National Library of Energy BETA

Sample records for average household expenditures

  1. Fact #748: October 8, 2012 Components of Household Expenditures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Household Expenditures on Transportation, 1984-2010 Fact 748: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010 The overall share of annual household ...

  2. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  3. Fact #565: April 6, 2009 Household Gasoline Expenditures by Income |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: April 6, 2009 Household Gasoline Expenditures by Income Fact #565: April 6, 2009 Household Gasoline Expenditures by Income In the annual Consumer Expenditure Survey, household incomes are grouped into five equal parts called quintiles (each quintile is 20%). Households in the second and third quintiles consistently have a higher share of spending on gasoline each year than households in the other quintiles. Household Gasoline Expenditures by Income Quintile Bar graph

  4. Fact #748: October 8, 2012 Components of Household Expenditures on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation, 1984-2010 | Department of Energy 8: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010 Fact #748: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010 The overall share of annual household expenditures for transportation was lower in 2010 than it was in 1984, reaching its lowest point in 2009 at 15.5%. In the early to mid-1980s when oil prices were high, gasoline and motor oil made up a larger share of transportation

  5. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other

  6. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the

  7. Fact #614: March 15, 2010 Average Age of Household Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4: March 15, 2010 Average Age of Household Vehicles Fact #614: March 15, 2010 Average Age of Household Vehicles The average age of household vehicles has increased from 6.6 years in 1977 to 9.2 years in 2009. Pickup trucks have the oldest average age in every year listed. Sport utility vehicles (SUVs), first reported in the 1995 survey, have the youngest average age. Average Vehicle Age by Vehicle Type Graph showing the average vehicle age by type (car, van, pickup, SUV, all household

  8. Comparison of energy expenditures by elderly and non-elderly households: 1975 and 1985

    SciTech Connect (OSTI)

    Siler, A.

    1980-05-01

    The relative position of the elderly in the population is examined and their characteristic use of energy in relation to the total population and their non-elderly counterparts is observed. The 1985 projections are based on demographic, economic, and socio-economic, and energy data assumptions contained in the 1978 Annual Report to Congress. The model used for estimating household energy expenditure is MATH/CHRDS - Micro-Analysis of Transfers to Households/Comprehensive Human Resources Data System. Characteristics used include households disposable income, poverty status, location by DOE region and Standard Metropolitan Statistical Area (SMSA), and race and sex of the household head as well as age. Energy use by fuel type will be identified for total home fuels, including electricity, natural gas, bottled gas and fuel oil, and for all fuels, where gasoline use is also included. Throughout the analysis, both income and expenditure-dollar amounts for 1975 and 1985 are expressed in constant 1978 dollars. Two appendices contain statistical information.

  9. Fact #638: August 30, 2010 Average Expenditure for a New Car Declines in Relation to Family Earnings

    Broader source: Energy.gov [DOE]

    Although the average expenditure for a new car has increased from 1967 to 2009, family earnings have also been on the rise. For this period, new car expenditures went from $3,216 to $23,186, while...

  10. Average U.S. household to spend $710 less on gasoline during 2015

    Gasoline and Diesel Fuel Update (EIA)

    Average U.S. household to spend $710 less on gasoline during 2015 Even with the recent increases in gasoline prices, the average U.S. household is still expected save $710 in gasoline costs this year compared with what was paid at the pump in 2014. In its new monthly forecast, the U.S. Energy Information Administration said the national average price for regular gasoline is expected to be $2.39 per gallon this year. That's almost $1 less than the $3.36 average in 2014. Lower crude oil prices

  11. Average household expected to save $675 at the pump in 2015

    Gasoline and Diesel Fuel Update (EIA)

    Average household expected to save $675 at the pump in 2015 Although retail gasoline prices have risen in recent weeks U.S. consumers are still expected to save about $675 per household in motor fuel costs this year. In its new monthly forecast, the U.S. Energy Information Administration says the average pump price for regular grade gasoline in 2015 will be $2.43 per gallon. That's about 93 cents lower than last year's average. The savings for consumers will be even bigger during the

  12. Table 5.18. U.S. Average Household and Vehicle Energy Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 8.5 3,447 0.3 1,676 8.2 3,519 1,827 1,692 8.6 Below Poverty Line 100 Percent ... 14.7 1,600 5.7 935 9.0 2,022...

  13. Microsoft Word - Household Energy Use CA

    U.S. Energy Information Administration (EIA) Indexed Site

    0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site

  14. Microsoft Word - Household Energy Use CA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site

  15. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was

  16. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Northeast",20.8,2121,1663,921,836,656,363 "Northeast Divisions and

  17. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Average Square Footage of Midwest Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Midwest",25.9,2272,1898,1372,912,762,551 "Midwest Divisions and

  18. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Average Square Footage of South Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total South",42.1,1867,1637,1549,732,642,607 "South Divisions and

  19. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Square Footage of West Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total West",24.8,1708,1374,800,628,506,294 "West Divisions and States"

  20. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Average Square Footage of Single-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Single-Family",78.6,2422,2002,1522,880,727,553 "Census

  1. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Average Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Multi-Family",28.1,930,807,535,453,393,261 "Census Region"

  2. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Mobile Homes",6.9,1087,985,746,413,375,283 "Census Region"

  3. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Average Square Footage of U.S. Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total",113.6,1971,1644,1230,766,639,478 "Census Region"

  4. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the

  5. Average U.S. household to spend $710 less on gasoline during 2015

    Gasoline and Diesel Fuel Update (EIA)

    drivers to see big savings at the gasoline pump this summer U.S. consumers are expected to pay the lowest average price for gasoline in six years during this summer's driving season, mostly because of lower crude oil costs. In its new forecast, the U.S. Energy Information Administration said the price for regular gasoline should average $2.45 per gallon this summer. That's down more than a dollar from the $3.59 per gallon seen last summer, and the cheapest average summer pump price since 2009.

  6. Minority Transportation Expenditure Allocation Model

    Energy Science and Technology Software Center (OSTI)

    1993-04-12

    MITRAM (Minority TRansportation expenditure Allocation Model) can project various transportation related attributes of minority (Black and Hispanic) and majority (white) populations. The model projects vehicle ownership, vehicle miles of travel, workers, new car and on-road fleet fuel economy, amount and share of household income spent on gasoline, and household expenditures on public transportation and taxis. MITRAM predicts reactions to sustained fuel price changes for up to 10 years after the change.

  7. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    0 2005 Energy End-Use Expenditures for an Average Household, by Region ($2010) Northeast Midwest South West National Space Heating 1,050 721 371 352 575 Air-Conditioning 199 175 456 262 311 Water Heating 373 294 313 318 320 Refrigerators 194 145 146 154 157 Other Appliances and Lighting 827 665 715 716 725 Total (1) 2,554 1,975 1,970 1,655 2,003 Note(s): 1) Due to rounding, end-uses do not sum to totals. Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-15; EIA,

  8. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  9. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  11. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2005 Households and Energy Expenditures, by Income Level ($2010) Energy Expenditures by Household Income Households (millions) Household Less than $10,000 9.9 9% $10,000 to $14,999 8.5 8% $15,000 to $19,999 8.4 8% $20,000 to $29,999 15.1 14% $30,000 to $39,999 13.6 12% $40,000 to $49,999 11.0 10% $50,000 to $74,999 19.8 18% $75,000 to $99,999 10.6 10% $100,000 or more 14.2 13% Total 111.1 100% Note(s): Source(s): 7% 1) See Table 2.3.15 for more on energy burdens. 2) A household is defined as a

  12. Form EIA-457E (2001) -- Household Bottled Gas Usage

    Gasoline and Diesel Fuel Update (EIA)

    E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information

  13. Form EIA-457E (2001) -- Household Bottled Gas Usage

    Gasoline and Diesel Fuel Update (EIA)

    G (2001) -- Household Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Fuel Oil or Kerosene Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already

  14. 2009 Energy Expenditure Per Person | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Expenditure Per Person 2009 Energy Expenditure Per Person 2009 Energy Expenditure Per Person...

  15. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    9 Average Annual Energy Expenditures per Household, by Year ($2010) Year 1980 1,991 1981 1,981 1982 2,058 1983 2,082 1984 2,067 1985 2,012 1986 1,898 1987 1,846 1988 1,849 1989 1,848 1990 1,785 1991 1,784 1992 1,729 1993 1,797 1994 1,772 1995 1,727 1996 1,800 1997 1,761 1998 1,676 1999 1,659 2000 1,824 2001 1,900 2002 1,830 2003 1,978 2004 2,018 2005 2,175 2006 2,184 2007 2,230 2008 2,347 2009 2,173 2010 2,201 2011 2,185 2012 2,123 2013 2,056 2014 2,032 2015 2,030 2016 2,007 2017 1,992 2018

  16. EIA - Household Transportation report: Household Vehicles Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series....

  17. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    0 2003 Energy Expenditures per Square Foot of Commercial Floorspace, by Vintage ($2010) Vintage $/SF Prior to 1960 1.44 1960 to 1969 1.70 1970 to 1979 1.88 1980 to 1989 2.09 1990 to 1999 1.88 2000 to 2003 1.72 Average 1.77 Source(s): EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Table C4; and EIA, Annual Energy Review 2010, Aug. 2011, Appendix D, p. 353 for price deflators

  18. char_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Household Tables (Million U.S. Households; 24 pages, 122 kb) Contents Pages HC2-1a. Household Characteristics by Climate Zone, Million U.S. Households, 2001 2 HC2-2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 2 HC2-3a. Household Characteristics by Household Income, Million U.S. Households, 2001 2 HC2-4a. Household Characteristics by Type of Housing Unit, Million U.S. Households, 2001 2 HC2-5a. Household Characteristics by Type of Owner-Occupied Housing

  19. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  20. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  1. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  2. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  3. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

  4. Household heating bills expected to be lower this winter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household heating bills expected to be lower this winter U.S. consumers are expected to pay less this winter on their home heating bills because of lower oil and natural gas prices and projected milder temperatures than last winter. In its new forecast, the U.S. Energy Information Administration said households that rely on heating oil which are mainly located in the Northeast will pay the lowest heating expenditures in 9 years down 25% from last winter as consumers are expected to save about

  5. SEDS CSV File Documentation: Price and Expenditure

    Gasoline and Diesel Fuel Update (EIA)

    Price and Expenditure Estimates The State Energy Data System (SEDS) comma-separated value (CSV) files contain the price and expenditure estimates shown in the tables located on the SEDS website. There are three files that contain estimates for all states and years. Prices contains the price estimates for all states and Expenditures contains the expenditure estimates for all states. The third file, Adjusted Consumption for Expenditure Calculations contains adjusted consumption estimates used in

  6. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and

  7. Table C12. Electricity Expenditures by Census Region, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Expenditures by Census Region, 1999" ,"Total Electricity Expenditures (million dollars)",,,,"Electricity Expenditures (dollars)" ,,,,,"per kWh",,,,"per Square Foot"...

  8. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Air Conditioning Tables (Million U.S. Households; 24 pages, 138 kb) Contents Pages HC4-1a. Air Conditioning by Climate Zone, Million U.S. Households, 2001 2 HC4-2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 2 HC4-3a. Air Conditioning by Household Income, Million U.S. Households, 2001 2 HC4-4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 2 HC4-5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2

  9. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Appliances Tables (Million U.S. Households; 60 pages, 240 kb) Contents Pages HC5-1a. Appliances by Climate Zone, Million U.S. Households, 2001 5 HC5-2a. Appliances by Year of Construction, Million U.S. Households, 2001 5 HC5-3a. Appliances by Household Income, Million U.S. Households, 2001 5 HC5-4a. Appliances by Type of Housing Unit, Million U.S. Households, 2001 5 HC5-5a. Appliances by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5 HC5-6a. Appliances by Type of Rented

  10. usage_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Indicators Tables (Million U.S. Households; 60 pages, 247 kb) Contents Pages HC6-1a. Usage Indicators by Climate Zone, Million U.S. Households, 2001 5 HC6-2a. Usage Indicators by Year of Construction, Million U.S. Households, 2001 5 HC6-3a. Usage Indicators by Household Income, Million U.S. Households, 2001 5 HC6-4a. Usage Indicators by Type of Housing Unit, Million U.S. Households, 2001 5 HC6-5a. Usage Indicators by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5

  11. EIA - Household Transportation report: Household Vehicles Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    National Research Council, Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards (Washington, DC: National Academy of Sciences, 2002), p. 85. 4 8.3 million...

  12. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Office Equipment Tables (Million U.S. Households; 12 pages, 123 kb) Contents Pages HC7-1a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 1 HC7-2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 1 HC7-3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 1 HC7-4a. Home Office Equipment by Type of Housing Unit, Million U.S. Households, 2001 1 HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit,

  13. housingunit_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Housing Unit Tables (Million U.S. Households; 49 pages, 210 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 5 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 2001 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 2001 4 HC1-5a. Housing Unit Characteristics by Type of

  14. appl_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  15. spaceheat_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  16. ac_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  17. char_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    9a. Household Characteristics by Northeast Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.5 Total .............................................................. 107.0 20.3 14.8 5.4 NE Household Size 1 Person ...................................................... 28.2 6.0 4.4 1.6 3.5 2 Persons

  18. Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    ,4628,16.42,12.75,16.62,20.42,1.38,1.06,1.35,1.48 "Three ...",2390,3012,2457,1285,15.31,12.75,15.02,20.2,1.15,1.17,1.27,1.43 "Four to Nine...

  19. State energy price and expenditure report 1994

    SciTech Connect (OSTI)

    1997-06-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1994. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1994, Consumption Estimates (SEDR), published in October 1996. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources. Documentation is included describing the development of price estimates, data sources, and calculation methods. 316 tabs.

  20. State energy price and expenditure report 1992

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1980, and 1985 through 1992. Data for all years, 1970 through 1992, are available on personal computer diskettes.

  1. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  2. Commercial Buildings Energy Consumption and Expenditures 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil, and district heat consumption and expenditures for commercial buildings by building characteristics. Previous Page Arrow Separater Bar File Last Modified: January 29,...

  3. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Energy Information Adminstration Office of Energy Markets and End Use U.S....

  4. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    in this report were based on monthly billing records submitted by the buildings' energy suppliers. The section, "Annual Consumption and Expenditures" provide a detailed...

  5. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Expenditures Electricity Consumption Natural Gas Consumption Wood and Solar Energy Consumption Fuel Oil and District Heat Consumption Energy Consumption in...

  6. State energy price and expenditure report 1991

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1975, 1980, and 1985 through 1991. Data for all years, 1970 through 1991, are available on personal computer diskettes. Documentation in Appendix A describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. This report is an update of the State Energy Price and Expenditure Report 1990, published in September 1992.

  7. Residential energy consumption across different population groups: Comparative analysis for Latino and non-Latino households in U.S.A.

    SciTech Connect (OSTI)

    Poyer, D.A.; Teotia, A.P.S.; Henderson, L.

    1998-05-01

    Residential energy cost, an important part of the household budget, varies significantly across different population groups. In the United States, researchers have conducted many studies of household fuel consumption by fuel type -- electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG) -- and by geographic areas. The results of past research have also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, research shows that residential energy demand by fuel type for Latinos, the fastest-growing population group in the United States, has not been explained by economic and noneconomic factors in any available statistical model. This paper presents a discussion of energy demand and expenditure patterns for Latino and non-Latino households in the United States. The statistical model developed to explain fuel consumption and expenditures for Latino households is based on Stone and Geary`s linear expenditure system model. For comparison, the authors also developed models for energy consumption in non-Latino, black, and nonblack households. These models estimate consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. The study revealed significant variations in the patterns of fuel consumption for Latinos and non-Latinos. The model methodology and results of this research should be useful to energy policymakers in government and industry, researchers, and academicians who are concerned with economic and energy issues related to various population groups.

  8. State energy price and expenditure report 1989

    SciTech Connect (OSTI)

    Not Available

    1991-09-30

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates for the 50 States, the District of Columbia, and the United States. The estimates are provided by energy source (e.g., petroleum, natural gas, coal, and electricity) and by major consuming or economic sector. This report is an update of the State Energy Price and Expenditure Report 1988 published in September 1990. Changes from the last report are summarized in a section of the documentation. Energy price and expenditure estimates are published for the years 1970, 1975, 1980, and 1985 through 1989. Documentation follows the tables and describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. Consumption estimates used to calculate expenditures, and the documentation for those estimates, are from the State Energy Data Report, Consumption Estimates, 1960--1989 (SEDR), published in May 1991. Expenditures are calculated by multiplying the price estimates by the consumption estimates, adjusted to remove process fuel and intermediate product consumption. All expenditures are consumer expenditures, that is, they represent estimates of money directly spent by consumers to purchase energy, generally including taxes. 11 figs., 43 tabs.

  9. State energy price and expenditure report, 1995

    SciTech Connect (OSTI)

    1998-08-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the US. The estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1995. Data for all years are available on a CD-ROM and via Internet. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1995, Consumption Estimates (SEDR), published in December 1997. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources.

  10. Company Template (Expenditure-Based) | Department of Energy

    Energy Savers [EERE]

    Company Template (Expenditure-Based) Company Template (Expenditure-Based) Microsoft Office document icon Company Exp-based template.doc More Documents & Publications Consortium Template (Expenditure-Based) Company Template (Fixed Support) Consortium Support (Fixed Support)

  11. Company Template (Expenditure-Based) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company Template (Expenditure-Based) Company Template (Expenditure-Based) Microsoft Office document icon Company Exp-based template.doc More Documents & Publications Consortium Template (Expenditure-Based) Company Template (Fixed Support) Consortium Support (Fixed Support

  12. Consortium Template (Expenditure-Based) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium Template (Expenditure-Based) Consortium Template (Expenditure-Based) Microsoft Office document icon Consortium Exp-based template.doc More Documents & Publications Consortium Support (Fixed Support) Company Template (Fixed Support) Company Template (Expenditure-Based

  13. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  14. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991...

  15. Neutron resonance averaging

    SciTech Connect (OSTI)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  16. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  17. Table C10. Electricity Consumption and Expenditure Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Expenditure Intensities, 1999" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per Square Foot (kWh)","per...

  18. Consortium Template (Expenditure-Based) | Department of Energy

    Office of Environmental Management (EM)

    Template (Expenditure-Based) Consortium Template (Expenditure-Based) Microsoft Office document icon Consortium Exp-based template.doc More Documents & Publications Consortium Support (Fixed Support

  19. Buildings Energy Data Book: 4.3 Federal Buildings and Facilities Expenditures

    Buildings Energy Data Book [EERE]

    1 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity 23.68 (1) 4,009 Natural Gas 9.37 1,138 Fuel Oil 15.25 419 Coal 3.62 63 Purchased Steam 24.30 318 LPG/Propane 17.06 44 Other 16.19 37 Average 17.05 Total 6,029 Note(s): Source(s): Average Fuel Prices Total Expenditures ($/million BTU) ($ million) (2) Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of

  20. State energy price and expenditure report 1993

    SciTech Connect (OSTI)

    1995-12-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 states and the District of Columbia and in aggregate for the US. The five economic sectors used in SEPER correspond to those used in SEDR and are residential, commercial, industrial, transportation, and electric utility. Documentation in appendices describe how the price estimates are developed, provide conversion factors for measures used in the energy analysis, and include a glossary. 65 tabs.

  1. Household Vehicles Energy Use Cover Page

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Use Cover Page Glossary Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use Cover Page Contact Us * Feedback * PrivacySecurity *...

  2. Strategies for Collecting Household Energy Data | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collecting Household Energy Data Strategies for Collecting Household Energy Data Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Strategies for ...

  3. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    0a. Air Conditioning by Midwest Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 20.5 13.6 6.8 2.2 Air Conditioners Not Used ........................... 2.1 0.3 Q Q 27.5 Households Using Electric Air-Conditioning 1

  4. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    1a. Air Conditioning by South Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 37.2 19.3 6.4 11.5 1.5 Air Conditioners Not Used ........................... 2.1 0.4 Q Q Q 28.2 Households Using Electric Air-Conditioning 1

  5. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2a. Air Conditioning by West Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.4 1.2 1.7 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 10.7 3.4 7.2 7.1 Air Conditioners Not Used ........................... 2.1 1.1 0.2 0.9 15.5 Households Using Electric Air-Conditioning 1 ........................................ 80.8 9.6 3.2

  6. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.6 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 82.9 58.7 6.5 12.4 5.3 4.9 Air Conditioners Not Used ............ 2.1 1.1 Q 0.6 Q 21.8 Households Using Electric Air-Conditioning 1

  7. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 36.8 13.6 18.9 13.6 4.3 Air Conditioners Not Used ........................... 2.1 1.2 0.2 0.4 0.3 21.4 Households Using Electric Air-Conditioning 2 ........................................ 80.8 35.6 13.4

  8. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    9a. Air Conditioning by Northeast Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.8 Households With Electric Air-Conditioning Equipment ...................... 82.9 14.5 11.3 3.2 3.3 Air Conditioners Not Used ........................... 2.1 0.3 0.3 Q 28.3 Households Using Electric Air-Conditioning 1

  9. char_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.0 1.2 1.2 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Household Size 1 Person ....................................... 28.2 2.5 4.5 5.1 4.0 3.7 8.3 7.5 2 Persons

  10. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  11. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.4 1.9 1.2 1.0 0.6 1.9 0.9 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 47.6 3.0 Households Using Office Equipment .......................... 96.2 13.2 19.8 25.5 37.7

  12. char_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... Income Relative to Poverty Line Below 100 Percent ...... 15.0 13.2 1.8 Q ...

  13. spaceheat_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    5a. Space Heating by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Owner- Occupied Units Type of...

  14. Fact #747: October 1, 2012 Behind Housing, Transportation is the Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Household Expenditure | Department of Energy 7: October 1, 2012 Behind Housing, Transportation is the Top Household Expenditure Fact #747: October 1, 2012 Behind Housing, Transportation is the Top Household Expenditure Except for housing, transportation was the largest single expenditure for the average American household in 2010. The average household spends more on transportation in a year than on food. Vehicle purchases, along with gasoline and motor oil, make up a large part of vehicle

  15. Table 5.17. U.S. Number of Households by Vehicle Fuel Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    More ... 8.2 Q 1.7 1.9 1.7 2.6 6.1 2.0 Q Q Q 16.7 Below Poverty Line 100 Percent ... 9.0 2.5 3.6 1.3 1.0 0.6 Q...

  16. Table 2.5 Household Energy Consumption and Expenditures by End...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Space Heating Air Conditioning Water Heating Appliances, 2 Electronics, and Lighting Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Electricity 3 Natural Gas Elec- tricity ...

  17. Cover Page of Household Vehicles Energy Use: Latest Data & Trends

    Gasoline and Diesel Fuel Update (EIA)

    Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

  18. Residential Buildings Historical Publications reports, data and...

    Gasoline and Diesel Fuel Update (EIA)

    0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

  19. Fact #638: August 30, 2010 Average Expenditure for a New Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    36.3% 1979 6,847 19,661 34.8% 1981 8,910 22,388 39.8% 1983 10,606 24,580 43.1% 1985 11,838 27,144 43.6% 1987 13,386 29,744 45.0% 1989 14,371 32,448 44.3% 1991 ...

  20. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.1 1.2 1.1 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 13.6 16.0 14.7 10.4 10.5 17.6 4.7 Air Conditioners Not Used ............ 2.1 Q 0.3 0.5 0.3 0.4 0.5 27.2 Households Using Electric Air-Conditioning 2

  1. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 59.5 58.7 6.5 12.4 5.3 5.2 Air Conditioners Not Used ............ 1.2 1.1 Q 0.6 Q 23.3 Households Using

  2. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.8 0.5 1.4 1.2 1.6 Households With Electric Air-Conditioning Equipment ........ 23.4 58.7 6.5 12.4 5.3 6.1 Air Conditioners Not Used ............ 0.9 1.1 Q 0.6 Q 23.0 Households Using Electric Air-Conditioning

  3. char_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2001 Household Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.0 1.5 1.5 Total .............................................................. 107.0 7.1 12.3 7.7 6.3 NE Household Size 1 Person ...................................................... 28.2 2.2 2.4 1.8 1.7 7.3 2 Persons .................................................... 35.1 2.2 4.0 2.4 2.0 6.9 3 Persons

  4. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0a. Home Office Equipment by Midwest Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Households Using Office Equipment ......................................... 96.2 22.4 15.7 6.7 1.3 Personal Computers 1 ................................. 60.0

  5. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1a. Home Office Equipment by South Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Households Using Office Equipment ......................................... 96.2 34.6 18.4 6.0 10.1 1.2 Personal Computers 1

  6. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2a. Home Office Equipment by West Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.6 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Households Using Office Equipment ......................................... 96.2 21.4 6.2 15.2 1.0 Personal Computers 1 ................................. 60.0 14.3 4.0 10.4 3.7 Number of

  7. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9a. Home Office Equipment by Northeast Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.1 1.4 1.2 Total .............................................................. 107.0 20.3 14.8 5.4 NE Households Using Office Equipment ......................................... 96.2 17.9 12.8 5.0 1.3 Personal Computers 1 ................................. 60.0 10.9

  8. Concentration Averaging | Department of Energy

    Office of Environmental Management (EM)

    Concentration Averaging Concentration Averaging Summary Notes from 3 October 2007 Generic Technical Issue Discussion on Concentration Averaging PDF icon Summary Notes from 3...

  9. Fact #615: March 22, 2010 Average Vehicle Trip Length | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5: March 22, 2010 Average Vehicle Trip Length Fact #615: March 22, 2010 Average Vehicle Trip Length According to the latest National Household Travel Survey, the average trip length grew to over 10 miles in 2009, just slightly over the 9.9 mile average in 2001. Trips to work in 2009 increased to an average of 12.6 miles. The average trip length has been growing each survey year since the lowest average in 1983. Average Vehicle Trip Length, 1969-2009 Graph showing the average vehicle

  10. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    more fuel-efficient vehicles, and the implementation of Corporate Average Fuel Economy (CAFE) 6 standards. Figure 13. Average Fuel Efficiency of All Vehicles, by Model Year 6...

  11. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    a. Air Conditioning by Climate Zone, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 2.1 1.0 0.9 1.5 1.0 Total Households With Air-Conditioning ........................... 82.9 5.4 20.9 20.2 14.2 22.1 8.1 Air Conditioners Not Used ............ 2.1 Q 0.4 0.3 0.8 0.4 23.2

  12. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.7 1.2 1.2 Households With Electric Air-Conditioning Equipment ...................... 82.9 4.9 6.0 7.4 6.2 2.4 Air Conditioners Not Used ........................... 2.1 0.1 0.8 Q 0.1 23.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 4.7 5.2 7.4 6.1 2.6 Type of Electric Air-Conditioning Used Central

  13. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.2 1.1 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 7.9 Households Using Office Equipment .......................... 96.2 8.4 26.2 21.1 19.0

  14. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.4 1.1 1.1 1.2 1.2 1.0 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Households Using Office Equipment .......................... 96.2 14.9 16.7 17.0 12.2 13.0 22.4 4.4 Personal Computers 2

  15. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2a. Appliances by West Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.7 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 22.1 6.6 15.5 1.1 1

  16. Heating oil and propane households bills to be lower this winter despite recent cold spell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heating oil and propane households bills to be lower this winter despite recent cold spell Despite the recent cold weather, households that use heating oil or propane as their main space heating fuel are still expected to have lower heating bills compared with last winter. In its new monthly forecast, the U.S. Energy Information Administration said the average household that uses heating oil will spend $1,780 this winter that's about $570 less than last winter. Those savings reflect lower crude

  17. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    0a. Appliances by Midwest Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.5 Total .............................................................. 107.0 24.5 17.1 7.4 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 23.8 16.6 7.2 NE 1

  18. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    1a. Appliances by South Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.1 1.4 1.5 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 36.2 19.4 6.4 10.3 1.5 1

  19. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    4a. Appliances by Type of Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.5 1.7 1.6 1.9 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 69.1 9.4 16.7 6.6 4.3 1

  20. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    5a. Appliances by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.4 2.1 3.1 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Kitchen Appliances Cooking Appliances Oven ...........................................

  1. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    6a. Appliances by Type of Rented Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Kitchen Appliances Cooking Appliances Oven ........................................... 33.4 10.1 7.3 14.9 1.1

  2. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    8a. Appliances by Urban/Rural Location, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.9 1.4 1.2 1.3 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.1 Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 47.5 17.5 19.9 16.8 4.2 1

  3. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    9a. Appliances by Northeast Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.3 1.6 Total .............................................................. 107.0 20.3 14.8 5.4 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 19.6 14.5 5.2 1.1 1

  4. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2001 Home Office Equipment RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.0 1.5 1.5 Total .............................................................. 107.0 7.1 12.3 7.7 6.3 NE Households Using Office Equipment ......................................... 96.2 6.2 11.4 6.7 5.9 1.7 Personal Computers 1 ................................. 60.0 3.4 7.9 4.1 3.8 4.4 Number of Desktop PCs 1

  5. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0a. Space Heating by Midwest Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Heat Home .................................................... 106.0 24.5 17.1 7.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.8 No

  6. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1a. Space Heating by South Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.9 1.2 1.4 1.3 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Heat Home .................................................... 106.0 38.8 20.2 6.8 11.8 NE Do Not Heat Home

  7. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2a. Space Heating by West Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.6 1.0 1.6 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Heat Home .................................................... 106.0 22.6 6.7 15.9 NE Do Not Heat Home ....................................... 1.0 0.7 Q 0.7 10.6 No Heating Equipment

  8. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6a. Space Heating by Type of Rented Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Heat Home ..................................... 33.7 10.4 7.4 14.8 1.1 6.9 Do Not Heat Home

  9. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8a. Space Heating by Urban/Rural Location, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.6 0.9 1.3 1.3 1.2 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.3 Heat Home .................................................... 106.0 49.1 18.0 21.2 17.8 4.3 Do Not Heat Home ....................................... 1.0 0.7 0.1 0.1 0.1 25.8 No Heating

  10. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9a. Space Heating by Northeast Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 20.3 14.8 5.4 NE Heat Home .................................................... 106.0 20.1 14.7 5.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.9 No

  11. Table 5.12. U.S. Average Vehicle-Miles Traveled by Household...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 30.8 25.1 28.9 42.6 27.1 Q Q Q 25.2 31.8 23.3 13.7 Below Poverty Line 100 Percent ... 16.6 15.4 16.2 19.5 12.8 Q...

  12. Average U.S. household to spend $710 less on gasoline during...

    U.S. Energy Information Administration (EIA) Indexed Site

    in 2015 U.S. electric power producers are increasing their use of natural gas and burning less coal for generating electricity. In its new forecast, the U.S. Energy Information ...

  13. Average U.S. household to spend $710 less on gasoline during 2015

    Gasoline and Diesel Fuel Update (EIA)

    natural gas inventories at end of winter higher than last year Despite recent cold temperatures in some parts of the country, U.S. natural gas inventories ended the winter heating season in better shape than last year. In its new forecast, the U.S. Energy Information Administration said natural gas inventories near the end of March were 75% higher compared with the same period in 2014. That sets up adequate supplies for gas-fired power plants this summer to meet electric cooling needs of

  14. State Energy Data System 2013 Price and Expenditure Technical Notes

    Gasoline and Diesel Fuel Update (EIA)

    Price and Expenditure Technical Notes U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures 3 Purpose The State Energy Data System (SEDS) was developed and is maintained and operated by the U.S. Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy production, consumption, prices, and expenditures by state that are defined as consistently as possible over time and across sectors. SEDS exists for two

  15. wf01 - Energy_Expenditures.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Short-Term Energy Outlook - March 2016 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 % Change Natural Gas Northeast Consumption (Mcf**) 80.3 75.7 80.7 66.4 76.1 84.0 84.7 69.9 -17.5 Price ($/mcf) 15.83 13.31 12.66 12.21 11.71 11.53 10.85 10.65 -1.8 Expenditures ($) 1,272 1,007 1,022 812 891 969 919 745 -19.0 Midwest Consumption (Mcf) 80.7 78.6 80.2 65.4 77.6 88.1 83.1 70.0 -15.8 Price ($/mcf) 11.47 9.44 9.23 8.99 8.36 8.69 8.55 7.37 -13.9 Expenditures ($) 926 742 740 587 648 766 711 516

  16. "2014 Average Monthly Bill- Commercial"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (kWh)","Average Price (centskWh)","Average Monthly Bill (Dollar and cents)" "New England",862269,5132.4894,14.699138,754.43169 "Connecticut",155372,6915.4089,15.547557...

  17. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    a. Appliances by Climate Zone, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.1 Total .................................................. 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Kitchen Appliances Cooking Appliances Oven

  18. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2a. Appliances by Year of Construction, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.5 1.2 1.1 1.2 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 14.3 17.2 17.8 12.9 13.7 25.9 4.2 1

  19. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a. Space Heating by Climate Zone, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.5 1.6 1.1 1.1 1.1 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 8.2 Heat Home ..................................... 106.0 9.2 28.6 23.9 20.7 23.6 8.2 Do Not

  20. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2a. Space Heating by Year of Construction, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.5 1.5 1.1 1.1 1.1 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.3 Heat Home ..................................... 106.0 15.4 18.2 18.6 13.6 13.9 26.4 4.3 Do Not Heat Home ........................

  1. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4a. Space Heating by Type of Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.7 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.4 Heat Home ..................................... 106.0 73.4 9.4 16.4 6.8 4.5 Do Not Heat Home ........................ 1.0 0.3 Q 0.6 Q 19.0 No

  2. Table HC1.2.2 Living Space Characteristics by Average Floorspace

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Average Floorspace, " " Per Housing Unit and Per Household Member, 2005" ,,"Average Square Feet" ," Housing Units (millions)" ,,"Per Housing Unit",,,"Per Household Member" "Living Space Characteristics",,"Total1","Heated","Cooled","Total1","Heated","Cooled" "Total",111.1,2033,1618,1031,791,630,401 "Total Floorspace (Square

  3. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 Average Annual Energy Expenditures per Square Foot of Commercial Floorspace, by Year ($2010) Year $/SF 1980 (1) 2.12 1981 2.22 (2) 1982 2.24 1983 2.21 1984 2.25 1985 2.20 1986 2.06 1987 2.00 1988 1.99 1989 2.01 1990 1.98 1991 1.92 1992 1.86 1993 1.96 1994 2.05 1995 2.12 1996 2.10 1997 2.08 1998 1.97 1999 1.88 2000 2.06 2001 2.20 2002 2.04 2003 2.13 2004 2.16 2005 2.30 2006 2.36 2007 2.35 2008 1.71 2009 2.43 2010 2.44 2011 2.44 2012 2.35 2013 2.28 2014 2.27 2015 2.29 2016 2.29 2017 2.28 2018

  4. Spacetime averaged null energy condition

    SciTech Connect (OSTI)

    Urban, Douglas; Olum, Ken D.

    2010-06-15

    The averaged null energy condition has known violations for quantum fields in curved space, even when one considers only achronal geodesics. Many such examples involve rapid variation in the stress-energy tensor in the vicinity of the geodesic under consideration, giving rise to the possibility that averaging in additional dimensions would yield a principle universally obeyed by quantum fields. However, after discussing various procedures for additional averaging, including integrating over all dimensions of the manifold, we give here a class of examples that violate any such averaged condition.

  5. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    production vehicles in order to assess compliance with Corporate Average Fuel Economy (CAFE) standards. The EPA Composite MPG is based on the assumption of a "typical" vehicle-use...

  6. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  7. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  8. 2014 Average Monthly Bill- Residential

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (kWh) Average Price (centskWh) Average Monthly Bill (Dollar and cents) New England 6,243,013 630 17.82 112.31 Connecticut 1,459,239 730 19.75 144.10 Maine...

  9. 2014 Average Monthly Bill- Commercial

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (kWh) Average Price (centskWh) Average Monthly Bill (Dollar and cents) New England 862,269 5,132 14.70 754.43 Connecticut 155,372 6,915 15.55 1,075.18 Maine...

  10. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    SciTech Connect (OSTI)

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  11. Household Response To Dynamic Pricing Of Electricity: A Survey...

    Open Energy Info (EERE)

    Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Household Response To Dynamic...

  12. Energy Information Administration/Household Vehicles Energy Consumptio...

    U.S. Energy Information Administration (EIA) Indexed Site

    , Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related...

  13. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    with the national average of 81 thousand Btu per square foot), while buildings using solar energy or passive solar features used the major energy sources more intensively...

  14. High average power pockels cell

    DOE Patents [OSTI]

    Daly, Thomas P. (Pleasanton, CA)

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  15. Next Generation Household Refrigerator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Household Refrigerator Next Generation Household Refrigerator Embraco's high efficiency, oil-free linear compressor.<br /> Credit: Whirlpool Embraco's high efficiency, oil-free linear compressor. Credit: Whirlpool ORNL's Pradeep Bansal examines an Embraco linear compressor, which will be used in a Whirlpool-ORNL project aimed at building a more energy-efficient refrigerator. ORNL's Pradeep Bansal examines an Embraco linear compressor, which will be used in a Whirlpool-ORNL

  16. 2014 Average Monthly Bill- Industrial

    Gasoline and Diesel Fuel Update (EIA)

    Industrial (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Number of Customers Average Monthly Consumption (kWh) Average Price (cents/kWh) Average Monthly Bill (Dollar and cents) New England 28,017 56,833 11.84 6,730.30 Connecticut 4,648 63,016 12.92 8,138.94 Maine 3,023 92,554 8.95 8,281.27 Massachusetts 14,896 44,536 12.74 5,674.13 New Hampshire 3,342 49,099 11.93 5,857.27 Rhode Island 1,884 39,241 12.86 5,047.36 Vermont 224 527,528 10.23 53,984.67 Middle Atlantic 44,397

  17. Variable Average Absolute Percent Differences

    Gasoline and Diesel Fuel Update (EIA)

    Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 0.9 45.8 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 37.7 17.3 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 36.6 18.7 Total Petroleum Consumption (Table 4) 7.9 70.7 Crude Oil Production (Table 5) 8.1 51.1 Petroleum Net Imports (Table 6) 24.7 73.8 Natural Gas

  18. Residential Buildings Historical Publications reports, data and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

  19. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas, 1980 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square...

  20. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2

  1. Short-Term Energy and Winter Fuels Outlook October 2013

    Gasoline and Diesel Fuel Update (EIA)

    3 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas and propane will increase by 13% and 9%, respectively, this winter heating season (October 1 through March 31) compared with last winter. Projected U.S. household expenditures are 2% higher for electricity and 2% lower for heating oil this winter. Although EIA expects average expenditures for households that heat with natural gas will be significantly

  2. Microsoft Word - Highlights.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Winter Fuels Outlook  EIA projects average household expenditures for heating oil and natural gas will increase by 19 percent and 15 percent, respectively, this winter (October 1 through March 31) compared with last winter. Projected household expenditures are 5 percent higher for electricity and 13 percent higher for propane this winter. Average expenditures for households that heat with heating oil are forecast to be higher than any previous winter on record (see EIA Short-Term Energy

  3. Audit of controls over Superconducting Super Collider Laboratory subcontractor expenditures

    SciTech Connect (OSTI)

    Not Available

    1993-10-22

    In January 1989 the Department of Energy contracted with Universities Research Association, Inc. to design, construct, manage, operate, and maintain the Superconducting Super Collider Laboratory. Through Fiscal Year 1992, costs for subcontractor goods and services accounted for about 75 percent of the Superconducting Super Collider Laboratory expenditures. The Office of Inspector General evaluated the adequacy of controls in place to ensure that subcontractor costs were reasonable, as required by the contract. The following conclusions were drawn from the audit. The Superconducting Super Collider Laboratory did not consistently exercise prudent business judgment in making subcontractor expenditures. As a result, $60 million in expenditures already made and $128 million planned with commercial subcontractors were, in the authors opinion, unnecessary, excessive, or represented uncontrolled growth. The audit also found inadequate justifications, accountability, and cost controls over $143 million in expenditures made and $47 million planned with other Department of Energy laboratories. Improvements were needed in subcontract administration and internal controls, including appropriate audit coverage of the subcontracts. In addition, Department of Energy guidance concerning procurement actions between the laboratories needed to be established.

  4. Strategies for Collecting Household Energy Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collecting Household Energy Data Strategies for Collecting Household Energy Data Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Strategies for Collecting Household Energy Data, Call Slides and Discussion Summary, July 19, 2012. PDF icon Call Slides and Discussion Summary More Documents & Publications Homeowner and Contractor Surveys Mastermind: Jim Mikel, Spirit Foundation Generating Energy Efficiency Project Leads and Allocating Leads to Contractors

  5. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect (OSTI)

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  6. Distribution piping expenditures of $2. 66 billion seen for 1983

    SciTech Connect (OSTI)

    Watts, J.

    1982-12-01

    Figures for the 1982 results and 1983 projections of expenditures and pipe mileage compiled in a survey of 500 gas distribution utilities in 50 states, including the 300 largest utilities are presented. Maintenance as a percentage of total construction budget has been steady over the past 3 yrs. If housing construction picks up again by mid-year, 1983 could be a good year for gas utilities because of the convenience and cleanliness of gas heating.

  7. Table A39. Total Expenditures for Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  8. Table HC1.1.2 Housing Unit Characteristics by Average Floorspace, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Housing Unit Characteristics by Average Floorspace, 2005 " ,,"Average Square Feet per--" ," Housing Units (millions)" ,,"Housing Unit",,,"Household Member" "Housing Unit Characteristics",,"Total1","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,2171,1618,1031,845,630,401 "Census Region and Division" "Northeast",20.6,2334,1664,562,911,649,220

  9. Process for the utilization of household rubbish or garbage and other organic waste products for the production of methane gas

    SciTech Connect (OSTI)

    Hunziker, M.; Schildknecht, A.

    1985-04-16

    Non-organic substances are separated from household garbage and the organic substances are fed in proportioned manner into a mixing tank and converted into slurry by adding liquid. The slurry is crushed for homogenization purposes in a crushing means and passed into a closed holding container. It is then fed over a heat exchanger and heated to 55/sup 0/ to 60/sup 0/ C. The slurry passes into a plurality of reaction vessels in which the methane gas and carbon dioxide are produced. In a separating plant, the mixture of gaseous products is broken down into its components and some of the methane gas is recycled by bubbling it through both the holding tank and the reaction tank, the remainder being stored in gasholders. The organic substances are degraded much more rapidly through increasing the degradation temperature and as a result constructional expenditure can be reduced.

  10. Delivering Energy Efficiency to Middle Income Single Family Households

    SciTech Connect (OSTI)

    none,

    2011-12-01

    Provides state and local policymakers with information on successful approaches to the design and implementation of residential efficiency programs for households ineligible for low-income programs.

  11. Barriers to household investment in residential energy conservation: preliminary assessment

    SciTech Connect (OSTI)

    Hoffman, W.L.

    1982-12-01

    A general assessment of the range of barriers which impede household investments in weatherization and other energy efficiency improvements for their homes is provided. The relationship of similar factors to households' interest in receiving a free energy audits examined. Rates of return that underly household investments in major conservation improvements are assessed. A special analysis of household knowledge of economically attractive investments is provided that compares high payback improvements specified by the energy audit with the list of needed or desirable conservation improvements identified by respondents. (LEW)

  12. " Million U.S. Housing Units" ,,"2005 Household...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Household Income, 2005" " Million U.S. Housing Units" ... to 79,999","80,000 or More" "Water Heating Characteristics" ...

  13. STEO January 2013 - average gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    drivers to see lower average gasoline prices in 2013 and 2014 U.S. retail gasoline prices are expected to decline over the next two years. The average pump price for regular...

  14. ARM - Evaluation Product - Areal Average Albedo (AREALAVEALB)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAreal Average Albedo (AREALAVEALB) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Areal Average Albedo (AREALAVEALB) [ ARM research - evaluation data product ] The Areal Averaged Albedo VAP yields areal averaged surface spectral albedo estimates from MFRSR measurements collected under fully

  15. Taxation of expenditures required by the Surface Mining Control and Reclamation Act of 1977 (SMCRA)

    SciTech Connect (OSTI)

    McNally, K.J.

    1987-01-01

    There has been disagreement over whether the expenditures made by the mine operator to comply with the Surface Mining Control and Reclamation Act of 1977 are characterized as capital or deductible expenses. An examination of expenditures made by mine operators during the life of a mine illustrates the dichotomy between deductible and capital expenditures in which special rules may override general capitalization rules to allow the mine operator to deduct a capital expenditure. This makes some expenditures difficult to categorize. Citing case law, the author treats expenditures for exploration and mining permits, performance bonds, and liability insurance. A new provision, section 468, allowing the current deduction for future reclamation and closing costs removed the uncertainty created by prior case law.

  16. Table 7.9 Expenditures for Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  17. Table 7.9 Expenditures for Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Expenditures for Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 10,111 5,328 130 431 3,391 150 442 29 210 3112 Grain and Oilseed Milling 2,130 932 2 12 673 Q 294 0 158 311221 Wet Corn Milling 1,002 352 1 5 296 1 239 0 107

  18. Average and effective Q-values for fission product average (n...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections Citation Details In-Document Search Title: Average and...

  19. US SoAtl GA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per

  20. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Residential Buildings Commercial Buildings Total Building Electricity Natural Gas Petroleum (2) Total Electricity Natural Gas Petroleum (3) Total Expenditures 1980 89.1 40.5 28.9 158.5 70.9 20.5 17.2 108.6 267.2 1981 94.9 41.3 27.8 164.0 79.4 21.4 16.5 117.3 281.3 1982 99.9 47.9 24.5 172.3 83.4 25.1 13.7 122.2 294.5 1983 103.6 51.0 21.4 176.1 83.6 26.1 14.6 124.3 300.4 1984 103.3 51.6 23.6 178.5 87.6 25.9

  1. Weatherization assistance for low-income households: An evaluation of local program performance

    SciTech Connect (OSTI)

    Schweitzer, M.; Rayner, S.; Wolfe, A.K.; Mason, T.W.; Ragins, B.R.; Cartor, R.A.

    1987-08-01

    The US Department of Energy's Weatherization Assistance Program (WAP) funds local agencies to provide weatherization services to low-income households. This report describes the most salient features of this program, examines relationships between organization and program outcomes, and presents recommendations for the program's further development. Data were collected by written surveys administered to local weatherization agencies, a telephone survey of 38 states and eight DOE support offices, and site visits to selected local agencies. Locally controlled factors found to be significantly related to program performance include the amount of the weatherization director's time spent on program administration, the use of established client selection criteria, the frequency of evaluation of local goal attainment, and the type of weatherization crews used. Factors controlled at the state or federal levels that influence program performance include delays in state reimbursements of local agency expenditures and local flexibility in the choice of weatherization measures. Data-gathering difficulties experienced during this project indicate a need for possible improvements in goal-setting and record-keeping procedures.

  2. Dynamic Multiscale Averaging (DMA) of Turbulent Flow

    SciTech Connect (OSTI)

    Richard W. Johnson

    2012-09-01

    A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical engineering applications.

  3. Microsoft Word - Highlights Bullets.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2004 1 Short-Term Energy Outlook December 2004 Winter Fuels Update (Figure 1) Lower petroleum and natural gas prices in this Outlook marginally reduced our projections of winter heating fuel prices and winter household heating fuel expenditures. Heating oil expenditures by typical Northeastern households are now expected to average 34 percent above last winter's levels, with residential fuel prices averaging $1.85 per gallon for the October-to-March period. Expenditures for

  4. Reconstructing householder vectors from Tall-Skinny QR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ballard, Grey Malone; Demmel, James; Grigori, Laura; Jacquelin, Mathias; Knight, Nicholas; Nguyen, Hong Diep

    2015-08-05

    The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR produces a different representation of the orthogonal factor and therefore requires more software development to support the new representation. Further, implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a square matrix is more complicated and costly than with the Householder representation. We show how to perform TSQR and then reconstruct the Householder vector representation with the same asymptotic communication efficiency and little extra computational cost. We demonstratemore » the high performance and numerical stability of this algorithm both theoretically and empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits of the communication cost improvements: in particular, our experiments show substantial improvements over tuned library implementations for tall-and-skinny matrices. Furthermore, we also provide algorithmic improvements to the Householder QR and CAQR algorithms, and we investigate several alternatives to the Householder reconstruction algorithm that sacrifice guarantees on numerical stability in some cases in order to obtain higher performance.« less

  5. Reconstructing householder vectors from Tall-Skinny QR

    SciTech Connect (OSTI)

    Ballard, Grey Malone; Demmel, James; Grigori, Laura; Jacquelin, Mathias; Knight, Nicholas; Nguyen, Hong Diep

    2015-08-05

    The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR produces a different representation of the orthogonal factor and therefore requires more software development to support the new representation. Further, implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a square matrix is more complicated and costly than with the Householder representation. We show how to perform TSQR and then reconstruct the Householder vector representation with the same asymptotic communication efficiency and little extra computational cost. We demonstrate the high performance and numerical stability of this algorithm both theoretically and empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits of the communication cost improvements: in particular, our experiments show substantial improvements over tuned library implementations for tall-and-skinny matrices. Furthermore, we also provide algorithmic improvements to the Householder QR and CAQR algorithms, and we investigate several alternatives to the Householder reconstruction algorithm that sacrifice guarantees on numerical stability in some cases in order to obtain higher performance.

  6. "Table HC7.10 Home Appliances Usage Indicators by Household...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ... for 2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ...

  7. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015

  8. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs

  9. Spacetime Average Density (SAD) cosmological measures

    SciTech Connect (OSTI)

    Page, Don N.

    2014-11-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.

  10. Table 2. Percent of Households with Vehicles, Selected Survey...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08...

  11. Form EIA-457E (2001) -- Household Bottled Gas Usage

    U.S. Energy Information Administration (EIA) Indexed Site

    F (2001) -- Household Natural Gas Usage Form OMB No. 1905-0092, Expiring February 29, 2004 ... This report is required by law. The timely submission of Form EIA-457F by those required ...

  12. Transferring 2001 National Household Travel Survey

    SciTech Connect (OSTI)

    Hu, Patricia S; Reuscher, Tim; Schmoyer, Richard L; Chin, Shih-Miao

    2007-05-01

    Policy makers rely on transportation statistics, including data on personal travel behavior, to formulate strategic transportation policies, and to improve the safety and efficiency of the U.S. transportation system. Data on personal travel trends are needed to examine the reliability, efficiency, capacity, and flexibility of the Nation's transportation system to meet current demands and to accommodate future demand. These data are also needed to assess the feasibility and efficiency of alternative congestion-mitigating technologies (e.g., high-speed rail, magnetically levitated trains, and intelligent vehicle and highway systems); to evaluate the merits of alternative transportation investment programs; and to assess the energy-use and air-quality impacts of various policies. To address these data needs, the U.S. Department of Transportation (USDOT) initiated an effort in 1969 to collect detailed data on personal travel. The 1969 survey was the first Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990, 1995, and 2001. Data on daily travel were collected in 1969, 1977, 1983, 1990 and 1995. In 2001, the survey was renamed the National Household Travel Survey (NHTS) and it collected both daily and long-distance trips. The 2001 survey was sponsored by three USDOT agencies: Federal Highway Administration (FHWA), Bureau of Transportation Statistics (BTS), and National Highway Traffic Safety Administration (NHTSA). The primary objective of the survey was to collect trip-based data on the nature and characteristics of personal travel so that the relationships between the characteristics of personal travel and the demographics of the traveler can be established. Commercial and institutional travel were not part of the survey. Due to the survey's design, data in the NHTS survey series were not recommended for estimating travel statistics for categories smaller than the combination of Census division (e.g., New England, Middle Atlantic, and Pacific), MSA size, and the availability of rail. Extrapolating NHTS data within small geographic areas could risk developing and subsequently using unreliable estimates. For example, if a planning agency in City X of State Y estimates travel rates and other travel characteristics based on survey data collected from NHTS sample households that were located in City X of State Y, then the agency could risk developing and using unreliable estimates for their planning process. Typically, this limitation significantly increases as the size of an area decreases. That said, the NHTS contains a wealth of information that could allow statistical inferences about small geographic areas, with a pre-determined level of statistical certainty. The question then becomes whether a method can be developed that integrates the NHTS data and other data to estimate key travel characteristics for small geographic areas such as Census tract and transportation analysis zone, and whether this method can outperform other, competing methods.

  13. US MidAtl NJ Site Consumption

    Gasoline and Diesel Fuel Update (EIA)

    MidAtl NJ Site Consumption million Btu $0 $700 $1,400 $2,100 $2,800 $3,500 US MidAtl NJ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NJ Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US MidAtl NJ Expenditures dollars ELECTRICITY ONLY average per household * Average energy consumption (127 million Btu per year) in New Jersey homes and average household energy expenditures ($3,065 per year) are among the

  14. US MidAtl NJ Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    MidAtl NJ Site Consumption million Btu $0 $700 $1,400 $2,100 $2,800 $3,500 US MidAtl NJ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NJ Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US MidAtl NJ Expenditures dollars ELECTRICITY ONLY average per household * Average energy consumption (127 million Btu per year) in New Jersey homes and average household energy expenditures ($3,065 per year) are among the

  15. US ESC TN Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    ESC TN Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ESC TN Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US ESC TN Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US ESC TN Expenditures dollars ELECTRICITY ONLY average per household * Tennessee households consume an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33%

  16. US WNC MO Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less

  17. EERE Success Story—Kingston Creek Hydro Project Powers 100 Households

    Broader source: Energy.gov [DOE]

    Hydropower project produces enough electricity to annually power nearly 100 typical American households.

  18. Polarized electron beams at milliampere average current

    SciTech Connect (OSTI)

    Poelker, Matthew

    2013-11-01

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  19. Average summer electric power bills expected to be lowest in...

    U.S. Energy Information Administration (EIA) Indexed Site

    of forecasted milder temperatures compared with last summer is expected to more than offset higher electricity prices. The result is lower power bills for most U.S. households...

  20. U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    9 A P P E N D I X A This appendix contains alphabetical listings of the variables used in the price and expenditure module of the State Energy Data System (SEDS). The first list presents the price and expenditure variables, and the second presents the consumption adjustment variables as described in Section 7, "Consumption Adjustments for Calculating Expenditures." Provided for each variable are: a brief description; unit of measure; and the formulas used to create the variable. If a

  1. Fact #618: April 12, 2010 Vehicles per Household and Other Demographic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistics | Department of Energy 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics Since 1969, the number of vehicles per household has increased by 66% and the number of vehicles per licensed driver has increased by 47%. The number of workers per household has changed the least of the statistics shown here. There has been a decline in the number of persons per household from 1969 to

  2. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2010 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 53.7 14.2 0.9 8.0 0.6 23.7 0.1 23.2 100.8 23.4% Space Cooling 0.4 61.3 61.7 14.3% Lighting 59.3 59.3 13.8% Water Heating 18.3 2.6 2.0 4.6 17.8 40.7 9.4% Refrigeration (4) 26.9 26.9 6.2% Electronics (5) 26.1 26.1 6.1% Ventilation (6) 15.9 15.9 3.7% Cooking 4.0 0.8 0.8 8.8 13.6 3.2% Computers 12.1 12.1 2.8% Wet

  3. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2015 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Gas Distil. Resid. LPG Oth(2) Total Coal Total Percent Space Heating (3) 49.5 15.9 1.3 8.1 0.7 25.9 0.2 18.7 94.3 22.7% Space Cooling 0.3 48.0 48.3 11.6% Lighting 45.9 45.9 11.0% Water Heating 17.6 2.6 1.5 4.1 18.3 40.0 9.6% Refrigeration (4) 24.9 24.9 6.0% Electronics (5) 19.8 19.8 4.7% Ventilation (6) 15.1 15.1 3.6% Computers 11.6 11.6 2.8% Wet Cleaning (7) 0.6 10.8 11.4 2.7% Cooking 3.9 0.9 0.9 4.4

  4. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2025 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 56.7 14.3 1.5 7.8 0.7 24.3 0.2 19.5 100.7 22.0% Space Cooling 0.3 50.5 50.9 11.1% Lighting 45.2 45.2 9.9% Water Heating 21.3 2.3 1.3 3.6 19.6 44.4 9.7% Refrigeration (4) 24.9 24.9 5.4% Electronics (5) 23.2 23.2 5.1% Computers 13.2 13.2 2.9% Wet Clean (6) 0.8 9.8 10.5 2.3% Cooking 4.8 0.8 0.8 4.9 10.5 2.3%

  5. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 2035 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 63.4 13.0 1.6 7.7 0.8 23.1 0.2 20.6 107.2 20.9% Water Heating 23.8 2.2 1.2 3.4 35.8 63.0 12.3% Space Cooling 0.4 55.7 56.1 10.9% Lighting 47.8 47.8 9.3% Electronics (4) 27.2 27.2 5.3% Refrigeration (5) 27.0 27.0 5.3% Computers 14.8 14.8 2.9% Cooking 5.8 0.8 0.8 5.4 12.1 2.3% Wet Clean (6) 0.9 10.4 11.3 2.2%

  6. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other

  7. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7)

  8. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7)

  9. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7)

  10. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 2010 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 35.4 35.4 19.7% Space Heating 15.0 2.9 0.9 0.1 3.9 0.1 8.5 27.5 15.3% Space Cooling 0.4 25.0 25.3 14.1% Ventilation 15.9 15.9 8.9% Refrigeration 11.6 11.6 6.5% Water Heating 4.0 0.6 0.6 2.7 7.3 4.1% Electronics 7.8 7.8 4.3% Computers 6.3 6.3 3.5% Cooking 1.6 0.7 2.3 1.3% Other (4) 2.7 0.3 3.3 1.2 4.8 20.4 28.0

  11. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2015 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 28.4 28.4 16.3% Space Heating 14.6 2.9 1.3 0.1 4.3 0.1 4.7 23.7 13.6% Ventilation 15.1 15.1 8.6% Space Cooling 0.3 14.2 14.5 8.3% Refrigeration 9.9 9.9 5.7% Electronics 8.8 8.8 5.1% Water Heating 4.1 0.7 0.7 2.5 7.3 4.2% Computers 5.3 5.3 3.0% Cooking 1.7 0.6 2.3 1.3% Other (4) 2.9 0.3 3.7 1.4 5.4 22.8 31.1 17.8%

  12. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2025 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 30.1 30.1 15.2% Space Heating 17.1 2.8 1.5 0.1 4.4 0.2 4.5 26.1 13.3% Electronics 11.2 11.2 5.7% Space Cooling 0.3 14.3 14.6 7.4% Water Heating 5.2 0.8 0.8 2.5 8.5 4.3% Computers 5.5 5.5 2.8% Refrigeration 9.4 9.4 4.8% Ventilation 16.6 16.6 8.4% Cooking 2.1 0.6 2.7 1.4% Other (4) 4.8 0.3 4.3 1.7 6.3 31.2 42.3 21.5%

  13. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2035 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 32.3 32.3 14.4% Space Heating 19.0 2.7 1.6 0.2 4.5 0.2 4.6 28.2 12.5% Water Heating 6.3 1.0 1.0 18.1 25.4 11.3% Space Cooling 0.4 15.1 15.5 6.9% Electronics 13.0 13.0 5.8% Refrigeration 10.0 10.0 4.4% Computers 6.0 6.0 2.7% Cooking 2.6 0.6 3.2 1.4% Ventilation 2.4 2.4 1.1% Other (4) 9.3 0.4 4.9 2.0 7.2 40.9 57.5

  14. New York City- Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures

    Broader source: Energy.gov [DOE]

    In August 2008 the State of New York enacted legislation allowing a property tax abatement for photovoltaic (PV) system expenditures made on buildings located in cities with a population of 1 mil...

  15. Average and effective Q-values for fission product average (n,2n) and

    Office of Scientific and Technical Information (OSTI)

    (n,3n) reaction cross sections (Technical Report) | SciTech Connect Technical Report: Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections Citation Details In-Document Search Title: Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections Authors: Kawano, Toshihiko [1] + Show Author Affiliations Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) Publication Date: 2015-10-01 OSTI

  16. U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    Purpose The State Energy Data System (SEDS) was developed and is maintained and operated by the U.S. Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy production, consumption, prices, and expenditures by state that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide state energy production, consumption, price, and expenditure estimates to Members of Congress,

  17. Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major Sources 2

  18. Modeling patterns of hot water use in households

    SciTech Connect (OSTI)

    Lutz, J.D.; Liu, Xiaomin; McMahon, J.E.

    1996-11-01

    This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

  19. Modeling patterns of hot water use in households

    SciTech Connect (OSTI)

    Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

    1996-01-01

    This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

  20. Table 1. Real Average Transportation and Delivered Costs of Coal...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Transportation and Delivered Costs of Coal, By Year and Primary Transport Mode" "Year","Average Transportation Cost of Coal (Dollars per Ton)","Average Delivered Cost...

  1. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The average...

  2. A Glance at Chinas Household Consumption

    SciTech Connect (OSTI)

    Shui, Bin

    2009-10-22

    Known for its scale, China is the most populous country with the worlds third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide?range social marketing activities to promote energy conservation.

  3. Kingston Creek Hydro Project Powers 100 Households | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kingston Creek Hydro Project Powers 100 Households Kingston Creek Hydro Project Powers 100 Households August 21, 2013 - 12:00am Addthis Nevada-based contracting firm Nevada Controls, LLC used a low-interest loan from the Nevada State Office of Energy's Revolving Loan Fund to help construct a hydropower project in the small Nevada town of Kingston. The Kingston Creek Project-benefitting the Young Brothers Ranch-is a 175-kilowatt hydro generation plant on private land that takes advantage of an

  4. Shared Solar Projects Powering Households Throughout America | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Shared Solar Projects Powering Households Throughout America Shared Solar Projects Powering Households Throughout America January 31, 2014 - 2:30pm Addthis Shared solar projects allow consumers to take advantage of solar energy’s myriad benefits, even though the system is not located on the consumer’s own rooftop. | Photo courtesy of the Vote Solar Initiative Shared solar projects allow consumers to take advantage of solar energy's myriad benefits, even though the system

  5. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 81.6 65.3 142.5 38 17 30.3 11 625 0.29 500 178 Census Region and Division

  6. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.1 66.1 144.2 37 17 29.1 10 678 0.31 539 192 Census Region and Division

  7. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.7 66.0 142.2 36 16 28.0 10 708 0.33 558 204 Census Region and Division

  8. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 86.3 67.4 144.3 37 17 28.8 11 808 0.38 632 234 Census Region and Division

  9. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 90.5 70.4 156.8 39 18 30.5 12 875 0.39 680 262 Census Region and Division

  10. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 101.4 83.2 168.8 42 21 35.0 13 1,061 0.52 871 337 Census Region and

  11. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 107.0 85.2 211.2 46 18 36.0 14 1,178 0.48 938 366 Census Region and Division

  12. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    4 1 October 2014 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas, heating oil, electricity, and propane will decrease this winter heating season (October 1 through March 31) compared with last winter, which was 11% colder than the previous 10-year average nationally. Projected average household expenditures for propane and heating oil are 27% and 15% lower, respectively, because of lower heating demand and prices.

  13. Microsoft Word - Highlights Bullets.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2004 1 Short-Term Energy Outlook November 2004 Winter Fuels Update (Figure 1) Higher oil prices in this Outlook raised our projections for heating oil and propane prices and household heating fuel expenditures this winter. Heating oil expenditures by typical Northeastern households are now expected to average about 37 percent above last winter's levels (compared to our previous projection of a 28-percent increase), with average residential prices averaging $1.88 per gallon for the

  14. Impacts of different data averaging times on statistical analysis of distributed domestic photovoltaic systems

    SciTech Connect (OSTI)

    Widen, Joakim; Waeckelgaard, Ewa; Paatero, Jukka; Lund, Peter

    2010-03-15

    The trend of increasing application of distributed generation with solar photovoltaics (PV-DG) suggests that a widespread integration in existing low-voltage (LV) grids is possible in the future. With massive integration in LV grids, a major concern is the possible negative impacts of excess power injection from on-site generation. For power-flow simulations of such grid impacts, an important consideration is the time resolution of demand and generation data. This paper investigates the impact of time averaging on high-resolution data series of domestic electricity demand and PV-DG output and on voltages in a simulated LV grid. Effects of 10-minutely and hourly averaging on descriptive statistics and duration curves were determined. Although time averaging has a considerable impact on statistical properties of the demand in individual households, the impact is smaller on aggregate demand, already smoothed from random coincidence, and on PV-DG output. Consequently, the statistical distribution of simulated grid voltages was also robust against time averaging. The overall judgement is that statistical investigation of voltage variations in the presence of PV-DG does not require higher resolution than hourly. (author)

  15. Table HC1-3a. Housing Unit Characteristics by Household Income...

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  16. US SoAtl VA Site Consumption

    Gasoline and Diesel Fuel Update (EIA)

    SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are

  17. US SoAtl VA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are

  18. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than

  19. Short-Term Energy and Winter Fuels Outlook October 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    3 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights EIA projects average U.S. household expenditures for natural gas and propane will increase by 13%...

  20. U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    1 Section 7. Consumption Adjustments for Calculating Expenditures C O N S U M P T I O N A D J U S T M E N T S Expenditures developed in the EIA State Energy Data System (SEDS) are calculated by multiplying the price estimates by the SEDS consumption estimates. The consumption estimates are adjusted to remove process fuel, intermediate petroleum products, electricity exports, and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar thermal and photovoltaic

  1. U.S. Energy Information Administration | State Energy Data 2014: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    1 Section 7. Consumption Adjustments for Calculating Expenditures C O N S U M P T I O N A D J U S T M E N T S Expenditures developed in the EIA State Energy Data System (SEDS) are calculated by multiplying the price estimates by the SEDS consumption estimates. The consumption estimates are adjusted to remove process fuel, intermediate petroleum products, electricity exports, and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar thermal and photovoltaic

  2. Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Vehicles | Department of Energy 7: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles Household vehicle ownership has changed over the last six decades. In 1960, over twenty percent of households did not own a vehicle, but by 2010, that number fell to less than 10%. The number of households with three or more vehicles grew from 2% in 1960 to nearly 20% in 2010. Before 1990,

  3. Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles When a household has more than one vehicle, the secondary vehicles travel fewer miles than the primary vehicle. In a two-vehicle household, the second vehicle travels less than half of the miles that the primary vehicle travels in a day. In a six-vehicle household, the sixth vehicle travels fewer than five miles a day. Daily Vehicle

  4. Annual average efficiency of a solar thermochemical reactor....

    Office of Scientific and Technical Information (OSTI)

    Annual average efficiency of a solar thermochemical reactor. Citation Details In-Document Search Title: Annual average efficiency of a solar thermochemical reactor. Abstract not ...

  5. High Average Brightness Photocathode Development for FEL Applications...

    Office of Scientific and Technical Information (OSTI)

    Conference: High Average Brightness Photocathode Development for FEL Applications Citation Details In-Document Search Title: High Average Brightness Photocathode Development for...

  6. Energy Information Administration/Short-Term Energy Outlook - February 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2005 1 Short-Term Energy Outlook February 2005 Winter Fuels Update (Figure 1) Despite some cold weather during the second half of January, expected average consumer prices for heating fuels this heating season are little changed since the January Outlook, leaving projections for household heating fuel expenditures about the same as previously reported. Heating oil expenditures by typical Northeastern households are expected to average 32 percent above last winter's levels, with

  7. Commercial viability of hybrid vehicles : best household use and cross national considerations.

    SciTech Connect (OSTI)

    Santini, D. J.; Vyas, A. D.

    1999-07-16

    Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over the conventional vehicle at various fuel prices is illustrated. These results are based on data from various OECD motions on fuel price, annual miles of travel per vehicle, and driving cycles assumed to be applicable in those nations. Scatter in results plotted as a function of average speed, related to details of driving cycles and the vehicles selected for analysis, is discussed.

  8. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    Commercial Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Average 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 (2) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 27.39 10.47 27.48 21.15 27.10 10.45 27.73 21.01 27.56 10.32 27.04 21.10 27.52 10.45 27.28 21.18 27.86 10.05 26.41 21.06

  9. Residential energy use and conservation in Venezuela: Results and implications of a household survey in Caracas

    SciTech Connect (OSTI)

    Figueroa, M.J.; Ketoff, A.; Masera, O.

    1992-10-01

    This document presents the final report of a study of residential energy use in Caracas, the capital of Venezuela. It contains the findings of a household energy-use survey held in Caracas in 1988 and examines options for introducing energy conservation measures in the Venezuelan residential sector. Oil exports form the backbone of the Venezuelan economy. Improving energy efficiency in Venezuela will help free domestic oil resources that can be sold to the rest of the world. Energy conservation will also contribute to a faster recovery of the economy by reducing the need for major investments in new energy facilities, allowing the Venezuelan government to direct its financial investments towards other areas of development. Local environmental benefits will constitute an important additional by-product of implementing energy-efficiency policies in Venezuela. Caracas`s residential sector shows great potential for energy conservation. The sector is characterized by high saturation levels of major appliances, inefficiency of appliances available in the market, and by careless patterns of energy use. Household energy use per capita average 6.5 GJ/per year which is higher than most cities in developing countries; most of this energy is used for cooking. Electricity accounts for 41% of all energy use, while LPG and natural gas constitute the remainder. Specific options for inducing energy conservation and energy efficiency in Caracas`s residential sector include energy-pricing policies, fuel switching, particularly from electricity to gas, improving the energy performance of new appliances and customer information. To ensure the accomplishment of an energy-efficiency strategy, a concerted effort by energy users, manufacturers, utility companies, government agencies, and research institutions will be needed.

  10. US Mnt(S) AZ Site Consumption

    Gasoline and Diesel Fuel Update (EIA)

    Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all

  11. US NE MA Site Consumption

    Gasoline and Diesel Fuel Update (EIA)

    NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption

  12. US MidAtl PA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also

  13. US Mnt(S) AZ Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all

  14. US NE MA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption

  15. Effects of the R and D tax credit on energy R and D expenditures: an econometric analysis

    SciTech Connect (OSTI)

    Moe, R.J.; Kee, J.R.; Lackey, K.C.; Cronin, F.J.

    1985-02-01

    Objective of the study was to estimate the effects on industrial energy research and development (R and D) expenditures of the R and D Tax Credit component of the Economic Recovery Tax Act of 1981. Two tasks were performed. The first task was to collect data on industrial R and D expenditures, sales, oil prices, and price deflators. The R and D expenditure data were obtained from the National Science Foundation; other data were collected from Commerce Department and Department of Energy publications. The second task was to perform an econometric analysis of the effects of the tax credit on industrial R and D expenditures. Equations relating: (1) total; and (2) energy-related R and D expenditures to sales, oil prices, and a variable representing the availability of the tax credit were estimated, using data for each of seven manufacturing industries and eleven years. The analysis showed that the tax credit caused real total industrial R and D expenditures to be 9.1% greater than they would have been without the credit, but caused real energy industrial R and D expenditures to be 13.8% less than they would have been without the tax credit.

  16. Fact #889: September 7, 2015 Average Diesel Price Lower than...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First...

  17. Fact #889: September 7, 2015 Average Diesel Price Lower than...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Excel file and dataset for Average Diesel Price Lower than Gasoline ...

  18. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Excel file with dataset for Fact 835: Average Annual Gasoline Pump Price, 1929-2013 File ...

  19. Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Excel file and dataset for Average Historical Annual Gasoline Pump Price, 1929-2015 File ...

  20. Forum on Enhancing the Delivery of Energy Efficiency to Middle Income Households: Discussion Summary

    SciTech Connect (OSTI)

    none,

    2012-09-20

    Summarizes discussions and recommendations from a forum for practitioners and policymakers aiming to strengthen residential energy efficiency program design and delivery for middle income households.

  1. Effect of Income on Appliances in U.S. Households, The

    Reports and Publications (EIA)

    2004-01-01

    Entails how people live, the factors that cause the most differences in home lifestyle, including energy use in geographic location, socioeconomics and household income.

  2. Buildings Energy Data Book: 4.3 Federal Buildings and Facilities Expenditures

    Buildings Energy Data Book [EERE]

    2 Annual Energy Expenditures per Gross Square Foot of Federal Floorspace Stock, by Year ($2010) FY 1985 2.13 FY 2000 1.36 FY 2001 1.58 FY 2002 1.49 FY 2003 1.45 FY 2004 1.54 FY 2005 1.59 FY 2006 2.01 (1) FY 2007 2.01 Note(s): Source(s): Total Federal buildings and facilities energy expenditures in FY 2006 were $5.79 billion (in $2010). 1) Increase due to change in FEMP categorization of Federal buildings. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-9, p. 97 and Table

  3. US ENC IL Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  4. US ENC MI Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  5. US ENC WI Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to

  6. U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    Section 1. Documentation Guide D O C U M E N T A T I O N G U I D E This section describes the data identification codes in the State Energy Data System (SEDS). Sections 2 through 6 provide information for each of the major energy sources: coal, natural gas, petroleum, renewable energy, and electricity. Section 7 describes adjustments for consumption of industrial process fuel and intermediate products and other uncosted energy sources that are removed in the calculation of expenditures.

  7. U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    97 Prices and expenditures for renewable energy sources are based on consumption estimates from the State Energy Data System (SEDS). Renewable energy sources reported in SEDS include estimates of wood and waste in all sectors, hydroelectric power in the industrial and commercial sectors, and the electric power sector's use of hydropower and geothermal, wind, wood, waste, photovoltaic, and solar thermal energy. SEDS also includes, for 1989 forward, the residential and commercial sectors' use of

  8. "Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," ","

  9. "Table A48. Total Expenditures for Purchased Electricity, Steam, and Natural"

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Million Dollars)" ," Electricity",," Steam",," Natural Gas" ,"-","-----------","-","-----------","-","------------","-----------","RSE" "

  10. Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural

  11. Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Million U.S. Dollars. Electricity Components Natural Gas Electricity Electricity from Sources Natural Gas NAICS Electricity from Local Other than Natural Gas from Local Code(a) Subsector and Industry Total Utility(b) Local Utility(c) Total Utility(b) Total United States 311 Food 5,328 4,635

  12. Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " ","

  13. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  14. Special Inquiry on the Office of the Chief Financial Officer's Information Technology Expenditures, OAS-RA-L-12-01

    Energy Savers [EERE]

    Special Inquiry on the Office of the Chief Financial Officer's Information Technology Expenditures OAS-RA-L-12-01 November 2011 Department of Energy Washington, DC 20585 November 28, 2011 MEMORANDUM FOR THE DEPUTY SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Special Report on "Inquiry on the Office of the Chief Financial Officer's Information Technology Expenditures" INTRODUCTION The Office of the Chief Financial Officer (OCFO) is responsible for ensuring

  15. Energy Information Administration/Short-Term Energy Outlook - January 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2005 1 Short-Term Energy Outlook January 2005 Winter Fuels Update (Figure 1) Consumer prices for heating fuels are relatively unchanged since the December Outlook, leaving projections for household heating fuel expenditures about the same as previously projected, despite continued warm weather in the middle of the heating season. Heating oil expenditures by typical Northeastern households are expected to average 30 percent above last winter's levels, with residential fuel oil prices

  16. Microsoft Word - Highlights.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 1 October 2009 Short-Term Energy and Winter Fuels Outlook October 6, 2009 Release Highlights  EIA projects average household expenditures for space-heating fuels to be $960 this winter (October 1 to March 31), a decrease of $84, or 8 percent, from last winter. This forecast principally reflects lower fuel prices, although expected slightly milder weather than last winter will also contribute to lower fuel use in many areas. The largest expenditure decreases are in households using natural

  17. Loan Programs for Low- and Moderate-Income Households | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Multifamily and Low-Income Housing Peer Exchange Call Series: Loan Programs for Low- and Moderate-Income Households, March 13, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications EcoHouse Program Overview Strengthening Relationships Between Energy Programs and Housing Programs Targeted Marketing and Program Design for Low- and Moderate-Income Households

  18. U.S. Oxygenated, Average Refiner Gasoline Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - - - - - - 1994-2014 Through Retail Outlets 1994-2006 Sales for Resale, Average - - - - - - 1994-2014 DTW 1994-2006 Rack 1994-2006 Bulk 1994-2006

  19. "Table 2. Real Average Annual Coal Transportation Costs, By Primary...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Annual Coal Transportation Costs, By Primary Transport Mode and Supply Region" "(2013 dollars per ton)" "Coal Supply Region",2008,2009,2010,2011,2012,2013 "Railroad"...

  20. Turning Bayesian model averaging into Bayesian model combination...

    Office of Scientific and Technical Information (OSTI)

    Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James 1 ; Monteith, Kristine 2 ; Seppi, Kevin 2 ; Martinez, Tony 2 + Show Author...

  1. High Average Brightness Photocathode Development for FEL Applications...

    Office of Scientific and Technical Information (OSTI)

    High Average Brightness Photocathode Development for FEL Applications Citation Details ... OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 46

  2. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1978-2014 | Department of Energy 70: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 The Corporate Average Fuel Economy (CAFE) is the sales-weighted harmonic mean fuel economy of a manufacturer's fleet of new cars or light trucks in a certain model year (MY). First enacted by Congress in 1975, the standards for cars began in MY 1978 and for light trucks in MY 1979. In general, the average of all

  3. Electric Sales, Revenue, and Average Price 2011 - Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alphabetical Frequency Tag Cloud See All Electricity Reports Electric Sales, Revenue, and Average Price With Data for 2014 | Release Date: October 21, 2015 | Next Release Date: ...

  4. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census

  5. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.4 181.2 43 18 34.0 13 1,061 0.45 840 321 Census Region

  6. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.4 11.6 29.7 131 51 99.0 36 1,053 0.41 795 287 Census

  7. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 14.6 11.0 28.9 116 44 87.9 32 1,032 0.39 781 283 Census

  8. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.5 12.2 30.0 98 40 77.1 27 829 0.34 650 231 Census

  9. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.5 13.8 32.0 91 39 71.9 27 697 0.30 550 203 Census

  10. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.4 14.0 33.3 87 37 70.3 27 513 0.22 414 156 Census

  11. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 90 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 16.3 13.5 33.2 77 31 63.9 23 609 0.25 506 181 Census

  12. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.8 11.6 29.8 92 36 77.5 28 604 0.23 506 186 Census

  13. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.2 11.0 23.2 97 46 81.1 31 694 0.33 578 224 Census

  14. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires Fuel Oil/Kerosene, 2001 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 11.2 9.4 26.0 80 29 67.1 26 723 0.26

  15. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.7 7.4 12.1 47 29 45.6 16 379 0.23 365 125 Census Region and Division

  16. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per per per per Total Total Floorspace per Square per Household per Square per Household Households Number (billion Building Foot Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) (million Btu) (thousand Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 81.6 65.4 142.5 143 65 114.1 41 1,156 0.53 926 330

  17. Microsoft Word - Highlights Bullets.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2004 1 Short-Term Energy Outlook October 2004 Winter Fuels Outlook This winter, residential space-heating expenditures are projected to increase for all fuel types compared to year-ago levels. Increases in heating fuel prices are likely to generate higher expenditures even in regions where demand for fuel is expected to fall. Average residential natural gas prices are expected to be 11 percent higher than they were last winter, and household expenditures are expected to be 15 percent

  18. Microsoft Word - Highlights.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 1 October 2010 Short-Term Energy and Winter Fuels Outlook October 13, 2010 Release Highlights  EIA projects average household expenditures for space-heating fuels will total $986 this winter (October 1 to March 31), an increase of $24, or 2.5 percent, from last winter. EIA projects higher expenditures in all fuels except electricity, where expenditures decline by 2 percent. This forecast reflects moderately higher prices for all the fuels, although slightly milder weather than last winter

  19. Special Topics on Energy Use in Household Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    compare your estimate of your car's mpg to the average of everyone else who takes the test. (Released 04112000; Updated Yearly for Fuel Economies and Weekly for Fuel Prices)...

  20. EIA - Appendix B: Estimation Methodologies of Household Vehicles...

    U.S. Energy Information Administration (EIA) Indexed Site

    production vehicles in order to assess compliance with Corporate Average Fuel Economy (CAFE) standards. The EPA Composite MPG is based on the assumption of a "typical" vehicle-use...

  1. "Table A28. Total Expenditures for Purchased Energy Sources by Census Region"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke","

  2. Energy-efficient housing alternatives: a predictive model of factors affecting household perceptions

    SciTech Connect (OSTI)

    Schreckengost, R.L.

    1985-01-01

    The major purpose of this investigation was to assess the impact of household socio-economic factors, dwelling characteristics, energy conservation behavior, and energy attitudes on the perceptions of energy-efficient housing alternatives. Perceptions of passive solar, active solar, earth sheltered, and retrofitted housing were examined. Data used were from the Southern Regional Research Project, S-141, Housing for Low and Moderate Income Families. Responses from 1804 households living in seven southern states were analyzed. A conceptual model was proposed to test the hypothesized relationships which were examined by path analysis. Perceptions of energy efficient housing alternatives were found to be a function of selected household and dwelling characteristics, energy attitude, household economic factors, and household conservation behavior. Age and education of the respondent, family size, housing-income ratio, utility income ratio, energy attitude, and size of the dwelling unit were found to have direct and indirect effects on perceptions of energy-efficient housing alternatives. Energy conservation behavior made a significant direct impact with behavioral energy conservation changes having the most profound influence. Conservation behavior was influenced by selected household and dwelling characteristics, energy attitude, and household economic factors.

  3. "2014 Average Monthly Bill- Industrial"

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Number of Customers","Average Monthly Consumption (kWh)","Average Price (cents/kWh)","Average Monthly Bill (Dollar and cents)" "New England",28017,56832.854,11.842263,6730.2959 "Connecticut",4648,63016.315,12.915601,8138.9361 "Maine",3023,92553.92,8.9475131,8281.2741

  4. "2014 Average Monthly Bill- Residential"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Number of Customers","Average Monthly Consumption (kWh)","Average Price (cents/kWh)","Average Monthly Bill (Dollar and cents)" "New England",6243013,630.1915,17.822291,112.31456 "Connecticut",1459239,729.69421,19.748254,144.10186 "Maine",706952,549.37782,15.272983,83.90638

  5. U.S. Refiner Sales to End Users (Average) Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Type: Sales to End Users, Average Through Retail Outlets Sales for Resale, Average DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Formulation/ Grade Sales Type Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Conventional, Average 2.161 2.057 1.785 1.759 1.601 1.472 1994-2015 Conventional Regular 2.124 2.018 1.743 1.721 1.562 1.431 1994-2015 Conventional Midgrade 2.325 2.229 1.985 1.923

  6. R A N K I N G S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    19 Table E15. Energy Price and Expenditure Estimates, Ranked by State, 2013 Rank Prices Expenditures a Energy Expenditures per Person Energy Expenditures as Percent of Current-Dollar GDP b State Dollars per Million Btu State Million Dollars State Dollars State Percent 1 Hawaii 38.90 Texas 162,054 North Dakota 10,540 Louisiana 16.0 2 Vermont 28.72 California 136,936 Alaska 9,596 Mississippi 15.1 3 New Hampshire 27.90 Florida 66,153 Wyoming 9,358 North Dakota 14.9 4 Connecticut 27.89 New York

  7. Laboratory Testing of Demand-Response Enabled Household Appliances

    SciTech Connect (OSTI)

    Sparn, B.; Jin, X.; Earle, L.

    2013-10-01

    With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

  8. Laboratory Testing of Demand-Response Enabled Household Appliances

    SciTech Connect (OSTI)

    Sparn, B.; Jin, X.; Earle, L.

    2013-10-01

    With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses. The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

  9. Fact #616: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose Fact #616: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose In 2009, getting to and from work accounted for about 27% of household vehicle-miles of travel (VMT). Work-related business was 8.4% of VMT in 2001, but declined to 6.7% in 2009, possibly due to advancements in computing technology making it possible for more business to be handled electronically. VMT for shopping was almost

  10. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards, Model Years 2012-2016 The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model...

  11. Does anyone have access to 2012 average residential rates by...

    Open Energy Info (EERE)

    Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility...

  12. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

  13. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002...

  14. Pennsylvania Average Price of Natural Gas Delivered to Residential...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    67 15.82 17.83 18.62 18.32 NA 1989-2015 Commercial Average Price 10.73 11.25 12.09 11.21 11.10 NA...

  15. Averaged null energy condition violation in a conformally flat spacetime

    SciTech Connect (OSTI)

    Urban, Douglas; Olum, Ken D.

    2010-01-15

    We show that the averaged null energy condition can be violated by a conformally coupled scalar field in a conformally flat spacetime in 3+1 dimensions. The violation is dependent on the quantum state and can be made as large as desired. It does not arise from the presence of anomalies, although anomalous violations are also possible. Since all geodesics in conformally flat spacetimes are achronal, the achronal averaged null energy condition is likewise violated.

  16. High Average Brightness Photocathode Development for FEL Applications

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect High Average Brightness Photocathode Development for FEL Applications Citation Details In-Document Search Title: High Average Brightness Photocathode Development for FEL Applications Authors: Rao T. ; Ben-Zvi I. ; Skarita, J. ; Wang, E. Publication Date: 2013-08-26 OSTI Identifier: 1095687 Report Number(s): BNL--101607-2013-CP KA-04 DOE Contract Number: DE-AC02-98CH10886 Resource Type: Conference Resource Relation: Conference: 35th International Free Electron

  17. Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.

  18. Strongly Coupled Data Assimilation Using Leading Averaged Coupled

    Office of Scientific and Technical Information (OSTI)

    Covariance (LACC). Part II: CGCM experiments (Journal Article) | SciTech Connect Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part II: CGCM experiments Citation Details In-Document Search Title: Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part II: CGCM experiments Authors: Liu, Feiyu ; Liu, Zhengyu ; Zhang, S. ; Liu, Y. ; Jacob, Robert L. Publication Date: 2015-11-01 OSTI Identifier: 1237902 DOE Contract Number:

  19. EPA Webinar: Bringing Energy Efficiency and Renewable Housing to Low-Income Households

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Environmental Protection Agency, this webinar will explore the topic of linking and leveraging energy efficiency and renewable energy programs for limited-income households, including the need to coordinate with other energy assistance programs.

  20. How Do You Encourage Everyone in Your Household to Save Energy?

    Broader source: Energy.gov [DOE]

    Anyone who has decided to save energy at home knows that the entire household needs to be involved if you really want to see savings. Some peoplebe they roommates, spouses, children, or maybe even...

  1. Energy consumption and expenditure projections by population group on the basis of the annual energy outlook 1999 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Balsley, J.H.

    2000-01-07

    This report presents an analysis of the relative impact of the base-case scenario used in Annual Energy Outlook 1999 on different population groups. Projections of energy consumption and expenditures, as well as energy expenditure as a share of income, from 1996 to 2020 are given. The projected consumption of electricty, natural gas, distillate fuel, and liquefied petroleum gas during this period is also reported for each population group. In addition, this report compares the findings of the Annual Energy Outlook 1999 report with the 1998 report. Changes in certain indicators and information affect energy use forecasts, and these effects are analyzed and discussed.

  2. Competition Helps Kids Learn About Energy and Save Their Households Some

    Office of Environmental Management (EM)

    Money | Department of Energy Competition Helps Kids Learn About Energy and Save Their Households Some Money Competition Helps Kids Learn About Energy and Save Their Households Some Money May 21, 2013 - 2:40pm Addthis Students can register now to save energy and win prizes with the Home Energy Challenge. Students can register now to save energy and win prizes with the Home Energy Challenge. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy

  3. Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from the open burning of household waste in barrels

    SciTech Connect (OSTI)

    Lemieux, P.M.; Lutes, C.C.; Abbott, J.A.; Aldous, K.M.

    2000-02-01

    Backyard burning of household waste in barrels is a common waste disposal practice for which pollutant emissions have not been well characterized. This study measured the emissions of several pollutants, including polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), from burning mixtures designed to simulate waste generated by a recycling and a nonrecycling family in a 208-L (55-gal) burn barrel at the EPA's Open Burning Test Facility. This paper focuses on the PCDD/PCDF emissions and discusses the factors influencing PCDD/PCDF formation for different test burns. Four test burns were made in which the amount of waste placed in the barrel varied from 6.4 to 13.6 kg and the amount actually burned varied from 46.6% to 68.1%. Emissions of total PCDDs/PCDFs ranged between 0.0046 and 0.48 mg/kg of waste burned. Emissions are also presented in terms of 2,3,7,8-TCDD toxic equivalents. Emissions of PCDDs/PCDFs appear to correlate with both copper and hydrochloric acid emissions. The results of this study indicate that backyard burning emits more PCDDs/PCDFs on a mass of refuse burned basis than various types of municipal waste combustors (MWCs). Comparison of burn barrel emissions to emissions from a hypothetical modern MWC equipped with high-efficiency flue gas cleaning technology indicates that about 2--40 households burning their trash daily in barrels can produce average PCDD/PCDF emissions comparable to a 182,000 kg/day (200 ton/day) MWC facility. This study provides important data on a potentially significant source of emissions of PCDDs/PCDFs.

  4. High average power scaleable thin-disk laser

    DOE Patents [OSTI]

    Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Bibeau, Camille (Dublin, CA); Payne, Stephen A. (Castro Valley, CA); Powell, Howard (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  5. Turning Bayesian model averaging into Bayesian model combination

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Turning Bayesian model averaging into Bayesian model combination Citation Details In-Document Search Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James [1] ; Monteith, Kristine [2] ; Seppi, Kevin [2] ; Martinez, Tony [2] + Show Author Affiliations Los Alamos National Laboratory BYU Publication Date: 2011-07-28 OSTI Identifier: 1084524 Report Number(s): LA-UR-11-04419; LA-UR-11-4419 DOE Contract Number: AC52-06NA25396

  6. U.S. average gasoline price up slightly

    Gasoline and Diesel Fuel Update (EIA)

    U.S. average gasoline price up slightly The U.S. average retail price for regular gasoline rose slightly to $3.65 a gallon on Monday. That's up a tenth of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.89 a gallon, down 4.4 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.34 a gallon, down 2.6 cents. Jonathan Cogan for EIA,

  7. Turning Bayesian model averaging into Bayesian model combination

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Turning Bayesian model averaging into Bayesian model combination Citation Details In-Document Search Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James [1] ; Monteith, Kristine [2] ; Seppi, Kevin [2] ; Martinez, Tony [2] + Show Author Affiliations Los Alamos National Laboratory BYU Publication Date: 2011-07-28 OSTI Identifier: 1084524 Report Number(s): LA-UR-11-04419; LA-UR-11-4419 DOE Contract Number: AC52-06NA25396

  8. Table 5.10. U.S. Average Vehicle Fuel Consumption by Family...

    U.S. Energy Information Administration (EIA) Indexed Site

    1993 Household Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  9. Table 5.9. U.S. Average Vehicle-Miles Traveled by Family Income...

    U.S. Energy Information Administration (EIA) Indexed Site

    1993 Household Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  10. Table 3.5 Consumer Expenditure Estimates for Energy by Source, 1970-2010 (Million Dollars )

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Expenditure Estimates for Energy by Source, 1970-2010 (Million Dollars 1) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 10,14 Coal Coal Coke Net Imports 3 Natural Gas 4 Petroleum Nuclear Fuel Biomass 9 Total 10 Distillate Fuel Oil Jet Fuel 5 LPG 6 Motor Gasoline 7 Residual Fuel Oil Other 8 Total 1970 4,630 -75 10,891 6,253 1,441 2,395 31,596 2,046 4,172 47,904 44 438 63,872 -4,357 23,345 82,860 1971 4,902 -40 12,065 6,890 1,582 2,483 33,478 2,933

  11. Parity-violating anomalies and the stationarity of stochastic averages

    SciTech Connect (OSTI)

    Reuter, M.

    1988-01-15

    Within the framework of stochastic quantization the parity-violating anomalies in odd space-time dimensions are derived from the asymptotic stationarity of the stochastic average of a certain fermion bilinear. Contrary to earlier attempts, this method yields the correct anomalies for both massive and massless fermions.

  12. Speckle averaging system for laser raster-scan image projection

    DOE Patents [OSTI]

    Tiszauer, Detlev H. (Tracy, CA); Hackel, Lloyd A. (Livermore, CA)

    1998-03-17

    The viewers' perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts.

  13. Speckle averaging system for laser raster-scan image projection

    DOE Patents [OSTI]

    Tiszauer, D.H.; Hackel, L.A.

    1998-03-17

    The viewers` perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts. 5 figs.

  14. Florida Average Price of Natural Gas Delivered to Residential and

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers by Local Distribution and Markete 4.58 24.59 24.41 23.37 21.56 19.15 1989-2015 Commercial Average Price 10.92 10.91 11.15 10.61 10.69 10.89

  15. Georgia Average Price of Natural Gas Delivered to Residential and

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers by Local Distribution and Markete 5.45 24.78 25.75 20.43 15.20 14.41 1989-2015 Commercial Average Price 9.08 9.07 9.38 8.65 9.72 7.80

  16. Virginia Average Price of Natural Gas Delivered to Residential and

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers by Local Distribution and Market 20.25 21.10 19.45 NA 11.72 12.09 1989-2015 Commercial Average Price 8.55 8.58 8.91 8.02 7.57 7.9

  17. Maryland Average Price of Natural Gas Delivered to Residential...

    Gasoline and Diesel Fuel Update (EIA)

    8.35 18.44 19.08 19.39 13.51 12.72 1989-2015 Commercial Average Price 11.74 10.98 11.61 11.11 9.98 9.56...

  18. Michigan Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    2.50 13.65 13.52 13.21 8.93 7.84 1989-2015 Commercial Average Price 8.91 9.31 9.17 9.05 7.46 6.75...

  19. New York Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    6.28 17.10 17.33 17.53 14.26 12.27 1989-2015 Commercial Average Price 6.84 6.08 5.75 5.99 6.27 6.3...

  20. Maryland Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.20 2006-2010 Marketers 13.51 2006-2010 Percent Sold by Local Distribution Companies 81.7 2006-2010 Commercial Average Price 9.87 10.29 10.00 10.06 ...

  1. Florida Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 17.85 2006-2010 Marketers 19.44 2006-2010 Percent Sold by Local Distribution Companies 97.9 2006-2010 Commercial Average Price 10.60 11.14 10.41 10.87 ...

  2. New Jersey Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.77 2006-2010 Marketers 14.87 2006-2010 Percent Sold by Local Distribution Companies 96.6 2006-2010 Commercial Average Price 10.11 9.51 8.50 9.55 ...

  3. Michigan Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Average Price 8.95 9.14 8.35 7.82 8.28 7.49 1967-2015 Local Distribution Companies 10.00 2006-2010 Marketers 7.61 2006-2010 Percent Sold by Local Distribution Companies ...

  4. Virginia Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.64 2006-2010 Marketers 13.64 2006-2010 Percent Sold by Local Distribution Companies 90.9 2006-2010 Commercial Average Price 9.55 9.69 8.77 8.83 9.17 ...

  5. Pennsylvania Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.82 2006-2010 Marketers 13.78 2006-2010 Percent Sold by Local Distribution Companies 91.2 2006-2010 Commercial Average Price 10.47 10.42 10.24 10.11 ...

  6. District of Columbia Average Price of Natural Gas Delivered to...

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price 12.26 12.24 11.19 11.64 12.18 11.55 1980-2015 Local Distribution Companies 12.99 2006-2010 Marketers 12.12 2006-2010 Percent Sold by Local Distribution Companies 16.4 ...

  7. Residential Transportation Historical Data Tables for 1983-2001

    U.S. Energy Information Administration (EIA) Indexed Site

    per household and per vehicle; fuel consumption; fuel expenditures; and fuel economy. Excel PDF Trends in Households & Vehicles Table 1. Number of Households with Vehicles excel...

  8. Modeling an Application's Theoretical Minimum and Average Transactional Response Times

    SciTech Connect (OSTI)

    Paiz, Mary Rose

    2015-04-01

    The theoretical minimum transactional response time of an application serves as a ba- sis for the expected response time. The lower threshold for the minimum response time represents the minimum amount of time that the application should take to complete a transaction. Knowing the lower threshold is beneficial in detecting anomalies that are re- sults of unsuccessful transactions. On the converse, when an application's response time falls above an upper threshold, there is likely an anomaly in the application that is causing unusual performance issues in the transaction. This report explains how the non-stationary Generalized Extreme Value distribution is used to estimate the lower threshold of an ap- plication's daily minimum transactional response time. It also explains how the seasonal Autoregressive Integrated Moving Average time series model is used to estimate the upper threshold for an application's average transactional response time.

  9. Average dynamics of a finite set of coupled phase oscillators

    SciTech Connect (OSTI)

    Dima, Germn C. Mindlin, Gabriel B.

    2014-06-15

    We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.

  10. Averaging cross section data so we can fit it

    SciTech Connect (OSTI)

    Brown, D.

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  11. Table A44. Average Prices of Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam" ," (kWh)",," (million Btu)" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  12. Buildings Energy Data Book: 2.9 Low-Income Housing

    Buildings Energy Data Book [EERE]

    0 2005 Average Energy Expenditures per Household Member and per Square Foot, by Weatherization Eligibility ($2010) Members/ Hhold Hhold Total U.S. Households 780 2.6 0.86 Federally Eligible 617 2.7 1.10 Federally Ineligible 844 2.5 0.82 Below 100% Poverty Line 603 2.7 1.14 Source(s): 1,442 EIA, 2005 Residential Energy Consumption Survey: Household Energy Consumption and Expenditures Tables, Oct. 2008, Table US1 part2; EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

  13. Household energy use in urban Venezuela: Implications from surveys in Maracaibo, Valencia, Merida, and Barcelona-Puerto La Cruz

    SciTech Connect (OSTI)

    Figueroa, M.J.; Sathaye, J.

    1993-08-01

    This report identifies the most important results of a comparative analysis of household commercial energy use in Venezuelan urban cities. The use of modern fuels is widespread among all cities. Cooking consumes the largest share of urban household energy use. The survey documents no use of biomass and a negligible use of kerosene for cooking. LPG, natural gas, and kerosene are the main fuels available. LPG is the fuel choice of low-income households in all cities except Maracaibo, where 40% of all households use natural gas. Electricity consumption in Venezuela`s urban households is remarkably high compared with the levels used in households in comparable Latin American countries and in households of industrialized nations which confront harsher climatic conditions and, therefore, use electricity for water and space heating. The penetration of appliances in Venezuela`s urban households is very high. The appliances available on the market are inefficient, and there are inefficient patterns of energy use among the population. Climate conditions and the urban built form all play important roles in determining the high level of energy consumption in Venezuelan urban households. It is important to acknowledge the opportunities for introducing energy efficiency and conservation in Venezuela`s residential sector, particularly given current economic and financial constraints, which may hamper the future provision of energy services.

  14. "Table HC15.3 Household Characteristics by Four Most Populated States, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Household Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Household Size" "1 Person",30,1.8,1.9,2,3.2 "2 Persons",34.8,2.2,2.3,2.4,3.2 "3 Persons",18.4,1.1,1.3,1.2,1.8

  15. NYSERDA's Green Jobs-Green New York Program: Extending Energy Efficiency Financing To Underserved Households

    SciTech Connect (OSTI)

    Zimring, Mark; Fuller, Merrian

    2011-01-24

    The New York legislature passed the Green Jobs-Green New York (GJGNY) Act in 2009. Administered by the New York State Energy Research and Development Authority (NYSERDA), GJGNY programs provide New Yorkers with access to free or low-cost energy assessments,1 energy upgrade services,2 low-cost financing, and training for various 'green-collar' careers. Launched in November 2010, GJGNY's residential initiative is notable for its use of novel underwriting criteria to expand access to energy efficiency financing for households seeking to participate in New York's Home Performance with Energy Star (HPwES) program.3 The GJGNY financing program is a valuable test of whether alternatives to credit scores can be used to responsibly expand credit opportunities for households that do not qualify for traditional lending products and, in doing so, enable more households to make energy efficiency upgrades.

  16. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,6.799,6.7999,6.9,6.9,6.9,6.9,7,7,7.1,7.1,7.2,7.2,7.2,7.3,7.3,7.4,7.5,7.6 "AEO

  17. R A N K I N G S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    2 Table E18. Coal and Retail Electricity Price and Expenditure Estimates, Ranked by State, 2013 Rank Coal Retail Electricity Prices Expenditures Prices Expenditures State Dollars per Million Btu State Million Dollars State Dollars per Million Btu State Million Dollars 1 Alaska 4.90 Indiana 3,569 Hawaii 97.51 California 37,033 2 Maine 4.87 Pennsylvania 3,359 Alaska 48.37 Texas 32,035 3 Massachusetts 4.25 Texas 3,189 Connecticut 45.88 New York 22,836 4 Connecticut 4.21 Ohio 2,853 New York 45.25

  18. R A N K I N G S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    20 Table E16. Motor Gasoline Price and Expenditure Estimates, Ranked by State, 2013 Rank Prices Expenditures Expenditures per Person State Dollars per Million Btu State Million Dollars State Dollars 1 Hawaii 34.81 California 54,687 North Dakota 2,240 2 Alaska 34.80 Texas 41,885 Wyoming 2,063 3 California 31.07 Florida 27,476 Maine 2,037 4 Connecticut 30.55 New York 19,052 New Hampshire 1,898 5 Vermont 30.52 Pennsylvania 17,937 Vermont 1,867 6 District of Columbia 30.41 Ohio 17,175 South Dakota

  19. R A N K I N G S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    1 Table E17. Petroleum and Natural Gas Price and Expenditure Estimates, Ranked by State, 2013 Rank Petroleum a Natural Gas b Prices Expenditures Prices Expenditures State Dollars per Million Btu State Million Dollars State Dollars per Million Btu State Million Dollars 1 District of Columbia 30.31 Texas 121,330 Hawaii 41.19 California 14,821 2 Connecticut 29.47 California 88,293 District of Columbia 12.46 Texas 14,013 3 Vermont 29.24 Florida 41,601 Vermont 10.53 New York 10,676 4 West Virginia

  20. Households to pay more than expected to stay warm this winter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Households to pay more than expected to stay warm this winter Following a colder-than-expected November, U.S. households are forecast to consume more heating fuels than previously expected....resulting in higher heating bills. Homeowners that rely on natural gas will see their total winter expenses rise nearly 13 percent from last winter....while users of electric heat will see a 2.6 percent increase in costs. That's the latest forecast from the U.S. Energy Information Administration. Propane

  1. Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1995

    SciTech Connect (OSTI)

    1996-06-01

    This report is submitted in response to Title 1 of the 1980 Low-Level Radioactive Waste Policy Act, as amended, (the Act). The report summarizes expenditures made by compact regions and unaffiliated states during calendar year 1995 of surcharge rebates from the July 1, 1986, January 1, 1988, and January 1, 1990, milestones, and the January 1, 1993, deadline. Section 5(d)(2)(A) of the Act requires the Department of Energy (DOE) to administer a surcharge escrow account. This account consists of a portion of the surcharge fees paid by generators of low-level radioactive waste in nonsited compact regions (compact regions currently without disposal sites) and nonmember states (states without disposal sites that are not members of compact regions) to the three sited states (states with operating disposal facilities--Nevada, South Carolina, and Washington) for the use of facilities in sited states through the end of 1992. In administering the surcharge escrow account, the Act requires DOE to: (1) Invest the funds in interest-bearing United States Government securities with the highest available yield; (2) Determine eligibility for rebates of the funds by evaluating compact region and state progress toward developing new disposal sites against the milestone requirements set forth in the Act; (3) Disburse the collected rebates and accrued interest to eligible compact regions, states, or generators; (4) Assess compliance of rebate expenditures in accordance with the conditions and limitations prescribed in the Act; and (5) Submit a report annually to Congress summarizing rebate expenditures by state and compact region and assessing the compliance of each such state or compact region with the requirement for expenditure of the rebates as provided in section 5(d)(2)(E) of the Act.

  2. U.S. Conventional, Average Refiner Gasoline Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1.841 2.259 3.008 3.083 2.977 2.778 1994-2014 Through Retail Outlets 1.845 2.264 3.016 3.098 2.997 2.800 1994-2014 Sales for Resale, Average 1.738 2.143 2.841 2.886 2.774 2.587 1994-2014 DTW 1.843 2.270 2.939 3.024 2.825 2.736 1994-2014 Rack 1.750 2.155 2.851 2.887 2.775 2.589 1994-2014 Bulk 1.664 2.069 2.758 2.843 2.755 2.535 1994-2014

  3. U.S. Conventional, Average Refiner Gasoline Prices

    Gasoline and Diesel Fuel Update (EIA)

    161 2.057 1.785 1.759 1.601 1.472 1994-2015 Through Retail Outlets 2.160 2.058 1.786 1.760 1.602 1.472 1994-2015 Sales for Resale, Average 1.975 1.763 1.553 1.513 1.373 1.290 1994-2015 DTW 2.319 2.109 1.812 1.637 1.591 1.532 1994-2015 Rack 1.965 1.759 1.559 1.519 1.372 1.288 1994-2015 Bulk 1.991 1.707 1.449 1.413 1.326 1.254

  4. U.S. Reformulated, Average Refiner Gasoline Prices

    Gasoline and Diesel Fuel Update (EIA)

    660 2.501 2.155 2.007 1.905 1.836 1994-2015 Through Retail Outlets 2.661 2.503 2.157 2.008 1.907 1.837 1994-2015 Sales for Resale, Average 2.283 1.996 1.728 1.651 1.537 1.497 1994-2015 DTW 2.795 2.477 2.128 1.979 1.864 1.854 1994-2015 Rack 2.165 1.886 1.634 1.577 1.459 1.412 1994-2015 Bulk 2.208 1.866 1.645 1.566 1.524 1.456

  5. Table 17. Average Price of U.S. Coke Exports

    Gasoline and Diesel Fuel Update (EIA)

    7. Average Price of U.S. Coke Exports (dollars per short ton) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 234.67 253.60 264.43 252.47 261.48 -3.4 Canada* 209.80 247.54 287.72 243.43 285.74 -14.8 Mexico 460.37 307.48 200.84 305.69 217.48 40.6 Other** 643.59 666.50 577.54 640.63 545.34 17.5 South America Total 135.27 - 465.18 252.87 154.98 63.2 Other** 135.27 - 465.18 252.87 154.98 63.2

  6. Table 19. Average Price of U.S. Coal Imports

    Gasoline and Diesel Fuel Update (EIA)

    9. Average Price of U.S. Coal Imports (dollars per short ton) Year to Date Continent and Country of Origin July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 121.76 122.71 133.33 119.13 130.81 -8.9 Canada 121.76 122.71 133.33 119.13 130.81 -8.9 Mexico - - 209.82 113.43 209.82 -45.9 South America Total 65.22 66.89 76.03 67.64 78.56 -13.9 Colombia 65.34 66.89 75.63 67.59 78.37 -13.8 Peru - 92.99 81.65 86.24 81.65 5.6 Venezuela 57.60 - 90.59

  7. Table 22. Average Price of U.S. Coke Imports

    Gasoline and Diesel Fuel Update (EIA)

    2. Average Price of U.S. Coke Imports (dollars per short ton) Year to Date Continent and Country of Origin July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 120.37 192.95 189.61 131.75 96.81 36.1 Canada 120.37 192.95 189.61 131.75 96.81 36.1 South America Total 201.39 274.73 223.17 202.76 223.17 -9.1 Colombia 201.39 274.73 223.17 202.76 223.17 -9.1 Europe Total 120.34 302.86 363.18 153.02 397.65 -61.5 Czech Republic - 288.36 - 288.36 - -

  8. Table 8. Average Price of U.S. Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    8. Average Price of U.S. Coal Exports (dollars per short ton) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 82.44 83.85 79.86 81.55 76.14 7.1 Canada* 89.71 89.92 84.62 88.24 75.55 16.8 Dominican Republic 77.11 78.67 56.46 84.15 53.14 58.4 Guatemala 34.59 103.41 - 45.24 81.92 -44.8 Honduras 45.36 45.36 54.43 47.54 54.43 -12.7 Jamaica 80.74 90.72 55.34 73.19 54.88 33.4 Mexico 74.06 75.06

  9. Average System Cost Methodology : Administrator's Record of Decision.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1984-06-01

    Significant features of average system cost (ASC) methodology adopted are: retention of the jurisdictional approach where retail rate orders of regulartory agencies provide primary data for computing the ASC for utilities participating in the residential exchange; inclusion of transmission costs; exclusion of construction work in progress; use of a utility's weighted cost of debt securities; exclusion of income taxes; simplification of separation procedures for subsidized generation and transmission accounts from other accounts; clarification of ASC methodology rules; more generous review timetable for individual filings; phase-in of reformed methodology; and each exchanging utility must file under the new methodology within 20 days of implementation by the Federal Energy Regulatory Commission of the ten major participating utilities, the revised ASC will substantially only affect three. (PSB)

  10. Summary of expenditures of rebates from the DOE low-level radioactive waste surcharge escrow account for calendar year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240, requires the Department of Energy (DOE) to manage an escrow account creatd by collection of 25% of the non-penalty surcharge fees paid by the generators in non-sited regions and nonmember states to sited states for disposal of low-level radioactive waste. For the milestone period ending June 30, 1986, a total of $921,807.84, representing surcharge fees collected and interest earned, was in escrow during 1986 for rebate to the nonmember states, non-sited compact regions, and sited states. As of December 31, 1986, $802,194.54 had been rebated from the Escrow Account with an additional $118,517.62 scheduled for rebate in early 1987. The remaining rebate to be disbursed under this milestone is $1,095.68 for the state of Delaware. At the request of the state of Delaware, this rebate amount is being held in the Escrow Account until the state provides specific instructions for its disbursement. Individual rebate expenditure reports were submitted to DOE by all the non-sited compact regions and nonmember states that received rebates in 1986. Only $14.00 of these rebates were expended in 1986. DOE reviewed all of these reports and concluded that the single expenditure complies with the expenditure limitations stated in the Act.

  11. Gauge and averaging in gravitational self-force

    SciTech Connect (OSTI)

    Gralla, Samuel E.

    2011-10-15

    A difficulty with previous treatments of the gravitational self-force is that an explicit formula for the force is available only in a particular gauge (Lorenz gauge), where the force in other gauges must be found through a transformation law once the Lorenz-gauge force is known. For a class of gauges satisfying a 'parity condition' ensuring that the Hamiltonian center of mass of the particle is well-defined, I show that the gravitational self-force is always given by the angle average of the bare gravitational force. To derive this result I replace the computational strategy of previous work with a new approach, wherein the form of the force is first fixed up to a gauge-invariant piece by simple manipulations, and then that piece is determined by working in a gauge designed specifically to simplify the computation. This offers significant computational savings over the Lorenz gauge, since the Hadamard expansion is avoided entirely and the metric perturbation takes a very simple form. I also show that the rest mass of the particle does not evolve due to first-order self-force effects. Finally, I consider the 'mode sum regularization' scheme for computing the self-force in black hole background spacetimes, and use the angle-average form of the force to show that the same mode-by-mode subtraction may be performed in all parity-regular gauges. It appears plausible that suitably modified versions of the Regge-Wheeler and radiation gauges (convenient to Schwarzschild and Kerr, respectively) are in this class.

  12. Material World: Forecasting Household Appliance Ownership in a Growing Global Economy

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2009-03-23

    Over the past years the Lawrence Berkeley National Laboratory (LBNL) has developed an econometric model that predicts appliance ownership at the household level based on macroeconomic variables such as household income (corrected for purchase power parity), electrification, urbanization and climate variables. Hundreds of data points from around the world were collected in order to understand trends in acquisition of new appliances by households, especially in developing countries. The appliances covered by this model are refrigerators, lighting fixtures, air conditioners, washing machines and televisions. The approach followed allows the modeler to construct a bottom-up analysis based at the end use and the household level. It captures the appliance uptake and the saturation effect which will affect the energy demand growth in the residential sector. With this approach, the modeler can also account for stock changes in technology and efficiency as a function of time. This serves two important functions with regard to evaluation of the impact of energy efficiency policies. First, it provides insight into which end uses will be responsible for the largest share of demand growth, and therefore should be policy priorities. Second, it provides a characterization of the rate at which policies affecting new equipment penetrate the appliance stock. Over the past 3 years, this method has been used to support the development of energy demand forecasts at the country, region or global level.

  13. Table 1.6 State-Level Energy Consumption, Expenditure, and Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 1.3 because it: 1) does not include biodiesel; and 2) is the sum of State values, which use State average heat contents to convert physical units of coal and natural gas to Btu. ...

  14. Table 14a. Average Electricity Prices, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 6.80 6.80 6.90 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 7.20 7.20 7.30 7.30 7.40 7.50 7.60 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20

  15. Ensemble bayesian model averaging using markov chain Monte Carlo sampling

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Diks, Cees G H; Clark, Martyn P

    2008-01-01

    Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

  16. High average power magnetic modulator for copper lasers

    SciTech Connect (OSTI)

    Cook, E.G.; Ball, D.G.; Birx, D.L.; Branum, J.D.; Peluso, S.E.; Langford, M.D.; Speer, R.D.; Sullivan, J.R.; Woods, P.G.

    1991-06-14

    Magnetic compression circuits show the promise of long life for operation at high average powers and high repetition rates. When the Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory needed new modulators to drive their higher power copper lasers in the Laser Demonstration Facility (LDF), existing technology using thyratron switched capacitor inversion circuits did not meet the goal for long lifetimes at the required power levels. We have demonstrated that magnetic compression circuits can achieve this goal. Improving thyratron lifetime is achieved by increasing the thyratron conduction time, thereby reducing the effect of cathode depletion. This paper describes a three stage magnetic modulator designed to provide a 60 kV pulse to a copper laser at a 4. 5 kHz repetition rate. This modulator operates at 34 kW input power and has exhibited MTBF of {approx}1000 hours when using thyratrons and even longer MTBFs with a series of stack of SCRs for the main switch. Within this paper, the electrical and mechanical designs for the magnetic compression circuits are discussed as are the important performance parameters of lifetime and jitter. Ancillary circuits such as the charge circuit and reset circuit are shown. 8 refs., 5 figs., 1 tab.

  17. Table 2.6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009 Appliance Year Change 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 1980 to 2009 Total Households (millions) 77 78 82 83 84 86 91 94 97 101 107 111 114 32 Percent of Households<//td> Space Heating - Main Fuel 1 Natural Gas 55 55 55 56 57 55 55 55 53 52 55 52 50 -5 Electricity 2 16 17 18 17 16 17 20 23 26 29 29 30 35 17 Liquefied Petroleum Gases 4 5 5 4 5 5 5 5 5 5 5 5 5 0 Distillate

  18. The importance of China's household sector for black carbon emissions - article no. L12708

    SciTech Connect (OSTI)

    Streets, D.G.; Aunan, K.

    2005-06-30

    The combustion of coal and biofuels in Chinese households is a large source of black carbon (BC), representing about 10-15% of total global emissions during the past two decades, depending on the year. How the Chinese household sector develops during the next 50 years will have an important bearing on future aerosol concentrations, because the range of possible outcomes (about 550 Gg yr{sup -1}) is greater than total BC emissions in either the United States or Europe (each about 400-500 Gg yr{sup -1}). In some Intergovernmental Panel on Climate Change scenarios biofuels persist in rural China for at least the next 50 years, whereas in other scenarios a transition to cleaner fuels and technologies effectively mitigates BC emissions. This paper discusses measures and policies that would help this transition and also raises the possibility of including BC emission reductions as a post-Kyoto option for China and other developing countries.

  19. Characterization of household hazardous waste from Marin County, California, and New Orleans, Louisiana

    SciTech Connect (OSTI)

    Rathje, W.L.; Wilson, D.C.; Lambou, V.W.; Herndon, R.C.

    1987-09-01

    There is a growing concern that certain constituents of common household products, that are discarded in residential garbage, may be potentially harmful to human health and the environment by adversely affecting the quality of ground and surface water. A survey of hazardous wastes in residential garbage from Marin County, California, and New Orleans, Louisiana, was conducted in order to determine the amount and characteristics of such wastes that are entering municipal landfills. The results of the survey indicate that approximately 642 metric tons of hazardous waste are discarded per year for the New Orleans study area and approximately 259 metric tons are discarded per year for the Marin County study area. Even though the percent of hazardous household waste in the garbage discarded in both study areas was less than 1%, it represents a significant quantity of hazardous waste because of the large volume of garbage involved.

  20. Fact #744: September 10, 2012 Average New Light Vehicle Price Grows Faster

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than Average Used Light Vehicle Price | Department of Energy 4: September 10, 2012 Average New Light Vehicle Price Grows Faster than Average Used Light Vehicle Price Fact #744: September 10, 2012 Average New Light Vehicle Price Grows Faster than Average Used Light Vehicle Price In 2011 the average used light vehicle price was 36% higher than in 1990, while the average new light vehicle price was 67% higher than it was in 1990. The average price of a used vehicle had been between $6,000 and

  1. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    5 1 October 2015 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas, heating oil, and propane during the upcoming winter heating season (October 1 through March 31) will be 10%, 25%, and 18% lower, respectively, than last winter, because of lower fuel prices and lower heating demand. Forecast lower heating demand and relatively unchanged prices contribute to electricity expenditures that are 3% lower than last winter

  2. Microsoft Word - Highlights.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Winter Fuels Outlook - October 2011 1 Independent Statistics & Analysis U.S. Energy Information Administration October 2011 Short-Term Energy and Winter Fuels Outlook October 12, 2011 Release Highlights  EIA projects average household heating expenditures for natural gas, propane, and heating oil will increase by 3 percent, 7 percent, and 8 percent, respectively, this winter (October 1 to March 31) compared with last winter, while electricity heating expenditures fall by less than 1

  3. Drivers of U.S. Household Energy Consumption, 1980-2009 - Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Drivers of U.S. Household Energy Consumption, 1980-2009 Release date: February 3, 2015 Introduction In 2012, the residential sector accounted for 21% of total primary energy consumption and about 20% of carbon dioxide emissions in the United States (computed from EIA 2013). Because of the impacts of residential sector energy use on the environment and the economy, this study was undertaken to help provide a better understanding of the factors affecting energy

  4. Evaluation of bulk paint worker exposure to solvents at household hazardous waste collection events

    SciTech Connect (OSTI)

    Cameron, M.

    1995-09-01

    In fiscal year 93/94, over 250 governmental agencies were involved in the collection of household hazardous wastes in the State of California. During that time, over 3,237,000 lbs. of oil based paint were collected in 9,640 drums. Most of this was in lab pack drums, which can only hold up to 20 one gallon cans. Cost for disposal of such drums is approximately $1000. In contrast, during the same year, 1,228,000 lbs. of flammable liquid were collected in 2,098 drums in bulk form. Incineration of bulked flammable liquids is approximately $135 per drum. Clearly, it is most cost effective to bulk flammable liquids at household hazardous waste events. Currently, this is the procedure used at most Temporary Household Hazardous Waste Collection Facilities (THHWCFs). THHWCFs are regulated by the Department of Toxic Substances Control (DTSC) under the new Permit-by Rule Regulations. These regulations specify certain requirements regarding traffic flow, emergency response notifications and prevention of exposure to the public. The regulations require that THHWCF operators bulk wastes only when the public is not present. [22 CCR, section 67450.4 (e) (2) (A)].Santa Clara County Environmental Health Department sponsors local THHWCF`s and does it`s own bulking. In order to save time and money, a variance from the regulation was requested and an employee monitoring program was initiated to determine actual exposure to workers. Results are presented.

  5. Household`s choices of efficiency levels for appliances: Using stated- and revealed-preference data to identify the importance of rebates and financing arrangements

    SciTech Connect (OSTI)

    Train, K.; Atherton, T.

    1994-11-01

    We examine customers` choice between standard and high-efficiency equipment, and the impact of utility incentives such as rebates and loans on this decision. Using data from interviews with 400 households, we identify the factors that customers consider in their choice of efficiency level for appliances and the relative importance of these factors. We build a model that describes customers` choices and can be used to predict choices in future situations under changes in the attributes of appliances and in the utility`s DSM and as part of the appliance-choice component of utilities` end-use forecasting systems. As examples, the model is used to predict the impacts of: doubling the size of rebates, replacing rebates with financing programs, and offering loans and rebates as alternative options for customers.

  6. US MidAtl NY Site Consumption

    Gasoline and Diesel Fuel Update (EIA)

    MidAtl NY Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl NY Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NY Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl NY Expenditures dollars ELECTRICITY ONLY average per household * New York households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in

  7. Fact #671: April 18, 2011 Average Truck Speeds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: April 18, 2011 Average Truck Speeds Fact #671: April 18, 2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major truck routes by tracking more than 500,000 trucks. The average speed of trucks on selected interstate highways is between 50 and 60 miles per hour (mph). The average operating speed of trucks is typically below 55 mph in major urban areas, border crossings, and in mountainous terrain. The difference in average speed between peak traffic

  8. Household magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now which is stronger, gravity or magnetism? What is going on? How do flexible refrigerator magnets work? Get 2 of these magnets, they are often the size of a business card....

  9. U N I T E D S T A T E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    Prices and Expenditures 25 Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2013, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu

  10. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    Midwest households expected to see a 33% drop in propane heating bills this winter Midwest households that paid record-high prices for propane last winter to stay warm are expected to see a big drop in their heating bills this winter, according to the forecast for winter heating expenditures from the U.S. Energy Information Administration. The new forecast, which incorporates the latest weather outlook from forecasters at the National Oceanic and Atmospheric Administration, says the average

  11. Purchasing a New Energy-Efficient Central Heating System | Department of

    Energy Savers [EERE]

    Energy Purchasing a New Energy-Efficient Central Heating System Purchasing a New Energy-Efficient Central Heating System October 21, 2008 - 4:00am Addthis John Lippert Energy prices are skyrocketing. According to the Energy Information Administration's October 7, 2008 forecast, heating fuel expenditures for the average household using oil as its primary heating fuel are expected to increase by $449 over last winter. Households using natural gas to heat their homes can expect to pay $155 more

  12. Table HC6.10 Home Appliances Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    0 Home Appliances Usage Indicators by Number of Household Members, 2005 Total.............................................................................. 111.1 30.0 34.8 18.4 15.9 12.0 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day........................................... 8.2 1.4 1.9 1.4 1.0 2.4 2 Times A Day........................................................ 24.6 4.3 7.6 4.3 4.8 3.7 Once a Day............................................................ 42.3 9.9

  13. Table HC6.11 Home Electronics Characteristics by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    1 Home Electronics Characteristics by Number of Household Members, 2005 Total...................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Personal Computers Do Not Use a Personal Computer ................... 35.5 16.3 9.4 4.0 2.7 3.2 Use a Personal Computer................................ 75.6 13.8 25.4 14.4 13.2 8.8 Number of Desktop PCs 1.................................................................. 50.3 11.9 17.4 8.5 7.3 5.2

  14. Table HC6.12 Home Electronics Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    2 Home Electronics Usage Indicators by Number of Household Members, 2005 Total................................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Personal Computers Do Not Use a Personal Computer............................. 35.5 16.3 9.4 4.0 2.7 3.2 Use a Personal Computer.......................................... 75.6 13.8 25.4 14.4 13.2 8.8 Most-Used Personal Computer Type of PC Desk-top Model.....................................................

  15. Table HC6.2 Living Space Characteristics by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    2 Living Space Characteristics by Number of Household Members, 2005 Total...................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................... 3.2 1.7 0.8 0.4 0.3 Q 500 to 999....................................................... 23.8 10.2 6.4 3.4 2.3 1.5 1,000 to 1,499................................................. 20.8 5.5 6.3 3.0 3.3 2.6 1,500 to

  16. Table HC6.7 Air-Conditioning Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total........................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Cooling Equipment.......................... 17.8 5.4 5.3 2.7 2.5 2.0 Have Cooling Equipment...................................... 93.3 24.6 29.6 15.7 13.4 10.0 Use Cooling Equipment....................................... 91.4 24.0 29.1 15.5 13.2 9.7 Have Equipment But Do Not Use it......................

  17. Table HC6.9 Home Appliances Characteristics by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    HC6.9 Home Appliances Characteristics by Number of Household Members, 2005 Total U.S.............................................................. 111.1 30.0 34.8 18.4 15.9 12.0 Cooking Appliances Conventional Ovens Use an Oven.................................................. 109.6 29.5 34.4 18.2 15.7 11.8 1................................................................. 103.3 28.4 32.0 17.3 14.7 11.0 2 or More.................................................... 6.2 1.1 2.5 1.0 0.9 0.8 Do Not

  18. Assessment of lead contamination in Bahrain environment. I. Analysis of household paint

    SciTech Connect (OSTI)

    Madany, I.M.; Ali, S.M.; Akhter, M.S.

    1987-01-01

    The analysis of lead in household paint collected from various old buildings in Bahrain is reported. The atomic absorption spectrophotometric method, both flame and flameless (graphite furnace) techniques, were used for the analysis. The concentrations of lead in paint were found in the range 200 to 5700 mg/kg, which are low compared to the limit of 0.5% in UK and 0.06% in USA. Nevertheless, these are hazardous. Recommendations are reported in order to avoid paint containing lead. 17 references, 1 table.

  19. The changing character of household waste in the Czech Republic between 1999 and 2009 as a function of home heating methods

    SciTech Connect (OSTI)

    Dolealov, Markta; Beneov, Libue; Zvodsk, Anita

    2013-09-15

    Highlights: The character of household waste in the three different types of households were assesed. The quantity, density and composition of household waste were determined. The physicochemical characteristics were determined. The changing character of household waste during past 10 years was described. The potential of energy recovery of household waste in Czech republic was assesed. - Abstract: The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural households. Because knowledge about the properties of household waste, as well as its physicochemical characteristics, is very important not only for future waste management, but also for the prediction of the behaviour and influence of the waste on the environment as the country continues to streamline its legislation to the European Unions solid waste mandates, the results of these studies were employed by the Czech Ministry of Environment to optimise the national waste management strategy.

  20. Derivation of 24-Hour Average SO2, Background for the Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Derivation of 24-Hour Average SO2, Background for the Update 1 Report Derivation of 24-Hour Average SO2, Background for the Update 1 Report Docket No. EO-05-01. As supporting...

  1. Table 3.6 Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars )

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars 1) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 5,272 4,186 10,352 20,112 1,844 1,440 7,319 10,678 2,082 2,625 6,069 366 5,624 16,691 35,327 35,379 1971 5,702 4,367 11,589 21,934 2,060 1,574

  2. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars and Light

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks | Department of Energy 3: September 19, 2011 Average Vehicle Footprint for Cars and Light Trucks Fact #693: September 19, 2011 Average Vehicle Footprint for Cars and Light Trucks A vehicle footprint is the area defined by the four points where the tires touch the ground. It is calculated as the product of the wheelbase and the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The

  3. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013

    Office of Environmental Management (EM)

    - Dataset | Department of Energy 35: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Fact #835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Excel file with dataset for Fact #835: Average Annual Gasoline Pump Price, 1929-2013 File fotw#835_web.xlsx More Documents & Publications Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Fact #888: August 31, 2015 Historical Gas Prices - Dataset Offshore

  4. DOE/EIA-032171(84) Energy Information Administration Residential...

    Gasoline and Diesel Fuel Update (EIA)

    it was used to screen households for participation in the Household Transportation Panel. 190 1984 RECS: Consumption and Expenditures, National Data Energy Information...

  5. Fact #715: February 20, 2012 The Average Age of Light Vehicles Continues to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rise | Department of Energy 5: February 20, 2012 The Average Age of Light Vehicles Continues to Rise Fact #715: February 20, 2012 The Average Age of Light Vehicles Continues to Rise The average age for cars and light trucks continues to rise as consumers hold onto their vehicles longer. Between 1995 and 2011, the average age for cars increased by 32% from 8.4 years to 11.1 years. For light trucks, the average age increased by 25% during that same period from 8.3 years to 10.4 years. The

  6. Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8: May 21, 2012 Average Trip Length is Less Than Ten Miles Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles The average trip length (one-way) is 9.7 miles according to the 2009 Nationwide Personal Transportation Survey. Trip lengths vary by the purpose of the trip. Shopping and family/personal business are the shortest trips, on average. One-way trips to/from work average 12.2 miles. Trip Length by Purpose, 2009 Graphic showing trip length by purpose,

  7. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy than Midsize Non-Hybrid Cars in 2014 | Department of Energy 9: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014 Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014 For the 2014 model year, midsize hybrid cars averaged 43.4 miles per gallon (mpg) while midsize non-hybrid cars averaged 28.7 mpg; the difference between the two has narrowed due to the rising average

  8. Survey of Recipients of WAP Services Assessment of Household Budget and Energy Behaviors Pre to Post Weatherization DOE

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Rose, Erin M.; Hawkins, Beth A.

    2015-10-01

    This report presents results from the national survey of weatherization recipients. This research was one component of the retrospective and Recovery Act evaluations of the U.S. Department of Energy s Weatherization Assistance Program. Survey respondents were randomly selected from a nationally representative sample of weatherization recipients. The respondents and a comparison group were surveyed just prior to receiving their energy audits and then again approximately 18 months post-weatherization. This report focuses on budget issues faced by WAP households pre- and post-weatherization, whether household energy behaviors changed from pre- to post, the effectiveness of approaches to client energy education, and use and knowledge about thermostats.

  9. Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    4 Space Heating Characteristics by Number of Household Members, 2005 Total..................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Space Heating Equipment............ 1.2 0.3 0.3 Q 0.2 0.2 Have Main Space Heating Equipment............... 109.8 29.7 34.5 18.2 15.6 11.8 Use Main Space Heating Equipment................. 109.1 29.5 34.4 18.1 15.5 11.6 Have Equipment But Do Not Use It................... 0.8 Q Q Q Q Q Main Heating Fuel and

  10. Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005

  11. An Analysis of the Price Elasticity of Demand for Household Appliances

    SciTech Connect (OSTI)

    Fujita, Kimberly; Dale, Larry; Fujita, K. Sydny

    2008-01-25

    This report summarizes our study of the price elasticity of demand for home appliances, including refrigerators, clothes washers, and dishwashers. In the context of increasingly stringent appliance standards, we are interested in what kind of impact the increased manufacturing costs caused by higher efficiency requirements will have on appliance sales. We begin with a review of existing economics literature describing the impact of economic variables on the sale of durable goods.We then describe the market for home appliances and changes in this market over the past 20 years, performing regression analysis on the shipments of home appliances and relevant economic variables including changes to operating cost and household income. Based on our analysis, we conclude that the demand for home appliances is price inelastic.

  12. Time-averaged quantum dynamics and the validity of the effective

    Office of Scientific and Technical Information (OSTI)

    Hamiltonian model (Journal Article) | SciTech Connect Time-averaged quantum dynamics and the validity of the effective Hamiltonian model Citation Details In-Document Search Title: Time-averaged quantum dynamics and the validity of the effective Hamiltonian model We develop a technique for finding the dynamical evolution in time of an averaged density matrix. The result is an equation of evolution that includes an effective Hamiltonian, as well as decoherence terms in Lindblad form. Applying

  13. Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the First Time in Six Years | Department of Energy 9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years SUBSCRIBE to the Fact of the Week In July of 2015, the nationwide average price of diesel was lower than the average price of a regular gallon of gasoline for the first time since June 2009. Both gasoline and diesel prices fluctuate throughout the

  14. Gasoline price to average below $2 in 2016 for first time in 12 years

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline price to average below $2 in 2016 for first time in 12 years The annual average price for U.S. regular-grade gasoline is expected to fall below $2 per gallon this year for the first time since 2004. In its new monthly forecast, the U.S. Energy Information Administration said drivers will pay on average $1.98 per gallon to fill up at the pump with regular-grade gasoline. EIA expects the monthly average price of gasoline to reach a seven-year low of $1.82 per gallon in February, before

  15. Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price,

    Office of Environmental Management (EM)

    1929-2015 - Dataset | Department of Energy 5: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Excel file and dataset for Average Historical Annual Gasoline Pump Price, 1929-2015 File fotw#915_web.xlsx More Documents & Publications Fact #835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Fact #888: August 31, 2015 Historical Gas Prices -

  16. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    Prices and Expenditures 10 Table E8. Primary Energy, Electricity, and Total Energy Expenditure Estimates, 2013 (Million Dollars) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 1,731.6 3,091.3 4,003.6 294.8 251.9 8,443.0 90.5 682.0 13,765.8 352.0 438.7 19,379.5 -3,125.3 7,901.4 24,155.6

  17. A comparison of spatial averaging and Cadzow's method for array wavenumber estimation

    SciTech Connect (OSTI)

    Harris, D.B.; Clark, G.A.

    1989-10-31

    We are concerned with resolving superimposed, correlated seismic waves with small-aperture arrays. The limited time-bandwidth product of transient seismic signals complicates the task. We examine the use of MUSIC and Cadzow's ML estimator with and without subarray averaging for resolution potential. A case study with real data favors the MUSIC algorithm and a multiple event covariance averaging scheme.

  18. Household mold and dust allergens: Exposure, sensitization and childhood asthma morbidity

    SciTech Connect (OSTI)

    Gent, Janneane F.; Kezik, Julie M.; Hill, Melissa E.; Tsai, Eling; Li, De-Wei; Leaderer, Brian P.

    2012-10-15

    Background: Few studies address concurrent exposures to common household allergens, specific allergen sensitization and childhood asthma morbidity. Objective: To identify levels of allergen exposures that trigger asthma exacerbations in sensitized individuals. Methods: We sampled homes for common indoor allergens (fungi, dust mites (Der p 1, Der f 1), cat (Fel d 1), dog (Can f 1) and cockroach (Bla g 1)) for levels associated with respiratory responses among school-aged children with asthma (N=1233) in a month-long study. Blood samples for allergy testing and samples of airborne fungi and settled dust were collected at enrollment. Symptoms and medication use were recorded on calendars. Combined effects of specific allergen sensitization and level of exposure on wheeze, persistent cough, rescue medication use and a 5-level asthma severity score were examined using ordered logistic regression. Results: Children sensitized and exposed to any Penicillium experienced increased risk of wheeze (odds ratio [OR] 2.12 95% confidence interval [CI] 1.12, 4.04), persistent cough (OR 2.01 95% CI 1.05, 3.85) and higher asthma severity score (OR 1.99 95% CI 1.06, 3.72) compared to those not sensitized or sensitized but unexposed. Children sensitized and exposed to pet allergen were at significantly increased risk of wheeze (by 39% and 53% for Fel d 1>0.12 {mu}g/g and Can f 1>1.2 {mu}g/g, respectively). Increased rescue medication use was significantly associated with sensitization and exposure to Der p 1>0.10 {mu}g/g (by 47%) and Fel d 1>0.12 {mu}g/g (by 32%). Conclusion: Asthmatic children sensitized and exposed to low levels of common household allergens Penicillium, Der p 1, Fel d 1 and Can f 1 are at significant risk for increased morbidity. - Highlights: Black-Right-Pointing-Pointer Few studies address concurrent allergen exposures, sensitization and asthma morbidity. Black-Right-Pointing-Pointer Children with asthma were tested for sensitivity to common indoor allergens. Black-Right-Pointing-Pointer Homes were sampled for these allergens and asthma morbidity monitored during the subsequent month. Black-Right-Pointing-Pointer Children exposed and sensitized to Penicillium, Der p, Fel d, Can f risk increased asthma morbidity. Black-Right-Pointing-Pointer These children might benefit from targeted intervention strategies.

  19. Flowmeter for determining average rate of flow of liquid in a conduit

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Flowmeter for determining average rate of flow of liquid in a conduit Citation Details In-Document Search Title: Flowmeter for determining average rate of flow of liquid in a conduit This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and

  20. U.S. average gasoline prices falling to near $2 in December

    Gasoline and Diesel Fuel Update (EIA)

    U.S. average gasoline prices falling to near $2 in December U.S. retail gasoline prices are expected to continue falling over the next few months, dropping to a national average near $2 per gallon in December. In its new forecast, the U.S. Energy Information Administration said high gasoline production, cheaper winter-grade gasoline, and lower gasoline demand following this summer's peak driving season will contribute to savings at the pump for consumers. The monthly average price for gasoline

  1. Fact #622: May 10, 2010 Average Length of Light Vehicle Ownership |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2: May 10, 2010 Average Length of Light Vehicle Ownership Fact #622: May 10, 2010 Average Length of Light Vehicle Ownership Vehicle owners are holding onto their vehicles for a longer period, according to data from R.L. Polk and Company. The vehicle retention trends show that owners held onto a new vehicle for 56.3 months in 2008, up from 48.4 months six years earlier. New vehicle owners hold onto vehicles about 15 or 16 months longer than used vehicle owners. Average

  2. Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Taxes Each Year? | Department of Energy 4: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? According to the Federal Highway Administration, the average fuel economy for all light vehicles on the road today is 21.4 miles per gallon (mpg). A person owning a gasoline vehicle with that fuel efficiency pays between $137 and $296 in fuel taxes each year, depending

  3. Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the First Time in Six Years - Dataset | Department of Energy 9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Excel file and dataset for Average Diesel Price Lower than Gasoline for the First Time in Six Years File fotw#889_web.xlsx More Documents & Publications Fact #859 February 9, 2015 Excess Supply is the Most Recent

  4. Diesel prices continue to increase … U.S. average over $4

    Gasoline and Diesel Fuel Update (EIA)

    Diesel prices continue to increase - U.S. average over $4 The U.S. average retail price for on-highway diesel fuel broke the 4-dollar mark for the first time since last March. The U.S. retail average rose to $4.02 a gallon. That's up 2.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.39 a gallon, up 1.3 cents from a week ago. Prices were lowest in the Gulf Coast states at 3.81 a

  5. Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price,

    Office of Environmental Management (EM)

    1929-2015 | Department of Energy 915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 SUBSCRIBE to the Fact of the Week When adjusted for inflation, the average annual price of gasoline has fluctuated greatly, and has recently experienced sharp increases and decreases. The effect of the U.S. embargo of oil from Iran can be seen in the early 1980's with the price of gasoline peaking in

  6. LCA for household waste management when planning a new urban settlement

    SciTech Connect (OSTI)

    Slagstad, Helene; Brattebo, Helge

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Household waste management of a new carbon neutral settlement. Black-Right-Pointing-Pointer EASEWASTE as a LCA tool to compare different centralised and decentralised solutions. Black-Right-Pointing-Pointer Environmental benefit or close to zero impact in most of the categories. Black-Right-Pointing-Pointer Paper and metal recycling important for the outcome. Black-Right-Pointing-Pointer Discusses the challenges of waste prevention planning. - Abstract: When planning for a new urban settlement, industrial ecology tools like scenario building and life cycle assessment can be used to assess the environmental quality of different infrastructure solutions. In Trondheim, a new greenfield settlement with carbon-neutral ambitions is being planned and five different scenarios for the waste management system of the new settlement have been compared. The results show small differences among the scenarios, however, some benefits from increased source separation of paper and metal could be found. The settlement should connect to the existing waste management system of the city, and not resort to decentralised waste treatment or recovery methods. However, as this is an urban development project with ambitious goals for lifestyle changes, effort should be put into research and initiatives for proactive waste prevention and reuse issues.

  7. The evolving price of household LED lamps: Recent trends and historical comparisons for the US market

    SciTech Connect (OSTI)

    Gerke, Brian F.; Ngo, Allison T.; Alstone, Andrea L.; Fisseha, Kibret S.

    2014-10-14

    In recent years, household LED light bulbs (LED A lamps) have undergone a dramatic price decline. Since late 2011, we have been collecting data, on a weekly basis, for retail offerings of LED A lamps on the Internet. The resulting data set allows us to track the recent price decline in detail. LED A lamp prices declined roughly exponentially with time in 2011-2014, with decline rates of 28percent to 44percent per year depending on lumen output, and with higher-lumen lamps exhibiting more rapid price declines. By combining the Internet price data with publicly available lamp shipments indices for the US market, it is also possible to correlate LED A lamp prices against cumulative production, yielding an experience curve for LED A lamps. In 2012-2013, LED A lamp prices declined by 20-25percent for each doubling in cumulative shipments. Similar analysis of historical data for other lighting technologies reveals that LED prices have fallen significantly more rapidly with cumulative production than did their technological predecessors, which exhibited a historical decline of 14-15percent per doubling of production.

  8. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    SciTech Connect (OSTI)

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

  9. Influence of assumptions about household waste composition in waste management LCAs

    SciTech Connect (OSTI)

    Slagstad, Helene, E-mail: helene.slagstad@ntnu.no [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Brattebo, Helge [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Uncertainty in waste composition of household waste. Black-Right-Pointing-Pointer Systematically changed waste composition in a constructed waste management system. Black-Right-Pointing-Pointer Waste composition important for the results of accounting LCA. Black-Right-Pointing-Pointer Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

  10. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    SciTech Connect (OSTI)

    Lebersorger, S.; Beigl, P.

    2011-09-15

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  11. Time-averaged quantum dynamics and the validity of the effective...

    Office of Scientific and Technical Information (OSTI)

    We develop a technique for finding the dynamical evolution in time of an averaged density matrix. The result is an equation of evolution that includes an effective Hamiltonian, as ...

  12. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016

    Broader source: Energy.gov [DOE]

    The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model produced for sale in the United States will have a fuel...

  13. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  14. U.S. Average Depth of Crude Oil Exploratory and Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  15. U.S. Average Depth of Natural Gas Exploratory and Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  16. U.S. Average Depth of Dry Holes Developmental Wells Drilled ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  17. U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Exploratory Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  18. U.S. Average Depth of Natural Gas Developmental Wells Drilled...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  19. U.S. Average Depth of Natural Gas Exploratory Wells Drilled ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  20. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  1. U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  2. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0...

  3. U.S. Average Depth of Crude Oil Developmental Wells Drilled ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  4. U.S. Average Depth of Dry Exploratory and Developmental Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Exploratory and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  5. Variation in the annual average radon concentration measured in homes in Mesa County, Colorado

    SciTech Connect (OSTI)

    Rood, A.S.; George, J.L.; Langner, G.H. Jr.

    1990-04-01

    The purpose of this study is to examine the variability in the annual average indoor radon concentration. The TMC has been collecting annual average radon data for the past 5 years in 33 residential structures in Mesa County, Colorado. This report is an interim report that presents the data collected up to the present. Currently, the plans are to continue this study in the future. 62 refs., 3 figs., 12 tabs.

  6. "Table HC1.1.3 Housing Unit Characteristics by Average Floorspace--"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Housing Unit Characteristics by Average Floorspace--" " Single-Family Housing Units and Mobile Homes, 2005" ,,"Single- Family and Mobile Homes (millions)","Average Square Feet per Housing Unit-- Single-Family and Mobile Homes" ," Housing Units (millions)" ,,,"Single-Family Detached",,,"Single-Family Attached",,,"Mobile Homes" "Housing Unit

  7. "Table HC1.2.3 Living Space Characteristics by Average Floorspace--"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Living Space Characteristics by Average Floorspace--" " Single-Family Housing Units and Mobile Homes, 2005" ,,"Single- Family and Mobile Homes (millions)","Average Square Feet per Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Detached",,,"Single-Family Attached",,,"Mobile Homes" "Housing Unit

  8. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    SciTech Connect (OSTI)

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    2012-01-01

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

  9. Revision of the Branch Technical Position on Concentration Averaging and Encapsulation - 12510

    SciTech Connect (OSTI)

    Heath, Maurice; Kennedy, James E.; Ridge, Christianne; Lowman, Donald [U.S. NRC, Washington, DC, 20555-0001 (United States); Cochran, John [Sandia National Laboratory (United States)

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) regulation governing low-level waste (LLW) disposal, 'Licensing Requirements for Land Disposal of Radioactive Waste', 10 CFR Part 61, establishes a waste classification system based on the concentration of specific radionuclides contained in the waste. The regulation also states, at 10 CFR 61.55(a)(8), that, 'the concentration of a radionuclide (in waste) may be averaged over the volume of the waste, or weight of the waste if the units are expressed as nanocuries per gram'. The NRC's Branch Technical Position on Concentration Averaging and Encapsulation provides guidance on averaging radionuclide concentrations in waste under 10 CFR 61.55(a)(8) when classifying waste for disposal. In 2007, the NRC staff proposed to revise the Branch Technical Position on Concentration Averaging and Encapsulation. The Branch Technical Position on Concentration Averaging and Encapsulation is an NRC guidance document for averaging and classifying wastes under 10 CFR 61. The Branch Technical Position on Concentration Averaging and Encapsulation is used by nuclear power plants (NPPs) licensees and sealed source users, among others. In addition, three of the four U.S. LLW disposal facility operators are required to honor the Branch Technical Position on Concentration Averaging and Encapsulation as a licensing condition. In 2010, the Commission directed the staff to develop guidance regarding large scale blending of similar homogenous waste types, as described in SECY-10-0043 as part of its Branch Technical Position on Concentration Averaging and Encapsulation revision. The Commission is improving the regulatory approach used in the Branch Technical Position on Concentration Averaging and Encapsulation by moving towards a making it more risk-informed and performance-based approach, which is more consistent with the agency's regulatory policies. Among the improvements to the Branch Technical Position on Concentration Averaging and Encapsulation are more risk-informed limits for the sizes of sealed sources for safe disposal. Using more realistic intruder exposure scenarios, the suggested limits for Class B and C waste disposal of sealed sources, particularly Cs-137 and Co-60, have been increased. These suggested changes, and others in the Branch Technical Position on Concentration Averaging and Encapsulation, if adopted by Agreement States, have the potential to eliminate numerous orphan sources (i.e., sources that currently have no disposal pathway) that are now being stored. Permanent disposal of these sources, rather than temporary storage, will help reduce safety and security risks. The revised Branch Technical Position on Concentration Averaging and Encapsulation has an alternative approach section which provides flexibility to generators and processors, while also ensuring that intruder protection will be maintained. Alternative approaches provide flexibility by allowing for consideration of likelihood of intrusion, the possibility of averaging over larger volumes and allowing for disposal of large activity sources. The revision has improved the organization of the Branch Technical Position on Concentration Averaging and Encapsulation, improved its clarity, better documented the bases for positions, and made the positions more risk informed while also maintaining protection for intruder as required by 10 CFR Part 61. (authors)

  10. Cost comparison between private and public collection of residual household waste: Multiple case studies in the Flemish region of Belgium

    SciTech Connect (OSTI)

    Jacobsen, R.; Buysse, J.; Gellynck, X.

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The goal is to compare collection costs for residual household waste. Black-Right-Pointing-Pointer We have clustered all municipalities in order to find mutual comparable pairs. Black-Right-Pointing-Pointer Each pair consists of one private and one public operating waste collection program. Black-Right-Pointing-Pointer All cases show that private service has lower costs than public service. Black-Right-Pointing-Pointer Municipalities were contacted to identify the deeper causes for the waste management program. - Abstract: The rising pressure in terms of cost efficiency on public services pushes governments to transfer part of those services to the private sector. A trend towards more privatizing can be noticed in the collection of municipal household waste. This paper reports the findings of a research project aiming to compare the cost between the service of private and public collection of residual household waste. Multiple case studies of municipalities about the Flemish region of Belgium were conducted. Data concerning the year 2009 were gathered through in-depth interviews in 2010. In total 12 municipalities were investigated, divided into three mutual comparable pairs with a weekly and three mutual comparable pairs with a fortnightly residual waste collection. The results give a rough indication that in all cases the cost of private service is lower than public service in the collection of household waste. Albeit that there is an interest in establishing whether there are differences in the costs and service levels between public and private waste collection services, there are clear difficulties in establishing comparisons that can be made without having to rely on a large number of assumptions and corrections. However, given the cost difference, it remains the responsibility of the municipalities to decide upon the service they offer their citizens, regardless the cost efficiency: public or private.

  11. A life cycle approach to the management of household food waste - A Swedish full-scale case study

    SciTech Connect (OSTI)

    Bernstad, A.; Cour Jansen, J. la

    2011-08-15

    Research Highlights: > The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in relation to global warming potential, acidification and ozone depilation compared to incineration and composting of food waste. Use of produced biogas as car fuel provides larger environmental benefits compared to a use of biogas for heat and power production. > The use of produced digestate from the anaerobic digestion as substitution for chemical fertilizer on farmland provides avoidance of environmental burdens in the same ratio as the substitution of fossil fuels with produced biogas. > Sensitivity analyses show that results are highly sensitive to assumptions regarding the environmental burdens connected to heat and energy supposedly substituted by the waste treatment. - Abstract: Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6 kg CO{sub 2}-eq/household and year if incineration is utilised, to an avoidance of 5.6 kg CO{sub 2}-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.

  12. Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Strategies for Collecting Household Energy Data, Call Slides and Discussion Summary, July 19, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    19, 2012 Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Strategies for Collecting Household Energy Data Call Slides and Discussion Summary Agenda * Call Logistics and Attendance  Is your program getting household energy data? How? * Program Experience and Lessons:  Janelle Beverly and Jeff Hughes, University of North Carolina Environmental Finance Center (http://www.efc.unc.edu/index.html) * Discussion:  What are successful strategies for obtaining

  13. Better Buildings Residential Network Multi-Family & Low-Income Housing Peer Exchange Call Series: Loan Programs for Low- and Moderate-Income Households, March 13, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Family & Low-Income Housing Peer Exchange Call Series: Loan Programs for Low- and Moderate-Income Households March 13, 2014 Agenda  Call Logistics and Introductions  Featured Participants  Becca Harmon Murphy (Indianapolis Neighborhood Housing Partnership)  Discussion:  What strategies or approaches has your program used to build interest in your loan programs for moderate- and low-income households? What has worked well, and why do you think it was effective?  What

  14. Average M shell fluorescence yields for elements with 70?Z?92

    SciTech Connect (OSTI)

    Kahoul, A.; Deghfel, B.; Aylikci, V.; Aylikci, N. K.; Nekkab, M.

    2015-03-30

    The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (?{sup }{sub M}) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70?Z?92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement was typically obtained between our result and other works.

  15. Reconstruction of ionization probabilities from spatially averaged data in N dimensions

    SciTech Connect (OSTI)

    Strohaber, J.; Kolomenskii, A. A.; Schuessler, H. A.

    2010-07-15

    We present an analytical inversion technique, which can be used to recover ionization probabilities from spatially averaged data in an N-dimensional detection scheme. The solution is given as a power series in intensity. For this reason, we call this technique a multiphoton expansion (MPE). The MPE formalism was verified with an exactly solvable inversion problem in two dimensions, and probabilities in the postsaturation region, where the intensity-selective scanning approach breaks down, were recovered. In three dimensions, ionization probabilities of Xe were successfully recovered with MPE from simulated (using the Ammosov-Delone-Krainov tunneling theory) ion yields. Finally, we tested our approach with intensity-resolved benzene-ion yields, which show a resonant multiphoton ionization process. By applying MPE to this data (which were artificially averaged), the resonant structure was recovered, which suggests that the resonance in benzene may have been observed in spatially averaged data taken elsewhere.

  16. Comparison of average and point capillary pressure-saturation functions determined by steady-state centrifugation

    SciTech Connect (OSTI)

    Cropper, Clark; Perfect, Edmund; van den Berg, Dr. Elmer; Mayes, Melanie

    2010-01-01

    The capillary pressure-saturation function can be determined from centrifuge drainage experiments. In soil physics, the data resulting from such experiments are usually analyzed by the 'averaging method.' In this approach, average relative saturation, , is expressed as a function of average capillary pressure, <{psi}>, i.e., (<{psi}>). In contrast, the capillary pressure-saturation function at a physical point, i.e., S({psi}), has been extracted from similar experiments in petrophysics using the 'integral method.' The purpose of this study was to introduce the integral method applied to centrifuge experiments to a soil physics audience and to compare S({psi}) and (<{psi}>) functions, as parameterized by the Brooks-Corey and van Genuchten equations, for 18 samples drawn from a range of porous media (i.e., Berea sandstone, glass beads, and Hanford sediments). Steady-state centrifuge experiments were performed on preconsolidated samples with a URC-628 Ultra-Rock Core centrifuge. The angular velocity and outflow data sets were then analyzed using both the averaging and integral methods. The results show that the averaging method smoothes out the drainage process, yielding less steep capillary pressure-saturation functions relative to the corresponding point-based curves. Maximum deviations in saturation between the two methods ranged from 0.08 to 0.28 and generally occurred at low suctions. These discrepancies can lead to inaccurate predictions of other hydraulic properties such as the relative permeability function. Therefore, we strongly recommend use of the integral method instead of the averaging method when determining the capillary pressure-saturation function by steady-state centrifugation. This method can be successfully implemented using either the van Genuchten or Brooks-Corey functions, although the latter provides a more physically precise description of air entry at a physical point.

  17. Origin of the failed ensemble average rule for the band gaps of disordered

    Office of Scientific and Technical Information (OSTI)

    nonisovalent semiconductor alloys (Journal Article) | DOE PAGES Origin of the failed ensemble average rule for the band gaps of disordered nonisovalent semiconductor alloys « Prev Next » Title: Origin of the failed ensemble average rule for the band gaps of disordered nonisovalent semiconductor alloys Authors: Ma, Jie ; Deng, Hui-Xiong ; Luo, Jun-Wei ; Wei, Su-Huai Publication Date: 2014-09-02 OSTI Identifier: 1180832 Grant/Contract Number: AC02-05CH11231; AC36-08GO28308 Type: Publisher's

  18. ,"U.S. Conventional, Average Refiner Gasoline Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional, Average Refiner Gasoline Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Conventional, Average Refiner Gasoline Prices",6,"Monthly","12/2015","1/15/1994" ,"Release Date:","3/1/2016" ,"Next Release Date:","4/1/2016" ,"Excel

  19. ,"U.S. Reformulated, Average Refiner Gasoline Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Reformulated, Average Refiner Gasoline Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Reformulated, Average Refiner Gasoline Prices",6,"Monthly","12/2015","1/15/1994" ,"Release Date:","3/1/2016" ,"Next Release Date:","4/1/2016" ,"Excel

  20. Table HC1.2.4 Living Space Characteristics by Average Floorspace--Apartments, 2

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Living Space Characteristics by Average Floorspace--Apartments, 2005" ,,,"Average Square Feet per Apartment in a --" ," Housing Units (millions)" ,,,"2 to 4 Unit Building",,,"5 or More Unit Building" ,,"Apartments (millions)" "Living Space Characteristics",,,"Total","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,24.5,1090,902,341,872,780,441

  1. Flowmeter for determining average rate of flow of liquid in a conduit

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Flowmeter for determining average rate of flow of liquid in a conduit Citation Details In-Document Search Title: Flowmeter for determining average rate of flow of liquid in a conduit × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  2. The U.S. average retail price for on-highway diesel fuel rose this week

    Gasoline and Diesel Fuel Update (EIA)

    The U.S. average retail price for on-highway diesel fuel rose this week The U.S. average retail price for on-highway diesel fuel rose slightly to $3.90 a gallon on Monday. That's up 8-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region, at 4.16 a gallon, down a penny from a week ago. Prices were lowest in the Rocky Mountain States at $3.68 a gallon, down 1.7

  3. The U.S. average retail price for on-highway diesel fuel rose this week

    Gasoline and Diesel Fuel Update (EIA)

    The U.S. average retail price for on-highway diesel fuel rose this week The U.S. average retail price for on-highway diesel fuel rose to $3.93 a gallon on Monday. That's up 2 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Prices increased in all regions across the U.S. The highest prices were found in the New England region, at 4.18 a gallon, up 2.3 cents from a week ago. Prices were lowest in the Rocky Mountain States at $3.74 a gallon,

  4. U.S. diesel prices decrease … U.S. average still over $4

    Gasoline and Diesel Fuel Update (EIA)

    U.S. diesel prices decrease - U.S. average still over $4 The U.S. average retail price for on-highway diesel fuel fell to $4.02 a gallon. That's down a tenth of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.39 a gallon, up 3-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 3.79 a gallon, down 1.3 cents.

  5. U.S. diesel prices decrease … U.S. average still over $4

    Gasoline and Diesel Fuel Update (EIA)

    U.S. diesel prices decrease - U.S. average still over $4 The U.S. average retail price for on-highway diesel fuel fell to $4.00 a gallon. That's down 1.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region and Central Atlantic states at 4.31 a gallon, down 4.9 and 3.9 cents, respectively, from a week ago. Prices were lowest in the Gulf Coast states at 3.80 a gallon, down 1.1 cents.

  6. U.S. diesel prices increase … U.S. average still over $4

    Gasoline and Diesel Fuel Update (EIA)

    U.S. diesel prices increase - U.S. average still over $4 The U.S. average retail price for on-highway diesel fuel rose to $4.02 a gallon. That's up half a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.36 a gallon, down 2.7 cents from a week ago. Prices were lowest in the Gulf Coast states at 3.81 a gallon, up 2.1 cents.

  7. ,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities",16,"Monthly","12/2015","1/15/1985" ,"Release Date:","2/29/2016" ,"Next Release

  8. Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cents per kWh - Without New Dams | Department of Energy Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams November 4, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced up to $30.6 million in Recovery Act funding for the selection of seven hydropower projects that modernize hydropower

  9. Fact #803: November 11, 2013 Average Number of Transmission Gears is on the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rise | Department of Energy 3: November 11, 2013 Average Number of Transmission Gears is on the Rise Fact #803: November 11, 2013 Average Number of Transmission Gears is on the Rise The number of gears a transmission has affects a vehicle's fuel economy and performance. The more gears a vehicle has, the more time the engine spends within an optimal operating range while the vehicle speeds up and slows down. To achieve a better match between engine speed and wheel speed, manufacturers have

  10. Fact #851 December 15, 2014 The Average Number of Gears used in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmissions Continues to Rise | Department of Energy 1 December 15, 2014 The Average Number of Gears used in Transmissions Continues to Rise Fact #851 December 15, 2014 The Average Number of Gears used in Transmissions Continues to Rise The number of gears in a transmission affects a vehicle's fuel economy and performance. The more gears a vehicle has, the more time the engine spends within an optimal operating range while the vehicle speeds up and slows down. To achieve a better match

  11. Builds in U.S. natural gas storage running above five-year average

    Gasoline and Diesel Fuel Update (EIA)

    Builds in U.S. natural gas storage running above five-year average The amount of natural gas put into underground storage since the beginning of the so-called "injection season" in April has been above the five-year average by a wide margin. In its new forecast, the U.S. Energy Information Administration said natural gas inventories, which are running more than 50% above year ago levels, are on track to reach almost 4 trillion cubic feet by the end of October which marks the start of

  12. Performance and production requirements for the optical components in a high-average-power laser system

    SciTech Connect (OSTI)

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  13. Development of a high average current polarized electron source with long cathode operational lifetime

    SciTech Connect (OSTI)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  14. Fact #851 December 15, 2014 The Average Number of Gears used...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Average Number of Gears in New Cars and Light Trucks Model Year Gears 1980 3.5 1981 3.5 1982 3.6 1983 3.7 1984 3.7 1985 3.8 1986 3.8 1987 3.9 1988 3.9 1989 3.9 1990 4.0 1991 4.0 ...

  15. New Jersey Average Price of Natural Gas Delivered to Residential and

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers by Local Distribution and Mark 2.03 12.98 12.38 10.30 9.08 7.85 1989-2015 Commercial Average Price 8.66 8.78 8.03 8.10 8.66 8.24

  16. District of Columbia Average Price of Natural Gas Delivered to Residential

    Gasoline and Diesel Fuel Update (EIA)

    and Commercial Consumers by Local Distributio 17.68 18.15 18.17 16.21 12.60 10.70 1989-2015 Commercial Average Price 11.15 11.17 11.50 11.68 11.28 10.01

  17. Ohio Average Price of Natural Gas Delivered to Residential and Commercial

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumers by Local Distribution and Marketers 23.83 25.46 24.31 15.36 9.68 7.40 1989-2015 Commercial Average Price 8.14 8.02 7.99 6.79 6.03 5.5

  18. Averaged Description of Flow (Steady and Transient) and Nonreactive Solute Transport in Random Porous Media

    SciTech Connect (OSTI)

    Schvidler, M.; Karasaki, K.

    2011-06-15

    In previous papers (Shvidler and Karasaki, 1999, 2001, 2005, and 2008) we presented and analyzed an approach for finding the general forms of exactly averaged equations of flow and transport in porous media. We studied systems of basic equations for steady flow with sources in unbounded domains with stochastically homogeneous conductivity fields. A brief analysis of exactly averaged equations of nonsteady flow and nonreactive solute transport was also presented. At the core of this approach is the existence of appropriate random Green's functions. For example, we showed that in the case of a 3-dimensional unbounded domain the existence of appropriate random Green's functions is sufficient for finding the exact nonlocal averaged equations for flow velocity using the operator with a unique kernel-vector. Examination of random fields with global symmetry (isotropy, transversal isotropy and orthotropy) makes it possible to describe significantly different types of averaged equations with nonlocal unique operators. It is evident that the existence of random Green's functions for physical linear processes is equivalent to assuming the existence of some linear random operators for appropriate stochastic equations. If we restricted ourselves to this assumption only, as we have done in this paper, we can study the processes in any dimensional bounded or unbounded fields and in addition, cases in which the random fields of conductivity and porosity are stochastically nonhomogeneous, nonglobally symmetrical, etc.. It is clear that examining more general cases involves significant difficulty and constricts the analysis of structural types for the processes being studied. Nevertheless, we show that we obtain the essential information regarding averaged equations for steady and transient flow, as well as for solute transport.

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Household Energy Consumption and Expenditures Household Energy Consumption by End Use, Selected Years, Household Energy Expenditures, Selected Years, 1978-2005¹ 1978-2005¹ Household Energy Consumption for Space Heating by Fuel 2005 Appliances, Electronics, and Lighting Expenditures, Selected Years, 1978-2005¹ 52 U.S. Energy Information Administration / Annual Energy Review 2011 1 For years not shown, there are no data available. 2 Prices are not adjusted for inflation. See "Nominal

  20. HIGH AVERAGE CURRENT LOW EMITTANCE BEAM EMPLOYING CW NORMAL CONDUCTING GUN.

    SciTech Connect (OSTI)

    CHANG,X.; BEN-ZVI, I.; KEWISCH, J.; PAI, C.

    2007-06-25

    CW normal conducting guns usually do not achieve very high field gradient and waste much RF power at high field gradient compared to superconducting cavities. But they have less trapped modes and wakefields compared to the superconducting cavities due to their low Q. The external bucking coil can also be applied very close to the cathode to improve the beam quality. By using a low frequency gun with a recessed cathode and a carefully designed beam line we can get a high average current and a high quality beam with acceptable RF power loss on the cavity wall. This paper shows that the CW normal conducting gun can be a backup solution for those projects which need high peak and average current, low emittance electron beams such as the Relativistic Heavy Ion Collider (RHIC) e-cooling project and Energy Recovery Linac (Em) project.

  1. Gatling gun: high average polarized current injector for eRHIC

    SciTech Connect (OSTI)

    Litvinenko, V.N.

    2010-01-01

    This idea was originally developed in 2001 for, at that time, an ERL-based (and later recirculating-ring) electron-ion collider at JLab. Naturally the same idea is applicable for any gun requiring current exceeding capability of a single cathode. ERL-based eRHIC is one of such cases. This note related to eRHIC was prepared at Duke University in February 2003. In many case photo-injectors can have a limited average current - it is especially true about polarized photo-guns. It is know that e-RHIC requires average polarized electron current well above currently demonstrated by photo-injectors - hence combining currents from multiple guns is can be useful option for eRHIC.

  2. Coupling of an average-atom model with a collisional-radiative equilibrium model

    SciTech Connect (OSTI)

    Faussurier, G. Blancard, C.; Cossé, P.

    2014-11-15

    We present a method to combine a collisional-radiative equilibrium model and an average-atom model to calculate bound and free electron wavefunctions in hot dense plasmas by taking into account screening. This approach allows us to calculate electrical resistivity and thermal conductivity as well as pressure in non local thermodynamic equilibrium plasmas. Illustrations of the method are presented for dilute titanium plasma.

  3. "Table A49. Average Prices of Purchased Electricity, Steam, and Natural Gas"

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Average Prices of Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam",," Natural Gas" ," (Million kWh)",," (Billion Btu)",," (1000 cu ft)"

  4. "Table E8.2. Average Prices of Selected Purchased Energy Sources, 1998;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate",,"LPG and",,"Row"

  5. Table 7.1 Average Prices of Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Physical Units." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"

  6. Table 7.2 Average Prices of Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; " " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"

  7. Table 7.2 Average Prices of Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam

  8. Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 20

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " ","

  9. Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: U.S. Dollars per Physical Units. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than

  10. Table N8.2. Average Prices of Purchased Energy Sources, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Average Prices of Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural

  11. Table N8.3. Average Prices of Purchased Electricity, Natural Gas, and Steam,

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Average Prices of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " ","

  12. Calculation of variable-base degree-days and degree-nights from monthly average temperatures

    SciTech Connect (OSTI)

    Sonderegger, R.; Cleary, P.; Dickinson, B.

    1985-01-01

    The Computerized Instrumented Residential Audit (CIRA), a micro-computer building energy analysis program developed at Lawrence Berkeley Laboratory, uses a monthly variable-base degree-day method to calculate heating and cooling loads. The method's unique feature is its ability to model thermostat setbacks and storage of solar gain. The program accomplishes this by dividing each day into two periods, ''average day'' (8 a.m. to 8 p.m.) and ''average night'' (8 p.m. to 8 a.m.), with different base temperatures. For each mode (heating or cooling) and for each period (day or night), the program reconstructs degree-days as a function of average monthly day or night temperature using three empirical coefficients specific to the location. A comparison is made between degree-days computed from hourly weather tapes and those predicted using this method. The root mean square error between predicted and actual degree days is typically between 3 and 12 degree-days per month. Tables of the coefficients are given for over 150 locations in the United States, computed from hourly dry-bulb temperatures on TRY and TMY tapes. Seasonal predictions of heating and cooling energy budgets using this method show good correspondence to the DOE-2 hourly simulation method.

  13. Effect of vitrification temperature upon the solar average absorptance properties of Pyromark Series 2500 black paint

    SciTech Connect (OSTI)

    Nelson, C.; Mahoney, A.R.

    1986-06-01

    A significant drop in production efficiency has occurred over time at the Solar One facility at Barstow, California, primarily as a result of the degradation of the Pyromark Series 2500 black paint used as the absorptive coating on the receiver panels. As part of the investigation of the problem, the solar-averaged adsorptance properties of the paint were determined as a function of vitrification temperature, since it is known that a significant amount of the panel surface area at Solar One was vitrified at temperatures below those recommended by the paint manufacturer (540/sup 0/C, 1000/sup 0/F). Painted samples initially vitrified at 230/sup 0/C (450/sup 0/F), 315/sup 0/C (600/sup 0/F), 371/sup 0/C (700/sup 0/F), and 480/sup 0/C (900/sup 0/F) exhibited significantly lower solar-averaged absorptance values (0.02 absorptance units) compared to samples vitrified at 540/sup 0/C (1000/sup 0/F). Thus, Solar One began its service life below optimal levels. After 140 h of thermal aging at 370/sup 0/C (700/sup 0/F) and 540/sup 0/C (1000/sup 0/F), all samples regardless of their initial vitrification temperatures, attained the same solar-averaged absorptance value (..cap alpha../sub s/ = 0.973). Therefore, both the long-term low-temperature vitrification and the short-term high-temperature vitrification can be used to obtain optimal or near-optimal absorptance of solar flux. Futher thermal aging of vitrified samples did not result in paint degradation, clearly indicating that high solar flux is required to produce this phenomenon. The panels at Solar One never achieved optimal absorptance because their exposure to high solar flux negated the effect of long-term low-temperature vitrification during operation. On future central receiver projects, every effort should be made to properly vitrify the Pyromark coating before its exposure to high flux conditions.

  14. Properties of a new average power Nd-doped phosphate laser glass

    SciTech Connect (OSTI)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.; Wilke, G.D.; Hayden, J.S.

    1995-03-09

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime.

  15. Laser properties of an improved average-power Nd-doped phosphate glass

    SciTech Connect (OSTI)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-03-15

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young`s modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime.

  16. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOE Patents [OSTI]

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  17. U.S. Natural Gas Average Consumption per Commercial Consumer (Thousand

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Commercial Consumer (Thousand Cubic Feet) U.S. Natural Gas Average Consumption per Commercial Consumer (Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 637 665 699 1970's 737 751 777 779 734 730 789 745 784 811 1980's 739 693 696 625 672 634 587 606 647 652 1990's 619 626 636 641 639 654 669 675 595 608 2000's 635 605 621 617 609 577 537 568 579 586 2010's 585 593 540 613 640 - = No Data Reported; -- = Not Applicable; NA =

  18. "Table E8.1. Average Prices of Selected Purchased Energy Sources, 1998;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and",,"RSE" "Economic","Electricity","Fuel Oil","Fuel

  19. Average Price (Cents/kilowatthour) by State by Provider, 1990-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price (Cents/kilowatthour) by State by Provider, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",19.14,17.09,15.66,0,"NA",17.46 2014,"AL","Total Electric Industry",11.48,10.79,6.15,0,"NA",9.27

  20. Method and system for modulation of gain suppression in high average power laser systems

    DOE Patents [OSTI]

    Bayramian, Andrew James (Manteca, CA)

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.