National Library of Energy BETA

Sample records for average household energy

  1. Fact #614: March 15, 2010 Average Age of Household Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4: March 15, 2010 Average Age of Household Vehicles Fact #614: March 15, 2010 Average Age of Household Vehicles The average age of household vehicles has increased from 6.6 years in 1977 to 9.2 years in 2009. Pickup trucks have the oldest average age in every year listed. Sport utility vehicles (SUVs), first reported in the 1995 survey, have the youngest average age. Average Vehicle Age by Vehicle Type Graph showing the average vehicle age by type (car, van, pickup, SUV, all household

  2. EIA - Household Transportation report: Household Vehicles Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series....

  3. Microsoft Word - Household Energy Use CA

    U.S. Energy Information Administration (EIA) Indexed Site

    0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site

  4. Microsoft Word - Household Energy Use CA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site

  5. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  6. Average U.S. household to spend $710 less on gasoline during 2015

    Gasoline and Diesel Fuel Update (EIA)

    Average U.S. household to spend $710 less on gasoline during 2015 Even with the recent increases in gasoline prices, the average U.S. household is still expected save $710 in gasoline costs this year compared with what was paid at the pump in 2014. In its new monthly forecast, the U.S. Energy Information Administration said the national average price for regular gasoline is expected to be $2.39 per gallon this year. That's almost $1 less than the $3.36 average in 2014. Lower crude oil prices

  7. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991...

  8. Average household expected to save $675 at the pump in 2015

    Gasoline and Diesel Fuel Update (EIA)

    Average household expected to save $675 at the pump in 2015 Although retail gasoline prices have risen in recent weeks U.S. consumers are still expected to save about $675 per household in motor fuel costs this year. In its new monthly forecast, the U.S. Energy Information Administration says the average pump price for regular grade gasoline in 2015 will be $2.43 per gallon. That's about 93 cents lower than last year's average. The savings for consumers will be even bigger during the

  9. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  10. Household Vehicles Energy Use Cover Page

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Use Cover Page Glossary Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use Cover Page Contact Us * Feedback * PrivacySecurity *...

  11. Strategies for Collecting Household Energy Data | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collecting Household Energy Data Strategies for Collecting Household Energy Data Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Strategies for ...

  12. Cover Page of Household Vehicles Energy Use: Latest Data & Trends

    Gasoline and Diesel Fuel Update (EIA)

    Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

  13. EIA - Household Transportation report: Household Vehicles Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    National Research Council, Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards (Washington, DC: National Academy of Sciences, 2002), p. 85. 4 8.3 million...

  14. Energy Information Administration/Household Vehicles Energy Consumptio...

    U.S. Energy Information Administration (EIA) Indexed Site

    , Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related...

  15. Spacetime averaged null energy condition

    SciTech Connect (OSTI)

    Urban, Douglas; Olum, Ken D.

    2010-06-15

    The averaged null energy condition has known violations for quantum fields in curved space, even when one considers only achronal geodesics. Many such examples involve rapid variation in the stress-energy tensor in the vicinity of the geodesic under consideration, giving rise to the possibility that averaging in additional dimensions would yield a principle universally obeyed by quantum fields. However, after discussing various procedures for additional averaging, including integrating over all dimensions of the manifold, we give here a class of examples that violate any such averaged condition.

  16. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  17. Strategies for Collecting Household Energy Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collecting Household Energy Data Strategies for Collecting Household Energy Data Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Strategies for Collecting Household Energy Data, Call Slides and Discussion Summary, July 19, 2012. PDF icon Call Slides and Discussion Summary More Documents & Publications Homeowner and Contractor Surveys Mastermind: Jim Mikel, Spirit Foundation Generating Energy Efficiency Project Leads and Allocating Leads to Contractors

  18. Concentration Averaging | Department of Energy

    Office of Environmental Management (EM)

    Concentration Averaging Concentration Averaging Summary Notes from 3 October 2007 Generic Technical Issue Discussion on Concentration Averaging PDF icon Summary Notes from 3...

  19. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    more fuel-efficient vehicles, and the implementation of Corporate Average Fuel Economy (CAFE) 6 standards. Figure 13. Average Fuel Efficiency of All Vehicles, by Model Year 6...

  20. Next Generation Household Refrigerator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Household Refrigerator Next Generation Household Refrigerator Embraco's high efficiency, oil-free linear compressor.<br /> Credit: Whirlpool Embraco's high efficiency, oil-free linear compressor. Credit: Whirlpool ORNL's Pradeep Bansal examines an Embraco linear compressor, which will be used in a Whirlpool-ORNL project aimed at building a more energy-efficient refrigerator. ORNL's Pradeep Bansal examines an Embraco linear compressor, which will be used in a Whirlpool-ORNL

  1. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    production vehicles in order to assess compliance with Corporate Average Fuel Economy (CAFE) standards. The EPA Composite MPG is based on the assumption of a "typical" vehicle-use...

  2. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the...

  3. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    selected tabulations were produced using two different software programs, Table Producing Language (TPL) and Statistical Analysis System (SAS). Energy Information Administration...

  4. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    for 1994, will continue the 3-year cycle. The RTECS, a subsample of the Residential Energy Consumption Survey (RECS), is an integral part of a series of surveys designed by...

  5. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect (OSTI)

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  6. Average U.S. household to spend $710 less on gasoline during 2015

    Gasoline and Diesel Fuel Update (EIA)

    drivers to see big savings at the gasoline pump this summer U.S. consumers are expected to pay the lowest average price for gasoline in six years during this summer's driving season, mostly because of lower crude oil costs. In its new forecast, the U.S. Energy Information Administration said the price for regular gasoline should average $2.45 per gallon this summer. That's down more than a dollar from the $3.59 per gallon seen last summer, and the cheapest average summer pump price since 2009.

  7. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Northeast",20.8,2121,1663,921,836,656,363 "Northeast Divisions and

  8. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Average Square Footage of Midwest Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Midwest",25.9,2272,1898,1372,912,762,551 "Midwest Divisions and

  9. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Average Square Footage of South Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total South",42.1,1867,1637,1549,732,642,607 "South Divisions and

  10. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Square Footage of West Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total West",24.8,1708,1374,800,628,506,294 "West Divisions and States"

  11. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Average Square Footage of Single-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Single-Family",78.6,2422,2002,1522,880,727,553 "Census

  12. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Average Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Multi-Family",28.1,930,807,535,453,393,261 "Census Region"

  13. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Mobile Homes",6.9,1087,985,746,413,375,283 "Census Region"

  14. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Average Square Footage of U.S. Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total",113.6,1971,1644,1230,766,639,478 "Census Region"

  15. Barriers to household investment in residential energy conservation: preliminary assessment

    SciTech Connect (OSTI)

    Hoffman, W.L.

    1982-12-01

    A general assessment of the range of barriers which impede household investments in weatherization and other energy efficiency improvements for their homes is provided. The relationship of similar factors to households' interest in receiving a free energy audits examined. Rates of return that underly household investments in major conservation improvements are assessed. A special analysis of household knowledge of economically attractive investments is provided that compares high payback improvements specified by the energy audit with the list of needed or desirable conservation improvements identified by respondents. (LEW)

  16. Average U.S. household to spend $710 less on gasoline during...

    U.S. Energy Information Administration (EIA) Indexed Site

    in 2015 U.S. electric power producers are increasing their use of natural gas and burning less coal for generating electricity. In its new forecast, the U.S. Energy Information ...

  17. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    (EERE) program in the U.S. Department of Energy (DOE), Transportation Energy Data Book: Edition 24. Note: * a recession year. Estimates are displayed as rounded values....

  18. Average U.S. household to spend $710 less on gasoline during 2015

    Gasoline and Diesel Fuel Update (EIA)

    natural gas inventories at end of winter higher than last year Despite recent cold temperatures in some parts of the country, U.S. natural gas inventories ended the winter heating season in better shape than last year. In its new forecast, the U.S. Energy Information Administration said natural gas inventories near the end of March were 75% higher compared with the same period in 2014. That sets up adequate supplies for gas-fired power plants this summer to meet electric cooling needs of

  19. Kingston Creek Hydro Project Powers 100 Households | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kingston Creek Hydro Project Powers 100 Households Kingston Creek Hydro Project Powers 100 Households August 21, 2013 - 12:00am Addthis Nevada-based contracting firm Nevada Controls, LLC used a low-interest loan from the Nevada State Office of Energy's Revolving Loan Fund to help construct a hydropower project in the small Nevada town of Kingston. The Kingston Creek Project-benefitting the Young Brothers Ranch-is a 175-kilowatt hydro generation plant on private land that takes advantage of an

  20. Household Vehicles Energy Consumption 1994 - Appendix C

    U.S. Energy Information Administration (EIA) Indexed Site

    discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on...

  1. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    E : C H R O N O L O G Y O F W O R L D O I L M A R K E T E V E N T S ENERGY INFORMATION ADMINISTRATIONHOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS 177 APPENDIX E A P P E N D...

  2. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    Federal Highway Administration. Accessed on the world-wide web at http:www.fhwa.dot.govenvironmentcmaqpgsamaq03cmaq1fig3.htm on July 11, 2005. ENERGY INFORMATION...

  3. Competition Helps Kids Learn About Energy and Save Their Households Some

    Office of Environmental Management (EM)

    Money | Department of Energy Competition Helps Kids Learn About Energy and Save Their Households Some Money Competition Helps Kids Learn About Energy and Save Their Households Some Money May 21, 2013 - 2:40pm Addthis Students can register now to save energy and win prizes with the Home Energy Challenge. Students can register now to save energy and win prizes with the Home Energy Challenge. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy

  4. Residential energy use and conservation in Venezuela: Results and implications of a household survey in Caracas

    SciTech Connect (OSTI)

    Figueroa, M.J.; Ketoff, A.; Masera, O.

    1992-10-01

    This document presents the final report of a study of residential energy use in Caracas, the capital of Venezuela. It contains the findings of a household energy-use survey held in Caracas in 1988 and examines options for introducing energy conservation measures in the Venezuelan residential sector. Oil exports form the backbone of the Venezuelan economy. Improving energy efficiency in Venezuela will help free domestic oil resources that can be sold to the rest of the world. Energy conservation will also contribute to a faster recovery of the economy by reducing the need for major investments in new energy facilities, allowing the Venezuelan government to direct its financial investments towards other areas of development. Local environmental benefits will constitute an important additional by-product of implementing energy-efficiency policies in Venezuela. Caracas`s residential sector shows great potential for energy conservation. The sector is characterized by high saturation levels of major appliances, inefficiency of appliances available in the market, and by careless patterns of energy use. Household energy use per capita average 6.5 GJ/per year which is higher than most cities in developing countries; most of this energy is used for cooking. Electricity accounts for 41% of all energy use, while LPG and natural gas constitute the remainder. Specific options for inducing energy conservation and energy efficiency in Caracas`s residential sector include energy-pricing policies, fuel switching, particularly from electricity to gas, improving the energy performance of new appliances and customer information. To ensure the accomplishment of an energy-efficiency strategy, a concerted effort by energy users, manufacturers, utility companies, government agencies, and research institutions will be needed.

  5. Forum on Enhancing the Delivery of Energy Efficiency to Middle Income Households: Discussion Summary

    SciTech Connect (OSTI)

    none,

    2012-09-20

    Summarizes discussions and recommendations from a forum for practitioners and policymakers aiming to strengthen residential energy efficiency program design and delivery for middle income households.

  6. Averaged null energy condition violation in a conformally flat spacetime

    SciTech Connect (OSTI)

    Urban, Douglas; Olum, Ken D.

    2010-01-15

    We show that the averaged null energy condition can be violated by a conformally coupled scalar field in a conformally flat spacetime in 3+1 dimensions. The violation is dependent on the quantum state and can be made as large as desired. It does not arise from the presence of anomalies, although anomalous violations are also possible. Since all geodesics in conformally flat spacetimes are achronal, the achronal averaged null energy condition is likewise violated.

  7. EPA Webinar: Bringing Energy Efficiency and Renewable Housing to Low-Income Households

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Environmental Protection Agency, this webinar will explore the topic of linking and leveraging energy efficiency and renewable energy programs for limited-income households, including the need to coordinate with other energy assistance programs.

  8. Delivering Energy Efficiency to Middle Income Single Family Households

    SciTech Connect (OSTI)

    none,

    2011-12-01

    Provides state and local policymakers with information on successful approaches to the design and implementation of residential efficiency programs for households ineligible for low-income programs.

  9. Energy-efficient housing alternatives: a predictive model of factors affecting household perceptions

    SciTech Connect (OSTI)

    Schreckengost, R.L.

    1985-01-01

    The major purpose of this investigation was to assess the impact of household socio-economic factors, dwelling characteristics, energy conservation behavior, and energy attitudes on the perceptions of energy-efficient housing alternatives. Perceptions of passive solar, active solar, earth sheltered, and retrofitted housing were examined. Data used were from the Southern Regional Research Project, S-141, Housing for Low and Moderate Income Families. Responses from 1804 households living in seven southern states were analyzed. A conceptual model was proposed to test the hypothesized relationships which were examined by path analysis. Perceptions of energy efficient housing alternatives were found to be a function of selected household and dwelling characteristics, energy attitude, household economic factors, and household conservation behavior. Age and education of the respondent, family size, housing-income ratio, utility income ratio, energy attitude, and size of the dwelling unit were found to have direct and indirect effects on perceptions of energy-efficient housing alternatives. Energy conservation behavior made a significant direct impact with behavioral energy conservation changes having the most profound influence. Conservation behavior was influenced by selected household and dwelling characteristics, energy attitude, and household economic factors.

  10. Drivers of U.S. Household Energy Consumption, 1980-2009 - Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Drivers of U.S. Household Energy Consumption, 1980-2009 Release date: February 3, 2015 Introduction In 2012, the residential sector accounted for 21% of total primary energy consumption and about 20% of carbon dioxide emissions in the United States (computed from EIA 2013). Because of the impacts of residential sector energy use on the environment and the economy, this study was undertaken to help provide a better understanding of the factors affecting energy

  11. How Do You Encourage Everyone in Your Household to Save Energy?

    Broader source: Energy.gov [DOE]

    Anyone who has decided to save energy at home knows that the entire household needs to be involved if you really want to see savings. Some peoplebe they roommates, spouses, children, or maybe even...

  12. NYSERDA's Green Jobs-Green New York Program: Extending Energy Efficiency Financing To Underserved Households

    SciTech Connect (OSTI)

    Zimring, Mark; Fuller, Merrian

    2011-01-24

    The New York legislature passed the Green Jobs-Green New York (GJGNY) Act in 2009. Administered by the New York State Energy Research and Development Authority (NYSERDA), GJGNY programs provide New Yorkers with access to free or low-cost energy assessments,1 energy upgrade services,2 low-cost financing, and training for various 'green-collar' careers. Launched in November 2010, GJGNY's residential initiative is notable for its use of novel underwriting criteria to expand access to energy efficiency financing for households seeking to participate in New York's Home Performance with Energy Star (HPwES) program.3 The GJGNY financing program is a valuable test of whether alternatives to credit scores can be used to responsibly expand credit opportunities for households that do not qualify for traditional lending products and, in doing so, enable more households to make energy efficiency upgrades.

  13. Competition Helps Kids Learn About Energy and Save Their Households...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    starting up for next school year that challenges students to learn about energy, develop techniques for saving energy, and help their families save money on their energy bills. ...

  14. Table 5.18. U.S. Average Household and Vehicle Energy Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 8.5 3,447 0.3 1,676 8.2 3,519 1,827 1,692 8.6 Below Poverty Line 100 Percent ... 14.7 1,600 5.7 935 9.0 2,022...

  15. Special Topics on Energy Use in Household Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    compare your estimate of your car's mpg to the average of everyone else who takes the test. (Released 04112000; Updated Yearly for Fuel Economies and Weekly for Fuel Prices)...

  16. Electric Sales, Revenue, and Average Price 2011 - Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alphabetical Frequency Tag Cloud See All Electricity Reports Electric Sales, Revenue, and Average Price With Data for 2014 | Release Date: October 21, 2015 | Next Release Date: ...

  17. Household energy use in urban Venezuela: Implications from surveys in Maracaibo, Valencia, Merida, and Barcelona-Puerto La Cruz

    SciTech Connect (OSTI)

    Figueroa, M.J.; Sathaye, J.

    1993-08-01

    This report identifies the most important results of a comparative analysis of household commercial energy use in Venezuelan urban cities. The use of modern fuels is widespread among all cities. Cooking consumes the largest share of urban household energy use. The survey documents no use of biomass and a negligible use of kerosene for cooking. LPG, natural gas, and kerosene are the main fuels available. LPG is the fuel choice of low-income households in all cities except Maracaibo, where 40% of all households use natural gas. Electricity consumption in Venezuela`s urban households is remarkably high compared with the levels used in households in comparable Latin American countries and in households of industrialized nations which confront harsher climatic conditions and, therefore, use electricity for water and space heating. The penetration of appliances in Venezuela`s urban households is very high. The appliances available on the market are inefficient, and there are inefficient patterns of energy use among the population. Climate conditions and the urban built form all play important roles in determining the high level of energy consumption in Venezuelan urban households. It is important to acknowledge the opportunities for introducing energy efficiency and conservation in Venezuela`s residential sector, particularly given current economic and financial constraints, which may hamper the future provision of energy services.

  18. Comparison of energy expenditures by elderly and non-elderly households: 1975 and 1985

    SciTech Connect (OSTI)

    Siler, A.

    1980-05-01

    The relative position of the elderly in the population is examined and their characteristic use of energy in relation to the total population and their non-elderly counterparts is observed. The 1985 projections are based on demographic, economic, and socio-economic, and energy data assumptions contained in the 1978 Annual Report to Congress. The model used for estimating household energy expenditure is MATH/CHRDS - Micro-Analysis of Transfers to Households/Comprehensive Human Resources Data System. Characteristics used include households disposable income, poverty status, location by DOE region and Standard Metropolitan Statistical Area (SMSA), and race and sex of the household head as well as age. Energy use by fuel type will be identified for total home fuels, including electricity, natural gas, bottled gas and fuel oil, and for all fuels, where gasoline use is also included. Throughout the analysis, both income and expenditure-dollar amounts for 1975 and 1985 are expressed in constant 1978 dollars. Two appendices contain statistical information.

  19. Household Vehicles Energy Use: Latest Data and Trends

    Reports and Publications (EIA)

    2005-01-01

    This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

  20. Survey of Recipients of WAP Services Assessment of Household Budget and Energy Behaviors Pre to Post Weatherization DOE

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Rose, Erin M.; Hawkins, Beth A.

    2015-10-01

    This report presents results from the national survey of weatherization recipients. This research was one component of the retrospective and Recovery Act evaluations of the U.S. Department of Energy s Weatherization Assistance Program. Survey respondents were randomly selected from a nationally representative sample of weatherization recipients. The respondents and a comparison group were surveyed just prior to receiving their energy audits and then again approximately 18 months post-weatherization. This report focuses on budget issues faced by WAP households pre- and post-weatherization, whether household energy behaviors changed from pre- to post, the effectiveness of approaches to client energy education, and use and knowledge about thermostats.

  1. Energy Saver Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home cooling accounts for 6 percent of the average household's energy use. To help you save money by saving energy, our experts are answering your home cooling questions. |...

  2. "Table E8.2. Average Prices of Selected Purchased Energy Sources, 1998;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate",,"LPG and",,"Row"

  3. Table 7.1 Average Prices of Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Physical Units." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"

  4. Table 7.2 Average Prices of Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; " " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"

  5. Table 7.2 Average Prices of Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam

  6. Table N8.2. Average Prices of Purchased Energy Sources, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Average Prices of Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural

  7. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other

  8. "Table E8.1. Average Prices of Selected Purchased Energy Sources, 1998;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and",,"RSE" "Economic","Electricity","Fuel Oil","Fuel

  9. Table 7.1 Average Prices of Purchased Energy Sources, 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Coal NAICS TOTAL Acetylene Breeze Total Anthracite Code(a) Subsector and Industry (million Btu) (cu ft) (short tons) (short tons) (short tons) Total United States 311 Food 9.12 0.26 0.00 53.43 90.85 3112 Grain and Oilseed Milling 6.30 0.29 0.00 51.34 50.47 311221 Wet Corn Milling 4.87 0.48 0.00 47.74 50.47 31131 Sugar

  10. Table 7.4 Average Prices of Selected Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate","Natural ","LPG and",,"RSE" "Economic","Electricity","Fuel

  11. Table 7.4 Average Prices of Selected Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Average Prices of Selected Purchased Energy Sources, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: U.S. Dollars per Physical Units. Residual Distillate LPG and Economic Electricity Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal Characteristic(a) (kWh) (gallons) (gallons) (1000 cu ft) (gallons) (short tons) Total United States Value of Shipments and Receipts (million dollars) Under 20 0.093 1.55 2.58 6.64 1.80 78.29 20-49

  12. Table 7.5 Average Prices of Selected Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Row"

  13. Residential energy consumption across different population groups: Comparative analysis for Latino and non-Latino households in U.S.A.

    SciTech Connect (OSTI)

    Poyer, D.A.; Teotia, A.P.S.; Henderson, L.

    1998-05-01

    Residential energy cost, an important part of the household budget, varies significantly across different population groups. In the United States, researchers have conducted many studies of household fuel consumption by fuel type -- electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG) -- and by geographic areas. The results of past research have also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, research shows that residential energy demand by fuel type for Latinos, the fastest-growing population group in the United States, has not been explained by economic and noneconomic factors in any available statistical model. This paper presents a discussion of energy demand and expenditure patterns for Latino and non-Latino households in the United States. The statistical model developed to explain fuel consumption and expenditures for Latino households is based on Stone and Geary`s linear expenditure system model. For comparison, the authors also developed models for energy consumption in non-Latino, black, and nonblack households. These models estimate consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. The study revealed significant variations in the patterns of fuel consumption for Latinos and non-Latinos. The model methodology and results of this research should be useful to energy policymakers in government and industry, researchers, and academicians who are concerned with economic and energy issues related to various population groups.

  14. Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Strategies for Collecting Household Energy Data, Call Slides and Discussion Summary, July 19, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    19, 2012 Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Strategies for Collecting Household Energy Data Call Slides and Discussion Summary Agenda * Call Logistics and Attendance  Is your program getting household energy data? How? * Program Experience and Lessons:  Janelle Beverly and Jeff Hughes, University of North Carolina Environmental Finance Center (http://www.efc.unc.edu/index.html) * Discussion:  What are successful strategies for obtaining

  15. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the

  16. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect (OSTI)

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  17. Fact #671: April 18, 2011 Average Truck Speeds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: April 18, 2011 Average Truck Speeds Fact #671: April 18, 2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major truck routes by tracking more than 500,000 trucks. The average speed of trucks on selected interstate highways is between 50 and 60 miles per hour (mph). The average operating speed of trucks is typically below 55 mph in major urban areas, border crossings, and in mountainous terrain. The difference in average speed between peak traffic

  18. Fact #615: March 22, 2010 Average Vehicle Trip Length | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5: March 22, 2010 Average Vehicle Trip Length Fact #615: March 22, 2010 Average Vehicle Trip Length According to the latest National Household Travel Survey, the average trip length grew to over 10 miles in 2009, just slightly over the 9.9 mile average in 2001. Trips to work in 2009 increased to an average of 12.6 miles. The average trip length has been growing each survey year since the lowest average in 1983. Average Vehicle Trip Length, 1969-2009 Graph showing the average vehicle

  19. Dynamical interpretation of average fission-fragment kinetic energy systematics and nuclear scission

    SciTech Connect (OSTI)

    Nadtochy, P.N. [GSI, Plankstrasse 1, D-64291 Darmstadt (Germany); Omsk State University, Department of Theoretical Physics, Mira Prospect 55-A, RU-644077 Omsk (Russian Federation); Adeev, G.D. [Omsk State University, Department of Theoretical Physics, Mira Prospect 55-A, RU-644077 Omsk (Russian Federation)

    2005-11-01

    A dynamical interpretation of the well-known systematics for average total kinetic energy of fission fragments over a wide range of the Coulomb parameter (600 on the Coulomb parameter. The results of dynamical calculations of within three-dimensional Langevin dynamics show that the mean distance between the centers of mass of nascent fragments at the scission configuration increases linearly with the parameter Z{sup 2}/A{sup 1/3}. This distance changes approximately from 2.35R{sub 0} for {sup 119}Xe to 2.6R{sub 0} for {sup 256}Fm. In spite of this increase in mean distance between future fragments at scission, the linear dependence of on the parameter Z{sup 2}/A{sup 1/3} remains approximately valid over a wide range of the Coulomb parameter Z{sup 2}/A{sup 1/3}.

  20. Assumption to the Annual Energy Outlook 2014 - Residential Demand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    oil, liquefied petroleum gas, natural gas, kerosene, electricity, wood, geothermal, and solar energy. The module's output includes number of households, equipment stock, average...

  1. Fact #565: April 6, 2009 Household Gasoline Expenditures by Income |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: April 6, 2009 Household Gasoline Expenditures by Income Fact #565: April 6, 2009 Household Gasoline Expenditures by Income In the annual Consumer Expenditure Survey, household incomes are grouped into five equal parts called quintiles (each quintile is 20%). Households in the second and third quintiles consistently have a higher share of spending on gasoline each year than households in the other quintiles. Household Gasoline Expenditures by Income Quintile Bar graph

  2. Drivers of U.S. Household Energy Consumption, 1980-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1980-2009 February 2015 Independent Statistics & ... DC 20585 U.S. Energy Information Administration | Drivers ... 9 Total electricity ......

  3. Heating oil and propane households bills to be lower this winter despite recent cold spell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heating oil and propane households bills to be lower this winter despite recent cold spell Despite the recent cold weather, households that use heating oil or propane as their main space heating fuel are still expected to have lower heating bills compared with last winter. In its new monthly forecast, the U.S. Energy Information Administration said the average household that uses heating oil will spend $1,780 this winter that's about $570 less than last winter. Those savings reflect lower crude

  4. Table 2.4 Household Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted)

    U.S. Energy Information Administration (EIA) Indexed Site

    Household 1 Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted) Census Region 2 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 United States Total (does not include wood) 10.56 9.74 9.32 9.29 8.58 9.04 9.13 9.22 10.01 10.25 9.86 10.55 10.18 Natural Gas 5.58 5.31 4.97 5.27 4.74 4.98 4.83 4.86 5.27 5.28 4.84 4.79 4.69 Electricity 3 2.47 2.42 2.48 2.42 2.35 2.48 2.76 3.03 3.28 3.54 3.89 4.35 4.39 Distillate Fuel Oil and Kerosene 2.19

  5. Energy Intensity Indicators: Residential Source Energy Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Source Energy Consumption Energy Intensity Indicators: Residential Source Energy Consumption Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4) energy intensity, and 5) an overall structural component that represents "other explanatory factors." Activity: Since 1970, the number of household (occupied

  6. char_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Household Tables (Million U.S. Households; 24 pages, 122 kb) Contents Pages HC2-1a. Household Characteristics by Climate Zone, Million U.S. Households, 2001 2 HC2-2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 2 HC2-3a. Household Characteristics by Household Income, Million U.S. Households, 2001 2 HC2-4a. Household Characteristics by Type of Housing Unit, Million U.S. Households, 2001 2 HC2-5a. Household Characteristics by Type of Owner-Occupied Housing

  7. Evaporative Cooling Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Hawaii Marine Base Installs Solar Roofs Cooling System Basics Home cooling accounts for 6 percent of the average household's energy use. To help you save money by saving energy, ...

  8. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was

  9. Buildings Energy Data Book: 2.9 Low-Income Housing

    Buildings Energy Data Book [EERE]

    6 Weatherization Costs and Savings - DOE Weatherization program requires that States spend no more than an average of $6,572 per household in PY 2011. All States are using energy audits or priority lists to determine the most cost-effective weatherization measures. - DOE weatherization created an average energy savings of $437 per household, reduced household annual annual consumption by 35% and returned savings of $1.80 per every $1 invested. Source(s): DOE, Weatherization and Intergovernmental

  10. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    4 1 October 2014 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas, heating oil, electricity, and propane will decrease this winter heating season (October 1 through March 31) compared with last winter, which was 11% colder than the previous 10-year average nationally. Projected average household expenditures for propane and heating oil are 27% and 15% lower, respectively, because of lower heating demand and prices.

  11. Short-Term Energy and Winter Fuels Outlook October 2013

    Gasoline and Diesel Fuel Update (EIA)

    3 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas and propane will increase by 13% and 9%, respectively, this winter heating season (October 1 through March 31) compared with last winter. Projected U.S. household expenditures are 2% higher for electricity and 2% lower for heating oil this winter. Although EIA expects average expenditures for households that heat with natural gas will be significantly

  12. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    SciTech Connect (OSTI)

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  13. Question of the Week: What Energy-Saving Improvements are on...

    Broader source: Energy.gov (indexed) [DOE]

    This Month on Energy Savers: November 2011 Home cooling accounts for 6 percent of the average household's energy use. To help you save money by saving energy, our experts are ...

  14. Form EIA-457E (2001) -- Household Bottled Gas Usage

    Gasoline and Diesel Fuel Update (EIA)

    E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information

  15. Form EIA-457E (2001) -- Household Bottled Gas Usage

    Gasoline and Diesel Fuel Update (EIA)

    G (2001) -- Household Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Fuel Oil or Kerosene Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already

  16. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the

  17. Energy Information Administration/Short-Term Energy Outlook - February 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2005 1 Short-Term Energy Outlook February 2005 Winter Fuels Update (Figure 1) Despite some cold weather during the second half of January, expected average consumer prices for heating fuels this heating season are little changed since the January Outlook, leaving projections for household heating fuel expenditures about the same as previously reported. Heating oil expenditures by typical Northeastern households are expected to average 32 percent above last winter's levels, with

  18. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Air Conditioning Tables (Million U.S. Households; 24 pages, 138 kb) Contents Pages HC4-1a. Air Conditioning by Climate Zone, Million U.S. Households, 2001 2 HC4-2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 2 HC4-3a. Air Conditioning by Household Income, Million U.S. Households, 2001 2 HC4-4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 2 HC4-5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2

  19. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Appliances Tables (Million U.S. Households; 60 pages, 240 kb) Contents Pages HC5-1a. Appliances by Climate Zone, Million U.S. Households, 2001 5 HC5-2a. Appliances by Year of Construction, Million U.S. Households, 2001 5 HC5-3a. Appliances by Household Income, Million U.S. Households, 2001 5 HC5-4a. Appliances by Type of Housing Unit, Million U.S. Households, 2001 5 HC5-5a. Appliances by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5 HC5-6a. Appliances by Type of Rented

  20. usage_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Indicators Tables (Million U.S. Households; 60 pages, 247 kb) Contents Pages HC6-1a. Usage Indicators by Climate Zone, Million U.S. Households, 2001 5 HC6-2a. Usage Indicators by Year of Construction, Million U.S. Households, 2001 5 HC6-3a. Usage Indicators by Household Income, Million U.S. Households, 2001 5 HC6-4a. Usage Indicators by Type of Housing Unit, Million U.S. Households, 2001 5 HC6-5a. Usage Indicators by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5

  1. Fact #618: April 12, 2010 Vehicles per Household and Other Demographic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistics | Department of Energy 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics Since 1969, the number of vehicles per household has increased by 66% and the number of vehicles per licensed driver has increased by 47%. The number of workers per household has changed the least of the statistics shown here. There has been a decline in the number of persons per household from 1969 to

  2. Short-Term Energy and Winter Fuels Outlook October 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    3 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights EIA projects average U.S. household expenditures for natural gas and propane will increase by 13%...

  3. #AskEnergySaver: Home Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling #AskEnergySaver: Home Cooling July 24, 2014 - 11:13am Addthis Home cooling accounts for 6 percent of the average household's energy use. To help you save money by saving energy, our experts are answering your home cooling questions. | Photo courtesy of ©iStockphoto/JaniceRichard Home cooling accounts for 6 percent of the average household's energy use. To help you save money by saving energy, our experts are answering your home cooling questions. | Photo courtesy of

  4. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Office Equipment Tables (Million U.S. Households; 12 pages, 123 kb) Contents Pages HC7-1a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 1 HC7-2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 1 HC7-3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 1 HC7-4a. Home Office Equipment by Type of Housing Unit, Million U.S. Households, 2001 1 HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit,

  5. housingunit_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Housing Unit Tables (Million U.S. Households; 49 pages, 210 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 5 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 2001 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 2001 4 HC1-5a. Housing Unit Characteristics by Type of

  6. appl_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  7. spaceheat_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  8. ac_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  9. char_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    9a. Household Characteristics by Northeast Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.5 Total .............................................................. 107.0 20.3 14.8 5.4 NE Household Size 1 Person ...................................................... 28.2 6.0 4.4 1.6 3.5 2 Persons

  10. Purchasing a New Energy-Efficient Central Heating System | Department of

    Energy Savers [EERE]

    Energy Purchasing a New Energy-Efficient Central Heating System Purchasing a New Energy-Efficient Central Heating System October 21, 2008 - 4:00am Addthis John Lippert Energy prices are skyrocketing. According to the Energy Information Administration's October 7, 2008 forecast, heating fuel expenditures for the average household using oil as its primary heating fuel are expected to increase by $449 over last winter. Households using natural gas to heat their homes can expect to pay $155 more

  11. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    Matching: A model-based procedure used to impute for item nonresponse. This method uses logistic models to compute predicted means that are used to statistically match each...

  12. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    were imputed as disposed vehicles. To impute vehicle stock changes in the 1991 RTECS, logistic regression equations were used to compute a predicted probability (or propensity)...

  13. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    a comparison between the 1991 and previous years RTECS designs; (2) the sample design; (3) the data-collection procedures; (4) the Vehicle Identification Number (VIN); (5)...

  14. Household Vehicles Energy Consumption 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    DC, October 1995), Table DL-1B. 5. "Chained dollars" is a measure used to express real prices. Real prices are those that have been adjusted to remove the effect of changes...

  15. Energy Information Administration/Short-Term Energy Outlook - January 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2005 1 Short-Term Energy Outlook January 2005 Winter Fuels Update (Figure 1) Consumer prices for heating fuels are relatively unchanged since the December Outlook, leaving projections for household heating fuel expenditures about the same as previously projected, despite continued warm weather in the middle of the heating season. Heating oil expenditures by typical Northeastern households are expected to average 30 percent above last winter's levels, with residential fuel oil prices

  16. Neutron resonance averaging

    SciTech Connect (OSTI)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  17. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished

  18. Fact #748: October 8, 2012 Components of Household Expenditures on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation, 1984-2010 | Department of Energy 8: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010 Fact #748: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010 The overall share of annual household expenditures for transportation was lower in 2010 than it was in 1984, reaching its lowest point in 2009 at 15.5%. In the early to mid-1980s when oil prices were high, gasoline and motor oil made up a larger share of transportation

  19. Effect of Income on Appliances in U.S. Households, The

    Reports and Publications (EIA)

    2004-01-01

    Entails how people live, the factors that cause the most differences in home lifestyle, including energy use in geographic location, socioeconomics and household income.

  20. Buildings Energy Data Book: 2.9 Low-Income Housing

    Buildings Energy Data Book [EERE]

    0 2005 Average Energy Expenditures per Household Member and per Square Foot, by Weatherization Eligibility ($2010) Members/ Hhold Hhold Total U.S. Households 780 2.6 0.86 Federally Eligible 617 2.7 1.10 Federally Ineligible 844 2.5 0.82 Below 100% Poverty Line 603 2.7 1.14 Source(s): 1,442 EIA, 2005 Residential Energy Consumption Survey: Household Energy Consumption and Expenditures Tables, Oct. 2008, Table US1 part2; EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

  1. Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Vehicles | Department of Energy 7: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles Household vehicle ownership has changed over the last six decades. In 1960, over twenty percent of households did not own a vehicle, but by 2010, that number fell to less than 10%. The number of households with three or more vehicles grew from 2% in 1960 to nearly 20% in 2010. Before 1990,

  2. Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles When a household has more than one vehicle, the secondary vehicles travel fewer miles than the primary vehicle. In a two-vehicle household, the second vehicle travels less than half of the miles that the primary vehicle travels in a day. In a six-vehicle household, the sixth vehicle travels fewer than five miles a day. Daily Vehicle

  3. Energy Information Administration - Energy Efficiency, energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and...

  4. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    0a. Air Conditioning by Midwest Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 20.5 13.6 6.8 2.2 Air Conditioners Not Used ........................... 2.1 0.3 Q Q 27.5 Households Using Electric Air-Conditioning 1

  5. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    1a. Air Conditioning by South Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 37.2 19.3 6.4 11.5 1.5 Air Conditioners Not Used ........................... 2.1 0.4 Q Q Q 28.2 Households Using Electric Air-Conditioning 1

  6. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2a. Air Conditioning by West Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.4 1.2 1.7 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 10.7 3.4 7.2 7.1 Air Conditioners Not Used ........................... 2.1 1.1 0.2 0.9 15.5 Households Using Electric Air-Conditioning 1 ........................................ 80.8 9.6 3.2

  7. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.6 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 82.9 58.7 6.5 12.4 5.3 4.9 Air Conditioners Not Used ............ 2.1 1.1 Q 0.6 Q 21.8 Households Using Electric Air-Conditioning 1

  8. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 36.8 13.6 18.9 13.6 4.3 Air Conditioners Not Used ........................... 2.1 1.2 0.2 0.4 0.3 21.4 Households Using Electric Air-Conditioning 2 ........................................ 80.8 35.6 13.4

  9. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    9a. Air Conditioning by Northeast Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.8 Households With Electric Air-Conditioning Equipment ...................... 82.9 14.5 11.3 3.2 3.3 Air Conditioners Not Used ........................... 2.1 0.3 0.3 Q 28.3 Households Using Electric Air-Conditioning 1

  10. char_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.0 1.2 1.2 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Household Size 1 Person ....................................... 28.2 2.5 4.5 5.1 4.0 3.7 8.3 7.5 2 Persons

  11. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.4 1.9 1.2 1.0 0.6 1.9 0.9 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 47.6 3.0 Households Using Office Equipment .......................... 96.2 13.2 19.8 25.5 37.7

  12. char_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... Income Relative to Poverty Line Below 100 Percent ...... 15.0 13.2 1.8 Q ...

  13. spaceheat_household2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    5a. Space Heating by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Owner- Occupied Units Type of...

  14. A Glance at Chinas Household Consumption

    SciTech Connect (OSTI)

    Shui, Bin

    2009-10-22

    Known for its scale, China is the most populous country with the worlds third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide?range social marketing activities to promote energy conservation.

  15. Shared Solar Projects Powering Households Throughout America | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Shared Solar Projects Powering Households Throughout America Shared Solar Projects Powering Households Throughout America January 31, 2014 - 2:30pm Addthis Shared solar projects allow consumers to take advantage of solar energy’s myriad benefits, even though the system is not located on the consumer’s own rooftop. | Photo courtesy of the Vote Solar Initiative Shared solar projects allow consumers to take advantage of solar energy's myriad benefits, even though the system

  16. Loan Programs for Low- and Moderate-Income Households | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Multifamily and Low-Income Housing Peer Exchange Call Series: Loan Programs for Low- and Moderate-Income Households, March 13, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications EcoHouse Program Overview Strengthening Relationships Between Energy Programs and Housing Programs Targeted Marketing and Program Design for Low- and Moderate-Income Households

  17. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.1 1.2 1.1 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 13.6 16.0 14.7 10.4 10.5 17.6 4.7 Air Conditioners Not Used ............ 2.1 Q 0.3 0.5 0.3 0.4 0.5 27.2 Households Using Electric Air-Conditioning 2

  18. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 59.5 58.7 6.5 12.4 5.3 5.2 Air Conditioners Not Used ............ 1.2 1.1 Q 0.6 Q 23.3 Households Using

  19. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.8 0.5 1.4 1.2 1.6 Households With Electric Air-Conditioning Equipment ........ 23.4 58.7 6.5 12.4 5.3 6.1 Air Conditioners Not Used ............ 0.9 1.1 Q 0.6 Q 23.0 Households Using Electric Air-Conditioning

  20. char_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2001 Household Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.0 1.5 1.5 Total .............................................................. 107.0 7.1 12.3 7.7 6.3 NE Household Size 1 Person ...................................................... 28.2 2.2 2.4 1.8 1.7 7.3 2 Persons .................................................... 35.1 2.2 4.0 2.4 2.0 6.9 3 Persons

  1. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0a. Home Office Equipment by Midwest Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Households Using Office Equipment ......................................... 96.2 22.4 15.7 6.7 1.3 Personal Computers 1 ................................. 60.0

  2. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1a. Home Office Equipment by South Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Households Using Office Equipment ......................................... 96.2 34.6 18.4 6.0 10.1 1.2 Personal Computers 1

  3. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2a. Home Office Equipment by West Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.6 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Households Using Office Equipment ......................................... 96.2 21.4 6.2 15.2 1.0 Personal Computers 1 ................................. 60.0 14.3 4.0 10.4 3.7 Number of

  4. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9a. Home Office Equipment by Northeast Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.1 1.4 1.2 Total .............................................................. 107.0 20.3 14.8 5.4 NE Households Using Office Equipment ......................................... 96.2 17.9 12.8 5.0 1.3 Personal Computers 1 ................................. 60.0 10.9

  5. Fact #748: October 8, 2012 Components of Household Expenditures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Household Expenditures on Transportation, 1984-2010 Fact 748: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010 The overall share of annual household ...

  6. Household heating bills expected to be lower this winter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household heating bills expected to be lower this winter U.S. consumers are expected to pay less this winter on their home heating bills because of lower oil and natural gas prices and projected milder temperatures than last winter. In its new forecast, the U.S. Energy Information Administration said households that rely on heating oil which are mainly located in the Northeast will pay the lowest heating expenditures in 9 years down 25% from last winter as consumers are expected to save about

  7. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    a. Air Conditioning by Climate Zone, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 2.1 1.0 0.9 1.5 1.0 Total Households With Air-Conditioning ........................... 82.9 5.4 20.9 20.2 14.2 22.1 8.1 Air Conditioners Not Used ............ 2.1 Q 0.4 0.3 0.8 0.4 23.2

  8. ac_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.7 1.2 1.2 Households With Electric Air-Conditioning Equipment ...................... 82.9 4.9 6.0 7.4 6.2 2.4 Air Conditioners Not Used ........................... 2.1 0.1 0.8 Q 0.1 23.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 4.7 5.2 7.4 6.1 2.6 Type of Electric Air-Conditioning Used Central

  9. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.2 1.1 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 7.9 Households Using Office Equipment .......................... 96.2 8.4 26.2 21.1 19.0

  10. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.4 1.1 1.1 1.2 1.2 1.0 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Households Using Office Equipment .......................... 96.2 14.9 16.7 17.0 12.2 13.0 22.4 4.4 Personal Computers 2

  11. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2a. Appliances by West Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.7 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 22.1 6.6 15.5 1.1 1

  12. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    No. PB83-199554, 220. Residential Energy Consumption Survey: Household Transportation Panel Monthly Gas Purchases and Vehicle and Household Characteristics, 679-981; Order...

  13. Buildings and Energy in the 1980s

    U.S. Energy Information Administration (EIA) Indexed Site

    conducted in two stages: (1) A Household (RECS)Building (CBECS) Survey and an Energy Suppliers Survey. The HouseholdBuilding Characteristics Survey consists of personal...

  14. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    0a. Appliances by Midwest Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.5 Total .............................................................. 107.0 24.5 17.1 7.4 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 23.8 16.6 7.2 NE 1

  15. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    1a. Appliances by South Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.1 1.4 1.5 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 36.2 19.4 6.4 10.3 1.5 1

  16. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    4a. Appliances by Type of Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.5 1.7 1.6 1.9 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 69.1 9.4 16.7 6.6 4.3 1

  17. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    5a. Appliances by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.4 2.1 3.1 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Kitchen Appliances Cooking Appliances Oven ...........................................

  18. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    6a. Appliances by Type of Rented Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Kitchen Appliances Cooking Appliances Oven ........................................... 33.4 10.1 7.3 14.9 1.1

  19. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    8a. Appliances by Urban/Rural Location, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.9 1.4 1.2 1.3 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.1 Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 47.5 17.5 19.9 16.8 4.2 1

  20. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    9a. Appliances by Northeast Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.3 1.6 Total .............................................................. 107.0 20.3 14.8 5.4 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 19.6 14.5 5.2 1.1 1

  1. homeoffice_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2001 Home Office Equipment RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.0 1.5 1.5 Total .............................................................. 107.0 7.1 12.3 7.7 6.3 NE Households Using Office Equipment ......................................... 96.2 6.2 11.4 6.7 5.9 1.7 Personal Computers 1 ................................. 60.0 3.4 7.9 4.1 3.8 4.4 Number of Desktop PCs 1

  2. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0a. Space Heating by Midwest Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Heat Home .................................................... 106.0 24.5 17.1 7.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.8 No

  3. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1a. Space Heating by South Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.9 1.2 1.4 1.3 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Heat Home .................................................... 106.0 38.8 20.2 6.8 11.8 NE Do Not Heat Home

  4. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2a. Space Heating by West Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.6 1.0 1.6 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Heat Home .................................................... 106.0 22.6 6.7 15.9 NE Do Not Heat Home ....................................... 1.0 0.7 Q 0.7 10.6 No Heating Equipment

  5. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6a. Space Heating by Type of Rented Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Heat Home ..................................... 33.7 10.4 7.4 14.8 1.1 6.9 Do Not Heat Home

  6. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8a. Space Heating by Urban/Rural Location, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.6 0.9 1.3 1.3 1.2 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.3 Heat Home .................................................... 106.0 49.1 18.0 21.2 17.8 4.3 Do Not Heat Home ....................................... 1.0 0.7 0.1 0.1 0.1 25.8 No Heating

  7. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9a. Space Heating by Northeast Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 20.3 14.8 5.4 NE Heat Home .................................................... 106.0 20.1 14.7 5.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.9 No

  8. Table 5.12. U.S. Average Vehicle-Miles Traveled by Household...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 30.8 25.1 28.9 42.6 27.1 Q Q Q 25.2 31.8 23.3 13.7 Below Poverty Line 100 Percent ... 16.6 15.4 16.2 19.5 12.8 Q...

  9. "2014 Average Monthly Bill- Commercial"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (kWh)","Average Price (centskWh)","Average Monthly Bill (Dollar and cents)" "New England",862269,5132.4894,14.699138,754.43169 "Connecticut",155372,6915.4089,15.547557...

  10. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    a. Appliances by Climate Zone, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.1 Total .................................................. 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Kitchen Appliances Cooking Appliances Oven

  11. appl_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    2a. Appliances by Year of Construction, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.5 1.2 1.1 1.2 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 14.3 17.2 17.8 12.9 13.7 25.9 4.2 1

  12. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a. Space Heating by Climate Zone, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.5 1.6 1.1 1.1 1.1 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 8.2 Heat Home ..................................... 106.0 9.2 28.6 23.9 20.7 23.6 8.2 Do Not

  13. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2a. Space Heating by Year of Construction, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.5 1.5 1.1 1.1 1.1 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.3 Heat Home ..................................... 106.0 15.4 18.2 18.6 13.6 13.9 26.4 4.3 Do Not Heat Home ........................

  14. spaceheat_household2001.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4a. Space Heating by Type of Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.7 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.4 Heat Home ..................................... 106.0 73.4 9.4 16.4 6.8 4.5 Do Not Heat Home ........................ 1.0 0.3 Q 0.6 Q 19.0 No

  15. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    C : Q U A L I T Y O F T H E D ATA APPENDIX C A P P E N D I X C QUALITY OF THE DATA INTRODUCTION This section discusses several issues relating to the quality of the National...

  16. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel, diesel motor fuel, electric, and natural gas, excluding propane because NHTSA's CAFE program does not track these vehicles. See Gasoline, Gasohol, Unleaded Gasoline, Leaded...

  17. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    vehicle type, and vehicle model year. "600" - represents a "match" based on EIA expert analysis using subject matter experience, in conjunction with past RTECS. Additionally,...

  18. Household Vehicles Energy Use: Latest Data & Trends

    U.S. Energy Information Administration (EIA) Indexed Site

    Laboratory (ORNL), Engineering Science Technology Division, Center for Transportation Analysis. For 1,262 vehicles, the work conducted by ORNL did not result in a viable annual VMT...

  19. Table HC1.2.2 Living Space Characteristics by Average Floorspace

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Average Floorspace, " " Per Housing Unit and Per Household Member, 2005" ,,"Average Square Feet" ," Housing Units (millions)" ,,"Per Housing Unit",,,"Per Household Member" "Living Space Characteristics",,"Total1","Heated","Cooled","Total1","Heated","Cooled" "Total",111.1,2033,1618,1031,791,630,401 "Total Floorspace (Square

  20. Fact #616: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose Fact #616: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose In 2009, getting to and from work accounted for about 27% of household vehicle-miles of travel (VMT). Work-related business was 8.4% of VMT in 2001, but declined to 6.7% in 2009, possibly due to advancements in computing technology making it possible for more business to be handled electronically. VMT for shopping was almost

  1. DOE/EIA-032171(84) Energy Information Administration Residential...

    Gasoline and Diesel Fuel Update (EIA)

    it was used to screen households for participation in the Household Transportation Panel. 190 1984 RECS: Consumption and Expenditures, National Data Energy Information...

  2. DOE/EIA-0516(85) Energy Information Administration Manufacturing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Order No. PB83- 199554HAA Residential Energy Consumption Survey: HouseholdTransportation Panel Monthly Gas Purchases and Vehicle and Household Characteristics, 6179-9181 * Order...

  3. 2014 Average Monthly Bill- Residential

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (kWh) Average Price (centskWh) Average Monthly Bill (Dollar and cents) New England 6,243,013 630 17.82 112.31 Connecticut 1,459,239 730 19.75 144.10 Maine...

  4. 2014 Average Monthly Bill- Commercial

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (kWh) Average Price (centskWh) Average Monthly Bill (Dollar and cents) New England 862,269 5,132 14.70 754.43 Connecticut 155,372 6,915 15.55 1,075.18 Maine...

  5. Property:SalinityAverage | Open Energy Information

    Open Energy Info (EERE)

    + B Beowawe Hot Springs Geothermal Area + 700 + Blue Mountain Geothermal Area + 4,300 + Brady Hot Springs Geothermal Area + 3,500 + Bruchsal Geothermal Area + 100,000 + C Chena...

  6. Household Response To Dynamic Pricing Of Electricity: A Survey...

    Open Energy Info (EERE)

    Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Household Response To Dynamic...

  7. Tips: Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Tips: Lighting Lighting choices save you money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. Lighting choices save you money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. An average household dedicates about 5% of its energy budget to lighting. Switching to energy-efficient lighting is one of the fastest ways to cut your energy bills. Timers and motion sensors save you even more money by reducing the amount of

  8. How Do You Light Your Home Efficiently? | Department of Energy

    Energy Savers [EERE]

    Light Your Home Efficiently? How Do You Light Your Home Efficiently? July 22, 2009 - 4:30pm Addthis An average household dedicates 11% of its energy budget to lighting. Installing efficient lighting technologies, using task lighting, flipping the switch, and taking advantage of natural daylight can all help you save on your lighting costs. How do you light your home efficiently? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy

  9. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    5 1 October 2015 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas, heating oil, and propane during the upcoming winter heating season (October 1 through March 31) will be 10%, 25%, and 18% lower, respectively, than last winter, because of lower fuel prices and lower heating demand. Forecast lower heating demand and relatively unchanged prices contribute to electricity expenditures that are 3% lower than last winter

  10. Junior Energy | Open Energy Information

    Open Energy Info (EERE)

    York Zip: 10003 Product: New York-based organization working with schools to teach children about practical ways to save energy in their own households and neighborhoods....

  11. High average power pockels cell

    DOE Patents [OSTI]

    Daly, Thomas P. (Pleasanton, CA)

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  12. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    2 Year Built (1) Prior to 1950 74.5 114.9 46.8 24% 1950 to 1969 66.0 96.6 38.1 23% 1970 to 1979 59.4 83.4 33.5 15% 1980 to 1989 51.9 81.4 32.3 14% 1990 to 1999 48.2 94.4 33.7 16% 2000 to 2005 44.7 94.7 34.3 8% Average 58.7 95.0 40.0 Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was

  13. 2014 Average Monthly Bill- Industrial

    Gasoline and Diesel Fuel Update (EIA)

    Industrial (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Number of Customers Average Monthly Consumption (kWh) Average Price (cents/kWh) Average Monthly Bill (Dollar and cents) New England 28,017 56,833 11.84 6,730.30 Connecticut 4,648 63,016 12.92 8,138.94 Maine 3,023 92,554 8.95 8,281.27 Massachusetts 14,896 44,536 12.74 5,674.13 New Hampshire 3,342 49,099 11.93 5,857.27 Rhode Island 1,884 39,241 12.86 5,047.36 Vermont 224 527,528 10.23 53,984.67 Middle Atlantic 44,397

  14. Variable Average Absolute Percent Differences

    Gasoline and Diesel Fuel Update (EIA)

    Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 0.9 45.8 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 37.7 17.3 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 36.6 18.7 Total Petroleum Consumption (Table 4) 7.9 70.7 Crude Oil Production (Table 5) 8.1 51.1 Petroleum Net Imports (Table 6) 24.7 73.8 Natural Gas

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with household appliances, transportation, and their own bodies. However, the nature of energy, energy transformations, and energy conservation are poorly understood, even...

  16. Transferring 2001 National Household Travel Survey

    SciTech Connect (OSTI)

    Hu, Patricia S; Reuscher, Tim; Schmoyer, Richard L; Chin, Shih-Miao

    2007-05-01

    Policy makers rely on transportation statistics, including data on personal travel behavior, to formulate strategic transportation policies, and to improve the safety and efficiency of the U.S. transportation system. Data on personal travel trends are needed to examine the reliability, efficiency, capacity, and flexibility of the Nation's transportation system to meet current demands and to accommodate future demand. These data are also needed to assess the feasibility and efficiency of alternative congestion-mitigating technologies (e.g., high-speed rail, magnetically levitated trains, and intelligent vehicle and highway systems); to evaluate the merits of alternative transportation investment programs; and to assess the energy-use and air-quality impacts of various policies. To address these data needs, the U.S. Department of Transportation (USDOT) initiated an effort in 1969 to collect detailed data on personal travel. The 1969 survey was the first Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990, 1995, and 2001. Data on daily travel were collected in 1969, 1977, 1983, 1990 and 1995. In 2001, the survey was renamed the National Household Travel Survey (NHTS) and it collected both daily and long-distance trips. The 2001 survey was sponsored by three USDOT agencies: Federal Highway Administration (FHWA), Bureau of Transportation Statistics (BTS), and National Highway Traffic Safety Administration (NHTSA). The primary objective of the survey was to collect trip-based data on the nature and characteristics of personal travel so that the relationships between the characteristics of personal travel and the demographics of the traveler can be established. Commercial and institutional travel were not part of the survey. Due to the survey's design, data in the NHTS survey series were not recommended for estimating travel statistics for categories smaller than the combination of Census division (e.g., New England, Middle Atlantic, and Pacific), MSA size, and the availability of rail. Extrapolating NHTS data within small geographic areas could risk developing and subsequently using unreliable estimates. For example, if a planning agency in City X of State Y estimates travel rates and other travel characteristics based on survey data collected from NHTS sample households that were located in City X of State Y, then the agency could risk developing and using unreliable estimates for their planning process. Typically, this limitation significantly increases as the size of an area decreases. That said, the NHTS contains a wealth of information that could allow statistical inferences about small geographic areas, with a pre-determined level of statistical certainty. The question then becomes whether a method can be developed that integrates the NHTS data and other data to estimate key travel characteristics for small geographic areas such as Census tract and transportation analysis zone, and whether this method can outperform other, competing methods.

  17. Crafty Gifts for the Energy Conscious

    Broader source: Energy.gov [DOE]

    Check out these homemade gifts that can help your loved ones be energy efficient in their households.

  18. GTZ Global Energy Program | Open Energy Information

    Open Energy Info (EERE)

    to households, SME and public utility institutions. Key products include access to modern energy services and promotion of new technologies. References "GTZ projects"...

  19. Households to pay more than expected to stay warm this winter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Households to pay more than expected to stay warm this winter Following a colder-than-expected November, U.S. households are forecast to consume more heating fuels than previously expected....resulting in higher heating bills. Homeowners that rely on natural gas will see their total winter expenses rise nearly 13 percent from last winter....while users of electric heat will see a 2.6 percent increase in costs. That's the latest forecast from the U.S. Energy Information Administration. Propane

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    counted and priced. They measure and evaluate energy use and cost of representative household and school electrical items. http:energy.goveereeducationdownloads...

  1. The changing character of household waste in the Czech Republic between 1999 and 2009 as a function of home heating methods

    SciTech Connect (OSTI)

    Dolealov, Markta; Beneov, Libue; Zvodsk, Anita

    2013-09-15

    Highlights: The character of household waste in the three different types of households were assesed. The quantity, density and composition of household waste were determined. The physicochemical characteristics were determined. The changing character of household waste during past 10 years was described. The potential of energy recovery of household waste in Czech republic was assesed. - Abstract: The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural households. Because knowledge about the properties of household waste, as well as its physicochemical characteristics, is very important not only for future waste management, but also for the prediction of the behaviour and influence of the waste on the environment as the country continues to streamline its legislation to the European Unions solid waste mandates, the results of these studies were employed by the Czech Ministry of Environment to optimise the national waste management strategy.

  2. Home Energy Saver v.2.0

    Energy Science and Technology Software Center (OSTI)

    2008-09-01

    A web-based residential energy calculator. Provides customized estimates of residential energy use, energy bills, and CO2 emissions, based on building description information provided by the user. Energy use is estimated by end-use and device, using engineering models. Space heating and cooling use is based on the DOE-2.1E building simulation model. Other end-uses (water heating, appliances, lighting, and miscellaneous equipment) are based on engineering models developed by LBNL. Users can estimate their household carbon footprint andmore » compare it to average vaules for their neighborhood and other regions, displayed using the Google Maps API. Energy bills can be calculated using either average energy price data or actual utility tariffs (including time-of-use) contained in the LBNL Tariff Analysis Project (TAP). HES includes a link to the TAP energy bill calculator web service. The HES software also includes extensive default input data for required user inputs.« less

  3. Material World: Forecasting Household Appliance Ownership in a Growing Global Economy

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2009-03-23

    Over the past years the Lawrence Berkeley National Laboratory (LBNL) has developed an econometric model that predicts appliance ownership at the household level based on macroeconomic variables such as household income (corrected for purchase power parity), electrification, urbanization and climate variables. Hundreds of data points from around the world were collected in order to understand trends in acquisition of new appliances by households, especially in developing countries. The appliances covered by this model are refrigerators, lighting fixtures, air conditioners, washing machines and televisions. The approach followed allows the modeler to construct a bottom-up analysis based at the end use and the household level. It captures the appliance uptake and the saturation effect which will affect the energy demand growth in the residential sector. With this approach, the modeler can also account for stock changes in technology and efficiency as a function of time. This serves two important functions with regard to evaluation of the impact of energy efficiency policies. First, it provides insight into which end uses will be responsible for the largest share of demand growth, and therefore should be policy priorities. Second, it provides a characterization of the rate at which policies affecting new equipment penetrate the appliance stock. Over the past 3 years, this method has been used to support the development of energy demand forecasts at the country, region or global level.

  4. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1978-2014 | Department of Energy 70: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 The Corporate Average Fuel Economy (CAFE) is the sales-weighted harmonic mean fuel economy of a manufacturer's fleet of new cars or light trucks in a certain model year (MY). First enacted by Congress in 1975, the standards for cars began in MY 1978 and for light trucks in MY 1979. In general, the average of all

  5. Table HC1.1.2 Housing Unit Characteristics by Average Floorspace, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Housing Unit Characteristics by Average Floorspace, 2005 " ,,"Average Square Feet per--" ," Housing Units (millions)" ,,"Housing Unit",,,"Household Member" "Housing Unit Characteristics",,"Total1","Heated","Cooled","Total","Heated","Cooled" "Total",111.1,2171,1618,1031,845,630,401 "Census Region and Division" "Northeast",20.6,2334,1664,562,911,649,220

  6. Residential Energy Consumption Survey: Housing Characteristics...

    Gasoline and Diesel Fuel Update (EIA)

    either air or liquid as the working fluid. It does not refer :<: passive collection of solar thermal energy. Fuel Oil Paid by Household: The household paid directly to the fuel...

  7. Lincoln Electric System (Residential)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers several rebates to residential customers who are interested in upgrading to energy efficient household equipment.

  8. " Million U.S. Housing Units" ,,"2005 Household...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Household Income, 2005" " Million U.S. Housing Units" ... to 79,999","80,000 or More" "Water Heating Characteristics" ...

  9. STEO January 2013 - average gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    drivers to see lower average gasoline prices in 2013 and 2014 U.S. retail gasoline prices are expected to decline over the next two years. The average pump price for regular...

  10. Marginal Energy Prices - RECS97 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marginal Energy Prices - RECS97 Update The original estimation of residential marginal energy prices at the individual household level (as reported in the Marginal Energy Prices Report, http://www.eren.doe.gov/buildings/codes_standards/applbrf/pdfs/marginal_ energy_price.pdf) was based on household energy billing data from EIA's 1993 RECS survey. When the 1997 RECS survey data became available, LBNL updated its estimation of residential marginal energy prices at the individual household level

  11. ARM - Evaluation Product - Areal Average Albedo (AREALAVEALB)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAreal Average Albedo (AREALAVEALB) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Areal Average Albedo (AREALAVEALB) [ ARM research - evaluation data product ] The Areal Averaged Albedo VAP yields areal averaged surface spectral albedo estimates from MFRSR measurements collected under fully

  12. IMAT SpA | Open Energy Information

    Open Energy Info (EERE)

    33074 Sector: Renewable Energy, Solar Product: Italy-based company specializing in manufacturing of components for household refrigeration. Their main renewable energy focus is...

  13. 2014 Renewable Energy Markets (REM) Conference

    Broader source: Energy.gov [DOE]

    Renewable Energy Markets (REM) is the clean energy industry's most important annual event focused on the states, businesses, organizations, and households that choose clean, renewable electricity...

  14. Issues in International Energy Consumption Analysis: Canadian...

    U.S. Energy Information Administration (EIA) Indexed Site

    Canadian Energy Demand June 2015 Independent Statistics & ... DC 20585 U.S. Energy Information Administration | Issues ... change in household electricity consumption between 1990 ...

  15. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    9 Northeast Midwest South West National Space Heating 70.3 56.6 20.4 23.8 38.7 Space Cooling 3.6 5.6 13.9 4.0 7.9 Water Heating 21.1 20.4 15.8 21.2 19.0 Refrigerator 5.4 7.0 6.6 5.7 6.3 Other Appliances & Lighting 23.0 25.9 25.0 24.1 24.7 Total (1) 79.9 77.4 95.0 Note(s): Source(s): 2005 Delivered Energy End-Uses for an Average Household, by Region (Million Btu per Household) 122.2 113.5 1) Due to rounding, sums do not add up to totals. EIA, 2005 Residential Energy Consumption Survey, Oct.

  16. MEASUREMENT OF THE AVERAGE ENERGY AND MULTIPLICITY OF PROMPT-FISSION-NEUTRONS FROM 238U(n,f) AND 237 Np(n,f) FROM 1 TO 200 MeV.

    SciTech Connect (OSTI)

    TAIEB,J.; GRANIER, T.; ETHVIGNOT, T.; DEVLIN, M.; HAIGHT, R.C.; NELSON, R.O.; ODONNELL, J.M.; ROCHMAN, D.

    2007-06-28

    Taking advantage of the neutron source of the LANCSE, it has been possible to obtain a measure of the velocity distribution and the number of prompt-neutrons emitted in the neutron-induced fission of {sup 238}U and {sup 237}Np over a broad incident neutron energy range. The mean kinetic energy was extracted and is shown as the function of the incident-neutron energy. We confirm here the observation, for both reactions, of a dip around the second chance fission which is explained by the lower kinetic energy of the pre-fission neutrons. Such a observation is reproduced by Los Alamos model as implemented at Bruyeres le Chatel and by the Maslov model. As far as the neutron multiplicity is concerned, a similar dip is observed. However, such a behavior is not present in data measured by other groups.

  17. Average and effective Q-values for fission product average (n...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections Citation Details In-Document Search Title: Average and...

  18. Nepal-GTZ Energy Efficiency Program | Open Energy Information

    Open Energy Info (EERE)

    1 GTZ is working with Nepal on integration of EE as part of the national energy strategy, development of EE measures for households. References "GTZ projects" Retrieved...

  19. Energy Trust of Oregon Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: Gives grants for the implementation of efficiency improvements and renewable energy sources at a household and utility-scale level. Coordinates: 45.511795,...

  20. Pakistan-GTZ Renewable Energy and Energy Efficiency Promotion...

    Open Energy Info (EERE)

    is working with Pakistan on improvement of energy service supply to households and enterprises through RE use and EE. References "GTZ projects" Retrieved from "http:...

  1. Fact #744: September 10, 2012 Average New Light Vehicle Price Grows Faster

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than Average Used Light Vehicle Price | Department of Energy 4: September 10, 2012 Average New Light Vehicle Price Grows Faster than Average Used Light Vehicle Price Fact #744: September 10, 2012 Average New Light Vehicle Price Grows Faster than Average Used Light Vehicle Price In 2011 the average used light vehicle price was 36% higher than in 1990, while the average new light vehicle price was 67% higher than it was in 1990. The average price of a used vehicle had been between $6,000 and

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Students learn how electrical usage is counted and priced. They measure and evaluate energy use and cost of representative household and school electrical items. http:...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an abstract concept that is very familiar to students from personal experiences with household appliances, transportation, and their own bodies. However, the nature of energy,...

  4. Reynolds-Averaged Navier-Stokes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... References 1 Thorpe TW. A brief review of wave energy. Harwell laboratory, Energy technology support unit; 1999. 2 Cruz J. Ocean wave energy: current status and future ...

  5. Dynamic Multiscale Averaging (DMA) of Turbulent Flow

    SciTech Connect (OSTI)

    Richard W. Johnson

    2012-09-01

    A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical engineering applications.

  6. Laboratory Testing of Demand-Response Enabled Household Appliances

    SciTech Connect (OSTI)

    Sparn, B.; Jin, X.; Earle, L.

    2013-10-01

    With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

  7. Laboratory Testing of Demand-Response Enabled Household Appliances

    SciTech Connect (OSTI)

    Sparn, B.; Jin, X.; Earle, L.

    2013-10-01

    With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses. The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

  8. Reconstructing householder vectors from Tall-Skinny QR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ballard, Grey Malone; Demmel, James; Grigori, Laura; Jacquelin, Mathias; Knight, Nicholas; Nguyen, Hong Diep

    2015-08-05

    The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR produces a different representation of the orthogonal factor and therefore requires more software development to support the new representation. Further, implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a square matrix is more complicated and costly than with the Householder representation. We show how to perform TSQR and then reconstruct the Householder vector representation with the same asymptotic communication efficiency and little extra computational cost. We demonstratemore » the high performance and numerical stability of this algorithm both theoretically and empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits of the communication cost improvements: in particular, our experiments show substantial improvements over tuned library implementations for tall-and-skinny matrices. Furthermore, we also provide algorithmic improvements to the Householder QR and CAQR algorithms, and we investigate several alternatives to the Householder reconstruction algorithm that sacrifice guarantees on numerical stability in some cases in order to obtain higher performance.« less

  9. Reconstructing householder vectors from Tall-Skinny QR

    SciTech Connect (OSTI)

    Ballard, Grey Malone; Demmel, James; Grigori, Laura; Jacquelin, Mathias; Knight, Nicholas; Nguyen, Hong Diep

    2015-08-05

    The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR produces a different representation of the orthogonal factor and therefore requires more software development to support the new representation. Further, implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a square matrix is more complicated and costly than with the Householder representation. We show how to perform TSQR and then reconstruct the Householder vector representation with the same asymptotic communication efficiency and little extra computational cost. We demonstrate the high performance and numerical stability of this algorithm both theoretically and empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits of the communication cost improvements: in particular, our experiments show substantial improvements over tuned library implementations for tall-and-skinny matrices. Furthermore, we also provide algorithmic improvements to the Householder QR and CAQR algorithms, and we investigate several alternatives to the Householder reconstruction algorithm that sacrifice guarantees on numerical stability in some cases in order to obtain higher performance.

  10. "Table HC7.10 Home Appliances Usage Indicators by Household...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ... for 2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ...

  11. The New Energy Future in Indian Country: Confronting Climate Change, Creating Jobs, and Conserving Nature

    Energy Savers [EERE]

    NEW ENERGY FUTURE IN INDIAN COUNTRY: Confr onting Climate Change, Cr eating J obs, and Conser ving Natur e N A T I O N A L W I L D L I F E F E D E R A T I O N 2 0 1 0 * On average, Tribal households pay significantly more in home energy expenses than other Americans. Most utilities are solely owned and operated by non-Tribal entities, so the money paid to energy providers immediately leaves tribal communities. THE NEW ENERGY FUTURE IN INDIAN COUNTRY * The infrastructure and revenue streams

  12. The New Energy Future in Indian Country: Confronting Climate Change, Creating Jobs, and Conserving Nature

    Energy Savers [EERE]

    THE NEW ENERGY FUTURE IN INDIAN COUNTRY: Confronting Climate Change, Creating Jobs, and Conserving Nature N A T I O N A L W I L D L I F E F E D E R A T I O N 2 0 1 0 * On average, Tribal households pay significantly more in home energy expenses than other Americans. Most utilities are solely owned and operated by non-Tribal entities, so the money paid to energy providers immediately leaves tribal communities. THE NEW ENERGY FUTURE IN INDIAN COUNTRY * The infrastructure and revenue streams

  13. Spacetime Average Density (SAD) cosmological measures

    SciTech Connect (OSTI)

    Page, Don N.

    2014-11-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.

  14. Table 2. Percent of Households with Vehicles, Selected Survey...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08...

  15. Form EIA-457E (2001) -- Household Bottled Gas Usage

    U.S. Energy Information Administration (EIA) Indexed Site

    F (2001) -- Household Natural Gas Usage Form OMB No. 1905-0092, Expiring February 29, 2004 ... This report is required by law. The timely submission of Form EIA-457F by those required ...

  16. U.S. Department of Energy, Energy Information Administration...

    U.S. Energy Information Administration (EIA) Indexed Site

    VMT by Income","Table A9. U.S. Average Vehicle-Miles Traveled by Family Income and Poverty Status, 2001 (Thousand Miles per Household)" "Std Errors for A9","Relative Standard...

  17. U.S. Department of Energy, Energy Information Administration...

    U.S. Energy Information Administration (EIA) Indexed Site

    by Income","Table A10. U.S. Average Vehicle Fuel Consumption by Family Income and Poverty Status, 2001 (Gallons per Household) " "Std Errors for A10","Relative Standard Errors...

  18. U.S. average gasoline price up slightly

    Gasoline and Diesel Fuel Update (EIA)

    U.S. average gasoline price up slightly The U.S. average retail price for regular gasoline rose slightly to $3.65 a gallon on Monday. That's up a tenth of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.89 a gallon, down 4.4 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.34 a gallon, down 2.6 cents. Jonathan Cogan for EIA,

  19. Appliance Standby Power and Energy Consumption in South African...

    Open Energy Info (EERE)

    Standby Power and Energy Consumption in South African Households Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Standby Power and Energy Consumption in South...

  20. Residential Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2001,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  1. U.S. Energy Information Administration (EIA) - Ap

    Gasoline and Diesel Fuel Update (EIA)

    and the number of producing facilities Consumption & Efficiency view all Residential Energy Consumption Survey Household end use consumption of energy and expenditures Commercial...

  2. Home Performance with ENERGY STAR -- 10 Years of Continued Growth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Importance of the ENERGY STAR Brand * 84% of households recognized the ENERGY ... pollution and greenhouse gas emissions Brand, Platform, Network, and DOE Resources 12 ...

  3. Increased energy prices: energy savings and equity aspects. Final report

    SciTech Connect (OSTI)

    Herendeen, R.A.

    1983-06-01

    A mathematical model has been developed which approximates the reduction in a household's total energy consumption in response to higher energy prices and different rebate schemes. This model is based on the assumption that energy consumption is a function of a household's real income, prices of different commodities and energy intensities. The amount of energy saved and the change in real expenditure of a household has been calculated for four tax rates; 50%, 100%, 224% and 400%, and five rebate schemes; one regressive, two progressive, one income distribution preserving and the flat per capita rebate. The results indicate that, for a given tax rate, the choice of rebate scheme does not significantly affect the amount of energy conserved by the households. However, the effect of different rebate schemes on a household's real expenditure could be dramatically different.

  4. EERE Success Story—Kingston Creek Hydro Project Powers 100 Households

    Broader source: Energy.gov [DOE]

    Hydropower project produces enough electricity to annually power nearly 100 typical American households.

  5. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    0 2005 Energy End-Use Expenditures for an Average Household, by Region ($2010) Northeast Midwest South West National Space Heating 1,050 721 371 352 575 Air-Conditioning 199 175 456 262 311 Water Heating 373 294 313 318 320 Refrigerators 194 145 146 154 157 Other Appliances and Lighting 827 665 715 716 725 Total (1) 2,554 1,975 1,970 1,655 2,003 Note(s): 1) Due to rounding, end-uses do not sum to totals. Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-15; EIA,

  6. Polarized electron beams at milliampere average current

    SciTech Connect (OSTI)

    Poelker, Matthew

    2013-11-01

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  7. Average summer electric power bills expected to be lowest in...

    U.S. Energy Information Administration (EIA) Indexed Site

    of forecasted milder temperatures compared with last summer is expected to more than offset higher electricity prices. The result is lower power bills for most U.S. households...

  8. Household Vehicles Energy Use: Latest Data and Trends - Table...

    Gasoline and Diesel Fuel Update (EIA)

    ... 9.6 5.0 100 4.4 6.2 4.5 0.8 6.8 4.5 Income Relative to Poverty Line Below 100 Percent... 11.4 6.0 116 5.1 5.6...

  9. Household Vehicles Energy Use: Latest Data and Trends - Table...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    11.5 0.8 1.0 0.9 0.8 0.7 0.8 0.7 1.6 1.4 0.8 0.5 0.2 0.1 0.7 0.4 Income Relative to Poverty Line Below 100 Percent... 13.3 0.3 0.4 0.4 0.6...

  10. Household Vehicles Energy Use: Latest Data and Trends - Table...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 6.5 1.5 15.4 957 1,031 Income Relative to Poverty Line Below 100 Percent... 7.9 1.4 14.7 942 937...

  11. U.S. Energy Department, Pay-Television Industry and Energy Efficiency

    Energy Savers [EERE]

    Groups Announce Set-Top Box Energy Conservation Agreement; Will Cut Energy Use for 90 Million U.S. Households, Save Consumers Billions | Department of Energy Department, Pay-Television Industry and Energy Efficiency Groups Announce Set-Top Box Energy Conservation Agreement; Will Cut Energy Use for 90 Million U.S. Households, Save Consumers Billions U.S. Energy Department, Pay-Television Industry and Energy Efficiency Groups Announce Set-Top Box Energy Conservation Agreement; Will Cut Energy

  12. ,"Selected National Average Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...www.eia.govoilgasnaturalgasdatapublicationsnaturalgasmonthlyngm.html" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The New Jersey Comfort Partners program is a free of charge, direct installation energy efficiency assistance program available to most New Jersey households with significant...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    rental apartment owners. The program is designed to offer rebates on some of the most energy intensive household... Eligibility: Multifamily Residential Savings Category:...

  15. Lincoln Electric System (Residential)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers several rebates to their residential customers who are interested in upgrading to energy efficient household equipment. 

  16. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars and Light

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks | Department of Energy 3: September 19, 2011 Average Vehicle Footprint for Cars and Light Trucks Fact #693: September 19, 2011 Average Vehicle Footprint for Cars and Light Trucks A vehicle footprint is the area defined by the four points where the tires touch the ground. It is calculated as the product of the wheelbase and the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The

  17. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013

    Office of Environmental Management (EM)

    - Dataset | Department of Energy 35: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Fact #835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Excel file with dataset for Fact #835: Average Annual Gasoline Pump Price, 1929-2013 File fotw#835_web.xlsx More Documents & Publications Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Fact #888: August 31, 2015 Historical Gas Prices - Dataset Offshore

  18. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    2 Delivered Energy Consumption Intensities of Public Multi-Family Buildings, by Fuel and Region (Million Btu/Household) Region Electricity Natural Gas Fuel Oil Total Northeast 21.2 34.9 36.2 54.7 Midwest 16.6 36.6 N.A. 51.8 South 39.4 20.0 N.A. 48.5 West 16.6 19.3 N.A. 34.8 National Average 24.6 32.2 51.0

  19. Average and effective Q-values for fission product average (n,2n) and

    Office of Scientific and Technical Information (OSTI)

    (n,3n) reaction cross sections (Technical Report) | SciTech Connect Technical Report: Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections Citation Details In-Document Search Title: Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections Authors: Kawano, Toshihiko [1] + Show Author Affiliations Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) Publication Date: 2015-10-01 OSTI

  20. "Table A25 Average Prices of Selected Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...9,2.854,6.064,2.697,7.596,1.433,4.5 2011," Meat Packing Plants",13.726,1.831,6.035,2.342,5...3,3.116,6.037,3.422,7.083,2.132,4.2 2011," Meat Packing Plants",17.566,"W",5.993,2.818,6.3...

  1. "Table A40. Average Prices of Selected Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...0.054,0.42,0.76,2.93,0.62,32.21,1.7 2011," Meat Packing Plants",0.047,0.34,0.79,2.47,0.45,...,0.072,0.46,0.7,3.57,0.73,52.87,3.6 2011," Meat Packing Plants",0.058," W ",0.6,3.06," W ...

  2. "Table A42. Average Prices of Purchased Energy Sources by...

    U.S. Energy Information Administration (EIA) Indexed Site

    -- "," W ",2.89,4.1 2011," Meat Packing Plants",4.35,0.047,0.047," -- "," ... ",0.51,0.46," -- "," W "," -- ",5.5 2011," Meat Packing Plants",6.19,0.058,0.058," -- "," ...

  3. "Table A25. Average Prices of Selected Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,0.427,0.841,2.778,0.653,31.972,4.5 2011," Meat Packing Plants",0.047,0.274,0.837,2.412,"W...,0.466,0.837,3.525,0.609,47.499,4.2 2011," Meat Packing Plants",0.06,"W",0.831,2.902,0.542...

  4. "Table A42. Average Prices of Purchased Energy Sources by...

    U.S. Energy Information Administration (EIA) Indexed Site

    -- "," W ",2.89,4.1 2011," Meat Packing Plants",4.35,13.71,13.71," -- "," ... ",4.09,3.06," -- "," W "," -- ",5.5 2011," Meat Packing Plants",6.19,16.99,16.99," -- "," ...

  5. "Table A40. Average Prices of Selected Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,15.74,2.79,5.47,2.85,7.15,1.46,1.7 2011," Meat Packing Plants",13.71,2.3,5.66,2.4,5.28," ...",21.06,3.06,5.07,3.47,8.48,2.4,3.6 2011," Meat Packing Plants",16.99," W ",4.31,2.97," W ...

  6. Modeling patterns of hot water use in households

    SciTech Connect (OSTI)

    Lutz, J.D.; Liu, Xiaomin; McMahon, J.E.

    1996-11-01

    This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

  7. Modeling patterns of hot water use in households

    SciTech Connect (OSTI)

    Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

    1996-01-01

    This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

  8. Table 1. Real Average Transportation and Delivered Costs of Coal...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Transportation and Delivered Costs of Coal, By Year and Primary Transport Mode" "Year","Average Transportation Cost of Coal (Dollars per Ton)","Average Delivered Cost...

  9. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The average...

  10. 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions

    Gasoline and Diesel Fuel Update (EIA)

    D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Bottled Gas (LPG or Propane) Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S.

  11. Impacts of different data averaging times on statistical analysis of distributed domestic photovoltaic systems

    SciTech Connect (OSTI)

    Widen, Joakim; Waeckelgaard, Ewa; Paatero, Jukka; Lund, Peter

    2010-03-15

    The trend of increasing application of distributed generation with solar photovoltaics (PV-DG) suggests that a widespread integration in existing low-voltage (LV) grids is possible in the future. With massive integration in LV grids, a major concern is the possible negative impacts of excess power injection from on-site generation. For power-flow simulations of such grid impacts, an important consideration is the time resolution of demand and generation data. This paper investigates the impact of time averaging on high-resolution data series of domestic electricity demand and PV-DG output and on voltages in a simulated LV grid. Effects of 10-minutely and hourly averaging on descriptive statistics and duration curves were determined. Although time averaging has a considerable impact on statistical properties of the demand in individual households, the impact is smaller on aggregate demand, already smoothed from random coincidence, and on PV-DG output. Consequently, the statistical distribution of simulated grid voltages was also robust against time averaging. The overall judgement is that statistical investigation of voltage variations in the presence of PV-DG does not require higher resolution than hourly. (author)

  12. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    1 Type (1) Single-Family: 55.4 106.6 39.4 80.5% Detached 55.0 108.4 39.8 73.9% Attached 60.5 89.3 36.1 6.6% Multi-Family: 78.3 64.1 29.7 14.9% 2 to 4 units 94.3 85.0 35.2 6.3% 5 or more units 69.8 54.4 26.7 8.6% Mobile Homes 74.6 70.4 28.5 4.6% All Housing Types 58.7 95.0 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average

  13. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    SciTech Connect (OSTI)

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    2012-01-01

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

  14. Fact #715: February 20, 2012 The Average Age of Light Vehicles Continues to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rise | Department of Energy 5: February 20, 2012 The Average Age of Light Vehicles Continues to Rise Fact #715: February 20, 2012 The Average Age of Light Vehicles Continues to Rise The average age for cars and light trucks continues to rise as consumers hold onto their vehicles longer. Between 1995 and 2011, the average age for cars increased by 32% from 8.4 years to 11.1 years. For light trucks, the average age increased by 25% during that same period from 8.3 years to 10.4 years. The

  15. Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8: May 21, 2012 Average Trip Length is Less Than Ten Miles Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles The average trip length (one-way) is 9.7 miles according to the 2009 Nationwide Personal Transportation Survey. Trip lengths vary by the purpose of the trip. Shopping and family/personal business are the shortest trips, on average. One-way trips to/from work average 12.2 miles. Trip Length by Purpose, 2009 Graphic showing trip length by purpose,

  16. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy than Midsize Non-Hybrid Cars in 2014 | Department of Energy 9: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014 Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014 For the 2014 model year, midsize hybrid cars averaged 43.4 miles per gallon (mpg) while midsize non-hybrid cars averaged 28.7 mpg; the difference between the two has narrowed due to the rising average

  17. Table HC1-3a. Housing Unit Characteristics by Household Income...

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ... RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral ...

  18. Buildings Energy Data Book: 2.4 Residential Environmental Data

    Buildings Energy Data Book [EERE]

    2 2005 End-Use Carbon Dioxide Emissions Splits for an Average Household, by Region (Pounds of CO2) Northeast Midwest South West National Space Heating Space Cooling Water Heating Refrigerator Other Appliances & Lighting Total Source(s): EIA, A Look at Residential Energy Consumption in 2005, Jul. 2008, Tables CE(2-5)-(9-12)c; EIA, Assumptions to the AEO 2011, July 2011, Table 2, p. 12 for coefficients; EIA, AEO 2012 Early Release, Jan. 2012, Tables 2 and 18. 8,673 10,421 10,722 9,219 9,945

  19. Microsoft Word - 20050821_Appendix_A.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    A9. U.S. Average Vehicle-Miles Traveled by Family Income and Poverty Status, 2001 (Thousand Miles per Household) ENERGY INFORMATION ADMINISTRATION HOUSEHOLD VEHICLES ENERGY USE:...

  20. Microsoft Word - 20050821_Appendix_A.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    0. U.S. Average Vehicle Fuel Consumption by Family Income and Poverty Status, 2001 (Gallons per Household) ENERGY INFORMATION ADMINISTRATION HOUSEHOLD VEHICLES ENERGY USE: LATEST...

  1. DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  2. Energy Savings Week: How Lighting Standards Are Saving You Money...

    Energy Savers [EERE]

    Standards Are Saving You Money Lighting accounts for about 11% of home electricity use (or 7% energy use). Lighting efficiency standards are expected to save households almost ...

  3. DHCD- Multifamily Energy Efficiency and Housing Affordability Program

    Broader source: Energy.gov [DOE]

    Maryland Department of Housing and Community Development (DHCD) provides several programs to increase energy efficiency of multifamily homes of low and moderate income households. These affordable...

  4. FAYETTE COUNTY TRAINS TOMORROW'S WORKFORCE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... WHAT'S NEXT? Fayette County's low-income households (less than 200% of the federal poverty level) continue to receive energy efficiency improvements through the county's ...

  5. Annual average efficiency of a solar thermochemical reactor....

    Office of Scientific and Technical Information (OSTI)

    Annual average efficiency of a solar thermochemical reactor. Citation Details In-Document Search Title: Annual average efficiency of a solar thermochemical reactor. Abstract not ...

  6. High Average Brightness Photocathode Development for FEL Applications...

    Office of Scientific and Technical Information (OSTI)

    Conference: High Average Brightness Photocathode Development for FEL Applications Citation Details In-Document Search Title: High Average Brightness Photocathode Development for...

  7. Small Town Energy Program (STEP) Final Report revised

    SciTech Connect (OSTI)

    Wilson, Charles T.

    2014-01-02

    University Park, Maryland (“UP”) is a small town of 2,540 residents, 919 homes, 2 churches, 1 school, 1 town hall, and 1 breakthrough community energy efficiency initiative: the Small Town Energy Program (“STEP”). STEP was developed with a mission to “create a model community energy transformation program that serves as a roadmap for other small towns across the U.S.” STEP first launched in January 2011 in UP and expanded in July 2012 to the neighboring communities of Hyattsville, Riverdale Park, and College Heights Estates, MD. STEP, which concluded in July 2013, was generously supported by a grant from the U.S. Department of Energy (DOE). The STEP model was designed for replication in other resource-constrained small towns similar to University Park - a sector largely neglected to date in federal and state energy efficiency programs. STEP provided a full suite of activities for replication, including: energy audits and retrofits for residential buildings, financial incentives, a community-based social marketing backbone and local community delivery partners. STEP also included the highly innovative use of an “Energy Coach” who worked one-on-one with clients throughout the program. Please see www.smalltownenergy.org for more information. In less than three years, STEP achieved the following results in University Park: • 30% of community households participated voluntarily in STEP; • 25% of homes received a Home Performance with ENERGY STAR assessment; • 16% of households made energy efficiency improvements to their home; • 64% of households proceeded with an upgrade after their assessment; • 9 Full Time Equivalent jobs were created or retained, and 39 contractors worked on STEP over the course of the project. Estimated Energy Savings - Program Totals kWh Electricity 204,407 Therms Natural Gas 24,800 Gallons of Oil 2,581 Total Estimated MMBTU Saved (Source Energy) 5,474 Total Estimated Annual Energy Cost Savings $61,343 STEP clients who had a home energy upgrade invested on average $4,500, resulting in a 13% reduction in annual energy use and utility bill savings of $325. Rebates and incentives covered 40%-50% of retrofit cost, resulting in an average simple payback of about 7 years. STEP has created a handbook in which are assembled all the key elements that went into the design and delivery of STEP. The target audiences for the handbook include interested citizens, elected officials and municipal staff who want to establish and run their own efficiency program within a small community or neighborhood, using elements, materials and lessons from STEP.

  8. Monthly energy review, September 1995

    SciTech Connect (OSTI)

    1995-09-25

    An ``energy snapshot`` article is included on housing characteristics in 1993 (survey of 7,111 households). The rest of the document is divided into: energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, international energy, and appendices (conversion factors, CO2 emission factors from coal, index, glossary).

  9. Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the First Time in Six Years | Department of Energy 9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years SUBSCRIBE to the Fact of the Week In July of 2015, the nationwide average price of diesel was lower than the average price of a regular gallon of gasoline for the first time since June 2009. Both gasoline and diesel prices fluctuate throughout the

  10. Gasoline price to average below $2 in 2016 for first time in 12 years

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline price to average below $2 in 2016 for first time in 12 years The annual average price for U.S. regular-grade gasoline is expected to fall below $2 per gallon this year for the first time since 2004. In its new monthly forecast, the U.S. Energy Information Administration said drivers will pay on average $1.98 per gallon to fill up at the pump with regular-grade gasoline. EIA expects the monthly average price of gasoline to reach a seven-year low of $1.82 per gallon in February, before

  11. Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price,

    Office of Environmental Management (EM)

    1929-2015 - Dataset | Department of Energy 5: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Excel file and dataset for Average Historical Annual Gasoline Pump Price, 1929-2015 File fotw#915_web.xlsx More Documents & Publications Fact #835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Fact #888: August 31, 2015 Historical Gas Prices -

  12. Commercial viability of hybrid vehicles : best household use and cross national considerations.

    SciTech Connect (OSTI)

    Santini, D. J.; Vyas, A. D.

    1999-07-16

    Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over the conventional vehicle at various fuel prices is illustrated. These results are based on data from various OECD motions on fuel price, annual miles of travel per vehicle, and driving cycles assumed to be applicable in those nations. Scatter in results plotted as a function of average speed, related to details of driving cycles and the vehicles selected for analysis, is discussed.

  13. Average System Cost Methodology : Administrator's Record of Decision.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1984-06-01

    Significant features of average system cost (ASC) methodology adopted are: retention of the jurisdictional approach where retail rate orders of regulartory agencies provide primary data for computing the ASC for utilities participating in the residential exchange; inclusion of transmission costs; exclusion of construction work in progress; use of a utility's weighted cost of debt securities; exclusion of income taxes; simplification of separation procedures for subsidized generation and transmission accounts from other accounts; clarification of ASC methodology rules; more generous review timetable for individual filings; phase-in of reformed methodology; and each exchanging utility must file under the new methodology within 20 days of implementation by the Federal Energy Regulatory Commission of the ten major participating utilities, the revised ASC will substantially only affect three. (PSB)

  14. Building Technologies Office | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How we help households and businesses save energy We lead a vast network of research and industry partners to develop innovative, cost-effective, energy-saving solutions for our ...

  15. A life cycle approach to the management of household food waste - A Swedish full-scale case study

    SciTech Connect (OSTI)

    Bernstad, A.; Cour Jansen, J. la

    2011-08-15

    Research Highlights: > The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in relation to global warming potential, acidification and ozone depilation compared to incineration and composting of food waste. Use of produced biogas as car fuel provides larger environmental benefits compared to a use of biogas for heat and power production. > The use of produced digestate from the anaerobic digestion as substitution for chemical fertilizer on farmland provides avoidance of environmental burdens in the same ratio as the substitution of fossil fuels with produced biogas. > Sensitivity analyses show that results are highly sensitive to assumptions regarding the environmental burdens connected to heat and energy supposedly substituted by the waste treatment. - Abstract: Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6 kg CO{sub 2}-eq/household and year if incineration is utilised, to an avoidance of 5.6 kg CO{sub 2}-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.

  16. Fact #889: September 7, 2015 Average Diesel Price Lower than...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First...

  17. Fact #889: September 7, 2015 Average Diesel Price Lower than...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Excel file and dataset for Average Diesel Price Lower than Gasoline ...

  18. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Excel file with dataset for Fact 835: Average Annual Gasoline Pump Price, 1929-2013 File ...

  19. Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Excel file and dataset for Average Historical Annual Gasoline Pump Price, 1929-2015 File ...

  20. U.S. Energy Information Administration (EIA) - Data

    Gasoline and Diesel Fuel Update (EIA)

    Find statistics on energy consumption and efficiency across all fuel sources. + EXPAND ALL Residential Energy Consumption Survey data Household characteristics Release Date: March 28, 2011 Survey data for occupied primary housing units. Residential Energy Consumption Survey (RECS) Home energy use & costs Release Date: January, 2013 Energy consumption and expenditures by end uses by fuel. Residential Energy Consumption Survey (RECS) Detailed household microdata Release Date: February, 2013

  1. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration (EIA) What's new in our home energy use? RECS 2009 - Release date: March 28, 2011 First results from EIA's 2009 Residential Energy Consumption Survey (RECS) The 2009 RECS collected home energy characteristics data from over 12,000 U.S. households. This report highlights findings from the survey, with details presented in the Household Energy Characteristics tables. How we use energy in our homes has changed substantially over the past three decades.

  2. Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program

    SciTech Connect (OSTI)

    Belzer, D.; Mosey, G.; Dagher, L.; Plympton, P.

    2008-01-01

    Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As a local sponsor for HPwES, Austin Energy's HPwES program offers a complete home energy assessment and a list of recommendations for efficiency improvements, along with cost estimates. The owner can choose to implement only one or the complete set of energy conservation measures. Austin Energy facilitates the process by providing economic incentives to the homeowner through its HPwES Loan program and its HPwES Rebate program. In 2005, the total number of participants in both programs was approximately 1,400. Both programs are only available for improvements made by a participating HPwES contractor. The individual household billing data - encompassing more than 7,000 households - provided by Austin Energy provides a rich data set to estimate the impacts of its HPwES program. The length of the billing histories is sufficient to develop PRISM-type models of electricity use based on several years of monthly bills before and after the installation of the conservation measures. Individual household savings were estimated from a restricted version of a PRISM-type regression model where the reference temperature to define cooling (or heating degree days) was estimated along with other parameters. Because the statistical quality of the regression models varies across individual households, three separate samples were used to measure the aggregate results. The samples were distinguished on the basis of the statistical significance of the estimated (normalized) cooling consumption. A normalized measure of cooling consumption was based on average temperatures observed over the most recent nine-year period ending in 2006. This study provided a statistically rigorous approach to incorporating the variability of expected savings across the households in the sample together with the uncertainty inherent in the regression models used to estimate those savings. While the impact of the regression errors was found to be relatively small in these particular samples, this approach may be useful in future studies using individual household billing data. The median percentage savings for the largest sample of 6,000 households in the analysis was 32%, while the mean savings was 28%. Because the number of households in the sample is very large, the standard error associated with the mean percentage savings are very small, less than 1%. A conservative statement of the average savings is that is falls in the range of 25% to 30% with a high level of certainty. This preliminary analysis provides robust estimates of average program savings, but offers no insight into how savings may vary by type of conservation measure or whether savings vary by the amount of cooling electricity used prior to undertaking the measure. Follow-up researchers may want to analyze the impacts of specific ECMs. Households that use electricity for heating might also be separately analyzed. In potential future work several methodological improvements could also be explored. As mentioned in Section 2, there was no formal attempt to clean the data set of outliers and other abnormal patterns of billing data prior to the statistical analysis. The restriction of a constant reference temperature might also be relaxed. This approach may provide evidence as to whether any 'take-back' efforts are present, whereby thermostat settings are lowered during the summer months after the measures are undertaken (reflected in lower reference temperatures in the post-ECM period). A more extended analysis may also justify the investment in and use of the PRISM software package, which may provide more diagnostic measures with respect to the reference temperature. PRISM also appears to contain some built-in capability to detect outliers and other an

  3. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    SciTech Connect (OSTI)

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

  4. Burlington Electric Department- Multi-Family Rental Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Burlington Electric Department offers an innovative rebate program geared towards rental apartment owners. The program is designed to offer rebates on some of the most energy intensive household...

  5. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    SciTech Connect (OSTI)

    Zhou, Nan; Romankiewicz, John; Fridley, David

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as White Paper 2010, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this years paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  6. U.S. average gasoline prices falling to near $2 in December

    Gasoline and Diesel Fuel Update (EIA)

    U.S. average gasoline prices falling to near $2 in December U.S. retail gasoline prices are expected to continue falling over the next few months, dropping to a national average near $2 per gallon in December. In its new forecast, the U.S. Energy Information Administration said high gasoline production, cheaper winter-grade gasoline, and lower gasoline demand following this summer's peak driving season will contribute to savings at the pump for consumers. The monthly average price for gasoline

  7. Fact #622: May 10, 2010 Average Length of Light Vehicle Ownership |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2: May 10, 2010 Average Length of Light Vehicle Ownership Fact #622: May 10, 2010 Average Length of Light Vehicle Ownership Vehicle owners are holding onto their vehicles for a longer period, according to data from R.L. Polk and Company. The vehicle retention trends show that owners held onto a new vehicle for 56.3 months in 2008, up from 48.4 months six years earlier. New vehicle owners hold onto vehicles about 15 or 16 months longer than used vehicle owners. Average

  8. Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Taxes Each Year? | Department of Energy 4: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? According to the Federal Highway Administration, the average fuel economy for all light vehicles on the road today is 21.4 miles per gallon (mpg). A person owning a gasoline vehicle with that fuel efficiency pays between $137 and $296 in fuel taxes each year, depending

  9. Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the First Time in Six Years - Dataset | Department of Energy 9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Excel file and dataset for Average Diesel Price Lower than Gasoline for the First Time in Six Years File fotw#889_web.xlsx More Documents & Publications Fact #859 February 9, 2015 Excess Supply is the Most Recent

  10. Diesel prices continue to increase … U.S. average over $4

    Gasoline and Diesel Fuel Update (EIA)

    Diesel prices continue to increase - U.S. average over $4 The U.S. average retail price for on-highway diesel fuel broke the 4-dollar mark for the first time since last March. The U.S. retail average rose to $4.02 a gallon. That's up 2.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.39 a gallon, up 1.3 cents from a week ago. Prices were lowest in the Gulf Coast states at 3.81 a

  11. Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price,

    Office of Environmental Management (EM)

    1929-2015 | Department of Energy 915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 SUBSCRIBE to the Fact of the Week When adjusted for inflation, the average annual price of gasoline has fluctuated greatly, and has recently experienced sharp increases and decreases. The effect of the U.S. embargo of oil from Iran can be seen in the early 1980's with the price of gasoline peaking in

  12. Buildings Energy Data Book: 2.9 Low-Income Housing

    Buildings Energy Data Book [EERE]

    2 Energy Burden Definitions Energy burden is an important statistic for policy makers who are considering the need for energy assistance. Energy burden can be defined broadly as the burden placed on household incomes by the cost of energy, or more simply, the ratio of energy expenditures to household income. However, there are different ways to compute energy burden, and different interpretations and uses of the energy burden statistics. DOE Weatherization primarily uses mean individual burden

  13. Tips: Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating and Cooling Tips: Heating and Cooling Household Heating Systems: Although several different types of fuels are available to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy

  14. Flowmeter for determining average rate of flow of liquid in a conduit

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Flowmeter for determining average rate of flow of liquid in a conduit Citation Details In-Document Search Title: Flowmeter for determining average rate of flow of liquid in a conduit × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  15. Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cents per kWh - Without New Dams | Department of Energy Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams November 4, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced up to $30.6 million in Recovery Act funding for the selection of seven hydropower projects that modernize hydropower

  16. U.S. Oxygenated, Average Refiner Gasoline Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - - - - - - 1994-2014 Through Retail Outlets 1994-2006 Sales for Resale, Average - - - - - - 1994-2014 DTW 1994-2006 Rack 1994-2006 Bulk 1994-2006

  17. "Table 2. Real Average Annual Coal Transportation Costs, By Primary...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Annual Coal Transportation Costs, By Primary Transport Mode and Supply Region" "(2013 dollars per ton)" "Coal Supply Region",2008,2009,2010,2011,2012,2013 "Railroad"...

  18. Turning Bayesian model averaging into Bayesian model combination...

    Office of Scientific and Technical Information (OSTI)

    Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James 1 ; Monteith, Kristine 2 ; Seppi, Kevin 2 ; Martinez, Tony 2 + Show Author...

  19. High Average Brightness Photocathode Development for FEL Applications...

    Office of Scientific and Technical Information (OSTI)

    High Average Brightness Photocathode Development for FEL Applications Citation Details ... OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 46

  20. Separate collection of household food waste for anaerobic degradation - Comparison of different techniques from a systems perspective

    SciTech Connect (OSTI)

    Bernstad, A.; Cour Jansen, J. la

    2012-05-15

    Highlight: Black-Right-Pointing-Pointer Four modern and innovative systems for household food waste collection are compared. Black-Right-Pointing-Pointer Direct emissions and resource use were based on full-scale data. Black-Right-Pointing-Pointer Conservation of nutrients/energy content over the system was considered. Black-Right-Pointing-Pointer Systems with high energy/nutrient recovery are most environmentally beneficial. - Abstract: Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4 kg NO{sub 3}{sup -}eq/ton food waste), acidification potential (-0.4 to -1.0 kg SO{sub 2}{sup -}eq/ton food waste), global warming potential (-790 to -960 kg CO{sub 2}{sup -}eq/ton food waste) and primary energy use (-1.7 to -3.6 GJ/ton food waste). Collection with vacuum system results in the largest net avoidance of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidance of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The hot spot identification shows that losses of organic matter in mechanical pretreatment as well as tank connected food waste disposal systems and energy in drying and vacuum systems reply to the largest impact on the results in each system respectively.

  1. EIA - Appendix B: Estimation Methodologies of Household Vehicles...

    U.S. Energy Information Administration (EIA) Indexed Site

    production vehicles in order to assess compliance with Corporate Average Fuel Economy (CAFE) standards. The EPA Composite MPG is based on the assumption of a "typical" vehicle-use...

  2. Energy Impacts of Effective Range Hood Use for all U.S. Residential Cooking

    SciTech Connect (OSTI)

    Logue, Jennifer M; Singer, Brett

    2014-06-01

    Range hood use during residential cooking is essential to maintaining good indoor air quality. However, widespread use will impact the energy demand of the U.S. housing stock. This paper describes a modeling study to determine site energy, source energy, and consumer costs for comprehensive range hood use. To estimate the energy impacts for all 113 million homes in the U.S., we extrapolated from the simulation of a representative weighted sample of 50,000 virtual homes developed from the 2009 Residential Energy Consumption Survey database. A physics-based simulation model that considered fan energy, energy to condition additional incoming air, and the effect on home heating and cooling due to exhausting the heat from cooking was applied to each home. Hoods performing at a level common to hoods currently in U.S. homes would require 19?33 TWh [69?120 PJ] of site energy, 31?53 TWh [110-190 PJ] of source energy; and would cost consumers $1.2?2.1 billion (U.S.$2010) annually in the U.S. housing stock. The average household would spend less than $15 annually. Reducing required airflow, e.g. with designs that promote better pollutant capture has more energy saving potential, on average, than improving fan efficiency.

  3. CONNECTICUT CHALLENGES TOWNS TO REDUCE ENERGY USE

    Broader source: Energy.gov [DOE]

    With both the household use and cost of electricity increasing and an abundance of older homes, Connecticut’s market was ripe for residential energy efficiency upgrades. Through a two-year pilot...

  4. "2014 Average Monthly Bill- Industrial"

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Number of Customers","Average Monthly Consumption (kWh)","Average Price (cents/kWh)","Average Monthly Bill (Dollar and cents)" "New England",28017,56832.854,11.842263,6730.2959 "Connecticut",4648,63016.315,12.915601,8138.9361 "Maine",3023,92553.92,8.9475131,8281.2741

  5. "2014 Average Monthly Bill- Residential"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Number of Customers","Average Monthly Consumption (kWh)","Average Price (cents/kWh)","Average Monthly Bill (Dollar and cents)" "New England",6243013,630.1915,17.822291,112.31456 "Connecticut",1459239,729.69421,19.748254,144.10186 "Maine",706952,549.37782,15.272983,83.90638

  6. U.S. Refiner Sales to End Users (Average) Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Type: Sales to End Users, Average Through Retail Outlets Sales for Resale, Average DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Formulation/ Grade Sales Type Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Conventional, Average 2.161 2.057 1.785 1.759 1.601 1.472 1994-2015 Conventional Regular 2.124 2.018 1.743 1.721 1.562 1.431 1994-2015 Conventional Midgrade 2.325 2.229 1.985 1.923

  7. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2005 Households and Energy Expenditures, by Income Level ($2010) Energy Expenditures by Household Income Households (millions) Household Less than $10,000 9.9 9% $10,000 to $14,999 8.5 8% $15,000 to $19,999 8.4 8% $20,000 to $29,999 15.1 14% $30,000 to $39,999 13.6 12% $40,000 to $49,999 11.0 10% $50,000 to $74,999 19.8 18% $75,000 to $99,999 10.6 10% $100,000 or more 14.2 13% Total 111.1 100% Note(s): Source(s): 7% 1) See Table 2.3.15 for more on energy burdens. 2) A household is defined as a

  8. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards, Model Years 2012-2016 The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model...

  9. Does anyone have access to 2012 average residential rates by...

    Open Energy Info (EERE)

    Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility...

  10. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

  11. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002...

  12. Pennsylvania Average Price of Natural Gas Delivered to Residential...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    67 15.82 17.83 18.62 18.32 NA 1989-2015 Commercial Average Price 10.73 11.25 12.09 11.21 11.10 NA...

  13. High Average Brightness Photocathode Development for FEL Applications

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect High Average Brightness Photocathode Development for FEL Applications Citation Details In-Document Search Title: High Average Brightness Photocathode Development for FEL Applications Authors: Rao T. ; Ben-Zvi I. ; Skarita, J. ; Wang, E. Publication Date: 2013-08-26 OSTI Identifier: 1095687 Report Number(s): BNL--101607-2013-CP KA-04 DOE Contract Number: DE-AC02-98CH10886 Resource Type: Conference Resource Relation: Conference: 35th International Free Electron

  14. Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.

  15. Strongly Coupled Data Assimilation Using Leading Averaged Coupled

    Office of Scientific and Technical Information (OSTI)

    Covariance (LACC). Part II: CGCM experiments (Journal Article) | SciTech Connect Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part II: CGCM experiments Citation Details In-Document Search Title: Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part II: CGCM experiments Authors: Liu, Feiyu ; Liu, Zhengyu ; Zhang, S. ; Liu, Y. ; Jacob, Robert L. Publication Date: 2015-11-01 OSTI Identifier: 1237902 DOE Contract Number:

  16. Study of energy tax and rebate schemes: energy conservation and the question of equity

    SciTech Connect (OSTI)

    Fazel Sarjui, F.

    1983-01-01

    Taxing all kinds of primary energy at the wellhead on a $/Btu basis is suggested. This aims at inducing energy conservation throughout the economic system. To reduce the financial pressure of the tax on consumers, especially the poor, tax revenues could be rebated to households. It has been attempted to design an equitable rebate scheme. A mathematical model was developed that approximates the reduction in a household's total energy consumption in response to higher energy prices and different rebate schemes. This model is based on the assumption that energy consumption is a function of a household's real income, prices of different commodities, and energy intensities. The amount of energy saved and the change in real expenditure of a household was calculated for four tax rates; 50%, 100%, 224% and 400%, and five rebate schemes; one regressive, two progressive, one income distribution preserving and the flat per-capita rebate. The results indicate that, for a given tax rate, the choice of rebate scheme does not significantly affect the amount of energy conserved by the households. However, the effectof different rebate schemes on a household's real expenditure could be dramatically different.

  17. Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method,

    Gasoline and Diesel Fuel Update (EIA)

    Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Continuous 1 Conventional and Other 2 Longwall 3 Total

  18. The U.S. average retail price for on-highway diesel fuel rose this week

    Gasoline and Diesel Fuel Update (EIA)

    The U.S. average retail price for on-highway diesel fuel rose this week The U.S. average retail price for on-highway diesel fuel rose slightly to $3.90 a gallon on Monday. That's up 8-tenths of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region, at 4.16 a gallon, down a penny from a week ago. Prices were lowest in the Rocky Mountain States at $3.68 a gallon, down 1.7

  19. The U.S. average retail price for on-highway diesel fuel rose this week

    Gasoline and Diesel Fuel Update (EIA)

    The U.S. average retail price for on-highway diesel fuel rose this week The U.S. average retail price for on-highway diesel fuel rose to $3.93 a gallon on Monday. That's up 2 ½ cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Prices increased in all regions across the U.S. The highest prices were found in the New England region, at 4.18 a gallon, up 2.3 cents from a week ago. Prices were lowest in the Rocky Mountain States at $3.74 a gallon,

  20. U.S. diesel prices decrease … U.S. average still over $4

    Gasoline and Diesel Fuel Update (EIA)

    U.S. diesel prices decrease - U.S. average still over $4 The U.S. average retail price for on-highway diesel fuel fell to $4.02 a gallon. That's down a tenth of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.39 a gallon, up 3-tenths of a penny from a week ago. Prices were lowest in the Gulf Coast states at 3.79 a gallon, down 1.3 cents.

  1. U.S. diesel prices decrease … U.S. average still over $4

    Gasoline and Diesel Fuel Update (EIA)

    U.S. diesel prices decrease - U.S. average still over $4 The U.S. average retail price for on-highway diesel fuel fell to $4.00 a gallon. That's down 1.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region and Central Atlantic states at 4.31 a gallon, down 4.9 and 3.9 cents, respectively, from a week ago. Prices were lowest in the Gulf Coast states at 3.80 a gallon, down 1.1 cents.

  2. U.S. diesel prices increase … U.S. average still over $4

    Gasoline and Diesel Fuel Update (EIA)

    U.S. diesel prices increase - U.S. average still over $4 The U.S. average retail price for on-highway diesel fuel rose to $4.02 a gallon. That's up half a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.36 a gallon, down 2.7 cents from a week ago. Prices were lowest in the Gulf Coast states at 3.81 a gallon, up 2.1 cents.

  3. Fact #803: November 11, 2013 Average Number of Transmission Gears is on the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rise | Department of Energy 3: November 11, 2013 Average Number of Transmission Gears is on the Rise Fact #803: November 11, 2013 Average Number of Transmission Gears is on the Rise The number of gears a transmission has affects a vehicle's fuel economy and performance. The more gears a vehicle has, the more time the engine spends within an optimal operating range while the vehicle speeds up and slows down. To achieve a better match between engine speed and wheel speed, manufacturers have

  4. Fact #851 December 15, 2014 The Average Number of Gears used in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmissions Continues to Rise | Department of Energy 1 December 15, 2014 The Average Number of Gears used in Transmissions Continues to Rise Fact #851 December 15, 2014 The Average Number of Gears used in Transmissions Continues to Rise The number of gears in a transmission affects a vehicle's fuel economy and performance. The more gears a vehicle has, the more time the engine spends within an optimal operating range while the vehicle speeds up and slows down. To achieve a better match

  5. Builds in U.S. natural gas storage running above five-year average

    Gasoline and Diesel Fuel Update (EIA)

    Builds in U.S. natural gas storage running above five-year average The amount of natural gas put into underground storage since the beginning of the so-called "injection season" in April has been above the five-year average by a wide margin. In its new forecast, the U.S. Energy Information Administration said natural gas inventories, which are running more than 50% above year ago levels, are on track to reach almost 4 trillion cubic feet by the end of October which marks the start of

  6. Monthly energy review, August 1995

    SciTech Connect (OSTI)

    1995-08-24

    Two brief articles are presented: measuring dependence on imported oil; and preliminary estimates of household energy consumption and expenditures in 1993. Then statistical tables are presented: energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. Appendices present thermal conversion factors, metric and other physical conversion factors, CO{sub 2} emission factors for coal, and listing of previous articles. A glossary is also included.

  7. Weatherization assistance for low-income households: An evaluation of local program performance

    SciTech Connect (OSTI)

    Schweitzer, M.; Rayner, S.; Wolfe, A.K.; Mason, T.W.; Ragins, B.R.; Cartor, R.A.

    1987-08-01

    The US Department of Energy's Weatherization Assistance Program (WAP) funds local agencies to provide weatherization services to low-income households. This report describes the most salient features of this program, examines relationships between organization and program outcomes, and presents recommendations for the program's further development. Data were collected by written surveys administered to local weatherization agencies, a telephone survey of 38 states and eight DOE support offices, and site visits to selected local agencies. Locally controlled factors found to be significantly related to program performance include the amount of the weatherization director's time spent on program administration, the use of established client selection criteria, the frequency of evaluation of local goal attainment, and the type of weatherization crews used. Factors controlled at the state or federal levels that influence program performance include delays in state reimbursements of local agency expenditures and local flexibility in the choice of weatherization measures. Data-gathering difficulties experienced during this project indicate a need for possible improvements in goal-setting and record-keeping procedures.

  8. U.S. gasoline price expected to average less than $2 a gallon both this year and next

    Gasoline and Diesel Fuel Update (EIA)

    U.S. gasoline price expected to average less than $2 a gallon both this year and next U.S. drivers are now expected to see back-to-back years of annual average gasoline prices below $2 per gallon for the first time in more than a decade. In its latest monthly forecast, the U.S. Energy Information Administration said low oil prices will keep the average annual price for a gallon of regular-grade gasoline at $1.89 this year and at $1.97 in 2017. The last time gasoline averaged less than $2 for two

  9. Energy Savings Assessment for Digital-to-Analog Converter Boxes

    SciTech Connect (OSTI)

    Cheung, Hoi Ying Iris; Meier, Alan; Brown, Richard

    2011-01-18

    The Digital Television (DTV) Converter Box Coupon Program was administered by the U.S. government to subsidize purchases of digital-to-analog converter boxes, with up to two $40 coupons for each eligible household. In order to qualify as Coupon Eligible Converter Boxes (CECBs), these devices had to meet a number of minimum performance specifications, including energy efficiency standards. The Energy Star Program also established voluntary energy efficiency specifications that are more stringent than the CECB requirements. In this study, we measured the power and energy consumptions for a sample of 12 CECBs (including 6 Energy Star labeled models) in-use in homes and estimated aggregate energy savings produced by the energy efficiency policies. Based on the 35 million coupons redeemed through the end of the program, our analysis indicates that between 2500 and 3700 GWh per year are saved as a result of the energy efficiency policies implemented on digital-to-analog converter boxes. The energy savings generated are equivalent to the annual electricity use of 280,000 average US homes.

  10. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  13. U.S. average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012

    Gasoline and Diesel Fuel Update (EIA)

    average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012 Despite the recent run-up in gasoline prices, the U.S. Energy Information Administration expects falling crude oil prices will lead to a small decline in average motor fuel costs this year compared with last year. The price for regular gasoline is expected to average $3.55 a gallon in 2013 and $3.39 next year, according to EIA's new Short-Term Energy Outlook. That's down from $3.63 a gallon in 2012. For

  14. Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from the open burning of household waste in barrels

    SciTech Connect (OSTI)

    Lemieux, P.M.; Lutes, C.C.; Abbott, J.A.; Aldous, K.M.

    2000-02-01

    Backyard burning of household waste in barrels is a common waste disposal practice for which pollutant emissions have not been well characterized. This study measured the emissions of several pollutants, including polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), from burning mixtures designed to simulate waste generated by a recycling and a nonrecycling family in a 208-L (55-gal) burn barrel at the EPA's Open Burning Test Facility. This paper focuses on the PCDD/PCDF emissions and discusses the factors influencing PCDD/PCDF formation for different test burns. Four test burns were made in which the amount of waste placed in the barrel varied from 6.4 to 13.6 kg and the amount actually burned varied from 46.6% to 68.1%. Emissions of total PCDDs/PCDFs ranged between 0.0046 and 0.48 mg/kg of waste burned. Emissions are also presented in terms of 2,3,7,8-TCDD toxic equivalents. Emissions of PCDDs/PCDFs appear to correlate with both copper and hydrochloric acid emissions. The results of this study indicate that backyard burning emits more PCDDs/PCDFs on a mass of refuse burned basis than various types of municipal waste combustors (MWCs). Comparison of burn barrel emissions to emissions from a hypothetical modern MWC equipped with high-efficiency flue gas cleaning technology indicates that about 2--40 households burning their trash daily in barrels can produce average PCDD/PCDF emissions comparable to a 182,000 kg/day (200 ton/day) MWC facility. This study provides important data on a potentially significant source of emissions of PCDDs/PCDFs.

  15. High average power scaleable thin-disk laser

    DOE Patents [OSTI]

    Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Bibeau, Camille (Dublin, CA); Payne, Stephen A. (Castro Valley, CA); Powell, Howard (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  16. Turning Bayesian model averaging into Bayesian model combination

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Turning Bayesian model averaging into Bayesian model combination Citation Details In-Document Search Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James [1] ; Monteith, Kristine [2] ; Seppi, Kevin [2] ; Martinez, Tony [2] + Show Author Affiliations Los Alamos National Laboratory BYU Publication Date: 2011-07-28 OSTI Identifier: 1084524 Report Number(s): LA-UR-11-04419; LA-UR-11-4419 DOE Contract Number: AC52-06NA25396

  17. Turning Bayesian model averaging into Bayesian model combination

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Turning Bayesian model averaging into Bayesian model combination Citation Details In-Document Search Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James [1] ; Monteith, Kristine [2] ; Seppi, Kevin [2] ; Martinez, Tony [2] + Show Author Affiliations Los Alamos National Laboratory BYU Publication Date: 2011-07-28 OSTI Identifier: 1084524 Report Number(s): LA-UR-11-04419; LA-UR-11-4419 DOE Contract Number: AC52-06NA25396

  18. Table 5.10. U.S. Average Vehicle Fuel Consumption by Family...

    U.S. Energy Information Administration (EIA) Indexed Site

    1993 Household Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  19. Table 5.9. U.S. Average Vehicle-Miles Traveled by Family Income...

    U.S. Energy Information Administration (EIA) Indexed Site

    1993 Household Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  20. Buildings Energy Data Book: 2.9 Low-Income Housing

    Buildings Energy Data Book [EERE]

    Program Definitions DOE Weatherization: Department of Energy's Weatherization Assistance Program DOE Weatherization Eligible Households: Households with incomes at or below 125% of the Federal poverty level, which varies by family size; however, a State may instead elect to use the LIHEAP income standard if its State LIHEAP income standard is at least 125% of the Federal poverty level. Data listed in this chapter include previously weatherized units. DOE Weatherization Eligible Households are a

  1. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national energy security by developing energy sources with limited impacts on environment improving efficiency and reliability of nation's energy infrastructure Research...

  2. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2013

    SciTech Connect (OSTI)

    Meyers, Stephen; Williams, Alison; Chan, Peter

    2014-06-30

    This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2013. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2013, the standards saved an estimated 4.05 quads of primary energy, which is equivalent to 4% of total U.S. energy consumption. The savings in operating costs for households and businesses totaled $56 billion. The average household saved $361 in operating costs as a result of residential and plumbing product standards. The estimated reduction in CO{sub 2} emissions associated with the standards in 2013 was 218 million metric tons, which is equivalent to 4% of total U.S. CO{sub 2} emissions. The estimated cumulative energy savings over the period 1990-2090 amount to 181 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a past and projected cumulative net present value (NPV) of consumer benefit of between $1,271 billion and $1,487 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.9 trillion gallons in 2013, and will achieve cumulative water savings by 2090 of 55 trillion gallons. The estimated consumer savings in 2013 from reduced water use amounted to $16 billon.

  3. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  4. Parity-violating anomalies and the stationarity of stochastic averages

    SciTech Connect (OSTI)

    Reuter, M.

    1988-01-15

    Within the framework of stochastic quantization the parity-violating anomalies in odd space-time dimensions are derived from the asymptotic stationarity of the stochastic average of a certain fermion bilinear. Contrary to earlier attempts, this method yields the correct anomalies for both massive and massless fermions.

  5. Speckle averaging system for laser raster-scan image projection

    DOE Patents [OSTI]

    Tiszauer, Detlev H. (Tracy, CA); Hackel, Lloyd A. (Livermore, CA)

    1998-03-17

    The viewers' perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts.

  6. Speckle averaging system for laser raster-scan image projection

    DOE Patents [OSTI]

    Tiszauer, D.H.; Hackel, L.A.

    1998-03-17

    The viewers` perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts. 5 figs.

  7. Florida Average Price of Natural Gas Delivered to Residential and

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers by Local Distribution and Markete 4.58 24.59 24.41 23.37 21.56 19.15 1989-2015 Commercial Average Price 10.92 10.91 11.15 10.61 10.69 10.89

  8. Georgia Average Price of Natural Gas Delivered to Residential and

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers by Local Distribution and Markete 5.45 24.78 25.75 20.43 15.20 14.41 1989-2015 Commercial Average Price 9.08 9.07 9.38 8.65 9.72 7.80

  9. Virginia Average Price of Natural Gas Delivered to Residential and

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers by Local Distribution and Market 20.25 21.10 19.45 NA 11.72 12.09 1989-2015 Commercial Average Price 8.55 8.58 8.91 8.02 7.57 7.9

  10. Maryland Average Price of Natural Gas Delivered to Residential...

    Gasoline and Diesel Fuel Update (EIA)

    8.35 18.44 19.08 19.39 13.51 12.72 1989-2015 Commercial Average Price 11.74 10.98 11.61 11.11 9.98 9.56...

  11. Michigan Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    2.50 13.65 13.52 13.21 8.93 7.84 1989-2015 Commercial Average Price 8.91 9.31 9.17 9.05 7.46 6.75...

  12. New York Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    6.28 17.10 17.33 17.53 14.26 12.27 1989-2015 Commercial Average Price 6.84 6.08 5.75 5.99 6.27 6.3...

  13. Maryland Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.20 2006-2010 Marketers 13.51 2006-2010 Percent Sold by Local Distribution Companies 81.7 2006-2010 Commercial Average Price 9.87 10.29 10.00 10.06 ...

  14. Florida Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 17.85 2006-2010 Marketers 19.44 2006-2010 Percent Sold by Local Distribution Companies 97.9 2006-2010 Commercial Average Price 10.60 11.14 10.41 10.87 ...

  15. New Jersey Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.77 2006-2010 Marketers 14.87 2006-2010 Percent Sold by Local Distribution Companies 96.6 2006-2010 Commercial Average Price 10.11 9.51 8.50 9.55 ...

  16. Michigan Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Average Price 8.95 9.14 8.35 7.82 8.28 7.49 1967-2015 Local Distribution Companies 10.00 2006-2010 Marketers 7.61 2006-2010 Percent Sold by Local Distribution Companies ...

  17. Virginia Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.64 2006-2010 Marketers 13.64 2006-2010 Percent Sold by Local Distribution Companies 90.9 2006-2010 Commercial Average Price 9.55 9.69 8.77 8.83 9.17 ...

  18. Pennsylvania Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.82 2006-2010 Marketers 13.78 2006-2010 Percent Sold by Local Distribution Companies 91.2 2006-2010 Commercial Average Price 10.47 10.42 10.24 10.11 ...

  19. District of Columbia Average Price of Natural Gas Delivered to...

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price 12.26 12.24 11.19 11.64 12.18 11.55 1980-2015 Local Distribution Companies 12.99 2006-2010 Marketers 12.12 2006-2010 Percent Sold by Local Distribution Companies 16.4 ...

  20. Loan Programs for Low- and Moderate-Income Households | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications EcoHouse Program Overview Strengthening Relationships Between Energy Programs and Housing Programs Targeted Marketing and Program Design for Low- and ...

  1. ENERGY

    Office of Environmental Management (EM)

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http://energy.gov/qtr 2015-01-13 Page 2 The United States faces serious energy-linked challenges as well as substantial energy opportunities. Disruptions, both natural and man-made, threaten our aging energy infrastructure; global patterns of energy use are changing our climate; and our nation's dependence on foreign sources of energy comes at a significant cost to our economy. We need clean,

  2. Guidelines for Home Energy Professionals Project (Fact Sheet), Guidelines For Home Energy Professionals, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Guidelines for Home Energy Professionals Project The U.S. Department of Energy and the home energy upgrade industry collaborate to define high-quality work and develop highly qualified workers. The U.S. Department of Energy's (DOE) Weatherization Assistance Program (WAP) was created in 1976 and has weatherized more than 7.3 million households since its inception. Throughout the years, private industry, public utilities, municipalities, and states have also implemented numerous home energy

  3. Modeling an Application's Theoretical Minimum and Average Transactional Response Times

    SciTech Connect (OSTI)

    Paiz, Mary Rose

    2015-04-01

    The theoretical minimum transactional response time of an application serves as a ba- sis for the expected response time. The lower threshold for the minimum response time represents the minimum amount of time that the application should take to complete a transaction. Knowing the lower threshold is beneficial in detecting anomalies that are re- sults of unsuccessful transactions. On the converse, when an application's response time falls above an upper threshold, there is likely an anomaly in the application that is causing unusual performance issues in the transaction. This report explains how the non-stationary Generalized Extreme Value distribution is used to estimate the lower threshold of an ap- plication's daily minimum transactional response time. It also explains how the seasonal Autoregressive Integrated Moving Average time series model is used to estimate the upper threshold for an application's average transactional response time.

  4. Average dynamics of a finite set of coupled phase oscillators

    SciTech Connect (OSTI)

    Dima, Germn C. Mindlin, Gabriel B.

    2014-06-15

    We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.

  5. Averaging cross section data so we can fit it

    SciTech Connect (OSTI)

    Brown, D.

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  6. Table A44. Average Prices of Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam" ," (kWh)",," (million Btu)" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  7. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    SciTech Connect (OSTI)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  8. Residential Network Members Impact More Than 42,000 Households

    Broader source: Energy.gov [DOE]

    Eligible Better Buildings Residential Network members reported completing 27,563 home energy upgrades during 2013 as part of the Residential Network’s first reporting cycle. In addition, 13 Better...

  9. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    SciTech Connect (OSTI)

    Santarius, Tilman

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may eat up parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential psychological rebound effects. It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough rule of thumb, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  10. BC Hydro Brings Energy Savings to Low-Income Families in Canada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BC Hydro Brings Energy Savings to Low-Income Families in Canada BC Hydro Brings Energy Savings to Low-Income Families in Canada The number of British Columbia, Canada, households ...

  11. Saving Water Saves Energy

    SciTech Connect (OSTI)

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-06-15

    Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.

  12. Saving Energy and Money with Appliance and Equipment Standards...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... save through lower energy bills year after year, and are more than compensated for any higher initial product costs. Today, a typical household saves about 247 per year Saving ...

  13. "Table HC15.3 Household Characteristics by Four Most Populated States, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Household Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Household Size" "1 Person",30,1.8,1.9,2,3.2 "2 Persons",34.8,2.2,2.3,2.4,3.2 "3 Persons",18.4,1.1,1.3,1.2,1.8

  14. "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Energy Outlook Retrospective Review, 2014" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated" "Gross Domestic Product" "Real Gross Domestic Product (Average Cumulative Growth)* (Table 2)",0.9204312786,45.77777778 "Petroleum" "Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a)",37.71300779,17.33333333 "Imported Refiner Acquisition Cost of Crude Oil

  15. Development of a high average current polarized electron source with long cathode operational lifetime

    SciTech Connect (OSTI)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  16. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy /newsroom/_assets/images/energy-icon.png Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. Health Space Computing Energy Earth Materials Science Technology The Lab All The Grid Modernization Initiative represents a comprehensive DOE effort to help shape the future of our nation's grid and solve the challenges of integrating conventional and renewable sources with energy storage and smart buildings. Los

  17. Residential Energy Consumption Survey: Quality Profile

    SciTech Connect (OSTI)

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  18. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,6.799,6.7999,6.9,6.9,6.9,6.9,7,7,7.1,7.1,7.2,7.2,7.2,7.3,7.3,7.4,7.5,7.6 "AEO

  19. Calculation of variable-base degree-days and degree-nights from monthly average temperatures

    SciTech Connect (OSTI)

    Sonderegger, R.; Cleary, P.; Dickinson, B.

    1985-01-01

    The Computerized Instrumented Residential Audit (CIRA), a micro-computer building energy analysis program developed at Lawrence Berkeley Laboratory, uses a monthly variable-base degree-day method to calculate heating and cooling loads. The method's unique feature is its ability to model thermostat setbacks and storage of solar gain. The program accomplishes this by dividing each day into two periods, ''average day'' (8 a.m. to 8 p.m.) and ''average night'' (8 p.m. to 8 a.m.), with different base temperatures. For each mode (heating or cooling) and for each period (day or night), the program reconstructs degree-days as a function of average monthly day or night temperature using three empirical coefficients specific to the location. A comparison is made between degree-days computed from hourly weather tapes and those predicted using this method. The root mean square error between predicted and actual degree days is typically between 3 and 12 degree-days per month. Tables of the coefficients are given for over 150 locations in the United States, computed from hourly dry-bulb temperatures on TRY and TMY tapes. Seasonal predictions of heating and cooling energy budgets using this method show good correspondence to the DOE-2 hourly simulation method.

  20. HIGH AVERAGE CURRENT LOW EMITTANCE BEAM EMPLOYING CW NORMAL CONDUCTING GUN.

    SciTech Connect (OSTI)

    CHANG,X.; BEN-ZVI, I.; KEWISCH, J.; PAI, C.

    2007-06-25

    CW normal conducting guns usually do not achieve very high field gradient and waste much RF power at high field gradient compared to superconducting cavities. But they have less trapped modes and wakefields compared to the superconducting cavities due to their low Q. The external bucking coil can also be applied very close to the cathode to improve the beam quality. By using a low frequency gun with a recessed cathode and a carefully designed beam line we can get a high average current and a high quality beam with acceptable RF power loss on the cavity wall. This paper shows that the CW normal conducting gun can be a backup solution for those projects which need high peak and average current, low emittance electron beams such as the Relativistic Heavy Ion Collider (RHIC) e-cooling project and Energy Recovery Linac (Em) project.

  1. U.S. Conventional, Average Refiner Gasoline Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1.841 2.259 3.008 3.083 2.977 2.778 1994-2014 Through Retail Outlets 1.845 2.264 3.016 3.098 2.997 2.800 1994-2014 Sales for Resale, Average 1.738 2.143 2.841 2.886 2.774 2.587 1994-2014 DTW 1.843 2.270 2.939 3.024 2.825 2.736 1994-2014 Rack 1.750 2.155 2.851 2.887 2.775 2.589 1994-2014 Bulk 1.664 2.069 2.758 2.843 2.755 2.535 1994-2014

  2. U.S. Conventional, Average Refiner Gasoline Prices

    Gasoline and Diesel Fuel Update (EIA)

    161 2.057 1.785 1.759 1.601 1.472 1994-2015 Through Retail Outlets 2.160 2.058 1.786 1.760 1.602 1.472 1994-2015 Sales for Resale, Average 1.975 1.763 1.553 1.513 1.373 1.290 1994-2015 DTW 2.319 2.109 1.812 1.637 1.591 1.532 1994-2015 Rack 1.965 1.759 1.559 1.519 1.372 1.288 1994-2015 Bulk 1.991 1.707 1.449 1.413 1.326 1.254

  3. U.S. Reformulated, Average Refiner Gasoline Prices

    Gasoline and Diesel Fuel Update (EIA)

    660 2.501 2.155 2.007 1.905 1.836 1994-2015 Through Retail Outlets 2.661 2.503 2.157 2.008 1.907 1.837 1994-2015 Sales for Resale, Average 2.283 1.996 1.728 1.651 1.537 1.497 1994-2015 DTW 2.795 2.477 2.128 1.979 1.864 1.854 1994-2015 Rack 2.165 1.886 1.634 1.577 1.459 1.412 1994-2015 Bulk 2.208 1.866 1.645 1.566 1.524 1.456

  4. Table 17. Average Price of U.S. Coke Exports

    Gasoline and Diesel Fuel Update (EIA)

    7. Average Price of U.S. Coke Exports (dollars per short ton) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 234.67 253.60 264.43 252.47 261.48 -3.4 Canada* 209.80 247.54 287.72 243.43 285.74 -14.8 Mexico 460.37 307.48 200.84 305.69 217.48 40.6 Other** 643.59 666.50 577.54 640.63 545.34 17.5 South America Total 135.27 - 465.18 252.87 154.98 63.2 Other** 135.27 - 465.18 252.87 154.98 63.2

  5. Table 19. Average Price of U.S. Coal Imports

    Gasoline and Diesel Fuel Update (EIA)

    9. Average Price of U.S. Coal Imports (dollars per short ton) Year to Date Continent and Country of Origin July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 121.76 122.71 133.33 119.13 130.81 -8.9 Canada 121.76 122.71 133.33 119.13 130.81 -8.9 Mexico - - 209.82 113.43 209.82 -45.9 South America Total 65.22 66.89 76.03 67.64 78.56 -13.9 Colombia 65.34 66.89 75.63 67.59 78.37 -13.8 Peru - 92.99 81.65 86.24 81.65 5.6 Venezuela 57.60 - 90.59

  6. Table 22. Average Price of U.S. Coke Imports

    Gasoline and Diesel Fuel Update (EIA)

    2. Average Price of U.S. Coke Imports (dollars per short ton) Year to Date Continent and Country of Origin July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 120.37 192.95 189.61 131.75 96.81 36.1 Canada 120.37 192.95 189.61 131.75 96.81 36.1 South America Total 201.39 274.73 223.17 202.76 223.17 -9.1 Colombia 201.39 274.73 223.17 202.76 223.17 -9.1 Europe Total 120.34 302.86 363.18 153.02 397.65 -61.5 Czech Republic - 288.36 - 288.36 - -

  7. Table 8. Average Price of U.S. Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    8. Average Price of U.S. Coal Exports (dollars per short ton) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 82.44 83.85 79.86 81.55 76.14 7.1 Canada* 89.71 89.92 84.62 88.24 75.55 16.8 Dominican Republic 77.11 78.67 56.46 84.15 53.14 58.4 Guatemala 34.59 103.41 - 45.24 81.92 -44.8 Honduras 45.36 45.36 54.43 47.54 54.43 -12.7 Jamaica 80.74 90.72 55.34 73.19 54.88 33.4 Mexico 74.06 75.06

  8. Gauge and averaging in gravitational self-force

    SciTech Connect (OSTI)

    Gralla, Samuel E.

    2011-10-15

    A difficulty with previous treatments of the gravitational self-force is that an explicit formula for the force is available only in a particular gauge (Lorenz gauge), where the force in other gauges must be found through a transformation law once the Lorenz-gauge force is known. For a class of gauges satisfying a 'parity condition' ensuring that the Hamiltonian center of mass of the particle is well-defined, I show that the gravitational self-force is always given by the angle average of the bare gravitational force. To derive this result I replace the computational strategy of previous work with a new approach, wherein the form of the force is first fixed up to a gauge-invariant piece by simple manipulations, and then that piece is determined by working in a gauge designed specifically to simplify the computation. This offers significant computational savings over the Lorenz gauge, since the Hadamard expansion is avoided entirely and the metric perturbation takes a very simple form. I also show that the rest mass of the particle does not evolve due to first-order self-force effects. Finally, I consider the 'mode sum regularization' scheme for computing the self-force in black hole background spacetimes, and use the angle-average form of the force to show that the same mode-by-mode subtraction may be performed in all parity-regular gauges. It appears plausible that suitably modified versions of the Regge-Wheeler and radiation gauges (convenient to Schwarzschild and Kerr, respectively) are in this class.

  9. Contact Us - U.S. Energy Information Administration (EIA) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) Energy Consumption, End Uses and Efficiency Contacts Fax: (202)-586-0018 Alternative Fuels Cynthia Amezcua 202-586-1658 cynthia.amezcua@eia.gov Commercial Buildings Joelle Michaels 202-586-8952 joelle.michaels@eia.gov Energy Efficiency William McNary 202-586-6828 william.mcnary@eia.gov Home and Household Energy Use James Berry 202-586-5543 james.berry@eia.gov Household Vehicles Robert Adler 202-586-1134 bob.adler@eia.gov Manufacturing Energy Use Tom Lorenz

  10. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOE Patents [OSTI]

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  11. Average monthly gasoline price to fall to $3.43 by September

    Gasoline and Diesel Fuel Update (EIA)

    monthly gasoline price to fall to $3.43 by September The U.S. average monthly retail price of gasoline is expected to decline by about 18 cents per gallon between May and September, according to the new forecast from the U.S. Energy Information Administration. The lower price reflects, in part, slightly lower crude oil prices that account for about two-thirds of the cost at the pump. The largest price drops are expected in the Midwest states as refineries serving that region, which had been down

  12. Issues in International Energy Consumption Analysis: Canadian Energy Demand

    Reports and Publications (EIA)

    2015-01-01

    The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site energy consumption. Between 1990 and 2009, Canadian household energy consumption grew by less than 11%. Nonetheless, households contributed to 14.6% of total energy-related greenhouse gas emissions in Canada in 2009 (computed from NRCan 2012). This is the U.S. Energy Information Administrations second study to help provide a better understanding of the factors impacting residential energy consumption and intensity in North America (mainly the United States and Canada) by using similar methodology for analyses in both countries.

  13. Buildings Energy Data Book: 2.9 Low-Income Housing

    Buildings Energy Data Book [EERE]

    4 Weatherization Population Facts - Roughly 25% of Federally eligible households move in and out of poverty "classification" each year. - The average income of Federally eligible households in FY 2005 was $16,264, based on RECS and Bureau of the Census' Current Population Survey (CPS) data. - States target the neediest, especially the elderly, persons with disabilities, and families with children. - Since the inception of the Weatherization Assistance Program in 1976, over 6.3 million

  14. Table 14a. Average Electricity Prices, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 6.80 6.80 6.90 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 7.20 7.20 7.30 7.30 7.40 7.50 7.60 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20

  15. Ensemble bayesian model averaging using markov chain Monte Carlo sampling

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Diks, Cees G H; Clark, Martyn P

    2008-01-01

    Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

  16. High average power magnetic modulator for copper lasers

    SciTech Connect (OSTI)

    Cook, E.G.; Ball, D.G.; Birx, D.L.; Branum, J.D.; Peluso, S.E.; Langford, M.D.; Speer, R.D.; Sullivan, J.R.; Woods, P.G.

    1991-06-14

    Magnetic compression circuits show the promise of long life for operation at high average powers and high repetition rates. When the Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory needed new modulators to drive their higher power copper lasers in the Laser Demonstration Facility (LDF), existing technology using thyratron switched capacitor inversion circuits did not meet the goal for long lifetimes at the required power levels. We have demonstrated that magnetic compression circuits can achieve this goal. Improving thyratron lifetime is achieved by increasing the thyratron conduction time, thereby reducing the effect of cathode depletion. This paper describes a three stage magnetic modulator designed to provide a 60 kV pulse to a copper laser at a 4. 5 kHz repetition rate. This modulator operates at 34 kW input power and has exhibited MTBF of {approx}1000 hours when using thyratrons and even longer MTBFs with a series of stack of SCRs for the main switch. Within this paper, the electrical and mechanical designs for the magnetic compression circuits are discussed as are the important performance parameters of lifetime and jitter. Ancillary circuits such as the charge circuit and reset circuit are shown. 8 refs., 5 figs., 1 tab.

  17. Green Button: Enabling Energy Innovation | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Button: Enabling Energy Innovation Green Button: Enabling Energy Innovation May 9, 2013 - 2:35pm Addthis Monisha Shah White House Council on Environmental Quality Nick Sinai U.S. Deputy Chief Technology Officer, White House Office of Science and Technology Policy What does this mean for me? Households and businesses can more easily use web and smartphone apps to pick the best rate plan for them. Consumers can take advantage of customized energy efficiency tips for their homes and businesses.

  18. Table 2.5 Household Energy Consumption and Expenditures by End...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Space Heating Air Conditioning Water Heating Appliances, 2 Electronics, and Lighting Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Electricity 3 Natural Gas Elec- tricity ...

  19. Buildings Energy Data Book: 5.4 Water Heaters

    Buildings Energy Data Book [EERE]

    1 Water Heater Stock for Residential Buildings, By Fuel Type Electric Natural Gas Fuel Oil Propane/LPG Other 0.2 0.2% Total (1) Note(s): Souce(s): According to RECS, 1.1 million households did not use hot water.The total only includes those households that used hot water. EIA, Residential Energy Consumption Survey 2005, Table HC 2.8, June 2008. 4.0 3.6% 4.0 3.6% 110.0 100.0% Households in 2005 (millions) Percent 43.1 39.2% 58.7 53.4%

  20. Proceedings of the 1991 Socioeconomic Energy Research and Analysis Conference

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    These proceedings analyze US energy policy as it pertains to minority groups. Example topics include: Economic impacts of the National Energy Strategy on minority and majority households, Utility measures to assist payment-troubled customers, Equity impacts of controlling energy usage through market-based versus regulatory approaches, Technical and planning support for the DOE-HUD initiative for energy efficiency in housing, an analysis of residential energy consumption and expenditures by minority households by home type and housing vintage, and methodical issues in evaluating integrated least cost planning programs.

  1. Energy

    Office of Legacy Management (LM)

    ..) ".. _,; ,' . ' , ,; Depar?.me.nt ,of.' Energy Washington; DC 20585 : . ' , - $$ o"\ ' ~' ,' DEC ?;$ ;y4,,, ~ ' .~ The Honorable John Kalwitz , 200 E. Wells Street Milwaukee, W~isconsin 53202, . . i :. Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach 'to,openness in " the Department of Ene~rgy (DOE) and its communications with'the public. In -. support of~this initiative, we areipleased to forward the enclosed information

  2. Table 2.6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009 Appliance Year Change 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 1980 to 2009 Total Households (millions) 77 78 82 83 84 86 91 94 97 101 107 111 114 32 Percent of Households<//td> Space Heating - Main Fuel 1 Natural Gas 55 55 55 56 57 55 55 55 53 52 55 52 50 -5 Electricity 2 16 17 18 17 16 17 20 23 26 29 29 30 35 17 Liquefied Petroleum Gases 4 5 5 4 5 5 5 5 5 5 5 5 5 0 Distillate

  3. "Table A29. Average Prices of Selected Purchased Energy Sources by Census"

    U.S. Energy Information Administration (EIA) Indexed Site

    1" " (Estimates in Dollars per Physical Unit)" " "," ","Residual","Distillate ","Natural"," "," ","RSE" " ","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","Row" "Economic Characteristics(a)","(kWh)","(gallon)","(gallon)","(1000 cu

  4. "Table A29. Average Prices of Selected Purchased Energy Sources by Census"

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Dollars per Million Btu)" " "," "," "," "," "," "," ","RSE" " "," ","Residual","Distillate","Natural"," "," ","Row" "Economic Characteristics(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","Factors"

  5. High energy, high average power solid state green or UV laser

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  6. The importance of China's household sector for black carbon emissions - article no. L12708

    SciTech Connect (OSTI)

    Streets, D.G.; Aunan, K.

    2005-06-30

    The combustion of coal and biofuels in Chinese households is a large source of black carbon (BC), representing about 10-15% of total global emissions during the past two decades, depending on the year. How the Chinese household sector develops during the next 50 years will have an important bearing on future aerosol concentrations, because the range of possible outcomes (about 550 Gg yr{sup -1}) is greater than total BC emissions in either the United States or Europe (each about 400-500 Gg yr{sup -1}). In some Intergovernmental Panel on Climate Change scenarios biofuels persist in rural China for at least the next 50 years, whereas in other scenarios a transition to cleaner fuels and technologies effectively mitigates BC emissions. This paper discusses measures and policies that would help this transition and also raises the possibility of including BC emission reductions as a post-Kyoto option for China and other developing countries.

  7. Characterization of household hazardous waste from Marin County, California, and New Orleans, Louisiana

    SciTech Connect (OSTI)

    Rathje, W.L.; Wilson, D.C.; Lambou, V.W.; Herndon, R.C.

    1987-09-01

    There is a growing concern that certain constituents of common household products, that are discarded in residential garbage, may be potentially harmful to human health and the environment by adversely affecting the quality of ground and surface water. A survey of hazardous wastes in residential garbage from Marin County, California, and New Orleans, Louisiana, was conducted in order to determine the amount and characteristics of such wastes that are entering municipal landfills. The results of the survey indicate that approximately 642 metric tons of hazardous waste are discarded per year for the New Orleans study area and approximately 259 metric tons are discarded per year for the Marin County study area. Even though the percent of hazardous household waste in the garbage discarded in both study areas was less than 1%, it represents a significant quantity of hazardous waste because of the large volume of garbage involved.

  8. Fact #747: October 1, 2012 Behind Housing, Transportation is the Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Household Expenditure | Department of Energy 7: October 1, 2012 Behind Housing, Transportation is the Top Household Expenditure Fact #747: October 1, 2012 Behind Housing, Transportation is the Top Household Expenditure Except for housing, transportation was the largest single expenditure for the average American household in 2010. The average household spends more on transportation in a year than on food. Vehicle purchases, along with gasoline and motor oil, make up a large part of vehicle

  9. Northern Virginia Residents Improve Their Homes' Energy With A Funding

    Energy Savers [EERE]

    Boost | Department of Energy Northern Virginia Residents Improve Their Homes' Energy With A Funding Boost Northern Virginia Residents Improve Their Homes' Energy With A Funding Boost The Northern Virginia Home Energy Makeover Contest logo. The Local Energy Alliance Program (LEAP) awarded energy efficiency funding to three households as part of the program's Northern Virginia Home Energy Makeover Contest. The three winners, chosen from 1,600 applications, will use their winnings to help fund

  10. Evaluation of bulk paint worker exposure to solvents at household hazardous waste collection events

    SciTech Connect (OSTI)

    Cameron, M.

    1995-09-01

    In fiscal year 93/94, over 250 governmental agencies were involved in the collection of household hazardous wastes in the State of California. During that time, over 3,237,000 lbs. of oil based paint were collected in 9,640 drums. Most of this was in lab pack drums, which can only hold up to 20 one gallon cans. Cost for disposal of such drums is approximately $1000. In contrast, during the same year, 1,228,000 lbs. of flammable liquid were collected in 2,098 drums in bulk form. Incineration of bulked flammable liquids is approximately $135 per drum. Clearly, it is most cost effective to bulk flammable liquids at household hazardous waste events. Currently, this is the procedure used at most Temporary Household Hazardous Waste Collection Facilities (THHWCFs). THHWCFs are regulated by the Department of Toxic Substances Control (DTSC) under the new Permit-by Rule Regulations. These regulations specify certain requirements regarding traffic flow, emergency response notifications and prevention of exposure to the public. The regulations require that THHWCF operators bulk wastes only when the public is not present. [22 CCR, section 67450.4 (e) (2) (A)].Santa Clara County Environmental Health Department sponsors local THHWCF`s and does it`s own bulking. In order to save time and money, a variance from the regulation was requested and an employee monitoring program was initiated to determine actual exposure to workers. Results are presented.

  11. Table 17. Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type,

    Gasoline and Diesel Fuel Update (EIA)

    Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Table 17. Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2013 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2013 Underground Surface Total Mine Production Range (thousand short

  12. Energy

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    M onthly Energy Re< view Ila A a m 0 II 8 IIIW *g U In this issue: New data on nuclear electricity in Eastern Europe (Table 10.4) 9'Ij a - Ordering Information This publication...

  13. How Do You Reduce the Amount of Energy Used by Your Televisions...

    Broader source: Energy.gov (indexed) [DOE]

    changes to television labeling that will help you compare the energy use of different models when you're shopping. Many households have more than one television, and many of those...

  14. Energy Saver 101 Infographic: Home Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Office of Public Affairs Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That...

  15. Increased use of Renewable Energy in Africa through a Program of Energy Enterprise Development and Investment

    SciTech Connect (OSTI)

    Christine Eibs Singer

    2005-03-11

    To provide training in enterprise development and technical applications, local partner capacity building, individualized enterprise development services and seed capital investment to catalyze the creation of sustainable renewable energy enterprises that deliver clean energy services to households and businesses in South Africa, Ethiopia and Tanzania.

  16. Household`s choices of efficiency levels for appliances: Using stated- and revealed-preference data to identify the importance of rebates and financing arrangements

    SciTech Connect (OSTI)

    Train, K.; Atherton, T.

    1994-11-01

    We examine customers` choice between standard and high-efficiency equipment, and the impact of utility incentives such as rebates and loans on this decision. Using data from interviews with 400 households, we identify the factors that customers consider in their choice of efficiency level for appliances and the relative importance of these factors. We build a model that describes customers` choices and can be used to predict choices in future situations under changes in the attributes of appliances and in the utility`s DSM and as part of the appliance-choice component of utilities` end-use forecasting systems. As examples, the model is used to predict the impacts of: doubling the size of rebates, replacing rebates with financing programs, and offering loans and rebates as alternative options for customers.

  17. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    SciTech Connect (OSTI)

    Engel, R. A.' Zoellick, J J.

    2007-07-31

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  18. Energy 101: Wind Turbines | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbines Energy 101: Wind Turbines July 30, 2010 - 10:47am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs On Tuesday, the Department announced a $117 million loan guarantee through for the Kahuku Wind Power Project in Hawaii. That's a major step forward for clean energy in the region, as it's expected to supply clean electricity to roughly 7,700 households per year, and it also invites a deceptively simple question: how exactly do wind turbines

  19. Household magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now which is stronger, gravity or magnetism? What is going on? How do flexible refrigerator magnets work? Get 2 of these magnets, they are often the size of a business card....

  20. #AskEnergySaver: Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating #AskEnergySaver: Home Water Heating March 24, 2014 - 11:35am Addthis Did you know: Water heaters account for nearly 17 percent of a home’s energy use, consuming more energy than all other household appliances combined. For more about water heaters, check out our <a href="/node/612476">Energy Saver 101 home water heating infographic</a>. | Photo by Eric Grigorian, U.S. Department of Energy Solar Decathlon. Did you know: Water heaters account for nearly 17

  1. Energy Department Announces Winners of Housing Innovation Awards |

    Office of Environmental Management (EM)

    Department of Energy Winners of Housing Innovation Awards Energy Department Announces Winners of Housing Innovation Awards October 25, 2013 - 12:00am Addthis The Energy Department announced winners of the first-ever Housing Innovation Awards, recognizing 46 diverse industry leaders bringing the best in energy efficient building technologies and design to new and older homes and helping households save money. The competition, coordinated by the Energy Department's Office of Energy Efficiency

  2. Energy Department Announces Winners of Housing Innovation Awards |

    Office of Environmental Management (EM)

    Department of Energy Announces Winners of Housing Innovation Awards Energy Department Announces Winners of Housing Innovation Awards October 25, 2013 - 1:21pm Addthis The Energy Department announced winners of the first-ever Housing Innovation Awards, recognizing 46 diverse industry leaders bringing the best in energy efficient building technologies and design to new and older homes and helping households save money. The competition, coordinated by the Energy Department's Office of Energy

  3. Table HC6.10 Home Appliances Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    0 Home Appliances Usage Indicators by Number of Household Members, 2005 Total.............................................................................. 111.1 30.0 34.8 18.4 15.9 12.0 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day........................................... 8.2 1.4 1.9 1.4 1.0 2.4 2 Times A Day........................................................ 24.6 4.3 7.6 4.3 4.8 3.7 Once a Day............................................................ 42.3 9.9

  4. Table HC6.11 Home Electronics Characteristics by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    1 Home Electronics Characteristics by Number of Household Members, 2005 Total...................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Personal Computers Do Not Use a Personal Computer ................... 35.5 16.3 9.4 4.0 2.7 3.2 Use a Personal Computer................................ 75.6 13.8 25.4 14.4 13.2 8.8 Number of Desktop PCs 1.................................................................. 50.3 11.9 17.4 8.5 7.3 5.2

  5. Table HC6.12 Home Electronics Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    2 Home Electronics Usage Indicators by Number of Household Members, 2005 Total................................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Personal Computers Do Not Use a Personal Computer............................. 35.5 16.3 9.4 4.0 2.7 3.2 Use a Personal Computer.......................................... 75.6 13.8 25.4 14.4 13.2 8.8 Most-Used Personal Computer Type of PC Desk-top Model.....................................................

  6. Table HC6.2 Living Space Characteristics by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    2 Living Space Characteristics by Number of Household Members, 2005 Total...................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................... 3.2 1.7 0.8 0.4 0.3 Q 500 to 999....................................................... 23.8 10.2 6.4 3.4 2.3 1.5 1,000 to 1,499................................................. 20.8 5.5 6.3 3.0 3.3 2.6 1,500 to

  7. Table HC6.7 Air-Conditioning Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total........................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Cooling Equipment.......................... 17.8 5.4 5.3 2.7 2.5 2.0 Have Cooling Equipment...................................... 93.3 24.6 29.6 15.7 13.4 10.0 Use Cooling Equipment....................................... 91.4 24.0 29.1 15.5 13.2 9.7 Have Equipment But Do Not Use it......................

  8. Table HC6.9 Home Appliances Characteristics by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    HC6.9 Home Appliances Characteristics by Number of Household Members, 2005 Total U.S.............................................................. 111.1 30.0 34.8 18.4 15.9 12.0 Cooking Appliances Conventional Ovens Use an Oven.................................................. 109.6 29.5 34.4 18.2 15.7 11.8 1................................................................. 103.3 28.4 32.0 17.3 14.7 11.0 2 or More.................................................... 6.2 1.1 2.5 1.0 0.9 0.8 Do Not

  9. Assessment of lead contamination in Bahrain environment. I. Analysis of household paint

    SciTech Connect (OSTI)

    Madany, I.M.; Ali, S.M.; Akhter, M.S.

    1987-01-01

    The analysis of lead in household paint collected from various old buildings in Bahrain is reported. The atomic absorption spectrophotometric method, both flame and flameless (graphite furnace) techniques, were used for the analysis. The concentrations of lead in paint were found in the range 200 to 5700 mg/kg, which are low compared to the limit of 0.5% in UK and 0.06% in USA. Nevertheless, these are hazardous. Recommendations are reported in order to avoid paint containing lead. 17 references, 1 table.

  10. Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation

    SciTech Connect (OSTI)

    Shabani, Bahman; Andrews, John; Watkins, Simon

    2010-01-15

    A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

  11. A Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S.

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain

    2014-03-01

    The current state of Deep Energy Retrofit (DER) performance in the U.S. has been assessed in 116 homes in the United States (US), using actual and simulated data gathered from the available domestic literature. Substantial airtightness reductions averaging 63% (n=48) were reported (two- to three-times more than in conventional retrofits), with average post-retrofit airtightness of 4.7 Air Changes per House at 50 Pascal (ACH50) (n=94). Yet, mechanical ventilation was not installed consistently. In order to avoid indoor air quality (IAQ) issues, all future DERs should comply with ASHRAE 62.2-2013 requirements or equivalent. Projects generally achieved good energy results, with average annual net-site and net-source energy savings of 47%20% and 45%24% (n=57 and n=35), respectively, and carbon emission reductions of 47%22% (n=23). Net-energy reductions did not vary reliably with house age, airtightness, or reported project costs, but pre-retrofit energy usage was correlated with total reductions (MMBtu). Annual energy costs were reduced $1,283$804 (n=31), from a pre-retrofit average of $2,738$1,065 to $1,588$561 post-retrofit (n=25 and n=39). The average reported incremental project cost was $40,420$30,358 (n=59). When financed on a 30-year term, the median change in net-homeownership cost was only $1.00 per month, ranging from $149 in savings to an increase of $212 (mean=$15.67$87.74; n=28), and almost half of the projects resulted in reductions in net-cost. The economic value of a DER may be much greater than is suggested by these net-costs, because DERs entail substantial non-energy benefits (NEBs), and retrofit measures may add value to a home at resale similarly to general remodeling, PV panel installation, and green/energy efficient home labels. These results provide estimates of the potential of DERs to address energy use in existing homes across climate zones that can be used in future estimates of the technical potential to reduce household energy use and greenhouse gas emissions through DERs.

  12. Derivation of 24-Hour Average SO2, Background for the Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Derivation of 24-Hour Average SO2, Background for the Update 1 Report Derivation of 24-Hour Average SO2, Background for the Update 1 Report Docket No. EO-05-01. As supporting...

  13. Why Energy Efficiency Upgrades | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why Energy Efficiency Upgrades Why Energy Efficiency Upgrades How We Use Energy in Our Buildings Start with an Energy Evaluation Understand How Typical Home Energy Improvements Can Result in a Better Building Tools and Calculators for Homes Homes and commercial buildings consume 40% of the energy used in the United States. Of the $2,000 the average American spends paying for energy annually, $200 to $400 could be going to waste from drafts, air leaks around openings, and outdated heating and

  14. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration (EIA) How does EIA estimate energy consumption and end uses in U.S. homes? RECS 2009 - Release date: March 28, 2011 EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage patterns, and household demographics. This information is combined with data from energy suppliers to these homes to estimate

  15. Energy Savings Week: How Lighting Standards Are Saving You Money |

    Office of Environmental Management (EM)

    Department of Energy How Lighting Standards Are Saving You Money Energy Savings Week: How Lighting Standards Are Saving You Money December 15, 2015 - 11:42am Addthis Energy Savings Week: How Lighting Standards Are Saving You Money Lighting accounts for about 11% of home electricity use (or 7% energy use). Lighting efficiency standards are expected to save households almost $7 billion in 2015 alone. Lighting accounts for about 11% of home electricity use (or 7% energy use). Lighting

  16. Horizontal-Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Yelena L.; Banta, Robert M.; Kelley, Neil D.; Jonkman, Bonnie J.; Tucker, Sara C.; Newsom, Rob K.; Brewer, W. A.

    2008-08-01

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--has been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAAs High Resolution Doppler Lidar (HRDL), which have been shown to be numerically equivalent to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance ?u2 were computed from HRDL measurements of the line-of-sight (LOS) velocity using a technique described in Banta, et al. (2002). The technique was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. It then describes several series of averaging tests that produced the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal velocity variance ?u2. The results show high correlation (0.71-0.97) of the mean U and average wind speed measured by sodar and in-situ instruments, independent of sampling strategies and averaging procedures. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging techniques.

  17. 2016-03-11 Energy Conservation Program for Consumer Products:

    Office of Environmental Management (EM)

    Representative Average Unit Costs of Energy | Department of Energy -03-11 Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy 2016-03-11 Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy PDF icon Representative Average Unit Costs of Energy More Documents & Publications EA-0819: Finding of No Significant Impact 2016-03-11 Commercial Packaged Boilers_NOPR Webtrends Archives by Fiscal Year - FEMP

  18. Computing the partition function, ensemble averages, and density of states for lattice spin systems by sampling the mean

    SciTech Connect (OSTI)

    Gillespie, Dirk

    2013-10-01

    An algorithm to approximately calculate the partition function (and subsequently ensemble averages) and density of states of lattice spin systems through non-Monte-Carlo random sampling is developed. This algorithm (called the sampling-the-mean algorithm) can be applied to models where the up or down spins at lattice nodes interact to change the spin states of other lattice nodes, especially non-Ising-like models with long-range interactions such as the biological model considered here. Because it is based on the Central Limit Theorem of probability, the sampling-the-mean algorithm also gives estimates of the error in the partition function, ensemble averages, and density of states. Easily implemented parallelization strategies and error minimizing sampling strategies are discussed. The sampling-the-mean method works especially well for relatively small systems, systems with a density of energy states that contains sharp spikes or oscillations, or systems with little a priori knowledge of the density of states.

  19. Twist-averaged boundary conditions for nuclear pasta Hartree-Fock calculations

    SciTech Connect (OSTI)

    Schuetrumpf, B.; Nazarewicz, W.

    2015-10-21

    Nuclear pasta phases, present in the inner crust of neutron stars, are associated with nucleonic matter at subsaturation densities arranged in regular shapes. Those complex phases, residing in a layer which is approximately 100-m thick, impact many features of neutron stars. Theoretical quantum-mechanical simulations of nuclear pasta are usually carried out in finite three-dimensional boxes assuming periodic boundary conditions. The resulting solutions are affected by spurious finite-size effects. To remove spurious finite-size effects, it is convenient to employ twist-averaged boundary conditions (TABC) used in condensed matter, nuclear matter, and lattice quantum chromodynamics applications. In this work, we study the effectiveness of TABC in the context of pasta phase simulations within nuclear density functional theory. We demonstrated that by applying TABC reliable results can be obtained from calculations performed in relatively small volumes. By studying various contributions to the total energy, we gain insights into pasta phases in mid-density range. Future applications will include the TABC extension of the adaptive multiresolution 3D Hartree-Fock solver and Hartree-Fock-Bogoliubov TABC applications to superfluid pasta phases and complex nucleonic topologies as in fission.

  20. Twist-averaged boundary conditions for nuclear pasta Hartree-Fock calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schuetrumpf, B.; Nazarewicz, W.

    2015-10-21

    Nuclear pasta phases, present in the inner crust of neutron stars, are associated with nucleonic matter at subsaturation densities arranged in regular shapes. Those complex phases, residing in a layer which is approximately 100-m thick, impact many features of neutron stars. Theoretical quantum-mechanical simulations of nuclear pasta are usually carried out in finite three-dimensional boxes assuming periodic boundary conditions. The resulting solutions are affected by spurious finite-size effects. To remove spurious finite-size effects, it is convenient to employ twist-averaged boundary conditions (TABC) used in condensed matter, nuclear matter, and lattice quantum chromodynamics applications. In this work, we study the effectivenessmore » of TABC in the context of pasta phase simulations within nuclear density functional theory. We demonstrated that by applying TABC reliable results can be obtained from calculations performed in relatively small volumes. By studying various contributions to the total energy, we gain insights into pasta phases in mid-density range. Future applications will include the TABC extension of the adaptive multiresolution 3D Hartree-Fock solver and Hartree-Fock-Bogoliubov TABC applications to superfluid pasta phases and complex nucleonic topologies as in fission.« less

  1. Retrieval of Areal-averaged Spectral Surface Albedo from Transmission Data Alone: Computationally Simple and Fast Approach

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-10-25

    We introduce and evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone at five wavelengths (415, 500, 615, 673 and 870nm), under fully overcast conditions. Our retrieval is based on a one-line semi-analytical equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties, such as cloud optical depth and asymmetry parameter, in the visible and near-infrared spectral range. To illustrate the performance of our retrieval, we use as input measurements of spectral atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR). These MFRSR data are collected at two well-established continental sites in the United States supported by the U.S. Department of Energys (DOEs) Atmospheric Radiation Measurement (ARM) Program and National Oceanic and Atmospheric Administration (NOAA). The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo. In particular, these comparisons are made at four MFRSR wavelengths (500, 615, 673 and 870nm) and for four seasons (winter, spring, summer and fall) at the ARM site using multi-year (2008-2013) MFRSR and MODIS data. Good agreement, on average, for these wavelengths results in small values (?0.01) of the corresponding root mean square errors (RMSEs) for these two sites. The obtained RMSEs are comparable with those obtained previously for the shortwave albedos (MODIS-derived versus tower-measured) for these sites during growing seasons. We also demonstrate good agreement between tower-based daily-averaged surface albedos measured for nearby overcast and non-overcast days. Thus, our retrieval originally developed for overcast conditions likely can be extended for non-overcast days by interpolating between overcast retrievals.

  2. Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    4 Space Heating Characteristics by Number of Household Members, 2005 Total..................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Space Heating Equipment............ 1.2 0.3 0.3 Q 0.2 0.2 Have Main Space Heating Equipment............... 109.8 29.7 34.5 18.2 15.6 11.8 Use Main Space Heating Equipment................. 109.1 29.5 34.4 18.1 15.5 11.6 Have Equipment But Do Not Use It................... 0.8 Q Q Q Q Q Main Heating Fuel and

  3. Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005

  4. An Analysis of the Price Elasticity of Demand for Household Appliances

    SciTech Connect (OSTI)

    Fujita, Kimberly; Dale, Larry; Fujita, K. Sydny

    2008-01-25

    This report summarizes our study of the price elasticity of demand for home appliances, including refrigerators, clothes washers, and dishwashers. In the context of increasingly stringent appliance standards, we are interested in what kind of impact the increased manufacturing costs caused by higher efficiency requirements will have on appliance sales. We begin with a review of existing economics literature describing the impact of economic variables on the sale of durable goods.We then describe the market for home appliances and changes in this market over the past 20 years, performing regression analysis on the shipments of home appliances and relevant economic variables including changes to operating cost and household income. Based on our analysis, we conclude that the demand for home appliances is price inelastic.

  5. Energy Saver 101: Home Cooling Infographic | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    While home cooling only accounts for 6 percent of the average home's energy use, it can lead to high energy bills during the warm months. This summer, don't let your energy bills...

  6. Energy Saver 101: Home Cooling Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Saver 101: Home Cooling Infographic Energy Saver 101: Home Cooling Infographic While home cooling only accounts for 6 percent of the average home's energy use, it can lead...

  7. Electricity 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Electricity 101 Electricity 101 FREQUENTLY ASKED QUESTIONS: Why do other countries use different shaped plugs? Why do outlets have three holes? Why do we have AC electricity? Can we harness lightning as an energy source? Can we have wireless transmission of electricity? SYSTEM: What is electricity? Where does electricity come from? What is the "grid"? How much electricity does a typical household use? How did the electric system evolve? What does the future look like?

  8. Fluorescent Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Lighting » Fluorescent Lighting Fluorescent Lighting Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent products to provide a similar amount of light. They also last about 10 times longer (7,000-24,000 hours). The two general types of fluorescent lamps are: Compact fluorescent lamps (CFLs) -- commonly found with integral ballasts and screw bases, these are popular lamps often used in household fixtures Fluorescent tube and circline

  9. Energy Efficiency in Laboratories | Department of Energy

    Office of Environmental Management (EM)

    Laboratories Energy Efficiency in Laboratories Energy Efficiency in Laboratories U.S. laboratories on average use far more energy and water per square foot than office buildings and other facilities because their activities are energy-intensive and their health and safety requirements are more stringent. The Federal Energy Management Program (FEMP) encourages energy efficiency in laboratories through a whole-building approach that enables agencies and organizations to improve the efficiency of

  10. Time-averaged quantum dynamics and the validity of the effective

    Office of Scientific and Technical Information (OSTI)

    Hamiltonian model (Journal Article) | SciTech Connect Time-averaged quantum dynamics and the validity of the effective Hamiltonian model Citation Details In-Document Search Title: Time-averaged quantum dynamics and the validity of the effective Hamiltonian model We develop a technique for finding the dynamical evolution in time of an averaged density matrix. The result is an equation of evolution that includes an effective Hamiltonian, as well as decoherence terms in Lindblad form. Applying

  11. Home Energy Displays. Consumer Adoption and Response

    SciTech Connect (OSTI)

    LaMarche, Janelle; Cheney, K.; Akers, C.; Roth, K.; Sachs, O.

    2012-12-01

    The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. The team hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, Fraunhofer conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 households planned for Phase II encountered major recruitment and HED field deployment problems. In light of these challenges, the team is pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.

  12. Tips: Appliances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliances Tips: Appliances This chart shows how much energy a typical appliance uses per year and its corresponding cost based on national averages. For example, a refrigerator/freezer uses almost five times the electricity the average television uses. This chart shows how much energy a typical appliance uses per year and its corresponding cost based on national averages. For example, a refrigerator/freezer uses almost five times the electricity the average television uses. Appliances account

  13. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration (EIA) State fact sheets on household energy use RECS 2009 - Release date: August 13, 2013 (Correction) The RECS gathers information through personal interviews with a nationwide sample of homes and energy suppliers. The 2009 survey was the largest RECS to date and the larger sample size allowed for the release of data for 16 individual states, in addition to national, regional, and division-level estimates. See a closer look at residential energy

  14. Tlingit and Haida Regional Housing Authority Energy Cents Program

    Energy Savers [EERE]

    DOE Review March 26 th , 2014 Tasha McKoy * Tlingit Haida Regional Housing Authority (THRHA) is the largest housing provider in Southeast, AK * Program focus is small household energy efficiency upgrades and region wide energy conservation education * Program deliverables: - Train 28 field assessors to conduct energy assessments in 400 homes throughout Southeast, AK - Energy fairs/community meetings in 14 communities - K-12 education * 28 field assessors conduct home assessments * 81 donators, *

  15. Training Your Thermostat to Save Money... and Energy! | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Training Your Thermostat to Save Money... and Energy! Training Your Thermostat to Save Money... and Energy! June 25, 2012 - 6:14pm Addthis Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs Many of us know that during the summer, temperatures aren't the only thing skyrocketing -- our energy bills usually also reach record highs due to the cooling measures required to keep ourselves, our pets, and even some of our household items comfortable.

  16. Lighting the Way to Serious Savings | Department of Energy

    Energy Savers [EERE]

    Lighting the Way to Serious Savings Lighting the Way to Serious Savings April 1, 2013 - 6:02pm Addthis Smart lighting choices can save you money. Smart lighting choices can save you money. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Make educated choices when buying light bulbs to save energy and money. Pretty much everybody these days uses electric lighting to keep their households and businesses running during the

  17. Nationwide: New Efficiency Standards for Power Supplies Anticipate Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings | Department of Energy New Efficiency Standards for Power Supplies Anticipate Energy Savings Nationwide: New Efficiency Standards for Power Supplies Anticipate Energy Savings May 1, 2014 - 12:12pm Addthis In February 2014, DOE issued an EERE-developed rule prescribing new energy efficiency standards for external power supplies. External power supplies convert household electric current from wall outlets into lower voltage current, and are used in many consumer products, including

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Energy Efficiency Rebate Program ALP also offers a custom rebate for energy saving measures not listed above. The incentive is based on a dollar amount per average...

  19. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    with the national average of 81 thousand Btu per square foot), while buildings using solar energy or passive solar features used the major energy sources more intensively...

  20. A comparison of spatial averaging and Cadzow's method for array wavenumber estimation

    SciTech Connect (OSTI)

    Harris, D.B.; Clark, G.A.

    1989-10-31

    We are concerned with resolving superimposed, correlated seismic waves with small-aperture arrays. The limited time-bandwidth product of transient seismic signals complicates the task. We examine the use of MUSIC and Cadzow's ML estimator with and without subarray averaging for resolution potential. A case study with real data favors the MUSIC algorithm and a multiple event covariance averaging scheme.

  1. San Jose, California | Department of Energy

    Energy Savers [EERE]

    California San Jose, California Better Buildings Program San Jose Location: Hillview-TOCKNA community in San Jose, California Seed Funding: $750,000-a portion of Los Angeles County's $30 million funding Target Building Types: Residential (single-family) Learn More: Read program design story View Presentations: Residential Energy Efficiency Solutions Conference San Jose Leverages Partnerships to Improve Low-Income Households' Energy Efficiency Since May 2011, Better Buildings Program San Jose

  2. Horizontal Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Y. L.; Banta, R. M.; Kelley, N. D.; Jonkman, B. J.; Tucker, S. C.; Newsom, R. K.; Brewer, W. A.

    2008-08-01

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--have been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA's high-resolution Doppler lidar (HRDL), which have been shown to be approximately equal to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance {sigma}2u were computed from HRDL measurements of the line-of-sight (LOS) velocity using a method described by Banta et al., which uses an elevation (vertical slice) scanning technique. The method was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. The results for the mean U and mean wind speed measured by sodar and in situ instruments for all nights of LLLJP show high correlation (0.71-0.97), independent of sampling strategies and averaging procedures, and correlation coefficients consistently >0.9 for four high-wind nights, when the low-level jet speeds exceeded 15 m s{sup -1} at some time during the night. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging parameters. Several series of averaging tests are described, to find the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal-velocity variance {sigma}{sup 2}{sub u}. Because of the nonstationarity of the SBL data, the best results were obtained when the velocity data were first averaged over intervals of 1 min, and then further averaged over 3-15 consecutive 1-min intervals, with best results for the 10- and 15-min averaging periods. For these cases, correlation coefficients exceeded 0.9. As a part of the analysis, Eulerian integral time scales ({tau}) were estimated for the four high-wind nights. Time series of {tau} through each night indicated erratic behavior consistent with the nonstationarity. Histograms of {tau} showed a mode at 4-5 s, but frequent occurrences of larger {tau} values, mostly between 10 and 100 s.

  3. BC Hydro Brings Energy Savings to Low-Income Families in Canada |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BC Hydro Brings Energy Savings to Low-Income Families in Canada BC Hydro Brings Energy Savings to Low-Income Families in Canada The number of British Columbia, Canada, households eligible for Better Buildings Residential Network member BC Hydro's Energy Conservation Assistance Program (ECAP) just doubled. British Columbia Energy Minister Bill Bennett recently announced an increase in the low-income qualification cutoff for BC Hydro's free home energy-saving kits and

  4. Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Videos Energy

  5. US WNC MO Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less

  6. Household mold and dust allergens: Exposure, sensitization and childhood asthma morbidity

    SciTech Connect (OSTI)

    Gent, Janneane F.; Kezik, Julie M.; Hill, Melissa E.; Tsai, Eling; Li, De-Wei; Leaderer, Brian P.

    2012-10-15

    Background: Few studies address concurrent exposures to common household allergens, specific allergen sensitization and childhood asthma morbidity. Objective: To identify levels of allergen exposures that trigger asthma exacerbations in sensitized individuals. Methods: We sampled homes for common indoor allergens (fungi, dust mites (Der p 1, Der f 1), cat (Fel d 1), dog (Can f 1) and cockroach (Bla g 1)) for levels associated with respiratory responses among school-aged children with asthma (N=1233) in a month-long study. Blood samples for allergy testing and samples of airborne fungi and settled dust were collected at enrollment. Symptoms and medication use were recorded on calendars. Combined effects of specific allergen sensitization and level of exposure on wheeze, persistent cough, rescue medication use and a 5-level asthma severity score were examined using ordered logistic regression. Results: Children sensitized and exposed to any Penicillium experienced increased risk of wheeze (odds ratio [OR] 2.12 95% confidence interval [CI] 1.12, 4.04), persistent cough (OR 2.01 95% CI 1.05, 3.85) and higher asthma severity score (OR 1.99 95% CI 1.06, 3.72) compared to those not sensitized or sensitized but unexposed. Children sensitized and exposed to pet allergen were at significantly increased risk of wheeze (by 39% and 53% for Fel d 1>0.12 {mu}g/g and Can f 1>1.2 {mu}g/g, respectively). Increased rescue medication use was significantly associated with sensitization and exposure to Der p 1>0.10 {mu}g/g (by 47%) and Fel d 1>0.12 {mu}g/g (by 32%). Conclusion: Asthmatic children sensitized and exposed to low levels of common household allergens Penicillium, Der p 1, Fel d 1 and Can f 1 are at significant risk for increased morbidity. - Highlights: Black-Right-Pointing-Pointer Few studies address concurrent allergen exposures, sensitization and asthma morbidity. Black-Right-Pointing-Pointer Children with asthma were tested for sensitivity to common indoor allergens. Black-Right-Pointing-Pointer Homes were sampled for these allergens and asthma morbidity monitored during the subsequent month. Black-Right-Pointing-Pointer Children exposed and sensitized to Penicillium, Der p, Fel d, Can f risk increased asthma morbidity. Black-Right-Pointing-Pointer These children might benefit from targeted intervention strategies.

  7. Evaluating Energy Efficiency Policies with Energy-Economy Models

    SciTech Connect (OSTI)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  8. Energy 101: Geothermal Energy | Department of Energy

    Office of Environmental Management (EM)

    Geothermal Energy Energy 101: Geothermal Energy

  9. Flowmeter for determining average rate of flow of liquid in a conduit

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Flowmeter for determining average rate of flow of liquid in a conduit Citation Details In-Document Search Title: Flowmeter for determining average rate of flow of liquid in a conduit This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and

  10. Energy in Today's Global Society

    Broader source: Energy.gov [DOE]

    Energy is an abstract concept that is very familiar to students from personal experiences with household appliances, transportation, and their own bodies. However, the nature of energy, energy transformations, and energy conservation are poorly understood, even by most adults. The geopolitical and environmental issues associated with energy and its consumption in today’s global society are important for every citizen to appreciate in order to make informed decisions about the future. Without a deep understanding that energy is finite and that energy transformations are what give modern society its high standard of living, students today will not be prepared to make the tough personal and political decisions that await us as fossil fuel resources dwindle.

  11. LCA for household waste management when planning a new urban settlement

    SciTech Connect (OSTI)

    Slagstad, Helene; Brattebo, Helge

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Household waste management of a new carbon neutral settlement. Black-Right-Pointing-Pointer EASEWASTE as a LCA tool to compare different centralised and decentralised solutions. Black-Right-Pointing-Pointer Environmental benefit or close to zero impact in most of the categories. Black-Right-Pointing-Pointer Paper and metal recycling important for the outcome. Black-Right-Pointing-Pointer Discusses the challenges of waste prevention planning. - Abstract: When planning for a new urban settlement, industrial ecology tools like scenario building and life cycle assessment can be used to assess the environmental quality of different infrastructure solutions. In Trondheim, a new greenfield settlement with carbon-neutral ambitions is being planned and five different scenarios for the waste management system of the new settlement have been compared. The results show small differences among the scenarios, however, some benefits from increased source separation of paper and metal could be found. The settlement should connect to the existing waste management system of the city, and not resort to decentralised waste treatment or recovery methods. However, as this is an urban development project with ambitious goals for lifestyle changes, effort should be put into research and initiatives for proactive waste prevention and reuse issues.

  12. The evolving price of household LED lamps: Recent trends and historical comparisons for the US market

    SciTech Connect (OSTI)

    Gerke, Brian F.; Ngo, Allison T.; Alstone, Andrea L.; Fisseha, Kibret S.

    2014-10-14

    In recent years, household LED light bulbs (LED A lamps) have undergone a dramatic price decline. Since late 2011, we have been collecting data, on a weekly basis, for retail offerings of LED A lamps on the Internet. The resulting data set allows us to track the recent price decline in detail. LED A lamp prices declined roughly exponentially with time in 2011-2014, with decline rates of 28percent to 44percent per year depending on lumen output, and with higher-lumen lamps exhibiting more rapid price declines. By combining the Internet price data with publicly available lamp shipments indices for the US market, it is also possible to correlate LED A lamp prices against cumulative production, yielding an experience curve for LED A lamps. In 2012-2013, LED A lamp prices declined by 20-25percent for each doubling in cumulative shipments. Similar analysis of historical data for other lighting technologies reveals that LED prices have fallen significantly more rapidly with cumulative production than did their technological predecessors, which exhibited a historical decline of 14-15percent per doubling of production.

  13. Influence of assumptions about household waste composition in waste management LCAs

    SciTech Connect (OSTI)

    Slagstad, Helene, E-mail: helene.slagstad@ntnu.no [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Brattebo, Helge [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Uncertainty in waste composition of household waste. Black-Right-Pointing-Pointer Systematically changed waste composition in a constructed waste management system. Black-Right-Pointing-Pointer Waste composition important for the results of accounting LCA. Black-Right-Pointing-Pointer Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

  14. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    SciTech Connect (OSTI)

    Lebersorger, S.; Beigl, P.

    2011-09-15

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  15. Time-averaged quantum dynamics and the validity of the effective...

    Office of Scientific and Technical Information (OSTI)

    We develop a technique for finding the dynamical evolution in time of an averaged density matrix. The result is an equation of evolution that includes an effective Hamiltonian, as ...

  16. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016

    Broader source: Energy.gov [DOE]

    The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model produced for sale in the United States will have a fuel...

  17. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  18. U.S. Average Depth of Crude Oil Exploratory and Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  19. U.S. Average Depth of Natural Gas Exploratory and Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  20. U.S. Average Depth of Dry Holes Developmental Wells Drilled ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...