Sample records for average operating heat

  1. Heat Transfer Operators Associated with Quantum Operations

    E-Print Network [OSTI]

    Ç. Aksak; S. Turgut

    2011-04-14T23:59:59.000Z

    Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.

  2. areally averaged heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chulwoo Jung; Christoph Lehner 2014-02-18 56 The Fallacy of Averages University of Kansas - KU ScholarWorks Summary: of component variables as well, we found that ignoring...

  3. Heat kernel asymptotics for magnetic Schrödinger operators

    SciTech Connect (OSTI)

    Bolte, Jens, E-mail: jens.bolte@rhul.ac.uk [Department of Mathematics, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)] [Department of Mathematics, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Keppeler, Stefan, E-mail: stefan.keppeler@uni-tuebingen.de [Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)] [Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2013-11-15T23:59:59.000Z

    We explicitly construct parametrices for magnetic Schrödinger operators on R{sup d} and prove that they provide a complete small-t expansion for the corresponding heat kernel, both on and off the diagonal.

  4. Hot Water Heating System Operation and Energy Conservation 

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    heating period, and temperature-flow adjustment with frequency control. The study shows the most energy efficient operating method is a variable flow heating system, which should be popularized to the heating field....

  5. Control and optimal operation of simple heat pump cycles

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd Skogestad in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined

  6. Hot Water Heating System Operation and Energy Conservation

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

  7. Optimization of the Heating System Operation 

    E-Print Network [OSTI]

    Xu, W.; Mao, S.

    2006-01-01T23:59:59.000Z

    A new regulation method of the heating system is presented, which is based on the variation of outdoor temperature, to improve the economical efficiency and the timing regulation of the heating system. A function is put forward between the energy...

  8. Optimization of the Heating System Operation

    E-Print Network [OSTI]

    Xu, W.; Mao, S.

    2006-01-01T23:59:59.000Z

    on the basis of the variation of outdoor temperature, and in this way, the heating system can be optimized....

  9. Development of a high average current polarized electron source with long cathode operational lifetime

    SciTech Connect (OSTI)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01T23:59:59.000Z

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  10. TRANSIENT HEAT TRANSFER MODEL FOR SRS WASTE TANK OPERATIONS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-03-27T23:59:59.000Z

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on waste temperature during the process of waste mixing and removal for the Type-I Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing long-shaft mixer pumps used during waste removal. The model will also be used to provide input to the operation planning. This planning will be used as input to pump run duration in order to maintain temperature requirements within the tank during SMP operation. The analysis model took a parametric approach. A series of the modeling analyses was performed to examine how submersible mixer pumps affect tank temperature during waste removal operation in the Type-I tank. The model domain included radioactive decay heat load, two SMP's, and one Submersible Transfer Pump (STP) as heat source terms. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%. Transient modeling calculations for two potential scenarios of sludge mixing and removal operations have been made to estimate transient waste temperatures within a Type-I waste tank. When two 200-HP submersible mixers and 12 active cooling coils are continuously operated in 100-in tank level and 40 C initial temperature for 40 days since the initiation of mixing operation, waste temperature rises about 9 C in 48 hours at a maximum. Sensitivity studies for the key operating variables were performed. The sensitivity results showed that the chromate cooling coil system provided the primary cooling mechanism to remove process heat from the tank during operation.

  11. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    SciTech Connect (OSTI)

    Josh A. Salmond

    2009-08-07T23:59:59.000Z

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  12. Automatic coke oven heating control system at Burns Harbor for normal and repair operation

    SciTech Connect (OSTI)

    Battle, E.T.; Chen, K.L. [Bethlehem Steel Corp., Burns Harbor, IN (United States); [Bethlehem Steel Corp., PA (United States)

    1997-12-31T23:59:59.000Z

    An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

  13. Investigation of combined heat and mass transfer from a wet heat exchanger. Part 2. Experimental results and operational characteristics of heat exchangers in dry/wet operations

    SciTech Connect (OSTI)

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-04-01T23:59:59.000Z

    This second part of a two-part paper summarizes the experimental evaluation of a plate finned heat exchanger both with and without the surface wetted by a flowing film of water. The results indicate an increase in heat transfer during wet operation of two to five times over that of dry operation for the same meteorological conditions. The deluge model is shown to accurately predict the wet performance using an experimentally determined deluge film coefficient and the dry performance characteristics.

  14. AFBC - operation of small scale demonstration for greenhouse heating

    SciTech Connect (OSTI)

    Ashworth, R.A.; Plessinger, D.A.; Webner, R.L.; Machamer, T.

    1996-12-31T23:59:59.000Z

    A 2.2 million Btu/hr unit prototype AFBC system was installed in 1995 at Cedar Lane Farms, a commercial nursery in Ohio. The AFBC is in operation and is heating hot water for greenhouse temperature control. A team consisting of the Energy and Environmental Research Corporation, the Ohio Agricultural Research and Development Center of Ohio State University and the Will-Burt Company developed this technology with funding support from the Ohio Coal Development Office and the U.S. Department of Energy. The system is fully automated with little operator attention being required. Operating experience at Cedar Lane Farms has shown that only 2 hours per day of operation attention is required for the system. The system includes flyash/sorbent reinjection and underbed coal/limestone feed. These features provide for good limestone utilization; a Ca/S (in coal) ratio of 2.5 will maintain an SO{sub 2} emissions level of 1.2 lb/10{sup 6} Btu when burning high sulfur (3.2%) Ohio coal. A baghouse is used to control particulate emissions. Based on the success of the prototype unit, a design has been recently completed for a commercial size 10 x 10{sup 6} Btu/hr capacity range. Multiple AFBC units can be used to provide larger heat outputs. Potential coal-fired AFBC users include institutions (schools, hospitals, prisons, government), light industry (agricultural, food processing), commercial users (shopping centers), and large residential users (apartment complexes). 6 figs., 1 tab.

  15. TRANSIENT HEAT TRANSFER ANALYSIS FOR SRS RADIOACTIVE TANK OPERATION

    SciTech Connect (OSTI)

    Lee, S.

    2013-06-27T23:59:59.000Z

    The primary objective of the present work is to perform a heat balance study for type-I waste tank to assess the impact of using submersible mixer pumps during waste removal. The temperature results calculated by the model will be used to evaluate the temperatures of the slurry waste under various tank operating conditions. A parametric approach was taken to develop a transient model for the heat balance study for type-I waste tanks such as Tank 11, during waste removal by SMP. The tank domain used in the present model consists of two SMP?s for sludge mixing, one STP for the waste removal, cooling coil system with 36 coils, and purge gas system. The sludge waste contained in Tank 11 also has a decay heat load of about 43 W/m{sup 3} mainly due to the emission of radioactive gamma rays. All governing equations were established by an overall energy balance for the tank domain, and they were numerically solved. A transient heat balance model used single waste temperature model, which represents one temperature for the entire waste liquid domain contained in the tank at each transient time.

  16. Control and optimal operation of simple heat pump cycles Jrgen B. Jensen and Sigurd Skogestad

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control and optimal operation of simple heat pump cycles Jørgen B. Jensen and Sigurd Skogestad cycle. Keywords: Operation, heat pump cycle, cyclic process, charge, self-optimizing control 1. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (re- frigerator, A

  17. Control system for, and a method of, heating an operator station of a work machine

    DOE Patents [OSTI]

    Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad

    2005-04-05T23:59:59.000Z

    There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.

  18. IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    00149 -1- 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan ENERGY EFFICIENT AIR TO AIR HEAT PUMP OPERATING WITH R-1234yf Sorina Mortada, Ph.D. student, Center for Energy and Processes Abstract: Significant improvements in energy performance of air-to-air heat pumps are the major reason

  19. 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-47 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily. HP Wnet,in QH QL TL TH Analysis The maximum heat pump coefficient of performance would occur if the heat pump were completely reversible, 5.7 K026K300 K300 COP maxHP, LH H TT

  20. Degrees of freedom and optimal operation of simple heat pump cycles

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Degrees of freedom and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined as COPh = Qh

  1. Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System 

    E-Print Network [OSTI]

    Liu, G.; Guo, Z.; Hu, S.

    2006-01-01T23:59:59.000Z

    solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

  2. Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System

    E-Print Network [OSTI]

    Liu, G.; Guo, Z.; Hu, S.

    2006-01-01T23:59:59.000Z

    solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

  3. Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams

    E-Print Network [OSTI]

    Kreeger, A. H.

    FLUID BED WASTE HEAT BOILER OPERATING EXPERIENCE IN DIRTY GAS STREAMS Alan H. Kreeger. Aerojet Energy Conversion Company. Sacramento. California ABSTRACT The first industrial fluid bed waste heat boiler in the U. S. is operating... on an aluminium melting furnace at the ALCOA Massena Integrated Aluminum Works in upstate New York. Waste heat from an aluminum melting furnace is captured for general plant use for the first time in this plant. It is accomplished with advanced fluid bed heat...

  4. Tellus, January 21, 1999 (revised) The Response of Atmospheric Heat Transport to ZonallyAveraged SST Trends

    E-Print Network [OSTI]

    Magnusdottir, Gudrun

    '' that transports heat from the warm equator to the cold poles. The two fluid components of the climate systemTellus, January 21, 1999 (revised) The Response of Atmospheric Heat Transport to Zonally the atmospheric heat transport in a realistic atmospheric general circulation model under five different

  5. Improving Heating System Operations Using Water Re-Circulation

    E-Print Network [OSTI]

    Li, F.; Han, J.

    2006-01-01T23:59:59.000Z

    In order to solve the imbalance problem of a heating system, brought about by consumer demand and regulation, and save the electricity energy consumed by a circulation pump, a water mixing and pressure difference control heating system is proposed...

  6. NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel.5 for heating oil. To produce these products, Margaret can purchase two types of crude oil: crude 1 (at £12 per Jet fuel Heating oil Minimum octane 8.5 7 4.5 Price (£) 18 16 14 Minimum production 2500 3000 3500

  7. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11T23:59:59.000Z

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  8. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

    1996-01-01T23:59:59.000Z

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  9. Project Profile: High Operating Temperature Liquid Metal Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A freezing point below 100C Stable at temperatures greater than 800C Low corrosion of stainless steel and high-nickel content alloys A heat capacity greater than 2...

  10. Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids

    SciTech Connect (OSTI)

    Wang, Guo-Shan; Song, Bin; Liu, Zhen-Hua [School of Mechanical Engineering, Shanghai Jiaotong University, 200240 Shanghai (China)

    2010-11-15T23:59:59.000Z

    An experimental study was performed to investigate the operation characteristics of a cylindrical miniature grooved heat pipe using aqueous CuO nanofluid as the working fluid at some steady cooling conditions. The experiments were carried out under both the steady operation process and the unsteady startup process. The experiment results show that substituting the nanofluid for water as the working fluid can apparently improve the thermal performance of the heat pipe for steady operation. The total heat resistance and the maximum heat removal capacity of the heat pipe using nanofluids can maximally reduce by 50% and increase by 40% compared with that of the heat pipe using water, respectively. For unsteady startup process, substituting the nanofluid for water as the working fluid, cannot only improve the thermal performance, but also reduce significantly the startup time. (author)

  11. NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. To produce these products, Margaret purchases crude oil at a price of £11 per barrel. Each day to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

  12. Heating, Current Drive, Operations and Diagnostics Issues Understand implications of reduced repetition rate, is it adequate for the

    E-Print Network [OSTI]

    Heating, Current Drive, Operations and Diagnostics Issues Operations · Understand implications of ECRH to improve startup. Heating · ICRF is the base line heating system, compare with NBI and ECRH withstand the anticipated heat loads? Diagnostics · Capability of beam diagnostics for J(r), E(r), etc

  13. ICRF Heating at JET: From Operations with a Metallic Wall to the Long Term Perspective of a DT Campaign

    E-Print Network [OSTI]

    ICRF Heating at JET: From Operations with a Metallic Wall to the Long Term Perspective of a DT Campaign

  14. Optimal Operation of Finite-time Tricycles with Heat Conduction Losses Raj K. Pathria

    E-Print Network [OSTI]

    Salamon, Peter

    -principle limits to the finite-time operation of a cycling working fluid acting as an agent in the transfer of heat of Curzon and Ahlborn for the efficiency of a Carnot-like heat engine at maximu m power. PACS: 05.70.Ln, 05 means "internall y reversible" and allows us to treat the subsystems participating in a process as being

  15. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  16. Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams 

    E-Print Network [OSTI]

    Kreeger, A. H.

    1986-01-01T23:59:59.000Z

    The first industrial fluid bed waste heat boiler in the U. S. is operating on an aluminium melting furnace at the ALCOA Massena Integrated Aluminum Works in upstate New York. Waste heat from an aluminum melting furnace is captured for general plant...

  17. High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01T23:59:59.000Z

    The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  18. Experimental results and operational characteristics of heat exchangers in dry/wet operations

    SciTech Connect (OSTI)

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1982-08-01T23:59:59.000Z

    This second part of a two-part paper summarizes the experimental evaluation of three air-cooled finned heat exchangers, both with and without the finned surface, wetted by flowing water. In addition, the performance of one of the heat exchangers is compared with predictions from the model which was presented in Part 1. The experimental results are in close agreement with the predictions based on the model. Once the effective film coefficient of the deluge film was determined, deluge performance was predicted using dry heat transfer correlations.

  19. Operating and Maintaining Your Heat Pump | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil's ImpactOperating

  20. Design and Operation of Fluid Beds for Heating, Cooling and Quenching Operations 

    E-Print Network [OSTI]

    Kemp, W. E.

    1981-01-01T23:59:59.000Z

    with austempering cycles have been conducted with excellent results. A unique fluid bed bath which is used for preheating, weld positioning and post-heating of castings has also been produced. Substantial energy and material handling savings have been obtained...

  1. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-08-22T23:59:59.000Z

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-based measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE?0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.

  2. Optimal Operation of a Waste Incineration Plant for District Heating Johannes Jaschke, Helge Smedsrud, Sigurd Skogestad*, Henrik Manum

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal Operation of a Waste Incineration Plant for District Heating Johannes J¨aschke, Helge@chemeng.ntnu.no off-line. This systematic approach is here applied to a waste incineration plant for district heating. In district heating networks, operators usually wish to ob- tain the lowest possible return temperature

  3. Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)

    E-Print Network [OSTI]

    Demirel, Melik C.

    Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

  4. ICRF heating in JET during initial operations with the ITER-like wall

    SciTech Connect (OSTI)

    Jacquet, P.; Brix, M.; Graham, M.; Mayoral, M.-L.; Meigs, A.; Monakhov, I.; Sirinelli, A. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V.; Drewelow, P.; Pütterich, T. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Brezinsek, S. [IEK-4, Forschungszentrum Jülich, Association EURATOM-FZJ (Germany); Campergue, A-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Czarnecka, A. [Association Euratom-IPPLM, Hery 23, 01-497 Warsaw (Poland); Klepper, C. C. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Lerche, E.; Van-Eester, D. [Association EURATOM-Belgian State, ERM-KMS, Brussels (Belgium); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Mlynar, J. [Association EURATOM-IPP.CR, Za Slovankou 3, 182 21 Praha 8 (Czech Republic); Collaboration: JET-EFDA Contributors

    2014-02-12T23:59:59.000Z

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall material on the JET Ion Cyclotron Resonance Frequency (ICRF) operation was assessed and also the properties of JET plasmas heated with ICRF were studied. No substantial change of the antenna coupling resistance was observed with the ILW as compared with the carbon wall. Heat-fluxes on the protecting limiters close the antennas quantified using Infra-Red (IR) thermography (maximum 4.5 MW/m{sup 2} in current drive phasing) are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can well reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. Some experimental facts indicate that main-chamber W components could be an important impurity source: the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions; the W content is also increased in ICRF-heated limiter plasmas; and Be evaporation in the main chamber results in a strong and long lasting reduction of the impurity level. The ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 20%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating efficiency; The ICRF power can be deposited at plasma centre and the radiation is mainly from the outer part of the plasma. Application of ICRF heating in H-mode plasmas started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core could be observed.

  5. Design and Operation of Fluid Beds for Heating, Cooling and Quenching Operations

    E-Print Network [OSTI]

    Kemp, W. E.

    1981-01-01T23:59:59.000Z

    in the sand from the molding operation. 710 ';: i ESL-IE-81-04-120 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 5. Cleanliness Fluidized beds were described as neat operations with fluidizing sand... of an exhaustive test ing process and cOJTq)romises were necessary. 5 . Cleanliness Although the potential for clean operations may still be there, operations to date at Luling Steel have been beset with excessive dusting. Fluidized beds, especially those...

  6. NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.

    SciTech Connect (OSTI)

    VIlim, R.; Nuclear Engineering Division

    2009-03-12T23:59:59.000Z

    Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This compares with a value of 43.9 for the reference plant. This latter plant has a reactor outlet temperature of 850 C and the two high temperature heat exchangers. The reduction in reactor outlet temperature from 850 C to 700 C reduces the tritium permeability rate in the IHX metal by a factor of three and thermal creep by five orders of magnitude. The design option for reducing PHX temperature from 800 C to 200 C reduces the permeability there by three orders of magnitude. In that design option this heat exchanger is the single 'choke-point' for tritium migration from the nuclear to the chemical plant.

  7. The new Kaiserstuhl coking plant: The heating system -- Design, construction and initial operating experience

    SciTech Connect (OSTI)

    Strunk, J.

    1996-12-31T23:59:59.000Z

    At the end of 1992 the new coke plant Kaiserstuhl in Dortmund/Germany with presently the largest coke ovens world-wide started its production operation in close linkage to the Krupp-Hoesch Metallurgical Works after about 35 months construction time. This plant incorporating comprehensive equipment geared to improve environmental protection is also considered as the most modern coke plant of the world. The heating-system and first results of operation will be presented.

  8. PUBLISHED VERSION Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall

    E-Print Network [OSTI]

    PUBLISHED VERSION Ion cyclotron resonance frequency heating in JET during initial operations.1063/1.4884354 #12;Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-mode regime in Alcator C-Moda) Phys. Plasmas 20, 055904 (2013); 10.1063/1.4803914 Upgrade of the infrared

  9. Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall

    SciTech Connect (OSTI)

    Jacquet, P., E-mail: philippe.jacquet@ccfe.ac.uk; Monakhov, I.; Arnoux, G.; Brix, M.; Graham, M.; Meigs, A.; Sirinelli, A. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Bobkov, V.; Devaux, S.; Drewelow, P.; Pütterich, T. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Czarnecka, A. [Association Euratom-IPPLM, Hery 23, 01-497 Warsaw (Poland); Lerche, E.; Van-Eester, D. [Association EURATOM-Belgian State, ERM-KMS, Brussels (Belgium); Mayoral, M.-L. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); EFDA Close Support Unit, Garching (Germany); Brezinsek, S. [IEK-4, Forschungszentrum Jülich, Association EURATOM-FZJ, Jülich (Germany); Campergue, A.-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Klepper, C. C. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); and others

    2014-06-15T23:59:59.000Z

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall materials on the JET Ion Cyclotron Resonance Frequency (ICRF) operation is assessed and some important properties of JET plasmas heated with ICRF are highlighted. A???20% reduction of the antenna coupling resistance is observed with the ILW as compared with the JET carbon (JET-C) wall. Heat-fluxes on the protecting limiters close the antennas, quantified using Infra-Red thermography (maximum 4.5?MW/m{sup 2} in current drive phasing), are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. The location of the tungsten ICRF specific source could not be identified but some experimental observations indicate that main-chamber W components could be an important impurity source: for example, the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions, and Be evaporation in the main chamber results in a strong reduction of the impurity level. In L-mode plasmas, the ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 15%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating performance; the power is typically deposited at the plasma centre while the radiation is mainly from the outer part of the plasma bulk. Application of ICRF heating in H-mode plasmas has started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core has been observed.

  10. Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications

    E-Print Network [OSTI]

    Saravanan, R.; Murugavel, V.

    2010-01-01T23:59:59.000Z

    effect from CO2 emission resulting from the combustion of fossil fuels in utility power plants and the use of chlorofluorocarbon refrigerants, which is currently thought to affect depletion of the ozone layer. The ban on fluorocarbon fluids has been...LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS V. Murugavel and R. Saravanan Refrigeration and Air conditioning Laboratory Department of Mechanical Engineering, Anna University...

  11. Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant

    E-Print Network [OSTI]

    Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

    In order to improve the energy performance of a district heating and cooling (DHC) plant, the expected performance of the plant is studied using simulations based on mathematical models. A complete heat source system model, equipped with an embedded...

  12. Influence of Transfer Efficiency of the Outdoor Pipe Network and Boiler Operating Efficiency on the Building Heat Consumption Index

    E-Print Network [OSTI]

    Fang, X.; Wang, Z.; Liu, H.

    2006-01-01T23:59:59.000Z

    This paper analyzes the influence of transfer efficiency of the outdoor pipe network and operating efficiency of the boiler on the building heat consumption index, on the premise of saving up to 65 percent energy in different climates. The results...

  13. EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

  14. Determination of the Number of Tube Rows to Obtain Closure for Volume Averaging Theory Based Model of Fin-and-Tube Heat Exchangers

    E-Print Network [OSTI]

    Zhou, Feng; Hansen, Nicholas E; Geb, David J; Catton, Ivan

    2011-01-01T23:59:59.000Z

    can be evaluated for a representative elementary volume (and-tube heat exchanger, representative elementary volumeand (2) on a selected representative elementary volume (REV)

  15. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    SciTech Connect (OSTI)

    Oland, CB

    2004-08-19T23:59:59.000Z

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

  16. Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm

    SciTech Connect (OSTI)

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2011-06-01T23:59:59.000Z

    Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

  17. The Earth Institute, Columbia University14 Annual Donor Report 2009 15 Heat waves are on the rise as the climate changes and average temperatures increase.

    E-Print Network [OSTI]

    The Earth Institute, Columbia University14 Annual Donor Report 2009 15 Heat waves are on the rise University and Barnard College. Known as the Columbia Green Roof Consortium, it is led by a team of two Earth solutions in a responsible and scientific way--and Columbia had plenty of roof space to work with. "They

  18. Steady state heat transfer experimental studies of LHC superconducting cables operating in cryogenic environment of superfluid helium

    E-Print Network [OSTI]

    Santandrea, Dario; Tuccillo, Raffaele; Granieri, Pier Paolo.

    The heat management is a basic and fundamental aspect of the superconducting magnets used in the CERN Large Hadron Collider. Indeed, the coil temperature must be kept below the critical value, despite the heat which can be generated or deposited in the magnet during the normal operations. Therefore, this thesis work aims at determining the heating power which can be extracted from the superconducting cables of the LHC, specially through their electrical insulation which represents the main thermal barrier. An experimental measurement campaign in superfluid helium bath was performed on several samples reproducting the main LHC magnets. The heating power was generated in the sample by Joule heating and the temperature increase was measured by means of Cernox bare chip and thermocouples. An innovative instrumentation technique which also includes the in-situ calibration of the thermocouples was developed. A thorough uncertainty analysis on the overall measurement chain concluded the experimental setup. The prese...

  19. Influence of viscous friction heating on the efficiency of columns operated under very high pressures

    SciTech Connect (OSTI)

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

    2009-01-01T23:59:59.000Z

    When columns packed with very fine particles are operated at high mobile phase velocities, the friction of the mobile phase percolating through the column bed generates heat. This heat dissipates along and across the column and axial and radial temperature gradients appear. The wall region of the column tends to be cooler than its center, and due to the influence of temperature on the mobile phase viscosity and on the equilibrium constant of analytes, the band velocity is not constant across the column. This radial heterogeneity of the temperature distribution across the column contributes to band broadening. This phenomenon was investigated assuming a cylindrically symmetrical column and using the general dispersion theory of Aris, which relates the height equivalent to the theoretical plate (HETP) contribution due to a radial heterogeneity of the column to the radial distribution of the linear velocities of a compound peak and to the radial distribution of its apparent dispersion coefficients in the column bed. The former is known from the temperature gradient across the column, the temperature dependencies of the mobile phase viscosity, and the retention factor of the compound. The latter is derived from the known expression of the transverse reduced HETP equation for the column. The values of the HETP calculated with the Aris model and a classical HETP equation were compared to those measured on a 2.1 x 50 mm Acquity BEH-C{sub 18} column, run at flow rates of 0.6, 0.95, 1.30, and 1.65 mL/min, with pure acetonitrile as the mobile phase and naphtho[2,3-a]pyrene as the retained compound. These two sets of data are in generally good agreement, although the experimental values of the HETP tend to increase faster with increasing mobile phase velocity than the calculated values.

  20. Proposal for the award of two service contracts for the operation, maintenance and other work relating to the heating, ventilation, air-conditioning and plumbing facilities at CERN

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Proposal for the award of two service contracts for the operation, maintenance and other work relating to the heating, ventilation, air-conditioning and plumbing facilities at CERN

  1. PUBLISHED VERSION ICRF heating in JET during initial operations with the ITER-like wall

    E-Print Network [OSTI]

    . Heat-fluxes on the protecting limiters close the antennas quantified using Infra-Red (IR) thermography

  2. 7-84E The claim of an inventor about the operation of a heat engine is to be evaluated. Assumptions The heat engine operates steadily.

    E-Print Network [OSTI]

    Bahrami, Majid

    efficiency would be 0.45 R1000 R550 11maxth, H L T T K 550 R 1000 R HE HQ 15,000 Btu/h 5 hp When the first law is applied to the engine above, Btu/h720,27Btu/h000,15 hp1 Btu/h2544.5 )hp5(net ¸¸ ¹ · ¨¨ © § LH QWQ The actual thermal efficiency of the proposed heat engine is then 459.0 hp1 Btu/h2544.5 Btu/h27

  3. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  4. Measurement of limiter heating due to fusion product losses during high fusion power deuterium-tritium operation of TFTR

    SciTech Connect (OSTI)

    Janos, A.; Owens, D.K.; Darrow, D.; Redi, M.; Zarnstorff, M.; Zweben, S.

    1995-03-01T23:59:59.000Z

    Preliminary analysis has been completed on measurements of limiter heating during high fusion power deuterium-tritium (D-T) operation of TFTR, in an attempt to identify heating from alpha particle losses. Recent operation of TFTR with a 50-50 mix of D-T has resulted in fusion power output ({approx} 6.2 MW) orders of magnitude above what was previously achieved on TFTR. A significantly larger absolute number of particles and energy from fusion products compared to D-D operation is expected to be lost to the limiters. Measurements were made in the vicinity of the midplane ({plus_minus} 30{degree}) with thermocouples mounted on the tiles of an outboard limiter. Comparisons were made -between discharges which were similar except for the mix of deuterium and tritium beam sources. Power and energy estimates of predicted alpha losses were as high as 0.13 MW and 64 kJ. Depending on what portion of the limiters absorbed this energy, temperature rises of up to 42 {degrees}C could be expected, corresponding to a heat load of 0.69 MJ/m{sup 2} over a 0.5 sec period, or a power load of 1.4 MW/m{sup 2}. There was a measurable increase in the limiter tile temperature as the fusion power yield increased with a more reactive mixture of D and T at constant beam power during high power D-T operation. Analysis of the data is being conducted to see if the alpha heating component can be extracted. Measured temperature increases were no greater than 1 {degree}C, indicating that there was probably neither an unexpectedly large fraction of lost particles nor unexpected localization of the losses. Limits on the stochastic ripple loss contribution from alphas can be deduced.

  5. Comparative Performance Analysis of IADR Operating in Natural Gas-Fired and Waste-Heat CHP Modes

    SciTech Connect (OSTI)

    Petrov, Andrei Y [ORNL; Sand, James R [ORNL; Zaltash, Abdolreza [ORNL

    2006-01-01T23:59:59.000Z

    Fuel utilization can be dramatically improved through effective recycle of 'waste' heat produced as a by-product of on-site or near-site power generation technologies. Development of modular compact cooling, heating, and power (CHP) systems for end-use applications in commercial and institutional buildings is a key part of the Department of Energy's (DOE) energy policy. To effectively use the thermal energy from a wide variety of sources which is normally discarded to the ambient, many components such as heat exchangers, boilers, absorption chillers, and desiccant dehumidification systems must be further developed. Recently a compact, cost-effective, and energy-efficient integrated active-desiccant vapor-compression hybrid rooftop (IADR) unit has been introduced in the market. It combines the advantages of an advanced direct-expansion cooling system with the dehumidification capability of an active desiccant wheel. The aim of this study is to compare the efficiency of the IADR operation in baseline mode, when desiccant wheel regeneration is driven by a natural gas burner, and in CHP mode, when the waste heat recovered from microturbine exhaust gas is used for desiccant regeneration. Comparative analysis shows an excellent potential for more efficient use of the desiccant dehumidification as part of a CHP system and the importance of proper sizing of the CHP components. The most crucial factor in exploiting the efficiency of this application is the maximum use of thermal energy recovered for heating of regeneration air.

  6. as-operated heat loss: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Heat Loss Measurement Using Infrared Imaging Texas A&M University - TxSpace Summary: in various applications. Examples...

  7. Operational limit of closed loop pulsating heat pipes Honghai Yang a,*, S. Khandekar b

    E-Print Network [OSTI]

    Khandekar, Sameer

    a College of Environmental Science and Engineering, Donghua University, Shanghai 200051, PR China b of a total of 40 copper tubes with 1 mm and 2 mm inner diameter, respectively. R123 was employed important ones. In both cases the limit will manifest itself by an unacceptable over- heating

  8. Improving central heating plant performance at the defense construction supply center (DCSC): Advanced operation and maintenance methods. Final report

    SciTech Connect (OSTI)

    Savoie, M.J.; Standerfer, J.; Schmidt, C.M.; Gostich, J.; Mignacca, J.

    1994-11-01T23:59:59.000Z

    A 1987 air pollution emissions test done by the U.S. Army Environmental Hygiene Agency (USAEHA) identified several problems with the central heating plant (CHP) at the Defense Construction Supply Center (DCSC), Columbus, OH. Though DCSC repaired the specified problems, improved coal specifications, and tried to reduce air infiltration, CHP performance remained at unacceptable levels. Consequently, DCSC contracted the U.S. Army Construction Engineering Research Laboratories (USACERL) to apply advanced operation and maintenance procedures to improve its combustion system. This study employed a system-wide approach to evaluate the CHP 5 fuel storage, combustion, heat distribution, and the control of air emissions. Many short-term improvements to the CHP were identified and tested. Subsequent combustion and air emissions tests revealed that the recommended improvements successfully increased CHP efficiency. Long-term improvements were also recommended to help maintain the short-term improvements.

  9. Method and apparatus for operating a self-starting air heating system

    DOE Patents [OSTI]

    Heinrich, Charles E. (Mentor, OH)

    1983-12-06T23:59:59.000Z

    A self-starting, fuel fired, air heating system including a fuel burner fired vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser and heating the air. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with a method and apparatus which on start-up prevents the vapor generator's vapor output from being conducted to the turbine until a predetermined pressure differential has been achieved. However, after the vapor flow is once permitted, it cannot again be prevented until after the fuel burner has been shut off and restarted.

  10. ICRF heating at JET: From operations with a metallic wall to the long term perspective of a DT campaign

    SciTech Connect (OSTI)

    Mayoral, M.-L.; Graham, M.; Jacquet, Ph.; Monakhov, I.; Riccardo, V. [Euratom/CCFE Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Eriksson, L.-G. [European Commission, Brussels, B-1049 (Belgium); Lerche, E.; Van Eester, D. [LPP-ERM/KMS, Association Euratom-'Belgian State' (Belgium)

    2011-12-23T23:59:59.000Z

    The first series of experiments with the ITER-like wall (ILW) will start mid-2011 with D plasmas and will continue through 2012-13 with H, {sup 4}He and D plasmas, and up to 2014-15, when a DT campaign is proposed. In this paper, the previous experience at JET is reviewed to set the scene for the future challenges of ICRF operation including change in the ICRF coupling, W impurity production and evaluation of localized power loads due the RF sheaths. development in a Beryllium/Tungsten environment of ICRF heating schemes for the non activated and the DT phases of ITER.

  11. Thermionic converter with differentially heated cesium-oxygen source and method of operation

    DOE Patents [OSTI]

    Rasor, Ned S. (Cupertino, CA); Riley, David R. (West Newton, PA); Murray, Christopher S. (Bethel Park, PA); Geller, Clint B. (Pittsburgh, PA)

    2000-01-01T23:59:59.000Z

    A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

  12. Thermionic converter with differentially heated cesium-oxygen source and method of operation

    SciTech Connect (OSTI)

    Rasor, N.S.; Riley, D.R.; Murray, C.S.; Geller, C.B.

    1998-12-01T23:59:59.000Z

    A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided, wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

  13. Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Temperature Radiant Heating Systems Milorad Boji1*, Dragan Cvetkovi1 , Jasmina Skerli1 , Danijela Nikoli1., University of Réunion Island, France * Corresponding email: bojic@kg.ac.rs Keywords: Low temperature heating, wall heating, floor heating, ceiling heating, EnergyPlus SUMMARY Low temperature heating panel systems

  14. Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report

    SciTech Connect (OSTI)

    Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

    1980-05-01T23:59:59.000Z

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

  15. Method of operating a coal predrying and heating plant in connection with a coking plant

    SciTech Connect (OSTI)

    Bocsanczy, J.; Knappstein, J.; Stalherm, D.

    1981-01-27T23:59:59.000Z

    A method of preparing and delivering coal to a coking plant comprises conveying the coal to the plant on a moving conveyor while an inert combustion gas is directed over the coal being conveyed. The combustion gas is generated by burning a fuel with air to produce a substantially inert combustion gas which is passed over the coal during its conveying and, thereafter, passed through a cooler for removing the moisture which has been picked up from the coal by the gas. The heating and predrying inert gases are advantageously generated by the direct combustion of air and fuel which are passed through flash dryer tubes and one or more separate separator systems and then delivered into a conveyor pipeline through which the coal is conveyed. A portion of the gases which are generated are also directed with a return gas to a filter for removal of any coal therefrom and to a cooler for removing the moisture picked up from the coal and then back into the stream for delivery to the conveyor for the coal. The inert gas may also be a gas which is circulated in heat exchange relationship with combustion gases which are generated by a combustion of the coal itself. In such a system, a portion of the combustion gases generated are also passed through a condenser or cooler and the cooled and dried waste gases are circulated over the coal being conveyed to the coking oven or its bunkers.

  16. PROBABILISTIC AVERAGES OF JACOBI OPERATORS HELGE KRUGER

    E-Print Network [OSTI]

    Krueger, Helge

    and Simon tell us that [14] (1.3) ess(H) = J(H) (J) and [13] (1.4) ac(H) J(H) ac(J). Here (H), ess(H) Z ess , where Z ess denotes the essential closure of Z. One might ask whether (1.4) might be strengthened to (1.8) Z ess J(H) ac(J). Unfortunately this is not the case, we will give an example following

  17. Commissioning Process and Operational Improvement in the District Heating and Cooling-APCBC

    E-Print Network [OSTI]

    Takase,T.; Takada,O; Shima,K.; Moriya, M.; Shimoda,Y.

    2014-01-01T23:59:59.000Z

    : 2,900kW TR1,2 Centrifugal Chiller (Constant Speed ) Cooling Capacity : 3,516kW (1,000RT) 2 TR3,4 Inverter Centrifugal Chiller Cooling Capacity : 1,758kW (500RT) 2 BTR1,2 Centrifugal Chiller for Ice Storage Cooling Capacity : 1,571kW (447RT) 2 Ice... Making Capacity : 1297kW (369RT) IST1,2 Ice Storage Tank Capacity of Thermal Storage :11,603kWh (3,300RTh) 2 BO1,2 Hot Water Boiler Heating Capacity : 465kW 2 7 ABOUT THE DHC PLANT ESL-IC-14-09-25 Proceedings of the 14th International Conference...

  18. A Modified Analytical Method for Simulating Cyclic Operation of Vertical U-Tube Ground-Coupled Heat Pumps

    E-Print Network [OSTI]

    Dobson, M. K.; O'Neal, D. L.; Aldred, W.

    1994-01-01T23:59:59.000Z

    as a heat source/sink for heat pumps. Using the soil rather than the ambient air as the heat source in 1 heating and the heat sink in cooling offers potential thermodynamic advantages since the earth is normally at a more favorable temperature for heat...-coupled heat exchangers have proceeded in two different directions: (1) numerical solutions of the heat diffusion equation in the soil and the ground-coil [Mei and Fischer, 1984] and (2) modified analytical solutions [Al- Juwayhel, 1981; Bose et al., 1985...

  19. Measured Impact on Space Conditioning Energy Use in a Residence Due to Operating a Heat Pump Water Heater inside the Conditioned Space

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The impact on space conditioning energy use due to operating a heat pump water heater (HPWH) inside the conditioned space is analyzed based on 2010-2011 data from a research house with simulated occupancy and hot water use controls. The 2700 ft2 (345 m2) house is located in Oak Ridge, TN (mixed-humid climate) and is equipped with a 50 gallon (189 l) HPWH that provided approximately 55 gallons/d (208 l/d) of hot water at 120 F (46 C) to the house during the test period. The HPWH has been operated every other week from December 2010 through November 2011 in two modes; a heat pump only mode, and a standard mode that utilizes 15355 Btu/hr (4500 W) resistance heating elements. The energy consumption of the air-source heat pump (ASHP) that provides space conditioning for the house is compared for the two HPWH operating modes with weather effects taken into account. Impacts during the heating and cooling seasons are compared.

  20. A Modified Analytical Method for Simulating Cyclic Operation of Vertical U-Tube Ground-Coupled Heat Pumps 

    E-Print Network [OSTI]

    Dobson, M. K.; O'Neal, D. L.; Aldred, W.

    1994-01-01T23:59:59.000Z

    A modified analytical model is presented which discretizes the ground-coupled heat exchanger of a ground-coupled heat pump and utilized a separate cylindrical source solution for each element. First law expressions are utilized for each element...

  1. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  2. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  3. Yearly average performance of the principal solar collector types

    SciTech Connect (OSTI)

    Rabl, A.

    1981-01-01T23:59:59.000Z

    The results of hour-by-hour simulations for 26 meteorological stations are used to derive universal correlations for the yearly total energy that can be delivered by the principal solar collector types: flat plate, evacuated tubes, CPC, single- and dual-axis tracking collectors, and central receiver. The correlations are first- and second-order polynomials in yearly average insolation, latitude, and threshold (= heat loss/optical efficiency). With these correlations, the yearly collectible energy can be found by multiplying the coordinates of a single graph by the collector parameters, which reproduces the results of hour-by-hour simulations with an accuracy (rms error) of 2% for flat plates and 2% to 4% for concentrators. This method can be applied to collectors that operate year-around in such a way that no collected energy is discarded, including photovoltaic systems, solar-augmented industrial process heat systems, and solar thermal power systems. The method is also recommended for rating collectors of different type or manufacturer by yearly average performance, evaluating the effects of collector degradation, the benefits of collector cleaning, and the gains from collector improvements (due to enhanced optical efficiency or decreased heat loss per absorber surface). For most of these applications, the method is accurate enough to replace a system simulation.

  4. Polarized electron beams at milliampere average current

    SciTech Connect (OSTI)

    Poelker, Matthew [JLAB

    2013-11-01T23:59:59.000Z

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  5. Optimization of the design and mode of operation of a QD laser for reducing the heat-to-bitrate ratio

    SciTech Connect (OSTI)

    Zhukov, A. E., E-mail: zhukale@gmail.com; Savelyev, A. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Maximov, M. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kryzhanovskaya, N. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation); Gordeev, N. Yu.; Shernyakov, Yu. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Payusov, A. S.; Nadtochiy, A. M.; Zubov, F. I.; Korenev, V. V. [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)] [Russian Academy of Sciences, St. Petersburg Academic University-Nanotechnology Research and Education Center (Russian Federation)

    2013-08-15T23:59:59.000Z

    Heat dissipation under the high-speed modulation of quantum dot edge-emitting lasers is considered. It is shown that, for a given laser diode, there is a bias current at which the heat-to-bitrate ratio is minimized. Moreover, there exists a certain optimal optical loss of the laser cavity at which the lowest heat-to-bitrate ratio is provided for any design of edge-emitting lasers that can be fabricated from an epitaxial structure. The heat-to-bitrate ratio and the corresponding bitrate are numerically calculated and analytical expressions are derived. It is demonstrated that the heat-to-bitrate ratio of quantum dot edge-emitting lasers can be less than 0.4 pJ/bit at a bitrate exceeding 10 Gbit/s.

  6. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  7. Policies supporting Heat Pump Technologies

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

  8. Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

  9. average daily traffic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Page Last Page Topic Index 1 April 2014 Annual Average DailyTraffic (AADT) is a key input in operations and transportation planning Environmental Sciences and Ecology...

  10. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  11. Electron Boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle scattering for fast modeling of electron cyclotron resonance discharge

    E-Print Network [OSTI]

    Kaganovich, Igor

    cyclotron resonance ECR heating. Typically, the operating gas pressures in ECR reactors range from 10 5Electron Boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle scattering for fast modeling of electron cyclotron resonance discharge I. Kaganovich,1,* M. Misina,2, S. V. Berezhnoi

  12. Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation

    SciTech Connect (OSTI)

    Clark, Thomas M [Principal Investigator; Erlach, Celeste [Communications Mgr.

    2014-12-30T23:59:59.000Z

    Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

  13. Polarized electron beams at milliampere average current

    SciTech Connect (OSTI)

    Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2013-11-07T23:59:59.000Z

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today’s CEBAF polarized source operating at ? 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  14. Evaluation and Analysis of an Integrated PEM Fuel Cell with Absorption Cooling and Water Heating System for Sustainable Building Operation

    E-Print Network [OSTI]

    Gadalla, M.; Ratlamwala, T.; Dincer, I.

    2010-01-01T23:59:59.000Z

    In this paper, a parametric study of a PEM fuel cell integrated with a double effect absorption system is carried out in order to study the effect of different operating conditions on the efficiency of the PEM fuel cell, utilization factor...

  15. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  16. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  17. Geothermal heating for Caliente, Nevada

    SciTech Connect (OSTI)

    Wallis, F.; Schaper, J.

    1981-02-01T23:59:59.000Z

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  18. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  19. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs 

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  20. Effects of heat and mass transport on the hydrodynamics and stability of liquid desiccant films

    E-Print Network [OSTI]

    Pineda Vargas, Sergio Manuel

    2013-01-01T23:59:59.000Z

    5.8 Average liquid properties heat capacity, thermal5.9 Average liquid properties heat capacity, thermalFigure 5.8: Average liquid properties heat capacity, thermal

  1. E-Print Network 3.0 - area average temperature Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Fisheries Sciences Collection: Environmental Sciences and Ecology 24 The Greenhouse Effect Temperature Equilibrium Summary: - it is neither heating nor cooling on average....

  2. Averaging Hypotheses in Newtonian Cosmology

    E-Print Network [OSTI]

    T. Buchert

    1995-12-20T23:59:59.000Z

    Average properties of general inhomogeneous cosmological models are discussed in the Newtonian framework. It is shown under which circumstances the average flow reduces to a member of the standard Friedmann--Lema\\^\\i tre cosmologies. Possible choices of global boundary conditions of inhomogeneous cosmologies as well as consequences for the interpretation of cosmological parameters are put into perspective.

  3. OPTIMAL OPERATION OF INTEGRATED PROCESSES

    E-Print Network [OSTI]

    Skogestad, Sigurd

    OPTIMAL OPERATION OF INTEGRATED PROCESSES Studies on Heat Recovery Systems by Bjørn Glemmestad exchanger network (HEN) for heat recovery. Within the process engineering community, much attention has been

  4. 7-122 A solar pond power plant operates by absorbing heat from the hot region near the bottom, and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    , and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant

  5. Evaluations of average level spacings

    SciTech Connect (OSTI)

    Liou, H.I.

    1980-01-01T23:59:59.000Z

    The average level spacing for highly excited nuclei is a key parameter in cross section formulas based on statistical nuclear models, and also plays an important role in determining many physics quantities. Various methods to evaluate average level spacings are reviewed. Because of the finite experimental resolution, to detect a complete sequence of levels without mixing other parities is extremely difficult, if not totally impossible. Most methods derive the average level spacings by applying a fit, with different degrees of generality, to the truncated Porter-Thomas distribution for reduced neutron widths. A method that tests both distributions of level widths and positions is discussed extensivey with an example of /sup 168/Er data. 19 figures, 2 tables.

  6. The Frame Potential, on Average

    E-Print Network [OSTI]

    Ingemar Bengtsson; Helena Granstrom

    2008-10-24T23:59:59.000Z

    A SIC consists of N^2 equiangular unit vectors in an N dimensional Hilbert space. The frame potential is a function of N^2 unit vectors. It has a unique global minimum if the vectors form a SIC, and this property has been made use of in numerical searches for SICs. When the vectors form an orbit of the Heisenberg group the frame potential becomes a function of a single fiducial vector. We analytically compute the average of this function over Hilbert space. We also compute averages when the fiducial vector is placed in certain special subspaces defined by the Clifford group.

  7. 4, 22832300, 2004 Hemispheric average

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 4, 2283­2300, 2004 Hemispheric average Cl atom concentration U. Platt et al. Title Page U. Platt1 , W. Allen2 , and D. Lowe2 1 Institut f¨ur Umweltphysik, University of Heidelberg, INF 229 February 2004 ­ Accepted: 9 March 2004 ­ Published: 4 May 2004 Correspondence to: U. Platt (ulrich.platt

  8. On the Computational Power of Molecular Heat Engines

    E-Print Network [OSTI]

    Janzing, D

    2005-01-01T23:59:59.000Z

    A heat engine is a machine which uses the temperature difference between a hot and a cold reservoir to extract work. Here both reservoirs are quantum systems and a heat engine is described by a unitary transformation which decreases the average energy of the bipartite system. On the molecular scale, the ability of implementing such a unitary heat engine is closely connected to the ability of performing logical operations and classical computing. This is shown by several examples: (1) The most elementary heat engine is a SWAP-gate acting on 1 hot and 1 cold two-level systems with different energy gaps. (2) An optimal unitary heat engine on a pair of 3-level systems can directly implement OR and NOT gates, as well as copy operations. The ability to implement this heat engine on each pair of 3-level systems taken from the hot and the cold ensemble therefore allows universal classical computation. (3) Optimal heat engines operating on one hot and one cold oscillator mode with different frequencies are able to cal...

  9. Applying Learnable Evolution Model to Heat Exchanger Design Kenneth A. Kaufman and Ryszard S. Michalski*

    E-Print Network [OSTI]

    Michalski, Ryszard S.

    of the evaporator tubes in the heat exchanger of an air conditioner. This is a very difficult problem because conditioner, refrigerant flows through a loop. It is superheated and placed in contact with cooler outside air conditions, manufacturers of air conditioning systems currently assume in their models average operating

  10. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  11. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  12. Seasonal Average Temperature - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign In About | CareersAverage Temperature

  13. On the Computational Power of Molecular Heat Engines

    E-Print Network [OSTI]

    Dominik Janzing

    2005-02-02T23:59:59.000Z

    A heat engine is a machine which uses the temperature difference between a hot and a cold reservoir to extract work. Here both reservoirs are quantum systems and a heat engine is described by a unitary transformation which decreases the average energy of the bipartite system. On the molecular scale, the ability of implementing such a unitary heat engine is closely connected to the ability of performing logical operations and classical computing. This is shown by several examples: (1) The most elementary heat engine is a SWAP-gate acting on 1 hot and 1 cold two-level systems with different energy gaps. (2) An optimal unitary heat engine on a pair of 3-level systems can directly implement OR and NOT gates, as well as copy operations. The ability to implement this heat engine on each pair of 3-level systems taken from the hot and the cold ensemble therefore allows universal classical computation. (3) Optimal heat engines operating on one hot and one cold oscillator mode with different frequencies are able to calculate polynomials and roots approximately. (4) An optimal heat engine acting on 1 hot and n cold 2-level systems with different level spacings can even solve the NP-complete problem KNAPSACK. Whereas it is already known that the determination of ground states of interacting many-particle systems is NP-hard, the optimal heat engine is a thermodynamic problem which is NP-hard even for n non-interacting spin systems. This result suggest that there may be complexity-theoretic limitations on the efficiency of molecular heat engines.

  14. Heat Pipes: An Industrial Application

    E-Print Network [OSTI]

    Murray, F.

    1984-01-01T23:59:59.000Z

    This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

  15. Challenges in Industrial Heat Recovery

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  16. Heat Pipes: An Industrial Application 

    E-Print Network [OSTI]

    Murray, F.

    1984-01-01T23:59:59.000Z

    This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

  17. Challenges in Industrial Heat Recovery 

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  18. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  19. Finding of No Significant Impact and Final Environmental Assessment for the Future Location of Heat Source/Radioisotope Power System Assembly and Testing and Operations Currently Located at the Mound Site

    SciTech Connect (OSTI)

    N /A

    2002-08-30T23:59:59.000Z

    The U.S. Department of Energy (the Department) has completed an Environmental Assessment for the Future Location of the Heat Source/Radioisotope Power System Assembly and Test. Operations Currently Located at the Mound Site. Based on the analysis in the environmental assessment, the Department has determined that the proposed action, the relocation of the Department's heat source and radioisotope power system operations, does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the ''National Environmental Policy Act'' of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required, and the Department is issuing this Finding of No Significant Impact (FONSI).

  20. Heat pump with freeze-up prevention

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1981-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  1. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  2. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    SciTech Connect (OSTI)

    Donna P. Guillen

    2012-07-01T23:59:59.000Z

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  3. High-Average Power Facilities

    SciTech Connect (OSTI)

    Dowell, David H.; /SLAC; Power, John G.; /Argonne

    2012-09-05T23:59:59.000Z

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  4. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  5. advanced heat recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling,000 tons (Standby) (average) Heat Recovery 13.5 MW 5.6MW 1 MW...

  6. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01T23:59:59.000Z

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  7. HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB

    SciTech Connect (OSTI)

    Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher

    2012-07-01T23:59:59.000Z

    Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  8. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2007-09-18T23:59:59.000Z

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  9. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2011-06-28T23:59:59.000Z

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  10. Industrial Heat Pump Case Study

    E-Print Network [OSTI]

    Wagner, J. R.; Brush, F. C.

    with operating the evaporator. The open-cycle heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. (Steam was the original heat source but is now only needed for start...

  11. Refrigerant charge management in a heat pump water heater

    DOE Patents [OSTI]

    Chen, Jie; Hampton, Justin W.

    2014-06-24T23:59:59.000Z

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  12. Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings Redouane) 141-149" DOI : 10.1016/j.enbuild.2013.12.047 #12;ABSTRACT In several situations, a heat pump occur. Unlike a reversible heat pump that works alternatively in heating or cooling, a HPS operates

  13. Proceedings: Heat exchanger workshop

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

  14. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01T23:59:59.000Z

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

  15. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  16. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  17. arabidopsis small heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wasted heat could be converted to useful power, it would Columbia University 369 Heat testing methodology comparison. Open Access Theses and Dissertations Summary: ??Pre-operative...

  18. artificially heated waters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other...

  19. alter heat chock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other...

  20. ampicillin increased heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other...

  1. Optimization Online - Dual Averaging Methods for Regularized ...

    E-Print Network [OSTI]

    Lin Xiao

    2010-04-15T23:59:59.000Z

    Apr 15, 2010 ... ... simple minimization problem that involves the running average of all past subgradients of the loss function and the whole regularization term, ...

  2. Table 17. Average Price of U.S. Coke Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average3.5.6.7.

  3. Table 19. Average Price of U.S. Coal Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Average Price

  4. Table 22. Average Price of U.S. Coke Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Average1.2.

  5. Better than Average? - Green Building Certification in International Projects

    E-Print Network [OSTI]

    Baumann, O.

    2008-01-01T23:59:59.000Z

    . An Enterprise of the Ebert-Consulting Group 1004 Pennsylvania Avenue, SE Washington, D.C. 20003, USA 00 12 02/ 6 08 - 13 34 o.baumann@eb-engineers.com Better than Average? - Green Building Certification in International Projects Green Building..., green building rating systems focus on sustainability for the entire life-cycle of buildings and therefore offer great opportunities for enhancing building operation, when applied and used appropriately. This presentation gives an overview...

  6. Averages in vector spaces over finite fields 

    E-Print Network [OSTI]

    Wright J.; Carbery A.; Stones B.

    2008-01-01T23:59:59.000Z

    We study the analogues of the problems of averages and maximal averages over a surface in R-n when the euclidean structure is replaced by that of a vector space over a finite field, and obtain optimal results in a number ...

  7. MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS

    E-Print Network [OSTI]

    Burger, Martin

    MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS MARTIN BURGER , VINCENZO CAPASSO , AND LIVIO-Kolmogorov relations for the degree of crystallinity. By relating the computation of expected values to mesoscale averaging, we obtain a suitable description of the process at the mesoscale. We show how the variance

  8. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25T23:59:59.000Z

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  9. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM); Prenger, Jr., F. Coyne (Madison, WI)

    1987-01-01T23:59:59.000Z

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  10. Rational analysis of mass, momentum, and heat transfer phenomena in liquid storage tanks under realistic operating conditions: 2. Application to a feasibility study

    SciTech Connect (OSTI)

    Parrini, F.; Vitale, S. (ENEL-Italian National Electricity Board-CRTN, Milan (Italy)); Castellano, L. (MATEC S.r.l., Milan (Italy))

    1992-08-01T23:59:59.000Z

    This is the second part of a two-part paper that deals with modeling the thermal performances of storage tanks of liquid water coupled with solar-assisted heatpump systems. The computer code THESTA, described in detail in the first part, has been applied to compare configurations which differ from one another in the distribution and thickness of the insulating panels. These numerical experiments show very clearly the capability of the code in simulating realistic operating conditions. The validity of the present release is also discussed. The results obtained have been assumed to be a reliable theoretical support to the definition of the features of the storage device of a pilot plant.

  11. Low Temperature Heat Recovery for Boiler Systems 

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    1986-01-01T23:59:59.000Z

    Low temperature corrosion proof heat exchangers designed to reduce boiler flue gas temperatures to 150°F or lower are now being commercially operated on gas, oil and coal fired boilers. These heat exchangers, when applied to boiler flue gas...

  12. Process Integration of Industrial Heat Pumps 

    E-Print Network [OSTI]

    Priebe, S. J.; Chappell, R. N.

    1986-01-01T23:59:59.000Z

    The integration of heat pumps into industrial processes shows potential for energy savings. Heat pumps must, however, be integrated properly relative to the process pinch and the unit operations in the process. The shape of the grand composite curve...

  13. Absorption-heat-pump system

    DOE Patents [OSTI]

    Grossman, G.; Perez-Blanco, H.

    1983-06-16T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  14. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, W.L.; Contolini, R.J.

    1992-03-24T23:59:59.000Z

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  15. Evaluation of heat stress in an aluminum smelter

    E-Print Network [OSTI]

    Rose, Stacy Rahkell

    1999-01-01T23:59:59.000Z

    of heat stress and heat strain was evaluated for the aluminum smelter workers at Alcoa, Rockdale Operations. Personal, environmental, and metabolic factors that contribute to heat-related illnesses were identified. The effectiveness of current...

  16. Thermal ghost imaging with averaged speckle patterns

    E-Print Network [OSTI]

    Shapiro, Jeffrey H.

    We present theoretical and experimental results showing that a thermal ghost imaging system can produce images of high quality even when it uses detectors so slow that they respond only to intensity-averaged (that is, ...

  17. STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director

  18. Selling Geothermal Systems The "Average" Contractor

    E-Print Network [OSTI]

    Selling Geothermal Systems #12;The "Average" Contractor · History of sales procedures · Manufacturer Driven Procedures · What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." · It should

  19. Distributed Averaging Via Lifted Markov Chains

    E-Print Network [OSTI]

    Jung, Kyomin

    Motivated by applications of distributed linear estimation, distributed control, and distributed optimization, we consider the question of designing linear iterative algorithms for computing the average of numbers in a ...

  20. Frostless heat pump having thermal expansion valves

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN)

    2002-10-22T23:59:59.000Z

    A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

  1. Self-averaging characteristics of spectral fluctuations

    E-Print Network [OSTI]

    Petr Braun; Fritz Haake

    2014-10-20T23:59:59.000Z

    The spectral form factor as well as the two-point correlator of the density of (quasi-)energy levels of individual quantum dynamics are not self-averaging. Only suitable smoothing turns them into useful characteristics of spectra. We present numerical data for a fully chaotic kicked top, employing two types of smoothing: one involves primitives of the spectral correlator, the second a small imaginary part of the quasi-energy. Self-averaging universal (like the CUE average) behavior is found for the smoothed correlator, apart from noise which shrinks like $1\\over\\sqrt N$ as the dimension $N$ of the quantum Hilbert space grows. There are periodically repeated quasi-energy windows of correlation decay and revival wherein the smoothed correlation remains finite as $N\\to\\infty$ such that the noise is negligible. In between those windows (where the CUE averaged correlator takes on values of the order ${1\\over N^2}$) the noise becomes dominant and self-averaging is lost. We conclude that the noise forbids distinction of CUE and GUE type behavior. Surprisingly, the underlying smoothed generating function does not enjoy any self-averaging outside the range of its variables relevant for determining the two-point correlator (and certain higher-order ones). --- We corroborate our numerical findings for the noise by analytically determining the CUE variance of the smoothed single-matrix correlator.

  2. adsorption heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995...

  3. adsorption heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995...

  4. Optimization of Wind Turbine Operation

    E-Print Network [OSTI]

    Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

  5. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  6. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  7. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1984-01-01T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  8. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  9. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  10. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  11. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  12. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  13. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24T23:59:59.000Z

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  14. Process Integration of Industrial Heat Pumps

    E-Print Network [OSTI]

    Priebe, S. J.; Chappell, R. N.

    PROCESS INTEGRATION OF INDUSTRIAL HEAT PUMPS* S. J. Priebe EG&G Idaho, Inc. Idaho Falls, Idaho ABSTRACT The integration of heat pumps into industrial processes shows potential for energy savings. Heat pumps must, however, be integrated... properly relative to the process pinch and the unit operations in the process. The shape of the grand composite curve, the type of heat ?pump drive, and the kind of heat pump cycle were examined to determine their effects on the placement of industrial...

  15. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    SciTech Connect (OSTI)

    Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

    2012-09-01T23:59:59.000Z

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

  16. Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL

    SciTech Connect (OSTI)

    C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

    2008-06-01T23:59:59.000Z

    An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

  17. Industrial Heat Pump Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  18. Industrial Heat Pump Design Options 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1985-01-01T23:59:59.000Z

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  19. A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2009-01-01T23:59:59.000Z

    Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

  20. Optimization of Heat Exchanger Cleaning

    E-Print Network [OSTI]

    Siegell, J. H.

    yiven in equations (7) and (8) results in the TFRE curves shown in Figure 6. In performing the calculations to compare chemical and mechanical cleaning, it is important to remember to include the value of the 20 MBtu/Hr heat lost between... MBtu/hr/day 20 Data From Operating Unit 10 20 30 40 50 60 70 ...., ........ ...................... ~.... ---- Time (Days) Figure 4. Comparison of Models for Heat Recovery ~ecay to Simulated Operating Data. MECHANICAL CLEANING W 100 MBtu...

  1. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  2. Asymptotic Analysis of Sample Average Approximation for ...

    E-Print Network [OSTI]

    2012-02-23T23:59:59.000Z

    Feb 23, 2012 ... Stochastic Optimization Problems with Joint Chance Constraints ...... in Matlab 7.9.0 installed in a PC with Windows XP operating system.

  3. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    SciTech Connect (OSTI)

    G. K. Housley; J.E. O'Brien; G.L. Hawkes

    2008-11-01T23:59:59.000Z

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  4. An Analysis of the Use of Fluidized-Bed Heat Exchangers for Heat Recovery

    E-Print Network [OSTI]

    Vogel, G. J.; Grogan, P. J.

    1980-01-01T23:59:59.000Z

    The principles of fluidized-bed operation and the factors affecting the performance of a fluidized-bed waste heat boiler (FBWHB) are discussed in detail. Factors included in the discussion are bed temperature and pressure, heat transfer coefficient...

  5. The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes

    E-Print Network [OSTI]

    Shiralkar, B. S.

    1968-01-01T23:59:59.000Z

    At slightly supercritical pressure and in the neighborhood of the pseudo-critical temperature (defined as the temperature corresponding to the peak in specific heat at the operating pressure), the heat transfer coefficient ...

  6. Extracting gluon condensate from the average plaquette

    E-Print Network [OSTI]

    Lee, Taekoon

    2015-01-01T23:59:59.000Z

    The perturbative contribution in the average plaquette is subtracted using Borel summation and the remnant of the plaquette is shown to scale as a dim-4 condensate. A critical review is presented of the renormalon subtraction scheme that claimed a dim-2 condensate. The extracted gluon condensate is compared with the latest result employing high order (35-loop) calculation in the stochastic perturbation theory.

  7. PreHeat: Controlling Home Heating Using Occupancy Prediction

    E-Print Network [OSTI]

    Krumm, John

    with a static program over an average 61 days per house, alternating days between these conditions time that the house was occupied but not warm). In US homes, PreHeat decreased MissTime by a factor goal for saving money and reducing our ecological footprint. Although programmable thermostats provide

  8. High Heat Flux Components Program

    SciTech Connect (OSTI)

    Whitley, J.B.

    1983-01-01T23:59:59.000Z

    Purpose is the development of the technologies necessary to design, build and operate high heat flux components such as actively cooled limiters, divertor collector plates, R.F. antennas, mirror end cells, mirror halo collectors, direct convertor collectors, and neutral beam dumps. These components require an integrated design that considers the plasma-materials interaction (PMI) issues, heat removal problems and materials issues (including possible low Z coatings and claddings). As a general definition, high heat flux components see heat fluxes ranging from 1 to 100 MW/m/sup 2/. Suitable materials include copper and copper alloys.

  9. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01T23:59:59.000Z

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  10. Determination of the uncertainty in assembly average burnup

    SciTech Connect (OSTI)

    Cacciapouti, R.J.; Lam, G.M.; Theriault, P.A.; Delmolino, P.M.

    1998-12-31T23:59:59.000Z

    Pressurized water reactors maintain records of the assembly average burnup for each fuel assembly at the plant. The reactor records are currently used by commercial reactor operators and vendors for (a) special nuclear accountability, (b) placement of spent fuel in storage pools, and (c) dry storage cask design and analysis. A burnup credit methodology has been submitted to the US Nuclear Regulatory Commission (NRC) by the US Department of Energy. In order to support this application, utilities are requested to provide burnup uncertainty as part of their reactor records. The collected burnup data are used for the development of a plant correction to the cask vendor supplied burnup credit loading curve. The objective of this work is to identify a feasible methodology for determining the 95/95 uncertainty in the assembly average burnup. Reactor records are based on the core neutronic analysis coupled with measured in-core detector data. The uncertainty of particular burnup records depends mainly on the uncertainty associated with the methods used to develop the records. The methodology adopted for this analysis utilizes current neutronic codes for the determination of the uncertainty in assembly average burnup.

  11. Renewable Combined Heat and Power Dairy Operations

    E-Print Network [OSTI]

    horsepower Guascor model SFGLD-560 biogas-fired lean burn internal combustion (IC) engine and generator set bacteria to remove hydrogen sulfide presented in the biogas. Source: Fiscalini Farms Term: March 2011

  12. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01T23:59:59.000Z

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  13. Dissipative heat engine is thermodynamically inconsistent

    E-Print Network [OSTI]

    A. M. Makarieva; V. G. Gorshkov

    2009-10-05T23:59:59.000Z

    A heat engine operating on the basis of the Carnot cycle is considered, where the mechanical work performed is dissipated within the engine at the temperature of the warmer isotherm and the resulting heat is added to the engine together with an external heat input. The resulting work performed by the engine per cycle is increased at the expense of dissipated work produced in the previous cycle. It is shown that such a dissipative heat engine is thermodynamically inconsistent violating the first and second laws of thermodynamics. The existing physical models employing the dissipative heat engine concept, in particular, the heat engine model of hurricane development, are physically invalid.

  14. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  15. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01T23:59:59.000Z

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  16. Is dark energy an effect of averaging?

    E-Print Network [OSTI]

    Nan Li; Marina Seikel; Dominik J. Schwarz

    2008-01-22T23:59:59.000Z

    The present standard model of cosmology states that the known particles carry only a tiny fraction of total mass and energy of the Universe. Rather, unknown dark matter and dark energy are the dominant contributions to the cosmic energy budget. We review the logic that leads to the postulated dark energy and present an alternative point of view, in which the puzzle may be solved by properly taking into account the influence of cosmic structures on global observables. We illustrate the effect of averaging on the measurement of the Hubble constant.

  17. Heat transfer in the plate heat exchanger of an ammonia-synthesis column

    SciTech Connect (OSTI)

    Obolentsev, Y.G.; Chus', M.S.; Norobchanskii, O.A.; Teplitshi, Y.S.; Tovazhnyanskii, L.L.

    1983-01-01T23:59:59.000Z

    The planning and construction of high-capacity synthetic ammonia plants requires the development and fabrication of unique, high unit-power equipment with high technical and economic characteristics. In foreign and domestic practice, tubular heat exchangers with relatively low heat-transfer coefficients are used. Plate heat exchangers are a promising alternative. They are compact and have a high heat energy efficiency and a relatively small metal content. To make an experimental check of the operating capability of a plate heat exchanger under ammonia production conditions, a welded plate heat exchanger was designed for an ammonia synthesis column 800mm in diameter. On prolonged testing (four years), the device provided an autothermal operating mode in the column and the heat transfer coefficient was practically constant for fixed space velocities. Consequently, the heat exchange surface was not contaminated significantly with catalyst dust, confirmed by visual observation of the heat exchanger after disassembly.

  18. Long-term average performance benefits of parabolic trough improvements

    SciTech Connect (OSTI)

    Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.

    1980-03-01T23:59:59.000Z

    Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.

  19. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    E-Print Network [OSTI]

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-01-01T23:59:59.000Z

    the effect of heating and cooling system inefficiencies onwith inefficient heating and cooling systems in CaliforniaOperation of Residential Cooling Systems. Proceedings of the

  20. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

  1. Liquid metal heat exchanger for efficient heating of soils and geologic formations

    DOE Patents [OSTI]

    DeVault, Robert C. (Knoxville, TN) [Knoxville, TN; Wesolowski, David J. (Kingston, TN) [Kingston, TN

    2010-02-23T23:59:59.000Z

    Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.

  2. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...

    Office of Environmental Management (EM)

    Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 The Corporate Average Fuel...

  3. Average transverse momentum quantities approaching the lightfront

    E-Print Network [OSTI]

    Daniel Boer

    2014-09-29T23:59:59.000Z

    In this contribution to Light Cone 2014, three average transverse momentum quantities are discussed: the Sivers shift, the dijet imbalance, and the $p_T$ broadening. The definitions of these quantities involve integrals over all transverse momenta that are overly sensitive to the region of large transverse momenta, which conveys little information about the transverse momentum distributions of quarks and gluons inside hadrons. TMD factorization naturally suggests alternative definitions of such integrated quantities, using Bessel-weighting and rapidity cut-offs, with the conventional definitions as limiting cases. The regularized quantities are given in terms of integrals over the TMDs of interest that are well-defined and moreover have the advantage of being amenable to lattice evaluations.

  4. Heat pipes for use in a magnetic field

    DOE Patents [OSTI]

    Werner, R.W.; Hoffman, M.A.

    1983-07-19T23:59:59.000Z

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

  5. www.heatpumpcentre.org IEA HEAT PUMP PROGRAMME

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    for buildings in cold climates Annex 40 - Heat pump concepts for near zero- energy buildings (Operating Agent boilers and gas boilers Annex 38 - Systems using solar thermal energy in combination with heat pumps (Operating Agent: CH) The aim is to analyse solar and heat pump configurations with respect to energy savings

  6. Modeling of Heat Transfer in Geothermal Heat Exchangers

    E-Print Network [OSTI]

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01T23:59:59.000Z

    , University of Lund, Sweden, [7] Fang, Z., Diao, N., and Cui, P., Discontinuous operation of geothermal heat exchangers [J], Tsinghua Science and Technology. , 2002, 7 194?197. [8] Hellstrom, G., Ground heat storage -- Thermal analysis of duct storage... systems [D], Department of Mathem Sweden, 1991. [9] Mei, V. C. and Baxter, V. D., Performance of a ground-coupled heat pump with multiple dissimilar U-tu Transactions, 1986, 92 Part 2, 22-25. [10] Yavuzturk, C., Spitler, J. D. and Rees, S. J., A...

  7. Waste Heat Doesn't Have to be a Waste of Money- The American & Efird Heat Recovery Project: A First for the Textile Industry 

    E-Print Network [OSTI]

    Smith, S. W.

    1991-01-01T23:59:59.000Z

    In 1989 American & Efird, Inc., decided to upgrade their heat recovery system at its Dyeing & Finishing Plant in Mt. Holly, North Carolina. They chose an electric industrial process heat pump to enhance heat recovery and to lower operating costs...

  8. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...

    Energy Savers [EERE]

    and the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The...

  9. average atom model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (chemical potential, average ionic charge, free electron density, bound and continuum wave-functions and occupation numbers) are obtained from the average-atom model. The...

  10. REVISITING THE SOLAR TACHOCLINE: AVERAGE PROPERTIES AND TEMPORAL VARIATIONS

    SciTech Connect (OSTI)

    Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, Sarbani, E-mail: antia@tifr.res.in, E-mail: sarbani.basu@yale.edu [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2011-07-10T23:59:59.000Z

    The tachocline is believed to be the region where the solar dynamo operates. With over a solar cycle's worth of data available from the Michelson Doppler Imager and Global Oscillation Network Group instruments, we are in a position to investigate not merely the average structure of the solar tachocline, but also its time variations. We determine the properties of the tachocline as a function of time by fitting a two-dimensional model that takes latitudinal variations of the tachocline properties into account. We confirm that if we consider the central position of the tachocline, it is prolate. Our results show that the tachocline is thicker at latitudes higher than the equator, making the overall shape of the tachocline more complex. Of the tachocline properties examined, the transition of the rotation rate across the tachocline, and to some extent the position of the tachocline, show some temporal variations.

  11. Enhanced heat transfer for thermionic power modules

    SciTech Connect (OSTI)

    Johnson, D.C.

    1981-07-01T23:59:59.000Z

    The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

  12. State heating oil and propane program, 1994--1995 heating season. Final technical report

    SciTech Connect (OSTI)

    NONE

    1995-05-09T23:59:59.000Z

    Propane prices and No. 2 fuel prices during the 1994-1995 heating season are tabulated for the state of Ohio. Nineteen companies were included in the telephone survey of propane prices, and twenty two companies for the fuel oil prices. A bar graph is also presented for average residential prices of No. 2 heating oil.

  13. Quantum Operation Time Reversal

    SciTech Connect (OSTI)

    Crooks, Gavin E.

    2008-03-25T23:59:59.000Z

    The dynamics of an open quantum system can be described by a quantum operation: A linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes toward equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.

  14. Heat exchanger with ceramic elements

    DOE Patents [OSTI]

    Corey, John A. (North Troy, NY)

    1986-01-01T23:59:59.000Z

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  15. Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System 

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, X.; Li, G.

    2006-01-01T23:59:59.000Z

    This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

  16. Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, X.; Li, G.

    2006-01-01T23:59:59.000Z

    This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project...

  17. A heat engine with unique characteristics

    SciTech Connect (OSTI)

    Baranescu, G.S. [ATR Corp., Western Springs, IL (United States)

    1996-12-31T23:59:59.000Z

    A heat engine which operates with one heat reservoir is described. The engine transforms the heat input completely into work by using a compressed fluid from a resource of the environment. For this reason the engine is not a perpetual motion machine of the second kind. The characteristics of the engine are analyzed, and the ways for achieving the most economic use of the compressed fluid are described. The principle of operation of the engine shows that the concepts of phenomenological thermodynamics regarding heat and its transformation in other forms of energy are not true.

  18. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, J.C.

    1997-05-13T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  19. Heat pump system with selective space cooling

    DOE Patents [OSTI]

    Pendergrass, Joseph C. (Gainesville, GA)

    1997-01-01T23:59:59.000Z

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  20. APPENDIX A: MONTHLY AVERAGED DATA In many instances monthly averaged data are

    E-Print Network [OSTI]

    Oregon, University of

    for solar energy and climatic applications. Click on the buttons on the left to find out more about the lab for preliminary estimates of solar system performance. This section provides a summary of monthly averaged data for all sites in watt hours/meter2 per hour or day. For each site and each solar measurement the data

  1. Stirling cycle engine and heat pump

    SciTech Connect (OSTI)

    Mitchell, M.P.

    1986-11-18T23:59:59.000Z

    A method is described of operating a hot gas engine comprising a cylinder having one end thereof connected to the other end thereof through at least two separate closed heat exchanger assemblies. Each comprises heated heat exchanger means and cooled heat exchanger means serially arranged, the hot end of each such closed heat exchanger assembly is attached to the same end of the cylinder. Each closed heat exchanger assembly is equipped with valve means at each end thereof, the cylinder accommodating a double-acting reciprocating piston means. The piston means cyclically displaces and is displaced by a volume of gas for each such closed heat exchanger assembly. The volumes of gas are alternately confined in and released from the closed heat exchanger assemblies by the valves.

  2. High average power magnetic modulator for copper lasers

    SciTech Connect (OSTI)

    Cook, E.G.; Ball, D.G.; Birx, D.L.; Branum, J.D.; Peluso, S.E.; Langford, M.D.; Speer, R.D.; Sullivan, J.R.; Woods, P.G.

    1991-06-14T23:59:59.000Z

    Magnetic compression circuits show the promise of long life for operation at high average powers and high repetition rates. When the Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory needed new modulators to drive their higher power copper lasers in the Laser Demonstration Facility (LDF), existing technology using thyratron switched capacitor inversion circuits did not meet the goal for long lifetimes at the required power levels. We have demonstrated that magnetic compression circuits can achieve this goal. Improving thyratron lifetime is achieved by increasing the thyratron conduction time, thereby reducing the effect of cathode depletion. This paper describes a three stage magnetic modulator designed to provide a 60 kV pulse to a copper laser at a 4. 5 kHz repetition rate. This modulator operates at 34 kW input power and has exhibited MTBF of {approx}1000 hours when using thyratrons and even longer MTBFs with a series of stack of SCRs for the main switch. Within this paper, the electrical and mechanical designs for the magnetic compression circuits are discussed as are the important performance parameters of lifetime and jitter. Ancillary circuits such as the charge circuit and reset circuit are shown. 8 refs., 5 figs., 1 tab.

  3. Irregular spacing of heat sources for treating hydrocarbon containing formations

    DOE Patents [OSTI]

    Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

    2012-06-12T23:59:59.000Z

    A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

  4. A new cascade-type heat conversion system

    SciTech Connect (OSTI)

    Newman, E. [Twenty-First Century Power Co., Northridge, CA (United States)

    1996-12-31T23:59:59.000Z

    Various heat conversion systems have different operating temperatures. This paper shows how, in a solar energy system some of the waste heat from a thermophotovoltaic arrangement can be made to operate a thermionic power generator. The waste heat of the thermionic power generator can then be made to operate an alkali-metal thermal electric converter, and the waste heat from the alkali-metal thermal electric converter as well as the rest of the waste heat of the thermophotovoltaic system can be made to operate a methane reformation system. Stored heat from the methane reformation system can be made to operate the system at night. The overall system efficiency of the example shown is 42.6%. As a prime source of heat a nuclear pile or burning hydrogen may be used.

  5. TEELINDUSTRIAL OPERATING INSTRUCTIONS & PARTS MANUAL

    E-Print Network [OSTI]

    Kleinfeld, David

    -stage zoning applications in hydronic heating and cooling systems for residential, commercial and/or inTEELINDUSTRIAL SERIES OPERATING INSTRUCTIONS & PARTS MANUAL WATER CIRCULATING PUMPS MODELS 1P899A INSTRUCTIONS CAREFULLY BEFORE ATTEMPTING TO INSTALL, OPERATE, OR SERVICE TEEL PUMPS. PROTECT YOURSELF

  6. Development of Closure for Heat Exchangers Based on Volume Averaging Theory

    E-Print Network [OSTI]

    Zhou, Feng

    2014-01-01T23:59:59.000Z

    factors type of factorial design, and a grey-based fuzzyis called 2 n full factorial design. If each variable ismidpoint, then a 3 n full factorial design is created, see

  7. Optimal operation of simple vapour compression cycles

    E-Print Network [OSTI]

    Skogestad, Sigurd

    is the air-conditioner (A/C). In colder regions a cycle operating in the opposite direction, the "heat pump. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined as COPh = Qh Ws = h1 - h2 h1 - h4 and COPc = Qc Ws = h4 - h3 h1 - h4 (1.1) respectively. Heat pumps

  8. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  9. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  10. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  11. Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate Heat Exchanger Sheila C ........................................................... 8 3. Average relative difference (%) in calculated heat transfer rates for refrigerants and HTF

  12. Heat Pipe Technology for Energy Conservation in the Process Industry

    E-Print Network [OSTI]

    Price, B. L. Jr.

    HEAT PIPE TECHNOLOGY FOR ENERGY CONSERVATION IN THE PROCESS INDUSTRY Berwin L. Price. Jr. Q-dot Corporation Garland. Texas ABSTRACT Many applications for heat pipe technology have emerged in the relatively short time this technology has been... and utility industries. The heat pipe offers a unique. efficient heat transfer device that can recover valuable thermal energy resulting in reduced equipment and operating costs. Q-dot is the world leader in heat pipe technology and we have applied our...

  13. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  14. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners and...

  15. Operations & Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations and Maintenance Operations OASIS: OATI (Note: this site is not hosted by Western and requires a digital certificate and login for full access.) Contact Information...

  16. Operations & Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rates Operations & Maintenance Operations OASIS: WACM (Note: this site is not hosted by Western and requires a digital certificate and login for full access.) wesTTrans Common...

  17. Heat transport system, method and material

    DOE Patents [OSTI]

    Musinski, D.L.

    1987-04-28T23:59:59.000Z

    A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

  18. Advanced Fluidized Bed Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Peterson, G. R.

    ADVANCED FLUIDIZED BED WASTE HEAT RECOVERY SYSTEMS G. R. PETERSON Project Manager U.S. Department of Energy, Idaho Operations Office Idaho Falls, Idaho ABSTRACT The U.S. Department of Energy, Office of Industri al Programs, has sponsored... the development of a Fluidized Bed Waste Heat Recovery System (FBWHRS) and a higher temperature variant, the Ceramic Tubular Distributor Plate (CTOP) Fluidized Bed Heat Exchanger (FBHX) system. Both systems recover energy from high-temperature flue gases...

  19. Design, construction, operation, and evaluation of solar systems for industrial process-heat applications in the intermediate-temperature range (212/sup 0/F to 550/sup 0/F). Environmental assessment

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    The environmental impacts are assessed for a proposed 50,000 square foot field of single axis tracking, concentrating solar collectors along the Ohio River in southern Ohio. The facility is planned to produce process steam for use in the production of polystyrene. Absorbed solar energy would heat an aliphatic hydrocarbon synthetic heat transfer fluid to a maximum temperature of 500/sup 0/F. The existing environment is briefly described, particularly regarding air quality. The potential environmental impacts of the solar process heat system on the air, water, soil, endangered species and archaeological and historical resources are examined, including risks due to flood and glare and a comparison of alternatives. Also included are a Consent Judgment relating to two coal-fired boilers in violation of EPA regulations, property data of Gulf Synfluid 4CS (a candidate heat transfer fluid), piping and instrumentation diagrams and schematics, site grade and drainage plan, geological survey map, subsurface soil investigation, Ohio endangered species list, Ohio Archaeological Counsel certification list, and a study of heat transfer fluids and their properties. (LEW)

  20. NSTX Organization 2009 Heating Systems

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Erik Perry Central I&C Paul Sichta Power Systems John Lacenere Auxiliary Systems Bill Blanchard Physics Analysis and Simulation Stan Kaye Advanced Scenarios and Control David Gates, Jon Menard Modeling1 NSTX Organization ­ 2009 Heating Systems Tim Stevenson Device Operation Al von Halle Construction

  1. Heating and Cooling Equipment Selection

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment for heating and cooling to reduce initial costs, increase homeowner comfort, increase operating efficiency, and greatly reduce utility costs.

  2. Guide to Using Combined Heat and Power for Enhancing Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    after Hurricane Sandy, combined heat and power (CHP) enabled a number of critical infrastructure and other facilities to continue their operations when the electric grid went...

  3. Industrial Heat Pumps--Types and Costs 

    E-Print Network [OSTI]

    Chappell, R. N.; Bliem, C. J.; Mills, J. I.; Demuth, O. J.; Plaster, D. S.

    1985-01-01T23:59:59.000Z

    this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various...

  4. Ultrahigh heat flux plasma-facing components for magnetic fusion energy

    SciTech Connect (OSTI)

    Youchison, D. L.

    2012-03-01T23:59:59.000Z

    Sandia and Ultramet partnered to design and test refractory metal plasma-facing components and heat exchangers for advanced, high-temperature power conversion systems. These devices consisted of high-temperature helium-to-helium and lithium-to-helium heat exchangers that operate with high efficiency due to the porous foam inserts used in the gas stream, which promote turbulence and provide extended surface area for enhanced convection. Single- and multi-channel helium panels and the Li-He heat exchanger were fabricated from either pure molybdenum, TZM, or tungsten. The design was carried out through an Ultramet subcontractor. The flow path was carefully tailored to minimize the pressure drop while maximizing the heat transfer. The single- and multi-channel helium panels were tested at Sandia's PMTF using an electron beam system and the closed helium flow loop. In 2006, a single-channel tungsten tube was successfully tested to an average heat flux of 14 MW/m{sup 2} with a localized peak of 22 MW/m{sup 2} along the axial centerline at the outer radius. Under this CRADA, multiple square-channel molybdenum components were successfully tested to heat flux levels approaching 8.5 MW/m{sup 2}. The three multi-channel prototypes experienced mechanical failure due to issues related to the design of the large unsupported span of the heated faceplates in combination with prototype material and braze selection. The Li-He heat exchanger was both designed and partially tested at the PMTF for helium and lithium flow.

  5. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Energy Savers [EERE]

    4: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016 Fact 624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016 The final...

  6. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...

    Energy Savers [EERE]

    70: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Excel file...

  7. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51%...

    Broader source: Energy.gov (indexed) [DOE]

    For the 2014 model year, midsize hybrid cars averaged 43.4 miles per gallon (mpg) while midsize non-hybrid cars averaged 28.7 mpg; the difference between the two has narrowed due...

  8. Dead heat

    SciTech Connect (OSTI)

    Oppenheimer, M.; Boyle, R.H.

    1990-01-01T23:59:59.000Z

    This paper reports on the prospect of global warming. This paper proposes a workable solution, and a road map for getting there. The author explains how we became addicted to fossil fuels and evokes a bleak picture should this dependence continue. But the book also explores how industry can become a vehicle for solving, instead of precipitating, the global environmental crisis. The decoupling of energy from pollution can be accomplished without sacrificing prosperity by powering the economy with solar energy. Dead Heat takes us step by step to a greenhouse-friendly world fueled only by the sun.

  9. Passive heat-transfer means for nuclear reactors. [LMFBR

    DOE Patents [OSTI]

    Burelbach, J.P.

    1982-06-10T23:59:59.000Z

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  10. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14T23:59:59.000Z

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  11. Ground Source Integrated Heat Pump (GS-IHP) Development

    SciTech Connect (OSTI)

    Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

    2013-05-24T23:59:59.000Z

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test experience, CM developed a 2nd generation (or beta) prototype in 2012. Field test verification units were fabricated and installed at the ZEBRAlliance site in Oak Ridge in May 2012 and at several sites near CM headquarters in Oklahoma. Field testing of the units continued through February 2013. Annual performance analyses of the beta unit (prototype 2) with vertical well ground heat exchangers (GHX) in 5 U.S. locations predict annual energy savings of 57% to 61%, averaging 59% relative to the minimum efficiency suite and 38% to 56%, averaging 46% relative to the SOA GSHPwDS. Based on the steady-state performance demonstrated by the test units it was projected that the 2nd generation units would achieve ~58% energy savings relative to the minimum efficiency suite at the Zebra Alliance site with horizontal GHX. A new product based on the beta unit design was announced by CM in 2012 – the Trilogy 40® Q-mode™ (http://cmdealernet.com/trilogy_40.html). The unit was formally introduced in a March 2012 press release (see Appendix A) and was available for order beginning in December 2012.

  12. Cab Heating and Cooling

    SciTech Connect (OSTI)

    Damman, Dennis

    2005-10-31T23:59:59.000Z

    Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

  13. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  14. Demagnetized Electron Heating at Collisionless Shocks

    E-Print Network [OSTI]

    Sundkvist, David

    2013-01-01T23:59:59.000Z

    Seventy measurements of electron heating at the Earth's quasi-perpendicular bow shock are analyzed in terms of Maxwellian-temperatures obtained from fits to the core electrons that separate thermal heating from supra-thermal acceleration. The perpendicular temperatures are both greater and lesser than expected for adiabatic compression. The average parallel and perpendicular heating is the same. These results are explained because, over the electron gyroradius, $\\delta B/B\\sim 1$ and $e\\delta \\phi/T_e\\sim 1$, so electron trajectories are more random and chaotic than adiabatic. Because density fluctuations are also large, trapping and wave growth in density holes may be important.

  15. Coupled Reactor Kinetics and Heat Transfer Model for Heat Pipe Cooled Reactors

    SciTech Connect (OSTI)

    WRIGHT,STEVEN A.; HOUTS,MICHAEL

    2000-11-22T23:59:59.000Z

    Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). The paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities.

  16. Heat loss from an open cavity

    SciTech Connect (OSTI)

    McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

    1995-12-01T23:59:59.000Z

    Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

  17. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect (OSTI)

    Professor Robert C. Voigt

    2003-02-02T23:59:59.000Z

    The science of heat treatment has been well studied and is the basis from which existing specifications and practices for the heat treatment of steel castings have been developed. Although these existing specifications address the general needs of steel castings to be heat-treated, they do not take into account the variability in the parameters that govern the processes. The need for a heat treatment qualification procedure that accounts for this variability during heat treatment is an important step toward heat treatment quality assurance. The variability in temperatures within a heat treatment furnace is one such variable that a foundry has to contend with in its day-to-day activity. Though specifications indicate the temperatures at which a particular heat treatment has to be conducted, heat treatment specifications do not adequately account for all aspects of heat treatment quality assurance. The heat treatment qualification procedure will comprise of a robust set of rules and guidelines that ensure that foundries will still be able to operate within the set of constraints imposed on them by non-deterministic elements within the processes.

  18. Electrochemical cell operation and system

    DOE Patents [OSTI]

    Maru, Hansraj C. (Brookfield Center, CT)

    1980-03-11T23:59:59.000Z

    Thermal control in fuel cell operation is affected through sensible heat of process gas by providing common input manifolding of the cell gas flow passage in communication with the cell electrolyte and an additional gas flow passage which is isolated from the cell electrolyte and in thermal communication with a heat-generating surface of the cell. Flow level in the cell gas flow passage is selected based on desired output electrical energy and flow level in the additional gas flow passage is selected in accordance with desired cell operating temperature.

  19. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01T23:59:59.000Z

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump working fluid is reactive...

  20. Thermoeconomic Analysis of a Solar Heat-Pump System 

    E-Print Network [OSTI]

    Gao, Y.; Wang, S.

    2006-01-01T23:59:59.000Z

    This paper introduces a solar energy heat-pump system and analyzes the thermoeconomics. The results show that the solar energy heat-pump system can be operated in different modes and used for room heating in winter and cooling in summer and...

  1. Thermoeconomic Analysis of a Solar Heat-Pump System

    E-Print Network [OSTI]

    Gao, Y.; Wang, S.

    2006-01-01T23:59:59.000Z

    This paper introduces a solar energy heat-pump system and analyzes the thermoeconomics. The results show that the solar energy heat-pump system can be operated in different modes and used for room heating in winter and cooling in summer and...

  2. 7-111 A Carnot heat engine is used to drive a Carnot refrigerator. The maximum rate of heat removal from the refrigerated space and the total rate of heat rejection to the ambient air are to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-42 7-111 A Carnot heat engine is used to drive a Carnot refrigerator. The maximum rate of heat removal from the refrigerated space and the total rate of heat rejection to the ambient air are to be determined. Assumptions The heat engine and the refrigerator operate steadily. Analysis (a) The highest

  3. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

  4. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  5. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  6. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  7. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

  8. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  9. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  10. average power femtosecond: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stirling refrigerator1 that abrupt changes in geometry are ubiquitous in Stirling engines, thermoacoustics, and res- piratory flows Smith, Barton L. 52 On the Peak-to-Average...

  11. average power ratio: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stirling refrigerator1 that abrupt changes in geometry are ubiquitous in Stirling engines, thermoacoustics, and res- piratory flows Smith, Barton L. 60 High average power,...

  12. average power semiconductor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stirling refrigerator1 that abrupt changes in geometry are ubiquitous in Stirling engines, thermoacoustics, and res- piratory flows Smith, Barton L. 56 High average power,...

  13. average resonance neutron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nader Haghighipour 1999-02-03 4 Average over energy effect of parity nonconservation in neutron scattering on heavy nuclei Nuclear Theory (arXiv) Summary: Using semiclassical...

  14. LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION...

    Gasoline and Diesel Fuel Update (EIA)

    ENERGY INFORMATION ADMINISTRATION LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION BARRELS) FILE UPDATED April 2004 Line Month Low High Number Product Name Geography...

  15. average wind shear: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by uncompensated voids. Maria Mattsson; Teppo Mattsson 2010-07-17 7 Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging Mathematics Websites Summary:...

  16. average state iq: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL Energy Storage, Conversion and Utilization Websites Summary: STATE OF CALIFORNIA AREA...

  17. average high energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    averaged null (ANEC) energy conditions, and quantum inequality restrictions on negative energy for free massless scalar fields. In a two-dimensional compactified Minkowski...

  18. average kinetic energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy by kinetic averaging Pierre-Emmanuel Jabin Ecole Normale Sup-Landau energy for two dimensional divergence free fields ap- pearing in the gradient theory of...

  19. average beta energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    averaged null (ANEC) energy conditions, and quantum inequality restrictions on negative energy for free massless scalar fields. In a two-dimensional compactified Minkowski...

  20. average power high: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simultaneous Power Fluctuation and Average Power Minimization during Nano-CMOS Behavioral Synthesis Computer Technologies and Information Sciences Websites Summary: conversion 6....

  1. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Ault, Earl R. (Livermore, CA); Kuklo, Thomas C. (Oakdale, CA)

    2005-07-05T23:59:59.000Z

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  2. Table 10. Average Price of U.S. Steam Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average Price

  3. Table 12. Average Price of U.S. Metallurgical Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average

  4. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  5. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  6. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  7. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  8. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  9. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  10. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    transient the heat transfer model. T h i s required the roofto develop and calibrate heat transfer models to be able toE S station, the heat transfer models described i n sections

  11. 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-39 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined. Assumptions The heat pump operates steadily. Analysis Combining.5¸ ¹ · ¨ © § ¸ ¸ ¹ · ¨ ¨ © § 1.6 1 1)K300( COP 1 1 maxHP, HL TT Based upon the definition of the heat pump coefficient

  12. TEST RESULTS FOR A STIRLING-ENGINE-DRIVEN HEAT-ACTUATED HEAT PUMP BREADBOARD SYSTEM T.M. Moynihan

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    849044 TEST RESULTS FOR A STIRLING-ENGINE-DRIVEN HEAT-ACTUATED HEAT PUMP BREADBOARD SYSTEM T and hydraulic transmission (Figure 2). Engine power is transferred to the i A Free-Piston Stirling Engine prime's performance/ Stirling Engine - Spring operation over the specified operating range, Driver -'i. i, C

  13. HEATING AND COOLING PROTOSTELLAR DISKS

    SciTech Connect (OSTI)

    Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2011-05-10T23:59:59.000Z

    We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

  14. Use of an open-cycle absorption system for heating and cooling

    SciTech Connect (OSTI)

    Schlepp, D. R.; Collier, R. K.

    1981-03-01T23:59:59.000Z

    Solar cooling for commercial applications using open-cycle absorption refrigeration systems has been investigated and found to be feasible. If an open-cycle absorption system can be operated as a chemical heat pump for winter heating operation, the system would offer year-round operation that could make the system economically viable for many regions of the US. An analysis of heating operation for the open-cycle system is presented using a computer program that simulates heat and mass transfer processes for any environmental condition. The open-cycle absorption refrigeration system can be operated as a chemical heat pump. Simulations for winter heating operation were run for five US cities, with solar COP's in the range of .06 to .16. At these levels, the OCAR system can provide full heating and cooling operation for office buildings in many southern US cities.

  15. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16T23:59:59.000Z

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  16. Analysis of radial fin assembly heat transfer with dehumidification

    SciTech Connect (OSTI)

    Rosario, L.; Rahman, M.M. [Univ. of South Florida, Tampa, FL (United States). Dept. of Mechanical Engineering

    1996-12-31T23:59:59.000Z

    The aim of this paper is the analysis of heat transfer in a radial fin assembly during the process of dehumidification. An individual finned tube geometry is a reasonable representation of heat exchangers used in air conditioning. The condensation process involves both heat and mass transfer and the cooling takes place by the removal of sensible as well as latent heat. The ratio of sensible to total heat is an important quantity that defines the heat transfer process during a dehumidifier operation. A one-dimensional model for heat transfer in the fin and the heat exchanger block is developed to study the effects of condensation on the fin surface. The combined heat and mass transfer process is modeled by incorporating the ratio of sensible to total heat in the formulation. The augmentation of heat transfer due to fin was established by comparing heat transfer rate with and without fins under the same operating conditions. Numerical calculations were carried out to study the effects of relative humidity and dry bulb temperature of the incoming air, and cold fluid temperature inside the coil on the performance of the heat exchanger. Results were compared to those published for rectangular fin under humid condition showed excellent agreement when the present model was used to compute that limiting condition. It was found that the heat transfer rate increased with increment in both dry bulb temperature and relative humidity of the air. The augmentation factor, however, decreased with increment in relative humidity and the dry bulb temperature.

  17. Method and system for modulation of gain suppression in high average power laser systems

    DOE Patents [OSTI]

    Bayramian, Andrew James (Manteca, CA)

    2012-07-31T23:59:59.000Z

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  18. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average retail price

  19. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average retail

  20. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average retailheating

  1. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average

  2. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  3. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  4. On average sampling restoration of Piranashvilitype harmonizable processes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ; time shifted sam- pling; Piranashvili­, Lo`eve­, Karhunen­ harmonizable stochastic process; weakly.olenko@latrobe.edu.au, poganj@pfri.hr Abstract: The harmonizable Piranashvili ­ type stochastic pro- cesses are approximated stationary stochastic process; local averages; average sampling reconstruction. 1. Introduction

  5. averaged energy minimization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    averaged energy minimization First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Averaged Energy...

  6. THE AVERAGED CONTROL SYSTEM OF FAST OSCILLATING CONTROL SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , control systems, small control, optimal control, Finsler geometry. AMS subject classifications. 34C29, 34H used for design. The use of averaging in optimal control of oscillating systems [10, 13, 14, 7THE AVERAGED CONTROL SYSTEM OF FAST OSCILLATING CONTROL SYSTEMS ALEX BOMBRUN AND JEAN

  7. Distributed Average Consensus in Sensor Networks with Random Link Failures

    E-Print Network [OSTI]

    Moura, José

    Distributed Average Consensus in Sensor Networks with Random Link Failures Soummya Kar Department: soummyakgandrew.cmu.edu Abstract We study the impact of the topology of a sensor network on distributed average in terms of a moment of the distribution of the norm of a function of the network graph Laplacian matrix L

  8. The global warming signal is the average of

    E-Print Network [OSTI]

    Jones, Peter JS

    , uncertainty in the isopycnal diffusivity causes uncertainty of up to 50% in the global warming signalThe global warming signal is the average of years 70-80 in the increasing CO2 run minus the average represent significant uncertainty in the global warming signal (Fig. 5). The differences at high latitudes

  9. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01T23:59:59.000Z

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  10. Effect of low density H-mode operation on edge and divertor plasma parameters

    SciTech Connect (OSTI)

    Maingi, R. [Oak Ridge Associated Universities, Inc., TN (United States); Mioduszewski, P.K. [Oak Ridge National Lab., TN (United States); Cuthbertson, J.W. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1994-07-01T23:59:59.000Z

    We present a study of the impact of H-mode operation at low density on divertor plasma parameters on the DIII-D tokamak. The line-average density in H-mode was scanned by variation of the particle exhaust rate, using the recently installed divertor cryo-condensation pump. The maximum decrease (50%) in line-average electron density was accompanied by a factor of 2 increase in the edge electron temperature, and 10% and 20% reductions in the measured core and divertor radiated power, respectively. The measured total power to the inboard divertor target increased by a factor of 3, with the major contribution coming from a factor of 5 increase in the peak heat flux very close to the inner strike point. The measured increase in power at the inboard divertor target was approximately equal to the measured decrease in core and divertor radiation.

  11. The smallest possible heat engines

    E-Print Network [OSTI]

    Noah Linden; Sandu Popescu; Paul Skrzypczyk

    2010-10-28T23:59:59.000Z

    We construct the smallest possible self contained heat engines; one composed of only two qubits, the other of only a single qutrit. The engines are self-contained as they do not require external sources of work and/or control. They are able to produce work which is used to continuously lift a weight. Despite the dimension of the engine being small, it is still able to operate at the Carnot efficiency.

  12. Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

  13. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  14. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  15. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  16. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    SciTech Connect (OSTI)

    O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01T23:59:59.000Z

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

  17. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  18. Transparent heat-spreader for optoelectronic applications

    DOE Patents [OSTI]

    Minano, Juan Carlos; Benitez, Pablo

    2014-11-04T23:59:59.000Z

    An optoelectronic cooling system is equally applicable to an LED collimator or a photovoltaic solar concentrator. A transparent fluid conveys heat from the optoelectronic chip to a hollow cover over the system aperture. The cooling system can keep a solar concentrator chip at the same temperature as found for a one-sun flat-plate solar cell. Natural convection or forced circulation can operate to convey heat from the chip to the cover.

  19. Optimized Control Of Steam Heating Coils

    E-Print Network [OSTI]

    Ali, Mir Muddassir

    2012-02-14T23:59:59.000Z

    cooling. II. Flooding of coils with condensate and its subsequent freezing when outside air temperature falls below 32?F. III. Increased maintenance cost due to water hammer, corrosion of coils in the presence of non-condensable gases and leaking steam... monotonically as the steam pressure increases, a higher steam pressure may lead to overheating of the air and result in simultaneous heating and cooling. In addition to energy waste due to simultaneous heating and cooling, an improper operating strategy can...

  20. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14T23:59:59.000Z

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  1. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    - 1 - MASS AND HEAT RECOVERY SYSTEM SALAH MAHMOUD HINDAWI DIRECTOR HINDAWI FOR ENGINEERING SERVICES & CONTRACTING NEW DAMIETTA , EGYPT ABSTRACT : In the last few years heat recovery was under spot . and in air conditioning fields... ) as a heat recovery . and I use the water as a mass recovery . The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines . THE BENEFIT OF THIS SYSTEM ARE : 1) Using the heat energy from...

  2. average glandular dose: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    doses and cancer rates to the workers m the first Soviet atom-bomb facility, near 2 Chelyabinsk and 4,600 at the plutonium sep- aration plant. If we allow for an average work...

  3. INDIVIDUAL REFORM ELEMENTS .63Average course exam score

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    INDIVIDUAL REFORM ELEMENTS .63Average course exam score .11In class clicker score .02Lecture: · Correlations with effort/curricular elements are positive but not high, indicating no individual course reform

  4. STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL

    E-Print Network [OSTI]

    of a building feature, material, or construction assembly occur in a building, a weighted average there is more than one level of floor, wall, or ceiling insulation in a building, or more than one type

  5. Does anyone have access to 2012 average residential rates by...

    Open Energy Info (EERE)

    Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility...

  6. From average case complexity to improper learning [Extended Abstract

    E-Print Network [OSTI]

    Linial, Nathan "Nati"

    is that the standard reduc- tions from NP-hard problems do not seem to apply in this context. There is essentially only.1145/2591796.2591820. Keywords Hardness of improper learning, DNFs, Halfspaces, Average Case complexity, CSP problems, Resolution

  7. average neutronic properties: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. H. van Kerkwijk 2004-03-20 2 Average over energy effect of parity nonconservation in neutron scattering on heavy nuclei Nuclear Theory (arXiv) Summary: Using semiclassical...

  8. average power optical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems, Multiple Subcarrier Strohmer, Thomas 3 June 1, 2000 Vol. 25, No. 11 OPTICS LETTERS 859 16.2-W average power from a diode-pumped Materials Science Websites...

  9. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...

    Broader source: Energy.gov (indexed) [DOE]

    35: Average Annual Gasoline Pump Price, 1929-2013 fotw835web.xlsx More Documents & Publications Offshore Wind Market and Economic Analysis Report 2013 Response to several FOIA...

  10. THE UNIVERSITY OF RHODE ISLAND FRINGE BENEFIT AVERAGE RATE

    E-Print Network [OSTI]

    Rhode Island, University of

    THE UNIVERSITY OF RHODE ISLAND FRINGE BENEFIT AVERAGE RATE FY 2015 Allocation Cost or Classified.2% URI Budget & Financial Planning Office 9.17.14 Office:fringebenefits:office of sponsored projects: FY2015 Allocation #12;

  11. On the Choice of Average Solar Zenith Angle

    E-Print Network [OSTI]

    Cronin, Timothy W.

    Idealized climate modeling studies often choose to neglect spatiotemporal variations in solar radiation, but doing so comes with an important decision about how to average solar radiation in space and time. Since both ...

  12. average neck flexion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    profiles including the singular isothermal sphere, the Navarro-Frenk-White... Retana-Montenegro, E; Baes, M 2012-01-01 13 Fast Averaging MIT - DSpace Summary: We are interested in...

  13. averaged cross sections: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relations between fusion cross sections and average angular momenta Nuclear Theory (arXiv) Summary: We study...

  14. averaged cross section: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relations between fusion cross sections and average angular momenta Nuclear Theory (arXiv) Summary: We study...

  15. average cross sections: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relations between fusion cross sections and average angular momenta Nuclear Theory (arXiv) Summary: We study...

  16. average effective dose: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    field theory, Chern-Simons theory is discussed in detail. M. Reuter 1996-02-04 2 Is dark energy an effect of averaging? CERN Preprints Summary: The present standard model of...

  17. Recirculating Liquid Nitrogen System for Operation of Cryogenic Pumps

    E-Print Network [OSTI]

    Walker, Mitchell

    is provided by a LN2-cooled radiation shroud, which reduces the radiative heat load on the cryosail. Since Engineering, Mitchell.Walker@ae.gatech.edu #12;2 nitrogen shroud, the heat transfer calculated by Eqn. (1 operating temperature. This is seen notionally by equation 1: Eqn. (1) where Q is the rate of heat transfer

  18. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Nick Rosenberry, Harris Companies

    2012-05-04T23:59:59.000Z

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  19. Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.

  20. Electron Cyclotron Heating in RFP plasmas

    SciTech Connect (OSTI)

    Bilato, R.; Poli, E. [MPI fuer Plasmaphysik-Euratom Association Boltzmannstr. 2, D-85748 Garching (Germany); Volpe, F. [Department of Engineering Physics, University of Wisconsin, Madison, WI (United States); Koehn, A. [Institut fuer Plasmaforschung, Universitaet Stuttgart-Stuttgart (Germany); Cavazzana, R.; Paccagnella, R. [Consorzio RFX-Associazione EURATOM-ENEA sulla fusione-Padova (Italy); Farina, D. [IFP-CNR, EURATOM-ENEA-CNR Association-Milano (Italy)

    2009-11-26T23:59:59.000Z

    Reversed field pinches (RFP) plasmas are typically overdense ({omega}{sub pe}>{omega}{sub ce}) and thus not suitable for conventional electron cyclotron (EC) heating and current drive. In recent high plasma current discharges (I{sub p}>1.5 MA), however, the RFX-mod device was operated in underdense conditions ({omega}{sub pe}<{omega}{sub ce}) for the first time in an RFP. Thus, it is now possible to envisage heating the RFP plasma core by conventional EC at the 2nd harmonic, in the ordinary or extraordinary mode. We present a preliminary study of EC-heating feasibility in RFX-mod with the use of beam-tracing and full-wave codes. Although not competitive - as a heating system - with multi-MW Ohmic heating in an RFP, EC might be useful for perturbative transport studies, even at moderate power (hundreds of kW), and, more generally, for applications requiring localized power deposition.

  1. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  2. Partial Averaging Near a Resonance in Planetary Dynamics

    E-Print Network [OSTI]

    Nader Haghighipour

    1999-02-03T23:59:59.000Z

    Following the general numerical analysis of Melita and Woolfson (1996), I showed in a recent paper that a restricted, planar, circular planetary system consisting of Sun, Jupiter and Saturn would be captured in a near (2:1) resonance when one would allow for frictional dissipation due to interplanetary medium (Haghighipour, 1998). In order to analytically explain this resonance phenomenon, the method of partial averaging near a resonance was utilized and the dynamics of the first-order partially averaged system at resonance was studied. Although in this manner, the finding that resonance lock occurs for all initial relative positions of Jupiter and Saturn was confirmed, the first-order partially averaged system at resonance did not provide a complete picture of the evolutionary dynamics of the system and the similarity between the dynamical behavior of the averaged system and the main planetary system held only for short time intervals. To overcome these limitations, the method of partial averaging near a resonance is extended to the second order of perturbation in this paper and a complete picture of dynamical behavior of the system at resonance is presented. I show in this study that the dynamics of the second-order partially averaged system at resonance resembles the dynamical evolution of the main system during the resonance lock in general, and I present analytical explanations for the evolution of the orbital elements of the main system while captured in resonance.

  3. Heat Integrate Heat Engines in Process Plants

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    ~C. T min Table 3. Problem Table Algorithm Applied to Petrochemicals Process Interval GJ ltiour 'Temperatures ! C! 2 ) ? ~ Cold. Hot Aecumulated Heat Heat FJ.owa Interval Streams StrePlS Deficit. Input OUtput -OUtt!utInput. 20 30 -2... of heat which can be passed on in this manner is performed in column 2 and column 3 of Table 3. It is initially assumed that the heat input from external utilities is zero. This is represented in Table 3 by a zero input to the top interval. Having...

  4. Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage 

    E-Print Network [OSTI]

    Han, Z.; Zheng, M.; Liu, W.; Wang, F.

    2006-01-01T23:59:59.000Z

    Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar...

  5. Heat-flow reconnaissance of the Gulf Coastal Plain

    SciTech Connect (OSTI)

    Smith, D.L.; Shannon, S.S. Jr.

    1982-04-01T23:59:59.000Z

    Most of the 46 new values of heat flow determined for the Gulf Coastal Plain are in the low to normal range, but heat-flow values averaging 1.8 heat-flow unit (HFU) were obtained in Claiborne, Ouachita, and Union parishes, Louisiana. Moreover, a zone of relatively high heat-flow values and steep thermal gradients (35 to 46/sup 0/C/km) extends from northern Louisiana into southwestern Mississippi. Also near Pensacola, Florida, temperatures of 50/sup 0/C at 1-km depth have been extrapolated from thermal gradients. Future development of low-grade geothermal resources may be warranted in these areas.

  6. Heating tar sands formations to visbreaking temperatures

    DOE Patents [OSTI]

    Karanikas, John Michael (Houston, TX); Colmenares, Tulio Rafael (Houston, TX); Zhang, Etuan (Houston, TX); Marino, Marian (Houston, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Ryan, Robert Charles (Houston, TX); Beer, Gary Lee (Houston, TX); Dombrowski, Robert James (Houston, TX); Jaiswal, Namit (Houston, TX)

    2009-12-22T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  7. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect (OSTI)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01T23:59:59.000Z

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  8. Average Soil Water Retention Curves Measured by Neutron Radiography

    SciTech Connect (OSTI)

    Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

    2011-01-01T23:59:59.000Z

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  9. A simple quantum heat engine

    E-Print Network [OSTI]

    Jacques Arnaud; Laurent Chusseau; Fabrice Philippe

    2003-06-02T23:59:59.000Z

    Quantum heat engines employ as working agents multi-level systems instead of gas-filled cylinders. We consider particularly two-level agents such as electrons immersed in a magnetic field. Work is produced in that case when the electrons are being carried from a high-magnetic-field region into a low-magnetic-field region. In watermills, work is produced instead when some amount of fluid drops from a high-altitude reservoir to a low-altitude reservoir. We show that this purely mechanical engine may in fact be considered as a two-level quantum heat engine, provided the fluid is viewed as consisting of n molecules of weight one and N-n molecules of weight zero. Weight-one molecules are analogous to electrons in their higher energy state, while weight-zero molecules are analogous to electrons in their lower energy state. More generally, fluids consist of non-interacting molecules of various weights. It is shown that, not only the average value of the work produced per cycle, but also its fluctuations, are the same for mechanical engines and quantum (Otto) heat engines. The reversible Carnot cycles are approached through the consideration of multiple sub-reservoirs.

  10. Microwave heating apparatus and method

    DOE Patents [OSTI]

    Johnson, Andrew J. (Boulder, CO); Petersen, Robert D. (Thornton, CO); Swanson, Stephen D. (Brighton, CO)

    1990-01-01T23:59:59.000Z

    An apparatus is provided for heating and melting materials using microwave energy, and for permitting them to solidify. The apparatus includes a microwave energy source, a resonant cavity having an opening in its floor, a microwave energy choke encompassing the opening in the floor of the cavity, a metal container to hold the materials to be heated and melted, a turntable, and a lift-table. During operation, the combined action of the turntable and the lift-table position the metal container so that the top of the container is level with the floor of the cavity, is in substantial registration with the floor opening, and is encompassed by the microwave energy choke; thus, during operation, the interior of the container defines part of the resonant cavity. Additionally, a screw feeder, extending into the cavity and sheltered from microwave energy by a conveyor choke, may convey the materials to be heated to the container. Also, preferably, the floor of the resonant cavity may include perforatins, so that the offgases and dust generated in the apparatus may be removed from the resonant cavity by pulling outside air between the container choke and the exterior wall of the container into the resonant cavity and out from the cavity through the perforations.

  11. Modern hot water district heating

    SciTech Connect (OSTI)

    Karnitz, M.A.; Barnes, M.H.; Kadrmas, C.; Nyman, H.O.

    1984-06-01T23:59:59.000Z

    The history of district heating in Europe is drastically different from that in the United States. The development of district heating in northern and eastern Europe started in the early 1950s. Hot water rather than steam was used as the transport medium and the systems have proven to be more economical. Recently, the northern European concept has been introduced into two US cities - St. Paul and Willmar, Minnesota. The hot water project in St. Paul started construction and operation in the summer and fall of 1983, respectively. The entire first phase of the St. Paul project will take two summers to construct and will connect approximately 80 buildings for a total of 150 MW(t). The system spans the entire St. Paul business district and includes privately owned offices and retail buildings, city and county government buildings, hospitals, the state Capitol complex, and several industrial customers. The City of Willmar, Minnesota, replaced an old steam system with a modern hot water system in the summer of 1982. The first phase of the hot water system was constructed in the central business district. The system serves a peak thermal load of about 10 MW(t) and includes about 12,000 ft of network. The Willmar system completed the second stage of development in the fall of 1983. These two new systems demonstrate the benefits of the low-temperature hot water district heating technology. The systems are economical to build, have high reliability, and have low maintenance and operating cost.

  12. State Heating Oil & Propane Program. Final report 1997/98 heating season

    SciTech Connect (OSTI)

    Hunton, G.

    1998-06-01T23:59:59.000Z

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  13. HEATING6 verification

    SciTech Connect (OSTI)

    Bryan, C.B.; Childs, K.W.; Giles, G.E.

    1986-12-01T23:59:59.000Z

    The HEATING series of general purpose, finite-difference, conduction heat transfer codes have been in use for many years. During this time the codes have been used extensively, and a general confidence has been developed in regard to their accuracy. However, there has never been a formal verification in a published, citable document. This report documents just such a verification study for the latest code in the HEATING series, HEATING6. This study confirms that HEATING6 is capable of producing accurate results for a large class of heat transfer problems. 11 refs., 170 figs., 82 tabs.

  14. Heat Pump for High School Heat Recovery

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    ) [3] Yayun FAN. Experimental study on a heat pump technology in solar thermal utilization[J]. Acta Energiae Solaris Sinica, Oct.,2002; Vol.23,No.5 ? 581-585.(In Chinese) [4] Nengxi JIANG. Air-conditioning Heat Pump Technology and Its Applications...

  15. Operating Costs for Trucks David Levinson*, Michael Corbett, Maryam Hashami

    E-Print Network [OSTI]

    Levinson, David M.

    Operating Costs for Trucks David Levinson*, Michael Corbett, Maryam Hashami David Levinson Author Abstract This study estimates the operating costs for commercial vehicle operators in Minnesota. A survey of firms that undertake commercial truck road movements was performed. The average operating cost

  16. Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing

    E-Print Network [OSTI]

    Combes, R. S.; Boykin, W. B.

    1980-01-01T23:59:59.000Z

    from waste heat streams for reuse in the processing operations. This paper addresses the recovery of waste heat and the storage of thermal energy as a means of energy conservation in food processing. An energy conservation project in a poultry...

  17. Study of a Fault Analysis System for a Heat Supply Network Based on GIS

    E-Print Network [OSTI]

    Zou, P.; Liu, M.; Tang, H.; Wang, X.; Li, N.; Wang, W.

    2006-01-01T23:59:59.000Z

    Conventional methods cannot satisfy the request of the layout and operation management in a heating system. The geographical information system (GIS) in a heat supply network can realize information conformity and information share roundly, which...

  18. Process Waste Heat Recovery in the Food Industry - A System Analysis

    E-Print Network [OSTI]

    Lundberg, W. L.; Mutone, G. A.

    1983-01-01T23:59:59.000Z

    An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

  19. Colorado Heat Flow Data from IHFC

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: The International Heat Flow Commission (IHFC) Publication Date: 2012 Title: Colorado IHFC Data Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: Abstract: This layer contains the heat flow sites and data of the State of Colorado compiled from the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI) global heat flow database (www.heatflow.und.edu/index2.html). The data include different items: Item number, descriptive code, name of site, latitude and longitude, elevation, depth interval, number of temperature data, temperature gradient, number of conductivity measurement, average conductivity, number of heat generation measurements, average heat production, heat flow, number of individual sites, references, and date of publication. Spatial Domain: Extent: Top: 4522121.800672 m Left: 165356.134075 m Right: 621836.776246 m Bottom: 4097833.419676 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude Of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  20. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03T23:59:59.000Z

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  1. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

    1984-01-03T23:59:59.000Z

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  2. Development of automatic operation system for coke oven machines at Yawata Works of Nippon Steel Corporation

    SciTech Connect (OSTI)

    Matsunaga, Masao; Uematsu, Hiroshi; Nakagawa, Yoji; Ishiharaguchi, Yuji

    1995-12-01T23:59:59.000Z

    The coke plant is a working environment involving heavy dust emissions, high heat and demanding physical labor. The labor-saving operation of the coke plant is an essential issue from the standpoints of not only improvement in working environment, but also reduction in fixed cost by enhancement of labor productivity. Under these circumstances, Nippon Steel has implemented the automation of coke oven machines. The first automatic operation system for coke oven machinery entered service at Oita Works in 1992, followed by the second system at the No. 5 coke oven battery of the coke plant at Yawata Works. The Yawata automatic operation system is characterized by the installation of coke oven machinery to push as many as 140 ovens per day within a short cycle time, such as a preliminary ascension pipe cap opening car and cycle time simulator by the manned operation of the pusher, which is advantageous from the standpoint of investment efficiency, and by the monitoring of other oven machines by the pusher. These measures helped to reduce the manpower requirement to 2 persons per shift from 4 persons per shift. The system entered commercial operation in March, 1994 and has been smoothly working with an average total automatic rate of 97%. Results from the startup to recent operation of the system are reported below.

  3. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland

    SciTech Connect (OSTI)

    Horttanainen, M., E-mail: mika.horttanainen@lut.fi; Teirasvuo, N.; Kapustina, V.; Hupponen, M.; Luoranen, M.

    2013-12-15T23:59:59.000Z

    Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

  4. Operations Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and EvaluationOperational ManagementCenterOperations

  5. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  6. Signal averaging x-ray streak camera with picosecond jitter A. Maksimchuk, M. Kim, J. Workman, G. Korn,a)

    E-Print Network [OSTI]

    Umstadter, Donald

    Signal averaging x-ray streak camera with picosecond jitter A. Maksimchuk, M. Kim, J. Workman, G. The streak camera is operated at a sweep speed of up to 8 ps/mm, shot-to-shot jitter is less than 1 ps, but have an internal jitter more than a few tens of picoseconds. This jitter is due to the statistical

  7. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  8. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  9. DistrictHeating Nuevasaladecalderasydistribucin

    E-Print Network [OSTI]

    Fraguela, Basilio B.

    DistrictHeating Nuevasaladecalderasydistribución decaloreneláreauniversitariade AZapateira Jesús, difusión. DISTRICT HEATING O CALEFACCIÓN DE BARRIO #12;MATERIALIZACIÓN INTEGRACIÓN VISUAL DE ELEMENTOS rendimiento global de la instalación. - Contabilización de pérdidas en tuberías de distribución. #12;DISTRICT

  10. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  11. System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump

    SciTech Connect (OSTI)

    Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

    2013-01-01T23:59:59.000Z

    To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

  12. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    SciTech Connect (OSTI)

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01T23:59:59.000Z

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  13. average current dc: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ??Permanent magnet Brushless DC motor drives are being employed in newlinemany variable speed applications due to their high efficiency, silent operation, newlinecompact size,...

  14. A New Partial Sample Average Approximation Method for Chance ...

    E-Print Network [OSTI]

    2014-10-13T23:59:59.000Z

    operational constraints of a mix of power generation units (hydraulic valleys, nuclear plants and classical thermal units - coal, fuel and gas-) for a discrete ...

  15. averaged green functions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: of operational concerns that are comprised in various Green Building Certification Systems, including the overall Energy Efficiency, Water...

  16. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  17. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23T23:59:59.000Z

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  18. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01T23:59:59.000Z

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  19. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29T23:59:59.000Z

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  20. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  1. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14T23:59:59.000Z

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  2. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10T23:59:59.000Z

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  3. Acoustic Heating Peter Ulmschneider

    E-Print Network [OSTI]

    Ulmschneider, Peter

    mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

  4. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  5. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  6. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  7. High average power laser using a transverse flowing liquid host

    DOE Patents [OSTI]

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2003-07-29T23:59:59.000Z

    A laser includes an optical cavity. A diode laser pumping device is located within the optical cavity. An aprotic lasing liquid containing neodymium rare earth ions fills the optical cavity. A circulation system that provides a closed loop for circulating the aprotic lasing liquid into and out of the optical cavity includes a pump and a heat exchanger.

  8. Triple loop heat exchanger for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01T23:59:59.000Z

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  9. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop [Terrafore Inc.] [Terrafore Inc.

    2013-08-14T23:59:59.000Z

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

  10. averaged lorentz dynamics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    averaged lorentz dynamics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Dynamics on Lorentz manifolds...

  11. average energy losses: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average energy losses First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Comparing energy loss...

  12. Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    the chance of winds high enough to pose dangers for boats or aircraft. In situations calling for a cost/loss analysis, the probabilities of different outcomes need to be known. For wind speed, this issue often arisesProbabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc

  13. The Scientist : Surpassing the Law of Averages The Scientist

    E-Print Network [OSTI]

    Heller, Eric

    /8/2009 7:02:24 PM] #12;The Scientist : Surpassing the Law of Averages "Single-cell genomics appears to be the most straightforward, and at the moment the only way we can assemble the genomes of the uncultured and pushing technological limitations to bring their studies of genomics, genetics, RNA transcription

  14. Optimal Control with Weighted Average Costs and Temporal Logic Specifications

    E-Print Network [OSTI]

    Murray, Richard M.

    Optimal Control with Weighted Average Costs and Temporal Logic Specifications Eric M. Wolff Control and Dynamical Systems California Institute of Technology Pasadena, California 91125 Email: ewolff@caltech.edu Ufuk Topcu Control and Dynamical Systems California Institute of Technology Pasadena, California 91125

  15. Navy Estimated Average Hourly Load Profile by Month (in MW)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Navy Estimated Average Hourly Load Profile by Month (in MW) MONTH HE1 HE2 HE3 HE4 HE5 HE6 HE7 HE8 HE9 HE10 HE11 HE12 HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24...

  16. Paleosecular variation and the average geomagnetic field at 20 latitude

    E-Print Network [OSTI]

    Johnson, Catherine Louise

    -averaged field (TAF) for a two-parameter longitudinally symmetric (zonal) model. Values for our model parameters rocks, and oceanic sediments, but consistent with that from reversed polarity continental and igneous to paleosecular variation (PSV). We examine PSV at ±20° using virtual geomagnetic pole (VGP) dispersion

  17. Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging

    E-Print Network [OSTI]

    Washington at Seattle, University of

    February 24, 2006 1J. McLean Sloughter is Graduate Research Assistant, Adrian E. Raftery is BlumsteinProbabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging J. McLean Sloughter, Adrian E. Raftery and Tilmann Gneiting 1 Department of Statistics, University of Washington

  18. Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    : J. McLean Sloughter, Department of Mathematics, Seattle University, 901 12th Ave., P.O. Box 222000Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging J. MCLEAN SLOUGHTER Seattle University, Seattle, Washington TILMANN GNEITING Heidelberg University, Heidelberg

  19. average specific absorption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average specific absorption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Original Research Specific...

  20. Heat Transfer -1 You are given the following information for a fluid with thermal conductivity of k = 0.0284 W/m-K that

    E-Print Network [OSTI]

    Virginia Tech

    Heat Transfer - 1 You are given the following information for a fluid with thermal conductivity the flow is laminar near the wall. a) (30 points) Determine the corresponding heat transfer coefficient the heat transfer coefficient as a function of x. c) (25 points) Determine the average heat transfer

  1. Electron Heating in Quasi-Perpendicular Shocks

    E-Print Network [OSTI]

    Mozer, F S

    2013-01-01T23:59:59.000Z

    Seventy crossings of the Earths bow shock by the THEMIS satellites have been used to study thermal electron heating in collisionless, quasi-perpendicular shocks. It was found that the temperature increase of thermal electrons differed from the magnetic field increase by factors as great as three, that the parallel electron temperature increase was not produced by parallel electric fields, and that the parallel and perpendicular electron temperature increases were the same on the average. It was also found that the perpendicular and parallel electron heating occurred simultaneously so that the isotropization time is the same as the heating time. These results cannot be explained by energy transfer from waves to electrons or by the motion of magnetized electrons through the shock. Electric field fluctuations on the scale of the electron gyro-diameter were found to be of finite amplitude in the shock ramp, which requires that the electron trajectories be more random and chaotic than orderly and adiabatic. The da...

  2. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect (OSTI)

    Mittereder, N.; Poerschke, A.

    2013-11-01T23:59:59.000Z

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  3. Operation Poorman

    SciTech Connect (OSTI)

    Pruvost, N.; Tsitouras, J.

    1981-03-18T23:59:59.000Z

    The objectives of Operation Poorman were to design and build a portable seismic system and to set up and use this system in a cold-weather environment. The equipment design uses current technology to achieve a low-power, lightweight system that is configured into three modules. The system was deployed in Alaska during wintertime, and the results provide a basis for specifying a mission-ready seismic verification system.

  4. Operating Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→ globalOPERATING PLAN

  5. Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→ globalOPERATING

  6. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  7. Applied heat transfer

    SciTech Connect (OSTI)

    Ganapathy, V.

    1982-01-01T23:59:59.000Z

    Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

  8. Heat transfer enhancement resulting from induction electrohydrodynamic pumping 

    E-Print Network [OSTI]

    Margo, Bryan David

    1992-01-01T23:59:59.000Z

    pump operated at various tilt angles with two working fluids. The main difference between this study and other work in EHD heat transfer enhancement is that the induction EHD pump is the only source of pumping as well as the basis for heat transfer... HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  9. Heat recirculating cooler for fluid stream pollutant removal

    DOE Patents [OSTI]

    Richards, George A. (Morgantown, WV); Berry, David A. (Morgantown, WV)

    2008-10-28T23:59:59.000Z

    A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

  10. Commercial high efficiency dehumidification systems using heat pipes

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  11. Brayton Cycle Heat Pump for VOC Control

    E-Print Network [OSTI]

    Kovach, J. L.

    The first full size continuous operation Brayton Cycle Heat Pump (1)(2)(3) application for VOC recovery occurred in 1988. The mixed solvent recovery system was designed and supplied by NUCON for the 3M facility in Weatherford, OK (4). This first...

  12. Climate change and health: Indoor heat exposure in vulnerable populations

    SciTech Connect (OSTI)

    White-Newsome, Jalonne L., E-mail: jalonne@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 109 S. Observatory, SPH II, Rm. M6314, Ann Arbor, MI 48109 (United States); Sanchez, Brisa N., E-mail: brisa@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Jolliet, Olivier, E-mail: ojolliet@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Zhang, Zhenzhen, E-mail: zhzh@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Parker, Edith A., E-mail: Edith-Parker@uiowa.edu [University of Michigan School of Public Health, Health Behavior and Health Education Department, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Timothy Dvonch, J., E-mail: dvonch@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 1415 Washington Heights, 6642 SPH Tower, Ann Arbor, MI 48109 (United States); O'Neill, Marie S., E-mail: marieo@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6631 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2012-01-15T23:59:59.000Z

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  13. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01T23:59:59.000Z

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  14. Nuclear heated and powered metal excimer laser

    SciTech Connect (OSTI)

    Womack, D.R.

    1982-02-11T23:59:59.000Z

    A laser uses heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

  15. Heat Integrated Distillation through Use of Microchannel Technology

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

  16. Thermosyphon coil arrangement for heat pump outdoor unit

    DOE Patents [OSTI]

    Draper, R.

    1984-05-22T23:59:59.000Z

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement there for which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil has a feed portion and an exit portion leading to a separator drum from which liquid refrigerant is returned through downcomer line for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation. 9 figs.

  17. Thermosyphon coil arrangement for heat pump outdoor unit

    DOE Patents [OSTI]

    Draper, Robert (Churchill, PA)

    1984-01-01T23:59:59.000Z

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement therefor which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil 32 has a feed portion 30 and an exit portion 34 leading to a separator drum 36 from which liquid refrigerant is returned through downcomer line 42 for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation.

  18. Introduction of Heat Recovery Chiller Control and Water System Design

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01T23:59:59.000Z

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  19. Introduction of Heat Recovery Chiller Control and Water System Design 

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01T23:59:59.000Z

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  20. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    joint probability of a household choosing each particular heating/cooling technology combination is a function of the capital and operating

  1. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Broader source: Energy.gov (indexed) [DOE]

    the Department of Energy to improve steam system performance. Guide to Combined Heat and Power Systems for Boiler Owners and Operators (July 2004) More Documents & Publications...

  2. Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission Fluid

    Broader source: Energy.gov [DOE]

    The overall objective of the research is to explore the feasibility of operating enhanced geothermal systems (EGS) with CO2as heat transmission fluid.

  3. Applications Tests of Commercial Heat Pump Water Heaters 

    E-Print Network [OSTI]

    Oshinski, J. N..; Abrams, D. W.

    1987-01-01T23:59:59.000Z

    Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

  4. Green function diagonal for a class of heat equations

    E-Print Network [OSTI]

    Grzegorz Kwiatkowski; Sergey Leble

    2011-12-15T23:59:59.000Z

    A construction of the heat kernel diagonal is considered as element of generalized Zeta function, that, being meromorfic function, its gradient at the origin defines determinant of a differential operator in a technique for regularizing quadratic path integral. Some classes of explicit expression in the case of finite-gap potential coefficient of the heat equation are constructed.

  5. Applications Tests of Commercial Heat Pump Water Heaters

    E-Print Network [OSTI]

    Oshinski, J. N..; Abrams, D. W.

    1987-01-01T23:59:59.000Z

    Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

  6. Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-10-31T23:59:59.000Z

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturer’s rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

  7. Molten salt as a heat transfer fluid for heating a subsurface formation

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2010-11-16T23:59:59.000Z

    A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.

  8. Three important parts of an integrated plant are reactors, separators and a heat exchanger network (HEN) for heat recovery. Within the process engineering community, much

    E-Print Network [OSTI]

    Skogestad, Sigurd

    exchanger network (HEN) for heat recovery. Within the process engineering community, much attention has beeni ABSTRACT Three important parts of an integrated plant are reactors, separators and a heat and in particular to optimal operation of HENs. The purpose of heat integration is to save energy, but the HEN also

  9. 2. Unit Operation Dynamic simulation Unit operation

    E-Print Network [OSTI]

    Hong, Deog Ki

    specification . 2.2 Heat transfer equipment Air cooler, cooler/heater, heat exchanger, fired heater LNG multi flow heat exchanger . 2.3 Piping equipment Mixer, tee, pipe, gas pipe, valve, relief valve . 2.4 Rotating equipment Centrifugal compressor or expander, reciprocating compressor pump ,dynamic simulation

  10. Methodology for Life Testing of Refractory Metal / Sodium Heat Pipes

    SciTech Connect (OSTI)

    Martin, James J.; Reid, Robert S. [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States)

    2006-07-01T23:59:59.000Z

    This work establishes an approach to generate carefully controlled data to find heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long-term corrosion rates. The refractory metal selected for demonstration purposes is a molybdenum-44.5% rhenium alloy formed by powder metallurgy. The heat pipes each have an annular crescent wick formed by hot isostatic pressing of molybdenum-rhenium wire mesh. The heat pipes are filled by vacuum distillation with purity sampling of the completed assembly. Round-the-clock heat pipe tests with 6-month destructive and non-destructive inspection intervals are conducted to identify the onset and level of corrosion. Non-contact techniques are employed to provide power to the evaporator (radio frequency induction heating at 1 to 5 kW per heat pipe) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range extends from 1123 to 1323 K. Accomplishments before project cancellation included successful development of the heat pipe wick fabrication technique, establishment of all engineering designs, baseline operational test requirements, and procurement/assembly of supporting test hardware systems. (authors)

  11. Statistical Model Analysis of (n,p) Cross Sections and Average Energy For Fission Neutron Spectrum

    SciTech Connect (OSTI)

    Odsuren, M.; Khuukhenkhuu, G. [Nuclear Research Center, National University of Mongolia, Ulaanbaatar (Mongolia)

    2011-06-28T23:59:59.000Z

    Investigation of charged particle emission reaction cross sections for fast neutrons is important to both nuclear reactor technology and the understanding of nuclear reaction mechanisms. In particular, the study of (n,p) cross sections is necessary to estimate radiation damage due to hydrogen production, nuclear heating and transmutations in the structural materials of fission and fusion reactors. On the other hand, it is often necessary in practice to evaluate the neutron cross sections of the nuclides for which no experimental data are available.Because of this, we carried out the systematical analysis of known experimental (n,p) and (n,a) cross sections for fast neutrons and observed a systematical regularity in the wide energy interval of 6-20 MeV and for broad mass range of target nuclei. To explain this effect using the compound, pre-equilibrium and direct reaction mechanisms some formulae were deduced. In this paper, in the framework of the statistical model known experimental (n,p) cross sections averaged over the thermal fission neutron spectrum of U-235 are analyzed. It was shown that the experimental data are satisfactorily described by the statistical model. Also, in the case of (n,p) cross sections the effective average neutron energy for fission spectrum of U-235 was found to be around 3 MeV.

  12. Heat transfer and oil displacement models for tar sands reservoirs

    SciTech Connect (OSTI)

    Ward, C.E.; Ward, G.D.

    1984-09-01T23:59:59.000Z

    A convective heat transfer model and one dimensional displacement model applicable to tar sands and heavy oils for use with a microcomputer are presented. The convective heat transfer model describes the temperature profiles in a thermal operation. The displacement model offers insight into the effect of process variables on the steam/oil or air/oil ratio of thermal operations. A method is presented for predicting the fuel burn in a fireflood.

  13. Operational Excellence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeedingthis site » OpenOperational

  14. Operations Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→ globalOPERATING Who We

  15. Averaging cross section data so we can fit it

    SciTech Connect (OSTI)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC

    2014-10-23T23:59:59.000Z

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  16. Estimate of average freeze-out volume in multifragmentation events

    E-Print Network [OSTI]

    Piantelli, S; Borderie, B; Bougault, R; Chbihi, A; Dayras, R; Durand, D; Frankland, J D; Galíchet, E; Guinet, D; Lanzalone, G; Lautesse, P; Le Neindre, N; López, O; Pârlog, M; Rivet, M F; Rosato, E; Tamain, B; Vient, E; Vigilante, M; Volant, C; Wieleczko, J P

    2005-01-01T23:59:59.000Z

    An estimate of the average freeze-out volume for multifragmentation events is presented. Values of volumes are obtained by means of a simulation using the experimental charged product partitions measured by the 4pi multidetector INDRA for 129Xe central collisions on Sn at 32 AMeV incident energy. The input parameters of the simulation are tuned by means of the comparison between the experimental and simulated velocity (or energy) spectra of particles and fragments.

  17. Open cycle heat pump development for local resource use

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Glick, J.F.; Becker, F.E.

    1990-04-01T23:59:59.000Z

    District heating (DH) systems provide thermal energy to their customers in the form of hot water or steam. These systems can use one or more types of heat sources to meet the thermal load, including boilers, cogeneration systems, or low-grade heat sources in conjunction with a heat pump. Most large-scale heat pumps operate using the closed-cycle concept and usually use a chlorinated fluorocarbon (CFC) as the working fluid. An alternative to this approach is the quasi open-cycle heat pump, which was first studied in a Phase 1 report entitled Open-Cycle Heat Pump Development for Local Resource Use,'' DOE/CE/26563-5. The quasi open-cycle (QOC) heat pump actually uses the district heating transport medium as its working fluid. This document is the Final Report prepared as a part of Task 6 of Open-Cycle Heat Pump Development for Local Resource Use, Phase 2 District Heating Case Study Analysis. The objective of this study contract was to assess the application of the QOC heat pump in an actual case study. 43 figs., 11 tabs.

  18. Method for controlling exhaust gas heat recovery systems in vehicles

    DOE Patents [OSTI]

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11T23:59:59.000Z

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  19. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  20. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  1. average power fel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coverage (fundamental) 3 (5)1 (8) FEL undulators 2012 (?)2009 (2013)Operation start TESLA (upgrade) LCLS (upgrade) X-ray FEL Projects in Preconstruction 12;Status of X-ray...

  2. Better than Average? - Green Building Certification in International Projects 

    E-Print Network [OSTI]

    Baumann, O.

    2008-01-01T23:59:59.000Z

    8th International Conference for Enhanced Building Operations - ICEBO?08 Conference Center of the Federal Ministry of Economics and Technology Berlin, October 20 - 22, 2008 Dipl.-Ing. Oliver Baumann Ebert & Baumann Consulting Engineers, Inc...

  3. PTG exam 9 April 2014 short answers 123. Heat given off = surface * heat transfer coefficient * temperature = A * h * T

    E-Print Network [OSTI]

    Zevenhoven, Ron

    depends on Grnumber Gr = gL3 T/2 = 1,09109 , with given (~ 1/T), and L = 0.75 m. GrPr = 0,78109 > 108 . Nu (average for surface) = 0,13(GrPr)1/3 = 119 gives h (average for surface) = 4,14 W/m2 K Finally this gives with A = 2,25 m2 , heat given off = 186,3 W. 124. Using the steam tables

  4. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect (OSTI)

    Messerly, M J

    2007-11-13T23:59:59.000Z

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  5. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06T23:59:59.000Z

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  6. Summer HeatSummer Heat Heat stress solutions

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    occur (then drink a lightly salted beverage like a sports drink). The water's temperature should be cool How should gardeners avoid becoming a safety threat to themselves and others when it's hot? Start to the heat. Become a weather watcher. Set up a small weather station (with a high/low thermom eter, rain

  7. Fig. 3. Averaged PSF of a whole eye without immersion (a), compared to average eye with corneal immersion (b). The degradation using immersion is mostly caused by

    E-Print Network [OSTI]

    Ribak, Erez

    Fig. 3. Averaged PSF of a whole eye without immersion (a), compared to average eye with corneal of the complete eye was calculated by the averaged Zernike coefficients measured on 532 eyes. All PSFs were). The PSFs were calculated by averaging Zernike coefficients measured from 228 eyes. Both PSFs were

  8. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect (OSTI)

    Olszewski, M.; Zaltash, A.

    1995-03-01T23:59:59.000Z

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  9. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18T23:59:59.000Z

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  10. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  11. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Chuen-Sen Lin

    2008-12-31T23:59:59.000Z

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

  12. Compositions produced using an in situ heat treatment process

    DOE Patents [OSTI]

    Roes, Augustinus Wilhelmus Maria (Houston, TX); Nair, Vijay (Katy, TX); Munsterman, Erwin Henh (Amsterdam, NL); Van Bergen, Petrus Franciscus (Amsterdam, NL); Van Den Berg, Franciscus Gondulfus Antonius (Amsterdam, NL)

    2009-10-20T23:59:59.000Z

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  13. Compositions produced using an in situ heat treatment process

    DOE Patents [OSTI]

    Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

    2013-05-28T23:59:59.000Z

    Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  14. Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems

    SciTech Connect (OSTI)

    Vierow, Karen

    2005-08-29T23:59:59.000Z

    This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

  15. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  16. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  17. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01T23:59:59.000Z

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  18. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01T23:59:59.000Z

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  19. PUBLISHED ONLINE: 16 JANUARY 2011 | DOI: 10.1038/NPHYS1871 Piezoresistive heat engine and refrigerator

    E-Print Network [OSTI]

    Loss, Daniel

    and refrigerator P. G. Steeneken*, K. Le Phan, M. J. Goossens, G. E. J. Koops, G. J. A. M. Brom, C. van der Avoort to reduce these thermal fluctuations, therefore operating as a refrigerator. M ost heat engines operate

  20. Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing 

    E-Print Network [OSTI]

    Combes, R. S.; Boykin, W. B.

    1980-01-01T23:59:59.000Z

    Modern food processing operations often require that the temperature of the processed foodstuff be raised or lowered. These operations result in energy consumption by refrigeration or heating systems, and a portion of this energy can be recovered...

  1. Waste Heat Doesn't Have to be a Waste of Money- The American & Efird Heat Recovery Project: A First for the Textile Industry

    E-Print Network [OSTI]

    Smith, S. W.

    "WASTE HEAT DOESN'T HAVE TO BE A WASTE OF MONEY" THE AMERICAN & EFIRD HEAT RECOVERY PROJECT: A FIRST FOR THE TEXTILE INDUSTRY STEVE W. SMITH, P.E., Program Manager Electrotechnology Sales Duke Power Company Charlotte, NC In 1989 American... and finishing Finishing Plant was targeted as an ideal operations recover energy from their site for a process heat pump installation. wastewater discharges usjng shell and tube Over a three year period, 1987-1990, Duke heat exchangers and preheat incoming...

  2. Table 8. Average Price of U.S. Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9.

  3. Profiles of heating in turbulent coronal magnetic loops

    E-Print Network [OSTI]

    E. Buchlin; P. J. Cargill; S. J. Bradshaw; M. Velli

    2007-02-28T23:59:59.000Z

    Context: The location of coronal heating in magnetic loops has been the subject of a long-lasting controversy: does it occur mostly at the loop footpoints, at the top, is it random, or is the average profile uniform? Aims: We try to address this question in model loops with MHD turbulence and a profile of density and/or magnetic field along the loop. Methods: We use the ShellAtm MHD turbulent heating model described in Buchlin & Velli (2006), with a static mass density stratification obtained by the HydRad model (Bradshaw & Mason 2003). This assumes the absence of any flow or heat conduction subsequent to the dynamic heating. Results: The average profile of heating is quasi-uniform, unless there is an expansion of the flux tube (non-uniform axial magnetic field) or the variation of the kinetic and magnetic diffusion coefficients with temperature is taken into account: in the first case the heating is enhanced at footpoints, whereas in the second case it is enhanced where the dominant diffusion coefficient is enhanced. Conclusions: These simulations shed light on the consequences on heating profiles of the complex interactions between physical effects involved in a non-uniform turbulent coronal loop.

  4. Investigating AGN Heating in a Sample of Nearby Clusters

    E-Print Network [OSTI]

    Dunn, R J H

    2006-01-01T23:59:59.000Z

    We analyse those objects in the Brightest 55 sample of clusters of galaxies which have a short central cooling time and a central temperature drop. Such clusters are likely to require some form of heating. Where clear radio bubbles are observed in these clusters, their energy injection is compared to the X-ray cooling rate. Of the 20 clusters requiring heating, at least 14 have clear bubbles, implying a duty cycle for the bubbling activity of at least 70 per cent. The average distance out to which the bubbles can offset the X-ray cooling, r_heat is given by r_heat/r_cool=0.86+/-0.11 where r_cool is defined as the radius as which the radiative cooling time is 3 Gyr. 10 out of 16 clusters have r_heat/r_cool>1, but there is a large range in values. The clusters which require heating but show no clear bubbles were combined with those clusters which have a radio core to form a second sub-sample. Using r_heat=0.86 r_cool we calculate the size of an average bubble expected in these clusters. In five cases (3C129.1, ...

  5. Average Fe K-alpha emission from distant AGN

    E-Print Network [OSTI]

    A. Corral; M. J. Page; F. J. Carrera; X. Barcons; S. Mateos; J. Ebrero; M. Krumpe; A. Schwope; J. A. Tedds; M. G. Watson

    2008-10-02T23:59:59.000Z

    One of the most important parameters in the XRB (X-ray background) synthesis models is the average efficiency of accretion onto SMBH (super-massive black holes). This can be inferred from the shape of broad relativistic Fe lines seen in X-ray spectra of AGN (active galactic nuclei). Several studies have tried to measure the mean Fe emission properties of AGN at different depths with very different results. We compute the mean Fe emission from a large and representative sample of AGN X-ray spectra up to redshift ~ 3.5. We developed a method of computing the rest-frame X-ray average spectrum and applied it to a large sample (more than 600 objects) of type 1 AGN from two complementary medium sensitivity surveys based on XMM-Newton data, the AXIS and XWAS samples. This method makes use of medium-to-low quality spectra without needing to fit complex models to the individual spectra but with computing a mean spectrum for the whole sample. Extensive quality tests were performed by comparing real to simulated data, and a significance for the detection of any feature over an underlying continuum was derived. We detect with a 99.9% significance an unresolved Fe K-alpha emission line around 6.4 keV with an EW ~ 90 eV, but we find no compelling evidence of any significant broad relativistic emission line in the final average spectrum. Deviations from a power law around the narrow line are best represented by a reflection component arising from cold or low-ionization material. We estimate an upper limit for the EW of any relativistic line of 400 eV at a 3 sigma confidence level. We also marginally detect the so-called Iwasawa-Taniguchi effect on the EW for the unresolved emission line, which appears weaker for higher luminosity AGN.

  6. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a. Average Electricity

  7. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a. Average Electricityb.

  8. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a. Average

  9. Nuclear thermal rocket engine operation and control

    SciTech Connect (OSTI)

    Gunn, S.V.; Savoie, M.T.; Hundal, R.

    1993-06-01T23:59:59.000Z

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation. 9 refs.

  10. Effect on Non-Uniform Heat Generation on Thermionic Reactions

    SciTech Connect (OSTI)

    Schock, Alfred

    2012-01-19T23:59:59.000Z

    The penalty resulting from non-uniform heat generation in a thermionic reactor is examined. Operation at sub-optimum cesium pressure is shown to reduce this penalty, but at the risk of a condition analogous to burnout. For high pressure diodes, a simple empirical correlation between current, voltage and heat flux is developed and used to analyze the performance penalty associated with two different heat flux profiles, for series-and parallel-connected converters. The results demonstrate that series-connected converters require much finer power flattening than parallel converters. For example, a ±10% variation in heat generation across a series array can result in a 25 to 50% power penalty.

  11. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-Print Network [OSTI]

    IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

  12. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28T23:59:59.000Z

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  13. First university owned district heating system using biomass heat

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

  14. An upgraded heat transfer fluid eliminates odors and leaks

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    At Morton, persistent leakage of an aromatics-based heat transfer fluid left its mark--a black, oxidized residue at flange and valve locations. By switching to a high-purity fluid from a paraffinic hydrocarbon base stock, the firm eliminated odors and sticky residue, and improved heat transfer. After four years of operation with the paraffinic heat transfer fluid, Morton continues to have no odor problems and virtually no flange or packing leakage. As an added bonus, the heat transfer coefficient of the new fluid allows Morton to operate the systems 10--15 F cooler than when the company used the traditional, aromatic fluid. This has cut fuel use and reduced the potential for thermal damage to the heat transfer fluid, process fluid and process equipment.

  15. Heat Pump Water Heaters and American Homes: A Good Fit?

    SciTech Connect (OSTI)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14T23:59:59.000Z

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  16. Progress in direct heat applications projects

    SciTech Connect (OSTI)

    Childs, F.W.; Jones, K.W.; Nelson, L.B.; Strawn, J.A.; Tucker, M.K.

    1980-09-09T23:59:59.000Z

    The development of hydrothermal energy for direct heat applications is being aided by twenty-two demonstration projects that are funded on a cost-sharing basis by the US Department of Energy, Division of Geothermal Energy. These projects are designed to demonstrate the technical and economic feasibility of the direct use of geothermal heat in the United States. Twelve of these projects are administered by the DOE-Idaho Operations Office with technical support from EG and G Idaho, Inc. Engineering and economic data for these projects are summarized in this paper. The data and experience being generated by these projects will be an important basis for future geothermal direct use projects.

  17. Heat pump/refrigerator using liquid working fluid

    DOE Patents [OSTI]

    Wheatley, John C. (Del Mar, CA); Paulson, Douglas N. (Del Mar, CA); Allen, Paul C. (Solana Beach, CA); Knight, William R. (Corvallis, OR); Warkentin, Paul A. (San Diego, CA)

    1982-01-01T23:59:59.000Z

    A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

  18. TECATE - a code for anisotropic thermoelasticity in high-average-power laser technology. Phase 1 final report

    SciTech Connect (OSTI)

    Gelinas, R.J.; Doss, S.K.; Carlson, N.N.

    1985-01-01T23:59:59.000Z

    This report describes a totally Eulerian code for anisotropic thermoelasticity (code name TECATE) which may be used in evaluations of prospective crystal media for high-average-power lasers. The present TECATE code version computes steady-state distributions of material temperatures, stresses, strains, and displacement fields in 2-D slab geometry. Numerous heat source and coolant boundary condition options are available in the TECATE code for laser design considerations. Anisotropic analogues of plane stress and plane strain evaluations can be executed for any and all crystal symmetry classes. As with all new and/or large physics codes, it is likely that some code imperfections will emerge at some point in time.

  19. Computational model of miniature pulsating heat pipes.

    SciTech Connect (OSTI)

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01T23:59:59.000Z

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  20. Plasma dynamics and a significant error of macroscopic averaging

    E-Print Network [OSTI]

    Marek A. Szalek

    2005-05-22T23:59:59.000Z

    The methods of macroscopic averaging used to derive the macroscopic Maxwell equations from electron theory are methodologically incorrect and lead in some cases to a substantial error. For instance, these methods do not take into account the existence of a macroscopic electromagnetic field EB, HB generated by carriers of electric charge moving in a thin layer adjacent to the boundary of the physical region containing these carriers. If this boundary is impenetrable for charged particles, then in its immediate vicinity all carriers are accelerated towards the inside of the region. The existence of the privileged direction of acceleration results in the generation of the macroscopic field EB, HB. The contributions to this field from individual accelerated particles are described with a sufficient accuracy by the Lienard-Wiechert formulas. In some cases the intensity of the field EB, HB is significant not only for deuteron plasma prepared for a controlled thermonuclear fusion reaction but also for electron plasma in conductors at room temperatures. The corrected procedures of macroscopic averaging will induce some changes in the present form of plasma dynamics equations. The modified equations will help to design improved systems of plasma confinement.

  1. Average Fe K-alpha emission from distant AGN

    E-Print Network [OSTI]

    Corral, A; Carrera, F J; Barcons, X; Mateos, S; Ebrero, J; Krumpe, M; Schwope, A; Tedds, J A; Watson, M G

    2008-01-01T23:59:59.000Z

    One of the most important parameters in the XRB (X-ray background) synthesis models is the average efficiency of accretion onto SMBH (super-massive black holes). This can be inferred from the shape of broad relativistic Fe lines seen in X-ray spectra of AGN (active galactic nuclei). Several studies have tried to measure the mean Fe emission properties of AGN at different depths with very different results. We compute the mean Fe emission from a large and representative sample of AGN X-ray spectra up to redshift ~ 3.5. We developed a method of computing the rest-frame X-ray average spectrum and applied it to a large sample (more than 600 objects) of type 1 AGN from two complementary medium sensitivity surveys based on XMM-Newton data, the AXIS and XWAS samples. This method makes use of medium-to-low quality spectra without needing to fit complex models to the individual spectra but with computing a mean spectrum for the whole sample. Extensive quality tests were performed by comparing real to simulated data, a...

  2. Chemical heat pump and chemical energy storage system

    DOE Patents [OSTI]

    Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

    1985-08-06T23:59:59.000Z

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  3. Modeling of pulsating heat pipes.

    SciTech Connect (OSTI)

    Givler, Richard C.; Martinez, Mario J.

    2009-08-01T23:59:59.000Z

    This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and to be able to understand how various parameters (geometry, fill ratio, materials, working fluid, etc.) affect its performance. The physical processes describing a PHP are highly coupled. Understanding its operation is further complicated by the non-equilibrium nature of the interplay between evaporation/condensation, bubble growth and collapse or coalescence, and the coupled response of the multiphase fluid dynamics among the different channels. A comprehensive theory of operation and design tools for PHPs is still an unrealized task. In the following we first analyze, in some detail, a simple model that has been proposed to describe PHP behavior. Although it includes fundamental features of a PHP, it also makes some assumptions to keep the model tractable. In an effort to improve on current modeling practice, we constructed a model for a PHP using some unique features available in FLOW-3D, version 9.2-3 (Flow Science, 2007). We believe that this flow modeling software retains more of the salient features of a PHP and thus, provides a closer representation of its behavior.

  4. All-glass vacuum tube collector heat transfer model used in forced-circulation solar water heating system

    SciTech Connect (OSTI)

    Li, Zhiyong; Chen, Chao; Luo, Hailiang; Zhang, Ye; Xue, Yaning [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing (China)

    2010-08-15T23:59:59.000Z

    The aim of this paper is to establish the heat transfer model of all-glass vacuum tube collector used in forced-circulation solar water heating system. In this model, the simplified heat transfer of collector is composed of the natural convection in single glass tube and forced flow in manifold header. Thus the heat balance equation of water in single tube and the heat balance equation of water in manifold header have been established. The flow equation is also built by analyzing the friction and buoyancy in tube. Through solved these equations the relationship between the collector average temperature, the outlet temperature and natural convection flow rate have been obtained. From this relationship and energy balance equation of collector, the collector outlet temperature can be calculated. The validated experiments of this model were carried out in winter of Beijing. (author)

  5. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  6. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  7. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  8. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  9. UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings

    E-Print Network [OSTI]

    Hayden, Nancy J.

    UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings Sunday 19 heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES > Given Boiler Plant will be in operation to provide heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES

  10. The Cost of Heat Exchanger Fouling in the U. S. Industries

    E-Print Network [OSTI]

    Rebello, W. J.; Richlen, S. L.; Childs, F.

    and other industries. The 1982 U.S. sales of all industrial heat exchangers, excepting boilers and automotive radiators, was about 285,000 units amounting to about $1.6 billion. The total heat duty of all the heat exchangers in industrial operation...

  11. Research on a Heat-supply Network Dispatching System Based on Geographical Information System (GIS)

    E-Print Network [OSTI]

    Zhou, Z.; Zou, P.; Tang, H.; Fang, X.; Wang, W.

    2006-01-01T23:59:59.000Z

    In order to reduce heating systematic operation and maintenance expenses, aimed at the current standards of a heat-supply network based on GIS, combine with a national program of 'tenth-five-year-plan', the authors have developed a Heat...

  12. Apparatus with moderating material for microwave heat treatment of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2011-05-10T23:59:59.000Z

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  13. School of Architecture, Design and the Built Environment Delta T optimisation of district heating network

    E-Print Network [OSTI]

    Evans, Paul

    School of Architecture, Design and the Built Environment Delta T optimisation of district heating of any network. Most existing district heating systems work at small (10-15 C) delta T. Although for the conventional and optimised design of the district heating network. The network operation will be simulated

  14. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    192 ASHRAE Transactions: Research ABSTRACT Ground-source heat pumps for cooling- tion of the heat pump performance is avoided by offsetting the annual load imbalance in the borefield operating and control strategies in a hybrid ground-source heat pump application using an hourly system

  15. Atmosphere and Ocean: Earth's Heat Engine: GFD Lab notes

    E-Print Network [OSTI]

    Atmosphere and Ocean: Earth's Heat Engine: GFD Lab notes 18 May 2012 UW Hon220c Energy' of water vapor, CO2 and cloud, makes us much warmer than a Marsian (almost no atmosphere. -550C average 2002 clouds, snow, ice, deserts are bright absorbing areas are dark

  16. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01T23:59:59.000Z

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  17. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru, E-mail: babac@itu.edu.tr [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey)] [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey); Reese, Jason M. [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)] [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2014-05-15T23:59:59.000Z

    We present a “Knudsen heat capacity” as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  18. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16T23:59:59.000Z

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  19. High Operating Temperature Liquid Metal Heat Transfer Fluids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to demonstrate that the metal alloys identified can meet all the needs of a concentrating solar power plant. A successful candidate fluid would allow for the reduction of the...

  20. Effects of operating conditions on a heat transfer fluid aerosol

    E-Print Network [OSTI]

    Sukmarg, Passaporn

    2000-01-01T23:59:59.000Z

    fluids are used as hot liquids at elevated pressures. If loss of containment does occur, the liquid will leak under pressure and may disperse as a fine aerosol mist. Though it has been recognized that aerosol mists can explode, very little is known about...