Powered by Deep Web Technologies
Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heat Transfer Operators Associated with Quantum Operations  

E-Print Network [OSTI]

Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.

Ç. Aksak; S. Turgut

2011-04-14T23:59:59.000Z

2

A Model Collision Operator for Orbit Averaged Monte Carlo Codes  

SciTech Connect (OSTI)

Modelling of fast ion populations, e.g. during ion cyclotron resonance heating, requires accurate treatment of both the fast ions and the thermal populations, while retaining the effects of wide guiding centre orbits. Often the ion-ion collisions are modelled as test particles colliding against a Maxwellian background. However, this type of operator generates a transport of thermal ions on the time scale of ion-ion collisions, and not on the ion-electron time scale as suggested by neoclassical theory. Various approaches have been made to correct this defect. Here we introduce a radial electric field so that the friction between the trapped and passing ions balances the diffusion due to ion-ion collisions.

Hellsten, T.; Johnson, T. [Alfven Laboratory, School of Electrical Engineering, KTH, Association VR-Euratom (Sweden)

2006-11-30T23:59:59.000Z

3

areally averaged heat: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chulwoo Jung; Christoph Lehner 2014-02-18 56 The Fallacy of Averages University of Kansas - KU ScholarWorks Summary: of component variables as well, we found that ignoring...

4

Renewable Combined Heat and Power Dairy Operations  

E-Print Network [OSTI]

horsepower Guascor model SFGLD-560 biogas-fired lean burn internal combustion (IC) engine and generator set and modify the existing biogas toelectricity combined heat and power (CHP) system operated at Fiscalini bacteria to remove hydrogen sulfide presented in the biogas. Source: Fiscalini Farms Term: March 2011

5

TEMPERED OPERATORS AND THE HEAT KERNEL AND COMPLEX POWERS OF ELLIPTIC PSEUDODIFFERENTIAL OPERATORS  

E-Print Network [OSTI]

TEMPERED OPERATORS AND THE HEAT KERNEL AND COMPLEX POWERS OF ELLIPTIC PSEUDODIFFERENTIAL OPERATORS operator and complex powers of b-pseudodi#27;erential operators, as the heat operator and complex powers are the Laplace and Mellin transforms, respectively, of the resolvent. The heat operator and complex powers

Loya, Paul

6

Control and optimal operation of simple heat pump cycles  

E-Print Network [OSTI]

Control and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd Skogestad in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined

Skogestad, Sigurd

7

Development of a high average current polarized electron source with long cathode operational lifetime  

SciTech Connect (OSTI)

Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

2007-02-01T23:59:59.000Z

8

Hot Water Heating System Operation and Energy Conservation  

E-Print Network [OSTI]

Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

Shao, Z.; Chen, H.; Wei, P.

2006-01-01T23:59:59.000Z

9

Optimization of the Heating System Operation  

E-Print Network [OSTI]

on the basis of the variation of outdoor temperature, and in this way, the heating system can be optimized....

Xu, W.; Mao, S.

2006-01-01T23:59:59.000Z

10

NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

Hall, Julian

11

NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4. Distilled naphtha can be used only to produce gasoline or jet fuel. Distilled oil can be used to produce

Hall, Julian

12

Focused cathode design to reduce anode heating during vircator operation  

SciTech Connect (OSTI)

Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)] [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

2013-10-15T23:59:59.000Z

13

Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade  

SciTech Connect (OSTI)

The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

Josh A. Salmond

2009-08-07T23:59:59.000Z

14

Automatic coke oven heating control system at Burns Harbor for normal and repair operation  

SciTech Connect (OSTI)

An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

Battle, E.T.; Chen, K.L. [Bethlehem Steel Corp., Burns Harbor, IN (United States); [Bethlehem Steel Corp., PA (United States)

1997-12-31T23:59:59.000Z

15

Entirely passive heat pipe apparatus capable of operating against gravity  

DOE Patents [OSTI]

The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 meters and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

Koenig, Daniel R. (Santa Fe, NM)

1982-01-01T23:59:59.000Z

16

Heat exchanger efficiently operable alternatively as evaporator or condenser  

DOE Patents [OSTI]

A heat exchanger adapted for efficient operation alternatively as evaporator or condenser and characterized by flexible outer tube having a plurality of inner conduits and check valves sealingly disposed within the outer tube and connected with respective inlet and outlet master flow conduits and configured so as to define a parallel flow path for a first fluid such as a refrigerant when flowed in one direction and to define a serpentine and series flow path for the first fluid when flowed in the opposite direction. The flexible outer tube has a heat exchange fluid, such as water, flowed therethrough by way of suitable inlet and outlet connections. The inner conduits and check valves form a package that is twistable so as to define a spiral annular flow path within the flexible outer tube for the heat exchange fluid. The inner conduits have thin walls of highly efficient heat transfer material for transferring heat between the first and second fluids. Also disclosed are specific materials and configurations.

Ecker, Amir L. (Dallas, TX)

1981-01-01T23:59:59.000Z

17

TRANSIENT HEAT TRANSFER ANALYSIS FOR SRS RADIOACTIVE TANK OPERATION  

SciTech Connect (OSTI)

The primary objective of the present work is to perform a heat balance study for type-I waste tank to assess the impact of using submersible mixer pumps during waste removal. The temperature results calculated by the model will be used to evaluate the temperatures of the slurry waste under various tank operating conditions. A parametric approach was taken to develop a transient model for the heat balance study for type-I waste tanks such as Tank 11, during waste removal by SMP. The tank domain used in the present model consists of two SMP?s for sludge mixing, one STP for the waste removal, cooling coil system with 36 coils, and purge gas system. The sludge waste contained in Tank 11 also has a decay heat load of about 43 W/m{sup 3} mainly due to the emission of radioactive gamma rays. All governing equations were established by an overall energy balance for the tank domain, and they were numerically solved. A transient heat balance model used single waste temperature model, which represents one temperature for the entire waste liquid domain contained in the tank at each transient time.

Lee, S.

2013-06-27T23:59:59.000Z

18

Control and optimal operation of simple heat pump cycles Jrgen B. Jensen and Sigurd Skogestad  

E-Print Network [OSTI]

Control and optimal operation of simple heat pump cycles Jørgen B. Jensen and Sigurd Skogestad cycle. Keywords: Operation, heat pump cycle, cyclic process, charge, self-optimizing control 1. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (re- frigerator, A

Skogestad, Sigurd

19

Control system for, and a method of, heating an operator station of a work machine  

DOE Patents [OSTI]

There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.

Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad

2005-04-05T23:59:59.000Z

20

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH  

E-Print Network [OSTI]

00149 -1- 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH R-1234yf Sorina Mortada, Ph.D. student, Center for Energy and Processes Abstract: Significant improvements in energy performance of air-to-air heat pumps are the major reason

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily.  

E-Print Network [OSTI]

7-47 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily. HP Wnet,in QH QL TL TH Analysis The maximum heat pump coefficient of performance would occur if the heat pump were completely reversible, 5.7 K026K300 K300 COP maxHP, LH H TT

Bahrami, Majid

22

Degrees of freedom and optimal operation of simple heat pump cycles  

E-Print Network [OSTI]

Degrees of freedom and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined as COPh = Qh

Skogestad, Sigurd

23

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network [OSTI]

solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

24

Improving Heating System Operations Using Water Re-Circulation  

E-Print Network [OSTI]

In order to solve the imbalance problem of a heating system, brought about by consumer demand and regulation, and save the electricity energy consumed by a circulation pump, a water mixing and pressure difference control heating system is proposed...

Li, F.; Han, J.

2006-01-01T23:59:59.000Z

25

Numerical Study of Convective Heat Transfer in Flat Tube Heat Exchangers Operating in Self-Sustained Oscillatory Flow Regimes  

E-Print Network [OSTI]

Laminar, two-dimensional, constant-property numerical simulations of flat tube heat exchanger devices operating in flow regimes in which self-sustained oscillations occur were performed. The unsteady flow regimes were transition flow regimes...

Fullerton, Tracy

2012-02-14T23:59:59.000Z

26

Heat-and-Run: Leveraging SMT and CMP to Manage Power Density Through the Operating System  

E-Print Network [OSTI]

Heat-and-Run: Leveraging SMT and CMP to Manage Power Density Through the Operating System Mohamed and thermal ability of packages to dissipate heat. Power den- sity is characterized by localized chip hot Performance, Reliability Keywords Power density, heat, CMP, SMT, migration 1 INTRODUCTION Power

Vijaykumar, T. N.

27

Optimal Operation of closed cycles for heating and Jrgen B. Jensen Sigurd Skogestad  

E-Print Network [OSTI]

super-heating, pressure, liquid level or valve set-point. Unlike open systems the initial charge applications have also merged together to give a system able to operate in both heating and cooling mode indicates that 33% of the gained heat is addet as electricity. In industrial processes, especially

Skogestad, Sigurd

28

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents [OSTI]

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

1996-06-11T23:59:59.000Z

29

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents [OSTI]

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

1996-01-01T23:59:59.000Z

30

Project Profile: High Operating Temperature Liquid Metal Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A freezing point below 100C Stable at temperatures greater than 800C Low corrosion of stainless steel and high-nickel content alloys A heat capacity greater than 2...

31

Effects of operating conditions on a heat transfer fluid aerosol  

E-Print Network [OSTI]

of heat transfer fluid aerosols from process leaks. To simulate industrial leaks, aerosol formation from a plain orifice into ambient air is studied by measuring liquid drop sizes and size distributions at various distances from an orifice. Measurements...

Sukmarg, Passaporn

2000-01-01T23:59:59.000Z

32

Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids  

SciTech Connect (OSTI)

An experimental study was performed to investigate the operation characteristics of a cylindrical miniature grooved heat pipe using aqueous CuO nanofluid as the working fluid at some steady cooling conditions. The experiments were carried out under both the steady operation process and the unsteady startup process. The experiment results show that substituting the nanofluid for water as the working fluid can apparently improve the thermal performance of the heat pipe for steady operation. The total heat resistance and the maximum heat removal capacity of the heat pipe using nanofluids can maximally reduce by 50% and increase by 40% compared with that of the heat pipe using water, respectively. For unsteady startup process, substituting the nanofluid for water as the working fluid, cannot only improve the thermal performance, but also reduce significantly the startup time. (author)

Wang, Guo-Shan; Song, Bin; Liu, Zhen-Hua [School of Mechanical Engineering, Shanghai Jiaotong University, 200240 Shanghai (China)

2010-11-15T23:59:59.000Z

33

High Operating Temperature Liquid Metal Heat Transfer Fluids...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

plant. A successful candidate fluid would allow for the reduction of the levelized cost of energy by increasing the operating temperature for the CSP plant power cycle, which...

34

Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant  

E-Print Network [OSTI]

Heating Water Suuply Chilled Water Return Heating Water Return To User New System ESL-IC-08-10-57 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 2 attract attention due..., R6 450 1, 1 ESL-IC-08-10-57 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 3 (one office building and one building with hotel rooms and leisure facilities) since November...

Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

35

Heating, Current Drive, Operations and Diagnostics Issues Understand implications of reduced repetition rate, is it adequate for the  

E-Print Network [OSTI]

Heating, Current Drive, Operations and Diagnostics Issues Operations · Understand implications of ECRH to improve startup. Heating · ICRF is the base line heating system, compare with NBI and ECRH withstand the anticipated heat loads? Diagnostics · Capability of beam diagnostics for J(r), E(r), etc

36

Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition  

SciTech Connect (OSTI)

This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

None

1980-09-01T23:59:59.000Z

37

High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)  

SciTech Connect (OSTI)

The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-12-01T23:59:59.000Z

38

Optimal Operation of a Waste Incineration Plant for District Heating Johannes Jaschke, Helge Smedsrud, Sigurd Skogestad*, Henrik Manum  

E-Print Network [OSTI]

Optimal Operation of a Waste Incineration Plant for District Heating Johannes J¨aschke, Helge@chemeng.ntnu.no off-line. This systematic approach is here applied to a waste incineration plant for district heating. In district heating networks, operators usually wish to ob- tain the lowest possible return temperature

Skogestad, Sigurd

39

Design and Operation of Fluid Beds for Heating, Cooling and Quenching Operations  

E-Print Network [OSTI]

. Castings are then normalized and tempered in separate fluid bath furnaces with the entire operation being completed within a few hours of pouring. Fluid baths are also used for cooling of spent sand and for quenching of castings. Trial applications...

Kemp, W. E.

1981-01-01T23:59:59.000Z

40

NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.  

SciTech Connect (OSTI)

Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This compares with a value of 43.9 for the reference plant. This latter plant has a reactor outlet temperature of 850 C and the two high temperature heat exchangers. The reduction in reactor outlet temperature from 850 C to 700 C reduces the tritium permeability rate in the IHX metal by a factor of three and thermal creep by five orders of magnitude. The design option for reducing PHX temperature from 800 C to 200 C reduces the permeability there by three orders of magnitude. In that design option this heat exchanger is the single 'choke-point' for tritium migration from the nuclear to the chemical plant.

VIlim, R.; Nuclear Engineering Division

2009-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The new Kaiserstuhl coking plant: The heating system -- Design, construction and initial operating experience  

SciTech Connect (OSTI)

At the end of 1992 the new coke plant Kaiserstuhl in Dortmund/Germany with presently the largest coke ovens world-wide started its production operation in close linkage to the Krupp-Hoesch Metallurgical Works after about 35 months construction time. This plant incorporating comprehensive equipment geared to improve environmental protection is also considered as the most modern coke plant of the world. The heating-system and first results of operation will be presented.

Strunk, J.

1996-12-31T23:59:59.000Z

42

Entirely passive heat-pipe apparatus capable of operating against gravity  

DOE Patents [OSTI]

The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

Koenig, D.R.

1981-02-11T23:59:59.000Z

43

Determination of the Number of Tube Rows to Obtain Closure for Volume Averaging Theory Based Model of Fin-and-Tube Heat Exchangers  

E-Print Network [OSTI]

Fig. 3 Journal of Heat Transfer Grid system for 2-row caseDomain and Grid System. Since the fin-and- tube heat

Zhou, Feng; Hansen, Nicholas E; Geb, David J; Catton, Ivan

2011-01-01T23:59:59.000Z

44

Establishing low-power operating limits for liquid metal heat pipes  

SciTech Connect (OSTI)

Liquid metal heat pipes operated at power throughputs well below their design point for long durations may fail as a result of the working fluid migrating to a cold region within the pipe, freezing there, and hot returning to the evaporator section. Eventually sufficient working fluid inventory may be lost to the cold region to cause a local dry-out condition in the evaporator. A joint experimental and analytical effort between the Air Force Phillips Laboratory and Los Alamos National Laboratory is underway to investigate the phenomena. Experiments include both high temperature liquid metal and low temperature organic heat pipes. To date, a low temperature working fluid has been selected and its performance in a heat pipe validated. Additionally, a low-temperature heat pipe has been fabricated and is presently being tested.

Secary, J. (Phillips Lab., Kirtland AFB, NM (United States)); Merrigan, M.A.; Keddy, M.D. (Los Alamos National Lab., NM (United States))

1992-01-01T23:59:59.000Z

45

Establishing low-power operating limits for liquid metal heat pipes  

SciTech Connect (OSTI)

Liquid metal heat pipes operated at power throughputs well below their design point for long durations may fail as a result of the working fluid migrating to a cold region within the pipe, freezing there, and hot returning to the evaporator section. Eventually sufficient working fluid inventory may be lost to the cold region to cause a local dry-out condition in the evaporator. A joint experimental and analytical effort between the Air Force Phillips Laboratory and Los Alamos National Laboratory is underway to investigate the phenomena. Experiments include both high temperature liquid metal and low temperature organic heat pipes. To date, a low temperature working fluid has been selected and its performance in a heat pipe validated. Additionally, a low-temperature heat pipe has been fabricated and is presently being tested.

Secary, J. [Phillips Lab., Kirtland AFB, NM (United States); Merrigan, M.A.; Keddy, M.D. [Los Alamos National Lab., NM (United States)

1992-05-01T23:59:59.000Z

46

E-Print Network 3.0 - as-operated heat loss Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

((svsv: Kylteknik): Kylteknik) 424503 E424503 E 20102010 88 --rzrz 8.8. Heat pumps, heat pipes,Heat pumps, heat pipes, Summary: heat transfer capacity and rate...

47

PUBLISHED VERSION Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall  

E-Print Network [OSTI]

PUBLISHED VERSION Ion cyclotron resonance frequency heating in JET during initial operations.1063/1.4884354 #12;Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-mode regime in Alcator C-Moda) Phys. Plasmas 20, 055904 (2013); 10.1063/1.4803914 Upgrade of the infrared

48

Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall  

SciTech Connect (OSTI)

In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall materials on the JET Ion Cyclotron Resonance Frequency (ICRF) operation is assessed and some important properties of JET plasmas heated with ICRF are highlighted. A???20% reduction of the antenna coupling resistance is observed with the ILW as compared with the JET carbon (JET-C) wall. Heat-fluxes on the protecting limiters close the antennas, quantified using Infra-Red thermography (maximum 4.5?MW/m{sup 2} in current drive phasing), are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. The location of the tungsten ICRF specific source could not be identified but some experimental observations indicate that main-chamber W components could be an important impurity source: for example, the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions, and Be evaporation in the main chamber results in a strong reduction of the impurity level. In L-mode plasmas, the ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 15%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating performance; the power is typically deposited at the plasma centre while the radiation is mainly from the outer part of the plasma bulk. Application of ICRF heating in H-mode plasmas has started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core has been observed.

Jacquet, P., E-mail: philippe.jacquet@ccfe.ac.uk; Monakhov, I.; Arnoux, G.; Brix, M.; Graham, M.; Meigs, A.; Sirinelli, A. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Bobkov, V.; Devaux, S.; Drewelow, P.; Pütterich, T. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Czarnecka, A. [Association Euratom-IPPLM, Hery 23, 01-497 Warsaw (Poland); Lerche, E.; Van-Eester, D. [Association EURATOM-Belgian State, ERM-KMS, Brussels (Belgium); Mayoral, M.-L. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EFDA Close Support Unit, Garching (Germany); Brezinsek, S. [IEK-4, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany); Campergue, A.-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Klepper, C. C. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); and others

2014-06-15T23:59:59.000Z

49

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network [OSTI]

effect from CO2 emission resulting from the combustion of fossil fuels in utility power plants and the use of chlorofluorocarbon refrigerants, which is currently thought to affect depletion of the ozone layer. The ban on fluorocarbon fluids has been...LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS V. Murugavel and R. Saravanan Refrigeration and Air conditioning Laboratory Department of Mechanical Engineering, Anna University...

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

50

EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

51

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

SciTech Connect (OSTI)

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

52

Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm  

SciTech Connect (OSTI)

Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

2011-06-01T23:59:59.000Z

53

The Earth Institute, Columbia University14 Annual Donor Report 2009 15 Heat waves are on the rise as the climate changes and average temperatures increase.  

E-Print Network [OSTI]

The Earth Institute, Columbia University14 Annual Donor Report 2009 15 Heat waves are on the rise University and Barnard College. Known as the Columbia Green Roof Consortium, it is led by a team of two Earth solutions in a responsible and scientific way--and Columbia had plenty of roof space to work with. "They

54

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network [OSTI]

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

55

Steady state heat transfer experimental studies of LHC superconducting cables operating in cryogenic environment of superfluid helium  

E-Print Network [OSTI]

The heat management is a basic and fundamental aspect of the superconducting magnets used in the CERN Large Hadron Collider. Indeed, the coil temperature must be kept below the critical value, despite the heat which can be generated or deposited in the magnet during the normal operations. Therefore, this thesis work aims at determining the heating power which can be extracted from the superconducting cables of the LHC, specially through their electrical insulation which represents the main thermal barrier. An experimental measurement campaign in superfluid helium bath was performed on several samples reproducting the main LHC magnets. The heating power was generated in the sample by Joule heating and the temperature increase was measured by means of Cernox bare chip and thermocouples. An innovative instrumentation technique which also includes the in-situ calibration of the thermocouples was developed. A thorough uncertainty analysis on the overall measurement chain concluded the experimental setup. The prese...

Santandrea, Dario; Tuccillo, Raffaele; Granieri, Pier Paolo.

56

Influence of viscous friction heating on the efficiency of columns operated under very high pressures  

SciTech Connect (OSTI)

When columns packed with very fine particles are operated at high mobile phase velocities, the friction of the mobile phase percolating through the column bed generates heat. This heat dissipates along and across the column and axial and radial temperature gradients appear. The wall region of the column tends to be cooler than its center, and due to the influence of temperature on the mobile phase viscosity and on the equilibrium constant of analytes, the band velocity is not constant across the column. This radial heterogeneity of the temperature distribution across the column contributes to band broadening. This phenomenon was investigated assuming a cylindrically symmetrical column and using the general dispersion theory of Aris, which relates the height equivalent to the theoretical plate (HETP) contribution due to a radial heterogeneity of the column to the radial distribution of the linear velocities of a compound peak and to the radial distribution of its apparent dispersion coefficients in the column bed. The former is known from the temperature gradient across the column, the temperature dependencies of the mobile phase viscosity, and the retention factor of the compound. The latter is derived from the known expression of the transverse reduced HETP equation for the column. The values of the HETP calculated with the Aris model and a classical HETP equation were compared to those measured on a 2.1 x 50 mm Acquity BEH-C{sub 18} column, run at flow rates of 0.6, 0.95, 1.30, and 1.65 mL/min, with pure acetonitrile as the mobile phase and naphtho[2,3-a]pyrene as the retained compound. These two sets of data are in generally good agreement, although the experimental values of the HETP tend to increase faster with increasing mobile phase velocity than the calculated values.

Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

2009-01-01T23:59:59.000Z

57

PUBLISHED VERSION ICRF heating in JET during initial operations with the ITER-like wall  

E-Print Network [OSTI]

. Heat-fluxes on the protecting limiters close the antennas quantified using Infra-Red (IR) thermography

58

A Simple Control Scheme for Near-optimal Operation of Parallel Heat Exchanger Systems  

E-Print Network [OSTI]

. In the chemical and process industries, large amounts of energy can be saved by using heat recovery in heat exchanger networks, which transfer energy in form of heat Corresponding author: email: skoge@ntnu.no, phone exchanger networks for saving energy and costs has led to a large body of research, and most

Skogestad, Sigurd

59

7-84E The claim of an inventor about the operation of a heat engine is to be evaluated. Assumptions The heat engine operates steadily.  

E-Print Network [OSTI]

efficiency would be 0.45 R1000 R550 11maxth, H L T T K 550 R 1000 R HE HQ 15,000 Btu/h 5 hp When the first law is applied to the engine above, Btu/h720,27Btu/h000,15 hp1 Btu/h2544.5 )hp5(net ¸¸ ¹ · ¨¨ © § LH QWQ The actual thermal efficiency of the proposed heat engine is then 459.0 hp1 Btu/h2544.5 Btu/h27

Bahrami, Majid

60

7-122 A solar pond power plant operates by absorbing heat from the hot region near the bottom, and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant  

E-Print Network [OSTI]

calculated above. 7-123 A Carnot heat engine cycle is executed in a closed system with a fixed mass of steam can have is to be determined. Analysis The highest thermal efficiency a heat engine operating between transfer. Therefore, the maximum efficiency of the actual heat engine will be lower than the value

Bahrami, Majid

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

SciTech Connect (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

62

Comparison between a spray column and a sieve tray column operating as liquid-liquid heat exchangers  

SciTech Connect (OSTI)

The performance of a spray column and a sieve tray column was compared as a liquid-liquid heat exchanger. In carrying out these studies a 15.2 cm (6.0 in.) diameter column, 183 cm (6.0 ft) tall was utilized. The performance of the spray column as a heat exchanger was shown to correlate with the model of Letan-Kehat which has as a basis that the heat transfer is dominated by the wakeshedding characteristics of the drops over much of the column length. This model defines several hydrodynamic zones along the column of which the wake formation zone at the bottom appears to have the most efficient heat transfer. The column was also operated with four perforated plates spaced two column diameters apart in order to take advantage of the wake formation zone heat transfer. The plates induce coalescence of the dispersed phase and reformation of the drops, and thus cause a repetition of the wake formation zone. It is shown that the overall volumetric heat transfer coefficient in a perforated plate column is increased by a minimum of eleven percent over that in a spray column. A hydrodynamic model that predicts the performance of a perforated plate column is suggested.

Keller, A.; Jacobs, H.R.; Boehm, R.F.

1980-12-01T23:59:59.000Z

63

Measurement of limiter heating due to fusion product losses during high fusion power deuterium-tritium operation of TFTR  

SciTech Connect (OSTI)

Preliminary analysis has been completed on measurements of limiter heating during high fusion power deuterium-tritium (D-T) operation of TFTR, in an attempt to identify heating from alpha particle losses. Recent operation of TFTR with a 50-50 mix of D-T has resulted in fusion power output ({approx} 6.2 MW) orders of magnitude above what was previously achieved on TFTR. A significantly larger absolute number of particles and energy from fusion products compared to D-D operation is expected to be lost to the limiters. Measurements were made in the vicinity of the midplane ({plus_minus} 30{degree}) with thermocouples mounted on the tiles of an outboard limiter. Comparisons were made -between discharges which were similar except for the mix of deuterium and tritium beam sources. Power and energy estimates of predicted alpha losses were as high as 0.13 MW and 64 kJ. Depending on what portion of the limiters absorbed this energy, temperature rises of up to 42 {degrees}C could be expected, corresponding to a heat load of 0.69 MJ/m{sup 2} over a 0.5 sec period, or a power load of 1.4 MW/m{sup 2}. There was a measurable increase in the limiter tile temperature as the fusion power yield increased with a more reactive mixture of D and T at constant beam power during high power D-T operation. Analysis of the data is being conducted to see if the alpha heating component can be extracted. Measured temperature increases were no greater than 1 {degree}C, indicating that there was probably neither an unexpectedly large fraction of lost particles nor unexpected localization of the losses. Limits on the stochastic ripple loss contribution from alphas can be deduced.

Janos, A.; Owens, D.K.; Darrow, D.; Redi, M.; Zarnstorff, M.; Zweben, S.

1995-03-01T23:59:59.000Z

64

Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams  

E-Print Network [OSTI]

on an aluminium melting furnace at the ALCOA Massena Integrated Aluminum Works in upstate New York. Waste heat from an aluminum melting furnace is captured for general plant use for the first time in this plant. It is accomplished with advanced fluid bed heat... recovery that typically can save energy equivalent to 40% of the furnace firing rate. Previous attempts to recovery energy conven tionally on this type of furnace were unsuccessful due to fouling. The resolution of this fouling problem by using...

Kreeger, A. H.

65

Guide to Combined Heat and Power Systems for Boiler Owners and Operators,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Source Heat2 December 2006 DOEthe

66

Comparative Performance Analysis of IADR Operating in Natural Gas-Fired and Waste-Heat CHP Modes  

SciTech Connect (OSTI)

Fuel utilization can be dramatically improved through effective recycle of 'waste' heat produced as a by-product of on-site or near-site power generation technologies. Development of modular compact cooling, heating, and power (CHP) systems for end-use applications in commercial and institutional buildings is a key part of the Department of Energy's (DOE) energy policy. To effectively use the thermal energy from a wide variety of sources which is normally discarded to the ambient, many components such as heat exchangers, boilers, absorption chillers, and desiccant dehumidification systems must be further developed. Recently a compact, cost-effective, and energy-efficient integrated active-desiccant vapor-compression hybrid rooftop (IADR) unit has been introduced in the market. It combines the advantages of an advanced direct-expansion cooling system with the dehumidification capability of an active desiccant wheel. The aim of this study is to compare the efficiency of the IADR operation in baseline mode, when desiccant wheel regeneration is driven by a natural gas burner, and in CHP mode, when the waste heat recovered from microturbine exhaust gas is used for desiccant regeneration. Comparative analysis shows an excellent potential for more efficient use of the desiccant dehumidification as part of a CHP system and the importance of proper sizing of the CHP components. The most crucial factor in exploiting the efficiency of this application is the maximum use of thermal energy recovered for heating of regeneration air.

Petrov, Andrei Y [ORNL; Sand, James R [ORNL; Zaltash, Abdolreza [ORNL

2006-01-01T23:59:59.000Z

67

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Source Heat2 December 2006 DOEthe Public15/2014

68

Operational limit of closed loop pulsating heat pipes Honghai Yang a,*, S. Khandekar b  

E-Print Network [OSTI]

a College of Environmental Science and Engineering, Donghua University, Shanghai 200051, PR China b of a total of 40 copper tubes with 1 mm and 2 mm inner diameter, respectively. R123 was employed important ones. In both cases the limit will manifest itself by an unacceptable over- heating

Khandekar, Sameer

69

PROBABILISTIC AVERAGES OF JACOBI OPERATORS HELGE KRUGER  

E-Print Network [OSTI]

and Simon tell us that [14] (1.3) ess(H) = J(H) (J) and [13] (1.4) ac(H) J(H) ac(J). Here (H), ess(H) Z ess , where Z ess denotes the essential closure of Z. One might ask whether (1.4) might be strengthened to (1.8) Z ess J(H) ac(J). Unfortunately this is not the case, we will give an example following

Krueger, Helge

70

Improving central heating plant performance at the defense construction supply center (DCSC): Advanced operation and maintenance methods. Final report  

SciTech Connect (OSTI)

A 1987 air pollution emissions test done by the U.S. Army Environmental Hygiene Agency (USAEHA) identified several problems with the central heating plant (CHP) at the Defense Construction Supply Center (DCSC), Columbus, OH. Though DCSC repaired the specified problems, improved coal specifications, and tried to reduce air infiltration, CHP performance remained at unacceptable levels. Consequently, DCSC contracted the U.S. Army Construction Engineering Research Laboratories (USACERL) to apply advanced operation and maintenance procedures to improve its combustion system. This study employed a system-wide approach to evaluate the CHP 5 fuel storage, combustion, heat distribution, and the control of air emissions. Many short-term improvements to the CHP were identified and tested. Subsequent combustion and air emissions tests revealed that the recommended improvements successfully increased CHP efficiency. Long-term improvements were also recommended to help maintain the short-term improvements.

Savoie, M.J.; Standerfer, J.; Schmidt, C.M.; Gostich, J.; Mignacca, J.

1994-11-01T23:59:59.000Z

71

Method and apparatus for operating a self-starting air heating system  

DOE Patents [OSTI]

A self-starting, fuel fired, air heating system including a fuel burner fired vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser and heating the air. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with a method and apparatus which on start-up prevents the vapor generator's vapor output from being conducted to the turbine until a predetermined pressure differential has been achieved. However, after the vapor flow is once permitted, it cannot again be prevented until after the fuel burner has been shut off and restarted.

Heinrich, Charles E. (Mentor, OH)

1983-12-06T23:59:59.000Z

72

Thermionic converter with differentially heated cesium-oxygen source and method of operation  

SciTech Connect (OSTI)

A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

Rasor, Ned S. (Cupertino, CA); Riley, David R. (West Newton, PA); Murray, Christopher S. (Bethel Park, PA); Geller, Clint B. (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

73

Thermionic converter with differentially heated cesium-oxygen source and method of operation  

SciTech Connect (OSTI)

A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided, wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

Rasor, N.S.; Riley, D.R.; Murray, C.S.; Geller, C.B.

1998-12-01T23:59:59.000Z

74

ICRF heating at JET: From operations with a metallic wall to the long term perspective of a DT campaign  

SciTech Connect (OSTI)

The first series of experiments with the ITER-like wall (ILW) will start mid-2011 with D plasmas and will continue through 2012-13 with H, {sup 4}He and D plasmas, and up to 2014-15, when a DT campaign is proposed. In this paper, the previous experience at JET is reviewed to set the scene for the future challenges of ICRF operation including change in the ICRF coupling, W impurity production and evaluation of localized power loads due the RF sheaths. development in a Beryllium/Tungsten environment of ICRF heating schemes for the non activated and the DT phases of ITER.

Mayoral, M.-L.; Graham, M.; Jacquet, Ph.; Monakhov, I.; Riccardo, V. [Euratom/CCFE Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Eriksson, L.-G. [European Commission, Brussels, B-1049 (Belgium); Lerche, E.; Van Eester, D. [LPP-ERM/KMS, Association Euratom-'Belgian State' (Belgium)

2011-12-23T23:59:59.000Z

75

RELAP5/MOD3 simulation of the loss of residual heat removal during midloop operation experiment conducted at the ROSA-IV/ Large Scale Test Facility  

E-Print Network [OSTI]

The modeling of the complex thermal hydraulics Of reactor systems involves the use Of experimental test systems as well as numerical codes. A simulation of the loss of residual heat removal (RHR) during midloop operations was performed using...

Banerjee, Sibashis Sanatkumar

2012-06-07T23:59:59.000Z

76

Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems  

E-Print Network [OSTI]

panel system are given by its energy (the consumption of gas for heating, electricity for pumps Temperature Radiant Heating Systems Milorad Boji1*, Dragan Cvetkovi1 , Jasmina Skerli1 , Danijela Nikoli1, wall heating, floor heating, ceiling heating, EnergyPlus SUMMARY Low temperature heating panel systems

Paris-Sud XI, Université de

77

Operation strategy for solid oxide fuel cell systems for small-scale stationary applications  

E-Print Network [OSTI]

or heat at the site where it is used. This concept reduces grid losses and focuses on demand rather than consumption by providing both heat and power on site without transmission losses. The high grade heat produced variation during the operation. The analysis will consider an average profile for heat and power demand

Berning, Torsten

78

Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report  

SciTech Connect (OSTI)

A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

1980-05-01T23:59:59.000Z

79

Commissioning Process and Operational Improvement in the District Heating and Cooling-APCBC  

E-Print Network [OSTI]

-09-25 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 18 Energy simulation In case of the variable cooling water flow system, the cooling water outlet temperature should be a parameter...,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000 13,000 2012/10/072012/10/28 2012/11/18 2012/12/09 2012/12/30 2/24 ? 3/2 C o n su m ed e le ct ri ci ty p er h ea t u n it [ k W h /G J ] Variable water flow control Cooling tower fun Chilled...

Takase,T.; Takada,O; Shima,K.; Moriya, M.; Shimoda,Y.

2014-01-01T23:59:59.000Z

80

A Modified Analytical Method for Simulating Cyclic Operation of Vertical U-Tube Ground-Coupled Heat Pumps  

E-Print Network [OSTI]

as a heat source/sink for heat pumps. Using the soil rather than the ambient air as the heat source in 1 heating and the heat sink in cooling offers potential thermodynamic advantages since the earth is normally at a more favorable temperature for heat...-coupled heat exchangers have proceeded in two different directions: (1) numerical solutions of the heat diffusion equation in the soil and the ground-coil [Mei and Fischer, 1984] and (2) modified analytical solutions [Al- Juwayhel, 1981; Bose et al., 1985...

Dobson, M. K.; O'Neal, D. L.; Aldred, W.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Yearly average performance of the principal solar collector types  

SciTech Connect (OSTI)

The results of hour-by-hour simulations for 26 meteorological stations are used to derive universal correlations for the yearly total energy that can be delivered by the principal solar collector types: flat plate, evacuated tubes, CPC, single- and dual-axis tracking collectors, and central receiver. The correlations are first- and second-order polynomials in yearly average insolation, latitude, and threshold (= heat loss/optical efficiency). With these correlations, the yearly collectible energy can be found by multiplying the coordinates of a single graph by the collector parameters, which reproduces the results of hour-by-hour simulations with an accuracy (rms error) of 2% for flat plates and 2% to 4% for concentrators. This method can be applied to collectors that operate year-around in such a way that no collected energy is discarded, including photovoltaic systems, solar-augmented industrial process heat systems, and solar thermal power systems. The method is also recommended for rating collectors of different type or manufacturer by yearly average performance, evaluating the effects of collector degradation, the benefits of collector cleaning, and the gains from collector improvements (due to enhanced optical efficiency or decreased heat loss per absorber surface). For most of these applications, the method is accurate enough to replace a system simulation.

Rabl, A.

1981-01-01T23:59:59.000Z

82

Measured Impact on Space Conditioning Energy Use in a Residence Due to Operating a Heat Pump Water Heater inside the Conditioned Space  

SciTech Connect (OSTI)

The impact on space conditioning energy use due to operating a heat pump water heater (HPWH) inside the conditioned space is analyzed based on 2010-2011 data from a research house with simulated occupancy and hot water use controls. The 2700 ft2 (345 m2) house is located in Oak Ridge, TN (mixed-humid climate) and is equipped with a 50 gallon (189 l) HPWH that provided approximately 55 gallons/d (208 l/d) of hot water at 120 F (46 C) to the house during the test period. The HPWH has been operated every other week from December 2010 through November 2011 in two modes; a heat pump only mode, and a standard mode that utilizes 15355 Btu/hr (4500 W) resistance heating elements. The energy consumption of the air-source heat pump (ASHP) that provides space conditioning for the house is compared for the two HPWH operating modes with weather effects taken into account. Impacts during the heating and cooling seasons are compared.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2012-01-01T23:59:59.000Z

83

Polarized electron beams at milliampere average current  

SciTech Connect (OSTI)

This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

Poelker, Matthew [JLAB

2013-11-01T23:59:59.000Z

84

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

85

Optimization of the design and mode of operation of a QD laser for reducing the heat-to-bitrate ratio  

SciTech Connect (OSTI)

Heat dissipation under the high-speed modulation of quantum dot edge-emitting lasers is considered. It is shown that, for a given laser diode, there is a bias current at which the heat-to-bitrate ratio is minimized. Moreover, there exists a certain optimal optical loss of the laser cavity at which the lowest heat-to-bitrate ratio is provided for any design of edge-emitting lasers that can be fabricated from an epitaxial structure. The heat-to-bitrate ratio and the corresponding bitrate are numerically calculated and analytical expressions are derived. It is demonstrated that the heat-to-bitrate ratio of quantum dot edge-emitting lasers can be less than 0.4 pJ/bit at a bitrate exceeding 10 Gbit/s.

Zhukov, A. E., E-mail: zhukale@gmail.com; Savelyev, A. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kryzhanovskaya, N. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Gordeev, N. Yu.; Shernyakov, Yu. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Payusov, A. S.; Nadtochiy, A. M.; Zubov, F. I.; Korenev, V. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)

2013-08-15T23:59:59.000Z

86

Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions  

SciTech Connect (OSTI)

This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

87

Dual source heat pump  

DOE Patents [OSTI]

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

88

Policies supporting Heat Pump Technologies  

E-Print Network [OSTI]

Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

Oak Ridge National Laboratory

89

Polarized electron beams at milliampere average current  

SciTech Connect (OSTI)

This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today’s CEBAF polarized source operating at ? 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

2013-11-07T23:59:59.000Z

90

Electron Boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle scattering for fast modeling of electron cyclotron resonance discharge  

E-Print Network [OSTI]

cyclotron resonance ECR heating. Typically, the operating gas pressures in ECR reactors range from 10 5Electron Boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle scattering for fast modeling of electron cyclotron resonance discharge I. Kaganovich,1,* M. Misina,2, S. V. Berezhnoi

Kaganovich, Igor

91

Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation  

SciTech Connect (OSTI)

Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

Clark, Thomas M [Principal Investigator; Erlach, Celeste [Communications Mgr.

2014-12-30T23:59:59.000Z

92

Multiple source heat pump  

DOE Patents [OSTI]

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

93

Averaging Hypotheses in Newtonian Cosmology  

E-Print Network [OSTI]

Average properties of general inhomogeneous cosmological models are discussed in the Newtonian framework. It is shown under which circumstances the average flow reduces to a member of the standard Friedmann--Lema\\^\\i tre cosmologies. Possible choices of global boundary conditions of inhomogeneous cosmologies as well as consequences for the interpretation of cosmological parameters are put into perspective.

T. Buchert

1995-12-20T23:59:59.000Z

94

Application of microwave heating to ceramic processing: Design and initial operation of a 2.45-GHz single-mode furnace  

SciTech Connect (OSTI)

High-power microwave and millimeter-wave sources are currently being applied to ceramic processing studies at the Naval Research Laboratory (NRL). A single-mode cavity microwave furnace, operating in the TE{sub 103} mode at 2.45 GHz, is operational and is being used to investigate sintering of nanocrystalline ceramics. This paper reports the design of the 2.45-GHz furnace and its use in initial microwave sintering experiments on nanocrystalline alumina and titania compacts. The high purity Al{sub 2}O{sub 3} and TiO{sub 2} nanocrystalline powders used in the sintering experiments were prepared by the sol-gel method. These powders were first uniaxially pressed to 14 MPa, cold isostatically pressed (CIP`ed) to various pressures {ge}420 MPa, and finally sectioned into wafers. The density of the green compacts was 30 to 38% theoretical density (TD). The compacts were placed in insulating fiberboard caskets which were sufficiently lossy to provide hybrid heating at room temperature. The compacts were heated in the microwave furnace for up to three hours at temperatures {ge}1720 C. The temperature of the workpiece was monitored using an optical pyrometer. Final densities up to 80% TD have been obtained to date for Al{sub 2}O{sub 3} and up to 52% TD for TiO{sub 2}. The sintered compacts were characterized by X-ray diffraction and by scanning electron microscopy (SEM) to determine the phase and grain size.

Fliflet, A.W. [Naval Research Lab., Washington, DC (United States)] [Naval Research Lab., Washington, DC (United States); Bruce, R.W.; Kinkead, A.K. [Sachs/Freeman Associates Inc., Landover, MD (United States)] [and others] [Sachs/Freeman Associates Inc., Landover, MD (United States); and others

1996-06-01T23:59:59.000Z

95

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

96

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

97

E-Print Network 3.0 - area average temperature Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Fisheries Sciences Collection: Environmental Sciences and Ecology 24 The Greenhouse Effect Temperature Equilibrium Summary: - it is neither heating nor cooling on average....

98

Geothermal heating for Caliente, Nevada  

SciTech Connect (OSTI)

Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

Wallis, F.; Schaper, J.

1981-02-01T23:59:59.000Z

99

Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs  

E-Print Network [OSTI]

An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

Huang, Y.; Sun, D.

2006-01-01T23:59:59.000Z

100

Evaluations of average level spacings  

SciTech Connect (OSTI)

The average level spacing for highly excited nuclei is a key parameter in cross section formulas based on statistical nuclear models, and also plays an important role in determining many physics quantities. Various methods to evaluate average level spacings are reviewed. Because of the finite experimental resolution, to detect a complete sequence of levels without mixing other parities is extremely difficult, if not totally impossible. Most methods derive the average level spacings by applying a fit, with different degrees of generality, to the truncated Porter-Thomas distribution for reduced neutron widths. A method that tests both distributions of level widths and positions is discussed extensivey with an example of /sup 168/Er data. 19 figures, 2 tables.

Liou, H.I.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Effects of heat and mass transport on the hydrodynamics and stability of liquid desiccant films  

E-Print Network [OSTI]

5.8 Average liquid properties heat capacity, thermal5.9 Average liquid properties heat capacity, thermalFigure 5.8: Average liquid properties heat capacity, thermal

Pineda Vargas, Sergio Manuel

2013-01-01T23:59:59.000Z

102

Heat Treating Apparatus  

DOE Patents [OSTI]

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

103

Heat pipe array heat exchanger  

DOE Patents [OSTI]

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

104

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

105

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

106

High-Average Power Facilities  

SciTech Connect (OSTI)

There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

Dowell, David H.; /SLAC; Power, John G.; /Argonne

2012-09-05T23:59:59.000Z

107

On the Computational Power of Molecular Heat Engines  

E-Print Network [OSTI]

A heat engine is a machine which uses the temperature difference between a hot and a cold reservoir to extract work. Here both reservoirs are quantum systems and a heat engine is described by a unitary transformation which decreases the average energy of the bipartite system. On the molecular scale, the ability of implementing such a unitary heat engine is closely connected to the ability of performing logical operations and classical computing. This is shown by several examples: (1) The most elementary heat engine is a SWAP-gate acting on 1 hot and 1 cold two-level systems with different energy gaps. (2) An optimal unitary heat engine on a pair of 3-level systems can directly implement OR and NOT gates, as well as copy operations. The ability to implement this heat engine on each pair of 3-level systems taken from the hot and the cold ensemble therefore allows universal classical computation. (3) Optimal heat engines operating on one hot and one cold oscillator mode with different frequencies are able to cal...

Janzing, D

2005-01-01T23:59:59.000Z

108

Energy recovery from waste incineration: Assessing the importance of district heating networks  

SciTech Connect (OSTI)

Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

Fruergaard, T.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, T., E-mail: tha@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

109

Applying Learnable Evolution Model to Heat Exchanger Design Kenneth A. Kaufman and Ryszard S. Michalski*  

E-Print Network [OSTI]

of the evaporator tubes in the heat exchanger of an air conditioner. This is a very difficult problem because conditioner, refrigerant flows through a loop. It is superheated and placed in contact with cooler outside air conditions, manufacturers of air conditioning systems currently assume in their models average operating

Michalski, Ryszard S.

110

Heat pump having improved defrost system  

DOE Patents [OSTI]

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

1998-01-01T23:59:59.000Z

111

Heat pump having improved defrost system  

DOE Patents [OSTI]

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

Chen, F.C.; Mei, V.C.; Murphy, R.W.

1998-12-08T23:59:59.000Z

112

Finding of No Significant Impact and Final Environmental Assessment for the Future Location of Heat Source/Radioisotope Power System Assembly and Testing and Operations Currently Located at the Mound Site  

SciTech Connect (OSTI)

The U.S. Department of Energy (the Department) has completed an Environmental Assessment for the Future Location of the Heat Source/Radioisotope Power System Assembly and Test. Operations Currently Located at the Mound Site. Based on the analysis in the environmental assessment, the Department has determined that the proposed action, the relocation of the Department's heat source and radioisotope power system operations, does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the ''National Environmental Policy Act'' of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required, and the Department is issuing this Finding of No Significant Impact (FONSI).

N /A

2002-08-30T23:59:59.000Z

113

On the Computational Power of Molecular Heat Engines  

E-Print Network [OSTI]

A heat engine is a machine which uses the temperature difference between a hot and a cold reservoir to extract work. Here both reservoirs are quantum systems and a heat engine is described by a unitary transformation which decreases the average energy of the bipartite system. On the molecular scale, the ability of implementing such a unitary heat engine is closely connected to the ability of performing logical operations and classical computing. This is shown by several examples: (1) The most elementary heat engine is a SWAP-gate acting on 1 hot and 1 cold two-level systems with different energy gaps. (2) An optimal unitary heat engine on a pair of 3-level systems can directly implement OR and NOT gates, as well as copy operations. The ability to implement this heat engine on each pair of 3-level systems taken from the hot and the cold ensemble therefore allows universal classical computation. (3) Optimal heat engines operating on one hot and one cold oscillator mode with different frequencies are able to calculate polynomials and roots approximately. (4) An optimal heat engine acting on 1 hot and n cold 2-level systems with different level spacings can even solve the NP-complete problem KNAPSACK. Whereas it is already known that the determination of ground states of interacting many-particle systems is NP-hard, the optimal heat engine is a thermodynamic problem which is NP-hard even for n non-interacting spin systems. This result suggest that there may be complexity-theoretic limitations on the efficiency of molecular heat engines.

Dominik Janzing

2005-02-02T23:59:59.000Z

114

Boiling heat transfer in a hydrofoil-based micro pin fin heat sink  

E-Print Network [OSTI]

Boiling heat transfer in a hydrofoil-based micro pin fin heat sink Ali KosÃ?ar, Yoav Peles-based micro pin fin heat sink was investigated. Average two-phase heat transfer coefficients were obtained intermittent and spray-annular flows. Heat transfer coefficient trends and flow morphologies were used to infer

Peles, Yoav

115

Absorption heat pump system  

DOE Patents [OSTI]

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

1984-01-01T23:59:59.000Z

116

Heat Pipes: An Industrial Application  

E-Print Network [OSTI]

This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

Murray, F.

1984-01-01T23:59:59.000Z

117

Challenges in Industrial Heat Recovery  

E-Print Network [OSTI]

This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

Dafft, T.

2007-01-01T23:59:59.000Z

118

Designing, selecting and installing a residential ground-source heat pump system  

SciTech Connect (OSTI)

It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A recent assessment indicates that if 20% of US homes replaced their existing space-conditioning and water-heating systems with properly designed, installed and operated state-of-the-art GSHP systems, it would yield significant benefits each year. These include 0.8 quad British thermal units (Btu) of primary energy savings, 54.3 million metric tons of CO{sub 2} emission reductions, $10.4 billion in energy cost savings and 43.2 gigawatts of reduction in summer peak electrical demand.

Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL; Munk, Jeffrey D [ORNL

2010-01-01T23:59:59.000Z

119

HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB  

SciTech Connect (OSTI)

Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher

2012-07-01T23:59:59.000Z

120

Averaged dynamics of ultra-relativisitc charged particles beams  

E-Print Network [OSTI]

In this thesis, we consider the suitability of using the charged cold fluid model in the description of ultra-relativistic beams. The method that we have used is the following. Firstly, the necessary notions of kinetic theory and differential geometry of second order differential equations are explained. Then an averaging procedure is applied to a connection associated with the Lorentz force equation. The result of this averaging is an affine connection on the space-time manifold. The corresponding geodesic equation defines the averaged Lorentz force equation. We prove that for ultra-relativistic beams described by narrow distribution functions, the solutions of both equations are similar. This fact justifies the replacement of the Lorentz force equation by the simpler {\\it averaged Lorentz force equation}. After this, for each of these models we associate the corresponding kinetic model, which are based on the Vlasov equation and {\\it averaged Vlasov equation} respectively. The averaged Vlasov equation is simpler than the original Vlasov equation. This fact allows us to prove that the differential operation defining the averaged charged cold fluid equation is controlled by the {\\it diameter of the distribution function}, by powers of the {\\it energy of the beam} and by the time of evolution $t$. We show that the Vlasov equation and the averaged Vlasov equation have similar solutions, when the initial conditions are the same. Finally, as an application of the {\\it averaged Lorentz force equation} we re-derive the beam dynamics formalism used in accelerator physics from the Jacobi equation of the averaged Lorentz force equation.

Ricardo Gallego Torromé

2012-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Heat pump with freeze-up prevention  

DOE Patents [OSTI]

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

Ecker, Amir L. (Dallas, TX)

1981-01-01T23:59:59.000Z

122

Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets  

SciTech Connect (OSTI)

This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.

O'Brien, James Edward; Sohal, Manohar Singh

2000-11-01T23:59:59.000Z

123

Heat pump apparatus  

DOE Patents [OSTI]

A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

1983-01-01T23:59:59.000Z

124

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

125

Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor  

SciTech Connect (OSTI)

This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

Donna P. Guillen

2012-07-01T23:59:59.000Z

126

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

SciTech Connect (OSTI)

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

127

Heat and mass exchanger  

DOE Patents [OSTI]

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2007-09-18T23:59:59.000Z

128

Heat and mass exchanger  

DOE Patents [OSTI]

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2011-06-28T23:59:59.000Z

129

Industrial Heat Pump Case Study  

E-Print Network [OSTI]

with operating the evaporator. The open-cycle heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. (Steam was the original heat source but is now only needed for start...

Wagner, J. R.; Brush, F. C.

130

Better than Average? - Green Building Certification in International Projects  

E-Print Network [OSTI]

. An Enterprise of the Ebert-Consulting Group 1004 Pennsylvania Avenue, SE Washington, D.C. 20003, USA 00 12 02/ 6 08 - 13 34 o.baumann@eb-engineers.com Better than Average? - Green Building Certification in International Projects Green Building..., green building rating systems focus on sustainability for the entire life-cycle of buildings and therefore offer great opportunities for enhancing building operation, when applied and used appropriately. This presentation gives an overview...

Baumann, O.

2008-01-01T23:59:59.000Z

131

Passive heat transfer means for nuclear reactors  

DOE Patents [OSTI]

An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

Burelbach, James P. (Glen Ellyn, IL)

1984-01-01T23:59:59.000Z

132

Refrigerant charge management in a heat pump water heater  

DOE Patents [OSTI]

Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

Chen, Jie; Hampton, Justin W.

2014-06-24T23:59:59.000Z

133

Proceedings: Heat exchanger workshop  

SciTech Connect (OSTI)

Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

Not Available

1987-07-01T23:59:59.000Z

134

STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director

135

Selling Geothermal Systems The "Average" Contractor  

E-Print Network [OSTI]

Selling Geothermal Systems #12;The "Average" Contractor · History of sales procedures · Manufacturer Driven Procedures · What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." · It should

136

NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger  

SciTech Connect (OSTI)

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

2008-09-01T23:59:59.000Z

137

Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings  

E-Print Network [OSTI]

Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings Redouane) 141-149" DOI : 10.1016/j.enbuild.2013.12.047 #12;ABSTRACT In several situations, a heat pump occur. Unlike a reversible heat pump that works alternatively in heating or cooling, a HPS operates

Paris-Sud XI, Université de

138

E-Print Network 3.0 - absorption-sorption heat pumps Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

139

E-Print Network 3.0 - absorption-type heat pumps Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

140

Rational analysis of mass, momentum, and heat transfer phenomena in liquid storage tanks under realistic operating conditions: 2. Application to a feasibility study  

SciTech Connect (OSTI)

This is the second part of a two-part paper that deals with modeling the thermal performances of storage tanks of liquid water coupled with solar-assisted heatpump systems. The computer code THESTA, described in detail in the first part, has been applied to compare configurations which differ from one another in the distribution and thickness of the insulating panels. These numerical experiments show very clearly the capability of the code in simulating realistic operating conditions. The validity of the present release is also discussed. The results obtained have been assumed to be a reliable theoretical support to the definition of the features of the storage device of a pilot plant.

Parrini, F.; Vitale, S. (ENEL-Italian National Electricity Board-CRTN, Milan (Italy)); Castellano, L. (MATEC S.r.l., Milan (Italy))

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)  

SciTech Connect (OSTI)

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

Not Available

2014-11-01T23:59:59.000Z

142

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring  

SciTech Connect (OSTI)

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

Dentz, J.; Henderson, H.; Varshney, K.

2014-09-01T23:59:59.000Z

143

arabidopsis small heat: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wasted heat could be converted to useful power, it would Columbia University 369 Heat testing methodology comparison. Open Access Theses and Dissertations Summary: ??Pre-operative...

144

alter heat chock: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other...

145

ampicillin increased heat: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other...

146

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Systems for Boiler Owners and Operators Guide to Combined Heat and Power Systems for Boiler Owners and Operators This guide presents useful information for...

147

Study of Frost Growth on Heat Exchangers Used as Outdoor Coils in Air Source Heat Pump Systems.  

E-Print Network [OSTI]

??During winter heating operation, the outdoor coil of a heat pump acts as an evaporator and when the ambient temperature is near freezing, the moisture… (more)

Padhmanabhan, Sankaranarayanan K.

2011-01-01T23:59:59.000Z

148

Heat storage with CREDA  

SciTech Connect (OSTI)

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

149

Asymptotic Analysis of Sample Average Approximation for ...  

E-Print Network [OSTI]

Feb 23, 2012 ... Stochastic Optimization Problems with Joint Chance Constraints ...... in Matlab 7.9.0 installed in a PC with Windows XP operating system.

2012-02-23T23:59:59.000Z

150

Extracting gluon condensate from the average plaquette  

E-Print Network [OSTI]

The perturbative contribution in the average plaquette is subtracted using Borel summation and the remnant of the plaquette is shown to scale as a dim-4 condensate. A critical review is presented of the renormalon subtraction scheme that claimed a dim-2 condensate. The extracted gluon condensate is compared with the latest result employing high order (35-loop) calculation in the stochastic perturbation theory.

Lee, Taekoon

2015-01-01T23:59:59.000Z

151

Laser Fusion Energy The High Average Power  

E-Print Network [OSTI]

Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

152

Optimization of Wind Turbine Operation  

E-Print Network [OSTI]

Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

153

Microchannel heat sink assembly  

DOE Patents [OSTI]

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

154

Hilbert Space Average Method and adiabatic quantum search  

E-Print Network [OSTI]

We discuss some aspects related to the so-called Hilbert space Average Method, as an alternative to describe the dynamics of open quantum systems. First we present a derivation of the method which does not make use of the algebra satisfied by the operators involved in the dynamics, and extend the method to systems subject to a Hamiltonian that changes with time. Next we examine the performance of the adiabatic quantum search algorithm with a particular model for the environment. We relate our results to the criteria discussed in the literature for the validity of the above-mentioned method for similar environments.

A. Perez

2009-01-19T23:59:59.000Z

155

Absorption-heat-pump system  

DOE Patents [OSTI]

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, G.; Perez-Blanco, H.

1983-06-16T23:59:59.000Z

156

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

157

Absorptive Recycle of Distillation Waste Heat  

E-Print Network [OSTI]

condenser operates above ambient temperature, the rejected heat also contains unused availability. By incorporating an absorption heat pump (AHP) into the distillation process, these sources of unused availability can be tapped so as to recycle (and hence...

Erickson, D. C.; Lutz, E. J., Jr.

1982-01-01T23:59:59.000Z

158

Scoping heat transfer analysis of a completely-blocked Type-Q septifoil  

SciTech Connect (OSTI)

Heat removal mechanisms for a completely-blocked Type-Q (new design) septifoil situated in an otherwise normally operating K-reactor are investigated in this report. The best-estimate maximum septifoil heat generation rate for a 26.2{degrees}C cooling water inlet temperature is 119 to 141 kW depending on the counter-current flow limitation correlation chosen. The corresponding reactor powers are 648 and 768 MW or 27 and 32% of 2400 MW (historical annual averaged full power). These estimates are based on a steady-state scoping analysis and have a large uncertainty.

Flach, G.P.

1991-12-01T23:59:59.000Z

159

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-12-25T23:59:59.000Z

160

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-01-01T23:59:59.000Z

162

Evaluation of heat stress in an aluminum smelter  

E-Print Network [OSTI]

of heat stress and heat strain was evaluated for the aluminum smelter workers at Alcoa, Rockdale Operations. Personal, environmental, and metabolic factors that contribute to heat-related illnesses were identified. The effectiveness of current...

Rose, Stacy Rahkell

1999-01-01T23:59:59.000Z

163

`Heat pumps in Smart Grids' IEA Annex 42  

E-Print Network [OSTI]

facility Scandinavian interconnections Demand side Response (via smart grid) Industrial Residential.M. Wagener Managing Consultant OPERATING AGENT: #12;GAS HEAT PUMPS COMMERCIAL SECTOR RESEARCH, STRATEGY AUTOMATION HEAT PUMPS DOMESTIC AND COMMERCIAL BUILDINGS WORKING GROUP THERMAL DRIVEN HEAT PUMPS TARGET

Oak Ridge National Laboratory

164

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

165

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

166

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

167

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

168

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

169

Frostless heat pump having thermal expansion valves  

DOE Patents [OSTI]

A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN)

2002-10-22T23:59:59.000Z

170

Heat pump assisted geothermal heating system for Felix Spa, Romania  

SciTech Connect (OSTI)

The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

Rosca, Marcel; Maghiar, Teodor

1996-01-24T23:59:59.000Z

171

Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL  

SciTech Connect (OSTI)

An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

2008-06-01T23:59:59.000Z

172

adsorption heat pump: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Utilization Websites Summary: Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995...

173

Reduce Your Heating Bills with Better Insulation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average 4.13 per gallon this winter, an increase of about...

174

Industrial Heat Pump Design Options  

E-Print Network [OSTI]

There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

Gilbert, J. S.

175

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network [OSTI]

energy efficient and environmentally friendly technology.Combined Heat and Power: A Technology Whose Time Has Comesteps to utilize the technology. 9 The average increase in

Ferraina, Steven

2014-01-01T23:59:59.000Z

176

Heating system  

SciTech Connect (OSTI)

A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

Nishman, P.J.

1983-03-08T23:59:59.000Z

177

Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures  

SciTech Connect (OSTI)

Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

2012-09-01T23:59:59.000Z

178

Is dark energy an effect of averaging?  

E-Print Network [OSTI]

The present standard model of cosmology states that the known particles carry only a tiny fraction of total mass and energy of the Universe. Rather, unknown dark matter and dark energy are the dominant contributions to the cosmic energy budget. We review the logic that leads to the postulated dark energy and present an alternative point of view, in which the puzzle may be solved by properly taking into account the influence of cosmic structures on global observables. We illustrate the effect of averaging on the measurement of the Hubble constant.

Nan Li; Marina Seikel; Dominik J. Schwarz

2008-01-22T23:59:59.000Z

179

Property:SalinityAverage | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFYID6/OrganizationID8/WebsiteSalinityAverage Jump

180

MIXED PHASE COMPRESSION HIGH EFFICIENCY HEAT PUMP.  

E-Print Network [OSTI]

??The objective of this thesis is the design and realization of a higher efficiency air source heat pump. The improved pump???s operating cost must rival… (more)

Chan, WenYen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies  

E-Print Network [OSTI]

Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

Guyer, Brittany (Brittany Leigh)

2009-01-01T23:59:59.000Z

182

E-Print Network 3.0 - activation decay heat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of high heat ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b Summary: of void fraction, respectively qd; qd instantaneous and average heat ux component due to...

183

Average Rate Speed Scaling Nikhil Bansal1  

E-Print Network [OSTI]

energy. In this setting, the operating system must not only have a job selection policy to determine was deadline feasibility and the objective was to minimize the energy used. More precisely, each job i has of the speed to power function, this even spreading is energy optimal if the instance consists of only one job

Bunde, David

184

Average Rate Speed Scaling Nikhil Bansal  

E-Print Network [OSTI]

energy. In this setting, the operating system must not only have a job selection policy to determine was deadline feasibility and the objective was to minimize the energy used. More precisely, each job i has of the speed to power function, this even spreading is energy optimal if the instance consists of only one job

Bunde, David

185

DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM  

SciTech Connect (OSTI)

Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

G. K. Housley; J.E. O'Brien; G.L. Hawkes

2008-11-01T23:59:59.000Z

186

The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes  

E-Print Network [OSTI]

At slightly supercritical pressure and in the neighborhood of the pseudo-critical temperature (defined as the temperature corresponding to the peak in specific heat at the operating pressure), the heat transfer coefficient ...

Shiralkar, B. S.

1968-01-01T23:59:59.000Z

187

Average transverse momentum quantities approaching the lightfront  

E-Print Network [OSTI]

In this contribution to Light Cone 2014, three average transverse momentum quantities are discussed: the Sivers shift, the dijet imbalance, and the $p_T$ broadening. The definitions of these quantities involve integrals over all transverse momenta that are overly sensitive to the region of large transverse momenta, which conveys little information about the transverse momentum distributions of quarks and gluons inside hadrons. TMD factorization naturally suggests alternative definitions of such integrated quantities, using Bessel-weighting and rapidity cut-offs, with the conventional definitions as limiting cases. The regularized quantities are given in terms of integrals over the TMDs of interest that are well-defined and moreover have the advantage of being amenable to lattice evaluations.

Daniel Boer

2014-09-29T23:59:59.000Z

188

Waste-heat recovery in batch processes using heat storage  

SciTech Connect (OSTI)

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

189

Long-term average performance benefits of parabolic trough improvements  

SciTech Connect (OSTI)

Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.

Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.

1980-03-01T23:59:59.000Z

190

PreHeat: Controlling Home Heating Using Occupancy Prediction  

E-Print Network [OSTI]

with a static program over an average 61 days per house, alternating days between these conditions time that the house was occupied but not warm). In US homes, PreHeat decreased MissTime by a factor goal for saving money and reducing our ecological footprint. Although programmable thermostats provide

Krumm, John

191

Solar industrial process heat  

SciTech Connect (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

192

High Heat Flux Components Program  

SciTech Connect (OSTI)

Purpose is the development of the technologies necessary to design, build and operate high heat flux components such as actively cooled limiters, divertor collector plates, R.F. antennas, mirror end cells, mirror halo collectors, direct convertor collectors, and neutral beam dumps. These components require an integrated design that considers the plasma-materials interaction (PMI) issues, heat removal problems and materials issues (including possible low Z coatings and claddings). As a general definition, high heat flux components see heat fluxes ranging from 1 to 100 MW/m/sup 2/. Suitable materials include copper and copper alloys.

Whitley, J.B.

1983-01-01T23:59:59.000Z

193

Fact #835: August 25, Average Annual Gasoline Pump Price, 1929...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

5: August 25, Average Annual Gasoline Pump Price, 1929-2013 Fact 835: August 25, Average Annual Gasoline Pump Price, 1929-2013 When adjusted for inflation, the average annual...

194

REVISITING THE SOLAR TACHOCLINE: AVERAGE PROPERTIES AND TEMPORAL VARIATIONS  

SciTech Connect (OSTI)

The tachocline is believed to be the region where the solar dynamo operates. With over a solar cycle's worth of data available from the Michelson Doppler Imager and Global Oscillation Network Group instruments, we are in a position to investigate not merely the average structure of the solar tachocline, but also its time variations. We determine the properties of the tachocline as a function of time by fitting a two-dimensional model that takes latitudinal variations of the tachocline properties into account. We confirm that if we consider the central position of the tachocline, it is prolate. Our results show that the tachocline is thicker at latitudes higher than the equator, making the overall shape of the tachocline more complex. Of the tachocline properties examined, the transition of the rotation rate across the tachocline, and to some extent the position of the tachocline, show some temporal variations.

Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, Sarbani, E-mail: antia@tifr.res.in, E-mail: sarbani.basu@yale.edu [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

2011-07-10T23:59:59.000Z

195

Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...  

Energy Savers [EERE]

and the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The...

196

average atom model: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(chemical potential, average ionic charge, free electron density, bound and continuum wave-functions and occupation numbers) are obtained from the average-atom model. The...

197

Corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

198

Development of an integrated building load and ground source heat pump model to assess heat pump and ground loop design and performance in a commercial office building.  

E-Print Network [OSTI]

??Ground source heat pumps (GSHPs) offer an efficient method for cooling and heating buildings, reducing energy usage and operating cost. In hot, arid regions such… (more)

Blair, Jacob Dale

2014-01-01T23:59:59.000Z

199

Multidisciplinary University Research Initiative: High Operating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

University Research Initiative (MURI) to develop high-operating temperature heat-transfer fluids for concentrating solar power (CSP) applications. The following...

200

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

202

Heat transfer in the plate heat exchanger of an ammonia-synthesis column  

SciTech Connect (OSTI)

The planning and construction of high-capacity synthetic ammonia plants requires the development and fabrication of unique, high unit-power equipment with high technical and economic characteristics. In foreign and domestic practice, tubular heat exchangers with relatively low heat-transfer coefficients are used. Plate heat exchangers are a promising alternative. They are compact and have a high heat energy efficiency and a relatively small metal content. To make an experimental check of the operating capability of a plate heat exchanger under ammonia production conditions, a welded plate heat exchanger was designed for an ammonia synthesis column 800mm in diameter. On prolonged testing (four years), the device provided an autothermal operating mode in the column and the heat transfer coefficient was practically constant for fixed space velocities. Consequently, the heat exchange surface was not contaminated significantly with catalyst dust, confirmed by visual observation of the heat exchanger after disassembly.

Obolentsev, Y.G.; Chus', M.S.; Norobchanskii, O.A.; Teplitshi, Y.S.; Tovazhnyanskii, L.L.

1983-01-01T23:59:59.000Z

203

Convective Heating of the LIFE Engine Target During Injection  

SciTech Connect (OSTI)

Target survival in the hostile, high temperature xenon environment of the proposed Laser Inertial Fusion Energy (LIFE) engine is critical. This work focuses on the flow properties and convective heat load imposed upon the surface of the indirect drive target while traveling through the xenon gas. While this rarefied flow is traditionally characterized as being within the continuum regime, it is approaching transition where conventional CFD codes reach their bounds of operation. Thus ANSYS, specifically the Navier-Stokes module CFX, will be used in parallel with direct simulation Monte Carlo code DS2V and analytically and empirically derived expressions for heat transfer to the hohlraum for validation. Comparison of the viscous and thermal boundary layers of ANSYS and DS2V were shown to be nearly identical, with the surface heat flux varying less than 8% on average. From the results herein, external baffles have been shown to reduce this heat transfer to the sensitive laser entrance hole (LEH) windows and optimize target survival independent of other reactor parameters.

Holdener, D S; Tillack, M S; Wang, X R

2011-10-24T23:59:59.000Z

204

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

205

Liquid metal heat exchanger for efficient heating of soils and geologic formations  

DOE Patents [OSTI]

Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.

DeVault, Robert C. (Knoxville, TN) [Knoxville, TN; Wesolowski, David J. (Kingston, TN) [Kingston, TN

2010-02-23T23:59:59.000Z

206

Modeling of Heat Transfer in Geothermal Heat Exchangers  

E-Print Network [OSTI]

, University of Lund, Sweden, [7] Fang, Z., Diao, N., and Cui, P., Discontinuous operation of geothermal heat exchangers [J], Tsinghua Science and Technology. , 2002, 7 194?197. [8] Hellstrom, G., Ground heat storage -- Thermal analysis of duct storage... systems [D], Department of Mathem Sweden, 1991. [9] Mei, V. C. and Baxter, V. D., Performance of a ground-coupled heat pump with multiple dissimilar U-tu Transactions, 1986, 92 Part 2, 22-25. [10] Yavuzturk, C., Spitler, J. D. and Rees, S. J., A...

Cui, P.; Man, Y.; Fang, Z.

2006-01-01T23:59:59.000Z

207

Heat pipes for use in a magnetic field  

DOE Patents [OSTI]

A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

Werner, R.W.; Hoffman, M.A.

1983-07-19T23:59:59.000Z

208

www.heatpumpcentre.org IEA HEAT PUMP PROGRAMME  

E-Print Network [OSTI]

for buildings in cold climates Annex 40 - Heat pump concepts for near zero- energy buildings (Operating Agent boilers and gas boilers Annex 38 - Systems using solar thermal energy in combination with heat pumps (Operating Agent: CH) The aim is to analyse solar and heat pump configurations with respect to energy savings

Oak Ridge National Laboratory

209

Minimal universal quantum heat machine  

E-Print Network [OSTI]

In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally-separated heat baths at different temperatures. The equation of motion allows to compute the stationary power and heat currents in the machine consistently with the second-law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.

David Gelbwaser-Klimovsky; Robert Alicki; Gershon Kurizki

2012-09-06T23:59:59.000Z

210

Enhanced heat transfer for thermionic power modules  

SciTech Connect (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

211

Heat exchanger with ceramic elements  

DOE Patents [OSTI]

An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

Corey, John A. (North Troy, NY)

1986-01-01T23:59:59.000Z

212

Fact #744: September 10, 2012 Average New Light Vehicle Price...  

Broader source: Energy.gov (indexed) [DOE]

Light Vehicle Price In 2011 the average used light vehicle price was 36% higher than in 1990, while the average new light vehicle price was 67% higher than it was in 1990. The...

213

Fact #835: August 25, Average Historical Annual Gasoline Pump...  

Energy Savers [EERE]

5: August 25, Average Historical Annual Gasoline Pump Price, 1929-2013 Fact 835: August 25, Average Historical Annual Gasoline Pump Price, 1929-2013 When adjusted for inflation,...

214

Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...  

Broader source: Energy.gov (indexed) [DOE]

5: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Fact 835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Excel file with...

215

Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51%...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

9: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014 Fact 849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better...

216

Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System  

E-Print Network [OSTI]

This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

Qian, J.; Sun, D.; Li, X.; Li, G.

2006-01-01T23:59:59.000Z

217

A heat engine with unique characteristics  

SciTech Connect (OSTI)

A heat engine which operates with one heat reservoir is described. The engine transforms the heat input completely into work by using a compressed fluid from a resource of the environment. For this reason the engine is not a perpetual motion machine of the second kind. The characteristics of the engine are analyzed, and the ways for achieving the most economic use of the compressed fluid are described. The principle of operation of the engine shows that the concepts of phenomenological thermodynamics regarding heat and its transformation in other forms of energy are not true.

Baranescu, G.S. [ATR Corp., Western Springs, IL (United States)

1996-12-31T23:59:59.000Z

218

TEELINDUSTRIAL OPERATING INSTRUCTIONS & PARTS MANUAL  

E-Print Network [OSTI]

-stage zoning applications in hydronic heating and cooling systems for residential, commercial and/or inTEELINDUSTRIAL SERIES OPERATING INSTRUCTIONS & PARTS MANUAL WATER CIRCULATING PUMPS MODELS 1P899A INSTRUCTIONS CAREFULLY BEFORE ATTEMPTING TO INSTALL, OPERATE, OR SERVICE TEEL PUMPS. PROTECT YOURSELF

Kleinfeld, David

219

Heat pump system with selective space cooling  

DOE Patents [OSTI]

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

220

Heat pump system with selective space cooling  

DOE Patents [OSTI]

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Stirling cycle engine and heat pump  

SciTech Connect (OSTI)

A method is described of operating a hot gas engine comprising a cylinder having one end thereof connected to the other end thereof through at least two separate closed heat exchanger assemblies. Each comprises heated heat exchanger means and cooled heat exchanger means serially arranged, the hot end of each such closed heat exchanger assembly is attached to the same end of the cylinder. Each closed heat exchanger assembly is equipped with valve means at each end thereof, the cylinder accommodating a double-acting reciprocating piston means. The piston means cyclically displaces and is displaced by a volume of gas for each such closed heat exchanger assembly. The volumes of gas are alternately confined in and released from the closed heat exchanger assemblies by the valves.

Mitchell, M.P.

1986-11-18T23:59:59.000Z

222

Designing, testing, and analyzing coupled, flux transformer heat  

E-Print Network [OSTI]

of identical effective length, this research shows that sufficient heat can be transferred across the system to work effectively in situations where the single heat pie will fail to operate. The thermal resistance in the condenser and evaporator sections need...

Renzi, Kimberly Irene

1998-01-01T23:59:59.000Z

223

Geothermal heating  

SciTech Connect (OSTI)

The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

Aureille, M.

1982-01-01T23:59:59.000Z

224

Optimal operation of simple vapour compression cycles  

E-Print Network [OSTI]

is the air-conditioner (A/C). In colder regions a cycle operating in the opposite direction, the "heat pump. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined as COPh = Qh Ws = h1 - h2 h1 - h4 and COPc = Qc Ws = h4 - h3 h1 - h4 (1.1) respectively. Heat pumps

Skogestad, Sigurd

225

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

226

A new cascade-type heat conversion system  

SciTech Connect (OSTI)

Various heat conversion systems have different operating temperatures. This paper shows how, in a solar energy system some of the waste heat from a thermophotovoltaic arrangement can be made to operate a thermionic power generator. The waste heat of the thermionic power generator can then be made to operate an alkali-metal thermal electric converter, and the waste heat from the alkali-metal thermal electric converter as well as the rest of the waste heat of the thermophotovoltaic system can be made to operate a methane reformation system. Stored heat from the methane reformation system can be made to operate the system at night. The overall system efficiency of the example shown is 42.6%. As a prime source of heat a nuclear pile or burning hydrogen may be used.

Newman, E. [Twenty-First Century Power Co., Northridge, CA (United States)

1996-12-31T23:59:59.000Z

227

Irregular spacing of heat sources for treating hydrocarbon containing formations  

DOE Patents [OSTI]

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

228

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

229

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network [OSTI]

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

Ruch, M. A.

1981-01-01T23:59:59.000Z

230

Warming of the arctic ice-ocean system is faster than the global average since the 1960s  

E-Print Network [OSTI]

, downward longwave radiation, and therefore net heat flux. The faster warming of the arctic ice­ocean systemWarming of the arctic ice-ocean system is faster than the global average since the 1960s Jinlun Zhang Polar Science Center, Applied Physics Laboratory, College of Ocean and Fishery Sciences

Zhang, Jinlun

231

Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit  

E-Print Network [OSTI]

Radiant heating and cooling has a reputation of increasing the comfort level and reducing the energy consumption of buildings. The main advantages of radiant heating and cooling are low operational noise and reduced fan power cost. Radiant heating...

Gong, Xiangyang

2009-05-15T23:59:59.000Z

232

Heating systems for heating subsurface formations  

DOE Patents [OSTI]

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

233

DCO Operations Interesting Statistics  

E-Print Network [OSTI]

DCO Operations Interesting Statistics 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 Chart by: HANDS DOWN SOFTWARE, www.handsdownsoftware.com 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0 is annotated with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE

234

Heating and Cooling Equipment Selection  

SciTech Connect (OSTI)

This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment for heating and cooling to reduce initial costs, increase homeowner comfort, increase operating efficiency, and greatly reduce utility costs.

Not Available

2002-01-01T23:59:59.000Z

235

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

236

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

237

Heat transport system, method and material  

DOE Patents [OSTI]

A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

Musinski, D.L.

1987-04-28T23:59:59.000Z

238

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners...

239

average kinetic energy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy by kinetic averaging Pierre-Emmanuel Jabin Ecole Normale Sup-Landau energy for two dimensional divergence free fields ap- pearing in the gradient theory of...

240

average power high: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simultaneous Power Fluctuation and Average Power Minimization during Nano-CMOS Behavioral Synthesis Computer Technologies and Information Sciences Websites Summary: conversion 6....

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION...  

Gasoline and Diesel Fuel Update (EIA)

ENERGY INFORMATION ADMINISTRATION LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION BARRELS) FILE UPDATED April 2004 Line Month Low High Number Product Name Geography...

242

Segmented heat exchanger  

DOE Patents [OSTI]

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

243

Ultrahigh heat flux plasma-facing components for magnetic fusion energy  

SciTech Connect (OSTI)

Sandia and Ultramet partnered to design and test refractory metal plasma-facing components and heat exchangers for advanced, high-temperature power conversion systems. These devices consisted of high-temperature helium-to-helium and lithium-to-helium heat exchangers that operate with high efficiency due to the porous foam inserts used in the gas stream, which promote turbulence and provide extended surface area for enhanced convection. Single- and multi-channel helium panels and the Li-He heat exchanger were fabricated from either pure molybdenum, TZM, or tungsten. The design was carried out through an Ultramet subcontractor. The flow path was carefully tailored to minimize the pressure drop while maximizing the heat transfer. The single- and multi-channel helium panels were tested at Sandia's PMTF using an electron beam system and the closed helium flow loop. In 2006, a single-channel tungsten tube was successfully tested to an average heat flux of 14 MW/m{sup 2} with a localized peak of 22 MW/m{sup 2} along the axial centerline at the outer radius. Under this CRADA, multiple square-channel molybdenum components were successfully tested to heat flux levels approaching 8.5 MW/m{sup 2}. The three multi-channel prototypes experienced mechanical failure due to issues related to the design of the large unsupported span of the heated faceplates in combination with prototype material and braze selection. The Li-He heat exchanger was both designed and partially tested at the PMTF for helium and lithium flow.

Youchison, D. L.

2012-03-01T23:59:59.000Z

244

Passive heat-transfer means for nuclear reactors. [LMFBR  

DOE Patents [OSTI]

An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

Burelbach, J.P.

1982-06-10T23:59:59.000Z

245

Cab Heating and Cooling  

SciTech Connect (OSTI)

Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

Damman, Dennis

2005-10-31T23:59:59.000Z

246

On average sampling restoration of Piranashvilitype harmonizable processes  

E-Print Network [OSTI]

; time shifted sam- pling; Piranashvili­, Lo`eve­, Karhunen­ harmonizable stochastic process; weakly.olenko@latrobe.edu.au, poganj@pfri.hr Abstract: The harmonizable Piranashvili ­ type stochastic pro- cesses are approximated stationary stochastic process; local averages; average sampling reconstruction. 1. Introduction

Paris-Sud XI, Université de

247

The global warming signal is the average of  

E-Print Network [OSTI]

, uncertainty in the isopycnal diffusivity causes uncertainty of up to 50% in the global warming signalThe global warming signal is the average of years 70-80 in the increasing CO2 run minus the average represent significant uncertainty in the global warming signal (Fig. 5). The differences at high latitudes

Jones, Peter JS

248

averaged energy minimization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

averaged energy minimization First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Averaged Energy...

249

STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL  

E-Print Network [OSTI]

STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL CEC-WS-2R (Revised 08/09) CALIFORNIA ENERGY COMMISSION Area Weighted Average Calculation Worksheet WS-2R Residential (Page 1 of 1) Site/Time: ____________________ HERS Provider: __________________ 2008 Residential Compliance Forms August 2009 This worksheet should

250

Higher-order averaging, formal series and numerical integration II  

E-Print Network [OSTI]

systems of ordinary differential equations with d 1 non- resonant constant frequencies. Formal series frequency and four resonant fast frequencies. Keywords and sentences: Averaging, high-order averaging, quasi Schumann, 35170 Bruz, France. Email: Philippe.Chartier@inria.fr Konputazio Zientziak eta A. A. Saila

Murua, Ander

251

High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host  

DOE Patents [OSTI]

A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

Comaskey, Brian J. (Walnut Creek, CA); Ault, Earl R. (Livermore, CA); Kuklo, Thomas C. (Oakdale, CA)

2005-07-05T23:59:59.000Z

252

Ground Source Integrated Heat Pump (GS-IHP) Development  

SciTech Connect (OSTI)

Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test experience, CM developed a 2nd generation (or beta) prototype in 2012. Field test verification units were fabricated and installed at the ZEBRAlliance site in Oak Ridge in May 2012 and at several sites near CM headquarters in Oklahoma. Field testing of the units continued through February 2013. Annual performance analyses of the beta unit (prototype 2) with vertical well ground heat exchangers (GHX) in 5 U.S. locations predict annual energy savings of 57% to 61%, averaging 59% relative to the minimum efficiency suite and 38% to 56%, averaging 46% relative to the SOA GSHPwDS. Based on the steady-state performance demonstrated by the test units it was projected that the 2nd generation units would achieve ~58% energy savings relative to the minimum efficiency suite at the Zebra Alliance site with horizontal GHX. A new product based on the beta unit design was announced by CM in 2012 – the Trilogy 40® Q-mode™ (http://cmdealernet.com/trilogy_40.html). The unit was formally introduced in a March 2012 press release (see Appendix A) and was available for order beginning in December 2012.

Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

2013-05-24T23:59:59.000Z

253

Method and system for modulation of gain suppression in high average power laser systems  

DOE Patents [OSTI]

A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

Bayramian, Andrew James (Manteca, CA)

2012-07-31T23:59:59.000Z

254

The National Ignition Facility National Ignition Campaign Short Pulse Lasers High-Average-Power Laser  

E-Print Network [OSTI]

-Average-Power Laser NIF-1005-11471 07BEW/dj P9765 Agenda #12;P9516NIF-0805-11197 01EIM/dj Stockpile Stewardship #12;P9504NIF-0404-08345r2 27EIM/ld Basic Science and Cosmology #12;NIF-0702-05346rIFSA Fusion Energy Campaign and point design NIF-0305-10564 23MLS/cld P8719 The NIF Laser User Optics Physics Operations

255

Demagnetized Electron Heating at Collisionless Shocks  

E-Print Network [OSTI]

Seventy measurements of electron heating at the Earth's quasi-perpendicular bow shock are analyzed in terms of Maxwellian-temperatures obtained from fits to the core electrons that separate thermal heating from supra-thermal acceleration. The perpendicular temperatures are both greater and lesser than expected for adiabatic compression. The average parallel and perpendicular heating is the same. These results are explained because, over the electron gyroradius, $\\delta B/B\\sim 1$ and $e\\delta \\phi/T_e\\sim 1$, so electron trajectories are more random and chaotic than adiabatic. Because density fluctuations are also large, trapping and wave growth in density holes may be important.

Sundkvist, David

2013-01-01T23:59:59.000Z

256

Industrial heat pumps - types and costs  

SciTech Connect (OSTI)

Confusion about energy savings and economics is preventing many potentially beneficial applications for industrial heat pumps. The variety of heat pumps available and the lack of a standard rating system cause some of this confusion. The authors illustrate how a simple categorization based on coefficient of performance (COP) can compare the cost of recovering waste energy with heat pumps. After evaluating examples in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs, they compare heat pumps from the various categories on the basis of economics. 6 references, 6 figures, 1 table.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-08-01T23:59:59.000Z

257

Heat loss from an open cavity  

SciTech Connect (OSTI)

Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

1995-12-01T23:59:59.000Z

258

Heat Treatment Procedure Qualification for Steel Castings  

SciTech Connect (OSTI)

The science of heat treatment has been well studied and is the basis from which existing specifications and practices for the heat treatment of steel castings have been developed. Although these existing specifications address the general needs of steel castings to be heat-treated, they do not take into account the variability in the parameters that govern the processes. The need for a heat treatment qualification procedure that accounts for this variability during heat treatment is an important step toward heat treatment quality assurance. The variability in temperatures within a heat treatment furnace is one such variable that a foundry has to contend with in its day-to-day activity. Though specifications indicate the temperatures at which a particular heat treatment has to be conducted, heat treatment specifications do not adequately account for all aspects of heat treatment quality assurance. The heat treatment qualification procedure will comprise of a robust set of rules and guidelines that ensure that foundries will still be able to operate within the set of constraints imposed on them by non-deterministic elements within the processes.

Professor Robert C. Voigt

2003-02-02T23:59:59.000Z

259

Averaging Spacetime: Where do we go from here?  

E-Print Network [OSTI]

The construction of an averaged theory of gravity based on Einstein's General Relativity is very difficult due to the non-linear nature of the gravitational field equations. This problem is further exacerbated by the difficulty in defining a mathematically precise covariant averaging procedure for tensor fields over differentiable manifolds. Together, these two ideas have been called the averaging problem for General Relativity. In the first part of the talk, an attempt to review some the various approaches to this problem will be given, highlighting strengths, weaknesses, and commonalities between them. In the second part of the talk, an argument will be made, that if one wishes to develop a well-defined averaging procedure, one may choose to parallel transport along geodesics with respect to the Levi-Cevita connection or, use the Weitzenb\\"ock connection and ensure the transportation is independent of path. The talk concludes with some open questions to generate further discussion.

R. J. van den Hoogen

2010-04-15T23:59:59.000Z

260

averaged cross sections: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relations between fusion cross sections and average angular momenta Nuclear Theory (arXiv) Summary: We study...

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

averaged cross section: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relations between fusion cross sections and average angular momenta Nuclear Theory (arXiv) Summary: We study...

262

THE UNIVERSITY OF RHODE ISLAND FRINGE BENEFIT AVERAGE RATE  

E-Print Network [OSTI]

THE UNIVERSITY OF RHODE ISLAND FRINGE BENEFIT AVERAGE RATE FY 2015 Allocation Cost or Classified.2% URI Budget & Financial Planning Office 9.17.14 Office:fringebenefits:office of sponsored projects: FY2015 Allocation #12;

Rhode Island, University of

263

average effective dose: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

field theory, Chern-Simons theory is discussed in detail. M. Reuter 1996-02-04 2 Is dark energy an effect of averaging? CERN Preprints Summary: The present standard model of...

264

Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging  

E-Print Network [OSTI]

is to issue deterministic forecasts based on numerical weather prediction models. Uncertainty canProbabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging J. Mc discretization than is seen in other weather quantities. The prevailing paradigm in weather forecasting

Washington at Seattle, University of

265

Abstract Interpretation for Worst and Average Case Analysis  

E-Print Network [OSTI]

energy usage whilst bounding the average number of requests waiting to be served. PRISM is used phase extracts a control flow graph ­ for some classes of language this may already involve an abstract

Di Pierro, Alessandra

266

Does anyone have access to 2012 average residential rates by...  

Open Energy Info (EERE)

Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility...

267

average glandular dose: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

doses and cancer rates to the workers m the first Soviet atom-bomb facility, near 2 Chelyabinsk and 4,600 at the plutonium sep- aration plant. If we allow for an average work...

268

From average case complexity to improper learning [Extended Abstract  

E-Print Network [OSTI]

is that the standard reduc- tions from NP-hard problems do not seem to apply in this context. There is essentially only.1145/2591796.2591820. Keywords Hardness of improper learning, DNFs, Halfspaces, Average Case complexity, CSP problems, Resolution

Linial, Nathan "Nati"

269

average power optical: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems, Multiple Subcarrier Strohmer, Thomas 3 June 1, 2000 Vol. 25, No. 11 OPTICS LETTERS 859 16.2-W average power from a diode-pumped Materials Science Websites...

270

Thermoeconomic Analysis of a Solar Heat-Pump System  

E-Print Network [OSTI]

This paper introduces a solar energy heat-pump system and analyzes the thermoeconomics. The results show that the solar energy heat-pump system can be operated in different modes and used for room heating in winter and cooling in summer and...

Gao, Y.; Wang, S.

2006-01-01T23:59:59.000Z

271

Apparatus for microwave heat treatment of manufactured components  

DOE Patents [OSTI]

An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

Babcock & Wilcox Technical Services Y-12, LLC (Oak Ridge, TN)

2008-04-15T23:59:59.000Z

272

Methods for microwave heat treatment of manufactured components  

DOE Patents [OSTI]

An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

Ripley, Edward B. (Knoxville, TN)

2010-08-03T23:59:59.000Z

273

Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.

274

Partial Averaging Near a Resonance in Planetary Dynamics  

E-Print Network [OSTI]

Following the general numerical analysis of Melita and Woolfson (1996), I showed in a recent paper that a restricted, planar, circular planetary system consisting of Sun, Jupiter and Saturn would be captured in a near (2:1) resonance when one would allow for frictional dissipation due to interplanetary medium (Haghighipour, 1998). In order to analytically explain this resonance phenomenon, the method of partial averaging near a resonance was utilized and the dynamics of the first-order partially averaged system at resonance was studied. Although in this manner, the finding that resonance lock occurs for all initial relative positions of Jupiter and Saturn was confirmed, the first-order partially averaged system at resonance did not provide a complete picture of the evolutionary dynamics of the system and the similarity between the dynamical behavior of the averaged system and the main planetary system held only for short time intervals. To overcome these limitations, the method of partial averaging near a resonance is extended to the second order of perturbation in this paper and a complete picture of dynamical behavior of the system at resonance is presented. I show in this study that the dynamics of the second-order partially averaged system at resonance resembles the dynamical evolution of the main system during the resonance lock in general, and I present analytical explanations for the evolution of the orbital elements of the main system while captured in resonance.

Nader Haghighipour

1999-02-03T23:59:59.000Z

275

Heat Pump for High School Heat Recovery  

E-Print Network [OSTI]

The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

276

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

277

Project Profile: Heat Transfer and Latent Heat Storage in Inorganic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants...

278

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

279

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

280

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

282

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

283

Absorption heat pump system  

DOE Patents [OSTI]

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

284

Locating Heat Recovery Opportunities  

E-Print Network [OSTI]

Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

Waterland, A. F.

1981-01-01T23:59:59.000Z

285

Absorption heat pump system  

DOE Patents [OSTI]

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

286

Woven heat exchanger  

DOE Patents [OSTI]

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

287

Average Soil Water Retention Curves Measured by Neutron Radiography  

SciTech Connect (OSTI)

Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

2011-01-01T23:59:59.000Z

288

HEATING AND COOLING PROTOSTELLAR DISKS  

SciTech Connect (OSTI)

We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

2011-05-10T23:59:59.000Z

289

Heat flux solarimeter  

SciTech Connect (OSTI)

The solarimeter presented in this work is easy to assemble. It is calibrated and its performance is validated by means of Hottel's method. Finally, the curves obtained with this solarimeter are compared to the ones obtained with a commercial solarimeter. This device is based on the evaluation of the heat flow in a metal rod. In consequence, measurements are not affected by ambient temperature variations. On the other hand, there is a linear relationship between the temperatures measured at the rod ends and the incident radiation, as can be concluded both from the theory of its operation and the calibration lines obtained. The results obtained from the global irradiance measurements in the area of Los Polvorines (Buenos Aires Province), together with a preliminary evaluation of the solarimeter's response time, are presented in this work. (author)

Sartarelli, A.; Vera, S.; Cyrulies, E. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Echarri, R. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Samson, I. [INTEC (Instituto Tecnologico Santo Domingo), Santo Domingo (Dominican Republic)

2010-12-15T23:59:59.000Z

290

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

291

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

292

Towards Intelligent District Heating.  

E-Print Network [OSTI]

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to… (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

293

Winter Heating Fuels Update  

Gasoline and Diesel Fuel Update (EIA)

Heating Fuels Update For: Congressional Briefings October 20, 2014 | Washington, DC By U.S. Energy Information Administration Winter Heating Fuels Update October 20, 2014 |...

294

Confortable Performance: Retro-Commissioning Building Operations  

E-Print Network [OSTI]

troubleshooting ? New controls strategies ? Equipment schedule optimization ? Comfort improvements 7 ESL-IC-13-10-07 Proceedings of the 13th International Conference for Enhanced Building Operations, Montreal, Quebec, October 8-11, 2013 Tools ? Actuator... Operations, Montreal, Quebec, October 8-11, 2013 Example 1 ? Problem ? Monday morning ?too cold? complaints ? Solution ? Heating system start-up on Sunday at 2:00pm ? RCx Investigation ? Tenant MAU running 24x7 with no heat (space temperature...

Botan, L.

2013-01-01T23:59:59.000Z

295

The smallest possible heat engines  

E-Print Network [OSTI]

We construct the smallest possible self contained heat engines; one composed of only two qubits, the other of only a single qutrit. The engines are self-contained as they do not require external sources of work and/or control. They are able to produce work which is used to continuously lift a weight. Despite the dimension of the engine being small, it is still able to operate at the Carnot efficiency.

Noah Linden; Sandu Popescu; Paul Skrzypczyk

2010-10-28T23:59:59.000Z

296

OPERATIONS (OPS)  

Broader source: Energy.gov (indexed) [DOE]

OPS) OBJECTIVE OPS.1 The formality and discipline of operations is adequate to conduct work safely and programs are in place to maintain this formality and discipline. (CR 13)...

297

Design operators  

E-Print Network [OSTI]

Design operators is a thesis that investigates the nature and characteristics of the design process by examining the interaction of computation with architectural design. The effects of the introduction of these media in ...

Dritsas, Stylianos, 1978-

2004-01-01T23:59:59.000Z

298

Operating Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

1997-03-28T23:59:59.000Z

299

Experimental study of an air-source heat pump for simultaneous heating and cooling Part 1: Basic concepts and performance verification  

E-Print Network [OSTI]

manufacturer. The operation of the high pressure control system, the transitions between heating, cooling, heating and cooling energies using the same electric energy input at the compressor. Chua et al. [31 Experimental study of an air-source heat pump for simultaneous heating and cooling ­ Part 1

Boyer, Edmond

300

Industrial Heat Pumps Using Solid/Vapor Working Fluids  

E-Print Network [OSTI]

INDUSTRIAL HEAT PUMPS USING SOLID/VAPOR WORKING FLUIDS Uwe Rockenfeller, Desert Research Institute, Boulder City, Nevada ABSTRACT Industrial heat pumps have the potential to reduce the operating costs of chemical and heat treating processes... with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to 'nore cost effective...

Rockenfeller, U.

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes  

SciTech Connect (OSTI)

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Backman, C.; German, A.; Dakin, B.; Springer, D.

2013-12-01T23:59:59.000Z

302

Averaged equations for Josephson junction series arrays with LRC load  

E-Print Network [OSTI]

We derive the averaged equations describing a series array of Josephson junctions shunted by a parallel inductor-resistor-capacitor load. We assume that the junctions have negligable capacitance ($\\beta = 0$), and derive averaged equations which turn out to be completely tractable: in particular the stability of both in-phase and splay states depends on a single parameter, $\\del$. We find an explicit expression for $\\delta$ in terms of the load parameters and the bias current. We recover (and refine) a common claim found in the technical literature, that the in-phase state is stable for inductive loads and unstable for capacitive loads.

Kurt Wiesenfeld; James W. Swift

1994-08-26T23:59:59.000Z

303

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

304

Mass and Heat Recovery  

E-Print Network [OSTI]

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

Hindawai, S. M.

2010-01-01T23:59:59.000Z

305

Direct fired heat exchanger  

SciTech Connect (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

306

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

307

High average power laser using a transverse flowing liquid host  

DOE Patents [OSTI]

A laser includes an optical cavity. A diode laser pumping device is located within the optical cavity. An aprotic lasing liquid containing neodymium rare earth ions fills the optical cavity. A circulation system that provides a closed loop for circulating the aprotic lasing liquid into and out of the optical cavity includes a pump and a heat exchanger.

Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

2003-07-29T23:59:59.000Z

308

Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions  

SciTech Connect (OSTI)

This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

309

Using Bayesian Model Averaging to Calibrate Forecast Ensembles 1  

E-Print Network [OSTI]

Using Bayesian Model Averaging to Calibrate Forecast Ensembles 1 Adrian E. Raftery, Fadoua forecasting often exhibit a spread-skill relationship, but they tend to be underdispersive. This paper of PDFs centered around the individual (possibly bias-corrected) forecasts, where the weights are equal

Washington at Seattle, University of

310

Disk-averaged Spectra & light-curves of Earth  

E-Print Network [OSTI]

We are using computer models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of biosignatures, in the globally averaged spectra and light-curves of the Earth. Using AIRS (Atmospheric Infrared Sounder) data, as input for atmospheric and surface properties, we have generated spatially resolved high-resolution synthetic spectra using the SMART radiative transfer model, for a variety of conditions, from the UV to the far-IR (beyond the range of current Earth-based satellite data). We have then averaged over the visible disk for a number of different viewing geometries to quantify the sensitivity to surface types and atmospheric features as a function of viewing geometry, and spatial and spectral resolution. These results have been processed with an instrument simulator to improve our understanding of the detectable characteristics of Earth-like planets as viewed by the first generation extrasolar terrestrial planet detection and characterization missions (Terrestrial Planet Finder/Darwin and Life finder). The wavelength range of our results are modelled over are applicable to both the proposed visible coronograph and mid-infrared interferometer TPF architectures. We have validated this model against disk-averaged observations by the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). This model was also used to analyze Earth-shine data for detectability of planetary characteristics and biosignatures in disk-averaged spectra.

G. Tinetti; V. S. Meadows; D. Crisp; W. Fong; N. Kiang; E. Fishbein; T. Velusamy; E. Bosc; M. Turnbull

2005-02-11T23:59:59.000Z

311

averaged lorentz dynamics: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

averaged lorentz dynamics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Dynamics on Lorentz manifolds...

312

Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging  

E-Print Network [OSTI]

distribution; Numerical weather prediction; Skewed distribution; Truncated data; Wind energy. 1. INTRODUCTION- native. Purely statistical methods have been applied to short-range forecasts for wind speed only a fewProbabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc

Raftery, Adrian

313

average energy losses: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

average energy losses First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Comparing energy loss...

314

average specific absorption: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

average specific absorption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Original Research Specific...

315

IE 361 Module 15 The Average Run Length Concept  

E-Print Network [OSTI]

IE 361 Module 15 The Average Run Length Concept Reading: Section 3.5 of Statistical Quality Assurance Methods for Engineers Prof. Steve Vardeman and Prof. Max Morris Iowa State University Vardeman Electric set of alarm rules to a control charting scheme? The most e¤ective means known for making

Vardeman, Stephen B.

316

Thulium-170 heat source  

DOE Patents [OSTI]

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

317

Cooling and Clusters: When Is Heating Needed?  

E-Print Network [OSTI]

There are (at least) two unsolved problems concerning the current state of the thermal gas in clusters of galaxies. The first is identifying the source of the heating which offsets cooling in the centers of clusters with short cooling times (the ``cooling flow'' problem). The second is understanding the mechanism which boosts the entropy in cluster and group gas. Since both of these problems involve an unknown source of heating it is tempting to identify them with the same process, particular since AGN heating is observed to be operating at some level in a sample of well-observed ``cooling flow'' clusters. Here we show, using numerical simulations of cluster formation, that much of the gas ending up in clusters cools at high redshift and so the heating is also needed at high-redshift, well before the cluster forms. This indicates that the same process operating to solve the cooling flow problem may not also resolve the cluster entropy problem.

Greg L. Bryan; G. Mark Voit

2005-02-22T23:59:59.000Z

318

An Experimental Study of Upward and Downward Flow of Supercritical Carbon Dioxide in a Straight Pipe Heat Exchanger with Constant Wall Heat Flux  

E-Print Network [OSTI]

An experimental analysis was conducted on a single circular tube heat exchanger using supercritical carbon dioxide as the working fluid. The heat exchanger was operated in two different orientations: vertically upward and downward. The experimental...

Umrigar, Eric Dara

2014-05-01T23:59:59.000Z

319

Average Rate Speed Scaling # Nikhil Bansal 1 , David P. Bunde 2 , HoLeung Chan 3 , and Kirk Pruhs 3  

E-Print Network [OSTI]

of such a processor to conserve energy. In this setting, the operating system must not only have a job selection to conserve energy and optimize some Quality of Service (QoS) measure of the resulting schedule. Yao, Demers is to minimize the energy used. They proposed an online speed scaling algorithm Average Rate (AVR) that runs each

Bunde, David

320

Thermoelectric heat exchange element  

DOE Patents [OSTI]

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Recirculating Liquid Nitrogen System for Operation of Cryogenic Pumps  

E-Print Network [OSTI]

is provided by a LN2-cooled radiation shroud, which reduces the radiative heat load on the cryosail. Since Engineering, Mitchell.Walker@ae.gatech.edu #12;2 nitrogen shroud, the heat transfer calculated by Eqn. (1 operating temperature. This is seen notionally by equation 1: Eqn. (1) where Q is the rate of heat transfer

Walker, Mitchell

322

Heat Integrate Heat Engines in Process Plants  

E-Print Network [OSTI]

of forcing a good fit between a heat engine and process T', H profiles extends the ideas of appropriate and inappropriate placement to give bet ter overall integration schemes [7] . The new 'and powerful representations of the thermodynamics of a process... HEAT INTEGRATE HEAT ENGINES IN PROCESS PLANTS E. Hindmarsh, D. Boland and D.W. Townsend TENSA Technology, Houston, Texas Shorter Version Appeared in Chemical Engineering Copyright McGraw Hill, 1985 ABSTRACT This paper presents a novel method...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

323

Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results  

SciTech Connect (OSTI)

A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

2002-08-01T23:59:59.000Z

324

ACCURATE CALCULATIONS OF HEAT RELEASE IN FIRES S. Brohez', C. Delvosalle', G. Marlair2  

E-Print Network [OSTI]

values of the heat of combustion per unit mass of oxygen consumed and carbon dioxide generated are used calorimetry states that heat of complete combustion per unit mass of oxygen consumed is approximately constant an average value of the heat of combustion to be 13.1 Id per gram of oxygen consumed with a ± 5% variation

Paris-Sud XI, Université de

325

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network [OSTI]

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

326

Transparent heat-spreader for optoelectronic applications  

DOE Patents [OSTI]

An optoelectronic cooling system is equally applicable to an LED collimator or a photovoltaic solar concentrator. A transparent fluid conveys heat from the optoelectronic chip to a hollow cover over the system aperture. The cooling system can keep a solar concentrator chip at the same temperature as found for a one-sun flat-plate solar cell. Natural convection or forced circulation can operate to convey heat from the chip to the cover.

Minano, Juan Carlos; Benitez, Pablo

2014-11-04T23:59:59.000Z

327

Heat Exchanger Technologies for Distillation Columns  

E-Print Network [OSTI]

each type of exchanger in turn. Heat exchanger size is minimised if the temperature driving force is maximised. The design should therefore seek to minimise the temperature changes during phase change. So, streams that are being condensed are kept... Reboiler not always possible (e.g. one part of a unit may be running at reduced load). Result: installed steam driven unit required to ensure integrity or heat recovery not used. Low temperature driving force Operation at low temperature driving force...

Polley, G. T.

328

Electron Cyclotron Heating in RFP plasmas  

SciTech Connect (OSTI)

Reversed field pinches (RFP) plasmas are typically overdense ({omega}{sub pe}>{omega}{sub ce}) and thus not suitable for conventional electron cyclotron (EC) heating and current drive. In recent high plasma current discharges (I{sub p}>1.5 MA), however, the RFX-mod device was operated in underdense conditions ({omega}{sub pe}<{omega}{sub ce}) for the first time in an RFP. Thus, it is now possible to envisage heating the RFP plasma core by conventional EC at the 2nd harmonic, in the ordinary or extraordinary mode. We present a preliminary study of EC-heating feasibility in RFX-mod with the use of beam-tracing and full-wave codes. Although not competitive - as a heating system - with multi-MW Ohmic heating in an RFP, EC might be useful for perturbative transport studies, even at moderate power (hundreds of kW), and, more generally, for applications requiring localized power deposition.

Bilato, R.; Poli, E. [MPI fuer Plasmaphysik-Euratom Association Boltzmannstr. 2, D-85748 Garching (Germany); Volpe, F. [Department of Engineering Physics, University of Wisconsin, Madison, WI (United States); Koehn, A. [Institut fuer Plasmaforschung, Universitaet Stuttgart-Stuttgart (Germany); Cavazzana, R.; Paccagnella, R. [Consorzio RFX-Associazione EURATOM-ENEA sulla fusione-Padova (Italy); Farina, D. [IFP-CNR, EURATOM-ENEA-CNR Association-Milano (Italy)

2009-11-26T23:59:59.000Z

329

Thermoelectric recovery of waste heat -- Case studies  

SciTech Connect (OSTI)

The use of waste heat as an energy source for thermoelectric generation largely removes the constraint for the wide scale application of this technology imposed by its relatively low conversion efficiency (typically about 5%). Paradoxically, in some parasitic applications, a low conversion efficiency can be viewed as a distinct advantage. However, commercially available thermoelectric modules are designed primarily for refrigerating applications and are less reliable when operated at elevated temperatures. Consequently, a major factor which determines the economic competitiveness of thermoelectric recovery of waste heat is the cost per watt divided by the mean-time between module failures. In this paper is reported the development of a waste, warm water powered thermoelectric generator, one target in a NEDO sponsored project to economically recover waste heat. As an application of this technology case studies are considered in which thermoelectric generators are operated in both active and parasitic modes to generate electrical power for a central heating system. It is concluded that, in applications when the supply of heat essentially is free as with waste heat, thermoelectrics can compete economically with conventional methods of electrical power generation. Also, in this situation, and when the generating system is operated in a parasitic mode, conversion efficiency is not an important consideration.

Rowe, M.D.; Min, G.; Williams, S.G.K.; Aoune, A. [Cardiff School of Engineering (United Kingdom). Div. of Electronic Engineering; Matsuura, Kenji [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering; Kuznetsov, V.L. [Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation); Fu, L.W. [Tsinghua Univ., Beijing (China). Microelectronics Inst.

1997-12-31T23:59:59.000Z

330

Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report  

SciTech Connect (OSTI)

A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

Nick Rosenberry, Harris Companies

2012-05-04T23:59:59.000Z

331

A Multivariate Moving Average Control Chart for Photovoltaic Processes  

E-Print Network [OSTI]

Abstract—For the electrical metrics that describe photovoltaic cell performance are inherently multivariate in nature, use of a univariate, or one variable, statistical process control chart can have important limitations. Development of a comprehensive process control strategy is known to be significantly beneficial to reducing process variability that ultimately drives up the manufacturing cost photovoltaic cells. The multivariate moving average or MMA chart, is applied to the electrical metrics of photovoltaic cells to illustrate the improved sensitivity on process variability this method of control charting offers. The result show the ability of the MMA chart to expand to as any variables as needed, suggests an application with multiple photovoltaic electrical metrics being used in concert to determine the processes state of control. Keywords—The multivariate moving average control chart, Photovoltaic processes control, Multivariate system. I.

Chunchom Pongchavalit

332

Heating tar sands formations to visbreaking temperatures  

DOE Patents [OSTI]

Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

Karanikas, John Michael (Houston, TX); Colmenares, Tulio Rafael (Houston, TX); Zhang, Etuan (Houston, TX); Marino, Marian (Houston, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Ryan, Robert Charles (Houston, TX); Beer, Gary Lee (Houston, TX); Dombrowski, Robert James (Houston, TX); Jaiswal, Namit (Houston, TX)

2009-12-22T23:59:59.000Z

333

Fact #835: August 25, Average Historical Annual Gasoline Pump Price,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxide Emission Standards, Modeland- Dataset

334

A holographic proof of the averaged null energy condition  

E-Print Network [OSTI]

The averaged null energy conditions (ANEC) states that, along a complete null curve, the negative energy fluctuations of a quantum field must be balanced by positive energy fluctuations. We use the AdS/CFT correspondence to prove the ANEC for a class of strongly coupled conformal field theories in flat spacetime. A violation of the ANEC in the field theory would lead to acausal propagation of signals in the bulk.

William R. Kelly; Aron C. Wall

2014-11-03T23:59:59.000Z

335

Average dynamics of a finite set of coupled phase oscillators  

SciTech Connect (OSTI)

We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.

Dima, Germán C., E-mail: gdima@df.uba.ar; Mindlin, Gabriel B. [Laboratorio de Sistemas Dinámicos, IFIBA y Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires (Argentina)] [Laboratorio de Sistemas Dinámicos, IFIBA y Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires (Argentina)

2014-06-15T23:59:59.000Z

336

Estimate of average freeze-out volume in multifragmentation events  

E-Print Network [OSTI]

An estimate of the average freeze-out volume for multifragmentation events is presented. Values of volumes are obtained by means of a simulation using the experimental charged product partitions measured by the 4pi multidetector INDRA for 129Xe central collisions on Sn at 32 AMeV incident energy. The input parameters of the simulation are tuned by means of the comparison between the experimental and simulated velocity (or energy) spectra of particles and fragments.

Piantelli, S; Borderie, B; Bougault, R; Chbihi, A; Dayras, R; Durand, D; Frankland, J D; Galíchet, E; Guinet, D; Lanzalone, G; Lautesse, P; Le Neindre, N; López, O; Pârlog, M; Rivet, M F; Rosato, E; Tamain, B; Vient, E; Vigilante, M; Volant, C; Wieleczko, J P

2005-01-01T23:59:59.000Z

337

Heat-flow reconnaissance of the Gulf Coastal Plain  

SciTech Connect (OSTI)

Most of the 46 new values of heat flow determined for the Gulf Coastal Plain are in the low to normal range, but heat-flow values averaging 1.8 heat-flow unit (HFU) were obtained in Claiborne, Ouachita, and Union parishes, Louisiana. Moreover, a zone of relatively high heat-flow values and steep thermal gradients (35 to 46/sup 0/C/km) extends from northern Louisiana into southwestern Mississippi. Also near Pensacola, Florida, temperatures of 50/sup 0/C at 1-km depth have been extrapolated from thermal gradients. Future development of low-grade geothermal resources may be warranted in these areas.

Smith, D.L.; Shannon, S.S. Jr.

1982-04-01T23:59:59.000Z

338

Retrofitting Combined Space and Water Heating Systems: Laboratory Tests  

SciTech Connect (OSTI)

Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

2012-10-01T23:59:59.000Z

339

Modern hot water district heating  

SciTech Connect (OSTI)

The history of district heating in Europe is drastically different from that in the United States. The development of district heating in northern and eastern Europe started in the early 1950s. Hot water rather than steam was used as the transport medium and the systems have proven to be more economical. Recently, the northern European concept has been introduced into two US cities - St. Paul and Willmar, Minnesota. The hot water project in St. Paul started construction and operation in the summer and fall of 1983, respectively. The entire first phase of the St. Paul project will take two summers to construct and will connect approximately 80 buildings for a total of 150 MW(t). The system spans the entire St. Paul business district and includes privately owned offices and retail buildings, city and county government buildings, hospitals, the state Capitol complex, and several industrial customers. The City of Willmar, Minnesota, replaced an old steam system with a modern hot water system in the summer of 1982. The first phase of the hot water system was constructed in the central business district. The system serves a peak thermal load of about 10 MW(t) and includes about 12,000 ft of network. The Willmar system completed the second stage of development in the fall of 1983. These two new systems demonstrate the benefits of the low-temperature hot water district heating technology. The systems are economical to build, have high reliability, and have low maintenance and operating cost.

Karnitz, M.A.; Barnes, M.H.; Kadrmas, C.; Nyman, H.O.

1984-06-01T23:59:59.000Z

340

Operation Poorman  

SciTech Connect (OSTI)

The objectives of Operation Poorman were to design and build a portable seismic system and to set up and use this system in a cold-weather environment. The equipment design uses current technology to achieve a low-power, lightweight system that is configured into three modules. The system was deployed in Alaska during wintertime, and the results provide a basis for specifying a mission-ready seismic verification system.

Pruvost, N.; Tsitouras, J.

1981-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Operations Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 TechnicalOilOnlineandOperations

342

Development of automatic operation system for coke oven machines at Yawata Works of Nippon Steel Corporation  

SciTech Connect (OSTI)

The coke plant is a working environment involving heavy dust emissions, high heat and demanding physical labor. The labor-saving operation of the coke plant is an essential issue from the standpoints of not only improvement in working environment, but also reduction in fixed cost by enhancement of labor productivity. Under these circumstances, Nippon Steel has implemented the automation of coke oven machines. The first automatic operation system for coke oven machinery entered service at Oita Works in 1992, followed by the second system at the No. 5 coke oven battery of the coke plant at Yawata Works. The Yawata automatic operation system is characterized by the installation of coke oven machinery to push as many as 140 ovens per day within a short cycle time, such as a preliminary ascension pipe cap opening car and cycle time simulator by the manned operation of the pusher, which is advantageous from the standpoint of investment efficiency, and by the monitoring of other oven machines by the pusher. These measures helped to reduce the manpower requirement to 2 persons per shift from 4 persons per shift. The system entered commercial operation in March, 1994 and has been smoothly working with an average total automatic rate of 97%. Results from the startup to recent operation of the system are reported below.

Matsunaga, Masao; Uematsu, Hiroshi; Nakagawa, Yoji; Ishiharaguchi, Yuji

1995-12-01T23:59:59.000Z

343

Process for heating coal-oil slurries  

DOE Patents [OSTI]

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

344

Process for heating coal-oil slurries  

DOE Patents [OSTI]

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

345

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect (OSTI)

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

346

Colorado Heat Flow Data from IHFC  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: The International Heat Flow Commission (IHFC) Publication Date: 2012 Title: Colorado IHFC Data Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: Abstract: This layer contains the heat flow sites and data of the State of Colorado compiled from the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI) global heat flow database (www.heatflow.und.edu/index2.html). The data include different items: Item number, descriptive code, name of site, latitude and longitude, elevation, depth interval, number of temperature data, temperature gradient, number of conductivity measurement, average conductivity, number of heat generation measurements, average heat production, heat flow, number of individual sites, references, and date of publication. Spatial Domain: Extent: Top: 4522121.800672 m Left: 165356.134075 m Right: 621836.776246 m Bottom: 4097833.419676 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude Of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Zehner, Richard E.

2012-02-01T23:59:59.000Z

347

Statistical Model Analysis of (n,p) Cross Sections and Average Energy For Fission Neutron Spectrum  

SciTech Connect (OSTI)

Investigation of charged particle emission reaction cross sections for fast neutrons is important to both nuclear reactor technology and the understanding of nuclear reaction mechanisms. In particular, the study of (n,p) cross sections is necessary to estimate radiation damage due to hydrogen production, nuclear heating and transmutations in the structural materials of fission and fusion reactors. On the other hand, it is often necessary in practice to evaluate the neutron cross sections of the nuclides for which no experimental data are available.Because of this, we carried out the systematical analysis of known experimental (n,p) and (n,a) cross sections for fast neutrons and observed a systematical regularity in the wide energy interval of 6-20 MeV and for broad mass range of target nuclei. To explain this effect using the compound, pre-equilibrium and direct reaction mechanisms some formulae were deduced. In this paper, in the framework of the statistical model known experimental (n,p) cross sections averaged over the thermal fission neutron spectrum of U-235 are analyzed. It was shown that the experimental data are satisfactorily described by the statistical model. Also, in the case of (n,p) cross sections the effective average neutron energy for fission spectrum of U-235 was found to be around 3 MeV.

Odsuren, M.; Khuukhenkhuu, G. [Nuclear Research Center, National University of Mongolia, Ulaanbaatar (Mongolia)

2011-06-28T23:59:59.000Z

348

Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates  

Broader source: Energy.gov [DOE]

Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

349

Spectral Functions of Singular Operators  

E-Print Network [OSTI]

The asymptotic expansion of the heat-kernel for small values of its argument has been studied in many different cases and has been applied to 1-loop calculations in Quantum Field Theory. In this thesis we consider this asymptotic behavior for certain singular differential operators which can be related to quantum fields on manifolds with conical singularities. Our main result is that, due to the existence of this singularity and of infinitely many boundary conditions of physical relevance related to the admissible behavior of the fields on the singular point, the heat-kernel has an "unusual" asymptotic expansion. We describe examples where the heat-kernel admits an asymptotic expansion in powers of its argument whose exponents depend on "external" parameters. As far as we know, this kind of asymptotics had not been found and therefore its physical consequences are still unexplored.

Pablo Pisani

2014-10-28T23:59:59.000Z

350

Photovoltaic roof heat flux  

E-Print Network [OSTI]

designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

351

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

352

Fig. 3. Averaged PSF of a whole eye without immersion (a), compared to average eye with corneal immersion (b). The degradation using immersion is mostly caused by  

E-Print Network [OSTI]

Fig. 3. Averaged PSF of a whole eye without immersion (a), compared to average eye with corneal of the complete eye was calculated by the averaged Zernike coefficients measured on 532 eyes. All PSFs were). The PSFs were calculated by averaging Zernike coefficients measured from 228 eyes. Both PSFs were

Ribak, Erez

353

Variable frequency microwave heating apparatus  

DOE Patents [OSTI]

A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN); Johnson, Arvid C. (Lake in the Hills, IL); Thigpen, Larry T. (Angier, NC)

1999-01-01T23:59:59.000Z

354

Process Waste Heat Recovery in the Food Industry - A System Analysis  

E-Print Network [OSTI]

An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

Lundberg, W. L.; Mutone, G. A.

1983-01-01T23:59:59.000Z

355

Abrasion resistant heat pipe  

DOE Patents [OSTI]

A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, Donald M. (Leola, PA)

1984-10-23T23:59:59.000Z

356

MA HEAT Loan Overview  

Broader source: Energy.gov [DOE]

Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

357

Abrasion resistant heat pipe  

DOE Patents [OSTI]

A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, D.M.

1984-10-23T23:59:59.000Z

358

Solar heat receiver  

DOE Patents [OSTI]

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

359

Examination of Liquid Fluoride Salt Heat Transfer  

SciTech Connect (OSTI)

The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

Yoder Jr, Graydon L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

360

Operations Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy'sRunning jobsOPERATING PLANOperations

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Average Fe K-alpha emission from distant AGN  

E-Print Network [OSTI]

One of the most important parameters in the XRB (X-ray background) synthesis models is the average efficiency of accretion onto SMBH (super-massive black holes). This can be inferred from the shape of broad relativistic Fe lines seen in X-ray spectra of AGN (active galactic nuclei). Several studies have tried to measure the mean Fe emission properties of AGN at different depths with very different results. We compute the mean Fe emission from a large and representative sample of AGN X-ray spectra up to redshift ~ 3.5. We developed a method of computing the rest-frame X-ray average spectrum and applied it to a large sample (more than 600 objects) of type 1 AGN from two complementary medium sensitivity surveys based on XMM-Newton data, the AXIS and XWAS samples. This method makes use of medium-to-low quality spectra without needing to fit complex models to the individual spectra but with computing a mean spectrum for the whole sample. Extensive quality tests were performed by comparing real to simulated data, and a significance for the detection of any feature over an underlying continuum was derived. We detect with a 99.9% significance an unresolved Fe K-alpha emission line around 6.4 keV with an EW ~ 90 eV, but we find no compelling evidence of any significant broad relativistic emission line in the final average spectrum. Deviations from a power law around the narrow line are best represented by a reflection component arising from cold or low-ionization material. We estimate an upper limit for the EW of any relativistic line of 400 eV at a 3 sigma confidence level. We also marginally detect the so-called Iwasawa-Taniguchi effect on the EW for the unresolved emission line, which appears weaker for higher luminosity AGN.

A. Corral; M. J. Page; F. J. Carrera; X. Barcons; S. Mateos; J. Ebrero; M. Krumpe; A. Schwope; J. A. Tedds; M. G. Watson

2008-10-02T23:59:59.000Z

362

Ammoniated salt heat pump  

SciTech Connect (OSTI)

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

363

Heat Transfer Guest Editorial  

E-Print Network [OSTI]

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

364

Acoustic Heating Peter Ulmschneider  

E-Print Network [OSTI]

mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

Ulmschneider, Peter

365

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

366

Pioneering Heat Pump Project  

Broader source: Energy.gov [DOE]

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

367

Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota (MillionState Heating Weekly

368

FY 2012 Federal Office Departmental Averages | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report to CongressMarch 4, 2014Federal

369

W. R. Johnson An Average-Atom Model  

E-Print Network [OSTI]

W. R. Johnson An Average-Atom Model h0 - Z r + V (r) a(r) = aa(r) potential: V (r) = (r )/R d - (3) d 1 + exp[( - µ)/kT ] P 2 (r) norm: Z = R 0 4r 2 (r) dr ­ ND ­ 04/02 1 #12;W. R. Johnson Electron-Fermi contributions to continuum ­ ND ­ 04/02 2 #12;W. R. Johnson Phase shifts: Al - T=10eV 0 1 2 3 4 5 6 7 8 electron

Johnson, Walter R.

370

Table 14b. Average Electricity Prices, Projected vs. Actual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary statistics for0b. Average

371

Historical Average Priority Firm Power Rates (rates/previous)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in theinPlasticsreduction .HistoricHistorical Average

372

Table 14b. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.Welcome to the1,033 15:b.b. Average

373

Table 17. Average Price of U.S. Coke Exports  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationReleaseMetallurgical Coal Exports byAverage

374

Table 22. Average Price of U.S. Coke Imports  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationReleaseMetallurgical Coal ExportsPriceAverage

375

Table 8. Average Price of U.S. Coal Exports  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationReleaseMetallurgical CoalAverage Price

376

A corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

Richlen, S.L.

1987-08-10T23:59:59.000Z

377

Waste heat recovery: Textile industry. (Latest citations from World Textile Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning descriptions and evaluations of waste heat recovery operations used in the textile industry. Heat recovery and utilization from wastewater streams, flue gas, finishing processes, dyeing operations, and air jet systems are presented. The use of waste heat for space heating and process preheating is considered. (Contains a minimum of 162 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

378

2. Unit Operation Dynamic simulation Unit operation  

E-Print Network [OSTI]

specification . 2.2 Heat transfer equipment Air cooler, cooler/heater, heat exchanger, fired heater LNG multi flow heat exchanger . 2.3 Piping equipment Mixer, tee, pipe, gas pipe, valve, relief valve . 2.4 Rotating equipment Centrifugal compressor or expander, reciprocating compressor pump ,dynamic simulation

Hong, Deog Ki

379

Ground-source Heat Pumps Applied to Commercial Buildings  

SciTech Connect (OSTI)

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2009-07-14T23:59:59.000Z

380

System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Average Fe K-alpha emission from distant AGN  

E-Print Network [OSTI]

One of the most important parameters in the XRB (X-ray background) synthesis models is the average efficiency of accretion onto SMBH (super-massive black holes). This can be inferred from the shape of broad relativistic Fe lines seen in X-ray spectra of AGN (active galactic nuclei). Several studies have tried to measure the mean Fe emission properties of AGN at different depths with very different results. We compute the mean Fe emission from a large and representative sample of AGN X-ray spectra up to redshift ~ 3.5. We developed a method of computing the rest-frame X-ray average spectrum and applied it to a large sample (more than 600 objects) of type 1 AGN from two complementary medium sensitivity surveys based on XMM-Newton data, the AXIS and XWAS samples. This method makes use of medium-to-low quality spectra without needing to fit complex models to the individual spectra but with computing a mean spectrum for the whole sample. Extensive quality tests were performed by comparing real to simulated data, a...

Corral, A; Carrera, F J; Barcons, X; Mateos, S; Ebrero, J; Krumpe, M; Schwope, A; Tedds, J A; Watson, M G

2008-01-01T23:59:59.000Z

382

Plasma dynamics and a significant error of macroscopic averaging  

E-Print Network [OSTI]

The methods of macroscopic averaging used to derive the macroscopic Maxwell equations from electron theory are methodologically incorrect and lead in some cases to a substantial error. For instance, these methods do not take into account the existence of a macroscopic electromagnetic field EB, HB generated by carriers of electric charge moving in a thin layer adjacent to the boundary of the physical region containing these carriers. If this boundary is impenetrable for charged particles, then in its immediate vicinity all carriers are accelerated towards the inside of the region. The existence of the privileged direction of acceleration results in the generation of the macroscopic field EB, HB. The contributions to this field from individual accelerated particles are described with a sufficient accuracy by the Lienard-Wiechert formulas. In some cases the intensity of the field EB, HB is significant not only for deuteron plasma prepared for a controlled thermonuclear fusion reaction but also for electron plasma in conductors at room temperatures. The corrected procedures of macroscopic averaging will induce some changes in the present form of plasma dynamics equations. The modified equations will help to design improved systems of plasma confinement.

Marek A. Szalek

2005-05-22T23:59:59.000Z

383

Thermal cycling effect on the nanoparticle distribution and specific heat of a carbonate eutectic with alumina nanoparticles  

E-Print Network [OSTI]

. The concentration of alumina nanoparticles in this material was measured using neutron activation analysis. The average specific heat of the uncycled material was found to be 1.37 J/g°C.The average specific heat of the thermally cycled material was between 1.7-2.1 J...

Shankar, Sandhya

2011-08-08T23:59:59.000Z

384

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants  

SciTech Connect (OSTI)

A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

Mathur, Anoop [Terrafore Inc.] [Terrafore Inc.

2013-08-14T23:59:59.000Z

385

Active microchannel heat exchanger  

DOE Patents [OSTI]

The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

2001-01-01T23:59:59.000Z

386

Electron Heating in Quasi-Perpendicular Shocks  

E-Print Network [OSTI]

Seventy crossings of the Earths bow shock by the THEMIS satellites have been used to study thermal electron heating in collisionless, quasi-perpendicular shocks. It was found that the temperature increase of thermal electrons differed from the magnetic field increase by factors as great as three, that the parallel electron temperature increase was not produced by parallel electric fields, and that the parallel and perpendicular electron temperature increases were the same on the average. It was also found that the perpendicular and parallel electron heating occurred simultaneously so that the isotropization time is the same as the heating time. These results cannot be explained by energy transfer from waves to electrons or by the motion of magnetized electrons through the shock. Electric field fluctuations on the scale of the electron gyro-diameter were found to be of finite amplitude in the shock ramp, which requires that the electron trajectories be more random and chaotic than orderly and adiabatic. The da...

Mozer, F S

2013-01-01T23:59:59.000Z

387

Brayton Cycle Heat Pump for VOC Control  

E-Print Network [OSTI]

The first full size continuous operation Brayton Cycle Heat Pump (1)(2)(3) application for VOC recovery occurred in 1988. The mixed solvent recovery system was designed and supplied by NUCON for the 3M facility in Weatherford, OK (4). This first...

Kovach, J. L.

388

Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate  

SciTech Connect (OSTI)

This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

Mittereder, N.; Poerschke, A.

2013-11-01T23:59:59.000Z

389

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network [OSTI]

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP for space heating since it directly utilizes the engine waste heat in addition to the energy obtained

Oak Ridge National Laboratory

390

Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)  

SciTech Connect (OSTI)

Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

Not Available

2013-11-01T23:59:59.000Z

391

Industrial heat pumps: types and costs  

SciTech Connect (OSTI)

Many potentially beneficial applications for industrial heat pumps are not being pursued because of confusion regarding both energy savings and economics. Part of this confusion stems from the variety of heat pumps available and the fact that the measure of merit, the coefficient of performance (COP), is commonly defined in at least three different ways. In an attempt to circumvent this problem, a simple categorization was developed based on the commonly accepted COP definitions. Using this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various categories were then compared on the basis of economics.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-03-01T23:59:59.000Z

392

Industrial heat pumps - types and costs  

SciTech Connect (OSTI)

Many potentially beneficial applications for industrial heat pumps are not being pursued because of confusion regarding both energy savings and economics. Part of this confusion stems from the variety of heat pumps available and the fact that the measure of merit, the coefficient of performance (COP) is commonly defined in at least three different ways. In an attempt to circumvent this problem, a simple categorization was developed based on the commonly accepted COP definitions. Using this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various categories were then compared on the basis of economics. 6 refs., 7 figs.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-01-01T23:59:59.000Z

393

Nuclear heated and powered metal excimer laser  

SciTech Connect (OSTI)

A laser uses heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

Womack, D.R.

1982-02-11T23:59:59.000Z

394

Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions  

E-Print Network [OSTI]

ically feasible systems have significant potential advantage over conventional tech nology. An electric drive reactive heat pump can use smaller heat exchangers and compressor than a vapor-compression machine, and have more flexible operating... are discussed, and performance is bounded. A discussion on liquid-vapor equilibria is included as introduction to the systems I- considered. The electric drive heat pump and TA are promising systems; the TA has potential for higher COP than absorption...

Kirol, L.

395

Membrane heat pipe development for space radiator applications  

SciTech Connect (OSTI)

A self-deploying membrane heat pipe (SMHP) is being designed and fabricated to operate in an in-cabin experiment aboard a STS flight. The heat pipe comprises a mylar membrane with a woven fabric arterial wick and R-11 as the working fluid. Preliminary results indicate that this SMHP design will successfully expand and retract in response to an applied heat load; the retraction force is provided by a constant force spring.

Woloshun, K.; Merrigan, M.

1986-01-01T23:59:59.000Z

396

Commercial high efficiency dehumidification systems using heat pipes  

SciTech Connect (OSTI)

An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

Not Available

1993-09-01T23:59:59.000Z

397

CHP: It's Time for Combined Heat and Power  

E-Print Network [OSTI]

and export 16. Creates local jobs for installation, operation and maintenance 17. Supports competitive electricity market structure General Conclusion It is very much in the PUBLIC interest to support CHP distributed energy… even if the private incentives... of use Electricity Electricity Heat Heat Combined Heat and Power Conventional Generation Building Load Power Plant fuel (66 units of remote energy) Boiler fuel (34 units of on-site energy) CHP fuel (x units of on-site energy) Losses Losses 20 29 20...

Herweck, R.

398

Heat recirculating cooler for fluid stream pollutant removal  

DOE Patents [OSTI]

A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

Richards, George A. (Morgantown, WV); Berry, David A. (Morgantown, WV)

2008-10-28T23:59:59.000Z

399

Automatic Tube Cleaning Systems for Condensers and Heat Exchangers  

E-Print Network [OSTI]

AUTOMATIC TUBE CLEANING SYSTEMS FOR CONDENSERS AND HEAT EXCHANGERS Kaveh Someah/V.P. Sales & Mktg. WSA Engineered Systems, Milwaukee, WI (414) 354-6470 ABSTRACT The on-line Automatic Tube Cleaning Systems (ATCS) for condensers and heat... exchangers provide a positive means for automatic cleaning on a continuous basis, while the exchanger or condenser remains "on stream" and at its full operating potential. Condenser tube fouling contributes up to 50% of the total condenser tube heat...

Someah, K.

400

Average System Cost Methodology : Administrator's Record of Decision.  

SciTech Connect (OSTI)

Significant features of average system cost (ASC) methodology adopted are: retention of the jurisdictional approach where retail rate orders of regulartory agencies provide primary data for computing the ASC for utilities participating in the residential exchange; inclusion of transmission costs; exclusion of construction work in progress; use of a utility's weighted cost of debt securities; exclusion of income taxes; simplification of separation procedures for subsidized generation and transmission accounts from other accounts; clarification of ASC methodology rules; more generous review timetable for individual filings; phase-in of reformed methodology; and each exchanging utility must file under the new methodology within 20 days of implementation by the Federal Energy Regulatory Commission of the ten major participating utilities, the revised ASC will substantially only affect three. (PSB)

United States. Bonneville Power Administration.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Heat Integrated Distillation through Use of Microchannel Technology  

Broader source: Energy.gov [DOE]

This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

402

Designing Optimal Heat and Power Systems for Industrial Processes  

E-Print Network [OSTI]

Industrial heat and power systems are complex and not fully understood as integrated systems. Within the context of the overall manufacturing process, they represent enormous capital investments and substantially contribute to the total operating...

Rutkowski, M. A.; Witherell, W. D.

403

Thermosyphon coil arrangement for heat pump outdoor unit  

DOE Patents [OSTI]

For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement there for which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil has a feed portion and an exit portion leading to a separator drum from which liquid refrigerant is returned through downcomer line for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation. 9 figs.

Draper, R.

1984-05-22T23:59:59.000Z

404

Process Heating Assessment and Survey Tool | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

identifies the most energy-intensive equipment. The tool can be used to perform a heat balance that identifies major areas of energy use under various operating conditions and...

405

Introduction of Heat Recovery Chiller Control and Water System Design  

E-Print Network [OSTI]

The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

Jia, J.

2006-01-01T23:59:59.000Z

406

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

407

Thermosyphon coil arrangement for heat pump outdoor unit  

DOE Patents [OSTI]

For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement therefor which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil 32 has a feed portion 30 and an exit portion 34 leading to a separator drum 36 from which liquid refrigerant is returned through downcomer line 42 for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation.

Draper, Robert (Churchill, PA)

1984-01-01T23:59:59.000Z

408

DOE - Office of Legacy Management -- Tocco Induction Heating...  

Office of Legacy Management (LM)

, Ohio OH.42-1 Evaluation Year: 1994 OH.42-2 OH.42-3 Site Operations: Tested uranium heating methods during the late 1960s; only small amounts of material indicated. OH.42-1...

409

High average power magnetic modulator for metal vapor lasers  

DOE Patents [OSTI]

A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA); Miller, John L. (Livermore, CA)

1994-01-01T23:59:59.000Z

410

Heat Transfer -1 You are given the following information for a fluid with thermal conductivity of k = 0.0284 W/m-K that  

E-Print Network [OSTI]

Heat Transfer - 1 You are given the following information for a fluid with thermal conductivity the flow is laminar near the wall. a) (30 points) Determine the corresponding heat transfer coefficient the heat transfer coefficient as a function of x. c) (25 points) Determine the average heat transfer

Virginia Tech

411

Applications Tests of Commercial Heat Pump Water Heaters  

E-Print Network [OSTI]

Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

Oshinski, J. N..; Abrams, D. W.

1987-01-01T23:59:59.000Z

412

Green function diagonal for a class of heat equations  

E-Print Network [OSTI]

A construction of the heat kernel diagonal is considered as element of generalized Zeta function, that, being meromorfic function, its gradient at the origin defines determinant of a differential operator in a technique for regularizing quadratic path integral. Some classes of explicit expression in the case of finite-gap potential coefficient of the heat equation are constructed.

Grzegorz Kwiatkowski; Sergey Leble

2011-12-15T23:59:59.000Z

413

Recovering Industrial Waste Heat by the Means of Thermoelectricity  

E-Print Network [OSTI]

Recovering Industrial Waste Heat by the Means of Thermoelectricity Spring 2010 Department available thermoelectric modules and to build a thermoelectric power generator demonstration unit dependent. A calorimeter has been used to measure the heat supplied by a thermoelectric module #12;(operated

Kjelstrup, Signe

414

Molten salt as a heat transfer fluid for heating a subsurface formation  

DOE Patents [OSTI]

A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2010-11-16T23:59:59.000Z

415

Summer HeatSummer Heat Heat stress solutions  

E-Print Network [OSTI]

occur (then drink a lightly salted beverage like a sports drink). The water's temperature should be cool How should gardeners avoid becoming a safety threat to themselves and others when it's hot? Start to the heat. Become a weather watcher. Set up a small weather station (with a high/low thermom eter, rain

Liskiewicz, Maciej

416

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

417

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F.; Moore, Paul B.

1983-06-21T23:59:59.000Z

418

Neutron imaging of alkali metal heat pipes  

SciTech Connect (OSTI)

High-temperature heat pipes are two-phase, capillary driven heat transfer devices capable of passively providing high thermal fluxes. Such a device using a liquid-metal coolant can be used as a solution for successful thermal management on hypersonic flight vehicles. Imaging of the liquid-metal coolant inside will provide valuable information in characterizing the detailed heat and mass transport. Neutron imaging possesses an inherent advantage from the fact that neutrons penetrate the heat pipe metal walls with very little attenuation, but are significantly attenuated by the liquid metal contained inside. Using the BT-2 beam line at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, preliminary efforts have been conducted on a nickel-sodium heat pipe. The contrast between the attenuated beam and the background is calculated to be approximately 3%. This low contrast requires sacrifice in spatial or temporal resolution so efforts have since been concentrated on lithium (Li) which has a substantially larger neutron attenuation cross section. Using the CG-1D beam line at the High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, the first neutron images of high-temperature molybdenum (Mo)-Li heat pipes have been achieved. The relatively high neutron cross section of Li allows for the visualization of the Li working fluid inside the heat pipes. The evaporator region of a gravity assisted cylindrical heat pipe prototype 25 cm long was imaged from start-up to steady state operation up to approximately 900 C. In each corner of the square bore inside, the capillary action raises the Li meniscus above the bulk Li pool in the evaporator region. As the operational temperature changes, the meniscus shapes and the bulk meniscus height also changes. Furthermore, a three-dimensional tomographic image is also reconstructed from the total of 128 projection images taken 1.4o apart in which the Li had already cooled and solidified.

Kihm, Ken [University of Tennessee, Knoxville (UTK); Kirchoff, Eric [University of Tennessee, Knoxville (UTK); Golden, Matt [University of Tennessee, Knoxville (UTK); Rosenfeld, J. [Thermacore Inc.; Rawal, S. [Lockheed Martin Space Systems Company; Pratt, D. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Bilheux, Hassina Z [ORNL; Walker, Lakeisha MH [ORNL; Voisin, Sophie [ORNL; Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

2013-01-01T23:59:59.000Z

419

Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System  

SciTech Connect (OSTI)

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturer’s rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

Brooks, Kriston P.; Makhmalbaf, Atefe

2014-10-31T23:59:59.000Z

420

E-Print Network 3.0 - air-to-air heat pumps Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conditions... data on the seasonal performance of air-to-air residential heat pump systems. The purpose of this paper... of operation 10, 197778, the Control House ......

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network [OSTI]

joint probability of a household choosing each particular heating/cooling technology combination is a function of the capital and operating

Wood, D.J.

2010-01-01T23:59:59.000Z

422

Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission Fluid  

Broader source: Energy.gov [DOE]

The overall objective of the research is to explore the feasibility of operating enhanced geothermal systems (EGS) with CO2as heat transmission fluid.

423

Evaluation of heat pump concepts in ice rinks; Utvärdering av värmepumpskoncepts i ishallar.  

E-Print Network [OSTI]

?? In Sweden there are about 350 ice rinks in operation today which consume approximately 300 GWh per year. The average energy consumption for a… (more)

Gummesson, Patrik

2014-01-01T23:59:59.000Z

424

Methodology for Life Testing of Refractory Metal / Sodium Heat Pipes  

SciTech Connect (OSTI)

This work establishes an approach to generate carefully controlled data to find heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long-term corrosion rates. The refractory metal selected for demonstration purposes is a molybdenum-44.5% rhenium alloy formed by powder metallurgy. The heat pipes each have an annular crescent wick formed by hot isostatic pressing of molybdenum-rhenium wire mesh. The heat pipes are filled by vacuum distillation with purity sampling of the completed assembly. Round-the-clock heat pipe tests with 6-month destructive and non-destructive inspection intervals are conducted to identify the onset and level of corrosion. Non-contact techniques are employed to provide power to the evaporator (radio frequency induction heating at 1 to 5 kW per heat pipe) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range extends from 1123 to 1323 K. Accomplishments before project cancellation included successful development of the heat pipe wick fabrication technique, establishment of all engineering designs, baseline operational test requirements, and procurement/assembly of supporting test hardware systems. (authors)

Martin, James J.; Reid, Robert S. [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States)

2006-07-01T23:59:59.000Z

425

Comparative Performance of Heat Pumps and R&D Requirements  

E-Print Network [OSTI]

in a role of both increasing the process effi ciencies and recovering and reusing waste energy emitted in industrial manufacturing processes. The lead laboratories doing research in heat pumps in the U.S. are the Oak Ridge National Laboratory (ORNL... that have low-film heat and mass transfer coefficients, be able to operate at high temperatures if needed, operate within reasonable pressure limits, be stable, non-toxic, and above all, inexpensive. The program at ORNL addresses these issues...

Ally, M. R.

426

Resource recovery waste heat boiler upgrade  

SciTech Connect (OSTI)

The waste heat boilers installed in a 360 TPD waste to energy plant were identified as the bottle neck for an effort to increase plant capacity. These boilers were successfully modified to accommodate the increase of plant capacity to 408 TPD, improve steam cycle performance and reduce boiler tube failures. The project demonstrated how engineering and operation can work together to identify problems and develop solutions that satisfy engineering, operation, and financial objectives. Plant checking and testing, design review and specification development, installation and operation results are presented.

Kuten, P.; McClanahan, D.E. [Fluor Daniel, Inc., Houston, TX (United States); Gehring, P.R.; Toto, M.L. [SRRI, Springfield, MA (United States); Davis, J.J. [Deltak, Minon, MN (United States)

1996-09-01T23:59:59.000Z

427

Three important parts of an integrated plant are reactors, separators and a heat exchanger network (HEN) for heat recovery. Within the process engineering community, much  

E-Print Network [OSTI]

exchanger network (HEN) for heat recovery. Within the process engineering community, much attention has beeni ABSTRACT Three important parts of an integrated plant are reactors, separators and a heat and in particular to optimal operation of HENs. The purpose of heat integration is to save energy, but the HEN also

Skogestad, Sigurd

428

Fluidized bed heat treating system  

DOE Patents [OSTI]

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

429

Water-heating dehumidifier  

DOE Patents [OSTI]

A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

Tomlinson, John J. (Knoxville, TN)

2006-04-18T23:59:59.000Z

430

Method for controlling exhaust gas heat recovery systems in vehicles  

DOE Patents [OSTI]

A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

Spohn, Brian L.; Claypole, George M.; Starr, Richard D

2013-06-11T23:59:59.000Z

431

Mechanical Compression Heat Pumps  

E-Print Network [OSTI]

MECHANICAL COMPRESSION HEAT PUMPS Thomas-L. Apaloo and K. Kawamura Mycom Corporation, Los Angeles, California J. Matsuda, Mayekawa Mfg. Co., Tokyo, Japan ABSTRACT Mechanical compression heat pumping is not new in industrial applications.... In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been...

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

432

Heat storage duration  

SciTech Connect (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

433

Process for operating equilibrium controlled reactions  

DOE Patents [OSTI]

A cyclic process for operating an equilibrium controlled reaction in a plurality of reactors containing an admixture of an adsorbent and a reaction catalyst suitable for performing the desired reaction which is operated in a predetermined timed sequence wherein the heating and cooling requirements in a moving reaction mass transfer zone within each reactor are provided by indirect heat exchange with a fluid capable of phase change at temperatures maintained in each reactor during sorpreaction, depressurization, purging and pressurization steps during each process cycle.

Nataraj, Shankar (Allentown, PA); Carvill, Brian Thomas (Orefield, PA); Hufton, Jeffrey Raymond (Fogelsville, PA); Mayorga, Steven Gerard (Allentown, PA); Gaffney, Thomas Richard (Allentown, PA); Brzozowski, Jeffrey Richard (Bethlehem, PA)

2001-01-01T23:59:59.000Z

434

Solar Heating in Uppsala.  

E-Print Network [OSTI]

?? The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar… (more)

Blomqvist, Emelie; Häger, Klara

2012-01-01T23:59:59.000Z

435

Solar heating in Colombia.  

E-Print Network [OSTI]

?? This report describes the process of a thesis implemented in Colombia concerning solar energy. The project was to install a self-circulating solar heating system,… (more)

Skytt, Johanna

2012-01-01T23:59:59.000Z

436

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

437

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

438

Heat rejection system  

DOE Patents [OSTI]

A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

1980-01-01T23:59:59.000Z

439

Passive solar space heating  

SciTech Connect (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

440

E-Print Network 3.0 - annual average daily traffic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Systems 2000. Annual Average Daily Truck Traffic on the California State... Lockout and Non-Lockout Weekdays Average Daily Traffic Volume (vehday) All Cars Trucks ......

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

E-Print Network 3.0 - average daily traffic Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Systems 2000. Annual Average Daily Truck Traffic on the California State... Lockout and Non-Lockout Weekdays Average Daily Traffic Volume (vehday) All Cars Trucks...

442

E-Print Network 3.0 - averaged pulsar profiles Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: averaged pulsar profiles Page: << < 1 2 3 4 5 > >> 1 astroph9911319 Pulsar Astronomy ---2000 and Beyond Summary: with higher than average surface dipole magnetic fields....

443

E-Print Network 3.0 - average power ratio Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a wind turbine Summary: of pairs of poles over the average power is also studied. Index Terms-- average wind power, battery... charging, permanent magnet synchronous machine. I....

444

E-Print Network 3.0 - average high energy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

g Energy and power are time averaged and normally spatially... averaged g Relate energy (density) to power (intensity) The Energy Source Simulation Method 12;g... ms...

445

E-Print Network 3.0 - average body surface Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

averages. The chemical... to the en- semble averages for pressure and configurational energy are summarized in Table II. Three-body... Three-body interactions in fluids from...

446

Operating and Maintaining Your Heat Pump | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartment ofNo FearOfficeOil OilOpening

447

Project Profile: High Operating Temperature Liquid Metal Heat Transfer  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-CommitteeItems at6ACityThermochemical Storage

448

Sharp inequalities for heat kernels of Schrödinger operators and ...  

E-Print Network [OSTI]

A11 p1(z+. 1 ? z+. 0 ) ˜G(z+. 1 )dz1. Making the substitution w1 = z+. 1 in the right hand side we obtain ..... Letting a ? 0 we obtain from Corollary 5 that. ?V. 1,I+ ? ...

Rodrigo BaŒuelos

2000-07-03T23:59:59.000Z

449

High Operating Temperature Liquid Metal Heat Transfer Fluids | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health and Productivity Questionnaire (HPQ)Department of Energy Metalof

450

Ensemble bayesian model averaging using markov chain Monte Carlo sampling  

SciTech Connect (OSTI)

Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

Vrugt, Jasper A [Los Alamos National Laboratory; Diks, Cees G H [NON LANL; Clark, Martyn P [NON LANL

2008-01-01T23:59:59.000Z

451

Residential Slab-On-Grade Heat Transfer in Hot Humid Climates  

E-Print Network [OSTI]

Heat transfer through an uninsulated slab on grade is calculated using a simple method developed by Kusuda. The seasonal and annual slab loads are graphed as a function of annual average soil temperature, Tm, for a variety of floor system...

Clark, E.; Ascolese, M.; Collins, W.

1989-01-01T23:59:59.000Z

452

Numerical study of flow and heat transfer in 3D serpentine channels using colocated grids  

E-Print Network [OSTI]

and average Nusselt number. The numerical code developed was validated by solving for fully developed flow and heat transfer in a square straight channel. Grid-independent solution was established for a reference case of serpentine channel with the highest...

Chintada, Sailesh Raju

1998-01-01T23:59:59.000Z

453

High-lift chemical heat pump technologies for industrial processes  

SciTech Connect (OSTI)

Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

Olszewski, M.; Zaltash, A.

1995-03-01T23:59:59.000Z

454

Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems  

SciTech Connect (OSTI)

This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

Vierow, Karen

2005-08-29T23:59:59.000Z

455

Capture of Heat Energy from Diesel Engine Exhaust  

SciTech Connect (OSTI)

Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

Chuen-Sen Lin

2008-12-31T23:59:59.000Z

456

Compositions produced using an in situ heat treatment process  

DOE Patents [OSTI]

Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

2013-05-28T23:59:59.000Z

457

Compositions produced using an in situ heat treatment process  

DOE Patents [OSTI]

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

Roes, Augustinus Wilhelmus Maria (Houston, TX); Nair, Vijay (Katy, TX); Munsterman, Erwin Henh (Amsterdam, NL); Van Bergen, Petrus Franciscus (Amsterdam, NL); Van Den Berg, Franciscus Gondulfus Antonius (Amsterdam, NL)

2009-10-20T23:59:59.000Z

458

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents [OSTI]

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

459

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference  

E-Print Network [OSTI]

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

Kandlikar, Satish

460

IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER  

E-Print Network [OSTI]

IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

First university owned district heating system using biomass heat  

E-Print Network [OSTI]

Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

Northern British Columbia, University of

462

Nonlocal effective-average-action approach to crystalline phantom membranes  

SciTech Connect (OSTI)

We investigate the properties of crystalline phantom membranes, at the crumpling transition and in the flat phase, using a nonperturbative renormalization group approach. We avoid a derivative expansion of the effective average action and instead analyze the full momentum dependence of the elastic coupling functions. This leads to a more accurate determination of the critical exponents and further yields the full momentum dependence of the correlation functions of the in-plane and out-of-plane fluctuation. The flow equations are solved numerically for D=2 dimensional membranes embedded in a d=3 dimensional space. Within our approach we find a crumpling transition of second order which is characterized by an anomalous exponent {eta}{sub c}{approx_equal}0.63(8) and the thermal exponent {nu}{approx_equal}0.69. Near the crumpling transition the order parameter of the flat phase vanishes with a critical exponent {beta}{approx_equal}0.22. The flat phase anomalous dimension is {eta}{sub f}{approx_equal}0.85 and the Poisson's ratio inside the flat phase is found to be {sigma}{sub f}{approx_equal}-1/3. At the crumpling transition we find a much larger negative value of the Poisson's ratio {sigma}{sub c}{approx_equal}-0.71(5). We discuss further in detail the different regimes of the momentum dependent fluctuations, both in the flat phase and in the vicinity of the crumpling transition, and extract the crossover momentum scales which separate them.

Hasselmann, N. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Braghin, F. L. [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Instituto de Fisica, Universidade Federal de Goias, P. B. 131, Campus II, 74001-970, Goiania, GO (Brazil)

2011-03-15T23:59:59.000Z

463

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

464

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

465

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

466

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

467

Profiles of heating in turbulent coronal magnetic loops  

E-Print Network [OSTI]

Context: The location of coronal heating in magnetic loops has been the subject of a long-lasting controversy: does it occur mostly at the loop footpoints, at the top, is it random, or is the average profile uniform? Aims: We try to address this question in model loops with MHD turbulence and a profile of density and/or magnetic field along the loop. Methods: We use the ShellAtm MHD turbulent heating model described in Buchlin & Velli (2006), with a static mass density stratification obtained by the HydRad model (Bradshaw & Mason 2003). This assumes the absence of any flow or heat conduction subsequent to the dynamic heating. Results: The average profile of heating is quasi-uniform, unless there is an expansion of the flux tube (non-uniform axial magnetic field) or the variation of the kinetic and magnetic diffusion coefficients with temperature is taken into account: in the first case the heating is enhanced at footpoints, whereas in the second case it is enhanced where the dominant diffusion coefficient is enhanced. Conclusions: These simulations shed light on the consequences on heating profiles of the complex interactions between physical effects involved in a non-uniform turbulent coronal loop.

E. Buchlin; P. J. Cargill; S. J. Bradshaw; M. Velli

2007-02-28T23:59:59.000Z

468

Waste Heat Doesn't Have to be a Waste of Money- The American & Efird Heat Recovery Project: A First for the Textile Industry  

E-Print Network [OSTI]

"WASTE HEAT DOESN'T HAVE TO BE A WASTE OF MONEY" THE AMERICAN & EFIRD HEAT RECOVERY PROJECT: A FIRST FOR THE TEXTILE INDUSTRY STEVE W. SMITH, P.E., Program Manager Electrotechnology Sales Duke Power Company Charlotte, NC In 1989 American... and finishing Finishing Plant was targeted as an ideal operations recover energy from their site for a process heat pump installation. wastewater discharges usjng shell and tube Over a three year period, 1987-1990, Duke heat exchangers and preheat incoming...

Smith, S. W.

469

7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined.  

E-Print Network [OSTI]

7-39 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined. Assumptions The heat pump operates steadily. Analysis Combining.5¸ ¹ · ¨ © § ¸ ¸ ¹ · ¨ ¨ © § 1.6 1 1)K300( COP 1 1 maxHP, HL TT Based upon the definition of the heat pump coefficient

Bahrami, Majid

470

Sludge, fuel degradation and reducing fouling on heat exchangers  

SciTech Connect (OSTI)

Brookhaven National Laboratory, under contract to the US Department of Energy, operates an oil heat research primarily to lower energy consumption in the 12 million oil heated homes in the US. The program objectives include: Improve steady state efficiency of oil heating equipment, Improve seasonal efficiencies, Eliminate or minimize factors which tend to degrade system performance. This paper provides an overview of the status of three specific projects which fall under the above objectives. This includes our fuel quality project, oil appliance venting and a project addressing efficiency degradation due to soot fouling of heat exchangers.

Butcher, T.; Litzke, Wai Lin; Krajewski, R.; Celebi, Y.

1992-02-01T23:59:59.000Z

471

Heat Pump Water Heaters and American Homes: A Good Fit?  

SciTech Connect (OSTI)

Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

2010-05-14T23:59:59.000Z

472

Solar heating system  

DOE Patents [OSTI]

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

473

Improved solar heating systems  

DOE Patents [OSTI]

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

474

Computational model of miniature pulsating heat pipes.  

SciTech Connect (OSTI)

The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

Martinez, Mario J.; Givler, Richard C.

2013-01-01T23:59:59.000Z

475

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

SciTech Connect (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

476

Heat pump/refrigerator using liquid working fluid  

DOE Patents [OSTI]

A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

Wheatley, John C. (Del Mar, CA); Paulson, Douglas N. (Del Mar, CA); Allen, Paul C. (Solana Beach, CA); Knight, William R. (Corvallis, OR); Warkentin, Paul A. (San Diego, CA)

1982-01-01T23:59:59.000Z

477

Determination of HEat Capacity of Yucca Mountain Strtigraphic Layers  

SciTech Connect (OSTI)

The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial variability in the horizontal direction within each layer.

T. Hadgu; C. Lum; J.E. Bean

2006-06-20T23:59:59.000Z

478

Chemical heat pump and chemical energy storage system  

DOE Patents [OSTI]

A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

1985-08-06T23:59:59.000Z

479

Addressing the Challenges of RCCI Operation on a Light-Duty...  

Broader source: Energy.gov (indexed) [DOE]

+ ULSD EGR controls MPR but may adversely impact BTE due to EGR heat rejection and turbo-machinery limitations. Ethanol-gasoline blends enable higher load operation with...

480

Atmosphere and Ocean: Earth's Heat Engine: GFD Lab notes  

E-Print Network [OSTI]

Atmosphere and Ocean: Earth's Heat Engine: GFD Lab notes 18 May 2012 UW Hon220c Energy' of water vapor, CO2 and cloud, makes us much warmer than a Marsian (almost no atmosphere. -550C average 2002 clouds, snow, ice, deserts are bright absorbing areas are dark

Note: This page contains sample records for the topic "average operating heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report  

SciTech Connect (OSTI)

The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

1998-04-01T23:59:59.000Z

482

Cold weather hydrogen generation system and method of operation  

DOE Patents [OSTI]

A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

Dreier, Ken Wayne (Madison, CT); Kowalski, Michael Thomas (Seymour, CT); Porter, Stephen Charles (Burlington, CT); Chow, Oscar Ken (Simsbury, CT); Borland, Nicholas Paul (Montpelier, VT); Goyette, Stephen Arthur (New Hartford, CT)

2010-12-14T23:59:59.000Z

483

192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated  

E-Print Network [OSTI]

192 ASHRAE Transactions: Research ABSTRACT Ground-source heat pumps for cooling- tion of the heat pump performance is avoided by offsetting the annual load imbalance in the borefield operating and control strategies in a hybrid ground-source heat pump application using an hourly system

Ghajar, Afshin J.

484

The Cost of Heat Exchanger Fouling in the U. S. Industries  

E-Print Network [OSTI]

and other industries. The 1982 U.S. sales of all industrial heat exchangers, excepting boilers and automotive radiators, was about 285,000 units amounting to about $1.6 billion. The total heat duty of all the heat exchangers in industrial operation...

Rebello, W. J.; Richlen, S. L.; Childs, F.

485

UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings  

E-Print Network [OSTI]

UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings Sunday 19 heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES > Given Boiler Plant will be in operation to provide heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES

Hayden, Nancy J.

486

School of Architecture, Design and the Built Environment Delta T optimisation of district heating network  

E-Print Network [OSTI]

School of Architecture, Design and the Built Environment Delta T optimisation of district heating of any network. Most existing district heating systems work at small (10-15 C) delta T. Although for the conventional and optimised design of the district heating network. The network operation will be simulated

Evans, Paul

487

Apparatus with moderating material for microwave heat treatment of manufactured components  

DOE Patents [OSTI]

An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

Ripley, Edward B. (Knoxville, TN)

2011-05-10T23:59:59.000Z

488

UWB multi-burst transmit driver for averaging receivers  

DOE Patents [OSTI]

A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).

Dallum, Gregory E

2012-11-20T23:59:59.000Z

489

Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations  

E-Print Network [OSTI]

-807. (5) K. Kesavan. The Use of Dissociating Gases As the Working Fluid in Thermodynamic Power Conversion Cycles, Ph.D. thesis. Carnegie-Mellon University, 1978, Ann Arbor, MI: University Microfilms International, 1978. 5. Heat amplifier with a gas...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

Kirol, L. D.

490

Condensation in horizontal heat exchanger tubes  

SciTech Connect (OSTI)

Many innovative reactor concepts for Generation III nuclear power plants use passive safety equipment for residual heat removal. These systems use two phase natural circulation. Heat transfer to the coolant results in a density difference providing the driving head for the required mass flow. By balancing the pressure drop the system finds its operational mode. Therefore the systems depend on a strong link between heat transfer and pressure drop determining the mass flow through the system. In order to be able to analyze these kind of systems with the help of state of the art computer codes the implemented numerical models for heat transfer, pressure drop or two phase flow structure must be able to predict the system performance in a wide parameter range. Goal of the program is to optimize the numerical models and therefore the performance of computer codes analyzing passive systems. Within the project the heat transfer capacity of a heat exchanger tube will be investigated. Therefore the tube will be equipped with detectors, both temperature and pressure, in several directions perpendicular to the tube axis to be able to resolve the angular heat transfer. In parallel the flow structure of a two phase flow inside and along the tube will be detected with the help of x-ray tomography. The water cooling outside of the tube will be realized by forced convection. It will be possible to combine the flow structure measurement with an angular resolved heat transfer for a wide parameter range. The test rig is set up at the TOPLFOW facility at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), so that it will be possible to vary the pressure between 5 and 70 bar. The steam mass content will be varied between 0 and 100 percent. The results will be compared to the large scaled Emergency Condenser Tests performed at the INKA test facility in Karlstein (Germany). The paper will explain the test setup and the status of the project will be presented. (authors)

Leyer, S.; Zacharias, T.; Maisberger, F.; Lamm, M. [AREVA NP GmbH, Paul-Gossen-Strasse 100, Erlangen, 91052 (Germany); Vallee, C.; Beyer, M.; Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstrasse 400, Dresden, 01328 (Germany)

2012-07-01T23:59:59.000Z

491

Integrating preconcentrator heat controller  

DOE Patents [OSTI]

A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

2007-10-16T23:59:59.000Z

492

Micro heat barrier  

DOE Patents [OSTI]

A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

2003-08-12T23:59:59.000Z

493

International Microwave Power Institute 127 ANALYSIS OF OPERATIONAL REGIMES  

E-Print Network [OSTI]

for microwave heating. KEY WORDS: Electric field, dissipated power, micro- wave power, model, permittivity heating systems oper ating at 915 MHz is a standard feature protecting the magnetron from reflections LOAD E. Eves and V. Yakovlev Reflections, electric field and dissipated power of a 915 MHz water load

Yakovlev, Vadim

494

Including radiative heat transfer and reaction quenching in modeling a Claus plant waste heat boiler  

SciTech Connect (OSTI)

Due to increasingly stringent sulfur emission regulations, improvements are necessary in the modified Claus process. A recently proposed model by Nasato et al. for the Claus plant waste heat boiler (WHB) is improved by including radiative heat transfer, which yields significant changes in the predicted heat flux and the temperature profile along the WHB tube, leading to a faster quenching of chemical reactions. For the WHB considered, radiation accounts for approximately 20% of the heat transferred by convection alone. More importantly, operating the WHB at a higher gas mass flux is shown to enhance reaction quenching, resulting in a doubling of the predicted hydrogen flow rate. This increase in hydrogen flow rate is sufficient to completely meet the hydrogen requirement of the H[sub 2]S recovery process considered, which would eliminate the need for a hydrogen plant.

Karan, K.; Mehrotra, A.K.; Behie, L.A. (Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering)

1994-11-01T23:59:59.000Z

495

Sustaining Operational Efficiency of a CHP System  

SciTech Connect (OSTI)

This chapter provides background information on why sustaining operations of combined cooling, heating and power systems is important, provides the algorithms for CHP system performance monitoring and commissioning verification, and concludes with a discussion on how these algorithms can be deployed.

Katipamula, Srinivas; Brambley, Michael R.

2010-01-04T23:59:59.000Z

496

Condensing Heating and Water Heating Equipment Workshop Location...  

Energy Savers [EERE]

Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

497

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath...

498

Performance of Gas-Engine Driven Heat Pump Unit  

SciTech Connect (OSTI)

Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater operating efficiency compared to conventional electric motor-driven units (SCGC 1998). In Japan, many hundreds of thousands of natural gas-driven heat pumps have been sold (typically 40,000 systems annually) (Yahagi et al. 2006). The goal of this program is to develop dependable and energy efficient GHPs suitable for U.S. commercial rooftop applications (the single largest commercial product segment). This study describes the laboratory performance evaluation of an integrated 10-ton GHP rooftop unit (a 900cc Daihatsu-Aisin natural gas engine) which uses R410A as the refrigerant (GEDAC No.23). ORNL Thermally-Activated Heat Pump (TAHP) Environmental Chambers were used to evaluate this unit in a controlled laboratory environment.

Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

2008-09-30T23:59:59.000Z

499

Economic Options for Upgrading Waste Heat  

E-Print Network [OSTI]

There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

Erickson, D. C.

1983-01-01T23:59:59.000Z

500

Molecular heat pump  

E-Print Network [OSTI]

We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

Dvira Segal; Abraham Nitzan

2005-10-11T23:59:59.000Z