightly lower crude oil prices that account for about two-thirds of the cost at the pump. The largest price drops are expected in the Midwest states as refineries serving that region, which had been down for planned and unplanned maintenance, return to operation. For the year as a whole, the annual average retail gasoline price is forecasted to decline from $3.63 a gallon last year to $3.49 a gallon this year...and then drop to $3.37 per gallon in 2014

487